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G.F.B. Riemann

APPLICATIONS OF THE
DEFINITE INTEGRAL IN
GEOMETRY, SCIENCE,
AND ENGINEERING

nthelast chapter weintroduced the definite integral
as the limit of Riemann sums in the context of finding
areas. However, Riemann sumsand definiteintegralshave
applications that extend far beyond the area problem. In
this chapter wewill show how Riemann sumsand definite
integrals arise in such problems as finding the volume
and surface area of a solid, finding the length of a plane
curve, calculating the work done by a force, and finding
the pressure and force exerted by afluid on a submerged
object.

Although these problems are diverse, the required cal-
culationscan all be approached by the same procedurethat
we used to find areas—breaking the required calculation
into “small parts,” making an approximation that is good
because the part is small, adding the approximations from
the partsto produce a Riemann sum that approximatesthe
entire quantity to be calculated, and then taking the limit
of the Riemann sumsto produce an exact result.
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040

6.1 AREA BETWEEN TWO CURVES

In the last chapter we showed how to find the area between a curve y = f(x) and an
interval on the x-axis. Here we will show how to find the area between two curves.

a

Figure 6.1.1

O

AREA BETWEEN y = f(x)

AND y = g(x)

Before we consider the problem of finding the area between two curvesit will be helpful to
review the basic principle that underliesthe calculation of area as adefinite integral. Recall
that if f is continuous and nonnegative on [a, b], then the definite integral for the area A
under y = f(x) over theinterval [a, b] is obtained in four steps (Figure 6.1.1):

Divide the interval [a, b] into n subintervals, and use those subintervals to divide the
areaunder thecurve y = f(x) inton strips.

Assuming that the width of the kth strip is Ax;, approximate the area of that strip by
the area of arectangle of width Ax; and height f(x}), where x; isanumber in the kth
subinterval.

Add the approximate areas of the stripsto approximatetheentirearea A by the Riemann
sum:

A~ SO Axy

k=1
Take the limit of the Riemann sums as the number of subintervals increases and their
widths approach zero. This causesthe error in the approximationsto approach zero and

produces the following definite integral for the exact area A:

n b
A= lim OZf(x,j)Axk:f f(x)dx
k=1 a

max Ax; —

n

Observe the effect that the limit process has on the various parts of the Riemann sum:

The quantity x;* in the Riemann sum becomes the variable x in the definite integral.
Theinterval width Ax; in the Riemann sum becomesthe dx in the definite integral.

Theinterval [a, b] isimplicit in the Riemann sum asthe aggregate of the subintervals
withwidthsAx;, ..., Ax,, but[a, b] isexplicitly represented by the upper and lower
limits of integration in the definite integral.

We will now consider the following extension of the area problem.

6.1.1 FIRST AREA PROBLEM. Supposethat f and g are continuous functions on an

interval [a, b] and
f(x)>gkx) for a<x<b

[Thismeansthat thecurve y = f(x) liesabovethe curve y = g(x) and that the two can
touch but not cross.] Find the area A of the region bounded above by y = f(x), below
by y = g(x), and on the sides by the linesx = a and x = b (Figure 6.1.2a).

To solve this problem we divide the interval [a, b] into n subintervals, which has the

effect of subdividing the regioninto n strips (Figure 6.1.2b). If we assume that the width of
thekth strip is Ax;, then the area of the strip can be approximated by the area of arectangle
of width Ax; and height f(x) —g(x}), wherex; isanumber inthe kth subinterval. Adding
these approximations yields the following Riemann sum that approximates the area A:

A [fa) — ()] Ax
k=1
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Taking the limit as n increases and the widths of the subintervals approach zero yields the
following definite integral for the area A between the curves:

n b
A= G ST — st = / [F(x) — g(0)] dx

In summary, we have the following result:

6.1.2 AREA FORMULA. If f and g are continuous functions on the interva [a, b],
and if f(x) > g(x) for dl x in [a, b], then the area of the region bounded above by
y = f(x), below by y = g(x), ontheleft by theline x = a, and on theright by theline
x=bis

b
A= / i) =il )

In the case where f and g are nonnegative on the interval [«, b], the formula

b b b
A= f [F(x) — g(0)] dx = / o) dx — f g(x) dx

states that the area A between the curves can be obtained by subtracting the area under
y = g(x) fromtheareaunder y = f(x) (Figure 6.1.3).

y y=f(X) AY y = f(X) Y y=f(¥)

N w i
|

} y=9(x | x | y=9( x | y=9(x x

a b ~ a b a b

Figure 6.1.3

When the region is complicated, it may require some careful thought to determine the
integrand and limits of integrationin (1). Hereisasystematic procedure that you can follow
to set up thisformula.

Step 1. Sketch the region and then draw a vertical line segment through the
region at an arbitrary point x on the x-axis, connecting the top and
bottom boundaries (Figure 6.1.4a).

Step 2.  The y-coordinate of the top endpoint of the line segment sketched in
Step 1 will be f(x), the bottom one g(x), and the length of the line
segment will be f(x) — g(x). Thisistheintegrand in (1).

Step 3. To determine the limits of integration, imagine moving the line seg-
ment left and then right. The leftmost position at which the line
segment intersects the region is x = a and the rightmost is x = b
(Figures 6.1.4b and 6.1.4c).
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¢ REMARK. Itisnot necessary to make an extremely accurate sketch in Step 1; the only

purpose of the sketch is to determine which curve is the upper boundary and which is the
lower boundary.

REMARK. Thereisauseful way of thinking about this procedure: If you view the vertical
line segment as the “ cross section” of the region at the point x, then Formula (1) states that

the area between the curves is obtained by integrating the length of the cross section over
i theinterval froma to b.

Example 1 Find the areaof the region bounded above by y = x + 6, bounded below by
y = x2, and bounded on the sides by thelinesx = Oand x = 2.

Solution. The region and a cross section are shown in Figure 6.1.5. The cross section
extends from g(x) = x? on the bottom to f(x) = x + 6 on the top. If the cross section is
moved through theregion, then itsleftmost position will be x = 0 and itsrightmost position
will be x = 2. Thus, from (1)
2 xT’ 34 34
0

2
_ Cdr = | 2 I B S P
A_/O[(x—i-G) x]dx |:2+6x 3 3 0 3 |

It is possible that the upper and lower boundaries of a region may intersect at one or
both endpoints, in which case the sides of the region will be points, rather than vertical

line segments (Figure 6.1.6). When that occurs you will have to determine the points of
intersection to obtain the limits of integration.

Example 2 Find the area of the region that is enclosed between the curves y = x2 and
y=x+6.

Solution. A sketch of the region (Figure 6.1.7) shows that the lower boundary is y = x2
and the upper boundary is y = x + 6. At the endpoints of the region, the upper and lower
boundaries have the same y-coordinates; thus, to find the endpoints we equate

y=x* and y=x+6 2

Thisyields

x*=x+6 or xX>-x—-6=0 or (x+2(x—-3)=0
from which we obtain

x=—-2 and x=3

Although the y-coordinates of the endpoints are not essential to our solution, they may be
obtained from (2) by substituting x = —2 and x = 3 in either equation. Thisyieldsy = 4
and y = 9, so the upper and lower boundaries intersect at (—2, 4) and (3, 9).

From (1) with f(x) = x + 6, g(x) = x%,a = —2, and b = 3, we obtain the area

3 2 393
27 22 125
A= o ar= | A N el
/_2[(x+6) x“] dx |:2+6x 3]_2 5 ( 3)- 5 >
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It is possible for the upper or lower boundary of a region to consist of two or more
different curves, in which case it will be necessary to subdivide the region into smaller
piecesin order to apply Formula (1). Thisisillustrated in the next example.

Example 3 Find the areaof theregion enclosed by x = y?and y = x — 2.

Solution. To make an accurate sketch of the region, we need to know where the curves
x = y?and y = x — 2 intersect. In Example 2 we found intersections by equating the
expressions for y. Here it is easier to rewrite the latter equation as x = y + 2 and equate
the expressions for x, namely

x=y?> and x=y+2 3
Thisyields

Y=y+2 o y’—y-2=0 o (y+1(y—-2=0
from which we obtain y = —1, y = 2. Substituting these values in either equation in (3)
we see that the corresponding x-values are x = 1 and x = 4, respectively, so the points of
intersection are (1, —1) and (4, 2) (Figure 6.1.8a).

To apply Formula (1), the equations of the boundaries must be written so that y is
expressed explicitly as a function of x. The upper boundary can be written as y = /x
(rewrite x = y? asy = +./x and choose the + for the upper portion of the curve). The
lower portion of the boundary consistsof two parts: y = —/xforO<x < landy =x—2
forl < x < 4(Figure6.1.8b). Because of thischangein theformulafor thelower boundary,
it is necessary to divide the region into two parts and find the area of each part separately.

From (1) with f(x) = /x, g(x) = —/x,a =0, and b = 1, we obtain

= ' — (—/X X = ' xXax = g.xg/z}l_f— _f
Al—folf (—vD)ld —2fofd —2[3 ~2 o=

3 3
0
From (1) with f(x) = /x, g(x) =x —2,a = 1, and b = 4, we obtain

4 4
A2=/[x/_—(x—Z)]dX=/(«/)_c—x+2)dx
1 1

2.4, 1, 4 /16 2 1 19
— |52 22| = (2 -8+8)—(c—Z+2)=="
[3x 7 Rl ST 3 27" 6

Thus, the area of the entireregion is

A A A 4 19 9 <

= A1+ A2 = 3 + 5~ 2
FOR THE READER. Itisassumed in Formula (1) that f(x) > g(x) for al x intheinterval
[a, b]. What do you think that the integral represents if this condition is not satisfied, that
is, the graphs of f and g cross one another over the interval? Explain your reasoning, and
give an example to support your conclusion. Using definite integrals, write an expression

¢ for the area between the graphs of f and g in your example.

Example 4 Figure 6.1.9 shows velocity versus time curves for two race cars that move
along astraight track, starting from rest at the same line. What doesthe area A between the
curvesover theinterval 0 < ¢ < T represent?

Solution. From (1)

T T T
A= / [va(2) — v1(2)] dt = / vo(r) dt — / v1(t) dt
0 0 0

But from 5.7.4, the first integral is the distance traveled by car 2 during the time interval,
and the second integral is the distance traveled by car 1. Thus, A is the distance by which
car 2isahead of car 1 attime 7. |
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"""""""""""""""""""" Sometimesit is possible to avoid splitting aregion into parts by integrating with respect to

REVERSING THE ROLES y rather than x. We will now show how this can be done.
OF x AND y

6.1.3 SECOND AREA PROBLEM. Supposethat w and v are continuous functions of y
on aninterval [c, d] and that

wy) =v(y) for c<y=<d

[This means that the curve x = w(y) lies to the right of the curve x = v(y) and that
the two can touch but not cross.] Find the area A of the region bounded on the left by
x =v(y), ontheright by x = w(y), and above and below by thelinesy =dandy = ¢
(Figure 6.1.10).

Proceeding asin the derivation of (1), but with theroles of x and y reversed, leadsto the
Figure 6.1.10 following analog of 6.1.2.

6.1.4 AREA FORMULA. If w and v are continuous functions and if w(y) > v(y) for
al yin[c, d], then the area of the region bounded on the left by x = v(y), on the right
by x = w(y), below by y = ¢, and aboveby y = d is

d
A 2/ [w(y) —v(»)]dy (4)

The guiding principlein applying this formulais the same as with (1): Theintegrand in
(4) can be viewed as the length of the horizontal cross section at an arbitrary point y on
the y-axis, in which case Formula (4) statesthat the area can be obtained by integrating the
length of the horizontal cross section over the interval [c, d] on the y-axis (Figure 6.1.11).

In Example 3, whereweintegrated with respect to x to find the area of theregion enclosed
by x = y?and y = x — 2, we had to split the region into parts and eval uate two integrals. In
> the next example we will see that by integrating with respect to y no splitting of the region
iS necessary.

Figure 6.1.11
Example 5 Find the area of the region enclosed by x = y? and y = x — 2, integrating
with respect to y.

Solution. From Figure6.1.8 theleft boundary isx = y?, theright boundary isy = x — 2,
and the region extends over theinterval —1 < y < 2. However, to apply (4) the equations
for the boundaries must be written so that x is expressed explicitly asafunction of y. Thus,
werewritey = x —2asx = y + 2. It now follows from (4) that

2 2 392
_ N I P Sl B
A—[l[(y+2) y]dy—[2+2y 3}_1—2
which agrees with the result obtained in Example 3. |

¢ REMARK. The choice between Formulas (1) and (4) is generally dictated by the shape
i of the region, and one would usually choose the formula that requires the least amount of
splitting. However, if the integral (s) resulting by one method are difficult to evaluate, then
i the other method might be preferable, even if it requires more splitting.
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In Exercises 14, find the area of the shaded region.

1

5. Find the area of the region enclosed by the curves y = x?
and y = 4x by integrating

(a) with respect to x (b) with respect to y.

6. Find the area of the region enclosed by the curves y? = 4x
and y = 2x — 4 by integrating
(a) with respect to x (b) with respect to y.

In Exercises 7-14, sketch the region enclosed by the curves
and find its area.

7.y=x% y=Jx, x=1/4, x=1

8. y=x3—4x, y=0 x=0, x=2

9. y=cos2x, y=0, x =n/4, x=n/2

10. y =se®x, y=2, x = —n/4, x =n/4
11. x =siny, x =0, y=7n/4, y =3n/4

12 x2=y, x=y-2

1B y=2+x—-1, y=—3x+7

14, y=x, y=4x, y=—x+2

In Exercises 15-20, use a graphing utility, where helpful, to
find the area of the region enclosed by the curves.

15, y =23 —4x?+3x, y=0

16. y = x% — 2x?, y = 2x% — 3x

17. y =sinx, y=cosx, x =0, x =27

18. y=x3—4x, y=0 E|lQ.x:y3—y,x:O

20. x =y —4y2 +3y, x=)>—y

21. Use a CASto find the area enclosed by y = 3 — 2x and
y = x84+ 2x% — 3x* 4+ X2

22. Use a CAS to find the exact area enclosed by the curves
y=x>—2x3-3xandy = x3.

23. Find a horizontal line y = k that divides the area between
y = x?2and y = 9into two equal parts.

24. Find avertical line x = k that divides the area enclosed by
x=,/y,x =2, and y = Ointo two equal parts.

25. (a) Find the area of the region enclosed by the parabola
y = 2x — x? and the x-axis.
(b) Findthevaueof m sothat theline y = mx dividesthe
region in part (a) into two regions of equal area.

26. Find the area between the curve y = sinx and the line seg-
ment joining the points (0, 0) and (577/6, 1/2) on the curve.

27. Suppose that f and g are integrable on [a, b], but neither
f(x) = g(x) nor g(x) > f(x) holdsfor al x in[a, b] [i.e,
thecurvesy = f(x) and y = g(x) are intertwined].

(& What isthe geometric significance of the integral

b
[ e~ geonaxe
(b) What isthe geometric significance of the integral

b
f /() — g(0)] dx?

28. Let A(n) be the areain the first quadrant enclosed by the
curvesy = Y/xandy = x.
(@ By considering how the graph of y = 2/x changes as
n increases, make a conjecture about the limit of A (n)
asn — 4.
(b) Confirm your conjecture by calculating the limit.

In Exercises 29 and 30, use Newton’s Method (Section 4.7),
where needed, to approximate the x-coordinates of the in-
tersections of the curvesto at least four decimal places, and
then use those approximations to approximate the area of the
region.

29. The region that lies below the curve y = sinx and above
theline y = 0.2x, wherex > 0.

30. Theregionenclosed by thegraphsof y = x2and y = cosx.

31. Theaccompanying figure showsvelocity versustime curves
for two cars that move along a straight track, accelerating
from rest at a common starting line.

(@ How far apart are the cars after 60 seconds?
(b) How far apart are the cars after T seconds, where
0<T <60?

A v (ft/s)
180

BCACEE

v,(t) = t3/20

L e

60

Figure Ex-31
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32.

33.

The accompanying figure shows acceleration versus time
curves for two cars that move along a straight track, accel-
erating from rest at the starting line. What does the area A
between the curves over theinterval 0 < ¢ < T represent?
Justify your answer.

a

Figure Ex-32

Find the area of the region enclosed between the curve
xV2 4 y¥2 — 41/2 gand the coordinate axes.

. Show that the area of the ellipse in the accompanying figure

35.

2 2
L+L:1
a® b?

N
N

Figure Ex-34

A rectangle with edges parallel to the coordinate axes has
onevertex at theoriginandthediagonally oppositevertex on
thecurve y = kx™ at the point wherex = b (b > 0,k > 0,
and m > 0). Show that the fraction of the area of the rect-
angle that lies between the curve and the x-axis depends on
m but not on k or b.

ismab. [Hint: Use aformulafrom geometry.]

VOLUMES BY SLICING

In a thin slab, the cross sections
do not vary much in size and shape.

Figure 6.2.2

6.2 VOLUMES BY SLICING; DISKS AND WASHERS

In the last section we showed that the area of a plane region bounded by two curves
can be obtained by integrating the length of a general cross section over an appropri-
ate interval. In this section we will see that the same basic principle can be used to
find volumes of certain three-dimensional solids.

Recall that the underlying principle for finding the area of a plane region is to divide the
region into thin strips, approximate the area of each strip by the area of arectangle, add the
approximationsto form a Riemann sum, and take the limit of the Riemann sumsto produce
an integral for the area. Under appropriate conditions, the same strategy can be used to
find the volume of a solid. The ideais to divide the solid into thin slabs, approximate the
volume of each slab, add the approximations to form a Riemann sum, and take the limit of
the Riemann sums to produce an integral for the volume (Figure 6.2.1).

Figure 6.2.1

What makes this method work is the fact that a thin slab has cross sections that do not
vary much in size or shape, which, as we will see, makes its volume easy to approximate
(Figure 6.2.2). Moreover, the thinner the slab, the less variation in its cross sections and the
better the approximation. Thus, once we approximate the volumes of the slabs, we can set
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up a Riemann sum whose limit is the volume of the entire solid. We will give the details
shortly, but first we need to discuss how to find the volume of a solid whose cross sections
do not vary in size and shape (i.e., are congruent).

One of the simplest examples of a solid with congruent cross sectionsisaright circular
cylinder of radius r, since al cross sections taken perpendicular to the central axis are
circular regions of radiusr. Thevolume V of aright circular cylinder of radiusr and height
h can be expressed in terms of the height and the area of a cross section as

V = nr?h = [areaof across section] x [height] (1)

Thisis aspecial case of a more general volume formula that applies to solids called right
cylinders. A right cylinder is a solid that is generated when a plane region is translated
along aline or axis that is perpendicular to the region (Figure 6.2.3). The distance & that
theregionistransated is called the height or sometimes the width of the cylinder, and each
cross section is a duplicate of the translated region. We will assume that the volume V of a
right cylinder with cross-sectional area A and height  is given by

V = A - h = [areaof across section] x [height] 2

(Figure 6.2.4). Notethat thisis consistent with Formula (1) for thevolume of aright circular
cylinder. We now have all of the tools required to solve the following problem.

6.2.1 PROBLEM. LetS beasolidthat extendsalong the x-axisand isbounded on the
left and right, respectively, by the planesthat are perpendicular tothe x-axisat x = ¢ and
x = b (Figure 6.2.5a). Find the volume V of the solid, assuming that its cross-sectional
area A(x) isknown at each x in the interval [a, b].

To solve this problem we divide the interval [a, b] into n subintervals, which has the
effect of dividing the solid into n slabs (Figure 6.2.5b).

|
y
x) S,

7

a X b a X X “ Xpq b
@ (b)
Figure 6.2.5

If we assume that the width of the kth slab is Ax;, then the volume of the slab can be
approximated by the volume of aright cylinder of width (height) Ax; and cross-sectional
area A(x}), where x; is a number in the kth subinterval (Figure 6.2.6). Adding these
approximations yields the following Riemann sum that approximates the volume V':

VA Y A Ax

k=1
Taking the limit as n increases and the widths of the subintervals approach zero yields the
definite integral

max Ax; — 0

n b
V= lim ZA(x,j)Aka/ A(x) dx
k=1 a
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In summary, we have the following result:

6.2.2 VOLUME FORMULA. Let S beasolid bounded by two parallel planes perpen-
dicular tothe x-axisat x = a and x = b. If, for each x in[a, b], the cross-sectional area
of S perpendicular to the x-axisis A(x), then the volume of the solid is

b
V= / A(x) dx (€)
provided A(x) isintegrable.
Thereisasimilar result for cross sections perpendicular to the y-axis.

6.2.3 VOLUME FORMULA. Let S beasolid bounded by two parallel planes perpen-
dicular tothe y-axisat y = cand y = d. If, for each y in[c, d], the cross-sectional area
of S perpendicular to the y-axisis A(y), then the volume of the solid is

d
V:/ A(y)dy (4)

provided A(y) isintegrable.

1”’“5 In words, these formulas state:
B(0, h)
: The volume of a solid can be obtained by integrating the cross-sectional area from one
anew end of the solid to the other.
y? 5
|
:____ xaxis Example 1 Derivetheformulafor the volume of aright pyramid whose dtitudeis and

o) C(3a,0) whose base is a square with sides of length a.

@ Solution. Asillustrated in Figure 6.2.7a, we introduce a rectangular coordinate system
in which the y-axis passes through the apex and is perpendicular to the base, and the x-axis
passes through the base and is parallel to a side of the base.

h-y At any y in the interva [0, i] on the y-axis, the cross section perpendicular to the y-
I h axisis asquare. If s denotes the length of a side of this square, then by similar triangles
y 2 (Figure 6.2.7b)
1
P _h-y Yo
o la c 1L, h ors_h(h y)
(0) Thus, the area A(y) of the cross section at y is
Figure 6.2.7

2
A(y) =52 = Z‘z“’ —y)?

and by (4) the volumeis

h h 2 2 h
v=/ A(y)dy=f Ch—y2dy="" [ - y2dy
0 o h? h? Jo
a®[ 1 h a? 1 1
=—|-Z(h—-y)°®| ==|0+=h®=2d%
hz[ 3=y Lo hZ[ *3 } 3

That is, the volumeis % of the area of the base times the altitude. |



January 23, 2001 13:23 g65-ch6

SOLIDS OF REVOLUTION

VOLUMES BY DISKS

Figure 6.2.8

PERPENDICULAR TO THE x-AXIS

Figure 6.2.10

Figure 6.2.9
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A solid of revolutionisasolid that is generated by revolving aplane region about alinethat
liesin the same plane asthe region; the lineis called the axis of revolution Many familiar
solids are of thistype (Figure 6.2.8).

)
|

[\
Axis of revolution U \f

Some familiar solids of revolution
We will be interested in the following general problem:

6.24 PROBLEM. Let f be continuous and nonnegative on [a, b], and let R be the
region that is bounded above by y = f(x), below by the x-axis, and on the sides by the
linesx = a and x = b (Figure 6.2.9a). Find the volume of the solid of revolution that is
generated by revolving the region R about the x-axis.

We can solve this problem by slicing. For this purpose, observe that the cross section of
the solid taken perpendicular to the x-axis at the point x is acircular disk of radius f(x)
(Figure 6.2.9b). The area of thisregionis

AW) = 7l f0)?
Thus, from (3) the volume of the solid is

b
V= / al f(x)]?dx ©)
y y
y = f(x)
R
[\ X N X
a bz
@) (b)

Because the cross sections are disk shaped, the application of this formula is caled the
method of disks

Example 2 Find the volume of the solid that is obtai ned when the region under the curve
y = /x over theinterval [1, 4] is revolved about the x-axis (Figure 6.2.10).

Solution. From (5), the volumeis
2

b 4 4
VZ/ N[f(x)]zdx:/ wxdx = %i| :87[_Z=15_7T <
a 1 1
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X2 +y

Ty 22
|
|
|

Figure 6.2.11

VOLUMES BY WASHERS

PERPENDICULAR TO THE x-AXIS

| y=90) N x
a b 4
@)
y
f(x)
| NI
(b)
Figure 6.2.12

Example 3 Derive the formulafor the volume of a sphere of radiusr.

Solution. Asindicatedin Figure6.2.11, asphereof radiusr can be generated by revolving
the upper semicircular disk enclosed between the x-axis and

X2 y2 =2
about the x-axis. Since the upper half of thiscircleisthe graph of y = f(x) = +/r2 — x2,
it follows from (5) that the volume of the sphereis

b r x3 r 4
V= / Al f(0)]?dx = / a(r? —x%dx =nw [rzx — §j| = §nr3 |

Not all solids of revolution have solid interiors; some have holes or channels that create
interior surfaces, asin thelast part of Figure 6.2.8. Thus, we will beinterested in problems
of the following type.

6.25 PROBLEM. Let f and g be continuous and nonnegative on [a, b], and suppose
that f(x) > g(x) for al x in the interval [a, b]. Let R be the region that is bounded
aboveby y = f(x), below by y = g(x), and on thesidesby thelinesx =a andx = b
(Figure6.2.12a). Find the volume of the solid of revolution that isgenerated by revolving
theregion R about the x-axis.

We can solve this problem by slicing. For this purpose, observe that the cross section of
the solid taken perpendicul ar to the x-axis at the point x isthe annular or “washer-shaped”
region with inner radius g(x) and outer radius f(x) (Figure 6.2.12b); henceits areais

A(x) = 7l f(0)]? = 7[g(0)]? = 7([f()]* — [g(x)]?)
Thus, from (3) the volume of the solid is

b
V= / A f @ — [g0)]D) dx (®)

Because the cross sections are washer shaped, the application of thisformulais called the
method of washers

Example 4 Find the volume of the solid generated when the region between the graphs
of the equations f(x) = % + x?and g(x) = x over theinterval [0, 2] is revolved about the
x-axis (Figure 6.2.13).

— N W Bk W

Unequal scales on axes
Figure 6.2.13
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Solution.  From (6) the volumeis

b 2
V= [ Ao - ey = [ (547 - 2?) dx
0

a

2 592
1 X x 69
—/OJT<2+X)dX—7[|:Z+€i|O—E 4
VOL UMES BY DISKs AND """""" The methods of disks and washers have analogs for regions that are revolved about the y-
WASHERS PERPENDICULAR TO axis (Figures 6.2.14 and 6.2.15). Ugng the method of dicing and Formulg (4_), you ;hould
THE y-AXIS have no trouble deducing the following formulasfor the volumes of the solidsin thefigures.
d d
V= / alu(y)]* dy V= / 2([wy)]? = [v(]*) dy (7-8)
‘ Disks ‘ Washers
Y y y y
b 4>
X =v(y)
X = u(y) x = w(y)
R
c X “ X °r X
@) (b) @)
Figure 6.2.14 Figure 6.2.15

Example 5 Find the volume of the solid generated when theregionenclosed by y = /x,
y = 2, and x = Qisrevolved about the y-axis (Figure 6.2.16).

Solution. The cross sections taken perpendicular to the y-axis are disks, so wewill apply
(7). But first we must rewrite y = /x as x = y2. Thus, from (7) with u(y) = y?, the

volumeis
d 2 n®1? 327
V=/ n[u(y)]zdy=f mytdy = L] =— <
j . 5 |,” 5
AY y
|

0

Figure 6.2.16
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EXERCISE SET 6.2 CAS

In Exercises 14, find the volume of the solid that results
when the shaded region is revolved about the indicated axis.

1 2. AV yoy
y=2-x2
AT
| 1
3. 4, AY
ll b
27
y:l‘/x ‘ X
2

In Exercises 5-12, find the volume of the solid that results
when the region enclosed by the given curves is revolved
about the x-axis.

5. y:xz, x=0,x=2 y=0

6. y=secx, x =n/4, x=n/3, y=0

7. y=./cosx, x=n/4, x=n/2, y=0

8. y=x? y=x3 9. y=v25—x2, y=3

10. y=9-x2 y=0 11 x = /y, x =y/4
12. y = sinx, y = cosx, x = 0, x = n/4. [Hint: Use the
identity cos2x = cos? x — sin?x.]

In Exercises 13-20, find the volume of the solid that results
when the region enclosed by the given curves is revolved
about the y-axis.
13. y=x% x=0, y=1 14. x=1—y? x=0
15 x=/1+y, x=0, y=3
16. y:xz—l, x=2,y=0
17. x =cscy, y=n/4, y=3n/4, x =0
18. y =x2, x = y? 19. x =y%, x=y+2
20 x=1-y% x=2+y% y=-1 y=1
21. Find the volume of the solid that results when the region
above the x-axis and below the ellipse
¥2 2
;—i—%:l (a>0,b>0)
isrevolved about the x-axis.
22. Let V be the volume of the solid that results when the re-
gionenclosedby y = 1/x,y = 0,x = 2, andx = b
(0 < b < 2) isrevolved about the x-axis. Find the value of
b forwhich vV = 3.

23. Find the volume of the solid generated when the region en-
closedby y = +/x+1, y = v/2x, and y = Oisrevolved
about the x-axis. [Hint: Split the solid into two parts.)

24. Find the volume of the solid generated when the region en-
closedby y = \/x, y = 6 —x, and y = Oisrevolved about
the x-axis. [Hint: Split the solid into two parts.]

25. Find the volume of the solid that results when the region
enclosed by y = \/x, y = 0, and x = 9 is revolved about
thelinex = 9.

26. Find the volume of the solid that results when the region in
Exercise 25 isrevolved about theline y = 3.

27. Find the volume of the solid that results when the region
enclosed by x = y? and x = y is revolved about the line
y=-L1

28. Find the volume of the solid that results when the region in
Exercise 27 isrevolved about the linex = —1.

29. A nose cone for a space reentry vehicle is designed so that
across section, taken x ft from the tip and perpendicular to
the axis of symmetry, is a circle of radius %xz ft. Find the
volume of the nose cone given that its length is 20 ft.

30. A certain solid is 1 ft high, and a horizontal cross section
taken x ft above the bottom of the solid is an annulus of
inner radius x? and outer radius /x. Find the volume of the
solid.

31. Find the volume of the solid whose base is the region
bounded between the curves y = x and y = x2, and whose
cross sections perpendicular to the x-axis are sguares.

32. Thebaseof acertainsolidistheregionenclosedby y = /x,
y =0, and x = 4. Every cross section perpendicular to the
x-axisisasemicirclewith itsdiameter acrossthe base. Find
the volume of the solid.

33. Find the volume of the solid whose base is enclosed by the
circle x2 4+ y? = 1 and whose cross sections taken perpen-
dicular to the base are

(a) semicircles (b) squares

. ~

£

< S

(c) equilateral triangles.
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Derive the formula for the volume of aright circular cone
with radius r and height 4.

In Exercises 35 and 36, use a CASto estimate the volume of
the solid that results when the region enclosed by the curves
is revolved about the stated axis.

35.

36.
37.

38.

39.

40.

41.

y=sinfx, y=2x/n, x =0, x = 7/2; x-axis
y=m?sinxcos’x, y=4x? x=0, x =n/4; x-axis
The accompanying figure shows a spherical capof radius
p and height & cut from a sphere of radius r. Show that the

volume V of the spherical cap can be expressed as
@ V = 37h?@r —h) (b) V = imh(3p? + h?).

Figure Ex-37

If fluid enters ahemispherical bowl with aradius of 10 ft at
a rate of % ft3/min, how fast will the fluid be rising when
the depth is 5 ft? [Hint: See Exercise 37.]

The accompanying figure shows the dimensions of a small

lightbulb at 10 equally spaced points.

(8 Useformulasfrom geometry to make arough estimate
of the volume enclosed by the glass portion of the bulb.

(b) Use the average of left and right endpoint approxima-
tions to approximate the volume.

.LLT o
1.25.cm
==

1rzZocm
|

1 2K

rZzoctm
|

125 em

.L.L\.II cm

125 em

Figure Ex-39

Usetheresult in Exercise 37 to find the volume of the solid
that remainswhen aholeof radiusr/2isdrilled through the
center of a sphere of radius r, and then check your answer
by integrating.

As shown in the accompanying figure, acocktail glasswith
abowl shaped like a hemisphere of diameter 8 cm contains
a cherry with a diameter of 2 cm. If the glass is filled to
a depth of 4 cm, what is the volume of liquid it contains?

Sheet number 15 Page number 413

42.

43.

45,

46.
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6.2 Volumes by Slicing; Disks and Washers 413

[Hint: First consider the case where the cherry is partially
submerged, then the case where it is totally submerged.]

Figure Ex-41

Find the volume of thetorusthat resultswhen the region en-
closed by thecircleof radiusr with center at (i, 0), & > r, IS
revolved about the y-axis. [Hint: Usean appropriateformula
from plane geometry to help evaluate the definite integral.]

A wedgeis cut from aright circular cylinder of radius r by
two planes, one perpendicular to the axis of the cylinder and
the other making an angle 6 with the first. Find the volume
of thewedgeby slicing perpendicular to the y-axisas shown
in the accompanying figure.

Figure Ex-43

. Find the volume of the wedge described in Exercise 43 by

slicing perpendicular to the x-axis.

Tworight circular cylinders of radius r have axes that inter-
sect at right angles. Find the volume of the solid common to
thetwo cylinders. [Hint: One-eighth of the solid is sketched
in the accompanying figure.]

In 1635 Bonaventura Cavalieri, a student of Galileo, stated
the following result, called Cavalieri’s principle If two
solids have the same height, and if the areas of their cross
sections taken parallel to and at equal distances from their
bases are always equal, then the solids have the same vol-
ume. Use thisresult to find the volume of the oblique cylin-
der in the accompanying figure.

= i

Figure Ex-45 Figure Ex-46
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CYLINDRICAL SHELLS

rlf—rz

Figure 6.3.2

Figure 6.3.1

6.3 VOLUMES BY CYLINDRICAL SHELLS

The methods for computing volumes that have been discussed so far depend on our
ahility to compute the cross-sectional area of the solid and to integrate that area
across the solid. In this section we will develop another method for finding volumes
that may be applicable when the cross-sectional area cannot be found or the integra-
tion is too difficult.

In this section we will be interested in the following problem:

6.3.1 PROBLEM. Let f be continuous and nonnegative on [a, b], and let R be the
region that is bounded above by y = f(x), below by the x-axis, and on the sides by the
linesx = a and x = b. Find the volume V of the solid of revolution S that is generated
by revolving the region R about the y-axis (Figure 6.3.1).

Sometimes problems of this type can be solved by the method of disks or washers per-
pendicular to the y-axis, but when that method is not applicable or the resulting integral is
difficult, the method of cylindrical shells, which we will discuss here, will often work.

y y
y = f(x) % S

A cylindrical shell is a solid enclosed by two concentric right circular cylinders (Fig-
ure 6.3.2). The volume V of acylindrical shell with inner radius 1, outer radius r,, and
height i can be written as

V = [areaof crosssection] - [height] = (72 — 7wr?)h
=7(r2+ r)(ra —roh =21 - [3(ri+r2)] - h - (r2 — r1)

But %(rl + ry) isthe average radius of the shell and r, — r; isitsthickness, so

V = 2r - [averageradius] - [height] - [thickness] (@)

We will now show how thisformula can be used to solve the problem posed above. The
underlying ideais to divide the interval [a, b] into n subintervals, thereby subdividing the
region R into n strips, R1, Ro, ..., R, (Figure6.3.3a). When theregion R isrevolved about
the y-axis, these strips generate “tube-like” solids Sy, S», .. ., S, that are nested oneinside

the other and together comprise the entire solid S (Figure 6.3.3b). Thus, the volume V' of
the solid can be obtained by adding together the volumes of the tubes; that is,

V=V(S)+ V(S + -+ V(S,)

Asarule, the tubeswill have curved upper surfaces, so there will be no simple formulas
for their volumes. However, if the strips are thin, then we can approximate each strip by a
rectangle (Figure 6.3.4a). These rectangles, when revolved about the y-axis, will produce
cylindrical shellswhose volumes closely approximate the volumes generated by the original
strips (Figure 6.3.4b). We will show that by adding the volumes of the cylindrical shellswe
can obtain a Riemann sum that approximates the volume V, and by taking the limit of the
Riemann sums we can obtain an integral for the exact volume V.
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(a)

AY \Y
&>
Ry \
X-1 %
(a) (b)

To implement this idea, suppose that the kth strip extends from x;_; to x; and that the
width of thisstrip is

Axp = X — Xp-1

If we let x; be the midpoint of the interval [x;_1, x;], and if we construct a rectangle of
height f(x;) over the interval, then revolving this rectangle about the y-axis produces a
cylindrical shell of height f(x}), averageradiusx;’, and thickness Ax; (Figure 6.3.5). From
(1), the volume V;, of thiscylindrical shell is

Vie = 2mx} f(x) Axk

Adding the volumes of the n cylindrical shells yields the following Riemann sum that
approximates the volume V:

vV~ Z 2mx} f(x}) Axy
k=1

Taking the limit as n increases and the widths of the subintervals approach zero yields the
definite integral

)
V= lim 2nxl f(xp) Axy = / 27x f(x)dx
1

maxAxk—>0k= a

In summary, we have the following result.

6.3.2 VOLUMEBY CYLINDRICAL SHELLSABOUT THE y-AXIS. Let f be continuous
and nonnegative on [a, b], and let R be the region that is bounded above by y = f(x),
below by the x-axis, and on the sides by thelinesx = a and x = b. Then the volume V
of the solid of revolution that is generated by revolving the region R about the y-axisis
given by

b
V:/ 2rx f(x) dx 2
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VARIATIONS OF THE METHOD OF
CYLINDRICAL SHELLS

Cutaway view of the solid

Figure 6.3.6

LY

This solid looks like a bowl
with a cone-shaped interior.

Figure 6.3.8

Example 1 Use cylindrical shells to find the volume of the solid generated when the
region enclosed between y = /x,x = 1,x = 4, and the x-axis is revolved about the
y-axis (Figure 6.3.6).

Solution. Since f(x) = /x,a = 1, and b = 4, Formula (2) yields
4 4 2 " 4n

V=/ hxﬁdx:Zn/ x?’/zdxz[Zn-—xs/z} =—[32-1] =
1 1 5 1 5

The method of cylindrical shellsis applicable in a variety of situations that do not fit the
conditions required by Formula (2). For example, the region may be enclosed between two
curves, or the axis of revolution may be some line other than the y-axis. However, rather
than develop a separate formulafor every possible situation, we will give ageneral way of
thinking about the method of cylindrical shellsthat can be adapted to each new situation as
it arises.

For this purpose, we will need to reexamine the integrand in Formula (2): At each x
in the interval [a, b], the vertical line segment from the x-axisto the curve y = f(x) can
be viewed as the cross section of theregion R at x (Figure 6.3.7a). When the region R is
revolved about the y-axis, the cross section at x sweeps out the surface of aright circular
cylinder of height f(x) and radius x (Figure 6.3.7b). The area of this surfaceis

2x f(x)

(Figure 6.3.7c), which isthe integrand in (2). Thus, Formula (2) can be viewed informally
in the following way.

1247
5 <

6.3.3 ANINFORMAL VIEWPOINT ABOUT CYLINDRICAL SHELLS. ThevolumeV of a
solid of revolution that isgenerated by revolving aregion R about an axis can be obtained
by integrating the area of the surface generated by an arbitrary cross section of R taken
parallel to the axis of revolution.

y y
> 21X
y=f(x) r/—\
| fJ )
X
R I f(x)
X ___L___ X l
a X b i X
@ (b) ©
Figure 6.3.7

The following examples illustrate how to apply this result in situations where Formula
(2) isnot applicable.

Example 2 Use cylindrical shells to find the volume of the solid generated when the
region R in the first quadrant enclosed between y = x and y = x2 is revolved about the
y-axis (Figure 6.3.8).

Solution. At each x in [0, 1] the cross section of R parallel to the y-axis generates a
cylindrical surface of height x — x? and radius x. Since the area of this surfaceis

27x (x — x2)
the volume of the solid is

1 1 3 41 1 1
V:/0 271x(x—x2)dx:27r/0 (x°=x%dx =2n [%—%]0:271[5—2} =

A oy
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FOR THE READER.  The volume in this example can also be obtained by the method of

washers. Confirm that the volume produced by that method agreeswith the volume obtained

by cylindrical shells.

Example 3 Use cylindrical shells to find the volume of the solid generated when the
region R under y = x2 over theinterval [0, 2] isrevolved about the x-axis (Figure 6.3.9).

20
R —..._

|
\ AR
ol W 2 ¥
fe—> Solid
24y
Figure 6.3.9

Solution. Ateachyintheinterval 0 < y < 4, thecrosssection of R parallel to the x-axis
generates acylindrical surface of height 2 — , /y and radius y. Since the area of this surface
is2my(2 - ,/y), the volume of the solid is

4 4 2 ,1* 327
v=[one- =2 (2y—y3/2>dy=2n[y2—§y5/2] - <
0 0 0

FOR THE READER.  The volume in this example can aso be obtained by the method of
disks. Confirm that the volume produced by that method agrees with the volume obtained
by cylindrical shells.

the indicated axis.

3. y 4. y=X
In Exercises 14, use cylindrical shellsto find the volume of 5 Y

the solid generated when the shaded region isrevolved about s X = 2y —2y2 y=x+2 n
X
Il >

- R EEEA

AR
Y oyax 1 V)
S
ﬁ
- y=v4-x2

L X In Exercises 5-10, use cylindrical shells to find the volume
2 of the solid generated when the region enclosed by the given

curvesisrevolved about the y-axis.
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© o N o U

10.

y=2x—-1 y=-2x+3, x =2

y=2X_X2, y=0

In Exercises 11-14, use cylindrical shellsto find the volume
of the solid generated when the region enclosed by the given
curvesisrevolved about the x-axis.

11.
12.
13.
14.
15.

16.

17.

18.

19.

ARC LENGTH

y2=x, y=1 x=0

x=2y, y=2y=3 x=0

y=x? x=1y=0

xy=4, x+y=5

Use a CASto find the volume of the solid generated when
theregionenclosedby y =snxandy =0forO<x <m
is revolved about the y-axis.

Use a CASto find the volume of the solid generated when
the region enclosed by y = cosx, y = 0, and x = O for
0 < x < m/2isrevolved about the y-axis.

(a8 Use cylindrical shells to find the volume of the solid

that is generated when the region under the curve
y=x3—3x%4+2x
over [0, 1] isrevolved about the y-axis.

(b) Forthisproblem, isthemethod of cylindrical shellseas-
ier or harder than the method of slicing discussed inthe
last section? Explain.

Use cylindrical shellsto find the volume of the solid that is

generated when the region that is enclosed by y = 1/x3,

x =1 x=2 y=~0isrevolved about thelinex = —1.

Use cylindrical shells to find the volume of the solid that

is generated when the region that is enclosed by y = x3,

y =1, x = Oisrevolved about theliney = 1.

20.

21.

22.

23.

24.

25.

Let R, and R, be regions of the form shown in the accom-
panying figure. Use cylindrical shells to find a formula for
the volume of the solid that results when

(a) region R; isrevolved about the y-axis

(b) region R, isrevolved about the x-axis.

AY y
y=f() al
n "
X =

Coy=a0 TV

} } X X
a b

Figure Ex-20

Use cylindrical shells to find the volume of the cone gen-
erated when the triangle with vertices (0, 0), (0, ), (&, 0),
wherer > 0and 4 > 0, isrevolved about the x-axis.

Theregion enclosed between the curve y? = kx and theline
x = 2k isrevolved about the line x = k. Use cylindri-
cal shellsto find the volume of the resulting solid. (Assume
k>0)

A round hole of radius a is drilled through the center of a
solid sphere of radius r. Use cylindrical shells to find the
volume of the portion removed. (Assumer > a.)

Use cylindrical shells to find the volume of the torus ob-
tained by revolving the circle x? 4+ y? = 42 about the line
x = b, whereb > a > 0. [Hint: It may help in the integra-
tion to think of an integral as an area.]

Let V, and V, bethe volumes of the solids that result when

theregion enclosed by y = 1/x, y =0, x = %, andx = b
(b > 1) is revolved about the x-axis and y-axis, respec-

tively. Isthere avalue of b for which V, = V,?

6.4 LENGTH OF A PLANE CURVE

In this section we will consider the problem of finding the length of a plane curve.

Although formulas for lengths of circular arcs appear in early historical records, very little
was known about the lengths of more general curves until the mid-seventeenth century.

About that time formulas were discovered for afew specific curves such asthe length of an
arch of a cycloid. However, such basic problems as finding the length of an ellipse defied
the mathematicians of that period, and almost no progress was made on the general problem
of finding lengths of curves until the advent of calculusin the next century.
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Txlxz X3 Xgr Xy
a=Xxg b= Xn
Figure 6.4.2
A Y
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Figure 6.4.3
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Our first objective in this section isto define what we mean by the length (also called the
arc length) of aplane curve y = f(x) over aninterval [a, b] (Figure 6.4.1). Once that is
done we will be able to focus on computational matters. To avoid some complications that
would otherwise occur, we will impose the requirement that f” be continuous on [a, b], in
which case we will say that y = f(x) isasmooth curveon [«, b] (or that f isasmooth
function on [a, b]).

We will be concerned with the following problem:

6.4.1 ARC LENGTH PROBLEM. Suppose that y = f(x) is a smooth curve on the
interval [a, b]. Defineand find aformulafor the arc length L of thecurve y = f(x) over
theinterval [a, b].

The basicideafor defining arc length is to break up the curve into small segments, approx-
imate the curve segments by line segments, add the lengths of the line segments to form a
Riemann sum that approximates the arc length L, and take the limit of the Riemann sums
to obtain an integral for L.

Toimplement thisidea, dividetheinterval [a, b] into n subintervalsby inserting numbers
X1, X2, ..., X,_1 betweena = xg and b = x,,. Asshownin Figure6.4.2, let Po, P1,..., P,
be the points on the curve with x-coordinates a = xg, x1, X2, ..., X,_1, b = x,, and join
these points with straight line segments. These line segments form a polygonal paththat
we can regard as an approximation to the curve y = f(x). As suggested by Figure 6.4.3,
the length L, of the kth line segment in the polygona pathis

Ly = v (Axp)?2 + (Ay)? = v (Axp)? + [ f(xx) — f(xp-1)]? (6h)

If we now add the lengths of these line segments, we obtain the following approximation
to thelength L of the curve

L~ L=
k=1
To put thisin the form of a Riemann sum we will apply the Mean-Value Theorem (4.8.2).

This theorem implies that there is a number x;° between x;_; and x; such that
fOu) — fO-1)

Xk — Xk—1
and hence we can rewrite (2) as

LY 1+ [f0DIPAx
k=1

Thus, taking thelimit as» increases and the widths of the subinterval s approach zero yields
the following integral that definesthe arc length L:

n b
L= lim 02,/1+[f/(x,j)]2Axk=/ VIF[F0)P2dx
k=1 a

max Axy —

V)2 [fn) — fox)]? )

n

k=1

= fix) or flx) = fl-1) = f/() Axy

In summary, we have the following definition:

6.4.2 DEFINITION. If y = f(x) isasmooth curve ontheinterval [a, b], then the arc
length L of this curve over [a, b] isdefined as

b
L=/ JIF @R dx @3)
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Figure 6.4.4

Thisresult providesboth adefinition and aformulafor computing arclengths. Where con-
venient, (3) can aso be expressed as

L= [ virrerac= [ i (2) @

Moreover, for a curve expressed in the form x = g(y), where g’ is continuous on [c, d],
the arc length L from y = ¢ to y = d can be expressed as

d d 2
L= [VIAEoFy = [ 1+ (£) o ®

Example 1 Findthearclengthof thecurvey = x32from (1, 1)to(2, 2¢/2) (Figure6.4.4)
in two ways: (a) using Formula (4) and (b) using Formula (5).

Solution (a). Since
d
& 3,12
dx 2
and since the curve extends from x = 1tox = 2, it follows from (4) that

2
/ 9
L:/; 1+Zxdx

To evaluate thisintegral we make the u-substitution
u =l+%x, du = %dx
and then change the x-limits of integration (x = 1, x = 2) to the corresponding u-limits

(= o= 2

22/4 3/2 3/2
. f/22/4u1/2du _ Eue,/z} _8 <2_2> _ <E’)
9 Jaz/a 27 1wa 27|\ 4 4
2222 13V13

~ 2.09
27

Solution (b). To apply Formula (5) we must first rewrite the equation y = x¥?2 so that x
is expressed as a function of y. Thisyieldsx = y?/3 and

dx

i ~1/3
dy

Since the curve extends from y = 1to y = 2+/2, it follows from (5) that

2V2 4 1 2V2
L= J14 =y 23dy = -/ ~13./9y2/3 1 44
/1 + 9y y 3/, y yee 4+ 4dy

To evaluate thisintegral we make the u-substitution
u= 9y2/3 +4, du= 6y_l/3dy
and change the y-limits of integration (y = 1, y = 2+/2) to the corresponding u-limits
(u = 13, u = 22). Thisgives
1 (% 1 2 1 22422 — 13V13
L — _/ ul/Zdu — —M3/2 — _[(22)3/2 _ (13)3/2] — \/_
18 /i3 27 13 27 27

This result agrees with that in part (a); however, the integration here is more tedious. In
problems where there is a choice between using (4) or (5), it is often the case that one of
the formulas leads to a simpler integral than the other. |
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""""""""""""""""""""""" Thefollowing result providesaformulafor finding the arc length of acurvefrom parametric

gﬁngésNGTH OF PARAMETRIC equations for the curve. Its derivation is similar to that of Formula (3) and will be omitted.

6.4.3 ARCLENGTHFORMULA FORPARAMETRIC CURVES. If nosegment of thecurve
represented by the parametric equations

x=x@), y=y@) (a<t=<b)

istraced morethan onceast increasesfroma tob, andif dx/dt anddy/dt are continuous
functionsfor a < ¢ < b, thenthe arc length L of the curveis given by

- [

¢ REMARK. Notethat Formulas (4) and (5) are special cases of (6). For example, Formula
i (4) can be obtained from (6) by writing y = f(x) parametricaly asx =, y = f(1);
: similarly, Formula (5) can be obtained from (6) by writing x = g(y) parametrically as
i x =g(1), y =t. Weleave the details as exercises.

Example 2 Use (6) to find the circumference of acircle of radius a from the parametric
equations
X =acost, y=asnt O<t<2m

Solution.

27[ dx 2 dy 2 2r : . .
Lz/o \/<E) +(E> dt:/() V(—asint)? + (acosr)?dr

2

27
=/ adl:ati| = 2ma |
0 0

"""""""""""""""""""""" Asarule, theintegralsthat arise in calculating arc length tend to be impossible to evaluate

;I\I(“le\ﬁEﬁgAll-.El\Nngl:IODs in terms of elementary functions, so it will often be necessary to approximate the integral
using a numerical method such as the midpoint approximation (discussed in Section 5.4)
or some other comparable method. Examples 1 and 2 are rare exceptions.

Example 3 From (4), the arc length of y = sinx fromx = Otox = wisgiven by the
integral

L =/ V1+ (cosx)?dx
0

Thisintegral cannot be evaluated in terms of elementary functions; however, using acalcu-
lating utility with a numerical integration capability yields the approximation L ~ 3.8202.
<

¢ FORTHEREADER. InFigure6.4.5, thescaleonbothaxesis?2 centimetersper unit. Confirm
¢ that the result in Example 3 is reasonable by laying a piece of string as closely as possible
along the curve in the figure and measuring its length in centimeters.

y

Figue645 Ol T
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EXERCISE SET 6.4 [ Graphing Calculator

? FORTHE READER.

Computer algebra systems and some scientific cal culators have com-

mands for evaluating integrals numerically, and some scientific calculators have built-in
commands for approximating arc lengths. If you have a scientific calculator with one of
these capabilities or a CAS, read the documentation, and then use your calculator or CAS

to check the result in Example 3.

CAS

1

|
t

A ow

ol

© N o

segment y = 2x from (1, 2) to (2, 4), and confirm that the
value is consistent with the length computed using
() Formula(4) (b) Formula(5).

. Use the Theorem of Pythagoras to find the length of the
linesegment x = ¢,y = 5 (0 < r < 1), and confirm
that the value is consistent with the length computed using
Formula (6).

n Exercises 3-8, find the exact arc length of the curve over
he stated interval.

. y=3%%¥2_1fromx =0tox =1
x=10%2+2%fromy=0toy =1

. y=x?3fromx =1tox =8

.y = (x%+8)/(16x?) fromx = 2tox = 3
. 24xy = y* 4+ 48fromy =2toy =4
x=1y*+ 3y 2fromy=1toy =4

n Exercises 9-12, find the exact arc length of the parametric

curve without eliminating the parameter.

9
10
11
12

@ 13

x=3% y=3 (0<t<1)
L x=0+1% y=10+0® O0O=<t<)
. x=0082t, y=sn2t (0<t<m/2

. x=cost+tsint, y=sint—tcost (0<r<mn)

. (@ Recall from Section 1.8 that acycloid isthe path traced
by a point on the rim of awheel that rolls along aline
(Figure 1.8.13). Use the parametric equations in For-
mula (9) of that section to show that thelength L of one
arch of acycloid is given by the integral

2
L :a/ v/ 2(1 — cos6) do
0

(b) Usea CASto show that L is eight times the radius of
the wheel (see the accompanying figure).

ol
Figure Ex-13

15.

16.

Usethe Theorem of Pythagorasto find the length of theline [ 14. It was stated in Exercise 41 of Section 1.8 that the curve

given parametrically by the equations
x=acoS¢p, y=asn ¢
iscalled afour-cusped hypocycloid (also called an astroid).
(8 Useagraphing utility to generate the graph in the case
wherea = 1, so that it istraced exactly once.
(b) Find the exact arc length of the curve in part ().

Consider the curve y = x%/3.

(8) Sketch the portion of the curve between x = —1 and
x=8.

(b) Explain why Formula(4) cannot be used to find the arc
length of the curve sketched in part (a).

(c) Findthearc length of the curve sketched in part (a).

Derive Formulas (4) and (5) from Formula (6) by choosing
appropriate parametrizations of the curves.

In Exercises 17 and 18, use the midpoint approximation with

n

= 20 subintervals to approximate the arc length of the

curve over the given interval.

17.
18.
10.

20.

21.

22.

y=x?fromx =0tox =2
x=sinyfromy=0toy=mnx
UseaCASor ascientific calculator with numerical integra-

tion capabilities to approximate the arc lengthsin Exercises
17 and 18.

Let y = f(x) be a smooth curve on the closed interval
[a, b]. Prove that if there are nonnegative numbers m and
M suchthatm < f'(x) < M foral x in[a, b], thenthearc
length L of y = f(x) over theinterval [a, b] satisfies the
inequalities

b—a)Wl+m2<L <((b-—a)l1+M?

Use the result of Exercise 20 to show that the arc length L
of y = sinx over theinterval 0 < x < /4 satisfies

T /3 T
-/ <L<-+2
4V 2 — _4f

Show that the total arc length of the ellipse x = a cost,
y=bsint,0<t < 2xfora > b > 0isgiven by

/2
4a/ V1—k?cos?tdt
0
wherek = Va? — b?/a.
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23. (a) Show that the total arc length of the ellipse ment of releaseto the moment it entersthe hoopis described
x = 2cost, y=snt O=<t<2nm by
o y=215+209x —0.41x?, 0<x <46
isgiven by
/2 where x isthe horizontal distance (in meters) from the point
4 V1+3sin’rdr of release, and y is the vertical distance (in meters) above
0 o _ o the floor. Use a CAS or a scientific calculator with numer-
(b) UseaCASor ascientific calculator with numerical in- ical integration capabilities to approximate the distance the
tegration capabilities to approximate the arc length in ball travels from the moment it is released to the moment it
part (). Round your answer to two decimal places. enters the hoop. Round your answer to two decimal places.

(c) Suppose that the parametric equations in part (a) de-
scribe the path of a particle moving in the xy-plane, 25
wherer istimein seconds and x and y arein centime-
ters. Use a CAS or a scientific calculator with numeri-
cal integration capabilities to approximate the distance
traveled by the particle from¢s = 1.5stor = 4.8 s.
Round your answer to two decimal places.

. Find a positive value of k (to two decimal places) such that
the curve y = ksinx has an arc length of L = 5 units
over the interval fromx = 0to x = . [Hint: Find an
integral for the arc length L in terms of &, and then use a
CAS or a scientific calculator with a numeric integration
capability to find integer values of k at which the values of
L — 5 have opposite signs. Complete the solution by using

24. A basketball player makes a successful shot from the free the | ntermediate-Val ue Theorem (2.5.8) to approximate the
throw line. Suppose that the path of the ball from the mo- value of k to two decimal places.]

6.5 AREA OF A SURFACE OF REVOLUTION

In this section we will consider the problem of finding the area of a surface that is
generated by revolving a plane curve about a line.

"""""""""""""""""""""" A surface of revolutionis a surface that is generated by revolving a plane curve about an

SURFACE AREA axis that lies in the same plane as the curve. For example, the surface of a sphere can be
generated by revolving a semicircle about its diameter, and the lateral surface of aright
circular cylinder can be generated by revolving aline segment about an axis that is parallel
toit (Figure 6.5.1).

| A P 0
V) ) V)
y \ B\ N
\ \ \
_ B L @ e — W~
| y=f(x) | - y
‘ )
| |
‘ | [\ x Some surfaces of revolution
a b 4
Figure 6.5.1
\‘ s In this section we will be concerned with the following problem:
|
——t —— ) ) )
a ,' b 6.5.1 SURFACE AREA PROBLEM. Supposethat f isasmooth, nonnegative function
J on [a, b] and that a surface of revolution is generated by revolving the portion of the

curve y = f(x) between x = a and x = b about the x-axis (Figure 6.5.2). Define what

ismeant by the area S of the surface, and find aformulafor computing it.
Figure 6.5.2
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Figure 6.5.4

Figure 6.5.5

= f(x) } M‘
|
|
|
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= =%

b
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Figure 6.5.3

To motivate an appropriate definition for the area S of a surface of revolution, we will
decompose the surface into small sections whose areas can be approximated by elementary
formulas, add the approximations of the areas of the sections to form a Riemann sum that
approximates S, and then take the limit of the Riemann sums to obtain an integral for the
exact value of S.

Toimplement thisidea, dividetheinterval [a, b] into n subintervalsby inserting numbers
X1, X2, ..., X,_1 betweena = xp and b = x,,. Asillustrated in Figure 6.5.3a, these points
defineapolygonal path that approximatesthecurve y = f(x) over theinterval [a, b]. When
this polygonal path isrevolved about the x-axis, it generates a surface consisting of n parts,
each of which is a frustum of aright circular cone (Figure 6.5.3b). Thus, the area of each
part of the approximating surface can be obtained from the formula

S = 7(ry + r2)l D
for the lateral area S of afrustum of slant height / and base radii r; and r, (Figure 6.5.4).
As suggested by Figure 6.5.5, the kth frustum has radii f(x;_1) and f(x;) and height Ax;.

Its slant height is the length L, of the kth line segment in the polygonal path, which from
Formula (1) of Section 6.4 is

= V(Ax)? + [f(xe) — fxi-p)]?
Thus, the lateral area S, of the kth frustum is

Se =7l f 1) + FO0IV (Ax)? + [f () — f(a1)]?
If we add these areas, we obtain the following approximation to the area S of the entire
surface:

S~ Y Al flun) + OV (Ax)? + [fx) — fO-1]? (2)

k=1
To put thisin the form of a Riemann sum we will apply the Mean-Value Theorem (4.8.2).
This theorem implies that there is a number x;° between x;_; and x; such that

T 2T iy or - fn) - S = 6D Ax
Xp — Xp—1

and hence we can rewrite (2) as
S~ Y alfou-) + FEOIVI+ [ )P Ax ©)
k=1

However, this is not yet a Riemann sum because it involves the variables x;_; and x;.
To eliminate these variables from the expression, observe that the average value of the
numbers f(x;_1) and f(x) lies between these numbers, so the continuity of f and the
Intermediate-Value Theorem (2.5.8) imply that there is a number x;* between x;_1 and x;
such that

Hfo) + f0] = FO)
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Thus, (2) can be expressed as

S ~ Zan(x,f*) L+ [fr(x)]?Axk
=1

Although this expression is close to a Riemann sum in form, it is not a true Riemann sum
because it involves two variables x| and x;*, rather than x;* alone. However, it is proved in
advanced calculus courses that this has no effect on the limit because of the continuity of
f. Thus, we can assume that x;* = x;° when taking the limit, and this suggests that S can
be defined as

n

b
S= lim 21 fOE) L+ [ ()P Axe = / 2r f(x)v/ 1+ [f/(x)]%dx
l a

max Ax; — 0 —

In summary, we have the following definition:

6.5.2 DEFINITION. If f isasmooth, nonnegative function on [a, b], then the surface
area S of the surface of revolution that is generated by revolving the portion of the curve
y = f(x) between x = a and x = b about the x-axisis defined as

b
5= / 2 FWWIT [P dx

a

This result provides both a definition and a formula for computing surface areas. Where
convenient, this formula can also be expressed as

b b dy 2
S=/ an(x)\/l+[f’(X)]2dx=/ 2y 1+<E> dx 4

Moreover, if g isnonnegativeand x = g(y) isasmooth curveontheinterval [c, d], thenthe
area of the surface that is generated by revolving the portion of a curve x = g(y) between
y = c and y = d about the y-axis can be expressed as

d d d 2
S=f 2ﬂg(y)\/1+[g’(y)]2dy=f 2ﬂx‘/1+(£) dy ©)

Example 1 Find the area of the surface that is generated by revolving the portion of the
curve y = x° between x = 0 and x = 1 about the x-axis (Figure 6.5.6).

Solution. Sincey = x3, wehavedy/dx = 3x?, and hence from (4) the surface area S is

1 / dv\2
S:/ 21y 1+<—y> dx
0 dx

1
- / 27x3/1+ (3x2)2dx
0

1
= 271/ 31+ 9)(4)1/2 dx
0
27[ 10 1/2 u=1+9%N*
= % /l u du du = 36x% dx

2r 2 4]0 _ 7 (10%2 — 1) ~ 3.56 <
= — - —U = — —_ 3.
3% 3 |, 27
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AY Example 2 Find the area of the surface that is generated by revolving the portion of the
curve y = x2 between x = 1 and x = 2 about the y-axis (Figure 6.5.7).

Solution. Because the curve is revolved about the y-axis we will apply Formula (5).
Toward thisend, werewrite y = x? asx = ,/y and observethat the y-val ues corresponding
tox =1andx =2arey = land y = 4. Sincex = ,/y, wehavedx/dy = 1/(2,/y ), and
y=x? hence from (5) the surface area S is

i R / 27TX1/1+ dy

(‘2 1+(2ﬁ) »

n/ V4y + 1dy
1

Figure 6.5.7

Y s
4 5 du = 4dy
17
_ T 22| _ T 17%? — 592 ~ 30.85 <
4 3 u=>5 6

EXERCISE SET 6.5 CAS

In Exercises 14, find the area of the surface generated by
revolving the given curve about the x-axis.

1. y=7x,0<x<1

In Exercises 13 and 14, use a CAS or a caculator with nu-
merical integration capabilities to approximate the area of
the surface generated by revolving the curve about the stated
axis. Round your answer to two decimal places.

2. y=4x,1<x<4
3.y=+4—x2% —-1<x<1
4 x=Fy, 1<y<8

In Exercises 5-8, find the area of the surface generated by

13. y =sinx, 0 <x <m; x-axis
14. x =tany, 0 <y < n/4; y-axis

15. Use Formula (4) to show that the lateral area S of aright
circular cone with height 2 and baseradiusr is

revolving the given curve about the y-axis. S— /i1 2

5, x=9 +1, 0<y<?2 16. Show that the area of the surface of a sphere of radius r is

6. x=130<y<1 7r2. [Hint: Revolve the semicircle y = +/r2 — x2 about
' L the x-axis)]

7. x=49-y% -2<y<2 17
8 x=2J/1—-y, -1<y=<0

In Exercises 9-12, use a CA Sto find the exact area of the sur-
face generated by revolving the curve about the stated axis.

. (8 Thefigurein Exercise 37 of Section 6.2 shows a spher-
ical cap of height / cut from asphere of radius . Show
that thesurfacearea S of thecapisS = 2zrh. [Hint: Re-
volve an appropriate portion of the circle x2 + y2 = 2
about the y-axis.]

(b) Theportion of aspherethat iscut by two parallel planes
is caled azone Use the result in part (a) to show that
the surface area of a zone depends on the radius of the
sphere and the distance between the planes, but not on
the location of the zone.

9. y=x—3x%% 1<x <3 x-axis
10. y = 2x®4 2x71 1 <x <2 x-axis
11. 8xy? =2y +1, 1<y <2 y-axis
12. x =4/16—y, 0 <y < 15; y-axis
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Exercises 18-24 require the formulas developed in the fol-
lowing discussion: If x'(r) and y’(¢) are continuousfunctions
and if no segment of the curve

x=x(), y=y@) (a <t <b)

istraced more than once, then it can be shown that the area of
the surface generated by revolving this curve about the x-axis

IS

b
5= / 2y (WX O + Iy O dr )

and the area of the surface generated by revolving the curve
about the y-axisis

18.

19.

20.

21.

22.

23.

24.

THE ROLE OF WORK IN PHYSICS
AND ENGINEERING

b
5= / 2nx (I O + [ (02 di 8)

Derive Formulas (4) and (5) from Formulas (A) and (B)
above by choosing appropriate parametrizations for the
curvesy = f(x) andx = g(y).

Find the area of the surface generated by revolving the para-
metric curve x = 2, y = 2r, 0 < t < 4 about the x-axis.

Use a CASto find the area of the surface generated by re-
volving the parametric curve

x=cos’t, y=5snr 0<r<n/2
about the x-axis.

Find the area of the surface generated by revolving the para-
metric curvex = ¢, y = 2t2, 0 < t < 1 about the y-axis.

Find the area of the surface generated by revolving the para-
metric curve x = cos’t, y = sin?¢, 0 < ¢ < 7/2 about the
y-axis.
By revolving the semicircle

X =rcost, y=rsnt O<r<n

about the x-axis, show that the surface area of a sphere of
radius r is 4nr2.

The equations
xX=ap —asSinNg, y=a—acoS¢o O=<¢ <27

represent one arch of a cycloid. Show that the surface
area generated by revolving this curve about the x-axis is

6.6 WORK
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. . e 1 - cos
S = 64ma?/3.[Hint: Usetheldentltlessm2§ = qu

andsin®¢ = (1—cos? ¢) sin¢ to helpwith theintegration.]

(8) If aconeof slant height / and base radius r is cut along
alateral edge and laid flat, then as shown in the accom-
panying figure it becomes a sector of acircle of radius
I. Use the formula A = %129 for the area of a sector
with radius I and central angle 6 (in radians) to show
that the lateral surface area of the coneis zrl.

(b) Usetheresult in part (a) to obtain Formula (1) for the
lateral surface area of afrustum.

Figure Ex-25

Assume that y = f(x) is a smooth curve on the interval
[a, b] and assume that f(x) > 0 for a < x < b. Derive
a formula for the surface area generated when the curve
y = f(x),a < x < b, isrevolved about theline
y=—k(k>0).

Let y = f(x) be asmooth curve on the interval [a, b] and
assumethat f(x) > Ofora < x < b. By the Extreme-Vaue
Theorem (4.5.3), the function f has a maximum value K
and a minimum value k on [a, b]. Prove: If L isthe arc
length of thecurvey = f(x) betweenx = a andx = b and
if S isthe areaof the surface that is generated by revolving
this curve about the x-axis, then

2nkL < S < 27KL

Let y = f(x) beasmooth curve on [a, b] and assume that
f(x) >0fora < x < b. Let A bethe areaunder the curve
y = f(x) betweenx = g and x = b and let S bethe area of
the surface obtained when this section of curveis revolved
about the x-axis.

(@ Provethat 27A < S.

(b) For what functions f is2rA = S?

In this section we will use the integration tools developed in the preceding chapter to
study some of the basic principles of “work,” which is one of the fundamental concepts

in physics and engineering.

In this section we will be concerned with two related concepts, work and energy. To put
theseideasin afamiliar setting, when you push a stalled car for a certain distance you are

performing work, and the effect of your work isto makethe car move. The energy of motion
caused by the work is called the kinetic energy of the car. The exact connection between
work and kinetic energy is governed by a principle of physics, called the work—energy
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WORK DONE BY A CONSTANT
FORCE APPLIED IN THE DIRECTION
OF MOTION

relationship. Although we will touch on this idea in this section, a detailed study of the
relationship between work and energy will be left for courses in physics and engineering.
Our primary goal here will be to explain the role of integration in the study of work.

When a stalled car is pushed, the speed that the car attains depends on the force F with
which it is pushed and the distance ¢ over which that forceis applied (Figure 6.6.1). Thus,
force and distance are the ingredients of work in the following definition.

6.6.1 DEFINITION. If aconstant force of magnitude F is applied in the direction of
motion of an object, and if that object moves a distance d, then we define the work W
performed by the force on the object to be

W=F-d 1)

Figure 6.6.1

FOR THE READER.  If you push against an immovable object, such as a brick wall, you
may tire yourself out, but you will perform no work. Why?

Common units for measuring force are newtons (N) in the International System of Units
(S1), dynes (dyn) in the centimeter-gram-second (CGS) system, and pounds (Ib) in the
British Engineering (BE) system. One newton istheforcerequired to giveamassof 1 kg an
acceleration of 1 m/s?, onedyneistheforcerequired to giveamassof 1 g an acceleration of
1 cm/s?, and one pound of forceistheforce required to giveamass of 1 slug an acceleration
of 1ft/s.

It follows from Definition 6.6.1 that work has units of force times distance. The most
common units of work are newton-meters (N-m), dyne-centimeters (dyn-cm), and foot-
pounds (ft-1b). Asindicated in Table 6.6.1, one newton-meter is also called ajoule (J), and
one dyne-centimeter is also called an erg. One foot-pound is approximately 1.36 J.

Table 6.6.1
SYSTEM FORCE X DISTANCE = ‘WORK
Sl newton (N) meter (M) joule (J)
CGS dyne (dyn) centimeter (cm) erg
BE pound (Ib) foot (ft) foot-pound (ft-1b)
CONVERSION FACTORS:
1N =10°dyn =~ 0.2251b 1lb= 445N
1J=10" erg =~ 0.738 ft-Ib 1ftlb =~ 1.36 J = 1.36 x 10’ erg

Example 1 Anobject moves5 ft along alinewhile subjected to aconstant force of 100 1b
in its direction of motion. The work doneis

W =F.d=100-5=500ftlb
An object moves 25 m along aline while subjected to a constant force of 4 N initsdirection
of motion. The work doneis

W=F-d=4-25=100N-m= 100J |
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Example 2 Inthe1976 Olympics, Vasili Alexeev astounded theworld by lifting arecord-
breaking 562 |b from the floor to above his head (about 2 m). Equally astounding was the
feat of strongman Paul Anderson, who in 1957 braced himself on the floor and used his
back to lift 6270 Ib of lead and automobile parts a distance of 1 cm. Who did more work?

Solution. To lift an object one must apply sufficient force to overcome the gravitational
force that the Earth exerts on that object. The force that the Earth exerts on an object isthat
object’s weight; thus, in performing their feats, Alexeev applied a force of 562 Ib over a
distance of 2 m and Anderson applied aforce of 6270 |b over adistance of 1 cm. Poundsare
unitsin the BE system, meters are unitsin S, and centimeters are unitsin the CGS system,
we will need to decide on the measurement system we want to use and be consistent. Let us
agree to use Sl and express the work of the two men in joules. Using the conversion factor
in Table 6.6.1 we obtain

562 1b ~ 5621b x 4.45N/lb = 2500.9 N
62701b ~ 62701b x 4.45N/lb = 27,901.5N

Using these values and the fact that 1 cm = 0.01 m we obtain
Alexeev'swork = (2500.9 N) x (2 m) ~ 5002 J
Anderson’swork = (27,901.5N) x (0.01 m) ~ 279 J

Therefore, even though Anderson’slift required atremendous upward force, it was applied
over such a short distance that Alexeev did more work. <

Many important problems are concerned with finding the work done by a variable force
that is applied in the direction of motion. For example, Figure 6.6.2a shows a spring in its
natural state (neither compressed nor stretched). If we want to pull the block horizontally
(Figure 6.6.2b), then we would have to apply more and moreforce to the block to overcome
the increasing force of the stretching spring. Thus, our next objective is to define what is
meant by the work performed by a variable force and to find a formula for computing it.
Thiswill require calculus.

6.6.2 PROBLEM. Suppose that an object moves in the positive direction along a co-
ordinate line while subjected to avariable force F (x) that is applied in the direction of
motion. Define what is meant by the work W performed by the force on the object as
the object movesfrom x = a to x = b, and find aformulafor computing the work.

The basic idea for solving this problem is to break up the interval [a, b] into subintervals
that are sufficiently small that the force does not vary much on each subinterval. Thiswill
allow us to treat the force as constant on each subinterval and to approximate the work
on each subinterval using Formula (1). By adding the approximations to the work on the
subintervals, we will obtain a Riemann sum that approximates the work W over the entire
interval, and by taking the limit of the Riemann sumswe will obtain an integral for W.

Toimplement thisidea, dividetheinterval [a, b] into n subintervalsby inserting numbers
X1, X2, ..., X,_1 between a = xg and b = x,,. We can use Formula (1) to approximate the
work W doneinthekth subinterval by choosing any number x; inthisinterval and regarding
the force to have a constant value F (x;) throughout the interval. Since the width of the kth
subinterval isx; — x;_1 = Axy, thisyields the approximation

W, =~ F(x,f)Axk
Adding these approximationsyieldsthefoll owing Riemann sum that approximatesthework
W done over the entire interval:

n
WA F)Ax
k=1

Taking the limit as n increases and the widths of the subintervals approach zero yields the
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Natural position

of spring
‘—’W\/\MMMMW

Figure 6.6.3

0

Figure 6.6.4

definite integral

b
W= l|lim F(xZ)Axsz F(x)dx
1 a

max Ax; — 0 -

In summary, we have the following result:

6.6.3 DEFINITION. Suppose that an object moves in the positive direction along a
coordinate line over the interval [a, ] while subjected to a variable force F(x) that is
applied in the direction of motion. Then we define the work W performed by the force
on the object to be

b
W:/ F(x)dx 2

Hooke’s law] Robert Hooke (1635-1703), English physicist] statesthat under appropriate
conditionsaspring that is stretched x units beyond its natural length pulls back with aforce
F(x) =kx
wherek isaconstant (called the spring constanbr spring stiffnes$. Thevalue of k depends

on such factors as the thickness of the spring and the material used in its composition. Since
k = F(x)/x, the constant k has units of force per unit length.

Example 3 A spring exertsaforce of 5 N when stretched 1 m beyond its natural length.

(@ Find the spring constant k.
(b) How much work is required to stretch the spring 1.8 m beyond its natural length?

Solution (a). From Hooke's law,

F(x) = kx
Fromthedata, F(x) = 5Nwhenx =1m,s05 = k- 1. Thus, the spring constant isk = 5
newtons per meter (N/m). This means that the force F(x) required to stretch the spring x
metersis

F(x) =5x (©)

Solution (b). Place the spring along a coordinate line as shown in Figure 6.6.3. We want
to find the work W required to stretch the spring over the interval fromx = Otox = 1.8.
From (2) and (3) thework W required is

18

b 18 52
W:/ F(x)dx:/ 5xdx=—:| =81J |
a 0 2 0

Example 4 An astronaut’s weight (or more precisely, Earth weight) is the force exerted
on the astronaut by the Earth’s gravity. As the astronaut moves upward into space, the
gravitational pull of the Earth decreases, and hence so does his or her weight. We will show
later inthetext that if the Earthisassumed to be asphere of radius4000 mi, then an astronaut
who weighs 150 |b on Earth will have aweight of

2,400,000,000

x2

at a distance of x mi from the Earth’'s center. Use this formula to determine the work in
foot-pounds required to lift the astronaut to a point that is 800 mi above the surface of the
Earth (Figure 6.6.4).

w(x) = Ib, x > 4000

Solution. Sincethe Earth has aradius of 4000 mi, the astronaut islifted from a point that
is 4000 mi from the Earth’s center to a point that is 4800 mi from the Earth’s center. Thus,
from (2), thework W required to lift the astronaut is
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X

/ 4800 2 400,000,000
W= ————d

4000 X
B 2,400,000,000}4800

X 4000

= —500,000 + 600,000

= 100,000 mile-pounds

= (100,000 mi-lb) x (5280 ft/mi)

=5.28 x 10® ft-Ib <

Some problems cannot be solved by mechanically substituting into formulas, and one must
return to basic principles to obtain solutions. Thisisillustrated in the next example.

Example 5 A conical water tank of radius 10 ft and height 30 ft is filled with water to
a depth of 15 ft (Figure 6.6.5a). How much work is required to pump all of the water out
through a hole in the top of the tank?

Solution. Our strategy will be to divide the water into thin layers, approximate the work
required to move each layer to the top of the tank, add the approximations for the layers
to obtain a Riemann sum that approximates the total work, and then take the limit of the
Riemann sums to produce an integral for the total work.

Or J— _

T — li 30

15ft S=————1) AXkF' -+ 2N >
i 30-x
ol 4 4

10

(@) (b)

To implement this idea, introduce an x-axis as shown in Figure 6.6.5a, and divide the
water into n layerswith Ax; denoting the thickness of the kth layer. Thisdivisioninducesa
partition of theinterval [15, 30] into n subintervals. Although the upper and lower surfaces
of the kth layer are at different distances from the top, the difference will be small if the
layer isthin, and we can reasonably assume that the entire layer is concentrated at asingle
point x; (Figure 6.6.5a). Thus, the work W, required to move the kth layer to the top of the
tank is approximately

W, =~ Fkx,f (4)
where F; istheforce required to lift the kth layer. But the force required to lift the kth layer
is the force needed to overcome gravity, and this is the same as the weight of the layer. If
thelayer is very thin, we can approximate the volume of the kth layer with the volume of a
cylinder of height Ax; and radius r, where (by similar triangles)

10 1

x; 30 3
or equivalently, r, = x;°/3 (Figure 6.6.5b). Therefore, the volume of the kth layer of water
is approximately

i1
m’szxk = n(x,f/?:)zAxk = §(x,f)zAxk
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THE WORK-ENERGY
RELATIONSHIP

Since the weight density of water is 62.4 |b/ft3, it follows that

62.47
Fo~ ——
9

Thus, from (4)

()2 Axy

6247 ., . 0247 4
W, ~ 9 (X)) Axy | xp = T(xk) Axy

and hence thework W required to move all n layers has the approximation

" " 6247
W= ; W ~ kz; T(x,f)sAxk

To find the exact value of the work we take the limit as max Ax;, — 0. Thisyields

: "\ 6247, 4 06247 ,
W_maxliggaok; 9 ('xk) A)Ck_/ls T-x d.x
62.4: 4\ 730
= 22T (L) | =1.316.2507 ~ 4,135,000 ftIb <
9 4/ 115

When you see an object in motion, you can be certain that somehow work has been expended
to create that motion. For example, when you drop astone from abuilding, the stone gathers
speed because the force of the Earth’s gravity is performing work on it, and when a hockey
player strikes a puck with a hockey stick, the work performed on the puck during the brief
period of contact with the stick creates the enormous speed of the puck across the ice.
However, experience shows that the speed obtained by an object depends not only on the
amount of work done, but also on the mass of the object. For example, the work required
to throw a5-0z baseball 50 mi/h would accelerate a 10-1b bowling ball to lessthan 9 mi/h.

Using the method of substitution for definite integrals, we will derive a simple equation
that relates the work done on an object to the object’s mass and velocity. Furthermore, this
equation will alow us to motivate an appropriate definition for the “energy of motion”
of an object. Asin Definition 6.6.3, we will assume that an object moves in the positive
direction along acoordinate line over theinterval [a, b] while subjected to aforce F (x) that
isapplied in the direction of motion. Welet x = x(7), v = v(¢) = x'(¢), and v'(¢) denote
the respective position, velocity, and acceleration of the object at time z. It follows from
Newton’s Second Law of Motion that

F(x(1)) = mv'(¢)
where m isthe mass of the object. Assume that
x(fo)=a and x(r))=0b
with
v(tg) =v; and wv(f) = vy
theinitial and final velocities of the object, respectively. Then

b x(t1)
W:/ F(x)dx:/ F(x)dx
a x(to)

n
= / F(x(t)x'(t) dt By Theorem 5.8.1 with x = x (), dx = x'(r) dt

o

n f
:/ mv' (H)v(t) dt :/ mv(t)v'(t) dt
fo fo
v(ty)
= / mv dv By Theorem 5.8.1 with v = v(t), dv = v/(¢) dt
v(to)
" 1 v 1 1
_ _ 20V _ 2 1.2
—/ mvdv = zmy o = MUy — 5my;
v

i
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We see from the equation
W= %mvj% — %mv,2 (5)

that the work done on the object is equal to the change in the quantity %mv2 fromitsinitial
valuetoitsfina value. We will refer to Equation (5) asthe work-energy relationshiplf we
define the “energy of motion” or kinetic energyof our object to be given by

K = %mv2 (6)
then Equation (5) tells us that the work done on an object is equal to the change in the
object’skinetic energy. Loosely speaking, we may think of work done on an object as being
“transformed” into kinetic energy of the object. The units of kinetic energy are the same as
the units of work. For example, in Sl kinetic energy is measured in joules (J).

Example 6 A space probe of massm = 5.00 x 10* kg travels in deep space subjected
only to the force of its own engine. Starting at a time when the speed of the probe is
v =1.10 x 10* m/s, the engineisfired continuously over adistance of 2.50 x 10° m with
aconstant force of 4.00 x 10° N in the direction of motion. What is the final speed of the
probe?

Solution. Sincetheforce applied by the engineis constant and in the direction of motion,
the work W expended by the engine on the probeis

W = force x distance = (4.00 x 10° N) x (2.50 x 10° m) = 1.00 x 10 J
From (5), the final kinetic energy K, = %mv? of the probe can be expressed in terms of
thework W and the initial kinetic energy K; = 3mv? as
K;=W+K;
Thus, from the known mass and initial speed we have
Ky = (100 x 10" J) + 1(5.00 x 10* kg)(1.10 x 10* m/s)? = 4.025 x 10%2 J
The final kinetic energy is K ; = 3mv3, so thefinal speed of the probeis

2K, [2(4.025 x 102) .
= = ~ 1.27 x 1
TN T 5.00 x 10° x107m/s <

©0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

1. Find the work done when

(a) a constant force of 30 Ib in the positive x-direction

(b) avariable force of F(x) = 1/x2 Ib in the positive x-

direction moves an object fromx = 1tox = 6ft.

2. A variableforce F (x) inthe positive x-direction is graphed
inthe accompanying figure. Find thework done by theforce
on aparticle that movesfromx = 0tox = 5.

inthe accompanying figure. Find thework done by theforce
on the particlefromtimer = 0tor = 5.

moves an object fromx = —2tox = 5ft

@5

£ 4

2 3 /
2z 2 -
S 1k~
2o

50 Time t(s)
Z 40 Figure Ex-3
w 30 \
8 20 \\
2 18 N 4. A spring whose natural length is 15 cm exerts a force of
3 4 5 45 N when stretched to alength of 20 cm.
Position x (m) (@ Find the spring constant (in newtons/meter).
Figure Ex-2 (b) Find thework that isdonein stretching the spring 3 cm

. A constant force of 10 Ib in the positive x-direction is ap-
plied to aparticlewhosevel ocity versustime curveisshown

beyond its natural length.
(c) Findthework doneinstretchingthespringfromalength
of 20 cm to alength of 25 cm.



January 23, 2001 13:23

265-ch6

Sheet number 36 Page number 434

black

cyan magenta

434 Applications of the Definite Integral in Geometry, Science, and Engineering

5.

10.

11.

12.

13.

14.

15.

A spring exerts aforce of 100 N when it is stretched 0.2 m
beyond its natural length. How much work is required to
stretch the spring 0.8 m beyond its natural length?

. Assumethat aforce of 6 N isrequired to compress aspring

from a natural length of 4 m to alength of 3% m. Find the
work required to compressthe spring fromitsnatural length
to alength of 2 m. (Hooke's law applies to compression as
well as extension.)

. Assume that 10 ft-Ib of work is required to stretch a spring

1 ft beyond its natural length. What is the spring constant?

. A cylindrical tank of radius5 ft and height 9 ft istwo-thirds

filled with water. Find the work required to pump al the
water over the upper rim.

. Solve Exercise 8 assuming that the tank is two-thirds filled

with aliquid that weighs p 1b/ft3.

A cone-shaped water reservoir is 20 ft in diameter across
the top and 15 ft deep. If the reservoir isfilled to a depth of
10 ft, how much work is required to pump all the water to
the top of the reservoir?

The vat shown in the accompanying figure contains water
to a depth of 2 m. Find the work required to pump al the
water to the top of the vat. [Use 9810 N/m?® as the weight
density of water.]

The cylindrical tank shown in the accompanying figure is
filled with a liquid weighing 50 Ib/ft3. Find the work re-
quired to pump all theliquid to alevel 1 ft above the top of
the tank.

/F\4 . 10t
\

&5 o
o e '
R\ .

Figure Ex-11 Figure Ex-12

A swimming pool is built in the shape of arectangular par-

allelepiped 10 ft deep, 15 ft wide, and 20 ft long.

(@) If thepool isfilledto 1 ft below thetop, how much work
isrequired to pump al the water into adrain at the top
edge of the pool ?

(b) A one-horsepower motor can do 550 ft-1b of work per
second. What size motor is required to empty the pool
in 1 hour?

How much work is required to fill the swimming pool in
Exercise 13 to 1 ft below the top if the water is pumped in
through an opening located at the bottom of the pool ?

A 100-ft length of steel chain weighing 15 Ib/ft isdangling
fromapulley. How much work isrequired to wind the chain
onto the pulley?

16.

17.

18.

19.

20.

21.

A 3-Ib bucket containing 20 Ib of water is hanging at the
end of a 20-ft rope that weighs 4 oz/ft. The other end of the
rope is attached to a pulley. How much work is required to
wind the length of rope onto the pulley, assuming that the
rope is wound onto the pulley at arate of 2 ft/s and that as
the bucket is being lifted, water leaks from the bucket at a
rate of 0.5 1b/s?

A rocket weighing 3 tonsisfilled with 40 tons of liquid fuel.
Intheinitial part of theflight, fuel isburned off at aconstant
rate of 2 tons per 1000 ft of vertical height. How much work
isdonein lifting the rocket to 3000 ft?

It followsfrom Coulomb’slaw in physicsthat two like elec-
trostatic charges repel each other with a force inversely
proportional to the square of the distance between them.
Suppose that two charges A and B repel with aforce of k
newtons when they are positioned at points A(—a, 0) and
B(a, 0), where a is measured in meters. Find the work W
required to move charge A aong the x-axisto the origin if
charge B remains stationary.

Itisalaw of physicsthat the gravitational force exerted by
the Earth on an object varies inversely as the square of its
distance from the Earth’s center. Thus, an object’s weight
w(x) isrelated to its distance x from the Earth’s center by
aformula of the form
k

w(x) = 32
where k isaconstant of proportionality that depends on the
mass of the object.

(8 Use this fact and the assumption that the Earth is a
sphere of radius 4000 mi to obtain the formulafor w(x)
in Example 4.

(b) Find aformulafor the weight w(x) of asatellitethat is
x mi from the Earth’s surface if its weight on Earth is
6000 Ib.

(c) How much work isrequired to lift the satellite from the
surface of the Earth to an orbital position that is 1000 mi
high?

(@ The formula w(x) = k/x? in Exercise 19 is applica-
bleto al celestial bodies. Assuming that the Moonisa
sphere of radius 1080 mi, find the force that the Moon
exerts on an astronaut who is x mi from the surface of
the Moon if her weight on the Moon’s surface is 20 Ib.

(b) How much work is required to lift the astronaut to a
point that is 10.8 mi above the Moon’s surface?

The Yamanashi Maglev Test Linein Japan that runsbetween
Sakaigawaand Akiyamais currently testing magnetic levi-
tation (MAGLEV) trainsthat are designed to levitateinches
above powerful magnetic fields. Suppose that a MAGLEV
train hasamass of m = 4.00 x 10° kg and that starting at a
timewhen thetrain hasaspeed of 20 m/sthe engine applies
aforce of 6.40 x 10° N in the direction of motion over a
distance of 3.00 x 10° m. Use the work—energy relationship
(5) to find the final speed of thetrain.
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Assume that a Mars probe of massm = 2.00 x 10° kg is
subjected only to the force of its own engine. Starting at a
time when the speed of the probeisv = 1.00 x 10* m/s, the
engineisfired continuously over adistance of 2.00 x 10° m
with aconstant force of 2.00 x 10° N in the direction of mo-
tion. Use the work—energy relationship (5) to find the final
speed of the probe.

On August 10, 1972 a meteorite with an estimated mass
of 4 x 108 kg and an estimated speed of 15 km/s skipped
across the atmosphere above the western United States and

Sheet number 37 Page number 435

black

cyan magenta

6.7 Fluid Pressure and Force 435

(8 Assuming that the meteorite had hit the Earth with a
speed of 15 km/s, what would have been its changein
kinetic energy in joules (J)?

(b) Expresstheenergy asamultipleof theexplosiveenergy
of 1 megaton of TNT, whichis4.2 x 101 J.

(c) Theenergy associated with the Hiroshimaatomic bomb
was 13 kilotons of TNT. To how many such bombs
would the meteorite impact have been equivalent?

Canada but fortunately did not hit the Earth.

WHAT IS A FLUID?

THE CONCEPT OF PRESSURE

Fluid forces always act perpendicular
to the surface of a submerged object.

Figure 6.7.1

6.7 FLUID PRESSURE AND FORCE

In this section we will use the integration tools developed in the preceding chapter to
study the pressures and forces exerted by fluids on submerged objects.

A fluid is a substance that flows to conform to the boundaries of any container in which it
is placed. Fluids include liquids, such as water, oil, and mercury, as well as gases, such as
helium, oxygen, and air. The study of fluidsfallsinto two categories: fluid statics (the study
of fluids at rest) and fluid dynamics (the study of fluidsin motion). In this section we will be
concerned only with fluid statics; toward the end of this text we will investigate problems
in fluid dynamics.

The effect that aforce has on an object depends on how that forceis spread over the surface
of the object. For example, when you walk on soft snow with boots, the weight of your body
crushesthesnow andyousink intoit. However, if you put onapair of skisto spreadtheweight
of your body over agreater surface area, then the weight of your body hasless of acrushing
effect on the snow, and you are able to glide across the surface. The concept that accounts
for both the magnitude of a force and the area over which it is applied is called pressure.

6.7.1 DEFINITION. If aforce of magnitude F is applied to a surface of area A, then
we define the pressureP exerted by the force on the surface to be

P:Z (1)

It follows from this definition that pressure has units of force per unit area. The most
common unitsof pressure are newtons per square meter (N/m?) in Sl and pounds per square
inch (Ib/in?) or pounds per squarefoot (Ib/ft?) inthe BE system. Asindicated in Table6.7.1,
one newton per square meter is called apascal” (see page 436) (Pa). A pressure of 1 Pais
quite small (1 Pa= 1.45 x 10~ Ib/in?), so in countries using Sl, tire pressure gauges are
usually calibrated in kilopascals (kPa), which is 1000 pascals.

In this section we will be interested in pressures and forces on objects submerged in
fluids. Pressures themselves have no directional characteristics, but the forces that they
create always act perpendicular to the face of the submerged object. Thus, in Figure 6.7.1
the water pressure creates horizontal forces on the sides of the tank, vertical forces on the
bottom of thetank, and forcesthat vary in direction, so asto be perpendicul ar to the different
parts of the swimmer’s body.
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FLUID DENSITY

Table6.7.2

WEIGHT DENSITIES

sI N/m3
Machine ail 4,708
Gasoline 6,602
Fresh water 9,810
Seawater 10,045
Mercury 133,416
BE SYSTEM Ib/ft3
Machine il 30.0
Gasoline 42.0
Fresh water 62.4
Seawater 64.0
Mercury 849.0

All densities are affected by variations
in temperature and pressure. Weight
densities are also affected by variations
ing.

Table6.7.1
SYSTEM FORCE = AREA = PRESSURE
S newton (N) square meter (m?) pascal (Pa)
BE pound (Ib) square foot (ft2) Ib/ft2
BE pound (Ib) square inch (ind) Ib/in? (psi)

CONVERSION FACTORS:
1Pa= 145x 10~*1b/in? = 2.09 x 1072 |b/ft?
11b/in? = 6.89 x 103 Pa 11b/ft2 = 47.9 Pa

Example 1 Referring to Figure 6.7.1, suppose that the back of the swimmer’s hand has
asurface areaof 8.4 x 10~3 m? and that the pressure acting on it is 5.1 x 10* Pa(aredlistic
value near the bottom of a deep diving pool). Find the force that acts on the swimmer’s
hand.

Solution. From (1), theforce F is
F=PA=(51x10*N/m? (8.4 x 1073 m?) ~ 4.3 x 10? N
Thisis quite alarge force (nearly 100 |b in the BE system). |

Scuba divers know that the deeper they dive, the greater the pressure and the forces that
they feel on their bodies. This sense of pressure and force is caused by the weight of the
water and air above—the deeper the diver goes, the greater the weight above and hence the
greater the pressure and force that he or she feels.

To calculate pressures and forces on submerged objects, we need to know something
about the characteristics of the fluids in which they are submerged. For simplicity, we will
assume that the fluids under consideration are homogeneous, by which we mean that any
two samples of the fluid with the same volume have the same mass. It follows from this
assumption that the mass per unit volume is a constant § that depends on the physical
characteristics of the fluid but not on the size or location of the sample; we call

827 ()

the mass densityf the fluid. Sometimesit is more convenient to work with weight per unit
volumethan with mass per unit volume. Thus, we define theweight density of afluid to be

PZV (3

where w istheweight of afluid sample of volume V. Thus, if theweight density of afluidis
known, then the weight w of afluid sample of volume V can be computed from the formula
w = pV. Table 6.7.2 shows some typical weight densities.

*BLAISE PASCAL (1623-1662). French mathematician and scientist. Pascal’s mother died when he was three
years old and his father, a highly educated magistrate, personally provided the boy’s early education. Although
Pascal showed an inclination for science and mathematics, hisfather refused to tutor him in those subjects until he
mastered Latin and Greek. Pascal’s sister and primary biographer claimed that he independently discovered the
first thirty-two propositions of Euclid without ever reading a book on geometry. (However, it is generally agreed
that the story is apocryphal.) Nevertheless, the precocious Pascal published a highly respected essay on conic
sections by the time he was sixteen years old. Descartes, who read the essay, thought it so brilliant that he could
not believe that it was written by such ayoung man. By age 18 his health began to fail and until his death he was
in frequent pain. However, his creativity was unimpaired.

Pascal’s contributionsto physicsincludethediscovery that air pressure decreaseswith altitude and theprinciple
of fluid pressure that bears his name. However, the originality of hiswork is questioned by some historians. Pascal
made major contributions to a branch of mathematics called “projective geometry,” and he helped to develop
probability theory through a series of letters with Fermat.

In 1646, Pascal’s health problems resulted in a deep emotional crisis that led him to become increasingly
concerned with religious matters. Although born a Cathalic, he converted to areligious doctrine called Jansenism
and spent most of hisfinal yearswriting on religion and philosophy.
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To calculate fluid pressures and forces we will need to make use of an experimental ob-
servation. Suppose that a flat surface of area A is submerged in a homogeneous fluid of
weight density o such that the entire surface lies between depths /7 and h,, where hy < hy
(Figure 6.7.2). Experiments show that on both sides of the surface, the fluid exerts aforce
that is perpendicular to the surface and whose magnitude F satisfies the inequalities

ph1A < F < phyA 4
Thus, it followsfrom (1) that the pressure P = F /A on agiven side of the surface satisfies
theinequalities

ph1 < P < phy ©)
Note that it is now a straightforward matter to calculate fluid force and pressure on a flat
surface that is submerged horizontally at depth £, for then h = h; = hy and inequalities
(4) and (5) become the equalities

F = phA (6)
and
P =ph (7

Example 2 Find the fluid pressure and force on the top of aflat circular plate of radius
2 mthat is submerged horizontally in water at a depth of 6 m (Figure 6.7.3).

Solution. Since the weight density of water is p = 9810 N/m?, it follows from (7) that
the fluid pressureis

P = ph = (9810)(6) = 58,860 Pa
and it follows from (6) that the fluid forceis

F = phA = ph(zr?) = (9810)(6)(47) = 235,4407 ~ 739,700 N <

It was easy to calculate the fluid force on the horizontal plate in Example 2 because each
point on the plate was at the same depth. The problem of finding the fluid force on avertical
surface is more complicated because the depth, and hence the pressure, is not constant over
the surface. To find the fluid force on a vertical surface we will need calculus.

6.7.2 PROBLEM. Supposethat aflat surfaceisimmersed vertically in afluid of weight
density p and that the submerged portion of the surface extendsfromx = atox = b
along an x-axiswhose positivedirectionisdown (Figure6.7.4a). Fora < x < b, suppose
that w(x) is the width of the surface and that /(x) is the depth of the point x. Define
what is meant by the fluid force F on the surface, and find aformulafor computing it.

Thebasicideafor solving thisproblemisto dividethe surfaceinto horizontal stripswhose
areas may be approximated by areas of rectangles. These area approximations, along with
inequalities (4), will allow usto create a Riemann sum that approximates the total force on
the surface. By taking alimit of Riemann sums we will then obtain an integral for F.

To implement thisidea, we divide the interval [a, b] into n subintervals by inserting the
numbers x1, xo, ..., x,_1 between a = xo and b = x,,. This has the effect of dividing the
surface into n strips of area Ay, k = 1,2, ..., n (Figure 6.7.4b). It follows from (4) that
the force F; on the kth strip satisfies the inequalities

ph(x—1) Ay < Fr < ph(x)Ax
or equivalently,

F
h(xi1) < —— < h(xp)
PAL

Sincethe depth function 4 (x) increases linearly, there must exist anumber x; between x;_1
and x;, such that

F;
h(xf) = ——
PAk

or equivalently,

Fi = ph(x;)Ax
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We now approximate the area A; of the kth strip of the surface by the area of arectangle
of width w(x;) and height Ax; = x; — x;—1 (Figure 6.7.4c). It follows that F;, may be
approximated as

Fi = ph(x;)Ax ~ ph(x)) - w(x;)Axy
———
Areaof rectangle

Adding these approximationsyields the following Riemann sum that approximatesthetotal
force F on the surface:

n n
F = ; F ~ ;ph(x,f)w(x,f)Axk

Taking the limit as n increases and the widths of the subintervals approach zero yields the
definite integral
n b
F= lim Ph(xHw)Axy = / ph(x)w(x)dx
=1

maxAkaOk a

In summary, we have the following result:

6.7.3 DEFINITION. Suppose that a flat surface is immersed vertically in a fluid of
weight density p and that the submerged portion of the surface extends from x = a to
x = b adong an x-axis whose positive direction isdown (Figure 6.7.4a). Fora < x < b,
suppose that w(x) is the width of the surface and that /(x) is the depth of the point x.
Then we define the fluid force F on the surface to be

b
F:/ ph(x)w(x) dx (8

Example 3 The face of adam is avertical rectangle of height 100 ft and width 200 ft
(Figure 6.7.5a). Find the total fluid force exerted on the face when the water surfaceislevel
with the top of the dam.

Solution. Introducean x-axiswithitsorigin at thewater surfaceasshownin Figure6.7.5b.
At apoint x on this axis, the width of the dam in feet is w(x) = 200 and the depth in feet
ish(x) = x. Thus, from (8) with p = 62.4 Ib/ft® (the weight density of water) we obtain
asthetotal force on the face
100 100 271
F = / (62.4)(x)(200) dx = 12,480/ xdx = 12,480 —] = 62,400,000 Ib
0 0 2 Jo <

Example 4 A platein the form of an isosceles triangle with base 10 ft and altitude 4 ft
is submerged vertically in machine oil as shown in Figure 6.7.6a. Find the fluid force F
against the plate surface if the oil has weight density p = 30 Ib/ft3.

Solution. Introduce an x-axis as shown in Figure 6.7.6b. By similar triangles, the width
of the plate, in feet, at adepth of 4 (x) = (3 + x) ft satisfies
w(x) X
10 4
Thus, it follows from (8) that the force on the plateis

b 4 5
F =/ ph(x)w(x) dx =/ (B0)(3+ x) (éx) dx
a 0

5
O w(x) = éx

4 32 374
:75/ @r+xd)dy =75 2 + 2| —34001b <
0 2 3 0
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EXERCISE SET 6.7

In this exercise set, refer to Table 6.7.2 for weight densities
of fluids, when needed.

1

2.

A flat rectangular plate is submerged horizontally in water.

(@ Find the force (in Ib) and the pressure (in lb/ft?) on
the top surface of the plate if its areais 100 ft? and the
surface is at adepth of 5 ft.

(b) Findtheforce(inN) and the pressure (in Pa) on the top
surface of the plate if its areais 25 m? and the surface
isat adepth of 10 m.

(8 Find the force (in N) on the deck of a sunken ship
if its area is 160 m? and the pressure acting on it is
6.0 x 10° Pa.

(b) Find the force (inIb) on adiver’'s face mask if its area
is 60 in? and the pressure acting on it is 100 Ib/in?.

In Exercises 3-8, theflat surfaces shown are submerged ver-
tically in water. Find the fluid force against the surface.

10.

11.

4,
2ft f1m
41t 2m
4m
|«—10 m—| 6. —a ft —|
4t 4t
6m f2m 8 TTan 4t
8m 10m 6

Suppose that aflat surface isimmersed vertically in afluid
of weight density p. If p isdoubled, istheforce on the plate
a so doubled? Explain your reasoning.

Anoil tank is shaped like aright circular cylinder of diam-
eter 4 ft. Find the total fluid force against one end when the
axisishorizontal and thetank ishalf filled with oil of weight
density 50 Ib/ft3.

A sgquare plate of side a feet isdipped in aliquid of weight
density p Ib/ft3. Findthefluid forceontheplateif avertex is
at the surface and adiagonal is perpendicular to the surface.
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Formula (8) gives the fluid force on a flat surface immersed
vertically in afluid. More generally, if aflat surface isim-
mersed so that it makes an angle of 0 < 8 < 7/2 with the
vertical, then the fluid force on the surface is given by

b
F:/ ph(x)w(x)secHd dx

Usethisformulain Exercises 12-15.

12.

13.

14.

15.

16.

17.

18.

Derive the formula given above for the fluid force on aflat
surface immersed at an anglein afluid.

The accompanying figure shows a rectangular swimming
pool whose bottom isan inclined plane. Find the fluid force
on the bottom when the pool isfilled to the top.

8 ft

10 ft
Figure Ex-13

By how many feet should the water in the pool of Exercise
13 be lowered in order for the force on the bottom to be
reduced by afactor of 1/2?

The accompanying figure shows a dam whose face is an
inclined rectangle. Find the fluid force on the face when the
water islevel with the top of this dam.

\
lOO\m
'\200 - N
\|

Figure Ex-15

An observation window on a submarine is a square with
2-ft sides. Using py for the weight density of seawater, find
the fluid force on the window when the submarine has de-
scended so that the window is vertical and its top is at a
depth of /4 feet.

(@ Show: If the submarine in Exercise 14 descends ver-
tically at a constant rate, then the fluid force on the
window increases at a constant rate.

(b) At what rate is the force on the window increasing if
the submarine is descending vertically at 20 ft/min?

(8 Let D = D, denote adisk of radius a submerged in a
fluid of weight density p such that the center of D ish
units below the surface of the fluid. For each value of
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r intheinterval (0, a], let D, denote the disk of radius
r that is concentric with D. Select aside of the disk D
and define P(r) to be the fluid pressure on the chosen
sideof D,. Use (5) to prove that

lim P(r) = ph
r— 0t (r) L

(b) Explain why theresult in part (a) may be interpreted to
mean that fluid pressure at a given depth isthe samein
all directions. (This statement is one version of aresult
known as Pascal’s Principle)

SUPPLEMENTARY EXERCISES

CAS

1

State an integral formula for finding the arc length of a
smooth curve y = f(x) over an interval [a, b], and use
Riemann sums to derive the formula.

. Describe the method of slicing for finding volumes, and use

that method to derive an integral formula for finding vol-
umes by the method of disks.

. Stateanintegral formulafor finding avolume by the method

of cylindrical shells, and use Riemann sums to derive the
formula

. Stateanintegral formulafor thework W done by avariable

force F(x) applied in the direction of motion to an object
moving from x = a to x = b, and use Riemann sums to
derive the formula

. State an integral formulafor the fluid force F exerted on a

vertical flat surfaceimmersed in afluid of weight density p,
and use Riemann sums to derive the formula

. Let R betheregioninthefirst quadrant enclosed by y = x2,

y =2+ x,andx = 0. In each part, set up, but do not eval-
uate, an integral or a sum of integrals that will solve the
problem.

(8 Findtheareaof R by integrating with respect to x.

(b) Findthe areaof R by integrating with respect to y.

(c) Find the volume of the solid generated by revolving R
about the x-axis by integrating with respect to x.

Find the volume of the solid generated by revolving R
about the x-axis by integrating with respect to y.

Find the volume of the solid generated by revolving R
about the y-axis by integrating with respect to x.

Find the volume of the solid generated by revolving R
about the y-axis by integrating with respect to y.

(d)
e
(f)

. (&) Setupasumof definiteintegralsthat representsthetotal
shaded areabetweenthecurvesy = f(x)andy = g(x)
in the accompanying figure.

(b) Findthetotal areaenclosed betweeny = x3andy = x
over theinterval [—1, 2].
\Y
y=1f()
///_\V\/\
\ \ \
\ \ \ L X
a b c d
y=9(¥ Figure Ex-7

10.

11.

12.

13.

. Let C bethecurve27x — y® = Obetweeny = Oand y = 2.

In each part, set up, but do not evaluate, anintegral or asum

of integrals that solves the problem.

(8 Find the area of the surface generated by revolving C
about the y-axis by integrating with respect to x.

(b) Find the area of the surface generated by revolving C
about the y-axis by integrating with respect to y.

(c) Find the area of the surface generated by revolving C
about theline y = —2 by integrating with respect to y.

. Find the arc length in the second quadrant of the curve

x23 4 yz/s = a?Pfromx = —atox =
a > 0.

As shown in the accompanying figure, a cathedral domeis
designed with three semicircular supports of radiusr so that
each horizontal crosssectionisaregular hexagon. Show that
the volume of the domeis r3+/3.

As shown in the accompanying figure, a cylindrical hole
isdrilled al the way through the center of a sphere. Show
that the volume of the remaining solid depends only on the
length L of the hole, not on the size of the sphere.

—ga, where

— ~

-_
L
N2 A
Figure Ex-10 Figure Ex-11
A football has the shape of the solid generated by revolv-

ing the region bounded between the x-axis and the parabola
y = 4R(x? — $L?)/L? about the x-axis. Find its volume.

As shown in the accompanying figure, a horizontal beam
withdimensions2in x 6in x 16 ftisfixed at both endsand
is subjected to auniformly distributed load of 120 Ib/ft. As
aresult of the load, the centerline of the beam undergoes a
deflection that is described by

y=—167x 10 8(x?* — 2Lx% 4 L%%?)

(0 < x <192), where L = 192 inchesis the length of the
unloaded beam, x isthe horizontal distance along the beam
measured in inchesfrom the left end, and y isthe deflection
of the centerline in inches.
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(8 Graph y versusx for 0 < x < 192. (b) Findthefluidforceexerted by aliquid of weight density
(b) Find the maximum deflection of the centerline. o Ib/ft2 on aface of the vertical plate shown in part (a)
(c) Use a CAS or a calculator with a numerical integra- of the accompanying figure.

tion capability to find the length of the centerline of (c) Findthefluid force exerted on the parabolic dam in part

the loaded beam. Round your answer to two decimal (b) of the accompanying figure by water that extends to

places. the top of the dam.

y SUUTUSTUUTTTUTUTUTUTTTTTTIY

Il ft | 25m |
x=0 X =192
Figure Ex-13 (a (b)
Figure Ex-17

14. A golfer makesasuccessful chip shot to the green. Suppose
that the path of the ball from the moment it is struck to the

moment it hits the green is described by Exercises 18-20 lead to equations that cannot be solved ex-

actly. Use any method you choose to approximate the so-
y = 12.54x — 0.41x? Iutions of those equations, and round your answers to two

where x isthe horizontal distance (in yards) from the point decimal places.

where the ball is struck, and y is the vertical distance (in

yards) above the fairway. Use a CAS or a calculator or 18. Findtheareaof theregion enclosed by thecurvesy = x2—1

program with a numerical integration capability to find the and y = 2sinx.

distance the ball travels from the moment it is struck to the 19. Referring to the accompanying figure, find the value of k so
moment it hitsthe green. Assume that the fairway and green that the areas of the shaded regions are equal. [Note: This
are at the same level and round your answer to two decimal exerciseisbased on Problem A1 of the Fifty-Fourth Annual
places. William Lowell Putnam Mathematical Competition.]

15. (a) A spring exertsaforce of 0.5 N when stretched 0.25 m
beyond its natural length. Assuming that Hooke's law
applies, how much work was performed in stretching
the spring to this length?

(b) How far beyond its natural length can the spring be
stretched with 25 J of work?

16. A boat is anchored so that the anchor is 150 ft below the
surface of thewater. Inthe water, the anchor weighs 2000 Ib
and the chain weighs 30 Ib/ft. How much work is required
to raise the anchor to the surface? 20. Consider the region to the left of the vertical line x = k

17. In each part, set up, but do not evaluate, an integral that (0 < k < m) and between the curve y = sinx and the
solves the problem. x-axis. Use a CAS to find the value of k£ so that the solid

(@) Find the fluid force exerted on a side of a box that has generated by revolving the region about the y-axis has a

a3-m-square base and isfilled to adepth of 1 mwith a volume of 8 cubic units.
liquid of weight density p N/mq.

Figure Ex-19



