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INTEGRATION

I

; L raditionally, that portion of calculusconcerned with
Swiiiiee ietenis finding tangent lines and rates of change is called differ-
ential calculus and that portion concerned with finding
areas is called integral calculus. However, we will see
in this chapter that the two problems are so closdly re-
lated that the distinction between differential and integral
calculusis often hard to discern.

In this chapter we will begin with an overview of the
problem of finding areas—we will discuss what the term
“area’ means, and wewill outlinetwo approachesto defin-
ing and calcul ating areas. Following thisoverview, wewill
discuss the “Fundamental Theorem of Calculus,” which
isthe theorem that relates the problems of finding tangent
lines and areas, and we will discuss techniques for calcu-
lating areas. Finally, we will use the ideas in this chapter
to continue our study of rectilinear motion and to examine
some consequences of the chain rulein integral calculus.
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5.1 AN OVERVIEW OF THE AREA PROBLEM

In this introductory section we will consider the problem of calculating areas of plane
regions with curvilinear boundaries. All of the results in this section will be reexam-
ined in more detail later in this chapter, so our purpose here is simply to introduce the
fundamental concepts.

The main goal of this chapter isto study the following major problem of calculus:

5.1.1 THE AREA PROBLEM. Given afunction f that is continuous and nhonnegative
on aninterval [a, b], find the area between the graph of f and theinterval [a, b] on the
x-axis (Figure 5.1.1).

Of course, fromastrictly logical point of view, weshouldfirst provide aprecise definition
of the term area before discussing methods for calculating areas. However, in this section
we will treat the concept of area intuitively, postponing a more formal definition until
Section 5.4.

Formulasfor theareasof planeregionswith straight-lineboundaries (squares, rectangles,
triangles, trapezoids, etc.) were well known in many early civilizations. On the other hand,
obtaining formulas for regions with curvilinear boundaries (a circle being the simplest
case) caused problems for early mathematicians. The first real progress on such problems
was made by the Greek mathematician, Archimedes,” who obtained the areas of regions
bounded by arcs of circles, parabolas, spirals, and various other curves by ingenious use
of a procedure later known as the method of exhaustion. That method, when applied to a
circle of radius r, consists of inscribing a succession of regular polygonsin the circle and
allowing the number of sides n to increase indefinitely (Figure 5.1.2). Asn increases, the
polygons tend to “exhaust” the region inside the circle, and the areas of those polygons
become better and better approximations to the exact area of the circle.

* ARCHIMEDES (287 B.c—212B.C.). Greek mathematician and scientist. Bornin Syracuse, Sicily, Archimedeswas
the son of the astronomer Pheidias and possibly related to Heiron I1, king of Syracuse. Most of the facts about his
life come from the Roman biographer, Plutarch, who inserted a few tantalizing pages about him in the massive
biography of the Roman soldier, Marcellus. In the words of one writer, “the account of Archimedesisslipped like
atissue-thin shaving of ham in a bull-choking sandwich.”

Archimedes ranks with Newton and Gauss as one of the three greatest mathematicians who ever lived, and he
is certainly the greatest mathematician of antiquity. His mathematical work is so modern in spirit and technique
that it is barely distinguishable from that of a seventeenth-century mathematician, yet it was all done without
benefit of algebraor aconvenient number system. Among his mathematical achievements, Archimedes devel oped
a general method (exhaustion) for finding areas and volumes, and he used the method to find areas bounded by
parabolas and spirals and to find volumes of cylinders, paraboloids, and segments of spheres. He gave a procedure
for approximating 7 and bounded its val ue between 3% and 3%. In spite of the limitations of the Greek numbering
system, he devised methods for finding square roots and invented a method based on the Greek myriad (10,000)
for representing numbers as large as 1 followed by 80 million billion zeros.

Of al his mathematical work, Archimedes was most proud of his discovery of the method for finding the
volume of a sphere—he showed that the volume of a sphere is two-thirds the volume of the smallest cylinder that
can contain it. At hisrequest, the figure of a sphere and cylinder was engraved on his tombstone.

In addition to mathematics, Archimedes worked extensively in mechanics and hydrostatics. Nearly every
schoolchild knows Archimedes as the absent-minded scientist who, on realizing that a floating object displaces
its weight of liquid, leaped from his bath and ran naked through the streets of Syracuse shouting, “Eureka,
Eurekal”—(meaning, “1 have found it!”). Archimedes actually created the discipline of hydrostatics and used it
to find equilibrium positions for various floating bodies. He laid down the fundamental postulates of mechanics,
discovered thelawsof levers, and cal cul ated centers of gravity for variousflat surfacesand solids. In the excitement
of discovering the mathematical laws of the lever, heis said to have declared, “ Give me aplace to stand and | will
move the earth.”

Although Archimedes was apparently more interested in pure mathematics than its applications, he was an
engineering genius. During the second Punic war, when Syracuse was attacked by the Roman fleet under the
command of Marcellus, it was reported by Plutarch that Archimedes' military inventions held the fleet at bay for
three years. He invented super catapults that showered the Romans with rocks weighing a quarter ton or more,
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Table5.1.1

n A(n)
100 3.13952597647
200 3.14107590781
300 3.14136298250
400 3.14146346236
500 3.14150997084
600 3.14153523487
700 3.14155046835
800 3.14156035548
900 3.14156713408
1000 3.14157198278
2000 3.14158748588
3000 3.14159035683
4000 3.14159136166
5000 3.14159182676
6000 3.14159207940
7000 3.14159223174
8000 3.14159233061
9000 3.14159239839
10000 3.14159244688
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To see how thisworks numerically, let A(n) denotethe areaof aregular n-sided polygon
inscribed in acircle of radius 1. Table 5.1.1 shows the values of A(n) for various choices
of n. Note that for large values of n the area A(n) appears to be close to 7 (sguare units),
as one would expect. This suggeststhat for acircle of radius 1, the method of exhaustionis
equivalent to an equation of the form

Figure5.1.2

limA®n)=nx

n—ow

However, Greek mathematicians were very suspicious of the concept of “infinity” and
intentionally avoided explanationsthat referred to the “limiting behavior” of some quantity.
As a consequence, obtaining exact answers by the classical method of exhaustion was a
cumbersome procedure. In our discussion of the area problem, we will consider a more
modern version of the method of exhaustion that explicitly incorporates the notion of a
limit. Because our approach uses a collection of rectangles to “exhaust” an area, we will
refer to it as the rectangle method.

There are two basic methods for finding the area of the region having the form shown in
Figure 5.1.1—the rectangle method and the antiderivative method. The idea behind the
rectangle method is as follows:

« Dividetheinterval [a, b] into n equal subintervals, and over each subinterval construct
arectanglethat extendsfrom the x-axisto any point onthecurvey = f(x) that isabove
the subinterval; the particular point does not matter—it can be above the center, above
an endpoint, or above any other point in the subinterval. In Figure 5.1.3 it is above the
center.

o For each n, the total area of the rectangles can be viewed as an approximation to the
exact area under the curve over the interval [a, b]. Moreover, it is evident intuitively
that asn increases these approximations will get better and better and will approach the
exact areaas alimit (Figure 5.1.4).

Later, this procedure will serve both as a mathematical definition and a method of compu-
tation—we will define the areaunder y = f(x) over theinterval [a, b] as the limit of the
areas of the approximating rectangles, and we will use the method itself to approximate this
area

and fearsome mechanical devices with iron “beaks and claws’ that reached over the city walls, grasped the ships,
and spun them against the rocks. After the first repulse, Marcellus called Archimedes a“geometrical Briareus (a
hundred-armed mythological monster) who uses our ships like cups to ladle water from the sea”

Eventually the Roman army was victorious and contrary to Marcellus specific orders the 75-year-old
Archimedes was killed by a Roman soldier. According to one report of the incident, the soldier cast a shadow
across the sand in which Archimedes was working on a mathematical problem. When the annoyed Archimedes
yelled, “Don’t disturb my circles,” the soldier flew into arage and cut the old man down.

With his death the Greek gift of mathematics passed into oblivion, not to be fully resurrected again until the
sixteenth century. Unfortunately, there is no known accurate likeness or statue of this great man.
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As n increases, the area of the rectangles
approaches the exact area under the curve.

Figure5.1.4
Toillustrate thisidea, we will usethe rectangle method to approximate the areaunder the

curve y = x2 over theinterval [0, 1] (Figure 5.1.5). We will begin by dividing the interval
[0, 1] into n equal subintervals, from which it follows that each subinterval has length 1/n;

the endpoints of the subintervals occur at
1 2 3 -1
o = = 2., 2=
n n n
(Figure5.1.6). Wewant to construct arectangle over each of these subinterval swhose height

n
isthe value of the function f(x) = x? at some number in the subinterval . To be specific, let

X

us use the right endpoints, in which case the heights of our rectangles will be
2

Figure5.1.5

2 2 2

} z 3 12
and since each rectangle has a base of width 1/n, the total area A, of the n rectangles will
D

n

L A

1 2
n n n

1
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For example, if n = 4, then the total area of the four approximating rectangles would be
A=)+ 3+ ()" + 2] (3) = B = 046875
Table 5.1.2 shows the result of evaluating (1) on a computer for some increasingly large

Subdivision of [0, 1] into n
values of n. These computations suggest that the exact areais close to % In Section 5.4 we

subintervals of equal length

Figure5.1.6
will prove that this areais exactly % by showing that

H 1
Jim Av =3
Table5.1.2
n 4 10 100 1000 10,000 = 100,000
0468750 = 0.385000 0.338350 0.333834 0.333383 0.333338

An
Equation (1) may be written more concisely by using sigma notation, which is discussed
in Section 5.4 in detail. [Sigma () is an uppercase letter in the Greek alphabet used to

denote sums.] With sigma notation, the sum

2 () oo

may be expressed simply as

> ()

k=1
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This notation tells usto form the sum of the terms that result when we substitute successive
integers for & in the expression (k/n)?, starting with k = 1 and ending with k = n. Each
value of apositiveinteger n then determines avalue of the sum. For example, if n = 4, then

Y = () 4 (A (BY s (4) -5
—\4 4 4 4 4) 16 8
In general, using sigma notation we write

()

FOR THE READER. Many calculating utilities perform automatic summations for expres-
sions that involve some version of the sigma notation. If your calculating utility performs
such summations, use it to verify the value of A;gp givenin Table 5.1.2. (Otherwise, use it

© to confirm A1p.)

Despite the intuitive appeal of the rectangle method, the limits involved can be evaluated
directly only in certain special cases. For thisreason, work on the area problem remained at
arudimentary level until the latter half of the seventeenth century. Two results that were to
prove to be amajor breakthrough in the area problem were discovered by mathematicians
Isaac Barrow and Isaac Newton in Great Britain, and Gottfried Leibniz in Germany. These
results appeared, without fanfare, asaproposition in Issac Barrow’s Lectiones geometricae.
Each of the two results can be used to solve the area problem.

The solution based on Proposition 11 was preferred by Isaac Newton and provides us
with aparadoxically effective indirect approach to the area problem. According to thisline
of argument, to find the area under the curve in Figure 5.1.1, one should first consider the
seemingly harder problem of finding the area A (x) between the graph of f and theinterval
[a, x], where x denotes an arbitrary number in [a, b] (Figure 5.1.7). If one can discover a
formulafor theareafunction A (x), then the areaunder the curvefroma to b can be obtained
simply by substituting x = & into thisformula.

Thismay seem to be a surprising approach to the area problem. After all, why should the
problem of determiningthearea A (x) for every x intheinterval [a, b] be moretractablethan
the problem of computing asingle value A (b)? However, the basis for this approach is the
observation that although the areafunction A (x) may be difficult to compute, its derivative
A’(x) iseasy to find. To illustrate, let us consider some examples of area functions A(x)
that can be computed from simple geometry.

Example 1 For each of the functions £, find the area A (x) between the graph of f and
theinterval [a, x] = [—1, x], and find the derivative A’(x) of this area function.

@/=2 ((b)fx)=x+1 (0 flx)=2x+3

Solution (a). From Figure 5.1.8a we see that
Ax)=2x—(-1))=2x+1D) =2x+2

isthe area of arectangle of height 2 and base x + 1. For this area function,
Al(x)=2= f(x)

Solution (b). From Figure 5.1.8b we see that

x? T 1

2 iy 4+ =

2 2

isthe area of an isosceles right triangle with base and height equal to x + 1. For this area

function,
Ax)y=x+1= f(x)

A(x) = %(x +Dx+1 =
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Solution (c). Recall that the formulafor the areaof atrapezoidis A = 1(b+ b')h, where
b and b’ denote the lengths of the parallel sides of the trapezoid, and the atitude # denotes
the distance between the parallel sides. From Figure 5.1.8c we see that

AX) = 32+ + Dx — (1) =x2+3c 42

is the area of a trapezoid with parallel sides of lengths 1 and 2x + 3 and with altitude
x — (=1) = x + 1. For thisarea function,

A'(x) =2x +3= f(x) <

Note that in every case in Example 1,
Al(x) = f(x) 2

That is, the derivative of the area function A (x) isthe function whose graph formsthe upper
boundary of the region. Wewill show in Section 5.6 that Equation (2) isvalid not simply for
linear functions such as those in Example 1, but for any continuous function. Thus, to find
the areafunction A’(x), we can look instead for a (particular) function whose derivative is
f(x). Thisis called an antidifferentiation problem because we are trying to find A(x) by
“undoing” adifferentiation. Whereas earlier in the text we were concerned with the process
of differentiation, we will now also be concerned with the process of antidifferentiation.

To see how this antiderivative method applies to a specific example, let us return to the
problem of finding the area between the graph of f(x) = x? and the interval [0, 1]. If we
let A(x) denote the area between the graph of f and the interval [0, x], then (2) tells us
that A’(x) = f(x) = x2. By simple guesswork, we see that one function whose derivative
is f(x) = x?is x*. It then follows from Theorem 4.8.3 that A(x) = 3x*+ C for some
constant C. This is where the decision to solve the area problem for a general right-hand
endpoint helps. If we consider the case x = 0, then the interval [0, x] reduces to a single
point. If we agree that the area above a single point should be taken as zero, then it follows
that

0=40)=30*+C=0+C=C o C=0

Therefore, A(x) = %xa and the area between the graph of f and the interval [0, 1] is
Al = % Note that this conclusion agrees with our numerical estimatesin Table 5.1.2.

Although the antiderivative method provides us with a convenient solution to the area
problem, it appears to have little to do with the rectangle method. It would be nice to have
a solution that more clearly elucidates the connection between the operation of summing
areas of rectangles on the one hand and the operation of antidifferentiation on the other.
Fortunately, the solution to the area problem based on Barrow’s Proposition 19 reveals just
thisconnection. Inaddition, it allowsusto formulatein modern language the approach to the
area problem preferred by Leibniz. We will provide this solution in Section 5.6 (Theorem
5.6.1), as well as develop a modern version of Barrow’s Proposition 11 (Theorem 5.6.3).
Together, these two approaches to the area problem comprise what is now known as the
Fundamental Theorem of Calculus.

We see that the rectangle method and the use of antidifferentiation provide us with quite
different approaches to the area problem. The rectangle method is a frontal assault on the
problem, whereas antidifferentiation is more in the form of a sneak attack. In this chapter
we will carefully study both approaches to the problem.

In Sections 5.2 and 5.3 we will begin to develop some techniques for the process of
antidifferentiation, aprocessthat is also known asintegration. Later, in Section 5.5 we will
discussamore genera version of the rectangle method known as the Riemann sum. In much
the same way that area can be interpreted as a “limit” using the rectangle method, we will
define the definite integral asa”limit” of Riemann sums.

Thedefiniteintegral and antidifferentiation arethetwin pillarson whichintegral calculus
rests. Both are important. The definite integral is generally the means by which problems
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in integral calculus are recognized and formulated. For example, in addition to the area
problem, the problems of computing the volume of asolid, finding the arc length of acurve,
and determining the work donein pumping water out of atank are al examples of problems
that may be solved by means of a definite integral. On the other hand, it can be difficult
to obtain exact solutions to such problems by direct computation of a definite integral.
Fortunately, in many cases of interest, the Fundamental Theorem of Calculuswill alow us
to evaluate adefinite integral by means of antidifferentiation. Much of the power of integral
calculus liesin the two-pronged approach of the definite integral and antidifferentiation.

EXERCISE SET 5.1

In Exercises 1-8, estimate the area between the graph of
the function f and the interva [a, b]. Use an approxima
tion scheme with n rectangles similar to our treatment of
f(x) = x?in this section. If your calculating utility will
perform automatic summations, estimate the specified area
using n = 10, 50, and 100 rectangles. Otherwise, estimate
thisareausing n = 2, 5, and 10 rectangles.

f@) =x; [a,b] =[0,1]

1
fx) = m§ [a,b] =0, 1]
f(x) =snx; [a,b] =[O0, n]

f(x) =cosx; [a,b] =0, 7/2]
)= fa, b = (12

f(x) =cosx; [a,b] =[-7/2,7/2]
f(-x) = Vl_xz; [a’b] = [071]

8. f(x)=v1I—2Z [a,b] =[-1 1]

No o Mo NP

In Exercises 9-14, use simple area formulas from geometry
to find the area function A(x) that gives the area between
the graph of the specified function f and the interval [a, x].
Confirmthat A’(x) = f(x) in every case.

16.

17.

18.

9.
10.
11.
12.
13.
14.
15.

f(x)=3; [a,x] =[1,x]

f&) =25 [a,x] =2, x]

fx)=2x+2 [a,x] = [0, x]

f(x)=3x—3; [a,x] =[1, x]

f&)=2x+2 [a,x] =[1,x]

f(x) = 3-x _35 [as'x] = [Z,X]

How do the areafunctionsin Exercises 11 and 13 compare?
Explain.

Let f(x) denotealinear function that is nonnegative on the
interval [a, b]. For each value of x in [a, b], define A(x) to
be the area between the graph of f and theinterval [a, x].

(&) Provethat A(x) = 3[f(a) + f()](x —a).

(b) Usepart (a) to verify that A'(x) = f(x).

Let A denote the area between the graph of f(x) = /x
and the interval [0, 1], and let B denote the area between
the graph of f(x) = x2 and the interval [0, 1]. Explain
geometrically why A + B = 1.

Let A denote the area between the graph of f(x) = 1/x
and the interval [1, 2], and let B denote the area between
thegraphof f andtheinterval [%, 1]. Explain geometrically
why A = B.

5.2 THE INDEFINITE INTEGRAL; INTEGRAL CURVES
AND DIRECTION FIELDS

In the last section we saw the potential for antidifferentiation to play an important role
in finding exact areas. In this section we will develop some fundamental results about
antidifferentiation that will ultimately lead us to systematic procedures for solving
many antiderivative problems.

5.2.1 DEFINITION. A function F iscalled anantiderivative of afunction f onagiven
interval I if F'(x) = f(x) for al x intheinterval.
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For example, the function F(x) = 2x* is an antiderivative of f(x) = x? on the interval
(—o0, +0) because for each x in thisinterval

o = 4 (3] = 5 = f(o)

However, F(x) = §x3 is not the only antiderivative of f on this interval. If we add any
constant C to £x3, then the function G(x) = $x° + C is also an antiderivative of f on
(—o0, 400), since

G'(x) = C;ix [3x°+ C]=x"+0= f(x)

In general, once any single antiderivative is known, other antiderivatives can be obtained
by adding constants to the known antiderivative. Thus,

%xs, %xe’ + 2, éx3 -5 ix34+V2
are all antiderivatives of f(x) = x2.

Itisreasonableto ask if there are antiderivatives of afunction f that cannot be obtained
by adding some constant to a known antiderivative F. The answer is no—once a single
antiderivative of f on aninterval I isknown, all other antiderivatives on that interval are
obtainable by adding constants to the known antiderivative. This is so because Theorem
4.8.3 tells us that if two functions are differentiable on an open interval I such that their
derivatives are equal on I, then the functions differ by a constant on 7. The following
theorem summarizes these observations.

5.2.2 THEOREM. If F(x) isany antiderivative of f(x) onan interval I, then for any
constant C the function F(x) 4+ C isalso an antiderivative on that interval. Moreover,
each antiderivative of f(x) ontheinterval | can be expressed in the form F(x) + C by
choosing the constant C appropriately.

The process of finding antiderivatives is called antidifferentiation or integration. Thus, if

d
d—[F(X)] = fx) (1)
X

then integrating (or antidifferentiating) thefunction f(x) produces an antiderivative of the
form F(x) + C. To emphasize this process, Equation (1) isrecast using integral notation,

ff(x)dx:F(x)—f—C 2
where C isunderstood to represent an arbitrary constant. It isimportant to note that (1) and
(2) arejust different notations to express the same fact. For example,

4131 2
S

/xzdx =1x®+C isequivaentto :

Note that if we differentiate an antiderivative of f(x), we obtain f(x) back again. Thus,

- [ [ e dx} — () ®)

The expression [ f(x)dx is caled an indefinite integral. The adjective “indefinite”
emphasizes that the result of antidifferentiation is a “generic” function, descibed only up
to a constant summand. The “elongated s’ that appears on the left side of (2) is called an
integral sign,” the function f(x) is called the integrand, and the constant C is called the
constant of integration. Equation (2) should be read as:

*This notation was devised by Leibniz. In his early papers Leibniz used the notation “omn.” (an abbreviation for
the Latin word “omnes”) to denote integration. Then on October 29, 1675 he wrote, “It will be useful to write [
for omn., thus [ ¢ for omn. ¢...."” Two or three weeks later he refined the notation further and wrote [ ] dx
rather than | alone. This notation is so useful and so powerful that its development by Leibniz must be regarded
as amajor milestone in the history of mathematics and science.
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Theintegral of f(x) with respect to x isequal to F (x) plusa constant.

The differential symbol, dx, in the differentiation and antidifferentiation operations

d

S0 ad (e
serves to identify the independent variable. If an independent variable other than x is used,
say t, then the notation must be adjusted appropriately. Thus,

%[F(t)] = f(r) and /f(t) dt=F(@t)+C

are equivalent statements.

Example 1

DERIVATIVE EQUIVALENT
FORMULA INTEGRATION FORMULA
d — a2 2 4y = 3

— =3 3xcdx=x°+C

& [x3] = 3x / X X

d 1 1

=[x = — / —dx=+x+C
dx[ ] 24X 24X X
%[tant]zseczt /secztdtztant+c
d a2 - 3,12 3,12 4 = (32
du[u 1=3u /E“ du=u’"+C

<

For simplicity, the dx is sometimes absorbed into the integrand. For example,
/1dx can be written as /dx

1 . d
/—de can be written as /—)26

X X

Theintegral sign and differentia serve as delimiters, flanking the integrand on the left and
right, respectively. In particular, we do not write [ dxf(x) when weintend [ f(x) dx.

Integration is essentially educated guesswork—given the derivative f of a function F,
onetriesto guess what the function F is. However, many basic integration formulas can be
obtained directly fromtheir companion differentiation formulas. Someof themost important
aregivenin Table5.2.1.

Example 2 The second integration formulain Table 5.2.1 will be easier to remember if
you express it in words:

To integrate a power of x (other than —1), add 1 to the exponent and divide by the new
exponent.

Here are some examples:

3
2 X
dx =—+C r=2
/x X 3+
4
3 X
dx = — C r=3
/x X 4+
1 5 x—5+1 1
—dx= [ x7Vdx = C=-—-—-+C r=-5
/XS * /x * —5+1+ 4x4+

i+1
/\/)—cdxz/x%dxz%—i—C:%x%+C=§(ﬁ)3+C r=1
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Table5.2.1
DIFFERENTIATION FORMULA INTEGRATION FORMULA
1 g[x]:l dx=x+C
dx
d [Xr+1] ; x'+1
- = # -1 "dx=>=—+C -1
dx Lr+1 X ) X' o r+1 (r=-1)
3 (%([sinx]zcosx fcosxdx=sinx+C
4. c%([_cosx] =sinx /gnxdxz—cosx+C
5. c%([tanx]:%czx /%czxdxztanx+c
6. (%([—cotx]=csczx /csczxdxz—cotx+c
7. (%([secx]:%CXtaHX fsecxtanxdx=secx+C
8. c%([—cscx]zcscxcotx /cscxcotxdx=—cscx+c

Itis clear that this pattern does not fit the case of

1 -1
—dx = | x “dx
X

since blind adherence to the pattern formulawith » = —1 would lead to division by zero.
We will resolve this missing case in Chapter 7. <

Our first properties of antiderivatives follow directly from the simple constant factor, sum,
and difference rules for derivatives.

5.2.3 THEOREM. Supposethat F(x) and G(x) areantiderivativesof f(x) and g(x),
respectively, and that ¢ is a constant. Then:

(@) A constant factor can be moved through an integral sign; that is,
/cf(x) dx =cF(x)+C

(b) Anantiderivative of a sumisthe sum of the antiderivatives; that is,
f[f(x) +g@]dx=Fx)+Gx)+C

() Anantiderivative of a difference is the difference of the antiderivatives; that is,

/[f(X) —gM)]dx =F(x)-Gx)+C

Proof. In general, to establish the validity of an equation of the form
fh(x)dx =Hkx)+C
one must show that

d H =h
IH@] = h)
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We are given that F'(x) and G (x) are antiderivatives of f(x) and g(x), respectively, so we
know that

d d
d—[F(X)] =f(x) and —[G(x)]=g(x)
X dx
Thus,

dooo Ao

E[C )] = Ca[ ()] = cf(x)

d d d

d—[F(x) +GW)] = —[F@)]+ —[GXx)] = f(x) + g(x)
X dx dx

d F G _d g d G =
E[ (x)—G)] = E[ ()] — E[ (0] = flx) —gx)
which proves the three statements of the theorem. |

In practice, the results of Theorem 5.2.3 are summarized by the following formulas:

/cf(x)dx :c/f(x)dx 4
f 169) 4 o] ot = f e f A 5)
/ 169 = ]t = / Al — f () ©)

However, these equations must be applied carefully to avoid errors and unnecessary
complexities arising from the constants of integration. For example, if you were to use (4)
to integrate Ox by writing

¥2
/Oxdx:O/xdx:O(E—l—C):O

thenyou will have erroneously lost the constant of integration, and if you use (4) to integrate
2x by writing

2
/2xdx=2/xdx=2<%+€)=x2+2c

then you will have an unnecessarily complicated form of the arbitrary constant. Similarly,
if you use (5) to integrate 1 + x by writing

)C2 x2
/(1+x)dx =/ldx+/xdx =x+C)+ <?+C2> =X+E+C1+C2

then you will have two arbitrary constants when one will suffice. These three kinds of prob-
lems are caused by introducing constants of integration too soon and can be avoided by in-
serting the constant of integrationin thefinal result, rather than in intermediate compuations.

Example 3 Evaluate
€] /4COSx dx (b) /(x + x%) dx

Solution (a). Since F(x) = sinx isan antiderivative for f(x) = cosx (Table 5.2.1), we
obtain
/4COSx dx = 4/ cosxdx =4sinx + C

4
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Solution (b). From Table 5.2.1 we obtain
.XZ x3
f(X+x2)dX=/xdx+/x2dx=?+§+C |
®)

Parts (b) and (c¢) of Theorem 5.2.3 can be extended to more than two functions, which
in combination with part (a) resultsin the following general formula:

f (oG 1 ) A oo e 6] b

()
—a [ fwdrte [ pwdxteta [ i
Example 4
f(3x6—2x2+7x+1)dx:3[x6dx—Z/xzdx+7/xdx+/ldx
W’ 23 X2
== = 4+ = C
7 3 + > +x+ <
Sometimesit is useful to rewrite an integrand in a different form before performing the
integration.
Example 5 Evauate
Cosx 12— 24
a d b dt
of Za 0 [
Solution (a).
cos 1 cos
/ _zxdx= —_—— xdx:/CSCxCOtxdx:—CSCx—i—C
sin®x sinx sinx
Formula8inTable5.2.1
Solution (b).
2 — 2t 1 o
/ " dt:/(,_z_z)dtzf(t —2)dt
-1 1

Graphs of antiderivatives of afunction f are called integral curves of f. We know from
INTEGRAL CURVES

Theorem 5.2.2that if y = F(x) isany integral curve of f(x), then all other integral curves
arevertical trand ations of this curve, since they have equations of theformy = F(x) + C.
For example, y = %x3 isoneintegral curvefor f(x) = x2, so dl the other integral curves
have equations of theform y = %x3 + C; conversely, the graph of any equation of thisform
isanintegral curve (Figure 5.2.1).

In many problems one isinterested in finding a function whose derivative satisfies spec-
ified conditions. The following example illustrates a geometric problem of thistype.

Example 6 Suppose that a point moves along some unknown curve y = f(x) in the
xy-plane in such away that at each point (x, y) on the curve, the tangent line has slope x2.
Find an equation for the curve given that it passes through the point (2, 1).

Solution. We know that dy/dx = x?, so

y=/x2dx=%x3+C
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Since the curve passes through (2, 1), a specific value for C can be found by using the fact
that y = 1if x = 2. Substituting these valuesin the above equation yields

_ 1,93 _ 5
1=35@2)+C o C=-3

sothecurveisy = £x% — 2. |

Observe that in this example the requirement that the unknown curve pass through the
point (2, 1) enabled us to determine a specific value for the constant of integration, thereby
isolating thesingleintegral curve y = 1x%— 2 fromthefamily y = 1x+C (Figure5.2.2).

y=%x3+C y=3x-23

Figure 5.2.1 Figure 5.2.2

We will now consider another way of looking at integration that will be useful in our later
work. Suppose that f(x) is a known function and we are interested in finding a function
F(x) suchthat y = F(x) satisfies the equation

dy

= f) ®)
The solutions of this equation are the antiderivatives of f(x), and we know that these can
be obtained by integrating f(x). For example, the solutions of the equation

dy 2
= 9
=" ©

are
3
2 X
y /xx 3+

Equation (8) is called a differential equation because it involves a derivative of an
unknown function. Differential equations are different from the kinds of equations we have
encountered so far in that the unknown is a function and not a number as in an equation
such asx? + 5x — 6= 0.

Sometimes we will not be interested in finding al of the solutions of (8), but rather we
will want only the solution whose integral curve passes through a specified point (xo, yo).
For example, in Example 6 we solved (9) for theintegral curvethat passed through the point
(2, 2).

For simplicity, it is common in the study of differential equations to denote a solution
of dy/dx = f(x) as y(x) rather than F(x), as earlier. With this notation, the problem of
finding afunction y(x) whose derivative is f(x) and whose integral curve passes through
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the point (xo, yo) is expressed as

d
). (o) = yo (10)

dx
Thisis called an initial-value problem, and the requirement that y(xg) = yo is caled the
initial condition for the problem.

Example 7 Solvetheinitial-value problem

d
o _ cosx, y0 =1
dx

Solution. The solution of the differential equation is
y:/COSxdxzsinx—l-C (11

Theinitia condition y(0) = 1impliesthat y = 1if x = 0; substituting these valuesin (11)
yields

l=sn0+C o C=1
Thus, the solution of the initial-value problemisy = sinx + 1. <

If weinterpret dy/dx astheslope of atangent line, then at apoint (x, y) onanintegral curve
of the equation dy/dx = f(x), the slope of the tangent lineis f(x). What is interesting
about thisisthat the slopes of thetangent linesto theintegral curves can be obtained without
actually solving the differential equation. For example, if

Z—i =vx?+1
then we know without solving the equation that at the point where x = 1 the tangent line
to an integral curve has slope v/12 + 1 = +/2; and more generally, at apoint where x = a,
the tangent line to an integral curve has lope v/ a? + 1.

A geometric description of the integral curves of a differential equation dy/dx = f(x)
can be obtained by choosing a rectangular grid of points in the xy-plane, calculating the
slopes of the tangent lines to the integral curves at the gridpoints, and drawing small por-
tions of the tangent lines at those points. The resulting picture, which is called a direc-
tion field or slopefield for the equation, shows the “direction” of the integral curves at the
gridpoints. With sufficiently many gridpoints it is often possible to visualize the integral
curves themselves; for example, Figure 5.2.3a shows a direction field for the differential
equation dy/dx = x?, and Figure 5.2.3b shows that same field with the integral curves

y y

I I A AVIVE. £ R A A N A R B I R I I R AVAV. £ e A A A A A
I R A e A A A R B I AV A 1l NI A
IIIII(II/4—/II((IIII IIIIIIII/4’/I/ [ I |
L R R B B B B A R A A B B B B B | LI R O B B B A -7 [ I |
IIIII(I//3—//I((IIII IIIIIII//3’/// [ I |
L N B B B B R A A A R I I B I | LI N R B B B A - 40 1 [ I |
AR S A A A A R B VU 2 NN
I R A e N A A R A NN EEEET 2 ) NN
AV B A A B A R B Vi S e P
LI I N B B B A LA N R B B B B 4 L I N B B B g -7 e X
-5-4-3-2-1 -1/21314:15 -5-4-3-2/A1 _j//2¢31415
IIIII(I/—] L A A R B B B B | LI I N I I B s Ly A A B |
I A E A A A A R B | Vi S
I I IR R AV, B A A N AN R B I Ve AR NEENEE
I R A e N A A R A Vel -
IIIII(II*3—/II((IIII LI R I B ) L A A B I B B B |
LI R B B B Y RS R A A B B B B B | LI R B | L A A B I B B B |
IIIII(I/—4—//I((IIII LI B B L A A B I B B B |
LI N B B B AR A A A R I I B I | LI R B e R A A A I I I |
Pt =5+ 00000001 [N EL AL A A B B B B B A |

Direction field for dy/dx = x2 Direction field with integral curves

@ (b)

Figure5.2.3
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imposed on it—the more gridpoints that are used, the more completely the direction field
reveal sthe shape of theintegral curves. However, the amount of computation can be consid-
erable, so computersare usually used when direction fiel dswith many gridpointsare needed.

EXERCISE SET 5.2 [ Graphing Calculator

1. Ineach part, confirm that the formulais correct, and state a
corresponding integration formula.

d X
€Y E[Vlﬂz] = Vi

d
(b) o [3sin(1+x%)] = x*cos(L+ x%)
X
2. In each part, confirm that the stated formula is correct by
differentiating.
@ /xsinxdx =sinx —xcosx + C
X

1-—

dx
o | T
In Exercises 36, find the derivative and state acorresponding

integration formula
PR
dx | x2+3

d .
6. —[sinx — x cosx]
dx

+C

x2

3 L1 /x315]
dx

5. 4 [sin2y/x)]
dx

In Exercises 7 and 8, evaluate the integral by rewriting the
integrand appropriately, if required, and then apply Formula
2inTable5.2.1.

7. (3 /xgdx (b) /x5/7dx

8. (a) /E/de (b) /x%dx

(© /xSﬁdx

(© / x Bdx

In Exercises 9-12, evaluate each integral by applying Theo-
rem 5.2.3 and Formula 2 in Table 5.2.1 appropriately.

9. (8 /%dx

10. /(xZ/S — 4x7Y5 + 4y dx

(b) /(u3 —2u+7)du

11. /(x—3 +x = 3V + 1% dx
7 3

In Exercises 13-28, evaluate the integral, and check your an-
swer by differentiating.

13

15.

17.

19

20

21

23.

25.

27

29.

30.

K 3L

K 32

: /x(l+x3)dx 14. /(2+y2)2 dy
/xl/3(2—x)2dx 16. /(1+x2)(2—x)dx
5 2 _ _ 3
/7" +2§ L 18. /1 32t di
X t

./[43inx+2005x]dx
./[4sec2x+rs:xcotx]dx
. /Ser(SECx +tanx)dx 22. /Ser(tanx—i—COSx)dx
cosé CSCy
sinx 2
— 26. d
/coszx * /[¢+sin2¢] ¢
. sin2x
./[l+sm29csc€]d0 28.[ x
cosx
Evaluate the integral
/ 1
— dx
1+sinx

by multiplying the numerator and denominator by an ap-

propriate expression.

Usethe double-angleformulacos2x = 2cos? x —1toeval-

uate the integral

! d
/ 1+ cos2x *

(8 Use agraphing utility to generate a slope field for the
differential equation dy/dx = x intheregion
—-5<x<5and-5<y<5.

(b) Graph some representative integral curves of the func-
tion f(x) = x.

(c) Find an equation for the integral curve that passes
through the point (4, 7).

(8 Use agraphing utility to generate a slope field for the
differential equation dy/dx = /x intheregion
O<x<1l0and-5<y<5b.

(b) Graph some representative integral curves of the func-
tion f(x) = /x for x > 0.

(c) Find an equation for the integral curve that passes
through the point (4, 2).
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[ 33. Useagraphing utility to generate some representative inte-

gral curves of the function f(x) = 5x* — sec®x over the
interval (—n/2, n/2).

[ 34. Use agraphing utility to generate some representative in-

tegral curves of the function f(x) = (x® — 1)/x? over the
interval (0, 5).

35. Suppose that a point moves along acurve y = f(x) in the
xy-planein such away that at each point (x, y) onthecurve
the tangent line has slope — sinx. Find an equation for the
curve, given that it passes through the point (0, 2).

36. Suppose that a point moves along acurve y = f(x) inthe
xy-planein such away that at each point (x, y) onthecurve
the tangent line has slope (x + 1)2. Find an equation for the
curve, given that it passes through the point (—2, 8).

In Exercises 37 and 38, solve the initial-value problems.

dy

B3 @ =3 yD=2
(b) i%:sint+1, y(%):%
© F== =0

K 38 @) %:(71)3, y(1) =0
(b) i%}:wczt—sim, y(%):l
(© Z—z:xzx/;, y(0) =0

39. Findthegeneral form of afunction whose second derivative
is /x. [Hint: Solve the equation f”(x) = /x for f(x) by
integrating both sides twice.]

40. Find afunction f such that f”(x) = x + cosx and such
that f(0) = 1and f'(0) = 2. [Hint: Integrate both sides of
the equation twice.]

In Exercises41-43, find an equation of the curvethat satisfies
the given conditions.

41. At each point (x, y) on the curve the slope is 2x + 1; the
curve passes through the point (-3, 0).

42. Ateachpoint (x, y) onthecurvethe slope equalsthe square
of the distance between the point and the y-axis; the point
(-1, 2) ison the curve.

43. At each point (x, y) on the curve, y satisfies the condition
d?y/dx? = 6x; theliney = 5 — 3x istangent to the curve
at the point where x = 1.

44, Suppose that a uniform metal rod 50 cm long is insulated
laterally, and thetemperatures at the exposed endsare main-
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tained at 25°C and 85°C, respectively. Assume that an x-
axis is chosen as in the accompanying figure and that the
temperature T (x) satisfies the equation

d°T

dx2

Find T'(x) for 0 < x < 50.

25°C 85°C

0 50 Figure Ex-44

45. (@) Show that
F(x)=5@x+4? and G(x) = 3x%+4x

differ by aconstant by showing that they are antideriva-
tives of the same function.
(b) Find the constant C such that F(x) — G(x) = C by
evaluating F(x) and G(x) at some point xo.
(c) Check your answer in part (b) by simplifying the ex-
pression F(x) — G(x) algebraicaly.
46. Follow the directions of Exercise 45 with

2

F)= —— and G(x)=———
x_x2+5 = x2+45

In Exercises 47 and 48, use a trigonometric identity to help
evaluate the integral .

47. / tan® x dx 48. / cot? x dx

49. Usetheidentities cos20 = 1 — 2sin0 = 2cos?6 — 1to
help evaluate the integrals

@ / sin?(x/2) dx (b) / cos’(x/2) dx
50. Let F and G bethe functions defined piecewise by

-
F(x) =

—x, x<0

x+2, x>0
and G(x) =
—x+3, x<0
(8 Show that F and G have the same derivative.
(b) Show that G(x) # F(x) + C for any constant C.
(c) Do parts (@) and (b) violate Theorem 5.2.2? Explain.

51. The speed of sound in air at 0°C (or 273 K on the Kelvin
scale) is 1087 ft/s, but the speed v increases as the temper-
ature T rises. Experimentation has shown that the rate of
change of v withrespectto T is

dv _ 1087 4
dT ~— 2273

where v isin feet per second and T isin kelvins (K). Find
aformulathat expresses v asafunction of T.
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5.3 INTEGRATION BY SUBSTITUTION

In this section we will study a technique, called substitution, that can often be used to
transform complicated integration problems into simpler ones.

Themethod of substitution can be motivated by examining the chain rulefrom the viewpoint
of antidifferentiation. For this purpose, suppose that F is an antiderivative of f and that
g isadifferentiable function. The chain rule implies that the derivative of F(g(x)) can be
expressed as

d / ’
Tx [F(g(x)] = F'(g(x))g'(x)
X

which we can write in integral form as

/F/(g(X))g/(X)dx =F(g(x)+C 1)
or since F isan antiderivative of f,
/f(g(X))g/(x) dx = F(g(x)) +C 2

For our purposesit will be useful to let u = g(x) and towritedu/dx = g'(x) inthe differ-
ential form du = g’ (x) dx. With this notation (1) can be expressed as

/ f@)du = F@) +C 3

The process of evaluating an integral of form (2) by converting it into form (3) with the
substitution

u=gkx) and du=g'(x)dx
is called the method of u-substitution. Here our emphasis is not on the interpretation of
the expression du = g'(x) dx asafunction of dx aswas done in Section 3.8. Instead, the

differential notation serves primarily as a useful “bookkeeping” device for the method of
u-substitution. The following example illustrates how the method works.

Example 1 EvaJuatte/(x2 + 1) 2x dx.

Solution. If weletu = x?+ 1, thendu/dx = 2x, whichimpliesthat du = 2x dx. Thus,
the given integral can be written as

51 2 151
f(x2+1)50~2xdx=/u50du=b;—l+C=%+C <

It isimportant to realize that in the method of u-substitution you have control over the
choice of u, but once you make that choice you have no control over the resulting expres-
sionfor du. Thus, in the last example we chose u = x? 4+ 1 but du = 2x dx was computed.
Fortunately, our choice of «, combined with the computed du, worked out perfectly to pro-
duce an integral involving u that was easy to evaluate. However, in general, the method of
u-substitutionwill fail if the chosen « and the computed du cannot beused to produceaninte-
grand in which no expressionsinvolving x remain, or if you cannot evaluate theresulting in-
tegral. Thus, for example, thesubstitution u = x?, du = 2x dx will not work for theintegral

/ 2x sinx*dx
because this substitution resultsin the integral

/Sinuzdu

which still cannot be evaluated in terms of familiar functions.



January 18, 2001 14:01 g65-chb Sheet number 18 Page number 336 cyan magenta black

336 Integration

Ingeneral, thereareno hard and fast rulesfor choosing 1, and in some problemsno choice
of u will work. In such cases other methods need to be used, some of which will be discussed
later. Making appropriate choices for u will come with experience, but you may find the
following guidelines, combined with amastery of thebasicintegralsin Table5.2.1, helpful.

Step 1. Look for some composition f(g(x)) within the integrand for which
the substitution

u=gx), du=g(x)
produces an integral that is expressed entirely in terms of u and du.
This may or may not be possible.

Step 2. If you are successful in Step 1, then try to evaluate the resulting inte-
gral interms of u. Again, this may or may not be possible.

Step 3. If youaresuccessful in Step 2, then replace u by g(x) to expressyour
final answer in terms of x.

Step 4. If you are unsuccessful in reaching or completing Step 2, then it may
either be that the integrand in the original integral has no antideriva-
tive that can be expressed in terms of familiar functions, or that the
integral is tricky and you have not yet hit on the right substitution.
This state of affairs makes integration challenging, since one often
does not know whether afailure of the substitution method is due to
the nature of the integral or to alack of cleverness on the part of the
problem solver.

""""""""""""""""""""" Inthesimplest cases, itisunnecessary to consider Step 1(b) or 1(c). The easiest substitutions
Eﬁgﬁ?ﬁfgﬁgmn occur when the integrand is the derivative of aknown function, except for a constant added
to or subtracted from the independent variable.

Example 2

/Sin(x+9)dx=/Sinudu=—COSu+C=—COS(x+9)+C

u=x-+9
du=1-dx =dx
24 _824
/(x—8)23dx=/u23du:142—4+C=%+C |
u=x—8

du=1-dx =dx
Another easy u-substitution occurs when the integrand is the derivative of a known

function, except for a constant that multiplies or divides the independent variable. The
following exampleillustrates two ways to evaluate such integrals.

Example 3 Evauate / cosbx dx.

Solution.
1 1 1. 1 .
/cosSxdx = /(COSM) . gd“ = B/cos:ulu = gsmquC = gsm5x+C

u = 5x
du =5dx ordx = %du
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Alternative Solution. There is a variation of the preceding method that some people
prefer. The substitution u = 5x requires du = 5dx. If there were afactor of 5 in the inte-
grand, then we could group the 5 and d x together to form the du required by the substitution.
Since there is no factor of 5, we will insert one and compensate by putting a factor of % in
front of the integral. The computations are as follows:

1 1 1 1
/cosSxdx:5/0055x~5dx:§[003udu:ggnu+C:§sin5x+C |

u = 5x
du = 5dx

More generaly, if the integrand is a composition of the form f(ax + b), where f(x) is
an easy to integrate function, then the substitution u = ax + b, du = a dx will work.

Example 4

d 3d 3 3/1 -4
a = u=3 udu=-"ut+Cc=->(>x-8 +C <«
(ix-8)° u® 4 4\3

u:%x—S
du:%dxordx:i%du

With the help of Theorem 5.2.3, a complicated integral can sometimes be computed by
expressing it as a sum of simpler integrals.

Example 5
1 1
/ = 4+ sePax dx:/d—x+/sec2nxdx=——+/sec2nxdx
x2 x2 X
=—E+l/seczudu
x 7w

u = mx
du =mdx ordx = %du

1 1 1 1
=—"4+"tanu+C=—-—=-+ —tanmx +C <
X T X b

The next three examples illustrate Step 1(a) when the composition involves nonlinear
functions.

Example 6 Evaluate/ sin® x cosx dx.

Solution. If weletu = sinx, then

du
— = C0Sx, SO du = COoSxdx

dx

Thus,
. us sin® x
/SlnszOSxdxzfuzdu=§+C= 3 +C |
cos
Example 7 Evaluate ﬁdx.
Jx

Solution. If weletu = /x, then

de _ 1 i ar o 2du= -ty
27 , u= X u=—dx
dx  2x 2J/x Jx
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Thus,

cos . :
/ \/‘_/;dx:/ZCOSudu:2/cos:zdu=25mu+C=23mﬁ+C
X

Example 8 Evaluatef 43 — 515 dt.

Solution.
1 1
ft4\3/3—5t5dt = ——/ Yudu = ——/ul/3du
25 25
u=3-—5">
du = -25t*dror — % du = t*dt
1 u4/3 3 4/3
=—0——+C=——(3-5" C

25473 " 100 { )

The next two examplesillustrate Steps 1(b) and 1(c), respectively.
Example 9 Evaluate/xZ\/x — 1dx.

Solution. Let
u=x—1 sothat du=dx
From the first equality in (4)
=w+D?=v+2u+1
so that

/xZ\/x —1dx

/(uz +2u+ Dudu = /(uS/Z + 2u®? + u*?) du
— %u7/z+ §u5/2+ §u3/2+C

=D+ 30 - D+ - DI+ C

Example 10 Evaluate/cos3x dx.

Solution. The only compositionsin the integrand that suggest themselves are
cos’ x = (cosx)® and cos’x = (cosx)?

(4)

However, neither the substitution u = cosx nor the substitution u = cos? x work (verify).

Following the suggestion in Step 1(c), we write
f cos’xdx = / oS x COSx dx

and solve the equation du = cosx dx for u = sinx. Sincesin®x + cos?x = 1, we then

have
/cos?‘xdx =/c052xc05xdx =/(1—Sin2x)COSxdx=/(1—u2)du

3 1
:u—M—+C:sinx——sin3x+C
3 3
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"""""""""""""""""""""" The advent of computer algebra systems has made it possible to evaluate many kinds of
"'\\:_TGE&';’)‘T 'so\?'s.:.’ESI'V'I\‘sG COMPUTER integrals that would be laborious to evaluate by hand. For example, Derive, running on a
handheld calculator, evaluated the integral

2 2/32.2
/ 5x dr — 3(x +1)“°(5x 6x +9) LC
(14 x)¥3 8

in about a second. The computer algebra system Mathematica, running on a personal com-
puter, required even less time to evaluate this same integral. However, just as one would
not want to rely on a calculator to compute 2 + 2, so one would not want to use a CAS to
integrate asimple function such as f(x) = x2. Thus, evenif you haveaCAS, you will want
to develop a reasonable level of competence in evaluating basic integrals. Moreover, the
mathematical techniques that we will introduce for evaluating basic integrals are precisely
the techniques that computer algebra systems use to eval uate more complicated integrals.

¢ FORTHE READER.  If you have a CAS, use it to calculate the integrals in the examples

i of this section. If your CAS produces a form of the answer that is different from the one
in the text, then confirm algebraically that the two answers agree. Your CAS has various
commands for simplifying answers. Explore the effect of using the CAS to simplify the
expressionsit produces for the integrals.

EXERCISE SET 5.3 ™ Graphing Calculator CAS

2 / .
In Exercises 1-4, evaluate the integrals by making the indi- 4. (@ /x I+xde u=1+x

cated substitutions.
(b) /[CSC(Sinx)]ZCOSx dx; u=snx

2 28, . _ 2
L@ fo(x +1) doju=x+d (© /Sin(x—n)dx; U=x—1m

(b) /cos3xsinxdx; u = COSx 5x* )
(d) /md.x, u=x5+l

1 .
C —SNJxdx;, u=./x
© / Vx V¥ v In Exercises 5-30, evaluate the integrals by making appro-

3xd riate substitutions.
(d)/‘L;M:‘]_xZ_i_S p
V4x?+5 ,
5. 2—x%"d 6./3—15d
2. (& /%2(4X+l)dx;u=4x+1 /x( x%)" dx (Bx — 1) dx

7. /COSSxdx 8. /SiﬂSxdx

(b) /y\/l—l—Zyzdy; u=1+2y?
9. /wc4xtan4xdx 10. /sec25xdx

(©) /VSinnOCOSnQdG; u = sinmh

X
(d) /(2x+7)(x2+7x+3)4/5dx; u=x2+7x+3 H /’mdr = /mdx
2
3. (a fcotxcsczxdx; u = cotx 13. / );H"x 14. /ﬁdx
(b) /(1+Sjnt)9costdt; u=1+sns 15. /mdx 16. /XCOS(3x2)dx
() /costdx; u=2x 17. /SiniSZ/x) dx 18. /secf;ﬁ)dx

) /xseczxzdx; 4= 52 19. /xzsecz(x3)dx 20. /cos32tsin2tdt
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21. /sin5 31 cos3t dt 2 [ 307
(5+ cos26)3
23. /00340«/2 —snd0do 24 /tan3 5x sec? 5x dx
25. / sec® 2x tan 2x dx 26. / [sin(sin®)] cosh do
d
27. /x«/x—3dx 28. yay
Vvy+1
29. / sin®26 do
30. sec* 39 do

[Hint: Apply Step 1(c) and atrigonometric identity.]

n Exercises 31-33, evaluate the integrals assuming that n is

apositive integer and b # 0.

31

33

./(a—l—bx)”dx 32./.\/"a+bxdx

. / sin"(a + bx) cos(a + bx) dx

34. Use a CASto check the answers you obtained in Exercises

SIGMA NOTATION

31-33. If the answer produced by the CAS does not match
yours, show that the two answers are equivalent. [ Sugges-
tion: Mathematica users may find it helpful to apply the
Simplify command to the answer.]

Sheet number 22 Page number 340
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36.
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(@ Evaluatetheintegral [ sinx cosx dx by two methods:
first by letting u = sinx, then by letting # = cosx.

(b) Explain why the two apparently different answers ob-
tained in part (a) are really equivalent.

(@) Evauate [(5x — 1)?>dx by two methods: first square
and integrate, then let u = 5x — 1.

(b) Explain why the two apparently different answers ob-
tained in part (a) are really equivalent.

In Exercises 37 and 38, solve the initial-value problems.

37.

38.
39.

41.

d
d—y — V3 +L y1)=5
X
d .
4 o 6_5sin2c y(0) =3
dx

Find afunction f such that the slope of the tangent line at
apoint (x, y) onthecurve y = f(x) is+/3x + 1, and the
curve passes through the point (0, 1).

[ 40. Use a graphing utility to generate some typical integral

curvesof f(x) = x/+/x2+ 1 over theinterval (-5, 5).

A population of frogsis estimated to be 100,000 at the be-
ginning of the year 2000. Suppose that the rate of growth of
the population p(z) (in thousands) after ¢ yearsis p/(t) =
(4+ 0.15¢)%2, Estimate the projected population at the be-
ginning of the year 2005.

5.4 SIGMA NOTATION; AREA AS A LIMIT

Recall from the informal discussion in Section 5.1 that if a function f is continuous
and nonnegative on an interval [a, b], then the “rectangle method” provides us with
one approach to computing the area between the graph of f and the interval [a, b].
We begin this section with a discussion of a notation to represent lengthy sums in a
concise form. Then we will discuss the rectangle method in more detail, both as a
means for defining and for computing the area under a curve. In particular, we will
show that such an area may be interpreted as a limit.

The notation we will discuss is called sigma notation or summation notation because it
uses the uppercase Greek letter X (sigma) to denote various kinds of sums. To illustrate

how this notation works, consider the sum

P+224+3+#+5

in which each term is of the form k2, where k is one of the integers from 1 to 5. In sigma
notation this sum can be written as

5
D K
k=1

which is read “the summation of k2, where k runs from 1 to 5.” The notation tells us to
form the sum of the terms that result when we substitute successive integers for & in the
expression k2, starting with k = 1 and ending with k = 5.
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value of k Q

Figure5.4.1
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More generally, if f(k) isafunction of k, and if m and n are integers such that m < n,
then

> flk) (1)
k=m

denotesthe sum of thetermsthat result when we substitute successiveintegersfor k, starting
with k = m and ending with k = n (Figure 5.4.1).

Example 1

8

Y KB=a4+5161+ 7018

k=4

5

Y 2% =2.142.242-3+2-4+2.5=2+4+6+8+10
k=1

5

Z(2k+l)=1+3+5+7+9+11

k=0

5
Z(—l)k(2k+1)=1—3+5—7+9—11
k=0

1
Y B =(=3+(-2°+(-1*+0*+1°=-27-8-1+0+1
k=—3
3
k 2 3
stin(—n>=sinz+23in—n+35in—n <
—~ 5 5 5 5
The numbers m and n in (1) are called, respectively, the lower and upper limits of
summation; and the letter k is called the index of summation. It isnot essential to use k as
the index of summation; any letter not reserved for another purpose will do. For example,

Il
iN

j=1

al denote the sum
1ot t 1l
2 3 4 5 6

If the upper and lower limits of summation are the same, then the “sum” in (1) reduces
to asingle term. For example,

2 1
1 1 1
K =2% and - _=
; ;i+2 1+2° 3

In the sums

5 2
Z 2 and Zx3
i=1 =0

the expression to the right of the X sign does not involve the index of summation. In such
cases, we take al the terms in the sum to be the same, with one term for each alowable
value of the summation index. Thus,

5 2
22=2+2+2+2+2 and 2x3=x3+x3+x3
i=1 j=0
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CHANGING THE LIMITS OF """"" A sum can be written in more than one way using sigma notation with different limits of
SUMMATION sumrSnatlon and correspondingly dlffirent summands; For example,
Y 2=2+446+8+10=3 (2j+2 =) (2%k—4
i=1 j=0 k=3
On occasion we will want to change the sigma notation for agiven sum to asigmanotation
with different limits of summation.
Example 2 Express
7
Z 5/<72
k=3
in sigma notation so that the lower limit of summation is O rather than 3.
Solution.
7
ZSk—2=51+52+53+54+55
k=3
— 50+1 + 51+l + 52+l + 53+1 + 54+l
4 4
=3 =) s <
j=0 k=0
"""""""""""""""""""" When stating general properties of sums it is often convenient to use a subscripted letter
PROPERTIES OF SUMS such as gy, in place of the function notation f'(k). For example,
5 5 3
Zak=a1+a2+a3~|—a4~|—a5= ajzzak+2
k=1 j=1 k=—1
n n n—2
Zak =ai1+tax+---+a,= Zaj = Z 42
k=1 j=1 k=—1

Our first properties provide some basic rules for manipulating sums.

5.4.1 THEOREM.
(@ Z cay =c Z ax (if ¢ does not depend on k)
k=1 k=1

O D (a+b) =Y a+) b
k=1 k=1

k=1

© D (a—bd=Y a—Y b
k=1 k=1 k=1

We will prove parts () and (b) and leave part (c) as an exercise.

Proof (a).

n

ank=cal+caz+~--+can =clar+ax+---+a,) ZCZak
k=1 k=1

Proof (b).

Y (@ +bi) = (a1 +b1) + (az + b2) + -+ + (an + by)
k=1

=(@+a+ - +a)+Grt+ba+-+b)=> a+ Y b i
k=1 k=1
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Restating Theorem 5.4.1 in words:
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(@) A constant factor can be moved through a sigma sign.

(b) Sgma distributes across sums.

(c) Sgmadistributes across differences.

54.2 THEOREM.

@ Zk:1+2+...+n:"(”2+1)

k=1

) Y K=10+2+. 4=
k=1

(©

nn+1)(2n+1)

6

2
Zn:k3=13+23+~--+n3=["(n+l)]
k=1 2

We will prove parts () and (b) and leave part (c) as an exercise.

Proof (a). Writing

Yk
k=1

two ways, with summandsin increasing order and in decreasing order, and then adding, we

obtain

k= 1 4+ 2 + 3 +
k=1

k= n 4G-D+m-2)+-
k=1

et m=-2)+m-D+ n

+ 3 4+ 2 + 1

22k=(n+1)+(n+1)+(n+1)+
=1

=nn+1
Thus,
ik _ n(n+1)
k=1 2

Proof (b). Notethat
hk+1° K=k +3°+3k+1-k°
$1

DIk +12 -k =) @ +3k+1)
k=1 k=1

e+ m+D++D+m+D)

=3k>+3k+1

)

Writing out the left side of (2) with the index running down from k = n to k = 1, we have

D L+ =& = [+ 1)° = n®] +-
k=1

=m+1D3-1

"+[43_33]+[33_23]+[23_13]

©)

Combining (3) and (2), and expanding theright side of (2) by using Theorem 5.4.1 and part
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(a) of thistheorem yields

(n+1)3—1=32n:k2+32n:k+2n:1
k=1 k=1 k=1

=3 k2+3n(n+1)+n
k=1 2
&)1
& nin+ 1)
3;k2=[(n+1)3—1]—3 S
=(n+1)3—3(n+1)<g)—(n+1)
=—n—£1[2(n+1)2—3n—2]
=n;1[2n2+n]:n(n+1)2(2n+1)
Thus,
X":kzzn(n+1)(2n+1) i
k=1 6

¢ REMARK. Thesumin (3) isan example of atelescoping sum, since the cancellation of
¢ each of thetwo parts of an interior summand with parts of its neighboring summands allows
i the entire sum to collapse like a telescope.

30
Example 3 Evaluate Z k(k + 1).

k=1
Solution.

30 30 30 30
Ykk+D) =) KE+k =Y K+ k
k=1 k=1 k=1 k=1

_ 30(31)(61)  30(31)
=~ 6 172

= 9920 Theorem5.4.2(a), (b) |

In formulas such as
ik_n(n—i—l) _n(n+1)
k=1 2

o 14+24.---+n 5

the left side of the equality is said to express the sum in open form and the right sideis said
to expressit in closed form. The open form indicates the summands and the closed formis
an explicit formulafor the sum.

Example 4 Express 2(3 + k)? in closed form.
k=1

Solution.

Y B+kP =R+ 5+ -+ (3+n)?
k=1
=[1P+ 224+ 3B+ 82 +5+... + B+n)?] - [12+22+ 37

3+n
— (Z k2) —14
k=1

B+ n)@A+n)(7+2n)
B 6

1
—14 = 6(73n+21n2+2n3) |
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FOR THE READER.  Your numerical calculating utility probably provides some way of
evaluating sumsthat can be expressed in sigma notation. Check your documentation to find
out how to do this, and then use your utility to confirm that the numerical result obtained
in Example 3 is correct. If you have accessto a CAS, it provides some method for finding
closed formsfor sumssuch asthosein Theorem 5.4.2. Useyour CA Sto confirmtheformulas
in that theorem, and then find closed forms for

zn:k“ and zn:kS
k=1 k=1

Supposethat f isa continuous function that is nonnegative on an interval [a, b], and let R
denote the region that is bounded below by the x-axis, bounded on the sides by the vertical
linesx = a and x = b, and bounded above by the curve y = f(x) (Figure 5.4.2). Recall
from the informal discussion in Section 5.1 that the “rectangle method” provides us with
one approach to computing the area between the graph of f and the interval [a, b]. Our
goa now is to define formally what we mean by the area of R. We will work from the
definition of the area of arectangle as the product of its length and width. Define the area
of aregion decomposed into afinite collection of rectangles to be the sum of the areas of
those rectangles. To define the area of the region R, we will use these definitions and the
rectangle method of Section 5.1. The basic ideais as follows:

« Dividetheinterval [, b] into n equal subintervals.

« Over each subinterval construct a rectangle whose height isthe value of f at any point
in the subinterval.

« The union of these rectangles forms a region R, whose area can be regarded as an
approximation to the “area’ A of the region R.

+ Repeat the process using more and more subdivisions.

o Definethe areaof R to be the “limit” of the areas of the approximating regions R,,, as
n ismade larger and larger without bound. We can express thisidea symbolically as

A=area(R) = li rgw[area(R,,)] 4)

REMARK.  Thereisadifference in interpretation between writing lim,, _, .., and writing
lim,_, +.., where n represents a positive integer and x has no such restriction. Equation (4)
should be interpreted to mean that by choosing the positive integer n sufficiently large, we
can make area(R,) ascloseto A asdesired. Later we will study limits of thetypelim, _, ...
in detail, but for now suffice it to say that the computational techniques we have used for
limits of typelim, _, ... will alsowork for lim, _, ..

Tomakeall of thismore precise, it will be helpful to capturethis procedurein mathemat-
ical notation. For this purpose, suppose that we divide theinterval [a, b] into n subintervals
by inserting n — 1 equally spaced points between a and b, say

-xlv -x27 s -xn—l

(Figure 5.4.3). Each of these subintervals has width (b — a)/n, which it is customary to
denote by

In each subinterval we need to choose an x-value at which to evaluate the function f to

determine the height of arectangle over the interval. If we denote those x-values by
Xy X5y e Xy

*'n

(Figure 5.4.4), then the areas of the rectangles constructed over these intervals will be
fODAx, fO(x)Ax, ..., f(x;)Ax
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Figure 5.4.6

NUMERICAL APPROXIMATIONS OF

AREA
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(Figure 5.4.5), and the total area of theregion R, will be
aea(R,) = f(x))Ax + f(x3)Ax + -+ f(x,)Ax
With this notation (4) can be expressed as

A= lim Y fx)Ax
n—>+ook:1

which suggests the following definition of the area of the region R.

5.4.3 DEFINITION (AreaUnder aCurve). |If the function f is continuouson [a, b] and
if f(x) > Oforadl xin[a,b], then the area under the curve y = f(x) over theinterval
[a, b] is defined by

A= lim " fx)Ax (5)
n—>+°0k:1

In (5) the values of xJ, x5, ..., x;; may be chosen in many different ways, so it is con-
ceivablethat different choices of these values might produce different valuesof A. Werethis
to happen, then Definition 5.4.3 would not be an acceptable definition of area. Fortunately,
this does not happen; it is proved in advanced courses that when f is continuous (as we
have assumed), the same value of A results no matter how the x; are chosen. In practice
they are chosen in some systematic fashion, some common choices being:

o Theleft endpoint of each subinterval.
o Theright endpoint of each subinterval.
o The midpoint of each subinterval.

If, as shown in Figure 5.4.6, the subinterval [a, b] isdivided by x1, x2, x3, ..., x,_1 inton
equal parts each of length Ax = (b — a)/n, and if welet xg = a and x,, = b, then

xx=a+kAx fork=0,12...,n
Thus,
X =xp1=a+ (k—1DAx Left endpoint (6)
x;: =x;y =a+kAx Right endpoint (7
* 1 _ 1 . N
Xy = i(xkfl +x) =a+ (k — 5) Ax Midpoint (8)
a a+Ax a+2Ax a+3Ax a+(n-1)Ax b=a+nAx
e AX s A X Ax— e—Ax—]
Xo X1 X2 X3 Xn—1 Xn

Wewould expect from Definition 5.4.3 that for each of the choices (6), (7), and (8), the sum

Y FGHAx = Ax Y fO) = Ax[FO) 4+ f(5) + -+ FO)] ©)
k=1 k=1

would yield a good approximation to the area A, provided n is a large positive integer.
According to which of these three optionsis used in choosing the x;, we refer to Formula
(9) astheleft endpoint approximation, the right endpoint approximation, or the midpoint
approximation of the exact area (Figure 5.4.7).
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y y y
/\\
Lo
/ NN Ay N
Hhndl
\
: : L]
a b a b a b
Left endpoint approximation Right endpoint approximation Midpoint approximation
(@ (b) (0)
Figure5.4.7
y Example 5 Find the left endpoint, right endpoint, and midpoint approximations of the
9 areaunder the curve y = 9 — x? over theinterval [0, 3] withn = 10, n = 20, and n = 50
(Figure 5.4.8).
y=9-x2
Solution. Detailsof the computationsfor the casen = 10 are shownto six decimal places
in Table 5.4.1 and the results of all computations are given in Table 5.4.2. |
X
0 3 Table5.4.1
Figure5.4.8 n=10, Ax = (b—a)/n=(3-0)/10=0.3
LEFT ENDPOINT RIGHT ENDPOINT MIDPOINT
APPROXIMATION APPROXIMATION APPROXIMATION
k X 9-(%)? X 9-(%)? X 9- (%)
1 0.0 9.000000 0.3 8.910000 0.15 8.977500
2 0.3 8.910000 0.6 8.640000 0.45 8.797500
3 0.6 8.640000 0.9 8.190000 0.75 8.437500
4 0.9 8.190000 1.2 7.560000 1.05 7.897500
5 1.2 7.560000 15 6.750000 1.35 7.177500
6 15 6.750000 1.8 5.760000 1.65 6.277500
7 1.8 5.760000 2.1 4.590000 1.95 5.197500
8 2.1 4.590000 2.4 3.240000 2.25 3.937500
9 2.4 3.240000 2.7 1.710000 2.55 2.497500
10 2.7 1.710000 3.0 0.000000 2.85 0.877500
64.350000 55.350000 60.075000
n (0.3)(64.350000) (0.3)(55.350000) (0.3)(60.075000)
AXZ f(xﬁ) = 19.305000 = 16.605000 = 18.022500
k=1
Table5.4.2
LEFT ENDPOINT RIGHT ENDPOINT MIDPOINT
n APPROXIMATION APPROXIMATION APPROXIMATION
10 19.305000 16.605000 18.022500
20 18.663750 17.313750 18.005625
50 18.268200 17.728200 18.000900
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REMARK. Wewill show below that the exact areaunder y = 9— x? over theinterval [0, 3]
is 18 (i.e., 18 sguare units), so that in the preceding example the midpoint approximation
is more accurate than either of the endpoint approximations. This can also be seen geo-
metrically from the approximating rectangles: Since the graph of y = 9 — x? isdecreasing
over theinterval [0, 3], each |eft endpoint approximation overestimates the area, each right
endpoint approximation underestimates the area, and each midpoint approximation falls
between the overestimate and the underestimate (Figure 5.4.9). Thisis consistent with the

valuesin Table 5.4.2. Later in the text we will investigate the error that results when an area

is approximated by the midpoint rule.

X X X
0 3 0 3 0 3
The left endpoint The right endpoint The midpoint approximation
approximation approximation is better than the endpoint
overestimates underestimates approximations.
the area. the area.

Figure 5.4.9

Although numerical approximations of area are useful, we will often wish to compute the
exact value of some area. In certain cases this can be done by explicitly evaluating the limit
in Definition 5.4.3.

Example 6 Use Definition 5.4.3 with x;* asthe right endpoint of each subinterval to find
the area between the graph of f(x) = x? and the interval [0, 1].

Solution. We have
b—a 1-0 1
n o n - ;
and from (7)

Ax =

. k
Xy =a+kAx = —
n
S0 that

- . o, LN N R L

k=1

n3 6

_i|:n(n+1)(2n+1)i| 1 1 1
3 6n?2

Therefore,

. . _ 1 1 1 1
A= lim D faDax= lim, (5 T e—) =3

(Note that this conclusion agrees with the numerical evidence we collected in Table 5.1.2.)
<
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In the solution to Example 6 we made use of one of the “closed form” summation
formulas from Theorem 5.4.2. The next result collects some consequences of Theorem
5.4.2 that can facilitate computations of area using Definition 5.4.3.

54.4 THEOREM.

(a) nle%;Zl—l (b) lim —Zk——

n—>+oon

n—

(©) I|+wnszk3 1 (d) I|+mn42k3

The proof of Theorem 5.4.4 isleft as an exercise for the reader.

Example 7 Use Definition 5.4.3 with x;* as the midpoint of each subinterval to find the
area under the parabolay = f(x) = 9 — x? and over theinterval [0, 3].

Solution. Each subinterval will have length
b—a 3-0 3

Ax = = = -
n n n
and from (8)
i 1 1\ /3
X =a+ k—é Ax = k_i ;
Thus,

FODAx =[9— () Ax = [9 - (" - %)2 (gﬂ (S)
[0

21 27 27 27

____2 —_ —_——
T on n3k n3 4n3
and
" /27 27 27 27
Zf(ka)‘:kz_;(;‘ﬁk k=)
1 1<
P R ]
Therefore,

A= lim Zf(xk)Ax

n— 4+

n 1 1 n
— i 2
—HL'TWZ{ Zl——zk (,122;")—@<;Zl)}
=271 ! +0 0-1({=18
= 3 5 =
where we used Theorem 5.4.4 to compute the limits as n — +oo of the expressions

1 &,
—j_ZkFl forj=1,2,3 <
oy}
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In Definition 5.4.3 we assumed that f is continuous and nonnegative on theinterval [a, b].
If f iscontinuous and attains both positive and negative values on [«, b], then the limit

lim > f)Ax (10)
n— +owo =i

no longer represents the area between the curve y = f(x) and the interval [a, b] on the
x-axis; rather, it represents a difference of areas—the area of the region that is above the
interval [a, b] and below the curve y = f(x) minusthe area of the region that is below the
interval [a, b] and abovethe curve y = f(x). We call thisthe net signed area between the
graph of y = f(x) and the interval [a, b]. For example, in Figure 5.4.10a, the net signed
area between thecurve y = f(x) and theinterval [a, b] is

(A; + Amp) — A = [areaabove[a, b]] — [areabelow [a, b]]

To explain why the limit in (10) represents this net signed area, |et us subdivide the interval
[a, b] in Figure 5.4.10a into n equal subintervals and examine the termsin the sum

> e Ax (11)
k=1

If f(x{) is positive, then the product f(x;)Ax represents the area of the rectangle with
height f(x;) and base Ax (the biege rectangles in Figure 5.4.10b). However, if f(x}) is
negative, then the product f(x;) Ax isthe negative of the area of the rectangle with height
| f(x;)] and base Ax (the green rectanglesin Figure 5.4.10b). Thus, (11) representsthe total
area of the beige rectangles minusthe total area of the green rectangles. Asn increases, the
pink rectanglesfill out the regions with areas A; and A;; and the green rectangles fill out
the region with area A ;;, which explains why the limit in (10) represents the signed area
between y = f(x) and theinterval [a, b]. We formalize this in the following definition.

5.4.5 DEFINITION (NetSignedArea). If thefunction f iscontinuouson [a, b], then the
net signed area A between y = f(x) and the interval [a, b] is defined by

A= lim Zf(x,t)Ax
et

Aswith Definition 5.4.3, it can be shown that for a continuous function thislimit always
exists (independently of the choice of the numbers x;). The net signed area between the
curvey = f(x) and[a, b] canbepositive, negative, or zero; it is positive when thereismore
area abovetheinterval than below, negative when thereis more area below than above, and
zero when the areas above and below are equal .

Example 8 Use Definition 5.4.5 with x;* as the left endpoint of each subinterval to find
the net signed area between the graph of y = f(x) = x — 1 and theinterval [0, 2].

Solution. Each subinterval will have length

b—a 2-0 2
Ax = = =
n n n

and from (6)

x,f:a+(k—1)Ax=(k—1)(§L)

Thus,

. . 2 2 4 4 2
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Since the net signed area is zero, the area A; below the graph of f and above the interval
[0, 2] must equal the area A, above the graph of f and below the interval [0, 2]. This

January 18, 2001 14:01 g65-chd Sheet number 33 Page number 351
and
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PIFIEHINEDY [(—2) k—— - —]
k=1 k=1 L\" neon
y _a(ty
n? =
Therefore,
X A ZnHTw;f(xZ)Ax :nﬂTw {4 (n
A, 1
=4(-)-0-1-2() =0
2
Figure5.4.11

EXERCISE SET 5.4 CAS

1

2.

Evaluate
3

@ > &
k=1

5
@ Y1
n=0

Evaluate

4 km
ksin —
@ k; 5

5
(d) Z om+1
m=3

1
© Y (*—i)

i=—4

6
(f) > sinnm.
n=1

6
() > GBi—1
j=2

. 4
@ Y (-2
k=0

20
(© E 7?
i=7

10
(f) > coskn.
k=0

5
() > (-1’
j=0

6
@ > vn
n=1

In Exercises 3-8, write each expression in sigma notation,
but do not evaluate.

3.

© N o &

10.

1+2+3+---+10

3-1+3-24+3-3+---43-20

24+44+6+4+8+---+20 6. 1+3+5+7+---+15

1-3+5-7+9-11 8.1-1+1-1+1

(a) Express the sum of the even integers from 2 to 100 in
sigma notation.

(b) Expressthe sum of the odd integersfrom1t0 99insig-
ma notation.

Express in sigma notation.

(@ a1 —az+az — as + as

(b) —bo+ b1 —bo+ b3 —bs+bs

(©) ap+ aix + axx®+ - - + a,x"

(d) a®+ a*b + a®b? + a®b® + ab* + b°

conclusion agrees with the graph of f shown in Figure 5.4.11.

<

In Exercises 11-16, use Theorem 5.4.2 to eval uate the sums,
and check your answers using the summation feature of acal-
culating utility.

100

20
11. Zk 13. Zkz
k=1 k=1

20 6
14. 3"k 16. ) (k—k%)
k=4 k=1

In Exercises 17-20, express the sumsin closed form.

100
12. Z(?k +1)
k=1

30
15. > k(k—2)(k+2)
k=1

n n—1 n—1
17. Z%k 18. ij 19. Zg
k=1 k=1 k=1

" (5 2
20. =
CEES
21. For each of the sumsthat you obtained in Exercises 1720,
use a CAS to check your answer. If the answer produced
by the CAS does not match your own, show that the two
answers are equivalent.

22. Solvethe equation » " k = 465.

k=1

In Exercises 23-26, express the function of » in closed form
and then find the limit.

14243+ +n

23. lim 5
n— +0 n
12 22 32 2
24, |jm o XS

n——+ow n3
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25. lim -~ 5k 26. lim s
) n—>+ook2:;ﬁ ' n—>+xk2:;?

(o] [o]

27. Express1+ 2+ 22+ 2% + 2% + 25 in sigma notation with

(@ j = Oasthelower limit of summation
(b) j = 1asthelower limit of summation
(c) j = 2asthelower limit of summation.

28. Express

9
k2k+4

in sigma notation with
(@ k = 1asthelower limit of summation
(b) k = 13 asthe upper limit of summation.

In Exercises 29-32, divide the interval [a, b] inton = 4
subintervals of equal length, and then compute

4
> fahAx
k=1

with x; as (a) the left endpoint of each subinterval, (b) the
midpoint of each subinterval, and (c) the right endpoint of
each subinterval.
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44, Thefunction f and interval [a, b] of Exercise 38.
45, Thefunction f and interval [a, b] of Exercise 39.
46. Thefunction f and interval [a, b] of Exercise 40.

In Exercises 47 and 48, use Definition 5.4.3 with x; as the
midpoint of each subinterval to find the area under the curve
y = f(x) over theinterval [a, b].

47. Thefunction f(x) =x% a=0,b=1
48. Thefunction f(x) =x%, a=—-1,b=1

In Exercises 49-52, use Definition 5.4.5 with x;* asthe right
endpoint of each subinterval to find the net signed area be-
tween thecurve y = f(x) and theinterval [a, b].

49. y = x; a = —1, b = 1. Verify your answer with asimple
geometric argument.
50. y = x; a = —1, b = 2. Verify your answer with asimple

geometric argument.
5. y=x?>—-1,a=0b=2 52 y=x%a=-1b=1
53. Use Definition 5.4.3 with x; as the left endpoint of each

29.
30.
3L
32.

fx)=3x+1, a=2,b=6
fx)=1/x; a=1b=9
f(x)=cosx; a=0,b=m
f)=2x—x% a=-1,b=3

33. y=1/x; [1 2]
35. y =+/x; [0, 4]

In Exercises 33-36, use a calculating utility with summa-
tion capabilities or a CAS to obtain an approximate value
for the area between the curve and the specified interval with
n = 10, 20, and 50 subintervals by using the (a) left end-
point, (b) right endpoint, and (c) midpoint approximations.
(If you do not have access to such a utility, then just do the
casen = 10.)

34. y =1/x% [1,3]
36. y =sinx; [0, /2]

In Exercises 3742, use Definition 5.4.3 with x;* asthe right
endpoint of each subinterval to find the area under the curve
y = f(x) over theinterval [a, b].

3. y=3xia=1b=4

38. y=5—-x;a=0,b=5

39. y:9—x2; a=0b=3
40. y=4—lx2; a=0b=3

4

41. y=x% a=2b=6
42. y=1-x% a=-3b=-1

In Exercises 43-46, use Definition 5.4.5 with x; as the |eft
endpoint of each subinterval to find the area under the curve
y = f(x) over theinterval [a, b].

43. Thefunction f and interval [a, b] of Exercise 37.

55.

56.

57.

58.

59.

subinterval to find the area under the graph of y = mx and
over theinterval [a, b], wherem > Oanda > 0.

Use Definition 5.4.5 with x; as the right endpoint of each
subinterval to find the net signed area between the graph of
y = mx and theinterva [a, b].

(@) Show that the area under the graph of y = x® and over
theinterval [0, b] isb*/4.

(b) Find aformulafor the areaunder y = x2 over the in-
terval [a, b], wherea > 0.

Find the area between the graph of y = /x and theinterval
[0, 1]. [Hint: Use the result of Exercise 17 of Section 5.1.]

An artist wants to create a rough triangular design using
uniform square tiles glued edge to edge. She places n tiles
inarow to form the base of thetriangle and then makes each
successiverow twotilesshorter than the preceding row. Find
aformulafor the number of tiles used in the design. [Hint:
Your answer will depend on whether n is even or odd.]

An artist wants to create a scul pture by gluing together uni-
form spheres. She creates a rough rectangular base that has
50 spheres along one edge and 30 spheres aong the other.
She then creates successive layers by gluing spheresin the
groovesof thepreceding layer. How many sphereswill there
bein the sculpture?

By writing out the sums, determine whether the following
arevalid identities.

@ /[éﬁ(x)} dx:iizl[/fi(x)dx]

n

®) [Zl ff(x)} -

|t

i=1
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60. Which of the following are valid identities? 61. Prove part (c) of Theorem 5.4.1.
i R u N - 62. Prove part (c) of Theorem 5.4.2. [Hint: Begin with the dif-
@ ;aib[ - ;ai ;bi () ; b ;ai/; bi ference (k +1)* — k* and follow the steps used to prove part

n n 2
@ 3 = (3a)
i=1 i=1

RIEMANN SUMS AND THE
DEFINITE INTEGRAL

y
y=1(
X
a b
Figure5.5.1
y
y=f(

il

a

Figure5.5.2

(b) of the theorem.]
63. Prove Theorem 5.4.4.

5.5 THE DEFINITE INTEGRAL

In this section we will introduce the concept of a “ definite integral,” which will link the
concept of area to other important concepts such as length, volume, density, probabil-
ity, and work.

In our definition of net signed area (Definition 5.4.5), we assumed that for each positive
number n, the interval [a, b] was subdivided into n subintervals of equal length to create
bases for the approximating rectangles. For some functions it may be more convenient to
use rectangles with different widths (see Exercise 33); however, if we are to “exhaust” an
areawith rectangles of different widths, then it isimportant that successive subdivisions be
constructed in such a way that the widths of the rectangles approach zero as n increases
(Figure 5.5.1). Thus, we must preclude the kind of situation that occursin Figure 5.5.2 in
which the right half of the interval is never subdivided. If this kind of subdivision were
allowed, the error in the approximation would not approach zero asn increased.
A partition of theinterval [a, b] isa collection of numbers

Aa=X0<X1<X2< <Xy 1<X,=0b
that divides [a, b] into n subintervals of lengths

AXy=x1— X0, Axo=xp—x1, Axz=x3—Xx2,..., AX, =X, — Xp_1
The partition is said to be regular provided the subintervals all have the same length

b—a
n

For aregular partition, the widths of the approximating rectangles approach zero asn is
made large. Since this need not be the case for a general partition, we need some way to
measure the “size” of these widths. One approach is to let max Ax; denote the largest of
the subinterval widths. The magnitude max Ax; iscalled the mesh size of the partition. For
example, Figure 5.5.3 shows a partition of the interval [0, 6] into four subintervals with a
mesh size of 2.

Axk =Ax =

‘HAX]_ | AXZ—b\ AX3 | AX4—>‘
0 3 5 9 6
2 2 2
max Ax, = Axg=2-2=2
Figure5.5.3

If we are to generalize Definition 5.4.5 so that it allows for unequal subinterval widths,
we must replace the constant length Ax by the variable length Ax;. When thisis done the
sum

> fapax isreplacedby Y £ Ax
k=1 k=1
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We also need to replace the expression n — +oo by an expression that guarantees us that
the lengths of all subintervals approach zero. We will use the expression max Ax; — 0 for
this purpose. (Some writers use the symbol || A|| rather than max Ax; for the mesh size of
the partition, in which case max Ax; — 0 would be replaced by |A|| — 0.) Based on our
inituitive concept of area, we would then expect the net signed area A between the graph
of f andtheinterval [a, b] to satisfy the equation

A= maxlirxr:%; FxH Axy
(We will seein amoment that thisis the case.) The limit that appears in this expression is
one of the fundamental concepts of integral calculus and forms the basis for the following
definition.

5.5.1 DEFINITION. A function f issaid to be integrable on afinite closed interval
[a, D] if the limit

max Ax; — 0 “—

lim " f(xp)Ax
k=1

exists and does not depend on the choice of partitions or on the choice of the numbers
x; inthe subintervals. When this is the case we denote the limit by the symbol

b n
fa flx)dx = max'iilo; F&) Axi

which is called the definite integral of f from a to . The numbers a and b are called
the lower limit of integration and the upper limit of integration, respectively, and f(x)
is caled the integrand.

The notation used for the definite integral deserves some comment. Historically, the
expression “ f(x) dx” was interpreted to be the “infinitesimal area’ of a rectangle with
height f(x) and “infinitesimal” width dx. By “summing” these infinitessimal areas, the
entire area under the curve was obtained. The integral symbol “ [ isan “elongated s’ that
was used to indicate this summation. For us, the integral symbol “ [ and the symbol “dx”
can serveasremindersthat thedefiniteintegral isactually alimit of asummationas Ax; — 0.
The sum that appearsin Definition 5.5.1 iscalled aRiemann” sum, and the definiteintegral

* GEORG FRIEDRICH BERNHARD RIEMANN (1826-1866). German mathematician. Bernhard Riemann, as he
is commonly known, was the son of a Protestant minister. He received his elementary education from his father
and showed brilliance in arithmetic at an early age. In 1846 he enrolled at Gottingen University to study theology
and philology, but he soon transferred to mathematics. He studied physics under W. E. Weber and mathematics
under Karl Friedrich Gauss, whom some people consider to be the greatest mathematician who ever lived. In 1851
Riemann received his Ph.D. under Gauss, after which he remained at Gottingen to teach. In 1862, one month after
hismarriage, Riemann suffered an attack of pleuritis, and for the remainder of hislife was an extremely sick man.
He finally succumbed to tuberculosisin 1866 at age 39.

An interesting story surrounds Riemann’s work in geometry. For his introductory lecture prior to becoming
an associate professor, Riemann submitted three possible topics to Gauss. Gauss surprised Riemann by choosing
the topic Riemann liked the least, the foundations of geometry. The lecture was like a scene from amovie. The
old and failing Gauss, a giant in his day, watching intently as his brilliant and youthful protégé skillfully pieced
together portions of the old man’s own work into a complete and beautiful system. Gaussis said to have gasped
with delight as the lecture neared its end, and on the way home he marveled at his student’s brilliance. Gauss
died shortly thereafter. The results presented by Riemann that day eventually evolved into a fundamental tool that
Einstein used some 50 years later to develop relativity theory.

In addition to his work in geometry, Riemann made major contributions to the theory of complex functions
and mathematical physics. The notion of the definite integral, asit is presented in most basic calculus courses, is
due to him. Riemann’s early death was a great 10ss to mathematics, for his mathematical work was brilliant and
of fundamental importance.
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issometimes called the Riemann integral in honor of the German mathematician Bernhard
Riemann who formulated many of the basic concepts of integral calculus. (The reason
for the similarity in notation between the definite integral and the indefinite integral will
become clear in the next section, where we will establish a link between the two types of
“integration.”)

The limit that appearsin Definition 5.5.1 is somewhat different from the kinds of limits
discussed in Chapter 2. Loosely phrased, the expression

lim Zf(x,f)Axk =L
k=1

max Ax; — 0

is intended to convey the idea that we can force the Riemann sums to be as close as we
pleaseto L, regardless of how the x; are chosen, by making the mesh size of the partition
sufficiently small. Although it is possible to give a more formal definition of thislimit, we
will simply rely on intuitive arguments when applying Definition 5.5.1.

Example 1 Use Definition 5.5.1 to show that if f(x) = C isaconstant function, then
b
/ fx)dx =C(b —a)

Solution. Since f(x) = C isconstant, it follows that no matter how the x; are chosen,

YA =) CAxy=C)Y Ax=C(b—a)
k=1 k=1 k=1

Since every Riemann sum has the same value C (b — a), it follows that

lim Z fx) Axy =
k=1

max Ax; — 0

OC(b—a):C(b—a) <

lim
max Axy; —
Note that in Definition 5.5.1, we do not assume that the function f is necessarily con-

tinuous on the interval [a, b].

Example 2 Define afunction f on theinterval [0, 1] by f(x) = 1if 0 < x < 1 and
f(0) = 0. Use Definition 5.5.1 to show that

1
f fx)dx =1
0
Solution. Wefirst note that since

£ isnot continuous on theinterval [0, 1]. Consider any partition of [0, 1] and any choice of
the x;* corresponding to this partition. Then either x; = 0 or it does not. If not, then

DA =) Ax =1
k=1 k=1
On the other hand, if x; = 0, then f(x7) = f(0) = Oand

n n n
DDA =) Ax=-Axn+ Y Axg=1-Ax
k=1 k=2

k=1
In either case we see that the difference between the Riemann sum

Y FahAx
k=1

and 1isat most Ax;. Since Ax; approaches zero as max Ax; — 0, it follows that

1
/ fx)dx =1 <
0
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Although Example 2 showsthat afunction does not have to be continuous on an interval
to be integrable on that interval, we will be interested primarily in the definite integrals of
continuous functions. Our earlier discussion of net signed area suggests that a function that
is continuous on an interval should also be integrable on that interval. Thisisthe content of
the next result, which we state without proof.

55.2 THEOREM. If afunction f iscontinuous on an interval [a, b], then f isinte-
grableon [a, b].

We can use Theorem 5.5.2 to clarify the connection between the definite integral and
net signed area. Supposethat f isacontinuous function on aninterval [a, b]. Recall that in
Section 5.4 we defined the net signed area A between the graph of f and theinterval [a, b]
to be given by the limit

n—+o0

A= lim " fx)Ax
k=1

On the other hand, it follows from Theorem 5.5.2 and Definition 5.5.1 that we can use
regular partitions of [a, b] to compute the definite integral of f over [a, b] asthe limit

b n
/ feydx = lim >~ f(x)Ax
a n— 4o i

Since the two limits are the same, we conclude that

n b n
_ H * . . H *
A= nl_l)rgwkz:;f(xk)Ax - / fx)dx = mWIAITeOkXZ; F&x) Axy

In other words, the definite integral of a continuous function f from a to b may aways
be interpreted as the net signed area between the graph of f and the interval [a, b]. Of
course, if f is nonnegative, this is simply the area beneath the graph of f and above the
interval [a, b]. It follows that our area computations in Section 5.4 may be reformulated as
computations of particular definiteintegrals. For example, we showed that the area between
the graph of f(x) = 9 — x? and the interval [0, 3] is 18 square units. Equivalently, this
computation shows us that

3
f (9—x%dx =18
0

Fortunately, there are often effective and efficient methods for evaluating definite integrals
that do not require the explicit evaluation of limits. (We will have more to say about thisin
Section 5.6.) In the simplest cases, definite integrals can be cal culated using formulas from
plane geometry to compute signed areas.

Example 3 Sketch the region whose area is represented by the definite integral, and
evaluate the integral using an appropriate formula from geometry.

@ /142dx (b) /_zl(x+2)dx © /01de

Solution (a). The graph of the integrand is the horizontal line y = 2, so the region is a
rectangle of height 2 extending over the interval from 1 to 4 (Figure 5.5.4a). Thus,

4
/ 2dx = (areaof rectangle) = 2(3) = 6
1

Solution (b). Thegraph of theintegrand istheline y = x + 2, so theregion isatrapezoid
whose base extends from x = —1tox = 2 (Figure 5.5.4b). Thus,

2
f (x + 2) dx = (areaof trapezoid) = %(1+4)(3) = 1_25
-1
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Solution (c). The graph of y = +/1 — x2 isthe upper semicircle of radius 1, centered at
the origin, so the region is the right quarter-circle extending from x = 0to x = 1 (Figure
5.5.4c). Thus,

1
. 1 2 T
/0 V1—x2dx = (areaof quarter-circle) = ;7(19) = 2 |
y y y
y=Xx+2
4 4
3r 3F ! y=V1-x2
y=2
2 2
X X X
1 1 | | 1 |
1 2 3 4 5 -2 -1 1 2 3 1
€) (b) (0)
Figure5.5.4

¥ <

A

Figure5.5.5

PROPERTIES OF THE DEFINITE
INTEGRAL

Example 4 Evauate
2 1
(a)/ (x —1Ddx (b)f (x —1Ddx
0 0

Solution. The graph of y = x — 1 isshown in Figure 5.5.5, and we leave it for you to
verify that the shaded triangular regions both have area % Over the interval [0, 2] the net
signed areais Ay — A, = 3 — 3 = 0, and over the interval [0, 1] the net signed area is
—Ap = —3. Thus,

2 1
/(x—l)dx:O and /(x—l)dx:_%
0 0

(Recdll that in Example 8 of Section 5.4, we used Definition 5.4.5 to show that the net
signed area between the graph of y = x — 1 and theinterval [0, 2] is0.) <

Itisassumed in Definition 5.5.1 that [a, b] isafinite closed interval witha < b, and hence
theupper limit of integration in the definiteintegral is greater than thelower limit of integra-
tion. However, it will be convenient to extend this definition to allow for casesin which the
upper and lower limitsof integration areequal or thelower limit of integration isgreater than
the upper limit of integration. For this purpose we make the following special definitions.

5.5.3 DEFINITION.
(@ Ifaisinthedomainof f, wedefine

faf(x)dxzo

(b) If fisintegrableon[a, b], then we define

a b
/ f(x)dx = —/ f(x)dx
b a
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y=1f(

a

The area between
y = f(X) and a is zero.

Figure 5.5.6

y=1f(

I a
Figure5.5.7
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REMARK.  Part (8) of this definition is consistent with the intuitive idea that the area
between a point on the x-axis and acurve y = f(x) should be zero (Figure 5.5.6). Part
(b) of the definition is simply a useful convention; it states that interchanging the limits of
integration reverses the sign of the integral.

Example 5

1
€)] / x?dx =0
1
0 1 T
(b)/ \/1—x2dx=—/ \/1—x2dx=—z |
1 0
Example 3(c)
Because definite integrals are defined as limits, they inherit many of the properties of
limits. For example, we know that constants can be moved through limit signs and that the

limit of asum or difference is the sum or difference of the limits. Thus, you should not be
surprised by the following theorem, which we state without formal proof.

5.5.4 THEOREM. If f and g areintegrable on [a, b] and if ¢ is a constant, then cf,
f+g,and f — g areintegrable on [a, b] and

b b
@ fcf(x)dx:c/ f(x)dx
ab ‘ b b
(b) / LF) + (0] dx = / Forydx + / g (x) dx

b b b
© / [F(x) — g(0)] dx = / For)dx — / g(x) dx

Part (b) of this theorem can be extended to more than two functions. More precisely,

b
/ [f1(0) + fo(0) + -+ fu(x)] dx

b b b
=/ fl(x)dx+/ f2<x>dx+~-~+/ ey

Some properties of definite integrals can be motivated by interpreting the integral as an
area. For example, if f is continuous and nonnegative on the interva [a, b], and if c isa
point between a and b, then the areaunder y = f(x) over theinterval [a, b] can be split
into two parts and expressed as the area under the graph from « to ¢ plusthe area under the
graph from ¢ to b (Figure 5.5.7), that is,

b c b
/f(x)dx:/ f(x)dx—i—/ f(x)dx

Thisisaspecia case of the following theorem about definite integral s, which we state with-
out proof.

555 THEOREM. If fisintegrableona closed interval containing the three numbers
a, b, and ¢, then

b c b
ff(x)dx:f f(x)dx—i—/ fx)dx

no matter how the numbers are ordered.
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y=f(x

I a b

Net signed area > 0

Figure5.5.8

y=f(

y =9

[ a b

Area under f > area under g

Figure5.5.9

DISCONTINUITIES AND
INTEGRABILITY

y=-M

f is bounded on [a, b].

Figure 5.5.10
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The following theorem, which we state without formal proof, can also be motivated by
interpreting definite integrals as areas.

55.6 THEOREM.
(a) If fisintegrableon[a, b] and f(x) > Ofor all x in[a, b], then

b
/ f(x)dx =0

(b) If f and g areintegrableon [a, b] and f(x) > g(x) for all x in[a, b], then
b b
[ rwarz [ g

Geometrically, part (a) of this theorem states the obvious fact that if f is nonnegative on
[a, b], then the net signed area between the graph of f and theinterval [a, b] isalso nonneg-
ative (Figure 5.5.8). Part (b) has its simplest interpretation when f and g are nonnegative
on[a, b], inwhich casethe theorem statesthat if the graph of f doesnot go below the graph
of g, then the area under the graph of f isat least aslarge as the area under the graph of ¢
(Figure 5.5.9).

REMARK. Part (b) of thistheorem statesthat one can integrate both sides of theinequality
f(x) > g(x) without altering the sense of theinequality. We also note that in the case where

: b > a,both parts of the theorem remain trueif > isreplaced by <, >, or < throughout.

Example 6 Evaluate
1
/ (5-3vV1—x2)dx
0

Solution. From parts (a) and (c) of Theorem 5.5.4 we can write

1 1 1 1 1
/(5—3\/1—x2)dx:/ 5dx—/ 3\/1—x2dx='/ 5dx—3/ V31— x2dx
0 0 0 0 0

Thefirst integral can be interpreted as the area of arectangle of height 5 and base 1, so its
valueis 5, and from Example 3 the value of the second integral is /4. Thus,

1
/(5—3\/1—x2)dx=5—3(f)=5—§z <
0

4 4

The problem of determining when functions with discontinuities are integrable is quite
complex and beyond the scope of this text. However, there are a few basic results about
integrability that are important to know; we begin with a definition.

5.5.7 DEFINITION. A function f that isdefined on aninterval I issaid to be bounded
on [ if thereis apositive number M such that

M= fx)=M

for all x intheinterval 1. Geometrically, this meansthat the graph of f over theinterval
I liesbetweenthelinesy = —M and y = M.

For example, a continuous function f is bounded on every finite closed interval because
the Extreme-Value Theorem (4.5.3) impliesthat f has an absolute maximum and an abso-
lute minimum on the interval; hence, its graph will lie between the liney = —M and
y = M, provided we make M large enough (Figure 5.5.10). In contrast, afunction that has
avertical asymptote inside of an interval is not bounded on that interval because its graph
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f over the interval cannot be made to lie between the linesy = —M and y = M, no matter
how large we make the value of M (Figure 5.5.11).

The following theorem, which we state without proof, provides some facts about inte-
grability for functions with discontinuities.

5.5.8 THEOREM. Let f beafunctionthatisdefined onthefiniteclosedinterval [a, b].

y=—M (@ If f hasfinitely many discontinuitiesin [a, b] but is bounded on [a, b], then f is
integrable on [a, b].

(b) If f isnot bounded on[a, b], then f isnot integrable on [a, b].

f'is not bounded on [a, b]. * FOR THE READER.  Sketch the graph of a function over the interval [0, 1] that has the

Figure 5.5.11 properties stated in part (a) of thistheorem.

EXERCISE SET 5.5

In Exercises 14, find the value of

@Y faHAx  (b) max Ax;.
k=1

1 fx)=x+4+1a=0b=4, n=3
Ax1=1,Axo=1, Axz3=2;
===

2. f(x)=cosx; a=0,b=2m;, n =4
Ax1 = 1/2, Axo = 3n/4, Axz = 1/2, Axs = /4,
x} =n/4,x3 =m,x} =3n/2.x; = Tn/4

3 fx)=4—-x%a=-3b=4 n=4
Axy = 1, Axy = 2, Axz = 1, Axg = 3
xi‘:—%,xé‘:—l,xé":%,xi{:fﬂ

4, fx)=x% a=-3,b=3; n =4
Ax1=2,Axo=1 Axz=1, Axy = 2;
x}=-2,x5=0,x3=0,x;=2

In Exercises 5-8, use the given values of a and b to express
thefollowing limits as definite integrals. (Do not evaluate the
integrals.)

5. lim Z(x,:‘)zAxk; a=-1,b=2
k=1

max Ax; — 0

n

6. lim Z(x,’f)sAxk; a=1b=2

maXAkaOkzl

7. lim Oz4x:(l—3x,f)Axk; a=-3,b=3
k=1

max Ax; —

max Ax; — 0

8. lim Z(Sinzx,f)Axk; a=0,b=mn/2
=1

In Exercises 9 and 10, use Definition 5.5.1 to express the in-
tegrals as limits of Riemann sums. Do not try to evaluate the
integrals.

2 1 X
9. 2xd b d
(a)/l x ()[0 = ax
/2

2
10. (& / Jx dx (b) (14 cosx) dx
1

—/2

In Exercises 11-14, sketch the region whose signed area is
represented by the definite integral, and evaluate the integral
using an appropriate formula from geometry, where needed.

11. (a) 03xdx () [ ;lxdx
(© :xdx (d) /;55xdx
2 1
12. (@ (1— %x) dx (b) f (1— %x) dx
0 -1
3

3
(© (1- %x) dx (d) / (l— %x) dx
0

2

(b) fﬂ CoSx dx
O1

(d) / v1—x2dx
-1

13. (@ /052dx

2
© f_1|2x—3|dx

/3
sinxdx
—n/3

2
(d) /(; Va4 —x2dx

14. (a) [ ;:6dx (b)

3
(© /(; |x — 2| dx
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15. Usethe areas shown in the accompanying figure to find

b c
@ / G0 dx (b) /,, F00 dx

c d
© / £ dx ) / F(x) da.

y y=1f(¥

Area=08 Area=15
aN x
a b\z/: d
26

Area =
Figure Ex-15

16. In each part, evaluate the integral, given that
2x, x<1

fo = :2, x>1

1 1
@ [ rwas o) [ rewds
10 5
© [ fedx e / 00 dx
1 1/2
2
17. Find/ [£(x) + 2¢(x)] dx if
-1
2 2
/ f(x)dx =5 and / g(x)dx = -3
1 _1
4
18. Find/ [Bf(x) —g(x)]dx if
1
4 4
/ f(x)dx =2 and / g(x)dx =10
1 1
5
19. Find/ f(x) dx if
1
1 5
/ fx)dx =-2 and / fx)dx =1
0 0
-2
20. Find/ fx)dx if
3
1 3
/ f(x)dx =2 and / f(x)dx = —6
_2 1

In Exercises 21 and 22, use Theorem 5.5.4 and appropriate
formulas from geometry to evaluate the integrals.

1 3

21. (a / (x+2V/1—x2)dx (b) / (4 —5x)dx
0 -1
0 2

2. (@ / @+v9—x2ydx  (b) f (1— 3] dx
-3 _2

In Exercises 23 and 24, use Theorem 5.5.6 to determine
whether the value of the integral is positive or negative.
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3 \/} 4 x2

-1 )C4 2x3_9
24, (a d b —d
()/,3 Jaox ()[2|X|+1 )

In Exercises 25 and 26, evaluate the integrals by completing
the square and applying appropriate formulasfrom geometry.

10 3
25, V10x — x2dx 26. / V6x — x2dx
0 0

In Exercises 27 and 28, evaluate the limit over the interval
[a, b] by expressing it as a definite integral and applying an
appropriate formula from geometry.

n

H * . _ _
27. max“Agk]eokE:l(gxk +DAx; a=0,b=1

i — *)2 : = — =
28. maxIIArxT:ﬁOkE:l‘/‘l (x)? Axy; a 2,b=2

29. In each part, use Theorems 5.5.2 and 5.5.8 to determine
whether the function f isintegrable ontheinterval [—1, 1].

(@ f(x) =cosx

X/l x #0
ONIOES
1/x2, x#0

© fw=1"" 1T
_ sinl/x, x#0

@ ro=1"" T

30. Itcanbeshownthat every interval containsboth rational and
irrational numbers. Accepting thisto be so, do you believe
that the function

1 if xisrationa
0 if xisirrationa

f(X)={

isintegrable on a closed interval [a, b]? Explain your rea-
soning.

31. It can be shown that the limit in Definition 5.5.1 has all of
the limit properties stated in Theorem 2.2.2. Accepting this
to be so, show that

b b
@ [ crwar=c[ jwa
ab ‘ b b
O [ L +swldr= [ swar+ [ gwods
32. Find the smallest and largest values that the Riemann sum
3
> fGahAx
k=1

can have on the interval [0, 4] if f(x) = x? — 3x + 4 and
Axl = 1, AXZ = 2, AX3 =1
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33.

35.

THE FUNDAMENTAL THEOREM OF

g65-chb

Integration

Thefunction f(x) = /x iscontinuous on [0, 4] and there-
foreintegrable on thisinterval. Evaluate

/OAﬁdx

by using Definition5.5.1. Usesubinterval sof unequal length
given by the partition

0<4)?/n® <42?*/n?><-- - <4din—1%/n’ < 4
and let x;* be the right endpoint of the kth subinterval.

Suppose that f is defined on the interval [a, b] and that
f(x) =0fora < x < b.UseDéfinition 5.5.1 to prove that

b
/ f(x)dx =0

Supposethat g isacontinuousfunctionontheinterval [a, b]
andthat f isafunction defined on [a, b] with f(x) = g(x)
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fora < x < b. Provethat

b b
/f(x)dx:/ g(x)dx

[Hint: Write

b b
/ Forydx = / [(f(x) — g(x)) + g(x)] dx

and use the result of Exercise 34 along with Theorem
5.5.4(b).]

Definethefunction f by f(x) = 1/x, x # Oand f(0) = 0.
It follows from Theorem 5.5.8(b) that f is not integrable
on theinterval [0, 1]. Prove this to be the case by applying
Definition 5.5.1. [Hint: Argue that no matter how small the
mesh sizeisfor a partition of [0, 1], there will aways be a
choice of xj that will make the Riemann sum in Definition
5.5.1aslargeaswelikel]

5.6 THE FUNDAMENTAL THEOREM OF CALCULUS

In this section we will establish two basic relationships between definite and indefinite
integrals that together constitute a result called the Fundamental Theorem of Calculus.
One part of this theorem will relate the rectangle and antiderivative methods for cal-
culating areas, and the second part will provide a powerful method for evaluating
definite integrals using antiderivatives.

As in earlier sections, let us begin by assuming that f is nonnegative and continuous on
aninterval [a, b], in which case the area A under the graph of f over theinterva [a, b] is

CALCULUS represented by the definite integral
y b
y= 100 A =/ fx)dx )
(Figure 5.6.1).
Recall that our discussion of the antiderivative method in Section 5.1 suggested that if
A A(x) isthe areaunder the graph of f froma to x (Figure 5.6.2), then:
X
a b~ e Al(x) = f(x)
] e A(a)=0 The areaunder the curve from a to a isthe area above the single point a, and hence is zero.
Figure 5.6.1
e« A=A The areaunder the curve froma to b is A.
Y Theformula A’(x) = f(x) statesthat A(x) isan antiderivative of f(x), whichimpliesthat
y =1 every other antiderivative of f(x) on [a, b] can be obtained by adding a constant to A (x).
Accordingly, let
F(x)=Ax)+C
e be any antiderivative of f(x), and consider what happens when we subtract F(a) from
X F(b):
a X b
F() — F(a) =[A(b)+C] —[A(@) + C] = A(D) —A(a) =A—-0=A
Figure5.6.2

Hence (1) can be expressed as

b
/ fx)dx = F(b) — F(a)
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In words, this equation states:

The definite integral can be evaluated by finding any antiderivative of the integrand and
then subtracting the value of this antiderivative at the lower limit of integration fromits
value at the upper limit of integration.

Although our evidence for thisresult assumed that f is nonnegative on [a, b], thisassump-
tionisnot essential.

5.6.1 THEOREM (The Fundamental Theorem of Calculus, Part 1).  If f is continuous on
[a, b] and F isany antiderivative of f on[a, b], then

b
/ f(x)dx = F(b) — F(a) 2
Proof. Letxy, xa, ..., x,_1 beany numbersin[a, b] such that
a<X1<Xp<--+<Xp_1<Db

These values divide [«, b] into n subintervals

[a, x1], [x1, x2], ..., [%p—1, B] 3
whose lengths, as usual, we denote by

Axy, Axp, ..., Ax,

By hypothesis, F'(x) = f(x) foral x in[a, b], so F satisfies the hypotheses of the Mean-
Value Theorem (4.8.2) oneach subinterval in (3). Hence, wecanfind numbersx;, x5, ..., x;!
in the respective subintervalsin (3) such that

F(x1) — F(a) = F'(x])(x1 — a) = f(x])Ax;
F(x2) — F(x1) = F'(x3)(x2 — x1) = f(x3)Ax2
F(x3) — F(x2) = F'(x3)(x3 — x2) = f(x3)Ax3

F(b) — F(x,-1) = F/(x;;)(b —Xp-1) = f(xyT)Axn
Adding the preceding equations yields

F(b) = Fla) =) f(x})Ax, (4)
k=1

Let usnow increasen insuch away that max Ax; — 0. Since f isassumed to be continuous,
theright sideof (4) approaches fa b f(x) dx by Theorem 5.5.2 and Definition 5.5.1. However,
the left side of (4) is independent of n; that is, the left side of (4) remains constant as n
increases. Thus,

n b
F(b) — F(a) = maxliAi;erokX:; fO)Axy = /u fx)dx i

It is standard to denote the difference F(b) — F(a) as
FW] =F®)—F@ o [F)] =F®) - F()
For example, using the first of these notations we can express (2) as

b

b
/ fx)dx = F(X)} )

a
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y
y = COSX
| /X

‘ T
= }” =
-1

Figure 5.6.3

THE RELATIONSHIP BETWEEN
DEFINITE AND INDEFINITE
INTEGRALS
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2
Example 1 Evaluate/ xdx.
1

Solution. Thefunction F(x) = 3x? isan antiderivative of f(x) = x; thus, from (2)

2 2
1,7 1., 1., 1 3
= — = —(2)X—-—-(1D)=2— - =—
/1de 2x:|1 2@ 7 2W 2 2 <

Example 2 In Example 5 of Section 5.4 we approximated the area under the graph
of y = 9 — x? over the interval [0, 3] using left endpoint, right endpoint, and midpoint
approximations, all of which produced an approximation of roughly 18 (sguare units). In
Example7 of that section we used Definition 5.4.3to provethat theexact area A isindeed 18.
We can now solve this problem more quickly using the Fundamental Theorem of Calculus:

3 343
27
A:f(9—x2)dx:9x—x—j| :(27——)—0:18 <
0 3 0 3

Example 3

(8 Find the area under the curve y = cosx over theinterval [0, /2] (Figure 5.6.3).
(b) Make aconjecture about the value of the integral

T
/ CoSx dx
0

and confirm your conjecture using the Fundamental Theorem of Calculus.

Solution (a). Sincecosx > 0 over theinterval [0, /2], the area A under the curveis
/2 /2 -
A=/ Cosx dx = Sinx =sin§—sin0=1
0
0

Solution (b). Thegivenintegral can beinterpreted asthe signed area between the graph of
y = cosx and theinterval [0, z]. The graph in Figure 5.6.3 suggests that over the interval
[0, ] the portion of areaabovethe x-axisisthe same asthe portion of areabelow the x-axis,
S0 we conjecture that the signed area is zero; this implies that the value of the integral is
zero. Thisis confirmed by the computations

f COSxdx:Sinxi| =sint—sn0=0 <
0 0
Observe that in the preceding examples we did not include a constant of integration in the
antiderivatives. In general, when applying the Fundamental Theorem of Calculus there is
no need to include aconstant of integration becauseit will drop out anyhow. To see that this
isso, let F beany antiderivative of the integrand on [a, b], and let C be any constant; then
b b
f f(x)dx =F(x)+C| =[F()+C]—[F(a)+C] = F(b) — F(a)

Thus, for purposes of eval uating adefiniteintegral we can omit the constant of integration
in
b

b -
/ fx)dx =Fx)+C

and express (5) as

/a  fydx = [ / ) dx}z 6)

which relates the definite and indefinite integrals.
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Example 4
9 9 9 9
/ ﬁdx:/ﬁdx} =/x1/2dx:| = ng} 22(27_1):5_2 <
1 1 1 3 1 3 3

REMARK.  Usualy, we will dispense with the step of displaying the indefinite integral
explicitly and write the antiderivative immediately, asin our first three examples.

Example 5 Table5.2.1 will be helpful for the following computations.

Solution.
9

9 9
/ x2Jxdx = / x5 dx = %x7/2i| = 2(2187 — 128) = “18 — 5882
4 4 4

/2

/On/zsi%dx _ C053)6:|O _ _é [COS(%) — cosO] = —%[0— 1] = %

/3 /3 T
/ seczxdx:tanx:| :tan<§)—tan0:«/§—0:«/§
0
0

secxtanx dx = Ser:|n/4 :SGC(%)—SGC(—%):\/E—«/Ezo <

—n/4

/4

—n/4

* WARNING. Therequirementsin the Fundamental Theorem of Calculusthat f be contin-

uouson[a, b] andthat F beanantiderivativefor f overtheentireinterval [a, b] areimportant

to keep in mind. Disregarding these assumptions will likely lead to incorrect results. For

example, the function f(x) = 1/x2 fails on two counts to be continuous at x = 0: f(x) is
not defined at x = 0 and lim, _, o f(x) does not exist. Thus, the Fundamental Theorem of
Calculus should not be used to integrate f on any interval that contains x = 0. However, if

weignore thisand blindly apply Formula (2) over theinterval [—1, 1], we might think that

1

/1Fdx = ——L = [1- (-] =-2

This answer is clearly ridiculous, since f(x) = 1/x? is anonnegative function and hence

cannot possibly produce a negative definite integral. Indeed, even if we were to extend f

to be defined at 0, say by setting

1/x%, x+#0
flx) =
0, x=0

f would still be unbounded on any interval containing x = 0, so Theorem 5.5.8(b) tells us

L that f isnot even integrable across any such interval.

FOR THE READER.  If you have a CAS, read the documentation on evaluating definite
integrals, and then check the results in the preceding examples.

The Fundamental Theorem of Calculus can be applied without modification to definite
integrals in which the lower limit of integration is greater than or equal to the upper limit
of integration.
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DUMMY VARIABLES
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Example 6
1 311
2 X 1 1
d = — :———:0
/1x * 3]1 373
0 21° o0 1
d = — :———:—8
Ax * 2]4 272

The latter result is consistent with the result that would be obtained by first reversing the
limits of integration in accordance with Definition 5.5.3(b):
o4

0 4 x 16 0
Axdx——/o xdx——3:|o— |:E—§:|——8 |

To integrate a continuous function that is defined piecewise on an interval [a, b], split
this interval into subintervals at the breakpoints of the function, and integrate separately
over each subinterval in accordance with Theorem 5.5.5.

6
Example 7 Eva uate/ f(x)dx if
0

2

3x — 2,

x <2

x>2

fx) = {

Solution. From Theorem 5.5.5

6 2 6 2 6
/ fx)dx =/ f(x)dx+/ fx)dx =/ xzdx—l-/ (Bx — 2)dx
0 0 2 0 2

6

x3 2 3x 8 128
=€]o+[7‘2"}2=(é‘)““2‘2):? <

2
Example 8 Evaluatef |x| dx.
-1

Solution. Since|x| = x whenx > 0and |x| =

f|x|dx_/ |x|dx+/ |x| dx
/( x)dx+/ xdx

210 292 1 5
-1 0 2

—x whenx <0,

To evaluate adefiniteintegral using the Fundamental Theorem of Calculus, one needsto be
able to find an antiderivative of the integrand; thus, it is important to know what kinds of
functions have antiderivatives. It is our next objective to show that all continuous functions
have antiderivatives, but to do this we will need some preliminary results.

Formula (6) shows that there is a close relationship between the integrals

b
/f(x)dx and /f(x)dx

However, the definite and indefinite integral s differ in some important ways. For one thing,
the two integrals are different kinds of objects—the definite integral is a number (the net
signed area between the graph of y = f(x) and the interva [a, b]), whereas the indefinite
integral is a function, or more accurately a set of functions [the antiderivatives of f(x)].
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INTEGRALS

5
m
v

a b
Figure 5.6.5
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However, thetwo typesof integralsalso differ intheroleplayed by thevariableof integration.
In an indefinite integral, the variable of integration is* passed through” to the antiderivative
in the sense that integrating a function of x produces afunction of x, integrating afunction
of ¢ produces a function of 7, and so forth. For example,

x3 13
/xzdx=§+C and /tzdt=§+C

In contrast, the variable of integration in a definite integral is not passed through to the end
result, sincethe end result isanumber. Thus, integrating afunction of x over aninterval and
integrating the same function of ¢ over the same interval of integration produce the same
value for the integral. For example,

3

3 3 3 373
,  ox 27 1 26 /2 t 27 1 26
/1x g 3L_1 3 3 3 ) 3/, 3 373

However, this latter result should not be surprising, since the area under the graph of the
curvey = f(x) over aninterva [a, b] on the x-axisisthe same as the area under the graph
of thecurve y = f(¢) over theinterva [a, b] on the t-axis (Figure 5.6.4).

y=1f(x) y = f(t)

b b
A=/f(x) dx:/f(t) dt

Figure 5.6.4

Because the variable of integration in a definite integral plays no role in the end result,
it is often referred to as a dummy variable. In summary:

Whenever you find it convenient to change the letter used for the variable of integration
in a definite integral, you can do so without changing the value of the integral.

To reach our goal of showing that continuous functions have antiderivatives, we will need
to develop a basic property of definite integrals, known as the Mean-Value Theorem for
Integrals. In the next section we will use this theorem to extend the familiar idea of “aver-
age value’ so that it applies to continuous functions, but here we will need it as atool for
developing other resullts.

Let f be acontinuous nonnegative function on [a, b], and let m and M be the minimum
and maximum values of f(x) onthisinterval. Consider the rectangles of heights m and M
over theinterva [a, b] (Figure5.6.5). It isclear geometrically from thisfigure that the area

b
A :/ f(x)dx

under y = f(x) isat least aslarge asthe area of therectangle of height , and no larger than
the areaof therectangle of height M. It seemsreasonable, therefore, that thereisarectangle
over theinterva [a, b] of some appropriate height f(x*) between m and M whose areais
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precisely A; that is,

b
/ f)dx = f(x*)(b —a)

(Figure 5.6.6). Thisisaspecial case of the following result.

5.6.2 THEOREM (The Mean-Value Theorem for Integrals). I f is continuous on a closed
interval [a, b], then there is at least one number x* in [a, b] such that

b
f fx)dx = f(x*)(b—a) ()

Proof. BytheExtreme-ValueTheorem (4.5.3), f assumesamaximumvalue M andamini-
mum value m on [a, b]. Thus, for dl x in [a, b],

m= f(x)<M
and from Theorem 5.5.6(b)

b b b
/mdxf/ f(x)dxf/ M dx

or

b
mb —a) sf Fr)dx < M(b - a) ®

or

1 b
/ fx)dx <M
b—al,

Thisimplies that

m =

1 b
| s ©

is a number between m and M, and since f(x) assumes the values m and M on [a, b], it
follows from the Intermediate-Value Theorem (2.5.8) that f(x) must assume the value (9)
at some x* in[a, b]; that is,

1 b b
P / f(x)dx = f(x*) or f f(x)dx = f(x*)(b— a) i

Example 9 Since f(x) = x?iscontinuousontheinterval [1, 4], theMean-Value Theorem
for Integrals guarantees that there is anumber x* in[1, 4] such that
4
/‘ﬁdx:f@ﬁ@—lﬁ:@ﬂ%#—b:S@ﬁz
1

But

4 344
/ xzdxzx—] =21
1 311

so that
3(x*)2 =21 or ()c*)2 =7 or x'=4V7

Thus, x* = /7 ~ 2.65 is the number in the interval [1, 4] whose existence is guaranteed
by the Mean-Value Theorem for Integrals. <
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In Section 5.1 we suggested that if f is continuous and nonnegative on [a, b], and if
A(x) isthe area under the graph of y = f(x) over theinterva [a, x] (Figure 5.6.2), then
A'(x) = f(x). But A(x) can be expressed as the definite integral

AQx) = / @) dt

(where we have used ¢ rather than x as the variable of integration to avoid confusion with
the x that appears as the upper limit of integration). Thus, the relationship A'(x) = f(x)
can be expressed as

d X
" [ / £ dr] — )

This is a specia case of the following more general result, which applies even if f has
negative values.

5.6.3 THEOREM (The Fundamental Theorem of Calculus, Part 2).  If f iscontinuous on an
interval 1, then f hasan antiderivativeon 7. In particular, if aisany number in I, then
the function F defined by

F(x) = /X f@)dt

isan antiderivativeof f on I;thatis, F'(x) = f(x) for each x in I, or in an alternative
notation

d X
- [ [ o dr] — ) (10)

Proof. We will show first that F(x) is defined at each x intheinterval 7. If x > a and x
isin theinterval 7, then Theorem 5.5.2 applied to the interval [a, x] and the continuity of
f onlI ensurethat F(x) isdefined; and if x isintheinterval I and x < a, then Definition
5.5.3 combined with Theorem 5.5.2 ensuresthat F (x) isdefined. Thus, F(x) isdefined for
alxinl.

Next wewill show that F'(x) = f(x) for each x intheinterval I. If x isnot an endpoint
of I, then it follows from the definition of a derivative that

F(w)—F
F) = lim L&) = F)

w—X

w—X
= lim <i [/w f(t)dt—/x f(t)dtD
w—x \ W —X a a
= lim <L [fw f(t)dt+/a f(t)dtD
w—x \ W — X a X

= lim <L /w f(t)dt) (11)
w=x \W—X Jy

Applying the Mean-Value Theorem for Integrals (5.6.2) to [ f(¢) dt, we obtain

1 v 1
— | fOdt = ——[f() - (w—x)] = f@") (12
w—x

w—x J,
where t* is some number between x and w. Because t* is between x and w, it follows that
t* > x asw— x. Thus f(t*) — f(x) aw — x, sihce f is assumed continuous at x.
Therefore, it follows from (11) and (12) that
1 w
F'(x) = lim <—/ f(t)dt) = lim f(*) = f(x)
w—X Jy w— X

w—X
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If x isan endpoint of theinterval I, then the two-sided limitsin the proof must be replaced
by the appropriate one-sided limits, but otherwise the arguments are identical . |

In words, Formula (10) states:

If a definite integral has a variable upper limit of integration, a constant lower limit of
integration, and a continuous integrand, then the derivative of the integral with respect
to its upper limit is equal to the integrand evaluated at the upper limit.

Example 10 Find

d Y3
— t°dt
dx [/1 }

by applying Part 2 of the Fundamental Theorem of Calculus, and then confirm the result by
performing the integration and then differentiating.

Solution. Theintegrand is a continuous function, so from (10)

d X
— [/ 3 dti| =x3
dX 1

Alternatively, evaluating the integral and then differentiating yields

/X 3 t4]x x* 1 d |:x4 1i| 3

°dt = — =——=, —|==-=|=x

1 4 =1 4 4 dx 4 4

so the two methods for differentiating the integral agree. <

Example 11 Since
sinx
fx)=——
X
is continuous on any interval that does not contain the origin, it follows from (10) that on
the interval (0, +«) we have

d [/* sint ] sinx
= Zdr|=
dx | J1 t X

Unlike the preceding example, there is no way to evaluate the integral in terms of familiar
functions, so Formula (10) provides the only simple method for finding the derivative.
<4

The two parts of the Fundamental Theorem of Calculus, when taken together, tell us that
differentiation and integration are inverse processes in the sense that each undoes the effect
of the other. To see why thisis so, note that Part 1 of the Fundamental Theorem of Calculus
(5.6.1) implies that

/ fl@yde = f(x) — f(a)

whichtellsusthat if the value of f(a) isknown, then the function f can be recovered from
itsderivative f’ by integrating. Conversely, Part 2 of the Fundamental Theorem of Calculus
(5.6.3) states that

d X
E[/a f(l)dt} = f(x)

whichtellsusthat thefunction f can berecovered fromitsintegral by differentiating. Thus,
differentiation and integration can be viewed as inverse processes.

It is common to treat parts 1 and 2 of the Fundamental Theorem of Calculusasasingle
theorem, and refer to it simply as the Fundamental Theorem of Calculus. This theorem
ranks as one of the greatest discoveries in the history of science, and its formulation by
Newton and Leibniz is generally regarded to be the “discovery of calculus”
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EXERCISE SET 5.6 [ Graphing Calculator CAS
1. In each part, use a definite integral to find the area of the 21. () /2 12x — 3| dx (b) /371/4 | cosx| dx
region, and check your answer using an appropriate formula 0 0
from geometry.

2 /2
22. (3 /Mde (b)/o |11 —sinx| dx

@ (b) (©
y y ;’ 1 23. (a) CAS programs provide methods for entering functions
5 y=2 that are defined piecewise. Check your documentation
y=2-x to seehow thisisdone, and then usethe CASto evaluate
2 x, x<1
X X X / f(x)dx, where f(x)=
ol ! 1 ol 1 3 0 X%, x>1

o , Use Theorem 5.5.5 to check the answer by hand.
2 IE each part, use a deflnlhe mtegrgl to find the akrleakunder (b) Find aformulafor an antiderivative F of f onthein-
t ecurvey = f(x) over.t e stated interval, and check your terval [0, 4] and verify that
answer using an appropriate formulafrom geometry.
(@ f(x)=x; [0, 9] 2
(b) f(x) =5 [3,9] | rwar=r@-ro
© f@)=x+3 [-12] 0
. . 24. (a) UseaCASto evaluate
In Exercises 3-6, find the areaunder thecurve y = f(x) over

the stated interval. Jx, 0<x<1

4
/f(x)dx, where f(x):{
0

1/x2, x>1
3 flx)=x%[2,3] 4. f(x)=x* [-1,1]
5. f(x) = v/ [L9] 6. f(x) = x5 [1,4] U_se Theorem 5.5.5 to che_ck t_he answer by hand. _
(b) Find aformulafor an antiderivative F of f onthein-
In Exercises 7-19, evaluate the integrals using Part 1 of the terval [0, 4] and verify that
Fundamental Theorem of Calculus. 4
/ f(x)dx = F(4) — F(0)
0 2 0
7. f (x®> —4x + 7 dx 8. / x(1+ x%) dx
-3 -1
31 2 1 In Exercises 25-27, use a calculating utility to find the mid-
9. / — dx 10. / — dx point approximation of the integral using n = 20 subinter-
L * L x vals, and then find the exact value of the integral using Part
11 / 20 /3 dx 12 / (5x2% _ 4x2) dx 1 of the Fundamental Theorem of Calculus.
471/2 17!/4 31 /2 L
. ; 2
13. / sino do 14. / sec2 0 do 25. /1 ;dx 26. /0 Ssinx dx 27. /188(: xdx
—n/2 0 -
/4 1 28. Compare the answers obtained by the midpoint rule in Ex-
15. / cosx dx 16. / (x —secx tanx) dx ercises 25-27 to those obtained using the built-in numerical
NG 0 imate) i i f acalculating utilit
4,3 (approximate) integration command of a calculating utility
17. / <7 —5Jf— ,*3/2) dt or aCAS.
19 Vi 29. Find the area under the curve y = x? + 1 over the interval
18, / (Ay~Y2 1 2y 12 4 =5/2) gy [0, 3]. Make a sketch of the region.
4 , 30. Find the areathat is above the x-axis, but below the curve
7/2 2 —(1— — i
19 / (x ;2 ) dx y = (1 - x)(x — 2). Make a sketch of the region.
/6 sin“x 31. Find the area under the curve y = 3sinx over the interval
20. UseaCASto evaluate the integral [0, 27r/3]. Sketch the region.
AP A J 32. Find the area below the interval [—2, —1], but above the
; (@ —x")dx curve y = x3. Make a sketch of the region.
and check the answer by hand. 33. Find the total area between the curve y = x2 — 3x — 10
_ and theinterval [—3, 8]. Make asketch of theregion. [Hint:
In Exercises 21 and 22, use Theorem 5.5.5 to evauate the Find the portion of area above the interval and the portion

given integrals. of area below the interval separately.]
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36.
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(8 Useagraphing utility to generate the graph of
1
f&x) = ﬂ)(x +2(x+Dx —3)(x —5)

and use the graph to make a conjecture about the sign
of theintegral

5
/ f(x)dx
-2

(b) Check your conjecture by evaluating the integral.

(8 Let f beanodd function; that is, f(—x) = — f(x).In-
vent a theorem that makes a statement about the value
of anintegral of the form

f(x)dx
(b) Confirm that your theorem works for the integrals
1 /2
/ x¥dx and sinx dx
-1 —n/2
(c) Let f beaneven function; that is, f(—x) = f(x). In-

vent a theorem that makes a statement about the rela-
tionship between the integrals

/a f(x)dx and /af(x)dx
—a 0

(d) Confirm that your theorem works for the integrals

1 /2
/ x?dx and cosx dx
-1 —/2

Use the theorem you invented in Exercise 35(a) to evaluate
the integral

/5 x7 _ xS +x
————dx
5 x4 x24+7

and check your answer with aCAS.
Define F(x) by

F(x) = /x(t3+1)dt
1

() Use Part 2 of the Fundamental Theorem of Calculusto
find F'(x).

(b) Check theresult in part (a) by first integrating and then
differentiating.

Define F (x) by

F(x) = /x
/4

(8 Use Part 2 of the Fundamental Theorem of Calculusto
find F'(x).

(b) Check theresult in part (a) by first integrating and then
differentiating.

cos2t dt

In Exercises 3942, use Part 2 of the Fundamental Theorem
of Calculusto find the derivatives.

39.

40.

@ i/xsin(\/f)dt (b) i/X 1+ cos?t dt
dx 1 dx 1

dt d [* dt
b) — ——dt
()dx/l 1+r+12

d X
@ E/o 1+ 1

Sheet number 54 Page number 372

41.

42.

43.

45.

46.

47.

48.
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d (° 1t - _

) @dt [Hint: Use Definition 5.5.3(b).]

i /u |x| dx

du 0

Let F(x) = /l V/3t2 +1dt. Find
2

@ F(2 (b) F'(2) (©) F"(2).
* cost )

(@ F(O (b) F'(0) (©) F"(0).

X t
Let F(x) :/0 mdlfor—oo < X < oo,
(@) Findthevaueof x where F attainsits minimum value.
(b) Find intervals over which F isonly increasing or only

decreasing.
(c) Find openintervalsover which F isonly concave up or

only concave down.
Use the plotting and numerical integration commands of a
CASto generate the graph of the function F in Exercise 45
over theinterval —20 < x < 20, and confirm that the graph
is consistent with the results obtained in that exercise.
(8 Over what open interval does the formula

*dt
F(x)= —

1t

represent an antiderivative of f(x) = 1/x?
(b) Find apoint where the graph of F crossesthe x-axis.

(8 Over what open interval does the formula

F()—/X Yo
Y= 1 2—-9

represent an antiderivative of
1
f) = —5—22

x2-9
(b) Find apoint where the graph of F crossesthe x-axis.

In Exercises49 and 50, find all valuesof x* in the stated inter-
val that satisfy Equation (7) in the Mean-Value Theorem for
Integrals (5.6.2), and explain what these numbers represent.

49.

50.

@ f(x)=+/x; 10,9
(b) f(x)=3x*+2x+1; [-1,2]

@ f) =sinx; [-m7] (b)) f(x) =1/x% [1,3]

It was shown in the proof of the Mean-Vaue Theorem for
Integrals (5.6.2) that if f is continuous on [a, b], and if
m < f(x) < M on|a, b], then

b
m(b—a)f/ fx)dx <M —a)

[see(8)]. Theseinequalitiesmakeit possibleto obtain bounds
on the size of a definite integral from bounds on the size of
itsintegrand. Thisisillustrated in Exercises 51 and 52.
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51. Find the maximum and minimum values of +/x3 + 2 for 53. Prove:
0 < x < 3, and usethese valuesto find bounds on the value @ [cF)]. = c[F()]”

of theintegral

3
/ Vx342dx
0

52. Find values of m and M such that m < xsinx < M for
0 < x < m, and usethese valuesto find bounds on the value

of the integral

g
/ xSnxdx
0

FINDING POSITION AND VELOCITY
BY INTEGRATION

—

There is a unique position
function such that s(tg) = s,

Figure5.7.1

I

y —

There is a unique velocity
function such that v (tg) = vg

Figure 5.7.2

(b) [F(x) + Gl = FWIL+ G,
© [F(x) - GW)]: = F)]% -GS

54. Prove the Mean-Value Theorem for Integrals (Theorem
5.6.2) by applying the Mean-Value Theorem (4.8.2) to an
antiderivative F for f.

5.7 RECTILINEAR MOTION REVISITED; AVERAGE VALUE

In Section 4.4 we used the derivative to define the notions of instantaneous velocity
and acceleration for a particle moving along a line. In this section we will resume the
study of such motion using the tools of integration. WWe will also investigate the general
problem of integrating a rate of change, and we will show how the definite integral
can be used to define the average value of a continuous function. More applications of
integration will be given in Chapter 6.

Recall from Definitions 4.4.1 and 4.4.2 that if s(¢) is the position function of a particle
moving on acoordinate line, then the instantaneous vel ocity and accel eration of the particle
are given by the formulas

h=s0=% ad aw=ve=2=%3
== A=V =0 T 4
It follows from these formulasthat s (1) isan antiderivative of v(¢) and v(¢) isan antideriva-

tive of a(r); that is,

s(t) =/v(t) dt and v(t) = /a(t) dt (-2

Thus, if the velocity of a particle is known, then its position function can be obtained from
(1) by integration, provided there is sufficient additional information to determine the con-
stant of integration. In particular, we can determine the constant of integration if we know
the position sq of the particle at some time #o, since this information determines a unique
antiderivative s(z) (Figure 5.7.1). Similarly, if the acceleration function of the particle is
known, then its velocity function can be obtained from (2) by integration if we know the
velocity v of the particle at some time ¢y (Figure 5.7.2).

Example 1 Findthe positionfunction of aparticlethat moveswithvelocity v(z) = cosmt
along a coordinate line, assuming that the particle has coordinate s = 4 attimet = 0.

Solution. The position functionis

s(t) = / v()dt = fcosmdt = %sinm +C
Sinces = 4whenr = 0, it follows that

4=s5(0) = %sinOJrC:C
Thus,

1
s(t) = =sinnt + 4 <
b1
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One of the most important cases of rectilinear motion occurs when a particle has constant
acceleration. We call this uniformly accelerated motion.

We will show that if a particle moves with constant acceleration along an s-axis, and if
the position and velocity of the particle are known at some point in time, say when ¢ = 0,
then it is possible to derive formulas for the position s(z) and the velocity v(¢) at any time
t. To see how this can be done, suppose that the particle has constant acceleration

a(t) =a ©)]
and

s=s0 when r=0 4)

v=v9 When t=0 (5)

where sg and vg are known. We call (4) and (5) theinitial conditions for the motion.

With (3) asastarting point, we can integratea () to obtain v(¢), and we canintegrate v (¢)
toobtains(z), usinganinitial conditionin each caseto determinethe constant of integration.
The computations are as follows:

u(t) = /a(t)dt = /adt =at+Cy (6)
To determine the constant of integration C; we apply initia condition (5) to this equation
to obtain

v=v0)=a-0+C1=0C1
Substituting thisin (6) and putting the constant term first yields

v(t) = vo + at
Since vg is constant, it follows that

s(t) = /v(t) dt = f(vo +at)dt = vot + 2ar® + C; (7)
To determine the constant C, we apply initial condition (4) to this equation to obtain

S0=S(0)=U0-0+%G~O+C2=C2
Substituting thisin (7) and putting the constant term first yields

s(t) = so+ vot + %at2
In summary, we have the following result.

5.7.1 UNIFORMLY ACCELERATED MOTION.  If a particle moveswith constant accel-
eration a along an s-axis, and if the position and velocity at time + = 0 are so and vy,
respectively, then the position and vel ocity functions of the particle are

s(t) = so + vot + %atz (8)

v(t) = vo + at 9

FORTHEREADER. How canyoutell fromthevelocity versustime curvewhether aparticle
moving along aline has uniformly accelerated motion?

Example 2 Suppose that an intergalactic spacecraft uses a sail and the “solar wind” to
produce a constant acceleration of 0.032 m/s?. Assuming that the spacecraft has a velocity
of 10,000 m/swhen the sail isfirst raised, how far will the spacecraft travel in 1 hour, and
what will its velocity be at the end of this hour?

Solution. In this problem the choice of a coordinate axisis at our discretion, so we will
choose it to make the computations as simple as possible. Accordingly, let us introduce an
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s-axis whose positive direction is in the direction of motion, and let us take the origin to
coincide with the position of the spacecraft at the time + = 0 when the sail israised. Thus,
the Formulas (8) and (9) for uniformly accel erated motion apply with

so=s5(0)=0, wvg=1v(0) =10,000, and a = 0.032

Since 1 hour corresponds to r+ = 3600 s, it follows from (8) that in 1 hour the spacecraft
travels a distance of

$(3600) = 10,000(3600) + %(0.032)(3600)2 ~ 36,200,000 m
and it follows from (9) that after 1 hour itsvelocity is
v(3600) = 10,000 + (0.032)(3600) ~ 10,100 m/s <

Example 3 A bus has stopped to pick up riders, and a woman is running at a constant
velocity of 5 m/sto catch it. When she is 11 m behind the front door the bus pulls away
with a constant acceleration of 1 m/s?. From that point in time, how long will it take for
the woman to reach the front door of the busif she keeps running with avelocity of 5 m/s?

Solution. Asshown in Figure 5.7.3, choose the s-axis so that the bus and the woman are
moving in the positive direction, and the front door of the bus is at the origin at the time
t = 0 when the bus begins to pull away. To catch the bus at some later time ¢, the woman
will have to cover adistance s,,(¢) that is equal to 11 m plus the distance s, (¢) traveled by
the bus; that is, the woman will catch the bus when

sw(t) = sp(1) + 11 (10)

Since the woman has a constant velocity of 5 m/s, the distance she travelsin ¢ seconds is
sy(t) = 5¢. Thus, (10) can be written as

sp(t) =56 — 11 (11)

Since the bus has a constant acceleration of @ = 1 m/s?, and since sg = vy = O at time
t = 0 (why?), it follows from (8) that

sp(t) = 312

Substituting this equation into (11) and reorganizing the termsyields the quadratic equation
12-5t4+11=0 or 12—10r+22=0

Solving this equation for ¢ using the quadratic formulayields two solutions:
t=5-+3~33 and 1=5++3~6.7

(verify). Thus, the woman can reach the door at two different times, r = 3.3sandr = 6.7 s.
The reason that there are two solutions can be explained as follows: When the woman first
reaches the door, sheis running faster than the bus and can run past it if the driver does not
see her. However, as the bus speeds up, it eventually catches up to her, and she has another
chanceto flag it down. |

In Section 4.4 we discussed the free-fall model of motion near the surface of the Earth with
the promise that we would derive Formula (5) of that section later in the text; we will now
show how to do this. As stated in 4.4.4 and illustrated in Figure 4.4.8, we will assume that
the object moves on an s-axiswhose origin is at the surface of the Earth and whose positive
directionisup; and wewill assume that the position and velocity of the object at timet = 0
are so and vg, respectively.

Itisafact of physicsthat aparticle moving on avertical line near the Earth’s surface and
subject only to the force of the Earth’s gravity moveswith essentially constant accel eration.
The magnitude of this constant, denoted by the letter g, is approximately 9.8 m/s” or 32
ft/<%, depending on whether distance is measured in meters or feet.”

¥ Strictly speaking, the constant g varies with the latitude and the distance from the Earth’s center. However, for
motion at afixed latitude and near the surface of the Earth, the assumption of a constant g is satisfactory for many
applications.
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Recall that a particle is speeding up when its velocity and acceleration have the same
sign and is slowing down when they have opposite signs. Thus, because we have chosen
the positive direction to be up, it follows that the acceleration a(¢) of aparticlein free fall
isnegative for all values of ¢. To seethat thisis so, observe that an upward-moving particle
(positive velocity) is slowing down, so its accel eration must be negative; and a downward-
moving particle (negative velocity) is speeding up, so its accel eration must also be negative.
Thus, we conclude that

a(t) =—g

and hence it follows from (8) and (9) that the position and velocity functions of an object
infreefal are

s(t) = so + vot — %gt2 (12

v(t) = vo — gt (13

FOR THE READER.  Had we chosen the positive direction of the s-axis to be down, then

the acceleration would have been a(r) = g (why?). How would this have affected Formulas

(12) and (13)?

Example 4 A ball ishit directly upward with an initial velocity of 49 m/sand is struck
at apoint that is 1 m above the ground. Assuming that the free-fall model applies, how high
will the ball travel?

Solution. Since distance is in meters, we take g = 9.8 m/<%. Initially, we have sy = 8
and vg = 49, so from (12) and (13)

v(t) = —9.8¢ + 49

s(t) = —4.9° + 49 + 1

Theball will rise until v(r) = 0, that is, until —9.8¢ + 49 = 0 or ¢+ = 5. At thisinstant the
height above the ground will be

5(5) = —4.9(5)> + 49(5) + 1 = 1235m |

Example 5 A penny is released from rest near the top of the Empire State Building at
apoint that is 1250 ft above the ground (Figure 5.7.4). Assuming that the free-fall model
applies, how long does it take for the penny to hit the ground, and what is its speed at the
time of impact?

Solution. Sincedistanceisin feet, wetake g = 32 ft/<. Initially, we have so = 1250 and
vo = 0, so from (12)
s(t) = —161% + 1250 (14)
Impact occurs when s(¢) = 0. Solving this equation for z, we obtain
—16t2 + 1250 =0
, 1250 625
1= —— = —
16 8
2
t = :i:—5 ~ +8.8s
V8

Sincer > 0, we can discard the negative solution and conclude that it takes 25/+/8 ~ 8.8 s
for the penny to hit the ground. To obtain the velocity at the time of impact, we substitute
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y
y=F()
Slope = F’(X) -
\ |
| | F(b)-F(@)
_______ _I v
| |
| | X
a b

Integrating the slope of y = F(X)
over the interval [a, b] produces
the change F(b) —F(a) in the
value of F(x).

Figure5.7.5

DISPLACEMENT IN RECTILINEAR
MOTION
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t = 25/4/8,v9 =0, and g = 32in (13) to obtain

25 25
v (_) —0-32 (—) — —200+/2 ~ —282.8ft/s

V8 V8
Thus, the speed at the time of impact is
25 )
v == )| =200v2~ 282.81t/s
(%

which is more than 192 mi/h. |
The Fundamental Theorem of Calculus
b
/ fx)dx = F(b) — F(a) (15)

has a useful interpretation that can be seen by rewriting it in aslightly different form. Since
F isan antiderivative of f ontheinterval [a, b], we can use therelationship F'(x) = f(x)
to rewrite (15) as

b
/ F'(x)dx = F(b) — F(a) (16)

In this formula we can view F’(x) as the rate of change of F(x) with respect to x, and
we can view F(b) — F(a) asthe change in the value of F(x) as x increases from a to b
(Figure 5.7.5). Thus, we have the following useful principle.

5.7.2 INTEGRATING A RATE OF CHANGE. Integrating therate of change of F (x) with
respect to x over aninterval [a, b] produces the change in the value of F (x) that occurs
asx increasesfroma to b.

Here are some examples of thisidea:

o If P(r) isapopulation (e.g., plants, animals, or people) at time¢, then P’(¢) istherate
at which the population is changing at time ¢, and

/2 P'(t)dt = P(t2) — P(t1)

n
is the change in the population between times ¢, and 7,.

o If A(z) istheareaof an ail spill at timez, then A’(z) isthe rate at which the area of the
spill is changing at time ¢, and

/ 2 A'(t)ydt = A(tp) — A(ty)

n
isthe change in the area of the spill between times r; and 7,.

o If P/(x)isthemarginal profit that resultsfrom producing and selling x units of aproduct
(see Section 4.6), then

X2
/ P'(x)dx = P(x2) — P(x1)
X1

isthe change in the profit that results when the production level increases from x; units
{0 x, units.

As another application of (16), suppose that s(z) and v(¢) are the position and velocity
functions of a particle moving on a coordinate line. Since v(¢) isthe rate of change of s(z)
with respect to ¢, it follows from the principlein 5.7.2 that integrating v(¢) over an interval
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DISTANCE TRAVELED IN
RECTILINEAR MOTION
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[#0, 1] Will produce the change in the value of s(¢) ast increases from 7y to 11 that is,

/1 v(t)dt = / 1 s'(t)dt = s(t1) — s(to) a7)

fo fo

The expression s(t1) — s(fo) in this formulais called the displacement or change in po-
sition of the particle over the time interval [#o, #1]. For a particle moving horizontaly, the
displacement is positive if the final position of the particleis to the right of itsinitial posi-
tion, negativeif it isto the left of itsinitial position, and zero if it coincides with theinitial
position (Figure 5.7.6).

| Positive displacement> <\legative displacement |
X

s(ty) s(ty) s(ty) s(ty)

X

REMARK. Inphysical problemsit isimportant to associate the correct units with definite
integrals. In general, the units for the definite integral

b
/ fx)dx

will be units of f(x) timesunitsof x. Thisis because the definite integral isalimit of Rie-

mann sums each of whose terms is a product of the form f(x) - Ax. For example, if time
is measured in seconds (s) and velocity is measured in meters per second (m/s), then
integrating velocity over atime interval will produce a result whose units are in meters,
sincem/s x s= m. Note that thisis consistent with Formula (17), since displacement has
units of length.

In general, the displacement of a particle is not the same as the distance traveled by the
particle. For example, a particle that travels 100 units in the positive direction and then
100 unitsin the negative direction travels a distance of 200 units but has a displacement of
zero, since it returns to its starting position. The only case in which the displacement and
the distance traveled are the same occurs when the particle moves in the positive direction
without reversing the direction of its motion.

FOR THE READER.  What is the relationship between the displacement of a particle and
the distance it travels if the particle moves in the negative direction without reversing the
direction of motion?

From (17), integrating the velocity function of a particle over atime interval yields the
displacement of a particle over that time interval. In contrast, to find the total distance
traveled by the particle over thetimeinterval (the distance traveled in the positive direction
plus the distance traveled in the negative direction), we must integrate the absolute value
of the velocity function; that is, we must integrate the speed:

total distance

. n
traveled during :/ |U(t)|dl‘ (18)
o

time interval
[r0, 1]

Example 6 Supposethat a particle moves on a coordinate line so that its velocity at time
risv(t) =12 —2t m/s.

(8 Find the displacement of the particle during thetimeinterval 0 < ¢ < 3.
(b) Find the distance traveled by the particle during thetimeinterval 0 < ¢ < 3.
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ANALYZING THE VELOCITY VERSUS
TIME CURVE

The net signed area is the
displacement of the particle
during the interval [tg, t;].

Figure5.7.7
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Solution (a). From (17) the displacement is

3 3 /3 3
/ v(t)dt:/ (t2—2t)dt=|:——t2:| =0
0 0 3 0

Thus, the particle is at the same position at timet = 3asatt = 0.

Solution (b). The velocity can be written as v(t) = t?> — 2t = (¢t — 2), from which we
seethat v(r) < 0for0O <t <2andv(¢t) > 0for2 < < 3. Thus, it follows from (18) that
the distance traveled is

3 2 3
/ |v(t)|dt=/ —v(t)dt+/ v(t)dt
0 0 2

2 3
:/ —(t2—2t)dt+/ (1% = 21) dt
0 2

7P e 1P 4 4 08
=—|=—t ==t =-4+-=-m
ERERI R R o -

In Section 4.4 we showed how to use the position versus time curve to obtain information
about the behavior of aparticle moving on acoordinateline (Table 4.4.1). Similarly, thereis
valuableinformation that can be obtained from the vel ocity versustime curve. For example,
theintegral in (17) can beinterpreted geometrically asthe net signed areabetween the graph
of v(¢) and the interval [rg, t1], and it can be interpreted physically as the displacement of
the particle over thisinterval. Thus, we have the following result.

5.7.3 FINDING DISPLACEMENT FROM THE VELOCITY VERSUS TIME CURVE. For a
particlein rectilinear motion, the net signed area between the vel ocity versustime curve
and an interval [1o, t;] on the t-axis represents the displacement of the particle over that
timeinterval (Figure 5.7.7).

Example 7 Figure5.7.8 showsthreevelocity versustimecurvesfor aparticleinrectilinear
motion along a horizontal line. In each caseg, find the displacement of the particle over the
timeinterval 0 < r < 4, and explain what it tells you about the motion of the particle.

v v v

@ (b) (©

Figure 5.7.8

Solution. Inpart (a) of Figure5.7.8 the net signed areaunder the curveis 2, so the particle
is 2 units to the right of its starting point at the end of the time period. In part (b) the net
signed area under the curveis —2, so the particleis 2 unitsto the | eft of its starting point at
the end of the time period. In part (c) the net signed areaunder the curveis 0, so the particle
isback at its starting point at the end of the time period. |

By replacing the concept of net signed area with that of “total area,” we can also inter-
pret geometrically the total distance traveled by a particlein rectilinear motion. If f(x) isa
continuous function on an interval [a, b], we define the total area between the curve y =
f(x) and theinterval to betheintegral of | f(x)| over theinterva [a, b]. Geometrically, the
total areaisthe area of the region that is between the graph of f and the x-axis.
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AVERAGE VALUE OF A
CONTINUOUS FUNCTION
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Example 8 Find the total area between the curve y = 1 — x? and the x-axis over the
interval [0, 2] (Figure 5.7.9).

Solution. Thearea A isgiven by
2 1 2
A =/ 11— x?|dx :/ (1—x2)dx+/ —(1—x%dx
0 0 1
X3 x3 2
= | X - — — |l x — —
R !
2 4
=3 (-3)- <
From (18), integrating the speed |v(¢)| over atimeinterval [to, t1] produces the distance
traveled by the particle during the time interval. However, we can a so interpret the integral

in (18) as the total area between the velocity versus time curve and the interval [z, #1] on
the r-axis. Thus, we have the following result.

5.7.4 FINDINGDISTANCE TRAVELED FROM THEVELOCITY VERSUSTIMECURVE.  For
aparticlein rectilinear motion, the total area between the velocity versustime curve and
aninterval [1o, 1] on the z-axis represents the distance traveled by the particle over that
timeinterval.

Example 9 For each of the velocity versus time curves in Figure 5.7.8 find the total
distance traveled by the particle over thetimeinterval 0 < ¢t < 4.

Solution. Inall threepartsof Figure5.7.8 thetota area between the curve and theinterval
[0, 4] is2, sotheparticletravelsadistance of 2 unitsduring thetimeperiodinall three cases,
even though the displacement is different in each case, as discussed in Example 7. <

In scientific work, numerical information is often summarized by computing some sort of
average or mean value of the observed data. There are various kinds of averages, but the
most common is the arithmetic mean or arithmetic average, which is formed by adding
the data and dividing by the number of data points. Thus, the arithmetic average a of n
numbersaq, a, ..., a, is

1 l n
5=—(a1+az+~~+an)=—zak
n nk:l

In the case where the ;s are values of afunction f, say,

a1 = f(x1), a2 = f(x2), ..., an = f(xn)
then the arithmetic average a of these function valuesis

1 n
a==>) flx
gy

We will now show how to extend this concept so that we can compute not only the
arithmetic average of finitely many function values but an average of all valuesof f(x) as
x variesover aclosed interval [a, b]. For this purpose recall the Mean-Value Theorem for
Integrals (5.6.2), which states that if f is continuous on theinterval [a, b], then thereis at
least one number x* in thisinterval such that

b
f Foydx = f6N) b — a)
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The quantity

1 b
ft = [ eds (19)

will be our candidate for the average value of f over theinterva [a, b]. To explain what
motivates this, divide the interval [a, b] into n subintervals of equal length
b—a
n

and choose arbitrary numbersx;, x5, . .., x; insuccessive subintervals. Then the arithmetic
average of thevalues f(x}), f(x3), ..., f(x¥) is

Ax — (20)

1
ave = ~[f(x]) + f(5) + -+ fx)]
or from (20)

_ 1 YA A A A
ave= . [fODAx + fODAx + -+ [()Ax] = — Zﬂxk) X

Taking the limit asn — +oo yields

lim —Zf(xk)Ax = —/ f(x)dx

n—+w b

Since this equation describes what happens when we compute the average of “more and
more” values of f(x), we areled to the following definition.

5.7.5 DEFINITION. If f is continuous on [a, b], then the average value (or mean
value) of f on[a, b] isdefined to be

Sfae = —f f(x)dx (21)

¢ REMARK. When f isnonnegativeon[a, b], thequantity fae hasasimplegeometricinter-
i pretation, which can be seen by writing (21) as

b
Save - (b —a) =/ f(x)dx

Theleft side of thisequationisthe areaof arectanglewith aheight of f4, and base of length
i b—a,andtheright sideisthe areaunder y = f(x) over [a, b]. Thus, fae isthe height of
\\—/ ; a rectangle constructed over the interval [a, b], whose area is the same as the area under
} i : thegraph of f over that interval (Figure 5.7.10). Note also that the Mean-Value Theorem,
i f"e © when expressed in form (21), ensures that there is always at least one number x* in [a, b]
a b * at whichthevalueof f isequa tothe average value of f over theinterval.
Figure 5.7.10

Example 10 Find the average value of the function f(x) = /x over theinterval [1, 4],
and find all numbersin theinterval at which the value of f isthe same asthe average.

Solution.

1| 2x%/2 4
fave——/ rar == | ﬁdx=§[ a 1
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The x-vaues at which f(x) = /x isthe same as the average satisfy /x = 14/9, from

which we obtain x = 196/81 ~ 2.4 (Figure 5.7.11). |
y
y=1x
2t —
fae= B ——
ave 9

1 2 X 3 4
19
81

Figure 5.7.11

In Section 3.1 we considered the motion of a particle moving along a coordinate line, and
we motivated the concept of instantaneous velocity by viewing it as the limit of average
velocities over smaller and smaller time intervals. That discussion led us to conclude that
the average velocity of the particle over atime interval could be interpreted as the slope of
a secant line of the position versus time curve (Figure 3.1.6). We will now show that the
same result istrueif Definition 5.7.5 is used to compute the average velocity.

For this purpose, suppose that s(r) and v(¢) are the position and velocity functions of
such a particle, and let us use Formula (21) to calcul ate the average vel ocity of the particle
over atimeinterval [, f1]. Thisyields

1 h 1 f 11) — s(t
= / v(t)dt = / s'(t)dt = st — 5(to)
11— 10 Jyg 11— 10 Jyg h—1

Thus, the average velocity over a time interval is the displacement divided by the elapsed
time. Geometrically, thisis the slope of the secant line shown in Figure 5.7.12. Thus, the
discussion of average velocity in Section 3.1 is consistent with Definition 5.7.5.

Vave

S

s=s(t)

R
S(ty) —s(to)

s(ty)

s(to) & >

/
ORI
o \./ v

_ S(ty) —s(to) _ displacement

Vave t;—ty, ~ elapsedtime

Figure 5.7.12

EXERCISE SET 5.7 [ Graphing Calculator CAS

1. (@) If W'(¢) istherateof change of achild'sheight measured (c) If H(r) istherate of change of the speed of sound with
in inches per year, what does the integral [,° h'(r) d1 respect to temperature measured in ft/s per °F, what
represent, and what are its units? does the integral f312°0 H (t) dr represent, and what are

(b) If /() istherate of change of the radius of a spherical its units?
balloon measured in centimeters per second, what does (d) If v(z) isthevelocity of aparticlein rectilinear motion,
theintegral ff () dt represent, and what areitsunits? measured in cm/h, what does the integral f,f v(t) dt

represent, and what are its units?
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2. (a) Supposethat sludgeisemptiedinto ariver at the rate of 10. (@) v(r) =1%3; 5(8)=0

V(r) gallons per minute, starting at time ¢+ = 0. Write (b) a(t) = /t; v(4) =1; s(4) =-5

an integral that represents the total volume of sludge

that is emptied into the river during the first hour. In Exercises 11-14, a particle moves with a velocity of v(r)
(b) Suppose that the tangent lineto acurve y = f(x) has m/s along an s-axis. Find the displacement and the distance

slope m(x) at the point x. What does the integral traveled by the particle during the given time interval.

/ "12 m(x) dx represent?

3. In each part, the velocity versus time curve is given for a 11. @ v() =sint; 0=t <7/2

particle moving along aline. Use the curve to find the dis- (b) v(r) =cost; w/2<t<2n
placement and the distance traveled by the particle over the 12. (@ v(t) =2t —4,0<t<6
timeinterval 0 <t < 3. () vt)=|r—3; 0<7<5
@ (b) 13. (@ v(r) =1 —32+2r; 0<r<3
v v (b) v()=v1—-2,0<r<3
1 11— 14. @ v()=35—(1/1?); 1<t <3
Loyt ‘ ! (b) v() =3/Vi; 4<t<9

In Exercises 1518, a particle moves with acceleration a(t)
m/s? along an s-axis and has velocity vg m/sat timer = 0.
Find the displacement and the distance traveled by the parti-

4. Sketchavelocity versustime curvefor aparticlethat travels cle during the given time interval.
adistance of 5 unitsaong a coordinate line during the time
interval 0 < ¢ < 10 and has a displacement of O units. 15. a(t) = —2,vo=3; 1<t <4
5. The accompanying figure shows the acceleration versus 16. a(t) =t —2,v5=0;, 1<t <5

time curve for a particle moving aong a coordinate line. A }
If theinitial veloc?ty of thepartigleiSZ% m/s, estimate 17. a0) = 1./ S+Livw=20=r=3
(@) thevelocity attimer = 4's 18. a() =sint;vo=1 /4 <1t <7/2
(b) thevelocity attimer = 6s. 19. In each part use the given information to find the position,
velocity, speed, and acceleration at timer = 1.
(8 v=singnt; s =0whent =0
(b) a=-3r; s=1landv=0whent =0
20. The accompanying figure shows the velocity versus time
curveover thetimeinterval 1 < r < 5for aparticlemoving
along a horizontal coordinate line.
(8 What canyou say about the sign of the accel eration over
the time interval?
(b) When isthe particle speeding up? Slowing down?
(c) What can you say about the location of the particle at
timer = 5relativetoitslocationat times = 1?Explain
your reasoning.

Figure Ex-5
6. Determine whether the particlein Exercise 5 is speeding up N
or slowing down at timesr = 4sand¢ = 6s. \
\ t
& 1 1 Py >
In Exercises 7-10, a particle moves along an s-axis. Use the L2334 1‘5
giveninformation to find the position function of the particle. \
7@ v =12 -22+1; 500) =1 Figure Ex-20
(b) a(t) =4cos2t; v(0) = —1; s(0) = -3
8. (@ v(t) =1+sins; s(0) = -3 In Exercises 21-24, sketch the curve and find the total area
(b) a(t) =12 —3t+1; v(0)=0; s(0)=0 between the curve and the given interval on the x-axis.

9. @ v)=2t—3; s(1) =5 ) o
(b) a(t) =cost; v(n/2) =2; s(n/2) =0 21 y=x*-1[0.3] 22. y =sinx; [0,37/2]
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2
y=vitl-1[-11 24 y= xxz L [2,
Supposethat thevel ocity function of aparticlemoving along
an s-axisisv(r) = 20r2 — 100¢ + 50 ft/s and that the par-
ticleis at the origin at time r = 0. Use a graphing utility
to generate the graphs of s(r), v(z), and a(r) for the first
6 s of motion.

2]

Suppose that the acceleration function of a particle moving
along an s-axisisa(t) = 4t — 30 m/s and that the position
and velocity at timet = 0 aresp = —5mand vg = 3m/s.
Use a graphing utility to generate the graphs of s(z), v(z),
and a(t) for thefirst 25 s of motion.

Let the velocity function for a particle that is at the origin

initially and moves along an s-axisbe v(t) = 0.5 — ¢ sinr.

(8) Generate the velocity versus time curve, and use it to
make a conjecture about the sign of the displacement
over thetimeinterval 0 <t < 5.

(b) UseaCASto find the displacement.

Let the velocity function for a particle that is at the origin

initially and movesalong an s-axisbev(r) = 0.5—1 cost.

(@) Generate the velocity versus time curve, and use it to
make a conjecture about the sign of the displacement
over thetimeinterval 0 < ¢ < 1.

(b) UseaCASto find the displacement.

Suppose that at timer = 0 a particle is at the origin of an

x-axis and has avelocity of vg = 25 cm/s. For thefirst 4 s

thereafter it has no acceleration, and then it is acted on by

aretarding force that produces a constant negative acceler-

ation of ¢ = —10 cm/s%.

(&) Sketch the acceleration versus time curve over the in-
terval 0 <r < 12.

(b) Sketch the velocity versus time curve over thetimein-
terval 0 <r < 12.

(c) Find the x-coordinate of the particle at timesr = 8 s
andr =12s.

(d) What isthe maximum x-coordinate of the particle over
thetimeinterval 0 <t < 12?

Formulas (8) and (9) for uniformly accelerated motion can
be rearranged in various useful ways. For simplicity, let
s = s(t) and v = v(t), and derive the following variations
of those formulas.

B v2 —v3 _2(s —s0)
(a)a_Z(s—so) (b) 7= vo+ v
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(b) A bicycle rider traveling on a straight path accelerates
uniformly from rest to 30 km/h in 1 min. Find his ac-
celeration in km/s?,

A car traveling 60 mi/h along a straight road decelerates at
aconstant rate of 10 ft/s?,

(@) How long will it take until the speed is 45 mi/h?

(b) How far will the car travel before coming to a stop?

Spotting apolicecar, you hit the brakeson your new Porsche

to reduce your speed from 90 mi/h to 60 mi/h at a constant

rate over a distance of 200 ft.

(@) Find the acceleration in ft/s?.

(b) How long does it take for you to reduce your speed to
55 mi/h?

(c) Attheacceleration obtained in part (a), how longwould
it take for you to bring your Porsche to a complete stop
from 90 mi/h?

. A particle moving along a straight line is accelerating at

a constant rate of 3 m/<?. Find the initial velocity if the
particle moves 40 minthefirst4s.

A motorcycle, starting from rest, speeds up with a constant
acceleration of 2.6 m/s?. After it hastraveled 120 m, it lows
down with a constant acceleration of —1.5 m/s? until it at-
tainsaspeed of 12 m/s. What isthe distance traveled by the
motorcycle at that point?

A sprinter in a100-m race explodes out of the starting block

with an acceleration of 4.0 m/s?, which she sustainsfor 2.0

s. Her acceleration then drops to zero for the rest of race.

(& What is her time for the race?

(b) Make a graph of her distance from the starting block
versustime.

A car that has stopped at atoll booth leaves the booth with
aconstant acceleration of 2 ft/s?. At the time the car leaves
the booth it is 5000 ft behind a truck traveling with a con-
stant velocity of 50 ft/s. How long will it take for the car
to catch the truck, and how far will the car be from the toll
booth at that time?

In the final sprint of arowing race the challenger is rowing
at aconstant speed of 12 m/s. At the point where the |eader
is 100 m from the finish line and the challenger is 15 m be-
hind, the leader isrowing at 8 m/sbut starts accelerating at
aconstant 0.5 m/s?. Who wins?

() s =s0+ vt — %atz [Note how this differsfrom (8).]

Exercises 31-38 involve uniformly accelerated motion. In
these exercises assume that the object is moving in the pos-
itive direction of a coordinate line, and apply Formulas (8)
and (9) or those from Exercise 30, as appropriate. In some of
these problems you will need the fact that 88 ft/s= 60 mi/h.

In Exercises 3948, assume that a free-fall model applies.
Solve these exercises by applying Formulas (12) and (13) or,
if appropriate, use those from Exercise 30 witha = —g. In
theseexercisestake g = 32ft/s? or g = 9.8 m/s?, depending
on the units.

39. A projectileislaunched vertically upward from ground level

with aninitial velocity of 112 ft/s.
(@ Findthevelocityatr =3sandr =5s.

3L

(8 An automobile traveling on a straight road decel erates
uniformly from 55 mi/h to 25 mi/h in 30 s. Find its
acceleration in ft/s2.

(b) How high will the projectile rise?
(c) Findthe speed of the projectile when it hits the ground.
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. A projectilefired downward from aheight of 112 ft reaches
theground in 2 s. What isitsinitial velocity?

. A projectile is fired vertically upward from ground level
with an initial velocity of 16 ft/s.
(@ Howlongwill ittakefor the projectileto hit theground?
(b) How long will the projectile be moving upward?

. A rock is dropped from the top of the Washington Monu-
ment, which is 555 ft high.
(@ How long will it take for the rock to hit the ground?
(b) What isthe speed of the rock at impact?

. A helicopter pilot drops a package when the helicopter is
200 ft above the ground and rising at a speed of 20 ft/s.
(8 How longwill it take for the packageto hit the ground?
(b) What will beits speed at impact?
. A stoneisthrown downward with aninitial speed of 96 ft/s
from aheight of 112 ft.
(@ How long will it take for the stone to hit the ground?
(b) What will beits speed at impact?
. A projectileisfired vertically upward with aninitial velocity
of 49 m/sfrom atower 150 m high.
(8 How longwill it takefor the projectileto reach itsmax-
imum height?
(b) What isthe maximum height?
(c) Howlongwill ittakefor theprojectileto passitsstarting
point on the way down?
(d) What isthe velocity when it passesthe starting point on
the way down?
(e) Howlongwill ittakefor the projectileto hit theground?
(f) What will beits speed at impact?
. A man drops a stone from a bridge. What is the height of
the bridge if
(a) the stone hitsthe water 4 slater
(b) the sound of the splash reachesthe man 4 slater?[Take
1080 ft/s as the speed of sound.]

. Inthefinal stagesof aMoon landing, alunar modulefiresits
retrorockets and descendsto aheight of # = 5 m above the
lunar surface (Figure Ex-47). At that point the retrorockets
are cut off, and the module goes into free fall. Given that
the Moon's gravity is 1/6 of the Earth’s, find the speed of
the module when it touches the lunar surface.

Figure Ex-47
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Given that the Moon’s gravity is 1/6 of the Earth’s, how
much faster would a projectile have to be launched upward
from the surface of the Earth than from the surface of the
Moon to reach a height of 1000 ft?

In Exercises 49-52, find the average value of the function
over the given interval.

49.
51.
53.

55.

56.

57.

58.

59.

f(x) =3x; [1,3] 50. f(x) =x% [-1,2]

f(x) =sinx; [0, n] 52. f(x) = cosx; [0, 7]

(@ Find fae of f(x) = x2 over [0, 2].

(b) Find anumber x*in[0, 2] suchthat f(x*) = fae-

(c) Sketchthegraphof f(x) = x2 over [0, 2] and construct
arectangle over the interval whose areais the same as
the areaunder the graph of f over theinterval.

. (@ Find fae Of f(x) = 2x over [0, 4].

(b) Find anumber x*in [0, 4] suchthat f(x*) = fae-

(c) Sketchthegraphof f(x) = 2x over [0, 4] and construct
arectangle over the interval whose areais the same as
the areaunder the graph of f over theinterval.

(a8 Suppose that the velocity function of a particle mov-
ing along a coordinate lineis v(r) = 3t2 4 2. Find the
average velocity of the particle over the time interval
1 <r < 4 by integrating.

(b) Suppose that the position function of a particle mov-
ing along a coordinate lineis s(r) = 6r2 + ¢. Find the
average velocity of the particle over the time interval
1 <t < 4adgebracally.

() Supposethat theaccel eration function of aparticlemov-
ing along acoordinatelineisa(r) =t + 1. Find the av-
erage acceleration of the particle over the timeinterva
0 <t < 5 by integrating.

(b) Suppose that the velocity function of a particle moving
along a coordinate lineis v(r) = cost. Find the aver-
age acceleration of the particle over the time interval
0 <t < m/4dgebraically.

Water isrun at aconstant rateof 1 ft3/mintofill acylindrical
tank of radius 3 ft and height 5 ft. Assuming that the tank is
empty initially, make a conjecture about the average weight
of the water in the tank over the time period required to fill
it, and then check your conjecture by integrating. [ Take the
weight density of water to be 62.4 Ib/ft3 ]

(8 The temperature of a 10-m-long meta bar is 15°C at
one end and 30°C at the other end. Assuming that the
temperature increases linearly from the cooler end to
the hotter end, what is the average temperature of the
bar?

(b) Explain why there must be a point on the bar where the
temperature is the same as the average, and find it.

() Suppose that areservoir supplies water to an industrial
park at a constant rate of » = 4 gallons per minute
(gal/min) between 8:30 A.M. and 9:00 A.M. How much
water doesthereservoir supply during that time period?
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(b) Suppose that one of the industrial plants increases its 60. A traffic engineer monitors the rate at which cars enter the
water consumption between 9:00 A.M. and 10:00 A.M. main highway during the afternoon rush hour. From her data
and that the rate at which the reservoir supplies water she estimates that between 4:30 PM. and 5:30 PM. the rate
increases linearly, as shown in the accompanying fig- R (1) at which carsenter the highway isgiven by theformula
ure. How much water does the reservoir supply during R(#) = 100(1 — 0.0001¢?) cars per minute, where  is the

that 1-hour time period?

time (in minutes) since 4:30 PM.

(c) Suppose that from 10:00 A.M. to 12 noon the rate at (8) When doesthe peak traffic flow into the highway occur?

which the reservoir supplies water is given by the for-
mular(t) = 10 + /t gal/min, where ¢ isthe time (in

(b) Estimatethe number of carsthat enter the highway dur-

minutes) since 10:00 A.M. How much water does the Ing the rush hour.
reservoir supply during that 2-hour time period? 61. (a) Prove:If f iscontinuouson [a, b], then
Water Consumption /b[f(x) _ fave] dx =0

10 a
= g (b) Doesthere exist aconstant ¢ # fae Such that
£ § b
5 3 /[f(x)—c]dx:O?
—_ 3 a

2

1

0 10 20 30 40 50 60
9:00 A.M. Time (min) 10:00 A.M.

Figure Ex-59

TWO METHODS FOR MAKING
SUBSTITUTIONS IN DEFINITE
INTEGRALS

5.8 EVALUATING DEFINITE INTEGRALS BY SUBSTITUTION

In this section we will discuss two methods for evaluating definite integrals in which a
substitution is required.

Recall from Section 5.3 that indefinite integrals of the form
/ f(g(x)g'(x)dx

can sometimes be evaluated by making the u-substitution
u=gkx), du=g'(x)dx (1)
which converts the integral to the form

/ f(u)du

To apply this method to a definite integral of the form

b
f flg(x))g'(x)dx

we need to account for the effect that the substitution has on the x-limits of integration.
There are two ways of doing this.

Method 1 First evaluate the indefinite integral

f f(g(x)g'(x)dx

by substitution, and then use the relationship
b

b
/ fg())g'(x)dx = [/ f(g(x))g'(x)dX}

to evaluate the definite integral. This procedure does not require any modification of the
x-limits of integration.

a
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Method 2 Make the substitution (1) directly in the definite integral, and then use the
relationship u = g(x) toreplacethe x-limits, x = a and x = b, by corresponding u-limits,
u = g(a) and u = g(b). This produces a new definite integral

8

Sfu)du
g(a)
that is expressed entirely in terms of u.

2
Example 1 Use the two methods above to evaluate/ x(x?+1)%dx.
0

Solution by Method 1. If welet

u=x?>+1 sotha du=2xdx 2
then we obtain
1 4 2 14
/X(x2+1)3dx=E/ue’du:%—kcz%_kc
Thus,
2 2 2 492
1
f x(x?+1)%dx = |:/x(x2+1)3dxi| — u}
0 x=0 8 x=0
625 1
=——=-=178
8 8

Solution by Method 2. If we make the substitution u = x? 4 1in (2), then
if x=0, u=1
if x=2, u=5

Thus,
2 1 (5 w1’ 625 1
2 3 3
1)%dx == du=—| =—-2-=78
/(;x(x+) X 2/;u u 8i|u—1 5 8
which agrees with the result obtained by Method 1. <

The following theorem states precise conditions under which Method 2 can be used.

5.8.1 THEOREM. If g’ is continuous on [a, b] and f is continuous on an interval
containing the values of g(x) for a < x < b, then
g()

b
/ f(g(x)g'(x)dx = f(u)du

g(a)

Proof. Since f iscontinuous on an interval containing the valuesof g(x) fora < x < b,
it followsthat f hasan antiderivative F on that interval. If welet u = g(x), then the chain
rule implies that
d F d F dF du du ,

I (8(x)) = I (u) = dudx — f(u)dx = f(gx)g (x)
foreachx in[a, b]. Thus, F(g(x)) isanantiderivativeof f(g(x))g’(x) on[a, b]. Therefore,
by Part 1 of the Fundamental Theorem of Calculus (Theorem 5.6.1)

b b ()
/ f(g(x)g' (x)dx = F(g(X))] = F(g) — F(g(a)) = “ f(u)du i
a a g(a

The choice of methods for evaluating definite integrals by substitution is generaly a
matter of taste, but in the following exampleswe will use the second method, since theidea
isnew.
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Example 2 Evaluate

/8 5
(@ / sin®2xcos2xdx  (b) / (2x — 5)(x — 3)%dx
0 2

Solution (a). Let

u=sin2x sothat du=2cos2xdx (or 3du = cos2xdx)
With this substitution,

if x=0, u=sn0 =0

if x=n/8 u=sn@m/4)=1/v2
)

/8 1 1/V2 1
f Sin52x0052xdx:—/ wWdu ==
0 2 0 2

_1 [L _ o} _1
2 628 %
Solution (b). Let
u=x—3 sothat du=dx
Thisleaves afactor of 2x + 5 unresolved in the integrand. However,
x=u+3, SO 2x—-5=2u+3)—-5=2u+1
With this substitution,
if x=2, u=2-3=-1
if x=5 u=5-3=2
so

5 2 2
/ (2x —5)(x — 3)%dx = f u+ Du’du = f 2u™ + u®) du
2 -1 -1

2u11 I/L]‘O 2 212 210 2 1
%)) ()
2,2
_ 228,98

110 110

Example 3 Find the average value of the function

i = S0

over theinterval [1, 3].

Solution. From Definition 5.7.5 the average value of f over theinterval [1, 3] is
1 3 13
/ cos(7r/x) dy = / cos(/x) 4
1 1

fave = 3—-1 x2 T2 x?2 .
To evaluate this integral, we make the substitution
T T 1 1 1
u=—-— sothat du=—-——dx=—-m-—dx or ——du=—dx
X x2 x2 T x2
With this substitution,

if x=1, u=m
if x=3, u=n/3
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Thus, the average value of f over theinterval [1, 3] is

1 [3co 1 1\ (™3
falez—/ S(—n/x)dxz—- —— / cosu du
2 1 x2 2 T T

1 JT/3 1 3
= —Z—nsinul‘_nz—Z(sin(n/S)—sinn)=—% ~ —0.1378 |

REMARK.  Observe that the u-substitution in this example produced an integral in which
the upper u-limit of integration was smaller than the lower u-limit of integration. In our
computations we left the limits of integration in that order, but we could have reversed the
order to put the larger limit on top and compensated by reversing the sign of the integral
in accordance with Definition 5.5.3(b). The choice of proceduresis a matter of taste; both

produce the same result (verify).

EXERCISE SET 5.8 CAS

In Exercises 1 and 2, expresstheintegral in terms of the vari-
able u, but do not evaluate it.

1. (a) /:(x+1)7dx; u=x+1
(b) /;mm u=8—x2
() /llsin(ne)de; u =
(d) /oa(x+2)(x—3)2°dx; u=x—3

4
2. (a) / (5—2x)8dx; u=5-—2x
-1
2n/3 sinx

—n/3 /24 COSx

/4
(©) / tan? x sec? x dx; u = tanx
0

1
(d) / x3Vx2+3dx; u=x*+3
0

(b)

dx; u =2+ cosx

In Exercises 3-12, evaluate the definite integral two ways:
first by au-substitution in the definite integral and then by a
u-substitution in the corresponding indefinite integral.

1 2
3. / (2x + 1)*dx 4. / (4x — 2)%dx
0 1

0 2
5. / (1—2x)%dx 6. / (4—3x)%dx
-1 1

8 0
7. / xv/1+xdx 8. / x4 —xdx
0 -5

/2 /6
9./ 4sin(x/2) dx 10./ 2c0s3x dx
0 0

-1 x 4 - N
11. ﬁz mdx 12. . SeC (Z)C - Z) dx

In Exercises 13-16, evaluate the definite integral by express-
ingitintermsof u and evaluating the resulting integral using
aformulafrom geometry.

5/3

13. V25— 9x2dx; u=3x
0
2
14. / xV/16 — x4dx; u = x?
0
/2
15. / sin6y/1— 4cos?6 db; u = 2cosh

/3
1
16. f V3—2x —x%2dx; u=x+1
-3
17. Find the area under the curve y = sinzx over the interval
[0, 1].
18. Findthe areaunder the curve y = 3cos2x over the interval
[0, 7/8].

19. Find the area under the curve y = 1/(x + 5)? over thein-
terval [3,7].

20. Find the area under the curve y = 1/(3x + 1)? over thein-
terval [0, 1].

21. Find the average value of

X
fx) = G2t 1)2
over theinterval [0, 2].
22. Find the average value of f(x) = sec® wx over the interval
11

(-4 4]
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1
23. /
0

25

27

29.

3L

33.

35

37.

38.

39.

40.

41.

42.

g65-chb

Integration

n Exercises 23-36, evaluate the integrals by any method.

dx 2
24, V/5Bx — 1dx
3x+1 1
1 x2dx 0
. 26. / 6:2(t> + 1) dr
1 /x3 +9 -1
3 x+2

2
d
[ w [
1 Vx4 +7 1 x2—6x+9

/4 /4
/ sinx CoSx dx 30. / Vtanx sec® x dx
—3n/4 0
Jr 47 1
/ 5x cos(x?) dx 32. —siny/xdx
0 2 \/;
/9 /2
sec? 30 db 34, / sin? 30 cos 36 d6
/12 0
1 y2dy 6 /4 xdx
0o /4—3y ~14/54x
(8 UseaCASto find the exact value of the integral
/6
/ sin®x cos® x dx
0

(b) Confirm the exact value by hand calculation.
[Hint: Usetheidentity cos?x = 1 — sinx.]
(8 UseaCASto find the exact value of the integral

/4
/ tan” x dx
—n/4

(b) Confirm the exact value by hand calculation.
[Hint: Usetheidentity 1 4 tan? x = sec?x.]

1 4
@ Find/ fGBx +1)dx if/ f(x)dx =5.
0 1
3 9
(b) Find/ f(3x)dx if / f(x)dx =5.
0 0

0 4
(c) Find / xf(x?) dx if / f(x)dx =1.
-2 0

Given that m and n are positive integers, show that

1 1
/ xX"AL—x)"dx = / x"(1—x)"dx
0 0
by making a substitution. Do not attempt to evaluate the

integrals.
Given that n is a positive integer, show that

/2 /2
/ Siﬂ”xdx:/ cos’ x dx
0 0

by using atrigonometric identity and making a substitution.
Do not attempt to evaluate the integrals.

Given that n is a positive integer, evaluate the integral

1
/ x(1—x)"dx
0
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Electricity is supplied to homes in the form of alternating
current, whichmeansthat thevoltage hasasinusoidal wave-
form described by an equation of the form

V =V, sin(2nft)
(seetheaccompanying figure). Inthisequation, V,, iscalled
the peak voltage or amplitude of the current, f is called
itsfrequency, and 1/ f is called its period. The voltages V
and V, are measured in volts (V), the time ¢ is measured
in seconds (s), and the frequency is measured in hertz (Hz)
or sometimes in cycles per second. (A cycle is the electri-
cal term for one period of the waveform.) Most alternating-
current voltmetersread what iscalled thermsor root-mean-
square value of V. By definition, thisis the sguare root of
the average value of V2 over one period.
(& Show that
Vo
J?2

[Hint: Compute the average over the cyclefroms = 0

tor = 1/f, and usetheidentity sin 6 = 3(1— cos20)

to help evaluate the integral .]
(b) Inthe United States, electrical outlets supply aternat-

ing current with an rmsvoltage of 120V at afrequency
of 60 Hz. What is the peak voltage at such an outlet?

Vrms =

V=V, sin@2rft)
Figure Ex-43

. Show that if f and g are continuous functions, then

/O Jt —x)g(x)dx :/0 J)gt —x)dx

¢ Jf(x)

o f&x)+ fla—x)
[Hint: Let u = a — x, and then note the difference
between the resulting integrand and 1.]

(b) Usethe result of part (a) to find

(@ Letl = dx. Showthat I = a/2.

[ =t
——F———=axX
0 V/x++3—x
(c) Usethe result of part (a) to find
/2 H
/ . sinx dx
o SINx + cosx

1

1 L

Let] = / ——— dx. Show that the substitution x = 1/u
1 1+X2

resultsin

1
I=—/ ——du = -1
,1l+u2
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so 21 = 0, whichimpliesthat I = 0. However, thisisim-
possible since the integrand of the given integral is positive
over the interval of integration. Where is the error?

Find the limit
lim Z sin(kzw/n)

n— +0o n
k=1
by evaluating an appropriate definiteintegral over theinter-
val [0, 1].
Check your answer to Exercise 47 by evaluating the limit
directly with a CAS.

(8 Provethatif f isan odd function, then

f(x)dx =0
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and give a geometric explanation of this result. [Hint:
One way to prove that a quantity ¢ is zero is to show
thatg = —q.]

(b) Provethat if f isan even function, then

’ f(x)dx = Z/H f(x)dx
0

and give a geometric explanation of this result. [Hint:

Split the interval of integration from —a to a into two
partsat 0.]

50. Evaluate

1 b4
(@ / x+/c0S(x2) dx (b) / sin® x cos® x dx.
—1 0

[Hint: Use the substitution u = x — (77/2).]

SUPPLEMENTARY EXERCISES

CAS

1

Write a paragraph that describes the rectangle method for
defining the area under acurve y = f(x) over an interval
[a, b].

What isanintegral curveof afunction f?How aretwo inte-
gral curves of afunction f related?

The definite integral of f over theinterval [«, b] is defined
asthelimit

b n
/a f(x)dx = max'lff)qo; ) Ax

Explain what the various symbols on the right side of this
equation mean.

State the two parts of the Fundamental Theorem of Calcu-
lus, and explain what ismeant by the phrase “ differentiation
and integration are inverse processes.”

Derive the formulas for the position and velocity functions
of aparticle that moves with uniformly accelerated motion
aong a coordinate line.

(a) Devise a procedure for finding upper and lower esti-
mates of the area of the region in the accompanying
figure (in cm?).

(b) Use your procedure to find upper and lower estimates
of the area.

(c) Improve on the estimates you obtained in part (b).

Figure Ex-6

. Suppose that

1 2
/ foyde =1, / Fooydx = 1,
0 1

3 1
/ fx)dx = -1, f gx)dx =2
0 0
In each part, use thisinformation to eval uate the given inte-

gral, if possible. If there is not enough information to eval-
uate the integral, then say so.

2 3 3
) /0 fodx  (b) /1 fodr () /2 5£(x) dx

0 1 1
@ /1 s (© /0 g@0dx () /O [ dx

. In each part, use the information in Exercise 7 to evaluate

the given integral. If there is not enough information to
evaluate the integral, then say so.
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10.

11.

12.

13.

1 1
@ /0 [Fon) + gl (b) /O Frgte) dx

1
Maf)c

© o gx)

1
@ fo [45(x) — 3f(0)] dx

. In each part, evaluate the integral. Where appropriate, you

may use a geometric formula.

@ /l(l—i-\/l—xz)dx
-1
(b) /S(x\/xz—l—l—\/g—xz)dx
0
1
(© / xv1—x*dx
0

Evaluate the integral fol |2x — 1| dx, and sketch the region
whose area it represents.

One of the numbers r, /2, 357/128, 1 — = is the correct
value of theintegral

/ sin® x dx
0

Use the accompanying graph of y = sin®x and a logical
process of elimination to find the correct value. [Do not
attempt to evaluate the integral .]

y

y <

f T
Figure Ex-11

In each part, find the limit by interpreting it as a limit of
Riemann sumsin which theinterval [0, 1] isdivided into n
subintervals of equal length.

VI+V24+ V34 +n

@ lim, 372
243 g

() lim + 24+ 5+ +n
n— —+owo n

The accompanying figure shows five points on the graph
of an unknown function f. Devise a strategy for using the
known pointsto approximate the area A under the graph of
y = f(x) over theinterval [1, 5]. Describe your strategy,
and use it to approximate A.

y
2.3
3,2 (5,2
12
@n
1 2 3 4 5

Figure Ex-13
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14. Theaccompanying figure showsthedirection field for adif-
ferential equation dy/dx = f(x). Which of the following
functionsismost likely to be f(x)?

15.

16.

17.

Vx,

sinx,

x4 x

Explain your reasoning.

/
!

~ =
~ =
~ =]
~ =
~ =]
~ =]
~ =
~ =]
~ =
~ =]
~ =
~ |

y

-/
-/
-/
-/
-/
-/
-/
-/
-/
-/
-/
-/
-~

<<
~ =]
~ =
~ =]
~ =]
~ =
~ =]
~ =
~ =]
~ =

77
11
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Figure Ex-14

In each part, confirm the stated equality.
@ 12423+ +nm+1)=3inn+Dn+2)

n—1
. 9 k 17
(b) tim >~ (; - ;) =7

k=1

3 2
© (Z(i + j)) =21
i=1 \,j=1

Express

18
> k(-3
k=4

in sigma notation with
(@ k = 0asthelower limit of summation
(b) k = 5asthelower limit of summation.

The accompanying figure shows a square that is n units by
n units that has been subdivided into a one-unit square and
n — 1* L-shaped” regions. Use this figure to show that the
sum of thefirst n consecutive positive odd integersis n?.

123 4 ..

H

- hw N PR

n

Figure Ex-17

18. Derivetheresult of Exercise 17 by writing
14345+ +21—-1=) (k-1

k=1
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When part of each term of a sum cancels part of the next
term, leaving only portions of the first and last terms at the
end, thesumissaid totelescope. In Exercises 19-22, evaluate
the telescoping sum.

19.

21.

23.

24,

25.

26.

27.

17
Z(sk _ 3k71)

50
1 1
20. (f - 7)
2 i1

i ( 1 1 ) 12003 k+1 k
—_— 22. 2= =2Y
k=2 k? (k —1)? k=1
(a8 Show that

1+ 1+
1.3 3.5

[Him.;_} N ]
'(2n-1)(2n+1)_2<2n—1_2n+1>'

(b) Usetheresult in part (a) to find

N 1 _on
T - +1) 241

n 1

S Dy e

(a8 Show that
1.1 1,1
1.2 2.3 3.4 nn+1) n+1

. 1 1 1
Hint: =———.
|: nn+1l) n n+1l ]
(b) Usetheresult in part (@) to find

& 1
lim —_—
"ﬁ“"; k(k + 1)

Let x denote the arithmetic average of the n numbers

X1, X2, ..., X,. Use Theorem 5.4.1 to prove that
Y xi-5=0
i=1

Let

S = Zark
k=0
Show that S — rS = a — ar"*! and hence that

! a—ar"tt
> art = ——— #D
k=0 -r

(A sum of thisform is called a geometric sum.)

In each part, rewrite the sum, if necessary, so that the lower

limitisO, and then use the formuladerived in Exercise 26 to

evaluate the sum. Check your answers using the summation

feature of acalculating utility.

20 30 100 1

@ > 3 () Y 2 -
k=1 k=5

© Y (D
k=0 2
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In each part, make a conjecture about the limit by using a
CAS to evaluate the sum for n = 10, 20, and 50; and then
check your conjecture by using the formula in Exercise 26
to expressthe sumin closed form, and then finding the limit
exactly.

n n

. 1 _ 3\*
@ lim % ® im > (3)

k=0 k=1

(& Show that the substitutions u = secx and u = tanx
produce different values for the integral

/seczxtanx dx

(b) Explain why both are correct.

. Usethetwo substitutionsin Exercise 29 to evaluate the def-

inite integral
/4
/ sec® x tanx dx
0

and confirm that they produce the same result.
Evaluate the integral

/\/1+x‘2/3dx

by making the substitution u = 1 4 x%3.
(a) Expressthe equation

b
f [f1(x) + fo(x) +- -+ fulx)] dx

b b b
:/ fl(x)dx+/ fo(xydx+---+ [ fu(x)]dx

in sigma notation.

(b) If c1, c2,...,c, are constants and f1, f2,..., f, ae
integrable functionson [«, b], do you think it is always
true that

b n n b
/ (Z ckfku)) ix=3" [ck / fk(x)dx}?
a  \k=1 k=1 a

Explain your reasoning.
Find an integral formulafor the antiderivative of 1/(14x?)
ontheinterval (—, +) whosevalueat x = 1is(a) O and
(b) 2.
g dt.
0 12 +7
(a8 Findtheintervalsonwhich F isincreasing. Decreasing.
(b) Findtheopenintervalsonwhich F isconcave up. Con-
cave down.
(c) Find the x-values, if any, at which the function F has
absolute extrema.
(d) Usea CASto graph F, and confirm that the resultsin
parts (a), (b), and (c) are consistent with the graph.
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35.

36.

37.

38.

39.
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Prove that the function

x 1 1/x 1
F(x) = — dt —
x) /0 1+ 12 +/O 1+12

is constant on theinterval (0, +).
What is the natural domain of the function

Fx) = / i
V= 1 2—-9
Explain your reasoning.
In each part, determine the values of x for which F(x) is
positive, negative, or zero without performing the integra-
tion; explain your reasoning.
X t4 X
@ Fx) = / ——dt (b)) Fx) = / Va4 —1t2dt
1 12+3 -1
Find a formula (defined piecewise) for the upper boundary
of thetrapezoid shownin the accompanying figure, and then
integrate that function to derive the formulafor the area of
the trapezoid given on the inside front cover of thistext.

dt

dt?

y X<

Figure Ex-38

The velocity of a particle moving along an s-axis is mea-

sured at 5-s intervals for 40 s, and the velocity function is

modeled by a smooth curve. The curve and the data points

are shown in the accompanying figure.

(@) Does the particle have constant acceleration? Explain
your reasoning.

(b) Isthere any 15-stimeinterval during which the accel-
eration is constant? Explain your reasoning.

(c) Estimate the average velocity of the particle over the
40-s time period.

(d) Estimate the distance traveled by the particle from time
t = 0totimer = 40.

(e) Isthe particle ever slowing down during the 40-s time

period? Explain your reasoning.

(f) Isthere sufficient information for you to determine the

s-coordinate of the particle at timer = 107? If so, find

it. If not, explain what additional information you need.

, t(s)
40

0 I T S N N N

Figure Ex-39
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. Suppose that atumor grows at the rate of r(r) = /7 grams
per week. When, during the second 26 weeks of growth,
is the weight of the tumor the same as its average weight
during that period?

n Exercises 4146, evaluate theintegrals by hand, and check

your answers with a CASif you have one.

41, | ——dx
v/5+2sin3x

43

45,

46.

47.

@ 4.

49.

50.

51.

52.

cos3x

42 /7V3+\/de
x2
. /md}( 44, /chz(axz)dx

1 1
/ (u_4+3u_2— —5) du
_2 u

1
f sin?(7rx) cos(rrx) dx
0

Use a CASto approximate the area of the regionin the first
quadrant that lies below the curve y = x + x? — x% and
above the x-axis.

In each part, use a CAS to solve theinitial-value problem.
d

(@ & _ 2 cos3x; y(/2) = -1
dx
dy x3

by —=—"———:; y(0)=-2

(b) i~ @i y(0)

In each part, use a CAS, where needed, to solve for k.

k
(a)/(x3—2x—l)dx=0, k>1
1

k
(b)/(x2+sin2x)dx=3, k>0
0

Use a CAS to approximate the largest and smallest values
of theintegral

dt

* t
/4 V2+13
forl<x <3
The function J, defined by

1[" .
Jo(x) = f/ cos(x sint) dt
T Jo

is called the Bessel function of order zero.

(8 Use a CAS to graph the equation y = Jo(x) over the
interval 0 < x < 8.

(b) Estimate Jo(1).

(c) Estimate the smallest positive zero of Jy(x).

Find the area under the graph of f(x) = 5x — x2 over the

interval [0, 5] using Definition 5.4.3 with x/ astheleft end-

point of each subinterval.
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Blammo the Human Cannonball

Blammo the Human Cannonball will be fired from a cannon and hopes to land in
a small net at the opposite end of the circus arena. Your job as Blammo’s manager
isto do the mathematical calculations that will allow Blammo to perform his death-
defying act safely. The methods that you will use are from the field of ballistics (the
study of projectile motion).

== The Problem

Blammo’s cannon has a muzze velocity of 35 m/s, which means that Blammo will leave the
muzzle with that velocity. The muzzle opening will be 5 m above the ground, and Blammo's
objective isto land in a net that is also 5 m above the ground and that extends a distance of 10
m between 90 m and 100 m from the cannon opening (Figure 1). Your mathematical problem is
to determine the elevation angle « of the cannon (the angle from the horizontal to the cannon
barrel) that will make Blammo land in the net.

y

(03 NNSt X

!
5m \ \
Ground 90 m 100 m

Figure 1

== Modeling Assumptions

Blammo'strajectory will be determined by hisinitial velocity, the elevation angle of the cannon,
and the forcesthat act on him after heleavesthe muzzle. We will assumethat the only force acting
on Blammo after he leaves the muzzle is the downward force of the Earth’s gravity. In particular,
we will ignore the effect of air resistance. It will be convenient to introduce the xy-coordinate
system shown in Figure 1 and to assume that Blammo is at the origin at time s = 0. We will also
assumethat Blammo's mation can be decomposed into two independent components, ahorizontal
component parallel to the x-axis and a vertical component parallel to the y-axis. We will analyze
the horizontal and vertical components of Blammo’s motion separately, and then we will combine
the information to obtain a complete picture of histrgjectory.

== Blammo’s Equations of Motion

Wewill denote the position and vel ocity functionsfor Blammo's horizontal component of motion
by x(z) and v, (¢), and wewill denotethe position and vel ocity functionsfor hisvertical component
of motion by y(z) and v, (7).

Since the only force acting on Blammo after he leaves the muzzle is the downward force
of the Earth’s gravity, there are no horizontal forces to alter hisinitial horizontal velocity v, (0).
Thus, Blammo will have a constant velocity of v, (0) in the x-direction; thisimplies that

x(7) = v, (0)¢ @)

In the y-direction Blammo is acted on only by the downward force of the Earth’s gravity. Thus,
hismotion inthisdirection is governed by the free-fall model; hence, from (12) in Section 5.7 his
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vertical position functionis
(@) = y(0) +v,(0)1 — 381>
Taking g = 9.8 m/s?, and using the fact that y(0) = 0, this equation can be written as
y(t) = v,(0)t — 4.9/ 2

Exercise 1  Attimet = 0 Blammo's velocity is 35 m/s, and this velocity is directed at an
angle o with the horizontal. It is afact of physics that the initial velocity components v, (0) and
vy (0) can be obtained geometrically from the muzzle velocity and the angle of elevation using
the triangle shown in Figure 2. We will justify this later in the text, but for now use this fact to
show that Equations (1) and (2) can be expressed as

x(t) = (35cosw)t
y(t) = (35sina)t — 4.9¢2

35
vy(0)

vy(0)
Figure 2

Exercise 2

(8 Usetheresult in Exercise 1 to find the velocity functions v, (¢) and v, (¢) in terms of the ele-
vation angle «.

(b) Find thetime ¢ at which Blammo is at his maximum height above the x-axis, and show that
this maximum height (in meters) is

Vimax = 62.55i% &

Exercise 3 The equations obtained in Exercise 1 can be viewed as parametric equations for
Blammo's trajectory. Show, by eliminating the parameter ¢, that if 0 < « < 7/2, then Blammo's
trajectory is given by the equation

0.004 ,

y = (tana)x — Coszax

Explain why Blammo's trajectory is a parabola.

Finding the Elevation Angle

Define Blammao’s horizontal range R to be the horizontal distance he travels until he returns to
the height of the muzzle opening (y = 0). Your objectiveisto find elevation anglesthat will make
the horizontal range fall between 90 m and 100 m, thereby ensuring that Blammo landsin the net
(Figure 3).

y
] / R\\‘ .
[ ]

Ground 90 m 100 m

4

Figure 3
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Exercise4  Useagraphing utility and either the parametric equations obtained in Exercise 1
or the single equation obtained in Exercise 3 to generate Blammao's tragjectories, taking elevation
angles at increments of 10° from 15° to 85°. In each case, determine visually whether Blammo
lands in the net.

Exercise5  Findthetimerequired for Blammo to return to his starting height (y = 0), and use
that result to show that Blammo's range R is given by the formula

R =125sin2«

Exercise 6

(8) Use the result in Exercise 5 to find two elevation angles that will allow Blammo to hit the
midpoint of the net 95 m away.

(b) Thetentis55 m high. Explain why the larger elevation angle cannot be used.

Exercise7  How much canthe smaller elevation anglein Exercise 6 vary and still have Blammo
hit the net between 90 m and 100 m?

== Blammo’s Shark Trick
Blammoisto befired from 5 m aboveground level withamuzzlevelocity of 35m/sover aflaming
wall that is20 m high and past a 5-m-high shark pool (Figure 4). To make the feat impressive, the
pool will be made aslong as possible. Your job as Blammo's manager is to determine the length
of the pool, how far to place the cannon from the wall, and what elevation angle to use to ensure
that Blammo clears the pool.

5m

Flaming
wall

Shark pool
Figure4

Exercise 8  Prepare awritten presentation of the problem and your solution of it that is at an
appropriate level for an engineer, physicist, or mathematician to read. Your presentation should
contain thefollowing elements: an explanation of all notation, alist and description of all formulas
that will be used, adiagram that showsthe orientation of any coordinate systemsthat will be used,
a description of any assumptions you make to solve the problem, graphs that you think will
enhance the presentation, and a clear step-by-step explanation of your solution.

Module by: John Rickert, Rose-Hulman Institute of Technology
Howard Anton, Drexel University




