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THE DERIVATIVE
IN GRAPHING AND
APPLICATIONS

n this chapter we will study various applications
of the derivative. For example, we will use methods of
calculusto analyze functions and their graphs. In the pro-
cess, we will show how calculus and graphing utilities,
working together, can provide most of the important in-
formation about the behavior of functions. Another im-
portant application of the derivativewill bein the solution
of optimization problems. For example, if timeisthemain
considerationin aproblem, wemight beinterestedin find-
ing the quickest way to perform atask, and if cost is the
main consideration, we might be interested in finding the
least expensiveway to performatask. Mathematically, op-
timization problems can be reduced to finding the largest
or smallest value of a function on some interval, and de-
termining where the largest or smallest value occurs. Us-
ing the derivative, we will develop the mathematical tools
necessary for solving such problems. Wewill also usethe
derivative to study the motion of a particle moving along
aline, and we will show how the derivative can help usto
approximate solutions of equations.
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INCREASING AND DECREASING
FUNCTIONS

4.1 ANALYSIS OF FUNCTIONS I: INCREASE, DECREASE,
AND CONCAVITY

Although graphing utilities are useful for determining the general shape of a graph,

many problems require more precision than graphing utilities are capable of produc-
ing. The purpose of this section is to develop mathematical tools that can be used to
determine the exact shape of a graph and the precise locations of its key features.

Suppose that afunction f isdifferentiable at xo and that f’(xg) > 0. Since the slope of the
graph of f at the point P (xq, f(xp)) is positive, we would expect that a point Q(x, f(x))
on the graph of f that isjust to the left of P would be lower than P, and we would expect
that Q would be higher than P if Q isjust to theright of P. Analytically, to see why this
isthe case, recall that

f'(xo) = lim S = fxo)

X —Xo X — Xo
(Definition 3.2.1 with x1 replaced by x). Since 0 < f'(xo), it follows that
J(x) — f(x0)
AN 4

X — X0

0

for values of x very close to (but not equal to) xo. However, for the difference quotient
f(x) = f(x0)

X — Xo

to be positive, its numerator f(x) — f(xp) and its denominator x — xo must have the same
sign. Therefore, for values of x very closeto xg, we must have

f(x) = f(x0) <0 when x—x0<0
and
0< f(x) — f(xo0) when 0<ux—xp

Equivaently, f(x) < f(xo) for values of x just to the left of xgo, and f(xo) < f(x) for
values of x just to the right of xo. These inequalities confirm our expectation about the
relative positions of P and Q. Similarly, if f'(xg) < O, then f(x) > f(xo) for values of x
just to theleft of xg, and f(xg) > f(x) for valuesof x just to theright of xo. Geometricaly,
this means that our point Q would be higher than P if Q isjust to theleft of P, andthat Q
would be lower than P if Q isjust to theright of P.

Our next goal istorelatethesign of thederivative of afunction f andtherelativepositions
of points on the graph of f over an entire interval. The terms increasing, decreasing, and
constant are used to describe the behavior of afunction over an interval aswe travel left to
right along its graph. For example, the function graphed in Figure 4.1.1 can be described
asincreasing on theinterval (—oo, O], decreasing on theinterval [0, 2], increasing again on
theinterval [2, 4], and constant on the interval [4, +x).

Increasing Decreasing | Increasing

[ [

\ \
\ \
| |

} } Constant X
0 2 4

Figure4.1.1
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The following definition, which is illustrated in Figure 4.1.2, expresses these intuitive
ideas precisely.

4.1.1 DEFINITION. Let f bedefined onaninterval, and let x; and x, denote numbers
in that interval.

(@ fisincreasingontheinterval if f(x1) < f(x2) whenever x; < x».

(b) f isdecreasingontheinterva if f(x1) > f(x2) whenever x; < x».

(c) fisconstant ontheinterval if f(x1) = f(x2) for al x; and x».

Increasing Decreasing
Constant
[ [
\ \
\ \
()| 1)
\ \
\ \
l l
X X2
f(x) < f(x) if X < % f(x) > f(x) if X <% f(x)) = f(xp) for all x; and x,
(a) (b) (c)

Figure 4.1.2

Figure 4.1.3 suggeststhat adifferentiable function f isincreasing on any interval where
itsgraph has positive slope, isdecreasing on any interval whereits graph has negative slope,
and is constant on any interval where its graph has zero slope. This intuitive observation
suggests the following important theorem that will be proved in Section 4.8.

y Ay Y
| | : |
| | | |
' ' | |
| | | |
| } } | | |
I 1 X 1 I X I I X
Graph has Graph has Graph has
positive slope. negative slope. zero slope.
Figure4.1.3

4.1.2 THEOREM. Let f be a function that is continuous on a closed interval [a, b]
and differentiable on the open interval (a, b).

(@ If f'(x) > Ofor everyvalue of x in (a, b), then f isincreasing on [a, b].

(b) If f'(x) < Ofor everyvalue of x in (a, b), then f isdecreasing on [a, b].

() If f'(x) = Ofor everyvalueof x in (a, b), then f isconstant on [a, b].
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f(X) = x2—4x +3

Figure4.1.4
AY
4+
1 1 X
-3 3
—4
f(x) = x3
Figure4.1.5
y
20 -
1 1 TN | 1
-3 NS 3

=30

f(x) = x4+ 4x3 —12¢2 +2

Figure4.1.6

¢ REMARK. Observethatin Theorem4.1.2itisonly necessary to examine the derivative of

f ontheopeninterval (a, b) to determine whether f isincreasing, decreasing, or constant
ontheclosedinterval [a, b]. Moreover, although thistheorem was stated for aclosed interval
[a, b], itisapplicable to any interval I on which f is continuous and inside of which f is

- differentiable. For example, if f iscontinuouson [a, +) and f’'(x) > O for each x in the

interval (a, +), then f isincreasing on [a, +); and if f'(x) < 00N (—ox, +), then f is
decreasing on (—oo, +0) [the continuity on (—eo, +) follows from the differentiability].

Example 1 Find the intervals on which the following functions are increasing and the
intervals on which they are decreasing.

@ fo)=x*—4+3 (b flx)=x°

Solution (a). Thegraph of f in Figure 4.1.4 suggeststhat f isdecreasing for x < 2 and
increasing for x > 2. To confirm this, we differentiate f to obtain

f)=2x—-4=2(x—-2)

It follows that
flx) <0 if —o<x<?2
f'(x) >0 if 2<x <+ow

Since f iscontinuous at x = 2, it follows from Theorem 4.1.2 and the subsequent remark
that

f isdecreasing on (—oo, 2]
fisincreasing on [2, )
These conclusions are consistent with the graph of f in Figure 4.1.4.
Solution (b). Thegraph of f in Figure 4.1.5 suggeststhat f isincreasing over the entire
x-axis. To confirm this, we differentiate f to obtain f'(x) = 3x2. Thus,
flx)>0 if —o<x<O0
f'x) >0 if O<x < +w
Since f iscontinuous at x = 0,
fisincreasing on (—oo, O]
fisincreasing on [0, +o0)

Hence f isincreasing over the entireinterval (—oo, +o0), which is consistent with the graph
in Figure 4.1.5 (see Exercise 47). <

Example 2

(@ Usethegraphof f(x) = 3x*+ 4x® — 12x2 + 2 in Figure 4.1.6 to make a conjecture
about the intervals on which f isincreasing or decreasing.

(b) Use Theorem 4.1.2 to determine whether your conjecture is correct.
Solution (a). Thegraphsuggeststhat f isdecreasingif x < —2,increasingif —2 < x < 0,
decreasing if 0 < x < 1, andincreasing if x > 1.
Solution (b). Differentiating f we obtain
Flx) =12x° +12x%2 — 24x = 12x(x®> +x — 2) = 12x(x + 2)(x — 1)

The sign analysis of f’ in Table 4.1.1 can be obtained using the method of test values
discussed in Appendix A. The conclusions in that table confirm the conjecture in part (a).
<
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Table4.1.1

INTERVAL (2 (x+2)(x—-1) f'(x) CONCLUSION

X< -2 (EE —  fisdecreasing on (e, —2]
—2<x<0 HHE + fisincreasing on [-2, O]

O0<x<1 QIGIS) f isdecreasing on [0, 1]

1<x HEHE +  fisincreasingon[1, +co)

Although the sign of the derivative of f reveals where the graph of f is increasing or
decreasing, it does not reveal the direction of curvature. For example, on both sides of the
point in Figure 4.1.7 the graph isincreasing, but on the left side it has an upward curvature
(“holds water”) and on the right side it has a downward curvature (“spills water”). On
intervals where the graph of f has upward curvature we say that f is concave up, and on
intervals where the graph has downward curvature we say that f is concave down.

For differentiable functions, the direction of curvature can be characterized in terms of
the tangent lines in two ways: As suggested by Figure 4.1.8, the graph of a function f
has upward curvature on intervals where the graph lies above its tangent lines, and it has
downward curvature on intervals where it lies below its tangent lines. Alternatively, the
graph has upward curvature on intervals where the tangent lines have increasing slopes and
downward curvature on intervals where they have decreasing slopes. We will use thislatter
characterization as our formal definition.

4.1.3 DEFINITION. If f isdifferentiable on an open interval I, then f is said to be
concaveupon [ if f"isincreasingon /, and f issaid to be concavedown on I if ' is
decreasingon /.

To apply this definition we need some way to determine the intervals on which f” is
increasing or decreasing. One way to do this is to apply Theorem 4.1.2 (and the remark
that followsiit) to the function . It follows from that theorem and remark that " will be
increasing whereitsderivative f” ispositive and will be decreasing whereits derivative f”
is negative. Thisisthe idea behind the following theorem.

4.1.4 THEOREM. Let f betwice differentiable on an openinterval I.
(@ If f”(x) >0onlI,then fisconcaveupon /.
(b) If f”(x) <0onlI,then f isconcavedownon I.

Example 3 Find open intervals on which the following functions are concave up and
open intervals on which they are concave down.

@ f)=x>—4x+3 () f&x)=x* (0 flx)=x>—-3*+1

Solution (a). Caculating the first two derivatives we obtain
f)=2x—-4 and f'(x)=2

Since f”(x) > Ofor al x, the function f is concave up on (—o, +). Thisis consistent
with Figure 4.1.4.

Solution (b). Caculating the first two derivatives we obtain
fi)=3x* and f’(x)=6x

Since f”(x) < 0if x < Oand f”(x) > 0if x > 0, the function f is concave down on
(—o0, 0) and concave up on (0, +). Thisis consistent with Figure 4.1.5.
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INFLECTION POINTS

-3+

f(x) = x3-3x%+1

Figure4.1.9

£

—1—\5\_’/—1“5

3 3

Figure4.1.11

Solution (c). Calculating the first two derivatives we obtain
fix)y=3x%2—6x and f’(x)=6x—6=6(x—1)

Since f”(x) > 0if x > 1and f”(x) < Oif x < 1, we conclude that
f isconcave up on (1, +o)
f isconcave down on (—w, 1)

which is consistent with the graph in Figure 4.1.9. |

Pointswhere agraph changesfrom concave up to concave down, or vice versa, are of special
interest, so there is some terminology associated with them.

4.1.5 DEFINITION. If f iscontinuouson an open interval containing a value xo, and
if f changesthedirection of itsconcavity at the point (xq, f(xo)), thenwesay that f has
aninflection point at Xo, and we call the point (xg, f(xo)) onthegraphof f aninflection
point of f (Figure 4.1.10).

Inflection points

Concave

Concave Concave
down down

Concave

[

[

!
X0
Figure 4.1.10

For example, the function f(x) = x2 has an inflection point at x = 0 (Figure 4.1.5), the
function f(x) = x® — 3x% 4 1 has an inflection point at x = 1 (Figure 4.1.9), and the
function f(x) = x? — 4x + 3 has no inflection points (Figure 4.1.4).

Example 4 Usethegraphin Figure4.1.6 to make rough estimates of the locations of the
inflection points of f(x) = 3x*4 4x® — 12x? 4+ 2, and check your estimates by finding the
exact locations of the inflection points.

Solution. The graph changes from concave up to concave down somewhere between —2
and —1, say roughly at x = —1.25; and the graph changes from concave down to concave
up somewhere between 0 and 1, say roughly at x = 0.5. To find the exact locations of the
inflection points, we start by calculating the second derivative of f:

fl(x) = 12x3 + 12x2 — 24x
f(x) = 36x% 4+ 24x — 24 = 12(3x% 4+ 2x — 2)
We could analyze the sign of f” by factoring this function and applying the method of test

values (asin Table 4.1.1). However, hereisanother approach. The graph of f” isaparabola
that opens up, and the quadratic formula shows that the equation f”(x) = 0 has the roots

-1-V7 -1 7
x:T‘/—m—lzz and x=+‘/—~o.55 )
(verify). Thus, from the rough graph of f” in Figure 4.1.11 we obtain the sign analysis of
f”inTable 4.1.2; thisimpliesthat f hasinflection points at the valuesin (1). |
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Table4.1.2
INTERVAL SIGN OF f” CONCLUSION
X < _1:_3& + f isconcave up
_l;\ﬁ <Xx< _1;(7 - f is concave down
_1;(7 <X + f is concave up

Example 5 Find theinflection points of f(x) = sinx on [0, 2x], and confirm that your
results are consistent with the graph of the function.
Solution. Calculating the first two derivatives of f we obtain

f'(x) =cosx, f"(x)=-—sinx

Thus, f"(x) < 0if0 < x < m,and f"(x) > 0if r < x < 2w, which implies that the
graph is concave down for 0 < x < 7 and concave up for & < x < 2m. Thus, thereisan
inflection point at x = 7 ~ 3.14 (Figure 4.1.12). <

FOR THE READER.  If you have a CAS, devise a method for using it to find exact values

for the inflection points of afunction f, and use your method to find the inflection points

of f(x) = x/(x?+ 1). Verify that your results are consistent with the graph of f.

Inthe preceding examplestheinflection pointsof f occurredwhere f”(x) = 0. However,
inflection points do not always occur where f”(x) = 0. Here is a specific example.

Example 6 Find theinflection points, if any, of f(x) = x*.

Solution. Calculating the first two derivatives of f we obtain
Flx) =4x3,  f'(x) = 12x?

Here f”(x) > Ofor x < Oandfor x > 0O, which impliesthat f is concave up for x < O
and for x > O (Infact, f isconcave up on (—o, 4+.). Thus, there are no inflection points;
and in particular, there is no inflection point at x = 0, even though f”(0) = 0 (Figure
4.1.13). <

FORTHE READER.  Aninflection point may occur at apoint of nondifferentiability. Verify

© that thisisthe casefor x/3 at x = 0.

Uptonow wehaveviewed theinflection pointsof acurvey = f(x) asthosepointswherethe
curve changesthe direction of its concavity. However, inflection points also mark the points
on the curve where the slopes of the tangent lines change from increasing to decreasing, or
vice versa (Figure 4.1.14); stated another way:

Inflection points mark the places on the curve y = f(x) where the rate of change of y
with respect to x changes from increasing to decreasing, or vice versa.

Note that we are dealing with a rather subtle concept here—a change of a rate of change.
However, thefollowing physical example should helpto clarify theidea: Supposethat water
is added to the flask in Figure 4.1.15 in such away that the volume increases at a constant
rate, and let us examine the rate at which the water level y rises with the time z. Initialy,
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thelevel y will rise at aslow rate because of the wide base. However, asthe diameter of the
flask narrows, therate at which the level y riseswill increase until the level is at the narrow
point in the neck. From that point on the rate at which the level rises will decrease as the
diameter gets wider and wider. Thus, the narrow point in the neck is the point at which the
rate of change of y with respect to  changes from increasing to decreasing.

Slope
increasing

y=f()

Slope
decreasing

y=f(x)
Slope
increasing

Slope
decreasing

Figure4.1.14

Figure 4.1.15

\
\
\
|
%o

\ Y (depth of water)

Concave down

******** <— The inflection point
occurs when the water
level is at the narrowest

Concave u A
P point on the flask

t (time)

EXERCISE SET 4.1 ™ Graphing Calculator CAS

1. Ineach part, sketch the graph of afunction f with the stated

3. Use the graph of the equation y = f(x) in the accompa-

properties, and discuss the signsof /" and f”.

(& The function f is concave up and increasing on the
interval (—oo, +0).

(b) Thefunction f is concave down and increasing on the
interval (—oo, +00).

(c) The function f is concave up and decreasing on the
interval (—oo, +00).

(d) Thefunction f isconcave down and decreasing on the
interval (—oo, +o0).

. Ineach part, sketch the graph of afunction f with the stated

properties.

(@ fisincreasing on (—oe, +), hasan inflection point at
the origin, and is concave up on (0, +).

(b) fisincreasing on (—oe, +), hasan inflection point at
the origin, and is concave down on (0, +x).

(c) f isdecreasing on (—ce, +), hasan inflection point at
the origin, and is concave up on (0, +).

(d) f isdecreasing on (—o, o), hasan inflection point at
the origin, and is concave down on (0, +).

nying figure to find the signs of dy/dx and d2y/dx? at the
points A, B, and C.

4. Use the graph of the equation y = f'(x) in the accompa-

nying figure to find the signs of dy/dx and d?y/dx? at the

points A, B, and C.
y=f'(x)/\\c
X
A

Figure Ex-4

Y y=f() Y

Figure Ex-3

5. Usethegraph of y = f”(x) in the accompanying figure to

determine the x-coordinates of all inflection points of f.
Explain your reasoning.
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6. Usethe graph of y = f’(x) in the accompanying figure to 10.

. . . INTERVAL  SIGN OF f/(X)  sIGN oOF f”(X)
replace the question mark with <, =, or >, as appropriate.

Explain your reasoning. x<1 + +
@ O ? fD (O f)?f2 (0 f(© 20 1<x<3 + -
d f @20 @ @20 (f) '@ 20 3<x + +

f ;/: £ ! In Exercises 11-22, find: (a) the intervals on which f isin-

\ creasing, (b) the intervals on which f is decreasing, (c) the

y=f(x open intervals on which f is concave up, (d) the open inter-

vals on which f is concave down, and (e) the x-coordinates
of al inflection points.

| \1 | );( | 5
YA N/ 11 f)=2*—5c+6 12 f(x)=4— 3 —x2
Figure Ex-5 Figure Ex-6 18 f(0) = (x+2° 14. f(x) =5+12¢ —x°
15. f(x) = 3x* — 4® 16. f(x) = x*—8x?+16
7. Ineach part, usethegraphof y = f(x) intheaccompanying 2 X
figure to find the requested information. V=5 B f0=15-
(@) Findtheintervalson which f isincreasing. 3
(b) Find theintervals on which f isdecreasing. . fa)=vx+2 2. fox) =x*°
(c) Find the open intervals on which f is concave up. 21 f(x) =x"3(x +9) 22. f(x) = x"3 - x¥/3
(d) Find the open intervals on which f is concave down.
(e) Find al valuesof x at which f hasan inflection point. In Exercises 23-28, analyze the trigonometric function f
over the specified interval, stating where f isincreasing, de-
y creasing, concave up, and concave down, and stating the x-

coordinates of all inflection points. Confirm that your results
are consistent with the graph of f generated with agraphing
utility.

¥ K 23 f(x) =cosx; [0,27]

K 24. f(x) =sin®2x; [0, 7]

K 25 f(x) =tanx; (—7/2,7/2)
Figure Ex-7 [ 26. f(x) =2x +cotx; (0, m)

27. f(x) =sinxcosx; [0, n]
8. Use the graph in Exercise 7 to make a table that shows the

: . [ 28. f(x) =cos’x — 2sinx; [0, 27]
signs of f’ and f” over the intervals (1, 2), (2, 3), (3, 4), ) ]
(4,5), (5,6), and (6, 7). 29. In each part sketch a continuous curve y = f(x) with the

stated properties.
(@ f2=4, f(2=0, f"(x)>0 foralx
(b) f2 =4, f(2=0, f"(x) <0forx <2, f'(x) >0

- ————

In Exercises 9 and 10, a sign chart is presented for the first
and second derivatives of afunction f. Assuming that f is

continuous everywhere, find: (a) the intervals on which f is forx > 2 , o
increasing, (b) theintervals on which f isdecreasing, (c) the © e :/4’ f"(x) < Oforx # 2and lim_f'(x) = +o,
open intervals on which f is concave up, (d) the open inter- x“jZ[ f(x)=—o
valsonwhich £ is concave down, and (€) the x-coordinates 30. In each part sketch a continuous curve y = f(x) with the
of al inflection points. stated properties.
@ f(2=4 f(2=0, f'(x) <O0foral x

9 (b) [ =4, f(2=0, f"(x) >0forx <2, f"(x) <0
" INTERVAL SIGN OF f’(X)  SIGN OF f ”(X) forx > 2

x<1 - + (€) f(2 =4, f"(x)> Oforx # 2andeLrT21+ f(x) = —o0,

1<x<2 + + lim f'(x) = +w

x—>2-
2 z X: Z’ * - 31. Ineach part, assumethat a isaconstant and find the inflec-
X — -

tion points, if any.
4<x - ¥ @ f) = (x —a)? ) f()=@x—a)
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32.

Given that a is a constant and » is a positive integer, what
can you say about the existence of inflection points of the
function f(x) = (x — a)"? Justify your answer.

If f isincreasing on an interva [0, b), then it follows from
Definition 4.1.1 that f(0) < f(x) for each x in theinterval.
Use thisresult in Exercises 33—-36.

K 33.

K 34

K 35.
K 36.

Show that ¢/I+x < 1+ 2x if x > 0, and confirm theiin-
equality with a graphing utility. [Hint: Show that the func-
tion f(x) = 1+ 2x — J1T+ x isincreasing on [0, +0) ]
Show that x < tanx if 0 < x < /2, and confirm the in-
equality with a graphing utility. [Hint: Show that the func-
tion f(x) =tanx — x isincreasing on [0, 7/2).]
Useagraphing utility to make aconjecture about therel ative
sizesof x and sinx for x > 0, and prove your conjecture.

Use agraphing utility to make a conjecture about the rela-
tivesizesof 1 — x2/2 and cosx for x > 0, and prove your
conjecture. [Hint: Use the result of Exercise 35.]

In Exercises 37 and 38, use agraphing utility to generate the
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(8) Provethat ageneral cubic polynomial
f(x) =ax®+bx’+cx+d (a #0)

has exactly one inflection point.

Provethat if a cubic polynomial hasthree x-intercepts,
then the inflection point occurs at the average value of
the intercepts.

Usetheresultin part (b) to find theinflection point of the
cubic polynomial f(x) = x3—3x2+2x, and check your
result by using f” to determine where f is concave up
and concave down.

From Exercise 45, the polynomial f(x) = x% + bx?2 + 1

has one inflection point. Use a graphing utility to reach a

conclusion about the effect of the constant 5 on thelocation

of the inflection point. Use f” to explain what you have

observed graphically.

Use Definition 4.1.1 to prove:

(& If fisincreasing ontheintervals (a, c] and[c, b), then
fisincreasing on (a, b).

(b) If fisdecreasingontheintervals(a, c¢] and|[c, b), then
f isdecreasing on (a, b).

Use part (a) of Exercise 47 to show that f(x) = x + Sinx

(b)

(©

graphs of f” and f” over the stated interval; then use those
graphs to estimate the x-coordinates of the inflection points
of f, the intervals on which f is concave up or down, and
the intervals on which f isincreasing or decreasing. Check
your estimates by graphing 1.

[ 37 fx)=x*—24x?+12x, -5<x<5
g 38 flx)=

1
—— . —5<x<5
14 x2

In Exercises 39 and 40, usea CAStofind f” and to approxi-
mate the x-coordinates of the inflection pointsto six decimal
places. Confirm that your answer is consistent with the graph

49.

50.

isincreasing on the interval (—oo, +0).

Use part (b) of Exercise 47 to show that f(x) = cosx — x
is decreasing on the interval (—oo, +0).

Let y = 1/(1 4 x?). Find the values of x for which y is
increasing most rapidly or decreasing most rapidly.

In Exercises 51 and 52, suppose that water is flowing at a
constant rate into the container shown. Make a rough sketch
of the graph of the water level y versusthetime¢. Make sure
that your sketch conveys where the graph is concave up and
concave down, and label the y-coordinates of the inflection
points.

of f.

39.

41.
42.

43.

10x — 3

=8 +7
fO =30 5y BN IO ="

x2+1
Use Definition 4.1.1 to prove that f(x) = x? isincreasing
on [0, +).

UseDefinition4.1.1to provethat f(x) = 1/x isdecreasing
on (0, +x).

Ineach part, determinewhether the statement istrueor false.
If it isfalse, find functions for which the statement fails to
hold.

(@ If fandg areincreasingonaninterval, thensois f +g.
(b) If f and g areincreasing on aninterval, thensois f-g.
In each part, find functions f and g that are increasing on
(—o0, +0) and for which f — g hasthe stated property.
(8 f — gisdecreasing on (—w, ).

(b) f — gisconstant on (—o, +o0).

() f — gisincreasing on (—o, +0).

51.

53.

y 52. y

Supposethat g(x) isafunction that is defined and differen-
tiablefor all real numbers.x and that g (x) hasthefollowing
properties:

(i) g0 =2andg'(0) = 2.

(i) g =3and g'(4) = 3.

(iii) g(x) is concave up for x < 4 and concave down for

x > 4.
(iv) g(x) > —10for al x.
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(8 How many zeros does g have?
(b) How many zeros does g’ have?
(c) Exactly one of the following limitsis possible:

lim
X —> 0

g65-ch4

g'(x) = -5,

RELATIVE MAXIMA AND MINIMA
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Identify which of these results is possible and draw a
rough sketch of the graph of such afunction g(x). Ex-
plain why the other two results are impossible.

limg'(x) =0, Ilimg'(x)=5

4.2 ANALYSIS OF FUNCTIONS II: RELATIVE EXTREMA; FIRST
AND SECOND DERIVATIVE TESTS

In this section we will discuss methods for finding the high and low points on the
graph of a function. The ideas we develop here will have important applications.

If weimagine the graph of afunction f to be atwo-dimensional mountain range with hills
and valleys, then the tops of the hills are called relative maxima, and the bottoms of the
valleys are called relative minima (Figure 4.2.1).

The relative maxima are the high points in their immediate vicinity, and the relative
minima are the low points. Note that a relative maximum need not be the highest point
in the entire mountain range, and a relative minimum need not be the lowest point—they
are just high and low points relative to the nearby terrain. These ideas are captured in the
following definition.

4.2.1 DEFINITION. A function f issaid to have arelative maximum at x if thereis

minimum: Deepest . . . . :
valley an open interval containing xo on which f(xg) isthelargest value, that is, f(xg) > f(x)
fordl x intheinterval. Similarly, f issaid to havearelative minimum at xq if thereisan
open interval containing xo on which f(xp) isthe smallest value, that is, f(xg) < f(x)
for dl x intheinterval. If f haseither arelative maximum or arelative minimum at xo,
then f issaid to have arelative extremum at xo.
Example 1 Locate the relative extrema of the four functions graphed in Figure 4.2.2.
Solution.
(@ Thefunction f(x) = x? hasarelative minimum at x = 0 but no relative maxima.
Y y y
61 61 I
5t 5t
4 L Y
3t 3
2 2
| 't JANANWA
1 1 1 1 1 1 X X 1 1 1 1 1 X 1 1 1 1 X
3-2-1,] 123 S3p-r [ 123 -2 \om Wzn
-2t -2 1
-3+ -3+
4+ 4
-5+ -5+
y=x? y=x3 y=x3-3x+3 y = cOS X

Figure4.2.2
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Point of
nondifferentiability

Point of
nondifferentiability

Figure4.2.3

CRITICAL NUMBERS

FIRST DERIVATIVE TEST

(b) Thefunction f(x) = x* has no relative extrema.

(c) Thefunction f(x) = x% — 3x + 3 hasarelative maximum at x = —1 and arelative
minimum at x = 1.

(d) Thefunction f(x) = cosx hasrelative maximaat all even multiples of 7 and relative
minimaat all odd multiples of 7. <

Points at which relative extremaoccur can be viewed asthetransition pointsthat separate
the regions where a graph is increasing from those where it is decreasing. As suggested
by Figure 4.2.3, the relative extrema of a continuous function f occur at points where the
graph of f either hasahorizontal tangent line or is not differentiable. Thisisthe content of
the following theorem.

4.2.2 THEOREM. Supposethat f isa function defined on an openinterval containing
the number xq. If f has a relative extremum at x = xo, then either f'(xg) = 0or fis
not differentiable at xo.

Proof. Assumethat f has a relative extreme value at xg. There are two possibilities—
either f isdifferentiable at xo or itisnot. If it isnot, then we are done. If f isdifferentiable
at xo, then we must show that f'(xg) = 0. It cannot be the case that f'(xg) > 0, for then
f would not have a relative extreme value at xq. (See the discussion at the beginning of
Section 4.1.) For the samereason, it cannot be the casethat f'(xp) < 0. We concludethat if
f hasarelative extremevalue at xo and if f isdifferentiableat xq, then f'(xg) = 0. |

Values in the domain of f at which either f'(x) = 0 or f is not differentiable are called
critical numbersof f. Thus, Theorem 4.2.2 can be rephrased as follows:

If a function is defined on an open interval, its relative extrema on the interval, if any,
occur at critical numbers.

Sometimes we will want to distinguish critical numbers at which f’(x) = 0 from those
at which f isnot differentiable. We will call apoint on the graph of f at which f'(x) =0
astationary point of f.

It is important not to read too much into Theorem 4.2.2—the theorem asserts that the
set of critical numbersisacomplete set of candidates for locations of relative extrema, but
it does not say that a critical number must yield arelative extremum. That is, there may be
critical numbers at which a relative extremum does not occur. For example, for the eight
critical numbers shown in Figure 4.2.4, relative extrema occur at each xo marked in the top
row, but not at any xo marked in the bottom row.

To develop an effective method for finding relative extrema of afunction f, we need some
criteriathat will enable usto distinguish between thecritical numberswhererel ative extrema
occur and those where they do not. One such criterion can be motivated by examining the
sign of thefirst derivative of f on each side of the eight critical numbersin Figure 4.2.4:

« At the two relative maximain the top row, f” is positive to the left of xo and negative
to theright.

o Atthetwo relative minimain thetop row, f isnegative to the left of xo and positive to
the right.

o Atthefirst two critical numbersin the bottom row, f” is positive on both sides of xo.
o Atthelast two critical numbersin the bottom row, f’ is negative on both sides of xo.
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AY AY AY AY
| |
| A | |
| X | X | X | X
%o %o %o %o
AY AY AY AY
| | | |
| X | X | X | X
X i X i X i X i
Figure4.2.4

These observations suggest that a function f will have relative extrema at those critical
numbers, and only those critical numbers, where f’ changes sign. Moreover, if the sign
changes from positive to negative, then a relative maximum occurs; and if the sign changes
fromnegativeto positive, then arelative minimum occurs. Thisisthe content of thefollowing
theorem.

4.2.3 THEOREM (First DerivativeTest).  SUppose f iscontinuousat a critical number xo.

(@ If f'(x) > 0onan open interval extending left from xg and f'(x) < 0 on an open
interval extending right from xq, then f has a relative maximum at xo.

(b) If f'(x) < 0onanopeninterval extending left fromxo and f’(x) > 0 on an open
interval extending right from xq, then f hasa relative minimum at xo.

() If f'(x) has the same sign [either f'(x) > 0 or f'(x) < O] on an open interval
extending left from xo and on an open interval extending right from xo, then f does
not have a relative extremum at xo.

We will prove part (a) and leave parts (b) and (c) as exercises.

Proof. We are assuming that f'(x) > 0 ontheinterval (a, x¢) and that f'(x) < 0 onthe
interval (xo, b), and we want to show that

f(xo) = f(x)

for al x inthe interva (a, b). However, the two hypotheses, together with Theorem 4.1.2
(and itsfollowing remark), imply that f isincreasing ontheinterval (a, xo] and decreasing
ontheinterval [xg, b). Thus, f(xg) > f(x)foral xin(a, b) withequality only at x. |

Example 2
(@ Locate the relative maximaand minimaof f(x) = 3x%3 — 15x2/3.

(b) Confirm that the resultsin part () agree with the graph of f.

Solution (a). The function f is defined and continuous for all real values of x, and its
derivativeis

5(x — 2
Flx) =5x2° —10x V3 =5 Y3(x — 2) = —(xl/s )
x

Since f’(x) doesnotexistif x = 0,andsince f'(x) = 0if x = 2, therearecritical numbersat
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Sign of f/(x) = 5x Y3(x — 2)

Figure4.2.5

[-2, 10] x [-15, 20]
xScl =2,yScl =5

f(x) = 3x3/3 - 15x%/3

Figure 4.2.6

f(x) =x3-3x2+3x—1

Figure4.2.7

7 <0
Concave down

50
Concave up

Relative Relative
maximum minimum
Figure4.2.8

x = 0and x = 2. Toapply thefirst derivativetest, we examinethesign of f’(x) onintervals
extending to the left and right of the critical numbers (Figure 4.2.5). Since the sign of the
derivative changes from positive to negative at x = 0, there is a relative maximum there,
and since it changes from negative to positive at x = 2, thereis arelative minimum there.

Solution (b). Theresultinpart (a) agreeswiththegraphof f showninFigure4.2.6. |

FOR THE READER.  Asdiscussed in the subsection of Section 1.3 entitled Errors of Omis-

sion, many graphing utilities omit portions of the graphs of functions with fractional expo-

nents and must be “tricked” into producing complete graphs; and indeed, for the functionin

thelast example both a calculator and a CASfailed to produce the portion of the graph over
. the negative x-axis. To generate the graph in Figure 4.2.6, apply the techniques discussed

in Exercise 29 of Section 1.3 to each term in the formulafor . Use a graphing utility to
generate this graph.

Example 3 Locatetherelative extremaof f(x) = x3 — 3x% + 3x — 1, if any.
Solution. Since f isdifferentiable everywhere, the only possible critical numbers corre-
spond to stationary points. Differentiating f yields

fi(x) =3x%2 —6x +3=3(x — 1)°

Solving f'(x) = Oyieldsonly x = 1. However, 3(x — 1)?> > Ofor all x, S0 f'(x) does not
change sign at x = 1; consequently, f does not have arelative extremum at x = 1. Thus,
f hasno relative extrema (Figure 4.2.7). <

FOR THE READER.
plain your reasoning.

How many relative extrema can a polynomial of degree n have? Ex-

Thereisanother test for relative extremarthat is often easier to apply than thefirst derivative
test. It is based on the geometric observation that afunction f has arelative maximum at a
stationary point if the graph of f isconcave down on an openinterval containing the point,
and it has arelative minimum if it is concave up (Figure 4.2.8).

4.2.4 THEOREM (Second Derivative Test).  Supposethat f istwice differentiable at xo.

(@ If f'(xo) =0and f”(xo) > 0, then f hasa relative minimum at xo.

(b) If f'(xp) =0and f”(xg) < 0, then f hasa relative maximum at x.

(¢) If f'(xp) =0and f”(xp) = O, then thetest isinconclusive; that is, f may have a
relative maximum, a relative minimum, or neither at xo.

We will prove parts (a) and (c) and leave part (b) as an exercise.

Proof (a). We are assuming that f”(xp) = 0 and f”(xo) > 0, and we want to show that
f hasarelative minimum at xo. It follows from our discussion at the beginning of Section
4.1 (with the function f replaced by f’) that if f”(xo) > O, then f'(x) < f’(xo) = Oforx
just to the left of xg, and f'(x) > f’'(xp) = Ofor x just to the right of xq. But then f hasa
relative minimum at xq by the first derivative test.

Proof (b). Consider the functions f(x) = x3, f(x) = x%, and f(x) = —x*. Itiseasy to
check that in all three cases f/(0) = 0 and f”(0) = O; but from Figure 1.6.4, f(x) = x*
has a relative minimum at x = 0, f(x) = —x* has arelative maximum at x = 0 (why?),
and f(x) = x° has neither arelative maximum nor arelative minimum at x = 0. |

Example 4 Locate the relative maxima and minima of f(x) = x* — 2x2, and confirm
that your results are consistent with the graph of .
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Solution.

fl(x) =4x®—4x =4x(x — D(x + 1)

f(x) =12x%2 - 4
Solving f'(x) = Oyields stationary pointsat x = 0, x = 1, and x = —1. Evaluating f” at
these pointsyields

f(0=-4<0

f'fH)=8>0

f'(-1)=8>0
sothereisarelativemaximumat x = Oandrelativeminimaatx = landatx = —1 (Figure
4.2.9). <

""""""""""""""""""""" In Section 4.1 we observed that the inflection points of acurve y = f(x) mark the points

ngEC%TOLHgoﬁ:fT'\gF'CANCE OF where the slopes of the tangent lines change from increasing to decreasing, or vice versa.
Thus, in the case where f is differentiable, f'(x) will have arelative maximum or relative
minimum at any inflection point of f (Figure 4.2.10); stated another way:

For adifferentiable function y = f(x), therate of change of y with respect to x will have
a relative extremum at any inflection point of f. That is, an inflection point identifies a
place on the graph of y = f(x) where the graph is steepest or where the graph is least
steep in the vicinity of the point.

Asanillustration of this principle, consider the flask shown in Figure 4.1.15. We observed
in Section 4.1 that if water is poured into the flask so that the volume increases at a constant
L L L L rate, then the graph of y versus has an inflection point when y isat the narrow point in the
neck. However, thisis aso the place where the water level isrising most rapidly.

y = y =
y = f(x) y=1(x)
f(x) = x*—2x? Slope
. Slope increasing
Figure4.2.9 decreasing
Slope
increasing ' I
I Slope I
| decreasing |
I X I X
% °
| |
| |
y | y '
| |
| |
|
N v=1® AR S
|
| |
! X ! X
% ] *o .

Figure 4.2.10
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EXERCISE SET 4.2 ™ Graphing Calculator CAS

1. In each part, sketch the graph of a continuous function f

with the stated properties.

(& f isconcave up ontheinterval (—oo, +o0) and has ex-
actly one relative extremum.

(b) f isconcave up on theinterval (—o, +) and has no
relative extrema

(c) Thefunction f has exactly two relative extremaon the
interval (—oo, 4+00), and f(x) — 4o asx — +oo.

(d) Thefunction f has exactly two relative extremaon the
interval (—oo, +20), and f(x) — —oo asx —> +oo.

2. In each part, sketch the graph of a continuous function f

with the stated properties.

(& f hasexactly onerelative extremum on (—oo, +x), and
f(x)—0asx— +owand asx — —co.

(b) f has exactly two relative extrema on (—oo, +x), and
f(x)—>0asx— 4o and asx — —oo.

(c) f hasexactly one inflection point and one relative ex-
tremum on (—oo, +0).

(d) f hasinfinitely many relative extrema, and f(x) — 0
asx — +o and asx — —co.

3. (8 Use both the first and second derivative tests to show
that f(x) = 3x? — 6x + 1 has a relative minimum at
x =1
(b) Useboththefirst and second derivativeteststo show that
f(x) = x% — 3x + 3 hasarelative minimum at x = 1
and arelative maximum at x = —1.

4. (8 Use both the first and second derivative tests to show
that f(x) = sin? x hasarelativeminimum at x = 0.
(b) Use both the first and second derivative tests to show
that g(x) = tan® x hasarelative minimum at x = 0.
(c) Give an informal verbal argument to explain without
calculus why the functions in parts (a) and (b) have
relative minimaat x = 0.

5. (a) Show that both of the functions f(x) = (x — 1)* and
g(x) = x% — 3x? 4 3x — 2 have stationary points at
x =1
(b) What does the second derivative test tell you about the
nature of these stationary points?
(c) What does the first derivative test tell you about the
nature of these stationary points?

6. (8 Show that f(x) = 1 — x®and g(x) = 3x* — 8x° both
have stationary pointsat x = 0.
(b) What does the second derivative test tell you about the
nature of these stationary points?
(c) What does the first derivative test tell you about the
nature of these stationary points?

In Exercises 7-12, locate the critical numbers and identify
which critical numbers correspond to stationary points.

7.@ f(x)=x+3%2-9%+1
() f(x)=x*—6x2-3

8 (@ f(x)=2x3—6x+7

(b) F(x) =3x*—4ax®

% @ )= 5 (b) fx) = x72
23
10.@ f0) =5 (b) f) = ¥x+2

11 @ f) =x"3(x +9)
12. (@) f(x) = x*3 —6x/3

(b) f(x) =cos3x
(b) f(x) =Isinx]
In Exercises 13-16, use the graph of f’ shown in the figure

toestimateall valuesof x at which f has(a) relative minima,
(b) relative maxima, and (c) inflection points.

13. y 14. y

\ y=f0

15. y

16. y=1'(x)

/\/2345\

In Exercises 17 and 18, use the given derivative to find al
critical numbersof f, and determine whether arelative max-
imum, relative minimum, or neither occurs there.

x2-1

7@ f0)=26"=5 O f)="13-

18. (@ f'(x) =x’(2x+D(x —1)

0 e = 222
N «3/x +1
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In Exercises 19-22, find the relative extrema using both the
first and second derivative tests.

19. f(x) =1—4x —x? 20. f(x) = 2x% — 9x2 + 12«
21. f(x):sinzx, O<x <27
22. f(x):%x—sinx, O<x <21

In Exercises 23-34, use any method to find the relative ex-
trema of the function f.

23. f(x) =x345xr—2 24, f(x) =x*— 24247

25. f(x) = x(x — 1)? 26. f(x) = x*+2x3

27. f(x) = 2x% —x* 28. f(x) = (2x —1)°

29. f(x) = x*® 30. f(x) = 2x +x%3

x2 . X

3L f(x):x2+l 32. f(x):x+2

3. f(r) = |x?— 4| M. f(x) = {92_ nor=s
xc—3, x>3

In Exercises 3538, find the relative extrema in the interval
0 < x < 27, and confirm that your resultsare consi stent with
the graph of f generated by a graphing utility.

R 35. f(x) = |sin2x| [ 36. f(x) = v/3x + 2sinx

Sinx
— COSx

g 37. f(x) =cos’x

In Exercises 39 and 40, use agraphing utility to generate the
graphs of f’ and f” over the stated interval, and then use
those graphs to estimate the x-coordinates of the relative ex-
tremaof f. Check that your estimates are consistent with the

graphof f.

~ 39. f(x):x4—24x2+12x, -5<x<5
R 40. f(x):sin%xCOSx, —n/2<x<m/2

In Exercises 4144, use a CASto graph /" and f” over the
stated interval, and then use those graphs to estimate the x-
coordinates of the relative extrema of f. Check that your
estimates are consistent with the graph of f.

10x — 3 x3—8x+7
41, i — 42. _-
=37 5 1g B %2 /@ 1
3 g2
43. = —
1=

44, f(x) =Vx4—sinPx +1
45. Ineach part, find k£ so that f has arelative extremum at the
point x = 3.

k
@ flx)=x>+-
X

(b) f&x)=—5—

X
x24+k

47.

48.

49.

50.

51.

46. (a8) UseaCASto graph the function

41
fo = x2+1
and use the graph to estimate the x-coordinates of the
relative extrema.
(b) Findthe exact x-coordinates by using the CASto solve
the equation f'(x) = 0.
Thetwo graphsintheaccompanying figuredepict afunction
r(x) and its derivative r'(x).
(8) Approximate the coordinates of each inflection point
onthegraph of y = r(x).
(b) Suppose that f(x) isafunction that is continuous ev-
erywhere and whose derivative satisfies

Fx) =24 r)

(i) What are the critical numbers for f(x)? At each
critical number, identify whether f(x) hasa(rela
tive) maximum, minimum, or neither a maximum
or minimum.

(if) Approximate f”(1).

Figure Ex-47

With r(x) asprovided in Exercise 47, let g(x) beafunction
that is continuous everywhere such that g'(x) = x — r(x).
For which values of x does g(x) have an inflection point?

Find values of a, b, ¢, and d so that the function

flx) = ax®+bx®+cx+d
has arelative minimum at (0, 0) and arelative maximum at
1,2).

Let 1 and g have relative maxima at xo. Prove or disprove:
(8 h + g hasarelative maximum at xq
(b) h — g hasarelative maximum at xg.

Sketch some curves that show that the three parts of the
first derivative test (Theorem 4.2.3) can be false without the
assumption that f is continuous at xo.
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PROPERTIES OF GRAPHS

A PROCEDURE FOR ANALYZING
GRAPHS

4.3 ANALYSIS OF FUNCTIONS lll: APPLYING TECHNOLOGY
AND THE TOOLS OF CALCULUS

In this section we will discuss how to use technology and the tools of calculus that
we developed in the last two sections to analyze various types of graphs that occur in
applications.

In many problems, the properties of interest in the graph of afunction are:

e Symmetries o periodicity

e x-intercepts e y-intercepts

o relative extrema o inflection points

o intervalsof increase and decrease e cCONncavity

e asymptotes e behaviorasx — +worasx — —w

Some of these properties may not be relevant in certain cases; for example, asymptotes are
characteristic of rational functions but not of polynomials, and periodicity is characteristic
of trigonometric functionshbut not of polynomial or rational functions. Thus, when analyzing
the graph of afunction £, it helps to know something about the general properties of the
family to which it belongs.

In a given problem you will usualy have a definite objective for your analysis. For
example, you may be interested in finding a graph that highlights all of the important
characteristics of f; or you may beinterested in something specific, say the exact locations
of the relative extrema or the behavior of the graph as x — 4« or as x — —o. However,
regardless of your objectives, you will usualy find it helpful to begin your analysis by
generating agraphwith agraphing utility. Asdiscussedin Section 1.3, someof thefunction’s
important characteristicsmay be obscured by compression or resol ution problems. However,
with this graph as a starting point, you can often use calculus to complete the analysis and
resolve any ambiguities.

There are no hard and fast rules that are guaranteed to produce all of the information you
may need about the graph of afunction f, but here is one possible way of organizing the
analysis of afunction (the order of the steps can be varied).

Step 1.  Useagraphing utility to generate the graph of f in some reasonable
window, taking advantage of any general knowledge you have about
the function to help in choosing the window.

Step 2. Seeif the graph suggests the existence of symmetries, periodicity, or
domain restrictions. If so, try to confirm those propertiesanalytically.

Step 3. Find the intercepts, if needed.

Step 4.  Investigate the behavior of the graph as x — +o0 and asx — —oc, and
identify al horizontal and vertical asymptotes, if any.

Step 5. Calculate f'(x) and f”(x), and usethese derivativesto determinethe
critical numbers, theintervalsonwhich f isincreasing or decreasing,
the intervals on which f is concave up and concave down, and the
inflection points.

Step 6. If you have discovered that some of the significant features did not
fall within the graphing window in Step 1, then try adjusting the
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window to include them. However, it is possible that compression or
resol ution problemsmay prevent you from showing all of thefeatures
of interest in a single window, in which case you may need to use
different windows to focus on different features. In some cases you
may even find that a hand-drawn sketch labeled with the location of
the significant features is clearer or more informative than a graph
generated with a graphing utility.
"""""""""""""""""""""" Polynomials are among the simplest functions to graph and analyze. Their significant
ANALYSIS OF POLYNOMIALS features are symmetry, intercepts, relative extrema, inflection points, and the behavior as
x — 4o and as x — —oo. Figure 4.3.1 shows the graphs of four typical polynomiasin x.
y y y ’ y
AN R
X /TN X ya\ X
N VA4V B MV

Figure4.3.1

The graphsin Figure 4.3.1 have properties that are common to all polynomials:

e The natural domain of a polynomial in x is the entire x-axis, since the only opera-
tionsinvolved in its formula are additions, subtractions, and multiplications; the range
depends on the particular polynomial.

« Polynomials are continuous everywhere.

o Graphs of polynomias have no sharp corners or points of vertical tangency, since
polynomials are differentiable everywhere.

« Thegraph of anonconstant polynomial eventually increases or decreaseswithout bound
asx — 4o Or as x — —oo, since the limit of a nonconstant polynomial as x — + or
asx — — is oo (See the subsection in Section 2.3 entitled Limits of Polynomials as
X — Fo).

s Thegraph of apolynomial of degreen hasat most n x-intercepts, at most n — 1 relative
extrema, and at most n — 2 inflection points.

The last property is a consequence of the fact that the x-intercepts, relative extrema, and
inflection points occur at real roots of p(x) = 0, p’(x) = 0, and p”(x) = 0, respectively,
s0 if p(x) has degree n greater than 1, then p’(x) hasdegreen — 1 and p”(x) has degree
n — 2. Thus, for example, the graph of aquadratic polynomial has at most two x-intercepts,
onerelative extremum, and no inflection points; and the graph of a cubic polynomial has at
most three x-intercepts, two relative extrema, and one inflection point.

FORTHEREADER.  Foreachof thegraphsinFigure4.3.1, count thenumber of x-intercepts,
relative extrema, and inflection points, and confirm that your count is consistent with the
degree of the polynomial.
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[-2,31 x[-3, 2]
xScl =1, yScl =
y = x3-x2—2x

Figure 4.3.2

GEOMETRIC IMPLICATIONS OF

MULTIPLICITY

Example 1 Figure 4.3.2 shows the graph of
y=x>—x?—2

produced on a graphing calculator. Confirm that the graph is not missing any significant
features.

Solution. We can be confident that the graph exhibits all the significant features of the
polynomial because the polynomial has degree 3, and three roots, two relative extrema, and
one inflection point are accounted for. Moreover, the graph indicates the correct behavior
asx — +o and as x — —oo, Since

3

lim (3 —x2—2x) = lim x® =4
X —> +o X —> +o
H 3 2 _ H 3 __
lim (x°—x“—2x) = lim x° = - |
X —> —© X —> —©

Arootx = r of apolynomial p(x) hasmultiplicity mif (x —r)™ divides p(x) but (x —r)"+1
doesnot. A root of multiplicity liscalledasimpleroot. Thereisacloserelationship between
the multiplicity of aroot of a polynomial and the behavior of the graph in the vicinity of
theroot. Thisrelationship, stated below, isillustrated in Figure 4.3.3.

o o) o A

NN /X

Roots of even multiplicity Roots of odd multiplicity (>1) Simple roots

Figure 4.3.3

<

10

= x3(3x —4)(x + 2)?

Figure 4.3.4

4.3.1 THE GEOMETRIC IMPLICATIONS OF MULTIPLICITY. Suppose that p(x) is a

polynomial with a root of multiplicity m at x = r.

(a) If miseven, thenthegraphof y = p(x) istangent to the x-axisat x = r, does not
cross the x-axis there and does not have an inflection point there.

(b) If m isodd and greater than 1, then the graph is tangent to the x-axisat x = r,
crosses the x-axis there, and also has an inflection point there.

(c) Ifm = 1 (sothattheroot issimple), then the graph is not tangent to the x-axis at
x = r, crosses the x-axisthere, and may or may not have an inflection point there.

Example 2 Make a conjecture about the behavior of the graph of
y = x3@x —d(x +2)?
in the vicinity of its x-intercepts, and test your conjecture by generating the graph.

Solution. The x-intercepts occur at x = 0,x = 3, and x = —2. Theroot x = 0 has
multiplicity 3, which isodd, so at that point the graph should be tangent to the x-axis, cross
the x-axis, and have an inflection point there. The root x = —2 has multiplicity 2, which
is even, so the graph should be tangent to but not cross the x-axis there. The root x = ‘5" is
simple, so at that point the curve should cross the x-axis without being tangent to it. All of
thisis consistent with the graph in Figure 4.3.4. |
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Example 3 Generate or sketch a graph of the equation
y=x2=3xr+2=(x+2)(x —1)?
and identify the exact locations of the intercepts, relative extrema, and inflection points.

Solution. Figure 4.3.5 shows a graph of the given equation produced with a graphing
utility. Since the polynomial has degree 3, al roots, relative extrema, and inflection points
are accounted for in the graph: there are three roots (a simple negative root and a positive
root of multiplicity 2), and there are two relative extrema and one inflection point. The
following analysis will identify the exact locations of the intercepts, relative extrema, and
inflection points.

e x-intercepts: Setting y = Oyieldsrootsat x = —2and at x = 1.
o y-intercept: Settingx = Oyieldsy = 2.
e Behavior asx — +o and asx — —o: The graphin Figure 4.3.5 suggests that the graph

increases without bound as x — o0 and decreases without bound as x — —«. Thisis
confirmed by the limits

lim 32=3x+2) = lim =+

X —> 4o X —> +00
lim 3=3x+2) = lim x°= -
X —> —© X—> —ow

o Derivatives:

d
Y 32 -3=3x—1x+1)
dx

d2y

oz o

« Intervalsof increase and decrease; relative extrema; concavity: Figure 4.3.6 showsthe
sign pattern of the first and second derivatives and what they imply about the graph
shape.

Figure 4.3.7 shows the graph labeled with the coordinates of the intercepts, relative
extrema, and inflection point. <

(1,4
-1 1
! ! X
e . 0+ ++++ dy/dx=3Xx-1)(x+1)
Increasing Sta Decreasing Sta Increasing y
0 X
|
———————————— O+ +++++++++++ d¥y/dx?=6x
Concave down Inflection Concave up y
(=2,0)
-2 -1
Rough sketch of f
y=x3-3x+2
y=x3-3x+2
Figure 4.3.6 Figure 4.3.7

GRAPHING RATIONAL FUNCTIONS

Rational functions (ratios of polynomials) are more complicated to graph than polynomials
because they may have discontinuities and asymptotes.
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[-10, 10] x [-10, 10]
xScl = 1, yScl = 1

Figure 4.3.8

Example 4 Generate or sketch a graph of the equation

2x%> —8

x2—-16

and identify the exact location of the intercepts, relative extrema, inflection points, and
asymptotes.

y:

Solution. Figure 4.3.8 shows a calcul ator-generated graph of the equation in the window
[—10, 10] x [—10, 10]. The figure suggests that the graph is symmetric about the y-axis
and has two vertical asymptotes and a horizontal asymptote. The figure also suggests that
there is arelative maximum at x = 0 and two x-intercepts. There do not seem to be any
inflection points. The following analysis will identify the exact location of the key features
of the graph.

o Symmetries: Replacing x by —x doesnot change the equation, so thegraphissymmetric
about the y-axis.

o x-intercepts: Setting y = 0 yieldsthe x-interceptsx = —2and x = 2.
o y-intercept: Setting x = Oyieldsthe y-intercept y = %
o \ertical asymptotes: Setting x?> — 16 = Oyieldsthe solutionsx = —4 andx = 4. Since

neither solution is aroot of 2x? — 8, the graph has vertical asymptotes at x = —4 and
x =4

o Horizontal asymptotes: The limits
2 2 _ 2
2x2 -8 lim (8/x%)

lim - - =
x40 x2 —16  x—+e 1 — (16/x2)

i 22-8 . 2—(8/x)
x>0 x2—16 x—-»1—(16/x2)

yield the horizontal asymptote y = 2.

Theset of valueswhere x -interceptsor vertical asymptotesoccur is{—4, —2, 2, 4}. These
values divide the x-axis into the open intervals

(—oo, —4), (—4,-2), (=2,2), (2,4, (4, +x)

Over each of these intervals, y cannot change sign (why?). We can find the sign of y on
each interval by choosing an arbitrary test value in the interval and evaluating y = f(x) at
the test value (Table 4.3.1).

Table4.3.1
TEST y= 2x*-8
INTERVAL VALUE x2—16 SIGN OF Y

(=00, —4) x=-5 y= 14/3

+

(-4,-2) =-3 y = -10/7 -
(-2,2) X= y= 12 +
2,4 x= 3 y =-10/7 -
(4, +00) X = y= 14/3 +

The information in Table 4.3.1 is consistent with Figure 4.3.8, so we can be certain
that the calculator graph has not missed any sign changes. The next step is to use the first
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[-10, 10] x [-10, 10]
xScl = 1, yScl = 1

@

[—4, 4] x [-2, 2]
xScl = 1, yScl = 1

(b)

Figure 4.3.10
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and second derivatives to determine whether the calculator graph has missed any relative
extremaor changes in concavity.
o Derivatives:
dy  (x?—16)(4x) — (2x* - 8)(2x) 48x
dx (x2 — 16)° (x2 - 16)°
d?y _ 48(16 + 3x?)
dx? — (y2 — 16)°

(verify)

« Intervals of increase and decrease; relative extrema: A sign anaysis of dy/dx yields

- ? ! X

A+ doot +++H+0— —— —— 00— — — - — Sign of dy/dx
Incr Undef Incr Sta Decr Undef Decr y

Thus, thegraphisincreasing ontheintervals (—oo, —4) and (—4, Q]; and it isdecreasing
ontheintervals [0, 4) and (4, +«). Thereisarelative maximum at x = 0.

« Concavity: A sign analysis of d%y/dx? yields

‘ .
A+ttt —————— - — — — w+ + + + + Sign of d%y/dx?
Concave Concave Concave 'y

up down up

There are changesin concavity at the vertical asymptotes, x = —4 and x = 4, but there
are no inflection points.

This analysis confirms that our calculator-generated graph exhibited all important fea-
turesof therational function. Figure4.3.9 showsagraph of the equation with theasymptotes,
intercepts, and rel ative maximum identified. <

Example 5 Generate or sketch a graph of
x2 -1
43
and identify the exact locations of all asymptotes, intercepts, relative extrema, and inflection
points.

y:

Solution. Figure 4.3.10a shows a calculator-generated graph of the given equation in
the window [—10, 10] x [—10, 10], and Figure 4.3.10b shows a second version of the
graph that gives more detail in the vicinity of the x-axis. These figures suggest that the
graph is symmetric about the origin. They also suggest that there are two relative extrema,
two inflection points, two x-intercepts, a vertical asymptote at x = 0, and a horizontal
asymptote at y = 0. The following analysis will identify the exact locations of all the key
features and will determine whether the cal culator-generated graphs in Figure 4.3.10 have
missed any of these features.

o« Symmetries: Replacing x by —x and y by —y yields an equation that simplifies back to
the original equation, so the graph is symmetric about the origin.

o x-intercepts: Setting y = 0yieldsthe x-interceptsx = —land x = 1.

e y-intercept: Setting x = 0 leadsto a division by zero, so that there isno y-intercept.

o \ertical asymptotes: Setting x3 = 0 yields the solution x = 0. This is not a root of
x? — 1, sox = Oisavertical asymptote.
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Figure4.3.11

o Horizontal asymptotes: The limits

2 1_ 1
. 3
lim = lim ~—* = Ilim - =0
x—>+w X X =+ X —> 0o X
2 1 1
.oxc=1 . == . 1
lim = lim *~—— = Ilim — =0
X—>—o X X— —o 1 X——w X

yield the horizontal asymptote y = 0.
o Derivatives:
dy x3(2x) — (x2 = 1)(3x?) B 3—x2
dx (xs)z x4

& Cx(=20) - B—xH(&3)  2(x*—6)
dx? (x4)2 b

o Intervals of increase and decrease; relative extrema:

3 0 V3 X
! ! !
————— 0+ + + + +o0o+ + +++0————— Sign of dy/dx
Decr Sta Incr Undef Incr Sta  Decr y
This analysis reveals a relative minimum at x = —+/3 and a relative maximum at
X = \/§
« Concavity:
6 0 V6 X
1 1 1
0+ 4+ A+ttt ————— 0 ++ + + Sign of d?y/dx?
Concave Infl Concave Undef Concave Infl Concave y
down up down up

This analysis reveals that changes in concavity occur at the vertical asymptote x = 0
and at the inflection pointsat x = —v/6 and at x = /6.

Figure 4.3.11 shows a table of coordinate values at the relative extrema and inflec-
tion points together with a graph of the equation on which we have emphasized these
points. |

Suppose that the numerator polynomial of arational function f(x) has degree greater
than the degree of the denominator polynomial d(x). Then by division we can write

r(x)

fx)=qx) + 400
where g (x) and r(x) are polynomials and the degree of r(x) isless than that of d(x). In
this case, f(x) will be asymptotic to the quotient polynomial ¢ (x); that is,

im [f(@) —q(] =0 ad i [f(x) —q(x)] =0

(see the end of Exercise Set 2.3). Exercises 48-54 at the end of this section deal with the
instance of an oblique asymptote, where the numerator has degree one more than the degree
of the denominator. Example 6 illustrates an instance where the difference in degree istwo.

x3—x2-8

Example 6 Generate or sketch agraphof y = 1
x —

Solution. Figure 4.3.12 shows a computer-generated graph of

x3—x2-8

fo) = ——
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Note that

fa)=x2— 2

x—1

S0 f(x) &~ x? [since8/(x — 1) ~ 0] asx — —c and asx — 4. Thus, wewould expect the
graph to be concave up for large values of x, but the vertical asymptote at x = 1 indicates
that f(x) should be concave down in aninterval just to theright of 1, so there should be an
inflection point to the right of x = 1. Also, our sketch indicates a relative minimum to the
left of x = 1. To determine the locations of these features we proceed as follows.

« Symmetries: There are no symmetries about a vertical axis or about a point.

o x-intercepts: Setting y = 0 leads to solving the equation x* — x> — 8 = 0. From
Figure 4.3.12 it appearsthereis one solution in the interval [2, 3]. Using asolver yields
x ~ 2.39486.

e y-intercepts: Setting x = 0 yieldsthe y-intercept y = 8.
o \ertical asymptotes. Setting x = 1 would produce a nonzero numerator and a zero
denominator for f(x), sox = lisavertical asymptote.
« Horizontal asymptotes: There are no horizontal asymptotes; however, as noted,
8

— 2 _
f@) =5 = —

SO

lim [f(x) 22 = lim — 81=o and  lim [f(x) =x% =0

xX—>—0 X —

Thus, f(x) isasymptoticto y = x? asx — —oc and as x — +.
o Derivatives:

N 8 1 _ 8 8

f(x)_ﬁ[x x—l]_2x+(x—1)2_2x+(x—l)2

gy d 8 B 16 5 16

f(x)_E[ZH(x—l)Z}_ Gc—13 T x-13
« Intervals of increase and decrease; relative extrema: f/(x) = 0 when

B 8

(=12

or when 2(x3 — 2x? 4+ x + 4) = 2(x + 1)(x? — 3x + 4) = 0. The only real solution to
thisequationisx = —1.
-1 1 x
| |

77777 0+ + + + +oot+ + + +++ + + + + + Sign of dy/dx
Decr Sta Incr Undef Incr y

The analysisreveals arelative minimum f(—1) = 5atx = —1.
o Concavity: f”(x) = 0when
16
T a-1?
orwhen(x —1)=8.Thenx —1=2,0x =3.

1 3

| | X

FH A+t F A+ F b0 — — —— 0+ ++ ++ Sign of d¥y/dx?
Concave Concave Concave 'y
up down up

Theanalysisrevealsaninflection point at x = 3. The coordinates of the inflection point
are (3, 5).
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GRAPHS WITH VERTICAL
TANGENTS AND CUSPS

Figure 4.3.13

Generated by Mathematica

y = (x-473

Figure 4.3.15

Figure4.3.13 showsagraph of y = f(x) with the relative minimum and inflection point
highlighted and the asymptotes indicated. <

Figure4.3.14 showsfour curve elementsthat are commonly found in graphsof functionsthat
involveradicalsor fractional exponents. Inall four cases, thefunctionisnot differentiable at
xo because the secant line through (xo, f(x0)) and (x, f(x)) approaches avertical position
asx approaches xo from either side. Thus, in each case, the curve has avertical tangent line
at (xo, f(xo0))-

It can be shown that the graph of afunction f has a vertical tangent line at (xo, f(xo))
if f iscontinuousat xo and f’(x) approaches either +o or —oo asx — xg and asx — x; .
Furthermore, in the case where f”(x) approaches 4+« from one side and —o from the other
side, the function f issaid to have acusp at xo.

A Y

\ \
\ \
. . . .

%o %o %o %o
lim f'(X) = +oo lim f'(X) = —oo lim f'(X) = —o0 lim f'(x) = +oo
X=X¢ X=X¢ X=X¢ X=x¢
lim f(X) = +oo lim f(X) = —o0 lim f(X) = +oo lim f'(X) = —o0
X=Xy X=Xy X=Xy X=Xy
@ (b) © (d)
Figure4.3.14

REMARK. It isimportant to observe that vertical tangent lines occur only at points of
nondifferentiability, whereas nonvertical tangent lines occur at points of differentiability.

Example 7 Generate or sketch agraph of y = (x — 4)%3.

Solution. Figure4.3.15 showsacomputer-generated graph of theequation y = (x —4)%/3,
(As suggested in the discussion preceding Exercise 29 of Section 1.3, we had to trick the
computer into producing the left branch by graphing the equation y = |x — 4|%3.) Tolocate
the important features of this graph, welet f(x) = (x — 4)%/3 and proceed as follows.

o Symmetries: There are no symmetries about the coordinate axes or the origin (verify).
However, the graph of y = (x — 4)%3 is symmetric about the line x = 4, sinceitisa
translation (four units to the right) of the graph of y = x%3, which is symmetric about
the y-axis.

e x-intercepts: Setting y = 0yieldsthe x-intercept x = 4.

o y-intercepts: Setting x = 0 yieldsthe y-intercept y = N4

« \ertical asymptotes: None, since f(x) = (x — 4)?/3 is continuous everywhere.

« Horizontal asymptotes: None, since

lim (x4 =+ and lim (x =473 =+

X — 4w

o Derivatives:

dy , 2 —~1/3 2

—_— = = — — 4 [ —
g T =30-9 3(x — 4173
d?y 2

= f"(0) = —S(x — 4=

dx2 9(x — 4)4/3
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« Relative extrema; concavity: Thereisacritical number at x = 4, since f isnot differ-
entiable there; and by the first derivative test there is arelative minimum at that critical
number, since f'(x) < 0if x < 4and f'(x) > 0if x > 4. Since f"(x) < Oif x # 4,
the graph is concave down for x < 4 and for x > 4.

« \ertical tangent lines: There isavertical tangent line and cusp at x = 4 of thetypein
Figure 4.3.14d since f(x) = (x — 4)%3 iscontinuous at x = 4 and
lim f'(x) = lim 2 =+
xe4+f *) = x—4+ 3(x —4)1/3 =
XILn} flx) = x“jl— T = —
Combining the preceding information with asign analysis of thefirst and second deriva-
tivesyields Figure 4.3.16. This confirmsthat the computer-generated graphin Figure 4.3.15
exhibited the important features of the graph. |

X

___________ + 4+ +++++++  Signofdy/dx
Decreasing Cusp Increasing y
4 X
!
————————————————————— Sign of d?y/dx?
Concave down Concave down y

Rough sketch
of y = (x—4)2/3

Figure 4.3.16

Example 8 Generate or sketch agraph of y = 6x/3 + 3x#/3,

Solution. Figure 4.3.17 shows a computer-generated graph of the equation. Once again,
we had to call on the discussion preceding Exercise 29 of Section 1.3 to trick the computer
into graphing a portion of the graph over the negative x-axis. (Seeif you can figure out how
to do this.) To find the important features of this graph, we let

fx) = 6x /3 4+ 33 = 3x1/3(2 + x)
and proceed as follows.

« Symmetries. There are no symmetries about the coordinate axes or the origin (verify).
o x-intercepts: Setting y = 3x%3(2+ x) = Oyieldsthe x-interceptsx = 0Oand x = —2.
e y-intercept: Setting x = 0 yieldsthe y-intercept y = 0.

« \ertical asymptotes: None, since f(x) = 6x%/3 4 3x*3 is continuous everywhere.

« Horizontal asymptotes. None, since

lim (6xY3 4 3x¥3) = lim W32+ x) = 4w
X — o0

X —> 4o

lim (6x%+3x*"%) = lim 3xY32+x) =+

X — —

o Derivatives:

d 2(2x +1

D i) = 20234 4B = 2231 4 oy = 22 A D

dx 2/3

d? 4 4 4 4(x -1
y — f//(x) — __x75/3 + _x72/3 — _x75/3(_1+x) — (X )

dx? 3 3 3 3y5/3
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Relative extrema; vertical tangent lines; concavity: The critical numbersarex = O and
x = —%. From the first derivative test and the sign analysis of dy/dx in Figure 4.3.18,

thereisarelativeminimumat x = —%. Thereisapoint of vertical tangency at x = 0,
since
. . 2(2x+1)
/ —_— —
xl—|>r84r f x) = xlllTJ]Jr x2/3 -
. , . 22x+1)
MW=l s =t

From thesign analysis of d2y/dx? in Figure 4.3.18, the graph is concave up for x < 0,
concave down for 0 < x < 1, and concave up again for x > 1. There are inflection
points at (0, 0) and (1, 9).

Combining the preceding information with asign analysis of thefirst and second deriva-

tives yields the graph shape shown in Figure 4.3.18.

1

T2 0 X
! !
——————————— O+++oo+ + + + + + + + + + + + Sign of dy/dx
Decreasing Sta Incr Increasing y
1
2 0 1 X
\ ! ! >
o 0+ + +++  Sign of d3y/dx?
Concave Concave Concave vy
up Rel Vet 90N jpp  UP

Figure 4.3.18

This confirms that the computer-generated graph in Figure 4.3.15 exhibits most of the

important features of the graph, except for the fact that it did not revea the very subtle
inflection point a x = 1. In this case the artistic rendering of the curve in Figure 4.3.18
emphasizes the subtleties of the graph shape more effectively than the computer-generated
graph. |

EXERCISE SET 4.3 ™ Graphing Calculator

In Exercises 1-10, give a graph of the polynomial and |abel

R~ 9 x(x— 1)3 ~ 10. x° + 5x*

the coordinates of the stationary points and inflection points. In Exercises 11-22, give agraph of the rational function and

Check your work with a graphing utility.

HLax*—2c-3
~ 3 -3 +1
K5 21
~ T 3x® — 5x?

label the coordinates of the stationary points and inflection
points. Show thehorizontal and vertical asymptotes, and | abel

N2 1+x-— x2 them with their equations. Check your work with a graphing
K 4 2% -3 +12v +9 utility.

K 6. x*—2x*—12 . 2

K 8. 3yt + 4x3 Bll.x_3 K~ 12 e N~ 13 ey
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2 2 _
N 14 xz ! K 15. x* — 1 KN 16 2 5 L In Exercises 29-36, give a graph of the function and iden-
* . +1 * x tify thelocations of all critical numbersand inflection points.
-1 8 x—1 Check your work with a graphing utility.
K~ 17 e B18.4_X2 N~ 19 24
x+3 x+2 x2—-1 3
20. 21, — 22, ———— 29. Vx2-1 30. vx2—4
B xz —4 B x2 —4 B x3 -1 B X 23 B X 43
R 3L 2x+3x K 32 4x —3x
In Exercises 23-26, the graph of the rational function crosses K 33 x- /3 x N 34 43 _ 43
its horizontal asymptote. Give a graph of the function and 8(v/x — 1) 1+ x
label the coordinates of the stationary points and inflection = [~ 35. — ~ 36. 1 Jx
—A/X

points. Show thehorizontal and vertical asymptotes, and |abel
the point(s) where the graph crosses a horizontal asymptote.
Check your work with a graphing utility.

(x — 1)? 32 —4x — 4
N~ 23 2 K~ 24. B a— _
X — 3 1 .
B25.4+ s E’ZG.Z‘F;—; B39
27. In each part, match the function with graphs I-VI without K 41
using a graphing utility, and then use a graphing utility to K 42

generate the graphs.

43.
@ x1/3 (b) x1/4 (© xl/5 B
(d) x2/5 (e) )C4/3 (f) x—1/3

1
T
111
Ny,oEe
-1
VI y

y
-
1
y
o
1
y
\/ 1+ 46
X X
Y 3 C,
1

Figure Ex-27 47,

28. Sketch the general shape of the graph of y = x'/7, and then
explain in words what happens to the shape of the graph as 48.
n increases if
(a) n isapositive even integer
(b) n isapositive odd integer.

In Exercises 3742, give a graph of the function and iden-
tify thelocations of al relative extremaand inflection points.
Check your work with a graphing utility.

x 4+ Sinx ~ 38. x — cosx
sinx + cosx R 40. v/3cosx + sinx
sinfx, O0<x<2r

Cxtanx, —mw/2<x<m/2

In each part: (i) Make a conjecture about the behavior of the
graph in the vicinity of its x-intercepts. (ii) Make a rough
sketch of the graph based on your conjecture and the limits
of the polynomials as x — +oc0 and as x — —co. (iii) Com-
pare your sketch to the graph generated with a graphing
utility.

@ y=xx=Dx+1) (b) y=x*(x—D*x+1?
© y=x*0x =D*(x +1° (d) y =x(x - D°(x + 1*

. Sketch the graph of y = (x — a)™(x — b)" for the stated

valuesof m and n, assumingthat a < b (six graphsintotal).
@m=1n=123 b)m=2,n=23
C)m=3, n=3

In each part, make arough sketch of the graph using asymp-
totes and appropriate limits but no derivatives. Compare
your sketch to that generated with a graphing utility.

3W?-8 x2 4+ 2x
@ )’:m (b)yzf
2x — x2 x2
(C)y=7xz_ﬂ_2 (Ol)y=xiz_x_2
Sketch the graph of
1
YT G~k —b)

assuming that a # b.

Provethat if a # b, then the function
1
T = e

is symmetric about theline x = (a + b)/2.

(Oblique Asymptotes) If arational function P (x)/Q(x) is
such that the degree of the numerator exceeds the degree
of the denominator by one, then the graph of P(x)/Q(x)
will have an oblique asymptote, that is, an asymptote that is
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neither vertical nor horizontal. To see why, we perform the
division of P(x) by Q(x) to obtain
P(x) R(x)
—— =(ax+b) +
Q(x) 0(x)
whereax + b isthe quotient and R (x) istheremainder. Use
the fact that the degree of the remainder R(x) is less than
the degree of the divisor Q(x) to help prove

. P(x) B
i |G x| -0
. P(x) B
Jim | G x| =

Asillustrated in the accompanying figure, these results tell
us that the graph of the equation y = P(x)/Q(x) “ap-
proaches’ the line (an oblique asymptote) y = ax + b as
X —> 00 OF aSx — —oo.

y
y= P00
U
Cm—(axﬂj)
Q(X)
P(x) y=ax+b
(ax+b) - 2%
- P
v) 7w
Figure Ex-48

In Exercises 49-53, sketch the graph of the rational function.
Show all vertical, horizontal, and oblique asymptotes (see

Exercise 48).
2_2 2_2x-3 —2)3
49. * go, o273 5 072
X x4+ 2 x2
.3
52, 4% 53 a1 -t
X2 x  x2
54. Find al values of x where the graph of
2x3 —3x+4
y=——"7F—"
X

crosses its oblique asymptote. (See Exercise 48.)

55.

56.

57.

58.

59.

60.

Let f(x) = (x3+ 1)/x. Show that the graph of y = f(x)
approaches the curve y = x? asymptotically. Sketch the
graph of y = f(x) showing this asymptotic behavior.

Let f(x) = 2+ 3x — x%)/x. Show that y = f(x) ap-
proaches the curve y = 3 — x2 asymptotically in the sense
described in Exercise 55. Sketch the graph of y = f(x)
showing this asymptotic behavior.

A rectangular plot of land is to be fenced off so that the
areaenclosed will be 400 ft?. Let L bethelength of fencing
needed and x the length of one side of the rectangle. Show
that L = 2x + 800/x for x > 0, and sketch the graph of L
versus x for x > 0.

A box with a square base and open top is to be made from
sheet metal so that its volume is 500 in®. Let S be the area
of the surface of the box and x the length of a side of the
square base. Show that S = x2 + 2000/x for x > 0, and
sketch the graph of S versusx for x > 0.

The accompanying figure shows a computer-generated
graph of the polynomial y = 0.1x%(x — 1) using aviewing
window of [—2, 2.5] x [—1, 5]. Show that the choice of the
vertical scale caused the computer to miss important fea-
tures of the graph. Find the features that were missed and
make your own sketch of the graph that shows the missing
features.

The accompanying figure shows a computer-generated
graph of the polynomial y = 0.1x5(x + 1)? using aviewing
window of [—2, 1.5] x [—0.2,0.2]. Show that the choice
of the vertical scale caused the computer to missimportant
featuresof the graph. Find thefeaturesthat were missed and
make your own sketch of the graph that shows the missing
features.

5 0.2
: 2y
2 -2 /f & 1
L ! -0.1
-2 -1 40 1 2 .02
Generated by Mathematica Generated by Mathematica
Figure Ex-59 Figure Ex-60
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4.4 RECTILINEAR MOTION (MOTION ALONG A LINE)

In Section 1.5 we discussed the motion of a particle moving with constant velocity
along a line, and in Section 3.1 we discussed the motion of a particle moving with
variable velocity along a line. In this section we will continue to investigate situations
in which a particle may move back and forth with variable velocity along a line. Some
examples are a piston moving up and down in a cylinder, a buoy bobbing up and
down in the waves, or an object attached to a vibrating spring.

In this section we will assume that a point representing some object is alowed to move in
either direction along a coordinate line. Thisis called rectilinear motion. The coordinate
line might be an x-axis, a y-axis, or an axis that isinclined at some angle. To avoid being
specific, we will denote the coordinate line as the s-axis. We will assume that units are
chosen for measuring distance and time and that we begin observing the particle at time
t = 0. Asthe particle moves along the s-axis, its coordinate is some function of the elapsed
timet, say s = s(¢). Wecall s(¢) the position function of the particle, and we call the graph
of s versust the position versustime curve.

Figure4.4.1 showsatypical position versustime curvefor aparticlein rectilinear motion.
We can tell from that graph that the coordinate of the particle at timet = 0 is sq, and we
can tell from the sign of s when the particle is on the negative or the positive side of the
origin asit moves along the coordinate line.

Example 1 Figure 4.4.2a shows the position versus time curve for ajackrabbit moving
along an s-axis. In words, describe how the position of the rabbit changes with time.

Solution. The rabbit is at s = —3 at time ¢+ = 0. It moves in the positive direc-
tion until time ¢ = 4, since s is increasing. At time ¢ = 4 the rabbit is at position s = 3.
At that time it turns around and travels in the negative direction until time ¢t = 7, since
s is decreasing. At time ¢ = 7 the rabbit is at position s = —1, and it remains stationary

thereafter, since s is constant for + > 7. Thisisillustrated in Figure 4.4.2b. <
S

5

4

3

2

1

o/ ‘

1 t>7

2/ _ t=4

-3 tzo@ > }

4 S

75 1 1 1 1 1
012345678910 -3 - ! 3

(@) (b)

Figure4.4.2

We stated in Section 3.1 that the instantaneous velocity of a particle at any time can be
interpreted as the slope of the position versus time curve of the particle at that time. Since
the slope of thiscurveisalso given by the derivative of the position function for the particle,
we make the following formal definition of the velocity function.
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0
S(t) increasing
v(t) =s(t)>0
@
()
S(t) decreasing
v(t)=s'(t) <0

(b)
Figure4.4.3
SPEED VERSUS VELOCITY
AS
40 B
: 1 / 1 t
4 6 8

-40

Position versus time

<

40

AN

-40

Velocity versus time

=3

40

—

—40

Speed versus time

Figure4.4.4

ACCELERATION

4.4.1 DEFINITION. Ifs(z) istheposition function of aparticle moving on acoordinate
ling, then the instantaneous velocity of the particle at time ¢ is defined by

d
v(t) = 5'(t) = d—“; )

Since the instantaneous velocity at a given timeis equal to the slope of the position versus
time curve at that time, the sign of the velocity tells us which way the particle is moving—
a positive velocity means that s is increasing with time, so the particle is moving in the
positive direction; a negative velocity meansthat s is decreasing with time, so the particle
is moving in the negative direction (Figure 4.4.3). For example, in Figure 4.4.2 the rabbit
is moving in the positive direction between timess = O and ¢+ = 4 and is moving in the
negative direction betweentimest = 4andt = 7.

Recall from our discussion of uniform rectilinear motion in Section 1.5 that there is a
distinction between the terms speed and velocity—speed describes how fast an object is
moving without regard to direction, whereas vel ocity describes how fast it ismoving and in
what direction. Mathematically, we define the instantaneous speed of a particle to be the
absolute value of its instantaneous vel ocity; that is,

instantaneous
speed at =lv@®)| =
time ¢

ds

T )

For example, if two particles on the same coordinate line have velocities v = 5 m/s and
v = —5 m/s, respectively, then the particles are moving in opposite directions, but they
both have a speed of |v] = 5m/s.

Example 2 Lets(r) = 13 — 6¢2 be the position function of a particle moving along an
s-axis, where s isin metersand ¢ isin seconds. Find the instantaneous vel ocity and speed,
and show the graphs of position, velocity, and speed versus time.

Solution. From (1) and (2), the instantaneous vel ocity and speed are given by

d
v(r) = d—: —32—12 and |u(r)| = |32 — 12|
The graphs of position, velocity, and speed versus time are shown in Figure 4.4.4. Observe
that velocity and speed both have units of meters per second (m/s), since s isin meters (m)

and timeisin seconds (s). ) |

The graphs in Figure 4.4.4 provide a wealth of visua information about the motion of
the particle. For example, the position versus time curve tells us that the particle is on the
negative side of the originfor 0 < ¢ < 6, ison the positive side of the origin for t > 6, and
isat the origin at timest = 0 and + = 6. The velocity versus time curve tells us that the
particleismoving in the negative directionif 0 < r < 4, ismoving in the positive direction
if r > 4, and ismomentarily stopped at timesr = 0 and r = 4 (the velacity is zero at those
times). The speed versus time curve tells us that the speed of the particle isincreasing for
0 <t < 2, decreasing for 2 < ¢ < 4, and increasing again for ¢ > 4.

In rectilinear motion, the rate at which the velocity of a particle changeswith timeiscalled
its acceleration. More precisely, we make the following definition.
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4.4.2 DEFINITION. If s(r) isthe position function of aparticle moving on acoordinate
line, then the instantaneous acceleration of the particle at time ¢ is defined by

a(t) =v'(t) = — (3)

dv
dt

or aternatively, since v(t) = s'(1),

d2
a@t) = §"(t) = d—; @)

Example 3 Lets(r) = 13 — 612 be the position function of a particle moving along an
s-axis, where s isin meters and ¢ is in seconds. Find the instantaneous acceleration a (1),
and show the graph of acceleration versus time.

Solution. From Example 2, the instantaneous vel ocity of the particleisv(r) = 3% — 12¢,
so the instantaneous acceleration is

dv
t)=—=6r—12
a(t) dt

and the acceleration versus time curve is the line shown in Figure 4.4.5. Note that in this
example the acceleration has units of m/s?, since v isin meters per second (m/s) and time
isin seconds (s). <

We will say that a particle in rectilinear motion is speeding up when its instantaneous
speed is increasing and is slowing down when its instantaneous speed is decreasing. In
everyday language an object that is speeding up is said to be “accelerating” and an object
that is lowing down is said to be “decelerating”; thus, one might expect that a particle
in rectilinear motion will be speeding up when its instantaneous acceleration is positive
and slowing down when it is negative. Although this is true for a particle moving in the
positive direction, it is not true for a particle moving in the negative direction—a particle
with negative velocity is speeding up when its acceleration is negative and slowing down
whenitsaccelerationispositive. Thisisbecauseapositiveaccelerationimpliesanincreasing
velocity, and increasing anegative vel ocity decreasesits absolute value; similarly, anegative
acceleration implies a decreasing velocity, and decreasing a negative velocity increases its
absolute value.

The following statement, which we will ask you to prove in Exercise 39, summarizes
these informal idess.

4.4.3 INTERPRETING THE SIGN OF ACCELERATION. A particlein rectilinear motion
is speeding up when its velocity and acceleration have the same sign and slowing down
when they have opposite signs.

FORTHEREADER.  For aparticleinrectilinear motion, what is happening when v(z) = 0?
Whena(r) = 0?

Example 4 In Examples 2 and 3 we found the velocity versus time curve and the
acceleration versus time curve for a particle with position function s(r) = 3 — 6:2. Use
those curves to determine when the particle is speeding up and slowing down, and confirm
that your results are consistent with the speed versus time curve obtained in Example 2.

Solution. Over thetimeinterval 0 < ¢ < 2 the velocity and acceleration are negative, so
the particle is speeding up. This is consistent with the speed versus time curve, since the
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ANALYZING THE POSITION VERSUS
TIME CURVE

speed is increasing over this time interval. Over the time interval 2 < ¢ < 4 the velocity
is negative and the acceleration is positive, so the particle is slowing down. This is aso
consistent with the speed versus time curve, since the speed is decreasing over this time
interval. Finally, onthetimeinterval r > 4 the velocity and acceleration are positive, so the
particleis speeding up, which again is consistent with the speed versustime curve. |

The position versustime curve contains al of the significant information about the position
and velocity of a particle in rectilinear motion:

o Ifs(r) > O, the particleis on the positive side of the s-axis.
o If s(t) < O, the particle is on the negative side of the s-axis.
o Theslope of the curve at any timeis equal to the instantaneous velocity at that time.

« Where the curve has positive slope, the velocity is positive and the particle is moving
in the positive direction.

« Where the curve has negative slope, the velocity is negative and the particle is moving
in the negative direction.

« Wheretheslope of the curveiszero, thevelocity iszero, and the particleis momentarily
stopped.

Information about the accel eration of aparticlein rectilinear motion can also be deduced
from the position versus time curve by examining its concavity. To see why this is so,
observethat the position versustime curve will be concave up onintervalswheres” (r) > 0,
and it will be concave down on intervalswhere s” (t) < 0. But we know from (4) that s” ()
is the instantaneous accel eration, so that on intervals where the position versus time curve
is concave up the particle has a positive acceleration, and on intervals where it is concave
down the particle has a negative acceleration.

Table 4.4.1 summarizes our observations about the position versus time curve.

Example 5 Use the position versus time curve in Figure 4.4.2 to determine when the
jackrabbit in Example 1 is speeding up and slowing down.

Solution. From: = 0tot = 2, the acceleration and velocity are positive, so the rabhbit is
speeding up. From ¢t = 2tot = 4, the acceleration is negative and the velocity is positive,
so therabbit is slowing down. At ¢+ = 4, the velocity is zero, so the rabbit has momentarily
stopped. From ¢ = 4 tor = 6, the acceleration is negative and the velocity is negative, so
therabbit is speeding up. From s = 6tor = 7, the acceleration is positive and the velocity
is negative, so the rabbit is slowing down. Thereafter, the velocity is zero, so the rabbit has
stopped. <

Example 6 Suppose that the position function of a particle moving on a coordinate line
isgiven by s(t) = 2¢2 — 21¢? + 60 + 3. Analyze the motion of the particle for 1 > 0.

Solution. The velocity and acceleration at time ¢ are
v(t) = 5'(t) = 612 — 42t + 60 = 6(t — 2)(t — 5)
a(t)y =v'(t) =12r — 42 =12(t — 1)

At each instant we can determine the direction of motion from the sign of v(¢) and whether
the particle is speeding up or slowing down from the signs of v(r) and a(¢) together (Fig-
ures4.4.6a and 4.4.6b). The motion of the particleis described schematically by the curved
linein Figure 4.4.6c. At timet = O the particleis at s(0) = 3 moving right with velocity
v(0) = 60, but slowing down with acceleration a(0) = —42. The particle continues moving
right until time s = 2, when it stops at s(2) = 55, reverses direction, and begins to speed
up with an acceleration of a(2) = —18. Attimer = % the particle beginsto slow down, but
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Table4.4.1

POSITION VERSUS CHARACTERISTICS OF THE BEHAVIOR OF THE PARTICLE

TIME CURVE CURVE AT t =1, AT TIME t =1
s * S(t)) >0 e Parti c! e_is on the positive side of
 Curvehas the origin.
} positive slope. « Particleis moving in the positive
| ‘ « Curveis concave direction.
——t‘o—> down. « Velocity is decreasing.
 Particleis slowing down.
s * sty)) >0 * Particleis on the positive side of
 Curvehas the origin.
} negative slope. « Particleis moving in the negative
| i « Curveisconcave direction.
——t‘o—> down. « Velocity is decreasing.
 Particleis speeding up.
* St)) <0  Particleis on the negative side of

Curve has the origin.

S
B t t negative slope. Particle is moving in the negative
! Curve is concave up. direction.
¢ Velocity isincreasing.

S
\
\

/"\ |
I R

t

.

Particleis slowing down.

s(ty) >0

Curve has

zero slope.
Curveisconcave
down.

Particle is on the positive side of
the origin.

Particle is momentarily stopped.
Velocity is decreasing.

continues moving left until timer = 5, when it stopsat s (5) = 28, reversesdirection again,
and begins to speed up with acceleration a(5) = 18. The particle then continues moving
right thereafter with increasing speed. <

¢ REMARK. The curved line in Figure 4.4.6¢ is descriptive only. The actual path of the
i particleis back and forth on the coordinate line.

¢ FOR THE READER.  Figure 4.4.7a shows the graph of the position function s(z) for the

i particlein Example 6, and Figure 4.4.7b shows the graphs of position, velocity, and accel-
eration superimposed in one figure. Describe how the signs and slopes of the velocity and
acceleration curves relate to the shape of the graph of the position function.

We will now discuss how some of the ideas in this section can be applied to the study of
FREE-FALL MOTION

free-fall motion, which isthe motion that occurs when an object near the Earth isimparted
some initial vertical velocity (up or down), and thereafter moves on a vertical line. In
modeling free-fall motion it is assumed that the only force acting on the object is the
Earth’s gravity and that the object stays sufficiently close to the Earth’s surface so that the
gravitational forceisconstant. In particular, air resistance and the gravitational pull of other
celestial bodies are neglected.

In our study of free-fall motion, wewill ignore the physical size of the object by treating
it as a particle, and we will assume that the object moves along an s-axis whose origin
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Figure 4.4.6¢

(a)

Figure 4.4.7

is at the surface of the Earth and whose positive direction is up. With this convention,
the s-coordinate of the particle is the height of the particle above the Earth’'s surface
(Figure 4.4.8). The following result will be derived later using calculus and some basic
principles of physics.
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s axis 444 THE FREE-FALL MODEL. Suppose that at time: = 0 an object at a height of
1 so above the Earth’s surface is imparted an upward or downward velocity of vy and
thereafter moves vertically subject only to the force of the Earth’s gravity. If the positive
direction of the s-axisis up, and if the origin is at the surface of the Earth, then at any

¢s timer the height s = s(¢) of the object is given by the formula
_ s =50+ vot — 3817 (5
Height
where g isa constant, called the acceleration due to gravity. In thistext we will use the
s - following approximations for g, depending on the units of measurement:
A Eath g =
g = 9.8 m/S2 [distancein meters and timein $oonds]
Figure4.4.8

g =32 ft/82 [distancein feetandtimein seconds]

It followsfrom (5) that theinstantaneousvel ocity and accel eration of an objectinfree-fall

motion are
ds

V= =08 (6)
dv

= — = — 7

a=— g (7)

¢ REMARK. Becausewe have chosen the positive direction of the s-axisto be up, apositive

i velocity implies an upward motion and a negative velocity a downward motion. Thus, it

¢ makes sensethat instantaneous accel eration — g is negative, since an upward-moving object
has positive velocity and negative acceleration, which implies that it is slowing down; and
a downward-moving object has negative velocity and negative accel eration, which implies

that it is speeding up. (It is a little confusing that the positive constant g is called the
acceleration dueto gravity in 4.4.4, given that the instantaneous accel eration is actually the
negative constant —g. This mismatch in terminology is caused by the upward orientation
of the s-axis in Figure 4.4.8; had we chosen the positive direction to be down, then the
instantaneous accel eration would have turned out to be g. However, our orientation hasthe
advantage of allowing usto interpret s as the height of the object.)

throwing a baseball 150 ft/s (over 102 mi/h). During his career, he had the opportunity to
pitch in the Houston Astrodome, home to the Houston Astros Baseball Team from 1965 to
1999. The Astrodome was an indoor stadium with a ceiling 208 ft high. Could Nolan Ryan
have hit the ceiling of the Astrodome if he were capable of giving a baseball an upward
velocity of 100 ft/sfrom aheight of 7 ft?

M E T Example 7 Nolan Ryan, one of the fastest baseball pitchers of all time, was capable of

Solution. Taking g = 32 ft/s?, vg = 100 ft/s, and so = 7 ft in (5) and (6) yields the
equations

s =7+4100r —16:2 and v = 100 — 32¢ (8-9)

whose graphs are shown in Figure 4.4.9. It is evident from the graph of s versus ¢ that
the maximum height of the baseball is less than 208 ft, so Ryan could not have hit the

1) |\ ceiling. However, let us go a step further and determine exactly how high the ball will
N,[a ’M PITCHER go. The maximum height s occurs at the stationary point obtained by solving the equation
_ ds/dt = 0. However, ds/dt = v, which means that the maximum height occurs when

Nolan Ryan'srookie baseball card v = 0, which from (9) can be expressed as
100-32t =0 (20)

Solving this equation yields t = 25/8. To find the height s at this time we substitute this
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value of ¢ in (8), from which we obtain
s = 7+ 100(25/8) — 16(25/8)? = 163.25 ft
which isroughly 45 ft short of hitting the ceiling. <

S v
200 100
150 // 50 \\

t

100y \

/ \ 2 3N\d 5 6 7

30 / \ =50 \\\
t
1 2 3 4 5 6 7 —100 ~

Figure4.4.9

¢ REMARK. Equation (10) can also be deduced by physical reasoning: The ball is moving
i upwhenthevelocity is positive and moving down when the vel ocity is negative, so it makes
sense that the velocity is zero when the ball reaches its peak.

EXERCISE SET 4.4 [ Graphing Calculator
1. The graphs of three position functions are shown in the ac- (c) Isthe particle speeding up or slowing down at time 7o?
companying figure. In each case determine the signs of the (d) Isthe particle speeding up or slowing down at time 71?
velocity and acceleration, then determine whether the par-
ticle is speeding up or slowing down.

S S S
: | ¢
t t t [ o N/ [
| [ | | Figure Ex-3
@ (b) (©
Figure Ex-1 4. For the graphs in the accompanying figure, match the posi-

tion functions with their corresponding velocity functions.
2. The graphs of three velocity functions are shown in the ac-
companying figure. In each case determine the sign of the
acceleration, then determine whether the particle is speed- S S 4s

ing up or slowing down. ﬁ
v v v t E t
‘ / ‘ ‘ > (@ (b) (0
@

v
(®) © / \
Figure Ex-2 ! ! !
3. The position function of a particle moving on a horizontal /\ /

x-axisis shown in the accompanying figure.
(@ Isthe particle moving left or right at time 7o? (M (1) (1)
(b) Isthe acceleration positive or negative at time 15? Figure Ex-4
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5. Sketch a reasonable graph of s versus ¢ for a mouse that

is trapped in a narrow corridor (an s-axis with the positive
direction totheright) and scurriesback and forth asfollows.
It runsright with aconstant speed of 1.2 m/sfor awhile, then
gradually slows down to 0.6 m/s, then quickly speeds up
to 2.0 m/s, then gradually slows to a stop but immediately
reverses direction and quickly speedsup to 1.2 m/s.

. The accompanying figure shows the graph of s versus ¢ for
an ant that moves along a narrow vertical pipe (an s-axis
with the positive direction up).

(&) When, if ever, isthe ant above the origin?

(b) When, if ever, does the ant have velocity zero?

(c) When, if ever, isthe ant moving down the pipe?

. The accompanying figure shows the graph of velocity ver-
sustimefor aparticlemoving along acoordinateline. Make
a rough sketch of the graphs of speed versus time and ac-
celeration versus time.

012 3 456 7 1

Figure Ex-6 Figure Ex-7

. The accompanying figure shows the position versus time

graph for an elevator that ascends 40 m from one stop to the

next.

(a) Estimate the velocity when the elevator is halfway up.

(b) Sketch rough graphs of the velocity versus time curve
and the acceleration versus time curve.

9. The accompanying figure shows the velocity versus time

graph for atest run on aclassic Grand Prix GTP. Using this
graph, estimate

(@) the acceleration at 60 mi/h (in units of ft/s%)

(b) the time at which the maximum acceleration occurs.
[Datafrom Car and Driver Magazine, October 1990.]

40
30
20
10

m)

Velocity v (mi/h)

Bi=o-

10 15 20 25 5 10 15 20 25
Time t (s) Time t (s)
Figure Ex-8 Figure Ex-9

Position s (

0 5
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4.4 Rectilinear Motion (Motion Along a Line) 279

. Let s(r) = sin(rt/4) be the position function of a particle
moving along a coordinate line, where s isin meters and ¢
isin seconds.

(8) Make atable showing the position, velocity, and accel-
eration to two decimal places at times: = 1, 2, 3, 4,
and 5.

(b) At each of the times in part (a), determine whether
the particle is stopped; if it is not, state its direction of
motion.

(c) At each of thetimesin part (a), determine whether the
particle is speeding up, slowing down, or neither.

n Exercises 11-14, the position function of a particle mov-
ng along a coordinate line is given, where s isin feet and ¢

isin seconds.

(
(

(
(
(

11
12.
13.

14.

K 15

K 16.

a) Find the velocity and acceleration functions.

b) Find the position, velocity, speed, and acceleration at
timer = 1.

c) Atwhat timesisthe particle stopped?

d) When isthe particle speeding up? Slowing down?

e) Findthetotal distancetraveled by the particle from time
t =0totimer = 5.

s()=13—6:2, >0
sy=t*—4+2, >0
s(t) =3cos(nt/2), 0<t<5
t
s(t) = 74 t>0
. Let s(¢) = t/(¢? + 5) be the position function of a particle

moving aong a coordinate line, where s isin meters and ¢

isin seconds. Use a graphing utility to generate the graphs

of s(r),v(r),and a(z) for r > 0, and use those graphswhere
needed.

(8) Usethe appropriate graph to make a rough estimate of
thetime at which the particlefirst reversesthe direction
of its motion; and then find the time exactly.

(b) Find the exact position of the particle when it first re-
verses the direction of its motion.

(c) Usethe appropriate graphsto make arough estimate of
the time intervals on which the particle is speeding up
and on which it is slowing down; and then find those
time intervals exactly.

Let s(r) = (2 +t + 1)/(z?> + 1) be the position function

of a particle moving aong a coordinate line, where s isin

metersand ¢ isin seconds. Useagraphing utility to generate
the graphs of s(¢), v(¢), and a(r) for ¢+ > 0, and use those
graphs where needed.

(8) Usethe appropriate graph to make a rough estimate of
thetime at which the particlefirst reversesthe direction
of its motion; and then find the time exactly.

(b) Find the exact position of the particle when it first re-
verses the direction of its motion.

(c) Usethe appropriate graphs to make arough estimate of
the time intervals on which the particle is speeding up
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and on which it is slowing down; and then find those

time intervals exactly.

In Exercises 17-22, the position function of aparticlemoving
along a coordinate line is given. Use the method of Example
6 to analyze the motion of the particle for r > 0, and give a

schematic picture of the motion (asin Figure 4.4.6).

17.
19.

21.

23.

24.

s=-3t+2 18. s =13 — 62+ 9 + 1
9
s =1>— 9 + 24 20. s =1+ ——
t+1

cost, 0<t<2rn
s = 22. 5 = /1(4 — 4t + 21?)

1, t > 2w
Let s(r) = 5t — 22t be the position function of a particle

moving along a coordinate line, where s isinfeet and r is

in seconds.

(8 Findthe maximum speed of the particle during thetime
interval 1 <r < 3.

(b) When, during thetimeinterval 1 < ¢ < 3, isthe parti-
cle farthest from the origin? What isits position at that
instant?

Let s = 100/ (% + 12) be the position function of aparticle

moving along acoordinateline, where s isinfeetand ¢ isin

seconds. Find the maximum speed of the particlefor z > O,

and find the direction of motion of the particle when it has

its maximum speed.

In Exercises 25-29, assume that the free-fall model applies
and that the positive direction is up, so that Formulas (5), (6),
and (7) can be used. Inthose problemsstating that an objectis
“dropped” or “released from rest,” you should interpret that
to mean that the initial velocity of the object is zero. Take

g = 32ft/ or g = 9.8 m/s?, depending on the units.

25.

26.

A wrench is accidentally dropped at the top of an elevator

shaft in atall building.

(@ How many meters does the wrench fall in 1.5 s?

(b) What isthe velocity of the wrench at that time?

(c) How long does it take for the wrench to reach a speed
of 12 m/s?

(d) How long doesit take for the wrench to fall 100 m?

In 1939, Joe Sprinz of the San Francisco SealsBaseball Club
attempted to catch aball dropped from ablimp at aheight of
800 ft (for the purpose of breaking the record for catching a
ball dropped from the greatest height set the preceding year
by members of the Cleveland Indians).
(8 How long doesit take for aball to drop 800 ft?
(b) What isthe velocity of aball in miles per hour after an
800-ft drop (88 ft/s = 60 mi/h)?
[Note: Asapractical matter, it is unrealistic to ignore wind
resistance in this problem; however, even with the slowing
effect of wind resistance, the impact of the ball slammed
Sprinz’s glove hand into hisface, fractured hisupper jaw in
12 places, broke five teeth, and knocked him unconscious.
He dropped the ball!]
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A projectile is launched upward from ground level with an

initial speed of 60 m/s.

(& How long does it take for the projectile to reach its
highest point?

(b) How high does the projectile go?

(c) How long doesit take for the projectile to drop back to
the ground from its highest point?

(d) What is the speed of the projectile when it hits the
ground?

() UsetheresultsinExercise27to makeaconjectureabout
the relationship between the initial and final speeds of
aprojectile that is launched upward from ground level
and returnsto ground level.

(b) Proveyour conjecture.

In Example 7, how fast would Nolan Ryan have to throw a
ball upward from aheight of 7 feet in order to hit the ceiling
of the Astrodome?

The free-fal formulas (5) and (6) can be combined and
rearranged in various useful ways. Derive the following
variations of those formulas.
@ v = v —2g(s — s0)
(©) s =50+ vt + %gt2

A rock, dropped from an unknown height, strikestheground
with a speed of 24 m/s. Use the formulain part (a) of Ex-
ercise 30 to find the unknown height.

A rock thrown downward with an unknown initial velocity
from a height of 1000 ft reaches the ground in 5 s. Use the
formulain part (c) of Exercise 30 to find the velocity of the
rock when it hits the ground.

(& A bal isthrown upward from a height so with an ini-
tial velocity of vg. Use the formulain part (a) of Exer-
cise 30 to show that the maximum height of the ball is
Smax = So + V3/2g.

(b) Usethisresult to solve Exercise 29.

(b) s =s0+ 3(vo+ )t

. Lets =13 — 612+ 1.

(& Finds and v whena = 0.
(b) Finds and a whenv = 0.

Let s = +/2t2+ 1 be the position function of a particle

moving along a coordinate line.

(8 Useagraphing utility to generate the graph of v versus
t, and make a conjecture about the velocity of the par-
ticleast — .

(b) Check your conjecture by finding ,L'Tx v.

(8 Usethechainruleto show that for aparticlein rectilin-
ear motion a = v(dv/ds).

(b) Lets = +/3r+7,¢t > 0. Find aformulafor v in terms
of s and use the equation in part (&) to find the acceler-
ationwhens = 5.

Suppose that the position functions of two particles, P; and

P>, in motion along the same line are

si=32—1+3 and sp=—32+1+1

respectively, for r > 0.
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(a) Provethat P, and P, do not collide.

(b) How close can P; and P, get to one ancther?

(c) During what intervals of time are they moving in oppo-
site directions?

Letsy = 152+ 10r +20and sz = 5:2+40¢, r > 0, bethe

position functions of cars A and B that are moving aong

parallel straight lanes of a highway.

(@ How fariscar A ahead of car B when ¢ = 0?
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(b) Atwhatinstantsof timearethecarsnextto oneanother?
(c) Atwhat instant of time do they have the same velocity?
Which car is ahead at thisinstant?

Provethat aparticleisspeeding up if the velocity and accel -
eration have the same sign, and slowing down if they have
opposite signs. [Hint: Let 7(z) = |v(¢)| and find r’'(¢) using
thechainrule)]

4.5 ABSOLUTE MAXIMA AND MINIMA

At the beginning of Section 4.2 we observed that if the graph of a function f is viewed
as a two-dimensional mountain range (Figure 4.2.1), then the relative maxima and
minima correspond to the tops of the hills and the bottoms of the valleys; that is, they
are the high and low points in their immediate vicinity. In this section we will be con-
cerned with the more encompassing problem of finding the highest and lowest points
over the entire mountain range, that is, we will be looking for the top of the highest
hill and the bottom of the deepest valley. In mathematical terms, we will be looking for
the largest and smallest values of a function over an interval.

We will be concerned here with finding the largest and smallest values of afunction over a
finite or infinite interval 1. We begin with some terminology.

451 DEFINITION. A function f issaid to have an absolute maximum on an interval
I at xq if f(xo) isthe largest value of f on I; that is, f(xo) > f(x) for al x in I.
Similarly, f issaidto have an absoluteminimumon I at xq if f(xg) isthesmallest value
of fonlI;thatis, f(xg) < f(x)foral xinI.If f haseither an absolute maximum or
absolute minimum on I at xo, then f is said to have an absolute extremum on I at xo.

As illustrated in Figure 4.5.1, there is no guarantee that a function f will have absolute

extremaon agiven interval.

EXISTENCE OF ABSOLUTE
EXTREMA

452 PROBLEM.

The remainder of this section will focus on the following problem.

(8 Determine whether afunction f has any absolute extrema on agiven interval 1.
(b) If there are absolute extrema, determine where they occur and what the absolute
maximum and minimum values are.

Parts (a)—(e) of Figure 4.5.1 show that a continuous function may or may not have absolute
maximaor minimaon aninfiniteinterval or on afinite openinterval. However, thefollowing
theorem shows that a continuous function must have both an absolute maximum and an
absolute minimum on every finite closed interval [see part (f) of Figure 4.5.1].

453 THEOREM (Extreme-Value Theorem).

If a function f is continuous on a finite

closed interval [a, b], then f has both an absolute maximum and an absol ute minimum

on[a, b].
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1
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Figure 4.5.2
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} maximum
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Figure4.5.3
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| f(x)=2x+1
———7]1
1
1
1
1
1
1
]
! |1 «
L4l >
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Figure4.5.4
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~< |

f has an absolute f has no absolute f has an absolute
minimum but no extrema on maximum and
absolute maximum (o0, +o0). minimum on
on (—oo, +<>o)_ (—oo, +(>o)_
(@ (b) (©)
y y y

~
L
x
AN
L
x
-
[ A
x

f has an absolute f has no absolute f has an absolute
maximum and extrema on (&, b). maximum and
minimum on (&, b). minimum on [, b].
(d) (® (f)
Figure4.5.1

FOR THE READER.  Although the proof of this theorem is too difficult to include here,
you should be able to convince yourself of its validity with a little experimentation—try
graphing various continuous functions over the interval [0, 1], and convince yourself that
there is no way to avoid having a highest and lowest point on the graph. As a physical
analogy, if you imagine the graph to be aroller coaster track starting at x = 0 and ending at

x = 1, theroller coaster will have to pass through a highest point and alowest point during

thetrip.

Thefunction f(x) = 2x + 1 iscontinuous everywhere, so the Extreme-Value Theorem
guarantees that f (x) has both an absolute maximum and an absolute minimum on every
finite closed interval. For example, on the interval [0, 3], the absolute minimum occurs at
x = 0 and the absolute maximum occurs at x = 3. The absolute minimum and maximum
valuesfor f(x) on[0, 3] are f(0) = Land f(3) = 7, respectively (Figure 4.5.2).

The hypotheses of the Extreme-Value Theorem are essential. Figure 4.5.3 shows the
graph of afunction that is defined on a closed interval [a, b] but fails to be continuous on
that interval. This function has neither an absolute maximum nor an absolute minimum on
theinterval [a, b]. If f iscontinuous on an interval that is not both closed and finite, then
we could encounter situations such asthose in Figure 4.5.1.

To illustrate further, consider again the function f(x) = 2x + 1, but now for values of
x in the half-open interval [0, 3). The function f has an absolute minimum value of 1 at
x = 0intheinterval [0, 3). However, for any number xq in [0, 3) that we might choose
as a candidate for the location of an absolute maximum, we can find another number, say
x1 = (xg+3)/2,ds0in[0, 3), with f(x1) > f(xo) (Figure4.5.4). Thus, for any particular
value of f(x) on [0, 3), we can find alarger value of the function on thisinterval; that is,
f does not attain an absolute maximum value on [0, 3).



January 19, 2001 09:46 g65-ch4

FINDING ABSOLUTE EXTREMA ON
FINITE CLOSED INTERVALS

Sheet number 43 Page number 283 cyan magenta black

4.5 Absolute Maxima and Minima 283

The Extreme-Value Theorem is an example of what mathematicians call an existence theo-
rem. Such theorems state conditions under which certain objects exist, in this case absolute
extrema. However, knowing that an object exists and finding it are two separate things.
We will now address methods for determining the locations of absolute extrema under the
conditions of the Extreme-Value Theorem.

If f is continuous on the finite closed interval [a, b], then the absolute extrema of f
can occur either at the endpoints of the interval or inside on the open interval (a, b). If the
absolute extrema happen to fall inside, then the following theorem tells us that they must
occur at critical numbers of f.

454 THEOREM. If f hasan absolute extremum on an open interval (a, b), then it
must occur at a critical number of f.

Proof. If £ hasanabsolutemaximumon (a, b) at xo, then f(xo) isalso arelative maximum
for f;forif f(xo) isthelargest valueof f onal of (a, b), then f(xo) iscertainly thelargest
valuefor f intheimmediate vicinity of xg. Thus, xo isacritical number of f by Theorem
4.2.2. The proof for absolute minimais similar. |

REMARK. Theorem 4.5.4 isalso valid for functions on infinite open intervals.

It follows from this theorem, that if f is continuous on the finite closed interva [a, 5],
then the absol ute extrema occur either at the endpoints of the interval or at critical numbers
inside the interval (Figure 4.5.5). Thus, we can use the following procedure to find the
absolute extrema of a continuous function on afinite closed interval [a, b].

X

> |

X

>

Absolute maximum
occurs at an endpoint.

Figure 4.5.5

\ |
\ \
\ \
\ \
\ \
\ \
\ \
l I l I
a Xg b a Xg b

Absolute maximum occurs
in the open interval (a, b)
at a value X, where f is
not differentiable.

Absolute maximum occurs
in the open interval (a, b) at
a value xg where f’(xg) = 0.

A Procedure for Finding the Absolute Extrema of a Continuous Function f
on a Finite Closed Interval [a, b].

Step 1. Find the critical numbersof f in (a, b).
Step 2. Evaluate f at al the critical numbers and at the endpoints a and b.

Step 3.  Thelargest of the valuesin Step 2 is the absol ute maximum val ue of
f on[a, b] and the smallest value is the absolute minimum.
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[1, 5] x [20, 55]
xScl = 1,yScl =10

y = 2x3 — 15x? + 36x

Figure 4.5.6
Table4.5.1
x -1 0 1
f9 9 0 -2 3

ABSOLUTE EXTREMA ON INFINITE

Example 1 Findtheabsolutemaximum and minimumvaluesof f(x) = 2x3—15x2+36x
on theinterval [1, 5], and determine where these values occur.

Solution. Since f iscontinuous and differentiable everywhere, the absol ute extremamust
occur either at endpoints of theinterval or at solutionsto the equation f'(x) = 0intheopen
interval (1, 5). The equation f’(x) = 0 can be written as

6x% —30x +36=6(x*—5x +6) =6(x —2)(x —3) =0
Thus, there are stationary pointsat x = 2 and at x = 3. Evaluating f at the endpoints, at
x =2,andat x = 3yields

f(D) = 2(1)% - 15(1)2 + 36(1) = 23

f(2) = 2(2)° — 15(2)% + 36(2) = 28

f(3) = 2(3)° — 15(3)? + 36(3) = 27

f(5) = 2(5)° — 15(5) + 36(5) = 55
from which we conclude that an absolute minimum of f on[1, 5] is23, occurring at x = 1,

and the absolute maximum of f on[1, 5] is 55, occurring at x = 5. Thisis consistent with
the graph of f in Figure 4.5.6. <

Example 2 Find the absolute extremaof f(x) = 6x*3 — 3x¥/3 ontheinterval [—1, 1],
and determine where these values occur.

Solution. Notethat f is continuous everywhere and therefore the Extreme-Value The-
orem guarantees that f has a maximum and a minimum value in the interval [—1, 1].
Differentiating, we obtain

8x—1
Fio) = 8xM3 — x 723 = 238y _ 1) = x2/3
X

Thus, f'(x) = Oa x = %, and f'(x) is undefined at x = 0. Evaluating f at these
critical numbers and endpointsyields Table 4.5.1, from which we conclude that an absolute
minimum value of —g occurs at x = %, and an absolute maximum value of 9 occurs at
x=—-1 |

We observed earlier that a continuous function may or may not have absolute extrema on
an infinite interval (see Figure 4.5.1). However, certain conclusions about the existence of

INTERVALS - . .
absolute extrema of a continuous function f on (—eo, +) can be drawn from the behavior
of f(x) asx— —ow and asx — +oo (Table 4.5.2).
Table4.5.2
lim f(x) = +co lim f(X) = —co lim f(x) = —co lim f(x) = +oo
X—>—o0 X——o0 X——o0 X——o0
LIMITS lim f(x) = +oo lim f(X) = —oo lim f(x) = +oo lim (X) = —oo
X—>+o0 X—>+o0 X—>+o0 X—> o0

CONCLUSION IF
f 1S CONTINUOUS
EVERYWHERE

f has an absolute minimum
but no absolute maximum
0N (—oo, +00).

f has an absolute maximum
but no absolute minimum
0N (—oo, +00).

f has neither an absolute
maximum nor an absolute
minimum on (—eo, +o0).

f has neither an absolute
maximum nor an absolute
minimum on (—eo, +0o).
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Example 3 What can you say about the existence of absolute extremaon (—cc, +c0) for
polynomials?

Solution. If p(x) isapolynomial of odd degree, then

Iirg p(x) and Iirn p(x)

@

have opposite signs (oneis +c0 and the other is —), so there are no absolute extrema. On
the other hand, if p(x) has even degree, then the limitsin (1) have the same sign (both +
or both —<). If the leading coefficient is positive, then both limits are +oc, and there isan
absolute minimum but no absolute maximum; if the leading coefficient is negative, then

both limits are —«, and there is an absol ute maximum but no absolute maximum.

<

Example 4 Determineby inspectionwhether p(x) = 3x*44x° hasany absol ute extrema.
If so, find them and state where they occur.

Solution. Since p(x) has even degree and the leading coefficient is positive, p(x) — 4o
asx — oo, Thus, thereis an absolute minimum but no absolute maximum. From Theorem
4.5.4 [applied to the interval (—o«, 4+)], the absolute minimum must occur at a critical
number of p. Since p is differentiable everywhere, we can find al critical numbers by
‘ x  solving the equation p’(x) = 0. Thisequation is

p(x) = 3x* + 4x3

Figure4.5.7

ABSOLUTE EXTREMA ON OPEN

12x3 4+ 12x° = 12x%(x +1) =0

from which we conclude that the critical numbersare x = 0 and x = —1. Evaluating p at
these critical numbersyields

p@®=0 ad p(-1)=-1

Therefore, p has an absolute minimum of —1 at x = —1 (Figure 4.5.7). <

We know that a continuous function may or may not have absolute extrema on an open
interval. However, certain conclusions about the existence of absolute extrema of a contin-

INTERVALS . .. . .
uous function f on afinite open interval (a, b) can be drawn from the behavior of f(x) as
x—at and asx — b~ (Table 4.5.3). Similar conclusions can be drawn for intervals of the
form (—co, b) Or (a, +).
Table4.5.3
lim f(X) = +oo lim f(X) = —c lim f(X) = —co lim f(X) = +oo
x—at x—at x—at x—at
LIMITS lim (x) = +oo lim f(X) = —oo lim (x) = +oo lim f(X) = —oo
x—b~ x—b~ x—b~ x—b~

CONCLUSION IF
f 1S CONTINUOUS
ON (&, b)

f has an absolute
minimum but no absolute
maximum on (a, b).

f has an absolute
maximum but no absolute
minimum on (a, b).

f has neither an absolute
maximum nor an absolute
minimum on (a, b).

f has neither an absolute
maximum nor an absolute
minimum on (a, b).
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Example 5 Determine whether the function

fx) =

X2 —x

has any absolute extremaon theinterval (0, 1). If so, find them and state where they occur.



January 19, 2001 09:46

265-ch4

Sheet number 46 Page number 286 cyan magenta black

286 The Derivative in Graphing and Applications

0.25

05 075

ABSOLUTE EXTREMA OF

FUNCTIONS WITH ONE RELATIVE

EXTREMUM

Figure 4.5.9

A second
relative
extremum

Solution. Since f is continuous on theinterval (0, 1) and

lim = lim = lim —— =—
x4>0+f(X) x— 0t x2_x x— 0t x(x—l)

1
lim f(x)= lim = lim —/—— — —
x—1- F® x>l x2—x  x—-1x(x =1

thefunction f has an absol ute maximum but no absolute minimum ontheinterval (0, 1). By
Theorem 4.5.4 the absolute maximum must occur at a critical number of f in the interval
(0, 1). We have

2x—1
(x2 = x)°

so the only solution of the equation f/(x) = 0isx = % Although f is not differentiable
at x = 0oratx = 1, these values are doubly disqualified since they are neither in the
domain of f nor intheinterva (0, 1). Thus, the absolute maximum occurs at x = % and
this absolute maximum is

b_o1
T

(Figure 4.5.8). <

o) = -

If a continuous function has only one relative extremum on a finite or infinite interval 1,
then that relative extremum must of necessity also be an absol ute extremum. To understand
why thisis so, suppose that f has arelative maximum at xq in aninterval 1, and there are
no other relative extremaof f on I. If f(xg) isnot the absolute maximum of f on I, then
the graph of f hasto make an upward turn somewhere on I to rise above f(xg). However,
this cannot happen because in the process of making an upward turn it would produce a
second relative extremum on 1 (Figure 4.5.9). Thus, f(xo) must be the absolute maximum
as well as arelative maximum. Thisidea is captured in the following theorem, which we
state without proof.

455 THEOREM. Supposethat f iscontinuousand hasexactly onerelative extremum
on aninterval I, say at xo.

(& If f hasarelative minimumat xo, then f(xp) isthe absolute minimumof f on 1.
(b) If f hasarelative maximum at xo, then f(xo) isthe absolute maximumof f on 1.

This theorem is often helpful in situations where other methods are difficult or tedious to
apply.

Example 6 Findall absolute extremaof thefunction f(x) = x3 —3x2+4ontheinterval
(@ (=0, 4+0)  (b) (0, +x)
Solution (a). Because f isapolynomia of odd degree, it follows from the discussion in
Example 3 that there are no absolute extrema on the interval (—oo, +).
Solution (b). Since
lim (x%—3x?+4) = 4o

X — 4w

we know that f cannot have an absolute maximum on the interval (0, ). However, the
limit
lim (x*-3x2+4) =4
x— 0t
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f(X) =x3=3x2+4, x>0

Figure 4.5.10
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isnot infinite, sothereisapossibility that f may have an absolute minimum on thisinterval.
In this case it would have to occur at a stationary point, which suggests that we look for
solutions of the equation f’(x) = 0. But,

fi(x) =3x%2 —6x = 3x(x — 2

s0 f hascritical numbers x = 0 and x = 2. However, the only critical number inside the
interval (0, 4) isat x = 2. Thus, Theorem 4.5.5 is applicable here. Since

f'(x)=6x—6

we have f”(2) = 6 > 0, so arelative minimum occurs at x = 2 by the second derivative
test. Thus, f(x) hasan absolute minimum at x = 2, and thisabsolute minimumis f(2) = 0
(Figure 4.5.10). <

Suppose that a curve C is given parametrically by the equations

x=f@), y=g® (@<t =<b)

where f and g are continuous on the finite closed interva [a, b]. It follows from the
Extreme-Value Theorem that f(r) and g(¢) have absol ute maximaand absolute minimafor
a <t < b; thismeans that a particle moving along the curve cannot move away from the
origin indefinitely—there must be a smallest and largest x-coordinate and a smallest and
largest y-coordinate. Geometrically, the entire curve is contained within a box determined
by these smallest and largest coordinates.

Example 7 Suppose that the equations of motion for a paper airplane during its first 10
seconds of flight are

x=1—3sinf, y=4—3cost (0<t <10

What are the highest and lowest points in the trgjectory, and when is the airplane at those
points?

Solution. Thetrgjectory, picturedin Figure4.5.11, isshowninmoredetail in Figure 1.8.2.
We want to find the absolute maximum and minimum values of y over the time interval
[0, 10] and the values of ¢ for which these absolute extrema occur. The absolute extrema
must occur either at the endpoints of the closed interval [0, 10] or at critical numbersin the
open interval (0, 10). To find the critical numbers, we must solve the equation dy/dt = 0,
whichis

3sint =0

Thus, there are critical numbers in the interval (0, 10) at + = 7, 27, and 37. Evaluating
y = 4 — 3cost at the endpoints and the critical numbersyields

Figure4.5.11
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y=4—-3cos0=4-3=1
y=4-3costr=4—(-3)=7
y=4-3cos2r=4-3=1
y=4—-3cos3r=4—-(-3) =7
y =4—3cos1l0~ 6.517

Thus, ahigh point of y = 7 isreached at timess = w and ¢t = 3, and alow pointof y = 1
isreached at timest = O and r = 2. Thisis consistent with Figure 1.8.2. |

EXERCISE SET 4.5 P Graphing Calculator CAS

— (2403 -
In Exercises 1-2, use the graph to find x-coordinates of the 10. f(x) = (x T )  [=2.3]
relative extrema and absolute extremaof f on [0, 7]. 11 f(x) = x —tanx; [—n/4, 7/4]

12. f(x) =sinx —cosx; [0, 7]
13. f(x) =1+19—x%; [-5.1]
14. f(x) =16 —4x|; [-3, 3]
In Exercises 15-22, find the absolute maximum and min-

imum values of f, if any, on the given interval, and state
where those values occur.

.2 .
3. In each part, sketch the graph of a continuous function f 15 f) =x"—3x — L (==, +=)

with the stated properties on the interval [0, 10]. 16. f(x) =3 —4x — 2x% (—, )
(& f hasan absolute minimum at x = 0 and an absolute 17. f(x) = 4x® — 3x* (=0, 40)
maximumat x = 10 . 18. f(-x) — )C4+4)C; (—OC, +OO)
(b) f hasan absolute minimum at x = 2 and an absolute 3
maximum at x = 7. 19, f(x) =x7 = 3x =2 (=00, =)
(c) f hasarelativeminimaatx = landx = 8, hasrelative 20. f(x) =x3—9x +1; (—o, +)
maximaat x = 3and x = 7, has an absolute minimum 2 43
at x = 5, and has an absolute maximum at x = 10. 21. f(x) = ﬁ; (=5, -1 22. f(x) = 3; [-5, 5]
X X —

4. In each part, sketch the graph of a continuous function f

with the stated properties on the interval (—o, +x).
(@ f hasno relative extrema or absolute extrema.

(b) f has an absolute minimum at x = 0 but no absolute

maximum.

In Exercises 23—-32, use agraphing utility to estimate the ab-
solute maximum and minimum values of f, if any, on the
stated interval, and then use cal culus methods to find the ex-

) act values.
(c) f hasanabsolute maximumat x = —5 and an absolute

minimum at x = 5.

23, = (2= 1)% (—o +
In Exercises 5-14, find the absol ute maximum and minimum = f&) (x 2 ( 002 =)
valuesof f onthegivenclosedinterval,andstatewherethose = [ 24. f(x) = (x — D“(x + 2)%; (—oc, +)

values occur. K 25. f(x) = x¥3(20 - x); [-1, 20]
X
5. f(x) =4x%?—4x +1; [0,1] K 26 fx) = x2+2; [=1.4]
6. f(x) =8x —x% [0, 6] N 27 fx) =1+ L 0. 4)
X

7. f(x) = (x — 1% [0,4]

0, +oo
8. f(x) =2x3—3x? —12x; [-2, 3] [0. =)

x .
N 28. f(x)= 21
R 29. f(x) =2secx —tanx; [0, /4]

;[-1.1] [ 30. f(x) =sin’x + cosx; [—7, 7]

3x
S = e
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f(x) = sin(cosx); [0, 2n]

f(x) = cos(sinx); [0, r]

Find the absolute maximum and minimum values of
4x — 2,

-2 -3), x>1

on[3. 3]

Let f(x) = x?> 4+ px + ¢. Find the values of p and ¢ such

that f(1) = 3isan extreme value of f on [0, 2]. Is this

x <1

Jfx)

value a maximum or minimum?

If f isaperiodic function, then the locations of all absolute
extremaon theinterval (—eo, +o0) can be obtained by finding
thelocations of the absolute extremafor one period and using
the periodicity to locate therest. Usethisideain Exercises 35
and 36 to find the absolute maximum and minimum values
of the function, and state the x-values at which they occur.

35. f(x) =2sin2x + sin4x

One way of proving that f(x) < g(x) for al x in agiven
interval isto show that 0 < g(x) — f(x) for al x intheinter-
val; and one way of proving the latter inequality is to show
that the absolute minimum value of g(x) — f(x) onthein-
terval is nonnegative. Use this ideato prove the inequalities

36. f(x) =3cos% + 2003%

in Exercises 37 and 38.

37.
38.
39.

40.

[ 4L

[ 42

Provethat sinx < x for all x intheinterval [0, 27].
Provethat cosx > 1—(x2/2) foral x intheinterval [0, 27].
What isthe smallest possible slopefor atangent to the graph
of the equation y = x3 — 3x2 4 5x?

(& Show that

64 27
sinx  CoSx

Jx) =

has a minimum value but no maximum value on the
interval (0, /2).
(b) Find the minimum value.

Show that the absolute minimum val ue of

16x2
_ .2

J&)=x"+ OIS
occursat x = 4(2+ 3@) by usingaCAStofind f’(x) and
to solve the equation f’(x) = 0.
Supposethat A and B denote any two positivereal numbers.
Use a CA Sto determine the maximum val ue of the function
f(x) = Acosx + Bsinx intermsof A and B.

x>8
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It can be proved that if f is differentiable on (a, b) and L
isaline that does not intersect the curve y = f(x) over an
interval (a, b), then the points at which the curve is closest
to or farthest from the line L, if any, occur at points where
the tangent line to the curve is parallel to L (see the ac-
companying figure). Use this result to find the points on the
graph of y = —x? that are closest to and farthest from the
liney=2—xfor—1<x <2
y L
Perpendicular
distance

Figure Ex-43

. Usetheideadiscussed in Exercise 43 to find the coordinates

of all points on the graph of y = x° closest to and farthest
fromtheliney = gx —1for -1 <x <1

Suppose that the equations of motion of a paper airplane
during thefirst 12 seconds of flight are

x=t—2snt, y=2-—2cost 0<r<12

What are the highest and lowest pointsin thetragjectory, and
when isthe airplane at those points?
The accompanying figure shows the path of a fly whose
equations of motion are

cost
YT o sns

y=3+4s8in2) —2sin’t (0<r1<2n)

(@ How high and low doesiit fly?
(b) How far left and right of the origin doesit fly?

y

Figure Ex-46

Let f(x) =ax?+bx +¢, where a > 0. Prove that
f(x) = 0for al x if and only if b> — 4ac < 0. [Hint:
Find the minimum of f(x).]

Prove Theorem 4.5.4 in the case where the extreme valueis
aminimum.
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CLASSIFICATION OF OPTIMIZATION
PROBLEMS

PROBLEMS INVOLVING FINITE
CLOSED INTERVALS

4.6 APPLIED MAXIMUM AND MINIMUM PROBLEMS

In this section we will show how the methods discussed in the last section can be used
to solve various applied optimization problems.

Theapplied optimization problemsthat wewill consider inthissectionfall intothefollowing
two categories:

¢ Problems that reduce to maximizing or minimizing a continuous function over afinite
closed interval.

« Problemsthat reduceto maximizing or minimizing acontinuousfunction over aninfinite
interval or afiniteinterval that is not closed.

For problems of the first type the Extreme-Value Theorem (4.5.3) guarantees that the prob-
lem has a solution, and we know that the solution can be obtained by examining the values
of the function at the critical numbers and at the endpoints. However, for problems of the
second type there may or may not be a solution. If the function is continuous and has ex-
actly one relative extremum of the appropriate type on the interval, then Theorem 4.5.5
guarantees the existence of a solution and provides a method for finding it. In cases where
this theorem is not applicable some ingenuity may be required to solve the problem.

In his On a Method for the Evaluation of Maxima and Minima, the seventeenth century
French mathematician Pierre de Fermat™ solved an optimization problem very similar to
the one posed in our first example. Fermat’swork on such optimization problems prompted
the French mathematician Laplace to proclaim Fermat the “true inventor of the differential
calculus” Although this honor must still reside with Newton and Leibniz, it isthe case that
Fermat developed procedures that anticipated parts of differential calculus.

* PIERRE DE FERMAT (1601-1665). Fermat, the son of a successful French leather merchant, was a lawyer who
practiced mathematics as a hobby. He received a Bachelor of Civil Laws degree from the University of Orleansin
1631 and subsequently held variousgovernment positions, including apost ascouncillor to the Toul ouse parliament.
Although hewasapparently financially successful, confidential documentsof that time suggest that hisperformance
in office and as alawyer was poor, perhaps because he devoted so much time to mathematics. Throughout hislife,
Fermat fought al efforts to have his mathematical results published. He had the unfortunate habit of scribbling
his work in the margins of books and often sent his results to friends without keeping copies for himself. As a
result, he never received credit for many major achievements until his name was raised from obscurity in the
mid-nineteenth century. It is now known that Fermat, simultaneously and independently of Descartes, devel oped
analytic geometry. Unfortunately, Descartes and Fermat argued bitterly over various problems so that there was
never any real cooperation between these two great geniuses.

Fermat solved many fundamental calculus problems. He obtained the first procedure for differentiating poly-
nomials, and solved many important maximization, minimization, area, and tangent problems. His work served
to inspire Isaac Newton. Fermat is best known for his work in number theory, the study of properties of and rela-
tionships between whole numbers. He was the first mathematician to make substantial contributions to this field
after the ancient Greek mathematician Diophantus. Unfortunately, none of Fermat’s contemporaries appreciated
hiswork in this area, a fact that eventually pushed Fermat into isolation and obscurity in later life. In addition to
his work in calculus and number theory, Fermat was one of the founders of probability theory and made major
contributionsto the theory of optics. Outside mathematics, Fermat was aclassical scholar of some note, was fluent
in French, Italian, Spanish, Latin, and Greek, and he composed a considerable amount of Latin poetry.

One of the great mysteries of mathematics is shrouded in Fermat’s work in number theory. In the margin of
abook by Diophantus, Fermat scribbled that for integer values of n greater than 2, the equation x” + y" = 7"
has no nonzero integer solutions for x, y, and z. He stated, “| have discovered a truly marvelous proof of this,
which however the margin is not large enough to contain.” This result, which became known as “Fermat’s last
theorem,” appeared to betrue, but its proof evaded the greatest mathematical geniusesfor 300 years until Professor
Andrew Wiles of Princeton University presented a proof in June 1993 in a dramatic series of three lectures that
drew international media attention (see New York Times, June 27, 1993). Asit turned out, that proof had a serious
gap that he and Richard Taylor fixed and published in 1995. A prize of 100,000 German marks was offered in
1908 for the solution, but it is worthless today because of inflation.
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Example 1 A gardenistobelaid outinarectangular areaand protected by achickenwire
fence. What is the largest possible area of the garden if only 100 running feet of chicken
wireis available for the fence?

Solution. Let
x = length of the rectangle (ft)
y = width of the rectangle (ft)
A = areaof the rectangle (ft?)

Then

A=xy 1)
Sincethe perimeter of therectangleis100ft, thevariablesx and y arerelated by the equation

2x+2y =100 or y=50-—x 2
(See Figure 4.6.1.) Substituting (2) in (1) yields

A = x(50 — x) = 50x — x? (3)

Because x represents a length it cannot be negative, and because the two sides of length x
cannot have a combined length exceeding the total perimeter of 100 ft, the variable x must
satisfy

0<x <50 4

Thus, we have reduced the problem to that of finding the value (or values) of x in [0, 50],
for which A is maximum. Since A isapolynomial in x, it is continuous on [0, 50], and so
the maximum must occur at an endpoint of thisinterval or at acritical number.

From (3) we obtain

dA

- =50—2x
dx

Setting dA/dx = O we obtain
50—2x =0

or x = 25. Thus, the maximum occurs at one of the values
x=0, x=25 x=50

Substituting these valuesin (3) yields Table 4.6.1, which tells us that the maximum area of
625 ft? occursat x = 25, which is consistent with the graph of (3) in Figure 4.6.2. From (2)
the corresponding value of y is 25, so the rectangle of perimeter 100 ft with greatest areais
asguare with sides of length 25 ft. |

A(ft?)
700 -
600 F
Table4.6.1 500 |- \
400 - |
X 0 25 50 ok |
|
A 0 625 0 100 I B R B B x(ft)
5 10152025 3035404550
Figure4.6.2

REMARK. Inthisexampleweincluded x = 0 and x = 50 as possible values for x, even

though both values lead to rectangles with two sides of length zero. Whether or not these
values should be allowed will depend on our objectivein the problem. If weview thispurely

as amathematical problem, then there is nothing wrong with allowing sides of length zero.
However, if we view thisas an applied problem in which the rectangle will be formed from
physical material, then these values should be excluded.



January 19, 2001 09:46 265-ch4 Sheet number 52 Page number 292 cyan magenta black

292 The Derivative in Graphing and Applications

Example Llillustratesthefollowing five-step procedure that can be used for solving many
applied maximum and minimum problems.

Step 1. Draw an appropriate figure and label the quantities relevant to the
problem.

Step 2. Find aformulafor the quantity to be maximized or minimized.

Step 3. Using the conditions stated in the problem to eliminate variables,
express the quantity to be maximized or minimized as a function of
one variable.

Step 4.  Findtheinterval of possiblevaluesfor thisvariable from the physical
restrictions in the problem.

Step 5. If applicable, use the techniques of the preceding section to obtain
the maximum or minimum.

Example 2 An open box is to be made from a 16-inch by 30-inch piece of cardboard
by cutting out squares of equal size from the four corners and bending up the sides (Fig-
ure 4.6.3). What size should the squares be to obtain a box with the largest volume?

Figure 4.6.3

Solution. For emphasis, we explicitly list the steps of the five-step problem-solving pro-
cedure given above as an outline for the solution of this problem. (In later exampleswe will
follow these guidelinesimplicitly.)

e Sep 1: Figure 4.6.3a illustrates the cardboard piece with squares removed from its
corners. Let

x = length (in inches) of the sides of the squares to be cut out
V = volume (in cubic inches) of the resulting box

o Sep2: Becausewe areremoving asguare of side x from each corner, the resulting box
will have dimensions 16 — 2x by 30 — 2x by x (Figure 4.6.3b). Since the volume of a
box is the product of its dimensions, we have

V = (16 — 2x)(30 — 2x)x = 480x — 92x? + 4x° (5)
o Sep 3: Notethat our expression for volume is already in terms of the single variable x.

o Sep 4 Thevariable x in (5) is subject to certain restrictions. Because x represents a
length, it cannot be negative, and because the width of the cardboard is 16 inches, we
cannot cut out squares whose sides are more than 8 incheslong. Thus, the variable x in
(5) must satisfy

0<x<8

and hence we have reduced our problem to finding the value (or values) of x in the
interval [0, 8] for which (5) is a maximum.
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Table 4.6.2

X 0

10
3 8

v o0 ¥%_72 o

V (in?)
800
700
600
500
400
300
200
100

27

!
2
.6.4

I G

Figure

‘r—x——ﬁ<*—8—x_>

I

Figure 4.6.5

8 km
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o« Step 5: From (5) we obtain

dv
o= 480 — 184x + 12x? = 4(120 — 46x + 3x?)
X

— 4(x — 12)(3x — 10)
Setting dV /dx = 0yields

x:%o and x =12

Since x = 12 falls outside the interval [0, 8], the maximum value of V occurs either
at the critical number x = %’ or at the endpoints x = 0, x = 8. Substituting these
values into (5) yields Table 4.6.2, which tells us that the greatest possible volume
V = 19 in3 ~ 726 in® occurs when we cut out squares whose sides have length 20
inches. Thisis consistent with the graph of (5) shown in Figure 4.6.4. <

In Example 2 of Section 1.1 we used approximate graphical methods to solve a problem
of piping il from an offshore well to a point on the shore with minimal cost. We will now
show how to solve that problem exactly using calculus.

Example 3 Figure4.6.5 showsan offshore oil well located at apoint W that is5 km from
the closest point A on astraight shoreline. Qil isto be piped from W to ashore point B that
is 8 km from A by piping it on a straight line under water from W to some shore point P
between A and B and then on to B via pipe along the shoreline. If the cost of laying pipe
is $1,000,000/km under water and $500,000/km over land, where should the point P be
located to minimize the cost of laying the pipe?
Solution. Let

x = distance (in kilometers) between A and P

¢ = cost (in millions of dollars) for the entire pipeline
From Figure 4.6.5 the length of pipe under water is the distance between W and P. By the
Theorem of Pythagoras, that length is

Ve ©

Also from Figure 4.6.5, the length of pipe over land isthe distance between P and B, which
is

8—x (7)
From (6) and (7) it follows that the total cost ¢ (in millions of dollars) for the pipelineis
c=1Vx24+25)+ 38 —x) =32+ 25+ (8 —x) (8)

Becausethe distance between A and B is8 km, the distance x between A and P must satisfy
0<x<8

We have thus reduced our problem to finding the value (or values) of x intheinterval [0, 8]

for which (8) is a minimum. Since ¢ is a continuous function of x on the closed interval

[O, 8], we can use the methods devel oped in the preceding section to find the minimum.
From (8) we obtain

dc X 1

dx Vx2+25 2

Setting dc/dx = 0 and solving for x yields

X B 1 9
Vx2+25 2
1
x2 = L—l(x2 + 25)
5
X =+—
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10in

|[«<—6 in—>|

@

‘

10-h

10in

«— 5 —>|—

(b)
Figure 4.6.6

The number —5/+/3 is not a solution of (9) and must be discarded, leaving x = 5/+/3 as
the only critical number. Since this number liesin the interval [0, 8], the minimum must
occur at one of the values

x=0 x=5/v/3 x=8

Substituting these values into (8) yields Table 4.6.3, which tells us that the least possible
cost of the pipeline (to the nearest dollar) isc = $8,330,127, and this occurs when the point
P islocated at adistance of 5/+/3 &~ 2.89 km from A. Thisis consistent with the graph in
Figure 1.1.9c. <

Table 4.6.3
5
X 0 3 8
104 (4_5)= ~
c 9 B+ (4 2@) 8.330127 = /89 =~ 9.433981

FOR THE READER.  If you have a CAS, use it to check all of the computations in this
example. Specifically, differentiate ¢ with respect to x, solve the equation dc¢/dx = 0, and
perform al of the numerical calculations.

Example 4 Find the radius and height of the right circular cylinder of largest volume
that can be inscribed in a right circular cone with radius 6 inches and height 10 inches
(Figure 4.6.6a).

Solution. Let
r = radius (in inches) of the cylinder
h = height (ininches) of the cylinder
V = volume (in cubic inches) of the cylinder
The formulafor the volume of the inscribed cylinder is
V = nrh (10)

To eliminate one of the variables in (10) we need a relationship between r and /. Using
similar triangles (Figure 4.6.6b) we obtain

10—-hn 10
—=5 o h=10-3r (11)
Substituting (11) into (10) we obtain
V =mr? (10— 3r) = 10mr® — 373 (12)

which expresses V interms of  alone. Because r represents aradiusit cannot be negative,
and because the radius of the inscribed cylinder cannot exceed the radius of the cone, the
variable r must satisfy

0<r<6

Thus, we have reduced the problem to that of finding the value (or values) of r in [0, 6]
for which (12) isamaximum. Since V is a continuous function of » on [0, 6], the methods
developed in the preceding section apply.

From (12) we obtain

av
— = 207r — 5nr% = 5r (4 —r)
dr

Setting dV /dr = 0 gives
Srr(4—r)=0
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sor = 0andr = 4 arecritical numbers. Sincetheseliein theinterval [0, 6], the maximum
must occur at one of the values

r=0, r=4 r=6

Substituting these values into (12) yields Table 4.6.4, which tells us that the maximum

volume V = %On ~ 168 in® occurs when the inscribed cylinder has radius 4 in. When
r = 4it follows from (11) that & = %). Thus, the inscribed cylinder of largest volume has

radiusr = 4inand height 2 = ¥ in. |

Example 5 A closed cylindrical canisto hold 1 liter (1000 cm?®) of liquid. How should
we choose the height and radius to minimize the amount of material needed to manufacture
the can?

Solution. Let

h = height (in cm) of the can

r = radius (in cm) of the can

S = surface area (in cm?) of the can
Assuming thereis no waste or overlap, the amount of material needed for manufacture will
be the same as the surface area of the can. Since the can consists of two circular disks of
radius r and arectangular sheet with dimensions i by 2zr (Figure 4.6.7), the surface area
will be

S = 2nr? 4 27rh (13)

Since S depends on two variables, » and 2, we will look for some condition in the problem
that will alow us to express one of these variables in terms of the other. For this purpose,
observe that the volume of the can is 1000 cm?®, so it follows from the formula V = 772k
for the volume of a cylinder that

1000
1000 =mrh or h=— (14-15)
r
Substituting (15) in (13) yields
2000
S =2mr?+ —— (16)

Thus, we have reduced the problem to finding avalue of » intheinterval (0, +o) for which

S isminimum. Since S is a continuous function of » on theinterval (0, +<0) and
. 2000 . 2000

lim (2nr2 + —) = 4w and Imﬂ <2an + —) = +oo
r r— 4w r

r— 0t

the analysis in Table 4.5.3 implies that S does have a minimum on the interval (0, +).

r

I

1
U

!
i

[z

|
|

Area 27712 Area 27rrh

Figure 4.6.7
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2500
2000
1500
1000

500 [

r

Figure 4.6.8

Figure 4.6.9

Since this minimum must occur at a critical number, we calcul ate

ds 2000
Z = 47tr — r2 (17)
Setting dS/dr = 0 gives
10
r=——~54 18
3o (18)

Since (18) is the only critical number in the interval (0, +«), this value of r yields the
minimum value of S. From (15) the value of & corresponding to thisr is

b 1000 20
710/ 272 I2n
It is not an accident here that the minimum occurs when the height of the can is equal to
the diameter of its base (Exercise 27).

2r

Second Solution. The conclusion that a minimum occurs at the value of » in (18) can be
deduced from Theorem 4.5.5 and the second derivative test by noting that

d?s - 4000

dr2 3
is positive if » > 0 and hence is positive if r = 10/ ¥/2x. This implies that a relative
minimum, and therefore a minimum, occurs at the critical number » = 10/ «3/271.

Third Solution. An alternative justification that the critical number » = 10/ /27 corre-
sponds to aminimum for S isto view the graph of S versusr (Figure 4.6.8). <

REMARK. Notethat S hasnomaximumon (0, +«). Thus, had we asked for thedimensions
of the can requiring the maximum amount of material for its manufacture, there would have
been no solution to the problem. Optimization problems with no solution are sometimes
caledill posed.

Example 6 Find apoint on the curve y = x? that is closest to the point (18, 0).

Solution. Thedistance L between (18, 0) and an arbitrary point (x, y) onthecurvey = x2
(Figure 4.6.9) is given by

L=(x—-18%+(y-0)?
Since (x, y) lieson the curve, x and y satisfy y = x?; thus,

L=1(x—18)2+ x4 (19)

Because there are no restrictions on x, the problem reduces to finding a value of x in
(—o0, 4+00) for which (19) is aminimum. The distance L and the square of the distance L?
are minimized at the same value (see Exercise 60). Thus, the minimum value of L in (19)
and the minimum value of

S=1L%=(x—182+x* (20)
occur at the same x-value.
From (20),
ds 3 3
d—=2(x—18)+4x =4x°+2x — 36 (21)
X

o that the critical numbers satisfy 4x2 + 2x — 36 = 0 or, equivalently,
23 +x—-18=0 (22)

Tosolvefor x wewill begin by checking thedivisorsof —18to seewhether the polynomial on
theleft sidehasany integer roots (see Appendix F). Thesedivisorsare+1, 2, 3, £6, +9,
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and £18. A check of these values showsthat x = 2 isaroot, so that x — 2 isafactor of the
polynomial. After dividing the polynomial by this factor we can rewrite (22) as

(x—D(2x°+4+9 =0
Thus, the remaining solutions of (22) satisfy the quadratic equation
2> +4x+9=0

But this equation has no real solutions (using the quadratic formula), so that x = 2 isthe
only critical number of S. To determine the nature of this critical number we will use the
second derivative test. From (21),

d?s d?s

— =12x°+2, s —

dx? * dx?|._,
which shows that a relative minimum occurs at x = 2. Since x = 2 is the only relative
extremum for L, it follows from Theorem 4.5.5 that an absolute minimum value of L aso
occurs at x = 2. Thus, the point on the curve y = x? closest to (18, 0) is

(x,y) = (x,x) = (2,4 <

=50>0

Three functions of importance to an economist or a manufacturer are

C(x) = total cost of producing x units of a product during some time period
R(x) = total revenue from selling x units of the product during the time period
P (x) = total profit obtained by selling x units of the product during the time period

These are called, respectively, the cost function, revenue function, and profit function. If
all units produced are sold, then these are related by

P(x) = R(x) — C(x)

[profit] = [revenue] —[cost]

(23)

The total cost C(x) of producing x units can be expressed as asum
Cx)=a+ M) (24)

wherea isaconstant, called overhead, and M (x) isafunction representing manufacturing
cost. The overhead, which includes such fixed costs as rent and insurance, does not depend
onx; it must be paid even if nothing is produced. On the other hand, the manufacturing cost
M (x), which includes such items as cost of materials and |abor, depends on the number of
items manufactured. It is shown in economics that with suitable simplifying assumptions,
M (x) can be expressed in the form

M(x) = bx + cx?
where b and ¢ are constants. Substituting thisin (24) yields
C(x) =a + bx + cx? (25

If a manufacturing firm can sell all the items it produces for p dollars apiece, then its
total revenue R(x) (in dollars) will be

R(x) = px (26)
and itstotal profit P(x) (in dollars) will be

P(x) = [total revenue] — [total cost] = R(x) — C(x) = px — C(x)
Thus, if the cost function is given by (25),

P(x) = px —(a+bx + cx?) 27

Depending on such factors as number of employees, anount of machinery available, eco-
nomic conditions, and competition, there will be some upper limit £ on the number of items
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a manufacturer is capable of producing and selling. Thus, during a fixed time period the
variable x in (27) will satisfy

O<x<¢

By determining the value or values of x in [0, ¢] that maximize (27), the firm can determine
how many units of its product must be manufactured and sold to yield the greatest profit.
Thisisillustrated in the following numerical example.

Example 7 A liquid form of penicillin manufactured by a pharmaceutical firmissoldin
bulk at a price of $200 per unit. If the total production cost (in dollars) for x unitsis

C(x) = 500,000 + 80x + 0.003x?
and if the production capacity of the firm is at most 30,000 units in a specified time, how
many units of penicillin must be manufactured and sold in that time to maximize the profit?
Solution. Since the total revenue for selling x unitsis R(x) = 200x, the profit P(x) on
x unitswill be

P(x) = R(x) — C(x) = 200x — (500,000 + 80x + 0.003x?) (28)

Since the production capacity is at most 30,000 units, x must liein the interval [0, 30,000].
From (28)

P
z— = 200 — (80 4 0.006x) = 120 — 0.006x
X

Setting dP/dx = 0 gives
120 — 0.006x =0 or x = 20,000

Since this critical number lies in the interval [0, 30,000], the maximum profit must occur
at one of the values

x=0, x=20,000, or x= 30,000

Substituting these valuesin (28) yields Table 4.6.5, which tells us that the maximum profit
P = $700,000 occurs when x = 20,000 units are manufactured and sold in the specified
time. <

Table 4.6.5
X 0 20,000 30,000
P(x) —-500,000 700,000 ' 400,000

Economistscall P’(x), R'(x), and C'(x) the marginal profit, marginal revenue, and mar-
ginal cost, respectively; and they interpret these quantities as the additional profit, revenue,
and cost that result from producing and selling one additional unit of the product when
the production and sales levels are at x units. These interpretations follow from the local
linear approximations of the profit, revenue, and cost functions. For example, it follows
from Formula (2) of Section 3.8 that when the production and saleslevelsare at x unitsthe
local linear approximation of the profit function is

P(x + Ax) ~ P(x) + P'(x)Ax
Thus, if Ax = 1 (one additional unit produced and sold), this formulaimplies
P(x+ 1)~ P(x) + P'(x)

and hence the additional profit that results from producing and selling one additional unit
can be approximated as

P(x+1)— P(x) ~ P'(x)
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Itfollowsfrom (23) that P/(x) = O hasthesamesolutionasC’(x) = R'(x), andthisimplies
that the maximum profit must occur where the marginal revenue is equal to the marginal

The maximum profit occurs where the cost of manufacturing and selling an additional
unit of a product is approximately equal to the revenue generated by the additional unit.

In Example 7, the maximum profit occurs when x = 20,000 units. Note that
C(20,001) — C(20,000) = $200.003 and R(20,001) — R(20,000) = $200
which is consistent with this basic economic principle.

EXERCISE SET 4.6

1

Express the number 10 as a sum of two nonnegative num-
bers whose product is as large as possible.

How should two nonnegative numbers be chosen so that
their sumis 1 and the sum of their squaresis

(a) aslargeaspossible

(b) assmall aspossible?

Find a number in the closed interval [, 3] such that the
sum of the number and itsreciprocal is

(@) assmall as possible

(b) aslarge as possible.

A rectangular fieldisto bebounded by afence onthreesides
and by astraight stream on the fourth side. Find the dimen-
sions of the field with maximum area that can be enclosed
with 1000 feet of fence.

A rectangular plot of land isto befenced in using two kinds
of fencing. Two opposite sides will use heavy-duty fenc-
ing selling for $3 afoot, while the remaining two sides will
use standard fencing selling for $2 afoot. What are the di-
mensions of the rectangular plot of greatest areathat can be
fenced in at acost of $6000?

A rectangleisto beinscribed in aright triangle having sides
of length 6 in, 8 in, and 10 in. Find the dimensions of the
rectangle with greatest area assuming the rectangle is posi-
tioned as in the accompanying figure.

Solve the problem in Exercise 6 assuming the rectangle is
positioned as in the accompanying figure.

ﬂsm ﬂsn

6in 6in
Figure Ex-6 Figure Ex-7

A rectangle has its two lower corners on the x-axis and its
two upper corners on the curve y = 16 — x2. For all such

9.

10.

11

12.

13.

14.

16.

rectangles, what are the dimensions of the one with largest
area?

Find the dimensions of the rectangle with maximum area
that can beinscribed in acircle of radius 10.

Find the dimensions of the rectangle of greatest area that
can beinscribed in asemicircle of radius R as shown in the
accompanying figure.

[e—R—

Figure Ex-10

A rectangular area of 3200 ft? is to be fenced off. Two
opposite sides will use fencing costing $1 per foot and the
remaining sides will use fencing costing $2 per foot. Find
the dimensions of the rectangle of |east cost.

Show that among all rectangleswith perimeter p, the square
has the maximum area.

Show that among all rectangles with area A, the square has
the minimum perimeter.

A wire of length 12 in can be bent into acircle, bent into a
sguare, or cut into two pieces to make both a circle and a
sguare. How much wire should be used for the circle if the
total area enclosed by the figure(s) isto be

(8 amaximum (b) aminimum?

. A field in the shape of an isoscelestriangleisto be bounded

by afence on the two equal sides of the triangle, and by a
straight stream on the third side. Find the dimensions of the
field with maximum areathat can be enclosed by 300 yards
of fence.

A church window consisting of a rectangle topped by a
semicircle is to have a perimeter p. Find the radius of the
semicircle if the area of the window is to be maximum.
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17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

A sheet of cardboard 12 in square is used to make an open
box by cutting squares of equal size from the four corners
and folding up the sides. What size squares should be cut
to obtain abox with largest possible volume?

A square sheet of cardboard of side & is used to make an
open box by cutting squares of equal size from the four
corners and folding up the sides. What size squares should
be cut from the cornersto obtain abox with largest possible
volume?

An open box is to be made from a 3-ft by 8-ft rectangular
piece of sheet metal by cutting out squares of equal size
from the four corners and bending up the sides. Find the
maximum volume that the box can have.

A closed rectangular container with asquare baseisto have
avolume of 2250 in®. The material for the top and bottom
of the container will cost $2 per in?, and the material for
the sides will cost $3 per in?. Find the dimensions of the
container of least cost.

A closed rectangular container with asquare baseisto have
a volume of 2000 cmq. It costs twice as much per square
centimeter for the top and bottom as it does for the sides.
Find the dimensions of the container of least cost.

A container with square base, vertical sides, and opentopis
to be made from 1000 ft? of material. Find the dimensions
of the container with greatest volume.

A rectangular container with two square sides and an open
top is to have a volume of V cubic units. Find the dimen-
sions of the container with minimum surface area.

Find the dimensions of theright circular cylinder of largest
volume that can be inscribed in a sphere of radius R.

Find the dimensions of theright circular cylinder of greatest
surface area that can be inscribed in a sphere of radius R.

Show that the right circular cylinder of greatest volume that
can beinscribed in aright circular cone has volume that is
g the volume of the cone (Figure Ex-26).

Figure Ex-26

A closed, cylindrical can is to have a volume of V cu-
bic units. Show that the can of minimum surface area is
achieved whentheheightisequal tothediameter of thebase.

A closed cylindrical canisto haveasurfaceareaof S square
units. Show that the can of maximum volume is achieved
when the height is equal to the diameter of the base.

Sheet number 60 Page number 300

29.

30.

3L

32.

33.

35.

36.
37.

38.

black

cyan magenta

A cylindrical can, open at the top, is to hold 500 cm?® of
liquid. Find the height and radius that minimize the amount
of material needed to manufacture the can.

A soup can inthe shape of aright circular cylinder of radius
r and height  is to have a prescribed volume V. The top
and bottom are cut from squares as shown in the accompa-
nying figure. If the shaded corners are wasted, but there is
no other waste, find the ratio » /A for the can requiring the
least material (including waste).

A box-shaped wire frame consists of two identical wire
sguares whose vertices are connected by four straight wires
of equal length (Figure Ex-31). If the frame is to be made
from awire of length L, what should the dimensions be to
obtain abox of greatest volume?

&%
\/@

Figure Ex-30

Suppose that the sum of the surface areas of a sphereand a

cube is a constant.

(8 Show that the sum of their volumes is smallest when
the diameter of the sphere is equal to the length of an
edge of the cube.

(b) When will the sum of their volumes be greatest?

Find the height and radius of the cone of slant height L
whose volume is as large as possible.

. A coneismade from acircular sheet of radius R by cutting

out a sector and gluing the cut edges of the remaining piece
together (Figure Ex-34). What is the maximum volume
attainable for the cone?

Figure Ex-34

A cone-shaped paper drinking cup is to hold 10 cm® of
water. Find the height and radius of the cup that will require
the least amount of paper.

Find the dimensions of the isosceles triangle of least area
that can be circumscribed about acircle of radius R.

Find theheight and radiusof theright circular conewithleast
volumethat can be circumscribed about asphereof radius R.

A trapezoid isinscribed in a semicircle of radius 2 so that
one side is along the diameter (Figure Ex-38). Find the
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maximum possible area for the trapezoid. [Hint: Express
the area of the trapezoid in terms of 6.]

A drainage channel is to be made so that its cross section
is atrapezoid with equally sloping sides (Figure Ex-39). If
the sides and bottom all have a length of 5 ft, how should
the angle ® (0 < 0 < m/2) be chosen to yield the greatest
cross-sectional area of the channel?

Figure Ex-38

Figure Ex-39

A lampissuspended above the center of around table of ra-
diusr. How high above the table should the lamp be placed
to achieve maximum illumination at the edge of the table?
[Assume that the illumination I is directly proportional to
the cosine of the angle of incidence ¢ of the light rays and
inversely proportional to the square of the distance ! from
the light source (Figure Ex-40).]

A plank is used to reach over afence 8 ft high to support a
wall that is 1 ft behind the fence (Figure Ex-41). What isthe
length of the shortest plank that can be used? [Hint: Express
the length of the plank in terms of the angle & shown in the
figure]

Light
source

%0 |
1t

Figure Ex-40 Figure Ex-41

A commercial cattle ranch currently allows 20 steers per
acre of grazing land; on the average its steersweigh 2000 |b
at market. Estimatesby the Agriculture Department indicate
that the average market weight per steer will be reduced by
50 Ib for each additional steer added per acre of grazing
land. How many steers per acre should be alowed in order
for the ranch to get the largest possible total market weight
for its cattle?

(8 A chemical manufacturer sellssulfuricacidin bulk at a
price of $100 per unit. If the daily total production cost
indollarsfor x unitsis

C(x) = 100,000 + 50x + 0.0025x2
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and if the daily production capacity is at most 7000
units, how many units of sulfuric acid must be manu-
factured and sold daily to maximize the profit?

(b) Would it benefit the manufacturer to expand the daily
production capacity?

(c) Use margina analysis to approximate the effect on
profitif daily production could be increased from 7000
to 7001 units.

. A firm determines that x units of its product can be sold

daily at p dollars per unit, where
x =1000 — p

The cost of producing x units per day is
C(x) = 3000 + 20x

(8 Find the revenue function R(x).

(b) Find the profit function P (x).

(c) Assuming that the production capacity is at most 500
units per day, determine how many units the company
must produce and sell each day to maximize the profit.

(d) Find the maximum profit.

(e) What price per unit must be charged to obtain the
maximum profit?

In a certain chemical manufacturing process, the daily
weight y of defective chemical output depends on the total
weight x of all output according to the empirical formula

y = 0.01x + 0.00003x?

where x and y arein pounds. If the profit is $100 per pound
of nondefective chemical produced and the loss is $20 per
pound of defective chemical produced, how many pounds
of chemical should be produced daily to maximize the total
daily profit?

The cost ¢ (in dollars per hour) to run an ocean liner at a
constant speed v (inmilesper hour) isgivenby ¢ = a + bv",
where a, b, and n are positive constants with » > 1. Find
the speed needed to make the cheapest 3000-mi run.

Two particles, A and B, are in motion in the xy-plane.
Their coordinates at each instant of time (¢ > 0) aregiven
by x4 = t,ya = 2t,xp = 1 —t, and yp = r. Find the
minimum distance between A and B.

Follow the directions of Exercise 47, withx, = ¢, y4 = 12,
Xp = 2t,andy3 =2

Provethat (1, 0) istheclosest point onthecurvex?+y? = 1
to (2, 0).

Find al points on the curve y = \/x for 0 < x < 3 that
are closest to, and at the greatest distance from, the point
2,0).

Find all points on the curve x2 — y? = 1 closest to (0, 2).
Find a point on the curve x = 2y? closest to (0, 9).
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53.

55.

56.

57.

58.

Find the coordinates of the point P on the curve

y=; (x>0

where the segment of the tangent line at P that is cut off by
the coordinate axes has its shortest length.

. Find the x-coordinate of the point P on the parabola

y=1_x2 (0<x§1)

where the triangle that is enclosed by the tangent line at P
and the coordinate axes has the smallest area.

Where on the curve y = (1+ xz)fl does the tangent line
have the greatest slope?

A man is floating in a rowboat 1 mile from the (straight)
shoreline of alarge lake. A town islocated on the shoreline
1 milefrom the point on the shoreline closest to theman. As
suggested in the accompanying figure, heintendstorowina
straight line to some point P on the shoreline and then walk
the remaining distance to the town. To what point should
he row in order to reach his destination in the least time if
(@ hecanwalk 5mi/handrow 3 mi/h;

(b) he canwalk 5 mi/h and row 4 mi/h?

A pipe of negligible diameter is to be carried horizontally
around acorner from ahallway 8 ft wideinto ahallway 4 ft
wide (Figure Ex-57). What is the maximum length that the
pipe can have? [An interesting discussion of this problem
in the case where the diameter of the pipe is not neglected
is given by Norman Miller in the American Mathematical
Monthly, Vol. 56, 1949, pp. 177-179.]

Lake

—| 4ft |«

Figure Ex-56 Figure Ex-57

If an unknown physical quantity x is measured n times, the
measurements xi, xo, . .., X, often vary because of uncon-
trollable factors such as temperature, atmospheric pressure,
and so forth. Thus, a scientist is often faced with the prob-
lem of using n different observed measurements to obtain
an estimate x of an unknown quantity x. One method for
making such an estimateis based on the least squaresprin-
ciple, which states that the estimate x should be chosen to
minimize

s =1 — 0%+ (2= 0%+ + (x, — 0)?

which is the sum of the squares of the deviations between
the estimate x and the measured values. Show that the
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estimate resulting from the least squares principleis

1
X:;(X1+X2+"'+Xn)

that is, x isthe arithmetic average of the observed values.

Suppose that the intensity of a point light sourceis directly
proportional to the strength of the source and inversely pro-
portional to the square of the distance from the source. Two
point light sources with strengths of S and 85 are separated
by adistance of 90 cm. Where on the line segment between
the two sources is the intensity a minimum?

Prove: If f(x) >0 on an interval / and if f(x) has a
maximum value on I at xo, then / f(x) aso has a maxi-
mum value at xo. Similarly for minimum values. [Hint: Use
the fact that /x is an increasing function on the interval
[0, +).]

Fermat’s (biography on pp. XXX—-XXX) principlein optics
states that light traveling from one point to another follows
that path for which thetotal travel timeisminimum. Inauni-
form medium, the paths of “minimum time” and “shortest
distance” turn out to be the same, so that light, if unob-
structed, travels along a straight line. Assume that we have
a light source, a flat mirror, and an observer in a uniform
medium. If alight ray leavesthe source, bounces off themir-
ror, and travels on to the observer, then its path will consist
of two line segments, as shown in Figure Ex-61. According
to Fermat’s principle, the path will be such that the total
travel time ¢ is minimum or, since the medium is uniform,
the path will be such that the total distance traveled from A
to P to B isas small as possible. Assuming the minimum
occurs when dt/dx = 0, show that the light ray will strike
the mirror at the point P where the “angle of incidence” 6,
equalsthe “angle of reflection” 6,.

Source

Figure Ex-61

Fermat’s principle (Exercise 61) aso explains why light
rays traveling between air and water undergo bending (re-
fraction). Imagine that we have two uniform media (such
as air and water) and a light ray traveling from a source
A in one medium to an observer B in the other medium
(Figure Ex-62). It is known that light travels at a constant
speed in a uniform medium, but more slowly in a dense
medium (such aswater) than in athin medium (such asair).
Consequently, the path of shortest time from A to B is not
necessarily astraight line, but rather some broken line path
A to P to B dlowing thelight to take greatest advantage of
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its higher speed through the thin medium. Snell’s” (biogra-
phy on p. XXX) law of refraction statesthat the path of the
light ray will be such that

sin 61 sin 6o

U1 V2
where v; isthe speed of light in the first medium, v, isthe
speed of light in the second medium, and 6; and 6, are the
angles shown in Figure Ex-62. Show that this follows from
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63. A farmer wantsto walk at a constant rate from her barn to

astraight river, fill her pail, and carry it to her house in the

least time.

(8 Explain how this problem relates to Fermat’s principle
and the light-reflection problem in Exercise 61.

(b) Usetheresult of Exercise 61 to describe geometrically
the best path for the farmer to take.

(c) Use part (b) to determine where the farmer should fill
her pail if her house and barn are located as in Figure

the assumption that the path of minimum time occurs when Ex-63.
dt/dx = 0.
A . 1mi
— o (Source) Medium 1
Barn &
[ { /3
a a ‘kHouse // 4_
J mi \\\// il
River
Figure Ex-63

Medium 2
Figure Ex-62

4.7 NEWTON'S METHOD

In Section 2.5 we showed how to approximate the roots of an equation f(x) = 0 by
using the Intermediate-Value Theorem and also by zooming in on the x-intercepts of

y = f(x) with a graphing utility. In this section we will study a technique, called
Newton's Method, that is usually more efficient than either of those methods. Newton's
Method is the technique used by many commercial and scientific computer programs
for finding roots.

""""" Sonoeeeensmmnsttttt - In beginning algebra one learns that the solution of a first-degree equation ax +5 =0 is
NEWTON'S METHOD given by the formulax = —b/a, and the solutions of a second-degree equation

ax’+bx+c=0

are given by the quadratic formula. Formulas also exist for the solutions of all third- and
fourth-degree equations, although they are too complicated to be of practical use. In 1826

’ WILLEBRORD VAN ROIJEN SNELL (1591-1626). Dutch mathematician. Snell, who succeeded his father to the
post of Professor of Mathematicsat the University of Leidenin 1613, ismost famousfor theresult of light refraction
that bears his name. Although this phenomenon was studied as far back as the ancient Greek astronomer Ptolemy,
until Snell’s work the relationship was incorrectly thought to be 61/v1 = 62/v,. Snell’s law was published by
Descartes in 1638 without giving proper credit to Snell. Snell also discovered a method for determining distances
by triangulation that founded the modern technique of mapmaking.
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Figure4.7.1

it was shown by the Norwegian mathematician Niels Henrik Abel” that it isimpossible to
construct a similar formula for the solutions of a general fifth-degree equation or higher.
Thus, for a specific fifth-degree polynomial equation such as

X =+ 2x% —5x2+17x —8=0

it may be difficult or impossibleto find exact valuesfor all of the solutions. Similar difficul-
ties occur for nonpolynomial equations such as

x—cosx =0

For such eguations the solutions are generally approximated in some way, often by the
method we will now discuss.

Suppose that we are trying to find a root r of the equation f(x) = 0, and suppose that
by some method we are able to obtain an initial rough estimate, x1, of r, say by generating
thegraph of y = f(x) with agraphing utility and examining the x-intercept. If f(x1) =0,
then r = x1. If f(x1) # O, then we consider an easier problem, that of finding a root to
a linear equation. The best linear approximation to y = f(x) near x = x; is given by
the tangent line to the graph of f at x;, so it might be reasonable to expect that the x-
intercept to thistangent line provides an improved approximation to ». Call thisintercept x;
(Figure 4.7.1). We can now treat x, in the same way we did x;. If f(x2) = 0O, thenr = x».
If f(x2) # 0, then construct the tangent line to the graph of f at x,, and take x3 to be the
x-intercept of this tangent line. Continuing in this way we can generate a succession of
values x1, x2, x3, X4, . . . that will usually approach r. This procedure for approximating r
is called Newton's Method.

To implement Newton's Method analytically, we must derive aformula that will tell us
how to cal cul ate each improved approximation from the preceding approximation. For this
purpose, we note that the point-slope form of the tangent lineto y = f(x) at the initial
approximation x; is

y— flx1) = fi(x0)(x — x1) 1)
If f'(x1) # O, then this line is not parallel to the x-axis and consequently it crosses the

*NIELS HENRIK ABEL (1802—1829). Norwegian mathematician. Abel was the son of a poor Lutheran minister
and aremarkably beautiful mother from whom heinherited strikingly good looks. In his brief life of 26 years Abel
lived in virtual poverty and suffered asuccession of adversities; yet he managed to prove major resultsthat altered
the mathematical landscape forever. At the age of thirteen he was sent away from home to a school whose better
days had long passed. By a stroke of luck the school had just hired ateacher named Bernt Michael Holmboe, who
quickly discovered that Abel had extraordinary mathematical ability. Together, they studied the cal culus texts of
Euler and works of Newton and the later French mathematicians. By the time he graduated, Abel was familiar
with most of the great mathematical literature. In 1820 his father died, leaving the family in dire financial straits.
Abel was able to enter the University of Christianiain Oslo only because he was granted a free room and several
professors supported him directly from their salaries. The University had no advanced courses in mathematics,
so Abel took a preliminary degree in 1822 and then continued to study mathematics on his own. In 1824 he
published at his own expense the proof that it isimpossible to solve the general fifth-degree polynomial equation
agebraically. With the hopethat thislandmark paper would lead to hisrecognition and acceptance by the European
mathematical community, Abel sent the paper to the great German mathematician Gauss, who casually declared
it to be a“monstrosity” and tossed it aside. However, in 1826 Abel’s paper on the fifth-degree equation and other
work was published in the first issue of a new journal, founded by his friend, Leopold Crelle. In the summer of
1826 he completed alandmark work on transcendental functions, which he submitted to the French Academy of
Sciencesin the hope of establishing himself asamajor mathematician, for many young mathematicians had gained
quick distinction by having their work accepted by the Academy. However, Abel waited in vain because the paper
was either ignored or misplaced by one of the referees, and it did not surface again until two years after his death.
That paper was later described by one major mathematician as “. .. the most important mathematical discovery
that has been madein our century. ..." After submitting his paper, Abel returned to Norway, ill with tuberculosis
and in heavy debt. While eking out a meager living as a tutor, he continued to produce great work and his fame
spread. Soon great efforts were being made to secure a suitable mathematical position for him. Fearing that his
great work had been lost by the Academy, he mailed a proof of the main results to Crelle in January of 1829. In
April he suffered a violent hemorrhage and died. Two days later Crelle wrote to inform him that an appointment
had been secured for him in Berlin and his days of poverty were over! Abel’s great paper was finally published by
the Academy twelve years after his death.
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x-axis at some point (x», 0). Substituting the coordinates of this point in (1) yields
—f(x1) = f'(x1)(x2 — x1)

Solving for x, we obtain

f /(xl) @

J'(x1)

The next approximation can be obtained more easily. If we view x, asthe starting approx-

imation and x3 the new approximation, we can simply apply (2) with x, in place of x; and
x3 in place of x,. Thisyields

X3 =X — ——— (3)
2

provided f’(x2) # O. In generd, if x,, isthe nth approximation, then it is evident from the
pattern in (2) and (3) that the improved approximation x,, .1 iS given by

X2 = X1 —

Newton’s Method

J@) 103 “)
f(xn)

Xn+1l = Xp —

Example 1 Use Newton's Method to approximate the real solutions of

x¥—x-1=0

Solution. Let f(x) =x%—x — 1,50 f'(x) = 3x? — 1 and (4) becomes
x3—x, -1
n n 5
3x2—-1 ®)
From the graph of f in Figure 4.7.2, we see that the given equation has only one real solu-

tion. This solution lies between 1 and 2 because (1) = —1 < Oand f(2) =5 > 0. We
will use x; = 1.5 asour first approximation (x; = 1 or x; = 2 would also be reasonable

Xn+l = Xn —

choices).
Lettingn = 1in (5) and substituting x; = 1.5 yields
(15°%—-15-1
=15—- —————— ~1.34782609 6
2 31521 ©)

(We used a calculator that displays nine digits.) Next, we let n = 2 in (5) and substitute x;
to obtain

x% —x2—1

3x§ -1
If we continue this process until two identical approximations are generated in succession,
we obtain

x1~ 15

xp ~ 1.34782609

x3 ~ 1.32520040

x4 ~ 1.32471817

xs ~ 1.32471796

xe ~ 1.32471796
At this stage there is no need to continue further because we have reached the display accu-

racy limit of our calculator, and all subsequent approximationsthat the calculator generates
will likely be the same. Thus, the solution is approximately x ~ 1.32471796. <

X3 = X2 — ~ 1.32520040 @
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[0, 5] x [2, 2]
xScl = 1, yScl = 1

Figure4.7.3

SOME DIFFICULTIES WITH
NEWTON’'S METHOD

f'(x) =0

i
\
.

/ X2 X
X3 cannot be generated.

Figure4.7.4

¢ REMARK. Many calculators and computer programs cal culate internally with more digits

than they display. Thus, where possible, you should use stored cal cul ated values rather than
displayed values from intermediate calculations. For example, the value of x; used in (7)
should be the stored value, not (6).

Example 2 Itisevident from Figure 4.7.3 that if x isin radians, then the equation
COSx = x

has a solution between 0 and 1. Use Newton's Method to approximate it.

Solution. Rewrite the equation as
x —cosx =0

and apply (4) with f(x) = x — cosx. Since f'(x) = 1+ sinx, (4) becomes

X, — COSX,

EETTY €S)
+ Snx,

From Figure 4.7.3, the solution seems closer to x = 1thanx = 0, sowewill usex; = 1

(radian) as our initial approximation. Letting n = 1in (8) and substituting x; = 1 yields
1—cosl
1+sinl

Next, letting n = 2 in (8) and substituting this value of x, yields

Xp+l = Xp —

Xp = ~ 0.750363868

2 2
X< — COSx
x3 = x? — ————— ~0.739112891
1+ sinx;
If we continue this process until two identical approximations are generated in succession,

we obtain
x1=1
x2 ~ 0.750363868
x3 ~ 0.739112891
x4 ~ 0.739085133
x5 ~ 0.739085133

Thus, to the accuracy limit of our calculator, the solution of the equation cosx = x is
x ~ 0.739085133. <

When Newton's Method works, the approximations usually converge toward the solution
with dramatic speed. However, there are situationsin which the method fails. For example, if
f'(x,) = 0for somen, then (4) involvesadivision by zero, making it impossibleto generate
xn+1. However, thisisto be expected because the tangent lineto y = f(x) isparallel to the
x-axiswhere f'(x,) = 0, and hence this tangent line does not cross the x-axis to generate
the next approximation (Figure 4.7.4).

Newton's Method can fail for other reasons as well; sometimesit may overlook the root
you aretrying to find and converge to adifferent root, and sometimesit may fail to converge
altogether. For example, consider the equation

3 =0

which has x = 0 as its only solution, and try to approximate this solution by Newton's
Method with astarting value of xo = 1. Letting f(x) = x¥/3, Formula (4) becomes

()13
3 ()23

Beginning with x; = 1, the successive values generated by thisformula are

=x, —3x, = —2x,

Xntl = Xp —

x1=1 xx=-2, x3=4, x4=-8,...
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which obviously do not convergeto x = 0. Figure 4.7.5 illustrates what is happening geo-
metrically in this situation.

1/3

y y=X
|

Figure4.7.5

|
[ee]
544
S

To learn more about the conditions under which Newton’s Method converges and for
a discussion of error questions, you should consult a book on numerical analysis. For a
more in-depth discussion of Newton’s Method and its relationship to contemporary studies
of chaos and fractals, you may want to read the article, “Newton’s Method and Fractal
Patterns,” by Phillip Straffin, which appearsin Applications of Calculus, MAA Notes, Vol.
3, No. 29, 1993, published by the Mathematical Association of America.

EXERCISE SET 4.7 [ Graphing Calculator

In this exercise set express your answer with as many deci-
mal digits as your calculating utility can display, but use the
procedure in the remark following Example 1.

1. Approximate +/2 by applying Newton's Method to the

equation x> — 2 = 0.

N 13 x —tanx =0; /2 < x < 31/2
~ 14. 1+ x%cosx =0, O<x <7

In Exercises 15-18, use a graphing utility to determine the
number of timesthe curvesintersect; and then apply Newton's
Method, where needed, to approximate the x-coordinates of
all intersections.

2. Approximate /7 by applying Newton’s Method to the

equation x2 — 7 = 0.

N 15 y=x3andy=%x—1

3. Approximate v/6 by applying Newton's Method to the 5] 16. y =sinxandy =x* — 2x? +1

equation x® — 6 = 0.

N 17 y=x?andy =+2x+1

4. To what equation would you apply Newton’s Method to K 18. y = tx®+ land y = cos2x

approximate the nth root of a?

19. The mechanic’s rule for approximating square roots states
that \/a ~ x,.1, where

In Exercises 5-8, the equation has onereal solution. Approx-
imate it by Newton’s Method.

6. x°+x—-1=0
8. x°—x+1=0

5 x3—x+3=0
7. x°+x*-5=0

In Exercises 9-14, use a graphing utility to determine how
many solutions the equation has, and then use Newton's
Method to approximate the solution that satisfies the stated
condition.

~ 9. x*+x-3=0x<0
g 10. x> —5x*—2=0; x>0
N~ 11 2snx =x; x>0

~ 12. sinx =x% x>0

20.

1
xn+1:§<xn+i>, n:1,2,3,...

and x; is any positive approximation to \/a.
(& Apply Newton's Method to
f@)=x*—a
to derive the mechanic’srule.
(b) Use the mechanic’s rule to approximate +/10.

Many cal cul ators compute reciprocal susing the approxima-

tion1/a ~ x,,1, where
Xnt+l = -xn(z - a-xn)y n= 17 23 3, “ee

and x; is an initia approximation to 1/a. This formula
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21.

22.

23.

24.

25.

26.

makesit possible to perform divisions using multiplications
and subtractions, which is a faster procedure than dividing
directly.

(& Apply Newton's Method to

1
fx)=—-—a
X

to derive this approximation.
i 1
(b) Usetheformulato approximate 4.

Use Newton's Method to find the absol ute minimum of
flx) = %x“ + x? 4 5x

Use Newton's Method to find the absolute maximum of

f(x) = xsinx ontheinterva [0, n].

Use Newton’s Method to find the coordinates of the point
on the parabola y = x2 that is closest to the point (1, 0).

Use Newton’s Method to find the dimensions of the rect-
angle of largest area that can be inscribed under the curve
y = cosx for 0 < x < 7/2, as shown in the accompanying
figure.

AY

/ y = cosx

\

[SIE]

Figure Ex-24

(8 Showthatonacircleof radiusr, thecentral angled that
subtends an arc whose length is 1.5 times the length L
of its chord satisfies the equation & = 3sin(@/2) (see
the accompanying figure).

(b) Use Newton's Method to approximate 6.
A segment of acircle is the region enclosed by an arc and
its chord (see the accompanying figure). If r is the radius
of the circle and 6 the angle subtended at the center of the
circle, then it can be shown that the area A of the segment
isA = 3r2(6 — sin®), whered isin radians. Find the value
of 6 for which the area of the segment is one-fourth the area
of the circle. Give 6 to the nearest degree.

Figure Ex-25 Figure Ex-26
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In Exercises 27 and 28, use Newton's Method to approxi-
mate all real values of y satisfying the given equation for the
indicated value of x.

27. xy*+x%y =1, x=1
28. xy — COS(%xy) =0, x=2
29. An annuity is a sequence of equal payments that are paid

or received at regular timeintervals. For example, you may
want to deposit equal amounts at the end of each year into
an interest-bearing account for the purpose of accumulat-
ing alump sum at some future time. If, at the end of each
year, interest of i x 100% on the account balance for that
year is added to the account, then the account is said to pay
i x 100% interest, compounded annually. It can be shown
that if payments of Q dollars are deposited at the end of
each year into an account that paysi x 100% compounded
annually, then at the time when the nth payment and the
accrued interest for the past year are deposited, the amount
S(n) in the account is given by the formula

s =2+ -1

Supposethat you caninvest $5000 in an interest-bearing ac-
count at the end of each year, and your objective isto have
$250,000 on the 25th payment. What annual compound in-
terest rate must theaccount pay for youto achieveyour goal ?
[Hint: Show that the interest rate i satisfies the equation
50i = (1+i)%® — 1, and solve it using Newton’s Method.]

. (8 Useagraphing utility to generate the graph of

X
f@) =
and use it to explain what happens if you apply New-
ton’s Method with a starting value of x; = 2. Check
your conclusion by computing x2, x3, x4, and xs.
(b) Usethegraph generated in part (&) to explain what hap-
pensif you apply Newton’sMethod with astarting value
of x; = 0.5. Check your conclusion by computing x»,
X3, X4, and xs.

. (8 Apply Newton’sMethod to thefunction f(x) = x2+1
(& Apply f

with a starting value of x; = 0.5, and determine if the
valuesof x», ..., x10 appear to converge.
(b) Explain what is happening.



January 19, 2001 09:46

g65-ch4

ROLLE’'S THEOREM
DO\ Y=
|
|
/a b\
y=1(x)
\ |
a } } b
|
|
|
Figure4.8.1
y
1
| | |
—-1F

Figure 4.8.2

Sheet number 69 Page number 309 cyan magenta black

4.8 Rolle’s Theorem; Mean-Value Theorem 309

4.8 ROLLE’S THEOREM; MEAN-VALUE THEOREM

In this section we will discuss a result called the Mean-Value Theorem. This theorem
has so many important consequences that it is regarded as one of the major principles
in calculus.

We will begin with a special case of the Mean-Value Theorem, called Rolle’s Theorem, in
honor of the mathematician Michel Rolle.” This theorem states the geometrically obvious
fact that if the graph of a differentiable function intersects the x-axis at two places, a and
b, then somewhere between ¢ and b there must be at least one place where the tangent line
is horizontal (Figure 4.8.1). The precise statement of the theorem is as follows:

4.8.1 THEOREM (RollesTheorem). Let f be differentiable on (a, b) and continuous
on [a, b]. If f(a) = f(b) = 0, then there is at least one number ¢ in (a, b) such that
f'e)=0.

Proof. Either f(x) isequa to zero for dl x in [a, b] or itisnot. If itis, then f/(x) = 0
for al x in (a, b), since f isconstant on (a, b). Thus, for any c in (a, b)
fe)=0
If f(x)isnotequal tozeroforal x in[a, b], thenthere must beavalueof x in (a, b) where
f(x) > 0o0r f(x) < 0. Wewill consider the first case and |leave the second as an exercise.
Since f is continuous on [a, b], it follows from the Extreme-Value Theorem (4.5.3)
that f has a maximum value at some number ¢ in [a, b]. Since f(a) = f(b) = 0 and
f(x) > 0 somewherein (a, b), the number ¢ cannot be an endpoint; it must liein (a, b).
By hypothesis, f isdifferentiable everywhere on (a, b). In particular, it is differentiable at
¢ sothat f'(c) = 0 by Theorem 4.5.4. |

Example 1 The function f(x) = sinx hasrootsat x = 0 and x = 2x. Verify the
hypotheses and conclusion of Rolle’s Theorem for f(x) = sinx on [0, 27].

Solution. Since f is continuous and differentiable everywhere, it is differentiable on
(0, 27) and continuous on [0, 2]. Thus, Rolle's Theorem guarantees that there is at least
one number ¢ intheinterval (0, 2w) suchthat f'(c) = 0. Since f'(x) = cosx, we can find
¢ by solving the equation cosc = 0 on the interval (0, 27). This yields two values for ¢,
namely ¢; = /2 and ¢, = 37/2 (Figure 4.8.2). |

*MICHEL ROLLE (1652-1719), French mathematician. Rolle, the son of ashopkeeper, received only an elementary
education. He married early and as a young man struggled hard to support his family on the meager wages of
atranscriber for notaries and attorneys. In spite of his financial problems and minimal education, Rolle studied
algebraand Diophantine analysis (abranch of number theory) on hisown. Roll€'sfortune changed dramatically in
1682 when he published an elegant solution of a difficult, unsolved problem in Diophantine analysis. The public
recognition of his achievement led to a patronage under minister Louvois, a job as an elementary mathematics
teacher, and eventually to a short-term administrative post in the Ministry of War. In 1685 he joined the Académie
des Sciences in alow-level position for which he received no regular salary until 1699. He stayed there until he
died of apoplexy in 1719.

While Rolle's forté was always Diophantine analysis, his most important work was a book on the algebra
of equations, called Traité d' algebre, published in 1690. In that book Rolle firmly established the notation /a
[earlier written as /@ «] for the nth root of a, and proved a polynomial version of the theorem that today bears
his name. (Rolle's Theorem was named by Giusto Bellavitisin 1846.) Ironically, Rolle was one of the most vocal
early antagonists of calculus. He strove intently to demonstrate that it gave erroneous results and was based on
unsound reasoning. He quarreled so vigorously on the subject that the Academie des Sciences was forced to
intervene on several occasions. Among his several achievements, Rolle helped advancethe currently accepted size
order for negative numbers. Descartes, for example, viewed —2 as smaller than —5. Rolle preceded most of his
contemporaries by adopting the current convention in 1691.
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N

Figure 4.8.3

THE MEAN-VALUE THEOREM

B(b, f(b))

|
Aa, f(a)) } }
| | |
a c b
Figure 4.8.4

VELOCITY INTERPRETATION OF
THE MEAN-VALUE THEOREM

PROOF OF THE MEAN-VALUE
THEOREM

? REMARK.
i theequation f'(c) = O was easy to solve. However, if this equation cannot be solved, then
you may not be able to find precise values of ¢, even though you know they exist. Thiswill

In the preceding example, we were able to find the exact values of ¢ because

rarely cause problems because usually one is more interested in knowing that the values of

¢ exist than in finding them.

The hypotheses in Rolle’'s Theorem are critical—if f fails to be differentiable at even
one place in the interval, then the conclusion may not hold. For example, the function
f(x) = |x|] — lhasrootsat x = +1, yet there is no horizontal tangent line to the graph of
f over theinterval (—1, 1) (Figure 4.8.3).

Rolle's Theorem is a special case of the Mean-Value Theorem, which states that between
any two points A and B on the graph of a differentiable function, there must be at least
one place where the tangent line to the curve is paralel to the secant linejoining A and B
(Figure 4.8.4).

Noting that the slope of the secant line joining A(a, f(a)) and B(b, f(b)) is

1) - f@)
b—a
and the slope of the tangent at ¢ is f'(c), the Mean-Value Theorem can be stated precisely
asfollows.

4.8.2 THEOREM (Mean-ValueTheorem). Let f bedifferentiable on (a, b) and continu-
ouson [a, b]. Then thereis at least one number ¢ in (a, b) such that

b) —
o [0 =@

g )

There isanice interpretation of the Mean-Value Theorem in the situation where x = f(¢)
is the position versus time curve for a car moving along a straight road. In this case, the
right side of (1) is the average velocity of the car over the time interval froma < ¢ < b,
and the left sideisthe instantaneous vel ocity at times = ¢. Thus, the Mean-Value Theorem
impliesthat at |east once during the time interval the instantaneous velocity must equal the
average velocity. This agrees with our real-world experience—if the average velocity for a
trip is 40 mi/h, then sometime during the trip the speedometer has to read 40 mi/h.

Example 2 You are driving on a straight highway on which the speed limit is 55 mi/h.
At 8:05 A.M. apolice car clocks your velocity at 50 mi/h and at 8:10 A.M. a second police
car posted 5 mi down the road clocks your velocity at 55 mi/h. Explain why the police have
aright to charge you with a speeding violation.

Solution. You traveled 5 mi in 5 min (= ;5 h), so your average velocity was 60 mi/h.
However, the Mean-Val ue Theorem guarantees the police that your instantaneous vel ocity
was 60 mi/h at least once over the 5-mi section of highway. |

Motivation for the Proof of Theorem 4.8.2. Figure 4.8.4 suggests that (1) will hold
(i.e., the tangent line will be parallel to the secant line) at a number ¢ where the vertical
distance between the curve and the secant line is maximum. Thus, to prove the Mean-Value
Theoremitisnatural to begin by looking for aformulafor thevertical distancev(x) between
thecurve y = f(x) and the secant linejoining (a, f(a)) and (b, f(b)).

Proof of Theorem 4.8.2. Since the two-point form of the equation of the secant line
joining (a, f(a)) and (b, f(b)) is

b _
y—f(a)=—f(z J@ o _ay
—da
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or equivalently,
=02 D oyt @
—da
the difference v(x) between the height of the graph of f and the height of the secant lineis
b) —
o = - [ OO0+ @

Since f(x) iscontinuous on [«, b] and differentiable on (a, b), soisv(x). Moreover,
v(@)=0 and v()=0

so that v(x) satisfies the hypotheses of Rolle's Theorem on the interval [a, b]. Thus, there
isanumber ¢ in (a, b) such that v'(c¢) = 0. But from Equation (2)

b) —
V) = Fry - 3 ; f(@)
—d
S0
b) —
YE) = Fie) - ¢ 2_ f(@)
Since v’(c¢) = 0, we have
flc) = M ]
—d
Example 3

(@ Generate the graph of f(x) = (x3/4) + 1 over theinterval [0, 2], and use it to deter-
mine the number of tangent lines to the graph of f over the interval (0, 2) that are
parallel to the secant line joining the endpoints of the graph.

(b) Showthat f satisfiesthe hypotheses of the Mean-Value Theorem ontheinterval [0, 2],
andfindall valuesof c intheinterval (0, 2) whose existenceisguaranteed by the M ean-
Value Theorem. Confirmthat thesevaluesof ¢ areconsistent with your graphinpart (a).

Solution (a). The graph of f in Figure 4.8.5 suggests that there is only one tangent line
over theinterval (0, 2) that is parallel to the secant line joining the endpoints.

Solution (b). The function £ is continuous and differentiable everywhere because it is
a polynomial. In particular, f is continuous on [0, 2] and differentiable on (0, 2), so the
hypotheses of the Mean-Value Theorem are satisfied witha = O and b = 2. But

fla)=f0 =1 [fb)=/[f2)=3

Fo =2 ey =
X)) = — C) = —
4" 4
so in this case Equation (1) becomes
32 3-1
% = m or 3C2 =4

which has the two solutions ¢ = +2/+/3 ~ +1.15. However, only the positive solution
liesintheinterval (0, 2); thisvalue of ¢ is consistent with Figure 4.8.5. |

We stated at the beginning of this section that the Mean-Value Theorem is the starting
point for many important resultsin calculus. As an example of this, we will useit to prove
Theorem 4.1.2, which was one of our fundamental tools for analyzing graphs of functions.
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THE CONSTANT DIFFERENCE
THEOREM

y y=f(¥) =g +k
t
k
y =g

If /() = g’(x) on an interval,
then the graphs of f and g are
vertical translations of one
another.

Figure 4.8.6

4.1.2 THEOREM (Revisited). Let f beafunctionthat iscontinuousonaclosed interval
[a, b] and differentiable on the open interval (a, b).

(@ If f/(x) > 0O for every value of x in (a, b), then f isincreasing on [a, b].
(b) If f'(x) < O for every value of x in (a, b), then f isdecreasing on [a, b].
() If f'(x) =0 for every value of x in (a, b), then f isconstant on [a, b].

Proof (a). Supposethat x; and x, are numbersin [a, b] such that x; < x,. We must show
that f(x1) < f(x2). Because the hypotheses of the Mean-Value Theorem are satisfied on
the entire interval [a, b], they are satisfied on the subinterval [x1, x,]. Thus, there is some
number ¢ in the open interval (x, x,) such that

fx2) — f(x1)

fle) =
X2 — X1
or equivalently,
fx2) = f(x) = f'(e)(x2 — x1) (©)

Sincec isintheopeninterval (x1, x), it followsthata < ¢ < b; thus, f'(c¢) > 0. However,
x2 —x1 > 0sinceweassumed that x; < x». It followsfrom (3) that f(x2) — f(x1) > Oor,
equivalently, f(x1) < f(x2), which iswhat we were to prove. The proofs of parts (») and
(¢) are similar and are |eft as exercises. |

We know from our earliest study of derivatives that the derivative of aconstant is zero. Part
(c) of Theorem 4.1.2 is the converse of that result; that is, a function whose derivative is
zero on an interval must be constant on that interval. If we apply this to the difference of
two functions, we obtain the following useful theorem.

4.8.3 THEOREM (TheConstant DifferenceTheorem).  If f and g arecontinuousonaclosed
interval [a, b], and if f'(x) = ¢’(x) for all x inthe openinterval (a, b), then f and g
differ by a constant on [a, b]; that is, there is a constant k& such that f(x) — g(x) = &
for all x in[a, b].

Proof. Leth(x) = f(x) — g(x). Thenfor every x in (a, b)
h'(x)=f'(x) —g'(x) =0
Thus, h(x) = f(x) — g(x) isconstant on [a, b] by Theorem 4.1.2(c). |

REMARK. Thistheorem remainstrueif the closed interval [a, b] isreplaced by afinite or
infinite interval (a, b), [a, b), or (a, b], provided f and g are differentiable on (a, b) and
continuous on the entire interval.

The Constant Difference Theorem has a simple geometric interpretation—it tells us that
if f and g have the same derivative on an interval, then there is a constant k£ such that
f(x) = g(x) + k for each x intheinterval; that is, the graphs of f and g can be obtained
from one another by avertical translation (Figure 4.8.6).
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EXERCISE SET 4.8 [ Graphing Calculator

In Exercises 1 and 2, use the graph of f to find an interval
[a, b] on which Rolle’'s Theorem applies, and find all values
of c inthat interval that satisfy the conclusion of the theorem.

1. 2. , y
2
1
0
-1
i /M
_4 Vi LN ]
_s Vi LA
SN AN
e a0 s

In Exercises 3-8, verify that the hypotheses of Rolle’s Theo-
rem are satisfied on the given interval, and find al values of
c inthat interval that satisfy the conclusion of the theorem.

3
4
5

6
7

©

10.

. fx) =x?—6x+8; [24]
. f) =x%—3x%+2x; [0,2]

. f(x) = cosx; [n/2,3n/2]
. xz—l_ 11
) = Py [-1,1]
- fx) = 3x —/x; [0, 4]
1 4 1
. f(x)=;—§+§, [1,3]

. Usethe graph of f in the accompanying figure to estimate
al values of ¢ that satisfy the conclusion of the Mean-Value
Theorem on theinterval [0, 8].

N O
123456728910
Figure Ex-9

S — N WAV
T

Usethe graph of f in Exercise 9 to estimate all values of ¢
that satisfy the conclusion of the Mean-Value Theorem on
theinterval [0, 4].

n Exercises 11-16, verify that the hypotheses of the Mean-

Value Theorem are satisfied on the given interval, and find
all values of ¢ in that interval that satisfy the conclusion of

t

11
12

he theorem.

. fx) =x2+x; [—4, 6]
Cf)=x4+x -4 [-12]
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4.8 Rolle’s Theorem; Mean-Value Theorem 313

1

X

f(x) = Vx+1; [0’3]

f(x) =+v25—x2; [-5, 3]
1 .

Sx) = m, (2, 9]

(@ Findaninterva [a, b] on which

14, f(0)=x+=; [3,4]

f(x):x4—|—x3—x2+x—2

satisfies the hypotheses of Rolle’s Theorem.

(b) Generate the graph of f’(x), and use it to make rough
estimates of al values of ¢ in the interval obtained in
part (8) that satisfy the conclusion of Rolle's Theorem.

(c) Use Newton's Method to improve on the rough esti-
mates obtained in part (b).

Let f(x) = x3+ 4x.

(8) Find the equation of the secant line through the points
(=2, f(=2) and (L, f(1)).

Show that there is only one number ¢ in the interva
(=2, 1) that satisfies the conclusion of the Mean-Value
Theorem for the secant linein part (a).

Find the equation of the tangent line to the graph of f
at the point (c, f(c)).

Use agraphing utility to generate the secant linein part
(a) and the tangent line in part (¢) in the same coor-
dinate system, and confirm visually that the two lines
seem parallel.

Let f(x) =tanx.

(& Show that there is no number ¢ in the interval (0, )
such that f'(c) = 0, even though f(0) = f(x) = 0.

(b) Explain why the result in part (a) does not violate
Rolle’s Theorem.

Let f(x) =x¥3,a=—1,andb = 8.
(8 Show that there isno number ¢ in (a, b) such that

f(b) — fa)
b—a

(b) Explain why the result in part (a) does not violate the
Mean-Value Theorem.

(& Show that if f is differentiable on (—oo, +), and if
y = f(x)and y = f’(x) are graphed in the same coor-
dinate system, then between any two x-intercepts of f
thereis at least one x-intercept of f”.

(b) Give some examplesthat illustrate this.

(b)

(©
(d)

flle) =

. Review Definitions 3.1.3 and 3.1.4 of average and instan-

taneous rate of change of y with respect to x, and use the
Mean-Value Theorem to show that if f is differentiable on
(—o0, +), then for any interval [xo, x1] thereisat least one
number in (xg, x1) Where the instantaneous rate of change
of y with respect to x isequal to the average rate of change
over theinterval.
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In Exercises 23-25, use the result of Exercise 22.

23.

24.

25.

26.

27.

28.

29.

30.

An automobile travels 4 mi along a straight road in 5 min.
Show that the speedometer reads exactly 48 mi/h at least
once during the trip.

At 11 AM. on a certain morning the outside temperature

was 76°F. At 11 P.M. that evening it had dropped to 52°F.

(8 Show that at some instant during this period the tem-
perature was decreasing at the rate of 2°F/h.

(b) Suppose that you know that the temperature reached a
high of 88°F sometime between 11 A.M. and 11 P.M.
Show that at some instant during this period the tem-
perature was decreasing at arate greater than 3°F/h.

Suppose that two runners in a 100-m dash finish in a tie.
Show that they had the same velocity at least once during
the race.

Use the fact that
d
— -2+ x)=6x"—4x +1
dx

to show that the equation 6x° — 4x 4+ 1 = O has at |east one
solution in theinterval (0, 1).

(8 Use the Constant Difference Theorem (4.8.3) to show
thatif f'(x) = g’(x) for al x intheinterval (—oo, +0),
andif f and g have the same value at some number xo,
then f(x) = g(x) for al x in (—o, +00).

(b) Use the result in part (a) to confirm the trigonometric
identity sin®x 4 cos?x = 1.

(a) Use the Constant Difference Theorem (4.8.3) to show
that if f/(x) = g'(x) for al x in (—o, +x), and if
f(x0) — g(xp) = ¢ a some number xq, then

fx)—glx)=c¢
for al x in (—oo, +).
(b) Usetheresult in part (a) to show that the function
hx)=(x—-1%— (x> +3)(x -3

isconstant for all x in (—oo, 4+o0), and find the constant.
(c) Check theresultin part (b) by multiplying out and sim-
plifying the formulafor i (x).

(@ Usethe Mean-Value Theorem to show that if f isdif-
ferentiable on aninterval 1, and if | f/(x)| < M for all
valuesof x in 7, then

|f(x) = fF(M| = M|x — y|

for al valuesof x and y in .
(b) Usetheresult in part (a) to show that

|sinx —siny| < [x — y|
for al real valuesof x and y.

(8 Usethe Mean-Value Theorem to show that if f isdif-
ferentiable on an open interval I, and if | f'(x)| > M
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for al valuesof x in I, then

[f(x) = fO)] = M|x — Y|

for al valuesof x and y in 1.
(b) Usetheresult in part (a) to show that

[tanx —tany| > |x — y|

for al values of x and y intheinterval (—n/2, /2).
(c) Usetheresultin part (b) to show that

[tanx +tany| > [x + y|

for al values of x and y intheinterval (—n/2, 7/2).
() Usethe Mean-Value Theorem to show that

y—x
V- VE< 5

if0<x <y.
(b) Usetheresult in part (a) to show that if 0 < x < y,
then ./xy < %(x + y).
Show that if f is differentiable on an open interval 7 and
f'(x) # 0on I, the equation f(x) = 0 can have at most
onereal rootin I.

Use the result in Exercise 32 to show the following:
(@ Theequation x3+44x —1 = 0 hasexactly onereal root.
(b) 1f b?> — 3ac < 0andif a # 0, then the equation

ax®+bx°+cx+d=0

has exactly one real root.

Use the Mean-Value Theorem and the inequality %5 3 <
0.29 to prove that

171 <3< 175
[Hint: Let f(x) = \/x,a = 3,andb = 4intheMean-Value
Theorem.]
(& Show that if f and g are functionsfor which

f'x) =gx) and g'(x) =—f(x)

for al x, then f2(x) + g%(x) isaconstant.
(b) Giveanexampleof functions f and g withthisproperty.
Show that if f and g are functions for which

flx)=glx) and g'(x) = f(x)
for al x, then f2(x) — g2(x) isaconstant.
Let g(x) = x% — 4x + 6. Find f(x) sothat f'(x) = g(x)
and f(1) = 2.
Let f and g be continuous on [a, b] and differentiable on
(a, b). Prove: If f(a) = g(a) and f(b) = g(b), then there
isanumber ¢ in (a, b) suchthat f'(c) = g'(c).
Illustratetheresult in Exercise 38 by drawing an appropriate
picture.
(& Prove: If f”(x) > Ofordl x in(a, b), then f'(x) =0

at most oncein (a, b).
(b) Giveageometric interpretation of the result in (a).
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(a) Prove part (b) of Theorem 4.1.2.
(b) Prove part (c) of Theorem 4.1.2.

Usethe Mean-Value Theorem to prove the following result:
Let f be continuous at xg and suppose that lim, _, , f'(x)
exists. Then f isdifferentiable at xg, and

f'(x0) = lemXO f'(x)
[Hint: The derivative f'(xo) isgiven by
im S (x) = f(xo)

|
— Xo X — X0

flxo) = x|

provided this limit exists.]
Let

2 x<1

3 =

fx) = ax+b, x>1

Find thevaluesof ¢ and b sothat f will be differentiable at
x =1

Sheet number 75 Page number 315

44,

black

cyan magenta

Supplementary Exercises 315
(@ Let
=" *=0
Y= x2+1, x>0
Show that

lim f'Go = lim f'(x)
but that f'(0) does not exist.
(b) Let

X2, x<0
3

f(x):{

x°, x>0

Show that f/(0) exists but f”(0) does not.

. Usethe Mean-Value Theorem to prove the following result,

aluded to in Section 4.3: The graph of afunction f hasa
vertical tangent line at (xo, f(xg)) if f iscontinuous at xq
and f'(x) approaches either 4+ or —o asx — x; and as
X—>Xq .

SUPPLEMENTARY EXERCISES

B Graphing Calculator

1

CAS

(@ If x1 < x2, what relationship must hold between f(x1)
and f(xp) if f isincreasing on an interval containing
x1 and x,? Decreasing? Constant?

(b) What condition on f” ensuresthat f isincreasing onan
interval [a, b]? Decreasing? Constant?

(@) What condition on f’ ensuresthat f is concave up on
an open interval 1? Concave down?

(b) What condition on f” ensuresthat f is concave up on
an open interval 1? Concave down?

(c) Inwords, what isan inflection point of f?

(@ Whereonthegraphof y = f(x) would you expect y to
be increasing or decreasing most rapidly with respect
tox?

(b) Inwords, what isarelative extremum?

(c) State a procedure for determining where the relative
extremaof f occur.

Determinewhether thestatement istrueor false. If itisfalse,

give an example for which the statement fails.

(8 If f has arelative maximum at xo, then f(xp) is the
largest value that f(x) can have.

(b) If f(xo) isthelargest valuefor f ontheinterval (a, b),
then f has arelative maximum at xo.

(c) A function f has a relative extremum at each of its
critical numbers.

5.

(8 According to the first derivative test, what conditions
ensure that f has arelative maximum at xo? A relative
minimum?

(b) Accordingtothe second derivativetest, what conditions
ensure that f has arelative maximum at xo? A relative

minimum?
In each part, sketch a continuous curve y = f(x) with the
stated properties.
@ f@ =4, f'@=1, f"(x) <0forx <2, f"(x) >0

forx > 2

(b) f(2 =4, f"(x) >0forx <2, f"(x) < O0forx > 2,
and Iin; F(x) = +oo, Iinz1+ f(x) = 4o

(© f@ =4 f"(x) <Oforx#2and lim f'(x) =1,
lim flx)=-1

Ineach part, find al critical numbers, and usethefirst deriva-
tivetest to classify them asrel ative maxima, relativeminima,
or neither.

@ fx)=xY3(x—7)?

(b) f(x) =2sinx —cos2x, 0<x <27

© f(x)=3x—(x—1*?

In each part, find al critical numbers, and use the second
derivative test(where possible) to classify them as relative
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maxima, relative minima, or neither.

@ fO0) =x"Y24 g2t

(b) f(x)= x2+8/x

(©) f(x)=sin?x —cosx, 0<x <27

In Exercises 9-16, give a graph of f, and identify the lim-
itsas x — 4, as well as locations of all relative extrema,
inflection points, and asymptotes (as appropriate).

9.
10.
11

13.

15.

16.

fx) =x*—3%3+3x%+1
fx) = X% — 4x* + 48

f(x) = tan(x® + 1) 12. f(x) = x — COSx

Fo) = 5 14, fo = 222
' x_x2+2x+5 =TS
fo =20 F=0
X) =

—x2, x>0

f) =1+ 0¥33-x)Y8

When using a graphing utility, important features of a graph
may be missed if the viewing window is not chosen appro-
priately. Thisisillustrated in Exercises 17 and 18.

K 17.

K 18.

K 19

K 20.

(8) Generatethegraphof f(x) = £x®— ;& x over theinter-
val [—5, 5], and make a conjecture about the locations
and nature of al critical numbers.

Find the exact locations of all the critical numbers, and
classify them as relative maxima, relative minima, or
neither.

Confirm the results in part (b) by graphing f over an

appropriate interval.

(b)

(©

(8) Generate the graph of

- 15_7,4,1.3,7,2_
fx) = gx gX*+ 3x° + 5x° — 6x

over theinterval [—5, 5], and make a conjecture about
the locations and nature of al critical numbers.

Find the exact locations of all the critical numbers, and
classify them as relative maxima, relative minima, or
neither.

Confirm the results in part (b) by graphing portions of
f over appropriate intervals. [Note: It will not be pos-
sibleto find asingle window in which all of the critical
numbers are clearly visible)

(b)

©

(8 Useagraphing utility to generate the graphsof y = x
and y = (x3 — 8)/(x? + 1) together over the interval
[-5, 5], and make a conjecture about the relationship
between the two graphs.

Use Exercise 48 of Section 4.3 to confirm your conjec-

turein part (a).

(b)

In parts (a)—(d), the graph of a polynomia with degree at
most 6isgiven. Find equationsfor polynomial sthat produce
graphs with these shapes, and check your answers with a
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graphing utility.

@ y (b) y

x
x

(© (d) y

x

y
A‘L
1

Find the equations of thetangent linesat all inflection points
of the graph of

f(x)=x4—6x3+12x2—8x+3
Useimplicit differentiation to show that a function defined
implicitly by sinx +cosy = 2y hasacritical number when-
ever cosx = 0. Then useeither thefirst or second derivative
test to classify these critical numbers as relative maxima or
minima.
Let

234+ x2—15x + 7
(2x —D(Bx2+x—1)

f) =

Graph y = f(x), and find the equations of all horizontal
and vertical asymptotes. Explain why there is no vertical
asymptote at x = % even though the denominator of f is
zero at that point.

Let

x—x* -3+ 2 +4

—2x6 —3x5+6x*+4x — 8

(8 UseaCASto factor the numerator and denominator of
f, and use the results to determine the locations of all
vertical asymptotes.

(b) Confirm that your answer is consistent with the graph

of f.
For aggneral quadratic polynomial
f@)=ax?+bx+c (a#0)
find conditions on a, b, and ¢ to ensure that f is aways
increasing or always decreasing on [0, +).
For the general cubic polynomial

fx)=ax®+bx?+cx+d (a+#0)
find conditionson a, b, ¢, and d to ensure that f is aways
increasing or always decreasing on (—oo, +0).
In each part, approximate the coordinates (x, y) of therel-
ative extrema, and confirm that your answers are consistent
with the graph of f.
(@ f(x)=x2—snx

@) = -
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(b) f(x)=+/x* +xl_ VxZ+1
© /0= 7 g+ 1

Approximate to six decimal places the largest value of k
such that the function f(x) = 14 2x 4+ x% — x* isincreas-
ing on (—oo, kJ.

(a8 Canan object in rectilinear motion reverse direction if
its acceleration is constant? Justify your answer using
avelocity versus time curve.

(b) Can an object in rectilinear motion have increasing
speed and decreasing accel eration? Justify your answer
using a velocity versustime curve.

Suppose that the position function of aparticlein rectilinear

motion is given by theformulas(r) = /(% +5) fort > 0.

(&) Useagraphing utility to generate the position, velocity,
and acceleration versus time curves.

(b) Usethe appropriate graph to make a rough estimate of
the time when the particle reverses direction, and then
find that time exactly.

(c) Find the position, velocity, and acceleration at the in-
stant when the particle reverses direction.

(d) Usethe appropriate graphs to make rough estimates of
the time intervals on which the particle is speeding up
and thetime intervals on which it is slowing down, and
then find those time interval s exactly.

(e) Whendoestheparticlehaveitsmaximumand minimum
velocities?

A basketball player, standing near the basket to grab a re-

bound, jumps 76.0 cm vertically.

(8 How much time does the player spend in the top 15.0
cm of the jJump and how much time in the bottom 15.0
cm?

(b) In words, explain why basketball players seem to be
suspended in air when they jump.

(a) Suppose that an object is released from rest from the
top of ahigh building. Assuming that afree-fall model
appliesand that timeisin secondsand distanceisin me-
ters, make atablethat showsthedistancetraveled by the
object and its speed to one decimal place at 1-second
incrementsfroms = 0tor = 4.

(b) Confirm that doubling the elapsed time doubles the ve-
locity, and explain why this happens.

(c) Confirm that doubling the elapsed time increases the
distance traveled by afactor of 4, and explain why this
happens.

Suppose that the position function of aparticlein rectilinear
motion is given by the formula

?+1

_— >0
+1

s(t) =

(@ UseaCASto find simplified formulas for the velocity
v(t) and the acceleration a (7).

(b) Graph the position, velocity, and acceleration versus
time curves.
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Supplementary Exercises 317

(c) Usethe appropriate graph to make a rough estimate of
the time at which the particle isfarthest from the origin
and its distance from the origin at that time.

(d) Usethe appropriate graph to make a rough estimate of
thetime interval during which the particleis moving in
the positive direction.

(e) Usethe appropriate graphs to make rough estimates of
the time interval s during which the particle is speeding
up and the time intervals during which it is slowing
down.

(f) Use the appropriate graph to make a rough estimate
of the maximum speed of the particle and the time at
which the maximum speed occurs.

. Isittrueor falsethat aparticleinrectilinear motionisspeed-

ing up when its velocity is increasing and slowing down
when its velocity is decreasing? Justify your answer.

(8 What inequality must f(x) satisfy for thefunction f to
have an absolute maximum on an interval I at xq?

(b) What inequality must f(x) satisfy for f to have an ab-
solute minimumon 7 at xo?

(c) What is the difference between an absolute extremum
and arelative extremum?

According to the Extreme-Val ue Theorem, what conditions
onafunction f and aninterval I guaranteethat f will have
both an absol ute maximum and an absolute minimumon 7?

Ineach part, determinewhether the statement istrueor false,

and justify your answer.

(& If f is differentiable on the open interval (a, b), and
if f has an absolute extremum on that interval, then it
must occur at a stationary point of f.

(b) If f iscontinuous on the openinterva (a, b), and if f
has an absolute extremum on that interval, then it must
occur at a stationary point of f.

Suppose that f is continuous on the closed interva [a, b]
and differentiable on the open interval (a, b), and suppose
that f(a) = f(b).Isittrueor falsethat f must haveat least
one stationary point in (a, b)? Justify your answer.

In each part, find the absolute minimum m and the absolute
maximum M of f onthe given interval (if they exist), and
state where the absol ute extrema occur.

@ f(x)=1/x; [-2 1]

(b) f)=x°—x% [-12]

© f)=x*(x—-2"3% (03

In each part, find the absolute minimum m and the absolute
maximum M of f onthe given interval (if they exist), and
state where the absol ute extrema occur.

@ fx)=2x/(x*+3); (0.2]

(b) f(x)=2x"—5x*+7; (~1,3)

(© fx)=—Ix*=2x; [1,3

Draw an appropriate picture, and describe the basic idea of
Newton's Method without using any formulas.

Use Newton's Method to approximate all three solutions of
¥ —dx+1=0.
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43. Use Newton’s Method to approximate the smallest positive

solution of sinx + cosx = 0.

44, Supposethat f isan increasing function on [a, b] and that

xo isanumber in (a, b). Provethat if f isdifferentiable at
Xo, then f/(xo) >0.

45, In each part, determine whether al of the hypotheses of

Rolle's Theorem are satisfied on the stated interval. If not,
state which hypotheses fail; if so, find all values of ¢ guar-
anteed in the conclusion of the theorem.

@ f(x)=v4—x20n[-2,2]

(b) fx)=x**—1on[-1,1]

(© f(x)=sin(x? on[0, /7]

46. In each part, determine whether all of the hypotheses of the

Mean-Value Theorem are satisfied on the stated interval. If
not, state which hypotheses fail; if so, find all values of ¢
guaranteed in the conclusion of the theorem.

@ f(x)=I|x—-1on[-22]

O f=""Ton[23
B 3—x2 ifx<1 0.2
© J() = 2/x ifx>1 on[0.2]

47. A church window consists of a blue semicircular section

surmounting aclear rectangular section as shown in the ac-
companying figure. The blue glass|etsthrough half asmuch
light per unit areaasthe clear glass. Find theradius r of the
window that admits the most light if the perimeter of the
entire window isto be P feet.

48. Find the dimensions of the rectangle of maximum area that

can beinscribed insidethe ellipse (x/4)% + (y/3)? = 1 (see
the accompanying figure).

y
(X4 + (y/3)? =1
Blue /
¢ X
r -
Clear h \’/
Figure Ex-47 Figure Ex-48
49. Let

342

0=

() Generate the graph of y = f(x), and use the graph to
make rough estimates of the coordinates of the absolute
extrema.
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(b) Use a CAS to solve the equation f’(x) = 0 and then
useit to make more accurate approximations of the co-
ordinatesin part (a).

As shown in the accompanying figure, suppose that a boat

enters the river at the point (1, 0) and maintains a heading

toward the origin. As aresult of the strong current, the boat
follows the path

w3 _ 1
2y2/3

where x and y arein miles.

() Graph the path taken by the boat.

(b) Cantheboat reachtheorigin?If not, discussitsfateand
find how close it comesto the origin.

(c) What isthe velocity of the boat in the x-direction at the
instant when it is closest to the origin if the velocity in
the y-direction is —4 mi/h at this instant?

\Y

A

(1,0

y:

Figure Ex-50

According to Kepler’'s law, the planetsin our solar system
movein elliptical orbitsaround the Sun. If aplanet’s closest
approach to the Sun occurs at time ¢ = 0, then the distance
r from the center of the planet to the center of the Sun at
some later time ¢ can be determined from the equation

r =a(l— eCos¢)

where a isthe average distance between centers, e isapos-
itive constant that measures the “flatness’ of the elliptical
orbit, and ¢ isthe solution of Kepler’s equation
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inwhich T isthetimeit takes for one complete orbit of the
planet. Estimate the distance from the Earth to the Sun when
t = 90 days. [First find ¢ from Kepler's equation, and then
use this value of ¢ to find the distance. Use a = 150 x 10°
km, e = 0.0167, and T = 365 days.]
Using the formulas in Exercise 51, find the distance from

the planet Mars to the Sun when r = 1 year. For Mars use
a =228 x 10°km, e = 0.0934, and T = 1.88 years.




