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THE DERIVATIVE

any real-world phenomena involve chang-
ing quantities—the speed of a rocket, the inflation of cur-
rency, the number of bacteria in a culture, the shock inten-
sity of an earthquake, the voltage of an electrical signal,
and so forth. In this chapter we will develop the concept
of aderivative, which is the mathematical tool that is used
to study rates at which quantities change. In Section 3.1
we will interpret both average and instantaneous velocity
geometrically, and we will define the slope of a curve at a
point. In Sections 3.2 to 3.6 we will provide a precise defi-
nition of the derivative and we will develop mathematical
tools for calculating derivatives efficiently. In Section 3.7
we will show how these methods of differentiation can be
applied to problems involving rates of change.

One of the important themes of calculus is that many
nonlinear functions can be closely approximated by linear
functions. In Section 3.8 we will show how derivatives can
be used to generate such approximations.
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3.1 SLOPES AND RATES OF CHANGE

In this section we will explore the connection between velocity at an instant, the slope
of a curve at a point, and rate of change. Our work here is intended to be informal
and introductory, and all of the ideas that we develop will be revisited in more detail
in later sections.

In Section 2.1 we interpreted tiestantaneous vel ocity of a particle moving along anraxis
as a limit of average velocities. We begin our introduction to the derivative with another
visit to the topic of velocity.

For purposes of illustration, consider a bell ringer practicing for her part in a change-
ringing group at an English bell tower. The ringer controls a rope, pulling periodically to
ring the bell. We will concentrate on the position of tsaly (the handgrip on the rope),
measured in feet above the floor of the ringing room. Imagine-vas as the line of travel
of the sally. Figure 3.1d.shows a sequence of “snapshots” of one such scenario, taken at

timestr =0,1,2,3,and 4 s.
S S S S S S
7.92 81
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(@) (b)
Figure3.1.1

We may be able to record the height of the sally at various times, asin Table 3.1.1, or
even model the motion of the sally by afunction, as depicted in the graphin Figure 3.1.1b.
The velacity of the sally measures the rate of ascent of the sally in its motion during the
ringing of the bell. For example, during thefirst 2 s (¢t = 0to r = 2), the displacement of
thesalyis f(2) — f(0) = 7.79—5.00 = 2.79ft, so the average velocity of the sally during
these2sis
7.79 — 5.00

= ~ 1.39ft/s
Vave 2_0 /
The average velocity duringthenext 2s(r = 2tor = 4) is
340—-7.79
Vave = T ~ —2.19 ft/S

Note that the displacement of the sally is negative during this |atter time interval, since its
positionat timer = 4isbelow that at timer = 2. Thus, the average velocity isalso negative.

Table3.1.1

t(seconds 00 05 10 15 20 25 30 35 40
s=f(t) (ft) 500 266 319 578 779 852 7.92 602 340

We can see from the graph of s = f(¢) (Figure 3.1.2) that these average velocities
are equal to the slopes of the lines through the points (0, 5.00) and (2, 7.79), and through
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(2,7.79) and (4, 3.40). Thus, average velocity can be interpreted as a geometric property
of the graph of the position function.

3.1.1 GEOMETRIC INTERPRETATION OF AVERAGE VELOCITY. If an object moves
along an s-axis, and if the position versus time curve iss = f(z), then the average
velocity of the object between times 1y and 14,

f(11) — f(to)

h—1
is represented geometrically by the slope of the line joining the points (7o, f(tp)) and
(11, f(t2)).

Vave

Now, from the graph of s = f(¢) in Figure 3.1.1b we can see that the sally is rising more
quickly during the timeinterval 1.5 < ¢ < 2 than during the interval 2 < ¢+ < 2.5. This
is numerically revealed using the data in Table 3.1.1 to obtain average velocities of 4.02
ft/sand 1.46 ft/s, respectively, for these two time intervals. But what of the velocity, ving,
of the sally at the instant our clock strikes r = 2 s? How should ving be defined? Does it
have a geometric interpretation as well? We argued in Section 2.1 that the “instantaneous
velocity” at a particular moment in time should be the limiting value of average velocities.
This suggests that we define the instantaneous vel ocity of the sally at timer = 2 by

im ) —

fh—>2 tL—2

It follows that we can estimate ving at ¢ = 2 by calculating average velocities over ever
smaller intervals anchored at 2. That is, we would expect that the fractions

f(22) - (2 f21 - f2 f(2.01) — f(2)
22-2 21-2 201-2

would, in turn, each yield a better estimate for vjng. Since Table 3.1.1 is lacking for such
refined data, consider the portion of thegraph of s = f(¢) near t = 2 showninFigure3.1.3.

The ratios that produce average velocitieson aninterval 2 < r < r; are slopes of lines
through the points (2, f(2)) and (t1, f(¢1)). Figure 3.1.3 shows such linesfor r; = 3, 2.5,
and 2.25. We can infer the limiting value of these slopes as #; approaches 2 by magnifying
aportion of the graph of f near the point (2, (2)). Thisisillustrated in Figure 3.1.4, from
which it appears that the limiting value is about 2.8. Thus, subject to our crude measuring
devices, the instantaneous velocity at timer = 2 isgiven by ving ~ 2.8 ft/s.

The preceding discussion of average and instantaneous vel ocities could be cast as an inves-
tigation of slopes related to the position curve. The slope of a general function curve at a
point can be translated into useful information in many applications, so a consideration of
the notion of the slope of a curve is warranted.

Consider thefunction y = f(x) whose graph is shown in Figure 3.1.5. We focus on the
point P (xp, f(x0)). One has an intuitive notion that the “steepness’ of the curve varies at
different points. For example, view the graph of y = f(x) in Figure 3.1.5 as the cross

e
eca“" w

f(x))

f(xo)
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section of a hill and imagine a hiker walking the hill from left to right. The hiker will find
the trek fairly arduous at point P, but the climb gets easier as she approaches the summit.
Rather than rely on comparative notions of “less steep” or “more steep,” we seek anumeric
value to attach to each point on the curve that will describe “how steep” the curve is at
that point. For straight lines, steepness is the same at every point, and the measure used to
describe steepness is the slope of the line. (Note that slope not only describes “ how steep”
alineis, but also whether the line rises or falls.) Our goal is to define slope for our curve
y = f(x), eventhough f(x) isnot linear.

Since we know how to calculate the slope of aline through two points, let us consider a
linejoining point P with another point O (x1, f(x1)) onthe curve. By analogy with secants
to circles, a line determined by two points on a curve is called a secant line to the curve.
The slope of the secant line P Q is given by
_ S&x1) = fxo) 1)

X1 —Xo
As the sampling point Q(x1, f(x1)) ischosen closer to P, that is, as x; is selected closer
to xo, the slopes m < more nearly approximate what we might reasonably call the “slope’
of thecurve y = f(x) at the point P. Thus, from (1), the Slope of the curve y = f(x) at
P (xo, f (x0)) should be defined by

Meurve = limM M (2)
X1—> X0 X1 — X0

Sec

Example 1 Consider the function f(x) = 6x — x? and the point P(2, f(2)) = (2, 8).

(8 Find the slopes of secant lines to the graph of y = f(x) determined by P and points
onthegraphat x = 3and x = 1.5.

(b) Find the slope of the graph of y = f(x) at the point P.

Solution (a). Thesecantlinetothegraphof f through P and Q(3, f(3)) = (3, 9) hasslope

M =35 =
The secant line to the graph of f through P and Q(1.5, f(1.5)) = (1.5, 6.75) has slope
e 6.75-8 25
T 15-2 7

Solution (b). The slope of the graph of f at the point P is

— f(2 6x; —x2—8
Move = lim f) — f2) _ lim 1%
x1—>2 x1—2 x1—>2 x1—2
4 ~2
—im GO 4y —4-2-2 <
x1—>2 xl—2 x1—>2

Recall our discussion of instantaneous velocity asalimit of average velocities, in which
average velocities corresponded to slopes of secant lines on the position curve. We now
have an interpretation of such a limit of slopes of secant lines as the slope of the position
curve at the instant in question. This provides a geometric interpretation of instantaneous
velocity as the slope of the graph of the position curve.

3.1.2 GEOMETRIC INTERPRETATION OF INSTANTANEOUS VELOCITY. If a particle
moves along an s-axis, and if the position versus time curve is s = f(¢), then the
instantaneous vel ocity of the particle at time 7,
. t1) — f(¢
Vg = 1im f(11) — f(t0)
11 n—1
is represented geometrically by the slope of the curve at the point (7o, f(0)).
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Velocity or slope can be viewed as rate of change—the rate of change of position with
respect to time, or therate of change of afunction’s value with respect to itsinput. Rates of
change occur in many applications. For example:

« A microbiologist might be interested in the rate at which the number of bacteriain a
colony changes with time.

« Anengineer might be interested in the rate at which the length of a metal rod changes
with temperature.

« Aneconomist might beinterested in the rate at which production cost changeswith the
quantity of a product that is manufactured.

o« A medical researcher might be interested in the rate at which the radius of an artery
changes with the concentration of alcohol in the bloodstream.

In general, if x and y are quantities related by an equation y = f(x), we can consider
the rate at which y changes with x. As with velocity, we distinguish between an average
rate of change, represented by the slope of a secant line to the graph of y = f(x), and an
instantaneous rate of change, represented by the slope of the curve at a point.

3.1.3 DEFINITION. If y = f(x), then the average rate of change of y with respect
to x over theinterval [Xg, X1] IS

Fave = M ©)

X1 — X0

Geometrically, the average rate of change of y with respect to x over the interval [xo, x1]
is the slope of the secant line to the graph of y = f(x) through the points (xo, f (x0)) and
(x1, f(x2)):

Tave = Mgec

(see Figure 3.1.6a).

3.1.4 DEFINITION. If y = f(x), then the instantaneous rate of change of y with
respect to x when x = Xg is

S J(x1) = f(xo) 4
X1—> X0 X1 — X0

Geometrically, the instantaneous rate of change of y with respect to x when x = xg isthe
slope of the graph of y = f(x) at the point (xo, f (x0)):
Tinst = Mcurve

(see Figure 3.1.6b).

Example 2 Lety =x?+1.

(@) Find the average rate of change of y with respect to x over theinterval [3, 5].
(b) Find the instantaneous rate of change of y with respect to x when x = —4.

(c) Find the instantaneous rate of change of y with respect to x at the general point
corresponding to x = xo.

Solution (a). We apply Formula (3) with f(x) = x? + 1, xo = 3, and x; = 5. Thisyields
_ S = fxo) _ SO - fQ) _ 26-10 8

X1 — X0 5-3 2
Thus, on the average, y increases 8 units per unit increasein x over theinterval [3, 5].
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RATES OF CHANGE IN
APPLICATIONS
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Solution (b). We apply Formula (4) with f(x) = x> + 1 and xo = —4. Thisyields

- f(x1) — f(xo0) . f(xa) — f(—4) (xZ+1)—17
fing = lim ————— = |im —————~ = R .
X1—> X0 X1 — X0 n—>-4  x1— (-4 x1—>—4 x1+4
2
216 -4
= - = |lim ————~ = |im —4)=-8
x1— —4 xl—|—4 x1— —4 x1+4 x1—>—4(X1 )

Thus, for asmall changein x from x = —4, thevalue of y will change approximately eight
times as much in the opposite direction. That is, because the instantaneous rate of change
isnegative, thevalue of y decreases asvalues of x movethrough x = —4 fromleft to right.

Solution (c). We proceed asin part (b):

— 24 1) — (x2+1 2_ .2
Fing = lim —f(xl) f(x0) = |lim wt+D-o+D = lim 17 %
X1—>Xo X1 — X0 X1—Xo X1 — X0 X1—>X0 X1 — XQ
— fim WFOOLTX0 ) = 2
X1—> X0 X1 — X0 X1—> Xo
Thus, theinstantaneousrate of changeof y withrespecttox at x = xgiS2xo. Observethat the
result in part (b) can be obtained from this more general result by setting xo = —4. |

In applied problems, average and instantaneous rates of change must be accompanied by
appropriate units. In general, the unitsfor arate of change of y with respect to x are obtained
by “dividing” the units of y by the units of x and then simplifying according to the standard
rules of algebra. Here are some examples:

o If yisindegreesFahrenheit (°F) and x isininches(in), then arate of change of y with
respect to x has units of degrees Fahrenheit per inch (°F/in).

o If yisinfeet per second (ft/s) and x isin seconds (s), then arate of change of y with
respect to x has units of feet per second per second (ft/s/s), which would usually be
written as ft/s?.

o If yisin newton-meters (N-m) and x isin meters (m), then arate of change of y with
respect to x has units of newtons (N), since N-m/m = N.

« If yisinfoot-pounds (ft-Ib) and x isin hours (h), then arate of change of y with respect
to x has units of foot-pounds per hour (ft-1b/h).

Example 3 Thelimiting factor in athletic enduranceis cardiac output, that is, the volume
of blood that the heart can pump per unit of time during an athl etic competition. Figure 3.1.7
shows a stress-test graph of cardiac output V in liters (L) of blood versus workload W in
kilogram-meters (kg-m) for 1 minute of weight lifting. This graph illustrates the known
medical fact that cardiac output increases with the workload, but after reaching a peak
value begins to decrease.

(@ Use the secant line shown in Figure 3.1.8a to estimate the average rate of change
of cardiac output with respect to workload as the workload increases from 300 to
1200 kg-m.

(b) Use the line segment shown in Figure 3.1.8b to estimate the instantaneous rate of
change of cardiac output with respect to workload at the point where the workload is
300 kg-m.

Solution (a). Using the estimated points (300, 13) and (1200, 19), the slope of the secant
lineindicated in Figure 3.1.8ais

19-13 L
~ 0 A 0.0067 ——
s ™ 1500 — 300 kg-m

Since rae = M, the average rate of change of cardiac output with respect to workload



January 17, 2001 10:52 g65-ch3 Sheet number 7 Page number 175 cyan magenta black

3.1 Slopes and Rates of Change 175

over theinterval is approximately 0.0067 L/kg-m. This meansthat on the average a 1-unit
increase in workload produced a 0.0067-L increase in cardiac output over the interval.

Solution (b). We estimate the slope of the cardiac output curve at W = 300 by sketching
a line that appears to meet the curve at W = 300 with slope equal to that of the curve
(Figure 3.1.8b). Estimating points (0, 7) and (900, 25) on thisline, we obtain

-7 L

900-0 kgm <

Tinst ~

EXERCISE SET 3.1

1. The accompanying figure shows the position versus time 3. The accompanying figure shows the position versus time

curve for an elevator that moves upward a distance of 60 m

and then discharges its passengers.

(a) Estimate the instantaneous velocity of the elevator at
t=10s.

(b) Sketch a velocity versus time curve for the motion of
the elevator for 0 < ¢ < 20.

70
60
50
40
30
20
10

Distance (m)

0 5 10 15 20
Time (s)
Figure Ex-1

. The accompanying figure shows the position versus time

curve for a certain particle moving along a straight line.

Estimate each of the following from the graph:

(a) the average velocity over theinterval 0 <r < 3

(b) the values of ¢ at which the instantaneous velocity is
zero

(c) the values of ¢ at which the instantaneous velocity is
either a maximum or a minimum

(d) theinstantaneous velocity whent = 3 s.

20

W

Distance (cm)
=)

W

Time (s)
Figure Ex-2

curve for acertain particle moving on astraight line.

(8 Isthe particle moving faster at time 7o or time 7,? Ex-
plain.

(b) The portion of the curve near the origin is horizontal.
What does this tell us about the initial velocity of the
particle?

(c) Isthe particle speeding up or slowing down in the in-
terval [z, 11]? Explain.

(d) Isthe particle speeding up or slowing down in the in-
terval [1,, 12]? Explain.

| |
4y tp
Figure Ex-3

. An automobile, initially at rest, begins to move along a

straight track. The velocity increases steadily until suddenly
the driver sees aconcrete barrier in the road and applies the
brakes sharply at time #y. The car decelerates rapidly, but
it istoo late—the car crashes into the barrier at time r; and
instantaneously comesto rest. Sketch aposition versustime
curve that might represent the motion of the car.

. If a particle moves at constant velocity, what can you say

about its position versus time curve?

. The accompanying figure shows the position versus time

curves of four different particles moving on a straight line.
For each particle, determine whether its instantaneous ve-
locity isincreasing or decreasing with time.

S S S S

1 1
@ (b) (© (d)

Figure Ex-6
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In Exercises 7-10, afunction y = f(x) and values of xo and
X1 aregiven.
(a) Find the average rate of change of y with respect to x

over theinterval [xo, x1].
(b) Find the instantaneous rate of change of y with respect

to x at the given value of xo.
(c) Find the instantaneous rate of change of y with respect

to x at ageneral x-value xo.
(d) Sketch the graph of y = f(x) together with the secant

line whose slope is given by the result in part (a), and
indicate graphically the slope of the curve given by the
result in part (b).

7. y= %xz; xo=3, x1=4

8 y=x%x0=1 x1=2

9. y=1/x; x0=2, x1=3
10. y=1/x% xo=1, x1 =2

In Exercises 11-14, afunction y = f(x) and an x-value xq
are given.

(@) Find the slope of the graph of f at ageneral x-value xg.
(b) Find the slope of the graph of f at the x-value specified

11.
12.
13.
14.
15.

by the given xo.

F)=x’>+1 xo=2

F)=x’+3x+2, xo=2

fx) =Vx; xo=1

f&)=1/Vx; xo=4

Supposethat the outside temperature versustime curve over
a 24-hour period is as shown in the accompanying figure.

(@) Estimate the maximum temperature and the time at
which it occurs.

(b) Thetemperatureriseisfairly linear from8A.M.t02P.M.
Estimate the rate at which the temperatureisincreasing
during this time period.

(c) Estimatethetimeat whichthetemperatureisdecreasing
most rapidly. Estimate the instantaneous rate of change
of temperature with respect to time at this instant.

80
70 ~

o 60

® 50 \

£ 40 - .

3 —

2 30

1

22 4 6 8
< AM.

Figure Ex-15
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The accompanying figure shows the graph of the pressure
p in amospheres (atm) versusthe volume V inliters (L) of
1 mole of an ideal gas at a constant temperature of 300 K
(kelvins). Use the line segments shown in the figure to esti-
mate the rate of change of pressure with respect to volume
at thepointswhereV =10L and V = 25 L.

Pressure p (atm)

i i j
0 10 20 30 40

Volume V (L)
Figure Ex-16

The accompanying figure showsthe graph of the height 2 in
centimeters versus the age r in years of an individual from
birth to age 20.

(& When isthe growth rate greatest?

(b) Estimate the growth rate at age 5.

(c) At approximately what age between 10 and 20 is the
growth rate greatest? Estimate the growth rate at this
age.

(d) Draw arough graph of the growth rate versus age.

200
= 150
IS —
=}
= 100
<
o0
[}
T 50

0 5 10 15 20
Age t (years)

Figure Ex-17

In Exercises 18-21, use geometric interpretations 3.1.1 and
3.1.2 to find the average and instantaneous vel ocity.

18.

A rock is dropped from a height of 576 ft and falls toward

Earthinastraight line. In secondstherock dropsadistance

of s = 16¢ ft.

(& How many seconds after release does the rock hit the
ground?
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(b) What isthe average velocity of therock during thetime
itisfaling?

(c) What isthe average velocity of therock for thefirst 3s?

(d) What is the instantaneous velocity of the rock when it
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A particle moves on a line away from its initial position
so that after ¢ hoursit iss = 32 4 t miles from its initial
position.

hits the ground?

19. During the first 40 s of a rocket flight, the rocket is pro-

(a) Findtheaveragevelocity of theparticleover theinterval
[1,3].
(b) Find the instantaneous velocity at + = 1.

pelled straight up so that in r seconds it reaches a height of

s = 53 ft.

(8 How high does the rocket travel in 40 s?
(b) What is the average velocity of the rocket during the

first 40 s?

(c) What is the average velocity of the rocket during the

first 135 ft of itsflight?

21. A particle moves in the positive direction along a straight
line so that after + minutes its distance is s = 614 feet from
the origin.

(a) Findtheaveragevelocity of the particleover theinterval
[2,4].
(b) Find the instantaneous velocity at 1 = 2.

(d) What is the instantaneous velocity of the rocket at the

end of 40 s?

SLOPE OF A CURVE AND TANGENT
LINES

y=1(x
f(x) = f(xo)

f(x) |-
f(Xo) 1=

f(x) — (o)

f'(xo) = lim
(o) X %

X1—>Xg

Figure3.2.1

3.2 THE DERIVATIVE

In this section we will introduce the concept of a “derivative,” the primary mathemati-
cal tool that is used to calculate rates of change and slopes of curves.

In the preceding section we argued that the slope of thegraph of y = f(x) at x = xg should
be given by

X1 — Xo

@

Meurve = liM
X1—> X0

Theratio
S(x1) — f(x0)
X1 — X0
is called a difference quotient. As we saw in the last section, the difference quotient can
aso be interpreted as the average rate of change of f(x) over the interval [xo, x1], and its
limit as x; — xg isthe instantaneous rate of change of f(x) at x = xo.

The geometric problem of finding the slope of a curve, and the somewhat paradoxical
notionsof instantaneous vel ocity and instantaneousrate of change, areall resolved by alimit
of adifference quotient. Thefact that problemsin such disparate areas are unified by thisex-
pressioniscelebrated in the definition of the derivative of afunction at avalueinitsdomain.

3.2.1 DEFINITION. Supposethat xqg isanumber in the domain of afunction f. If
lim S (x1) — f(xo)

X1—Xo X1 — X0

exists, then the value of thislimit is called the derivative of f at x = xg and is denoted by
f'(x0). That is,

f(x1) — f(xo)

X1 — X0

f'(xo) = lim @)

X1—> X0
(see Figure 3.2.1). If the limit of the difference quotient exists, f'(xo) isthe slope of the
graph of f at the point P (X, f (Xo)) (or a x = xo). If thislimit does not exist, then the
slope of the graph of f isundefined at P (or at x = x).

Now that we have defined the derivative of afunction, we can begin to answer aquestion
that fueled much of the early development of calculus. Mathematicians of the seventeenth
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century were perplexed by the problem of defining a tangent line to a general curve. Of

course,

in the case of acircle the definition was apparent: aline is tangent to acircleiif it

meetsthe circle at asingle point. But, it was also clear that this simple definition would not
suffice in many cases. For example, the y-axis intersects the parabola y = x? at asingle
point but does not appear to be “tangent” to the curve (Figure 3.2.2a). On the other hand,
theline y = 1 does seem to be tangent to the graph of y = sinx, even though it intersects
this graph infinitely often (Figure 3.2.2b).

y
4 -
y=x y

3k } y=1

5L R ¥ R At o

1 //k | I I I I ! ! ! ! ! | \X

» X “6 -5 —4 —3{4—1_1 12 3N4 s 789

-2 -1 12 y=sinx

@ (b)
Figure3.2.2

By the end of thefirst half of the seventeenth century, mathematicians such as Descartes
and Fermat had devel oped avariety of procedures for constructing tangent lines. However,
ageneral definition of atangent line to a curve was still missing. Roughly speaking, aline
should betangent to thegraph of afunction y = f(x) atapoint (xo, f(xo)) providedtheline
has the same direction as the graph at the point. Since the direction of alineis determined
by its slope, we would expect aline to be tangent to the graph at (xg, f(xo)) if the slope of
the line is equal to the slope of the graph of f at xo. Thus, we can now use the derivative
to define the tangent line to a curve when the curve is the graph of afunction y = f(x).
(Later we will extend this definition to more general curves.)

322

f'(xo) = lim

DEFINITION.  Suppose that xo isanumber in the domain of afunction f. If
J(x1) — f(xo)

X1 — Xo

X1—> X0

exists, then we define the tangent line to the graph of f at the point P (xg, f (X)) to be
the line whose equation is

y — f(xo0) = f'(x0)(x — x0)

©)

We also call thisthe tangent line to the graph of f at x = Xo.

' WARNING.

Tangent lines to graphs do not have the same properties as tangent lines to

¢ circles. For example, a tangent line to a circle intersects the circle only at the point of
i tangency whereas a tangent line to a general graph may intersect the graph at points other
¢ than the point of tangency (Figure 3.2.3).

y

y

A tangent line to a graph may intersect the graph
at points other than the point of tangency.

Figure3.2.3
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Example 1 Find the slope of the graph of y = x2 + 1 at the point (2, 5), and use it to
find the equation of the tangent lineto y = x2 + 1 at x = 2 (Figure 3.2.4).

Solution. From (2), the slope of the graph of y = x2 + 1 at the point (2, 5) is given by

. fx) = f(D _ (x?+1) -5 _x2—4
"2 = lim ———————— = Iim —— = |lim
@ x1—2 x1—2 x1—2 x1—2 n—-2x3—2
-2 2
= lim 1m0 ED i (42— 4
x1—>2 x1—2 x1—2

The tangent line is the line through the point (2, 5) with slope 4,
y—5=4(x-2)
which we may also write in slope-intercept formasy = 4x — 3. <

The slope of a curve at a point can be estimated by zooming on a graphing utility. The
ideais to zoom in on the point until the surrounding portion of the curve appears to be a
straight line (Figure 3.2.5). The utility’s trace operation can then be used to estimate the
slope. Figure 3.2.6 illustrates this procedure for the tangent linein Example 1. Thefirst part
of the figure shows the graph of y = x? + 1 in the window

[—6.3,6.3] x [0, 6.2]

and the second part shows the graph after we have zoomed in on the point (2, 5) by afactor
of 10. The trace operation produces the points

(2.05,5.2025) and (1.95, 4.8025)

on the curve, so the slope of the tangent line can be approximated as
@)~ 5.2025 — 4.8025 _ 0.4 _
2.05-1.95 0.1
which happens to agree exactly with the result in Example 1. It isimportant to understand,
however, that the exact agreement in this case isaccidental; in general, this method will not
produce exact results because of roundoff errorsin the computations, and also because the

magnified portion of the curve may have aslight curvature, even though it appears straight
on the screen.

4.0

Figure 3.2.6

THE DERIVATIVE

In general, the slope of acurve y = f(x) will depend on the point (x, f(x)) at which the
slopeis computed. That is, the slopeisitself afunction of x. Toillustrate this, let ususe (2)
to compute f'(xo) at ageneral x-value xq for the curve y = x? + 1. The computations are
similar to those in Example 1.

fe) = faxo) _ o GE+D -GG+ D ¥ — 4G

f'(xp) = lim lim
X1—Xo X1 — X0 X1—>Xo0 X1 — X0 X1—>X X1 — X0

= lim (1 = x0)+ x0) _ lim (x1 + x0) = 2xo 4)

X1— Xg X1 — XQ X1— X
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Now we can use the general formula f’(xg) = 2xo to compute the slope of the tangent line
at any point along the curve y = x? + 1 simply by substituting the appropriate value for
x = xo. For example, if xo = 2, 2xg = 4,50 f'(2) = 4, agreeing with theresult in Example
1. Similarly, if xg = 0, then 2xo = 0, s0 f'(0) = 0; and if xg = —2, then 2xg = —4, SO
f'(—2) = —4 (Figure 3.2.7).
To generalize thisidea, replacing xg by x in (2), the ope of thegraph of y = f(x) at a
general point (x, f(x)) isgiven by
P = tim L6 =@ )
X1—>X X1 — X
The fact that this describes a “slope-producing function” is so important that there is a
common terminology associated with it. [To simplify notation, we use w in the place of x1

in (5).]

3.2.3 DEFINITION. Thefunction f’ defined by the formula
f(w) — f(x)
w

— X

f'x) = lim (6)

w—>Xx

is called the derivative of f with respect to x. The domain of f’ consists of all x in the
domain of f for which the limit exists.

REMARK.  Despite the presence of the symbol w in the definition, Formula (6) defines

the function f’ as a function of the single variable x. To calculate the value of f'(x) at a

particular input value x, we fix the value of x and let w — x in (6). The answer to this limit
no longer involvesthe symbol w; w “disappears’ at the step in which the limit is evaluated.

REMARK. Thisisour first encounter with what was alluded to in Section 1.1 asafunction

that isthe result of a*continuing process of incremental refinement.” That is, the derivative
: function f’isderived fromthefunction f viaalimit. The use of alimiting processto define

anew object isafundamental tool in calculus and will be employed again in later chapters.

Recalling from the last section that the slope of the graph of y = f(x) can beinterpreted
asthe instantaneous rate of change of y with respect to x, it follows that the derivative of a
function f can beinterpreted in several ways:

I nterpretations of the Derivative. Thederivative f’ of afunction f can beinterpreted
asafunction whosevalue at x isthe slope of thegraph of y = f(x) at x, or, alternatively,
it can beinterpreted as afunction whose value at x isthe instantaneous rate of change of
y with respect to x at x. In particular, when y = f(¢) describes the position at time ¢ of
an object moving along a straight line, then /() describes the (instantaneous) velocity
of the object at timez.

Example 2
(@ Find the derivative with respect to x of f(x) = x3 — x.

(b) Graph f and f’ together, and discuss the relationship between the two graphs.

Solution (a). Laterinthischapter wewill devel op efficient methodsfor finding derivatives,
but for now we will find the derivative directly from Formula (6) in the definition of f’. The
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computations are as follows:
i —w)— @%—x) _

fw) = f& _ — i W) - w—x)
w—X w—> X w— X w—> X w— X

f(x) = lim

w— X

_ 2 2y _
= lim (w = O+ wx +x7 — 1] = lim (w? + wx + x> - 1)

w—> X w— X w—x

=x?4+x%4+x>—-1=3?-1

Solution (b). Since f(x) can be interpreted as the Sope of the graph of y = f(x) at x,
the derivative f'(x) ispositive where the graph of f has positive slope, it is negative where
the graph of f has negative slope, and it is zero where the graph of f is horizontal. We
leave it for the reader to verify that thisis consistent with the graphs of f(x) = x% — x and
f'(x) = 3x? — 1 shownin Figure 3.2.8. |

Example 3 Ateachvalueof x,thetangent linetoaliney = mx+b coincideswiththeline
itself (Figure 3.2.9), and hence all tangent lines have slope m. This suggests geometrically
that if f(x) = mx + b, then f'(x) = m for dl x. Thisis confirmed by the following
computations:

Py = tim W =S (ot D) = Gnx ) mw —mx
w=x w—X w—>x w— X w—ox W — X
—im ™Y i =m <
w—> X w— X w— X
Example 4

(@ Find the derivative with respect to x of f(x) = /x.
(b) Findtheslopeof thecurvey = /x at x = 9.

(¢) Findthelimitsof f/(x) asx — 0" and as x — +o, and explain what those limits say
about the graph of f.

Solution (a). From Definition 3.2.3,

f(w)—f(X)_limﬂ—ﬁ_lim Vw—Jx Jw+Jx
wW—Xx = wex wW—X  wex W—X Jw + /x

= lim i i —_ =1 1

L TR T RV S B L R Y S N

f'(x) = lim

w— X

Solution (b). The slope of thecurve y = /x a x = 9is f(9). From part (a), this slope
is (9 = 1/(2V9) = &.

Solution (c). Thegraphsof f(x) = /x and f'(x) = 1/(2/x ) areshowninFigure 3.2.10.
Observethat f'(x) > 0if x > 0, which meansthat all tangent linestothegraphof y = /x
have positive slope at al pointsin thisinterval. Since

lim —1 4+ and lim —1 0
= o] =
x— 0t 2\/; X — +o Zﬁ

the graph becomes more and more vertical as x — 0" and more and more horizontal as
X — o0, |

FOR THE READER.  Use a graphing utility to estimate the slope of the curve y = /x at

x = 9 by zooming, and compare your result to the exact value obtained in the last exam-

ple. If you have a CAS, read the documentation to determine how it can be used to find
derivatives, and then use it to confirm the derivative obtained in Example 4(a).
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Example 5 Consider the situation in Example 1 of Section 2.1 where a ball is thrown
vertically upward so that the height (in feet) of the ball above the ground ¢ seconds after its
release is modeled by the function

s(t) = —16:>+29% +6, 0<t<?2
(8 Usethederivativeof s(r) att = 0.5to determinetheinstantaneousvelocity of the ball
attimer =05s.

(b) Findthe velocity function v(z) = s'(¢) for 0 < t < 2. What is the velocity of the ball
just before impacting the ground at timer = 2 s?

Solution (a). Whent = 0.5 s, the height of the ball is s(0.5) = 16.5 ft. The ball's
instantaneous velocity at timet = 0.5 is given by the derivative of s at ¢+ = 0.5, that is,
s'(0.5). From Definition 3.2.1,

s(w) —5(0.5) lim (—16w? + 29w + 6) — 16.5

§'(0.5 = lim

w— 0.5 w—0.5 - w— 05 w—0.5
. —16w? + 29w — 105 2 . —32w? 4+ 58w — 21
= |lim - — = lim
w—0.5 w— 0.5 2 w—0.5 2w—1
2w — 1)(—16 21
_ gim e DEIOWHZD 6w 4+ 21) = —84+ 21 = 13
w— 0.5 2w—1 w— 0.5

Thus, the velocity of the ball at timet = 0.5 siss’(0.5) = 13 ft/s, which agrees with our
estimate from numerical evidencein Example 1 of Section 2.1.
Solution (b). From Definition 3.2.3,
s(w) —s@) i (—16w? + 29w + 6) — (—16¢° + 29 + 6)
w

—t w—>1 w—t

v() =5'(t) = Iiml

" —16(w? — 1?) +29(w — 1) + (6 — 6)

w1 w—t
lim —16(w —t)(w +1) +29(w —1) lim (w —1)[—16(w + 1) + 29]
T wot w—t T wot w—1

= Iimt[—16(w +1)+29] =—-16(r + 1) + 29 = —32r + 29

Thus, for 0 < ¢ < 2, the velocity of the ball is given by v(r) = s'(r) = —32¢r + 29. As
t—27,5'(t) = =32t + 29— —64 + 29 = —35ft/s. That is, the ball isfalling at a speed
approaching 35 ft/s when its impact with the ground is imminent. |

Observe that afunction f must be defined at x = xq in order for the difference quotient
f(w) — f(xo)

w — Xo
to make sense, since this quotient references a value for f (xg). Since avalue for f(xg) is
required before the limit of this quotient can be considered, values in the domain of the
derivative function f” must also be in the domain of f.
For anumber xq in the domain of afunction f, we say that f is differentiable at xo, or
that the derivative of f exists at Xg, if

lim f(w) — f(xo)

w— Xxg w — X0
exists. Thus, thedomain of f’ consistsof al valuesof x at which f isdifferentiable. If xg is
not in thedomain of f or if thelimit does not exist, then we say that f isnot differentiable
at Xo, or that the derivative of f doesnot exist at xg. If f isdifferentiable at every value of x
inanopeninterva (a, b), then we say that f isdifferentiable on (a, b). Thisdefinition also
appliesto infinite open intervals of the form (a, +©), (—o, b), and (—w, +o0). In the case
where f isdifferentiable on (—w, +0) wewill say that f is differentiable everywhere.
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Geometrically, if f isdifferentiable at avalue xq for x, then the graph of f hasatangent
lineat xo. If f isdefined at xq but is not differentiable at xo, then either the graph of f has
no well-defined tangent line at xo or it hasavertical tangent line at xq. Informally, the most
commonly encountered circumstancesof nondifferentiability occur wherethegraphof f has

e acorner,
« avertica tangent line, or
« adiscontinuity.

Figure 3.2.11 illustrates each of these situations.

y y y
‘ Y= ‘ y=f()
|
Ny=f( | i
‘ \
\ \
} | i
| X } X } X
Xo X0 Xo
Corner Vertical tangent Discontinuity
Figure3.2.11

It makes sense intuitively that a function is not differentiable where its graph has a
corner, sincethereis no reasonable way to define the graph’s slope at acorner. For example,
Figure 3.2.12a shows atypical corner point P (xo, f(xg)) on the graph of afunction . At
this point, the slopes of secant lines joining P and nearby points Q have different limiting
values, depending on whether Q isto the left or to theright of P. Hence, the slopes of the
secant lines do not have atwo-sided limit.

A vertical tangent line occurs at a place on acontinuous curve where the slopes of secant
lines approach + or approach —« (Figure 3.2.12b). Since aninfinitelimit isaspecial way
of saying that alimit does not exist, afunction f is not differentiable at a point of vertical
tangency.

Figure 3.2.12

@ (b)

We will explore the relationship between differentiability and continuity later in this
section. It should be noted that there are other, less common, circumstances under which a
function may fail to be differentiable. See Exercise 45 for one such example.
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Example 6 Thegraphof y = |x| in Figure 3.2.13 hasacorner at x = 0, which implies
that f(x) = |x| isnot differentiableat x = 0.

(8 Provethat f(x) = |x|isnot differentiable at x = 0 by showing that the limit in Defi-
nition 3.2.3 does not exist at x = 0.

(b) Find aformulafor f'(x).

Solution (a). From Formula (6) with x = 0, the value of £/(0), if it were to exist, would
be given by

. fw) — f(O) - w] —10] - wl
‘0 = lim —————~ = lim ———— = lim —
f( ) w—0 w—0 w—0 w w—0 w
But
w| | L w>0
w -1, w<O0
S0 that
lim M:—1 and lim M=1
w—0" w w—0t w
Thus,
£(0) = lim M
w—0 w

does not exist because the one-sided limits are not equal.

Solution (b). A formulafor the derivative of f(x) = |x| can be obtained by writing |x| in
piecewise form and treating the cases x > O and x < O separately. If x > 0, then f(x) = x
and f'(x) = 1;if x < 0O, then f(x) = —x and f'(x) = —1. Thus,

1, x>0

1, x<0O

The graph of f” isshown in Figure 3.2.14. Observe that /' is not continuous at x = 0, sO

thisexample showsthat afunction that is continuous everywhere may have aderivative that
fails to be continuous everywhere. <

fl) = {_

It makes sense intuitively that afunction f cannot be differentiable where it has a“jump”
discontinuity, since the value of the function changes precipitously at the “jump.” The
following theorem showsthat afunction f must be continuous at avalue xq in order for it to
be differentiable there (or stated another way, a function f cannot be differentiable where
it is not continuous).

3.24 THEOREM. If fisdifferentiableat x = xo, then f must also be continuousat xo.

Proof. Wearegiventhat f isdifferentiable at xo, so it follows from (6) that 77(xo) exists
and is given by
Jf(w) — f(xo)

w — Xo

f'(x0) = lim

w — Xg

()
To show that f is continuous at xo, we must show that

wImeo f(w) = f(xo)
or equivalently,

Jim [f(w) = f(x)] =0
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However, this can be proved using (7) as follows:
f(w) — f(xo)
—— (W —xp)

w— X w — Xo

Jim )~ fo) = fim |

— lim [M] -~ lim (w — xo)
w —> XQ w —xO w —> Xg
= f(x)-0=0 i

REMARK.  Theconverseto Theorem 3.2.4 isfalse. That is, a function may be continuous
at an input value, but not differentiable there. For example, the function f(x) = |x]| is
continuous at x = 0 but not differentiable at x = 0 (see Example 6). In fact, any function
whose graph has acorner and is continuous at the location of the corner will be continuous
but not differentiable at the corner.

The relationship between continuity and differentiability was of great historical sig-
nificance in the development of calculus. In the early nineteenth century mathematicians
believed that if a continous function had many points of nondifferentiability, these points,
likethetipsof asawblade, would haveto be separated from each other and joined by smooth
curve segments (Figure 3.2.15). This misconception was shattered by a series of discov-
eries beginning in 1834. In that year a Bohemian priest, philosopher, and mathematician
named Bernhard Bolzano™ discovered a procedure for constructing a continuous function
that isnot differentiable at any point. Later, in 1860, the great German mathematician, Karl
Weierstrass produced the first formulafor such afunction. The graphs of such functionsare
impossible to draw; it is asif the corners are so numerous that any segment of the curve,
when suitably enlarged, reveals more corners. The discovery of these pathological func-
tions was important in that it made mathematicians distrustful of their geometric intuition
and more reliant on precise mathematical proof. However, these functions remained only
mathematical curiosities until the early 1980s, when applications of them began to emerge.
During recent decades, such functions have started to play a fundamental role in the study
of geometric objects called fractals. Fractals have revealed an order to natural phenomena
that were previously dismissed as random and chaotic.

The process of finding aderivativeiscalled differentiation. You can think of differentiation
as an operation on functions that associates a function f’ with a function f. When the

*BERNHARD BOLZANO (1781-1848). Bolzano, the son of an art dealer, was born in Prague, Bohemia (Czech
Republic). He was educated at the University of Prague, and eventually won enough mathematical fame to be
recommended for a mathematics chair there. However, Bolzano became an ordained Roman Catholic priest, and
in 1805 he was appointed to achair of Philosophy at the University of Prague. Bolzano was aman of great human
compassion; he spoke out for educational reform, he voiced the right of individual conscience over government
demands, and he lectured on the absurdity of war and militarism. His views so disenchanted Emperor Franz |
of Austria that the emperor pressed the Archbishop of Prague to have Bolzano recant his statements. Bolzano
refused and was then forced to retirein 1824 on asmall pension. Bolzano’s main contribution to mathematics was
philosophical. Hiswork helped convince mathematicians that sound mathematics must ultimately rest on rigorous
proof rather than intuition. In addition to his work in mathematics, Bolzano investigated problems concerning
space, force, and wave propagation.
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independent variableis x, the differentiation operation is often denoted by

d
5[f(x)]
which isread “the derivative of f (x) with respect to X.” Thus,

d )
d—[f(x)] =fx) (8)
X
For example, with this notation the derivatives obtained in Examples 2, 3, and 4 can be
expressed as
d 4 5 d d 1
- _ f— -1 —_ = —_ = —
L A= -1 lmx bl =m, [Vx] NG 9)

To denote the value of the derivative at a specific value x = xq with the notation in (8), we
would write

d
—lf0l| = fo) (10)
X X=Xx0
For example, from (9)
4oyl —sw_1-2 2 Y R S
E[x x]x:1—3(1) 1=2, dx[mx—i—b]xzs—m, dx[ﬁ]x:g_Z@_G

Notations (8) and (10) are convenient when no dependent variableisinvolved. However,
if there isadependent variable, say y = f(x), then (8) and (10) can be written as

d d
E[)’] = f'(x) and E[)’] = f'(x0)

X=Xo

It is common to omit the brackets on the left side and write these expressions as

dy

dy
dx

= f(x) and -

= f'(x0)

X=X0

where dy/dx is read as “the derivative of y with respect to x.” For example, if y = /x,
then
dy 1 dy
dx 2y dx

1 1

x=9 B 2\/§ 6

1 dy
rxo 2% dx

REMARK. Later, thesymbolsdy and dx will be defined separately. However, for thetime
being, dy/dx should not be regarded as aratio; rather, it should be considered as a single

symbol denoting the derivative.

When letters other than x and y are used for the independent and dependent variables,
then the various notations for the derivative must be adjusted accordingly. For example, if
y = f(u), then the derivative with respect to « would be written as

d ! d !

Slfwl=fw ad = £

du du
In particular, if y = \/u, then

dy 1 dy 1 dy 1 1

du~ 2Ju dul,, 2Juo du|,_, 249 6

Somewritersdenotethederivativeas D, [ f(x)] = f/(x), but wewill not usethisnotationin
thistext. In problems where the name of the independent variableis clear from the context,
there are some other possible notations for the derivative. For example, if y = f(x), but it
isclear from the problem that the independent variableis x, then the derivative with respect
to x might be denoted by y’ or .
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Often, you will see Definition 3.2.3 expressed using 4 or Ax for the difference w — x.
Withh = w — x, thenw = x + h and w — x isequivalent to 2 — 0. Thus, Formula (6) has
the form

Jx+h) — f)

- (1)

fx)= }!Lmo
Or, using Ax instead of i for w — x, Formula (6) has the form

Jx+ Ax) — f(x)

Ax (12)

Fo
If y = f(x), thenitisasocommon to let
Ay = f(w) — f(x) = f(x + Ax) — f(x)
in which case

D fim 2y XA T

= (13
dx Ax—0 Ax Ax—0 AXx

The geometric interpretations of Ax and Ay are shown in Figure 3.2.16.

dy _jim AY

dx ~ Ax>0 Ax

Figure 3.2.16

If afunction f isdefined on aclosed interval [a, b] and is not defined outside that interval,
then the derivative f’(x) isnot defined at the endpoints because

Py = lim L0 =S

w— X w — X

isatwo-sided limit and only aone-sided limit makes sense at an endpoint. To deal with this
situation, we define derivatives from the left and right. These are denoted by f’ and f,
respectively, and are defined by

F = lim fw) — f(x)

w—X

w—> X"

and fl(v) = lim LW =S
w—xt w—Xx

At points where [/ (x) exists we say that the function f is differentiable from the right,
and at pointswhere f” (x) exists we say that the function f isdifferentiable from the l€ft.
Geometrically, f1 (x) isthe limit of the slopes of the secant lines approaching x from the
right, and f’ (x) is the limit of the slopes of the secant lines approaching x from the left
(Figure 3.2.17).

It can be proved that afunction f is continuous from the left at those points whereit is
differentiable from the left, and f is continuous from the right at those points where it is
differentiable from the right.
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Wesay afunction f isdifferentiableon an interval of theform|[a, b], [a, +), (—, b],
[a, b),or (a, b] if f isdifferentiableat all numbersinsidetheinterval, anditisdifferentiable
at the endpoint(s) from the left or right, as appropriate.

EXERCISE SET 3.2 [ Graphing Calculator

©0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

1. Usethe graph of y = f(x) in the accompanying figure to
estimate the value of f'(1), f'(3), f'(5), and f'(6).

2. For the function graphed in the accompanying figure, ar-
range the numbers 0, f'(—3), f/(0), f'(2), and f'(4) inin-
creasing order.

[SS TRV S Y B N

Figure Ex-1

Figure Ex-2

3. (8 If you are given an equation for the tangent line at the
point (a, f(a)) onacurve y = f(x), how would you
go about finding f'(a)?
(b) Given that the tangent lineto the graph of y = f(x) at
the point (2, 5) hastheequation y = 3x — 1, find f'(2).
(c) For the function y = f(x) in part (b), what is the in-
stantaneous rate of change of y with respect to x at
x =27
4. Giventhat thetangentlinetoy = f(x) at the point (—1, 3)
passes through the point (0, 4), find f'(—1).
5. Sketch the graph of a function f for which f(0) = 1,
f'(0) =0, f'(x) > 0ifx <0,and f'(x) < 0if x > 0.
6. Sketch the graph of a function f for which f(0) = 0O,
f'(0) =0,and f'(x) > 0if x <Oorx > 0.
7. Giventhat f(3) = —1and f'(3) = 5, find an equation for
the tangent line to the graph of y = f(x) at x = 3.
8. Giventhat f(—2) = 3and f'(—2) = —4, find an equation
for thetangent lineto thegraph of y = f(x) atx = —2.

In Exercises 9-14, use Definition 3.2.3tofind f/(x), and then
find the equation of thetangent lineto y = f(x) at x = a.
9. f(x) = 3% a=3 10. f(x) = x* a=-2
11. f(x)=x% a=0 12. f) =241, a=-1
13. fx)=vx+1,a=8 14 f(x)=vV2x+1, a=4

In Exercises 15-20, use Formula (13) to find dy/dx.

1
Y X Y x+1
17. y=ax?>+b 18. y =x2—x
(a, b constants)
1 1
y Jx y 2

In Exercises21 and 22, use Definition 3.2.3 (with appropriate
change in notation) to obtain the derivative requested.

21. Find f'(t) if f(t) = 4t> +1t.
22. FinddVv/drif Vv = %nr3.

23. Match the graphs of the functions shown in (a)—(f ) with the
graphs of their derivativesin (A)—F).

@ (b) (©
y y y
X X _/\ X
(d) (e) )
y y y
~ | AR
(A) (B) ©
AY AY A Y
I N X w Lx
(D) B (F)
AY AY {y

24. Find afunction f suchthat f'(x) = 1for al x, and givean
informal argument to justify your answer.
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In Exercises 25 and 26, sketch the graph of the derivative of
the function whose graph is shown.

25.

@ (b) ()
y y y
X 30 X \/\/ x
5 N
@ (b) ()
I PN

In Exercises 27 and 28, the limit represents f’(a) for some
function f and somenumber a. Find f(x) and a in each case.

27.

28.

29.
30.

K 3L

K 32

K 33.

K 34

35.

2-9 VI+Ax-1
@ lim 1 (b) lim Y=Far—2
x1~>3x1—3 Ax—0 Ax
-1 co h)+1
@ lim = (b) IimM
x—1 x—l h—0

Find dy/dx|,—1, given that y = 4x? + 1.
Find dy/dx|,—_o, giventhat y = (5/x) + 1.

Find an equation for the line that is tangent to the curve
y = x% — 2x + 1 at the point (0, 1), and use a graphing
utility to graph the curve and its tangent line on the same
screen.

Use a graphing utility to graph the following on the same

screen: the curve y = x2/4, the tangent line to this curve

at x = 1, and the secant line joining the points (0, 0) and

(2, 1) on thiscurve.

Let f(x) = 2*. Estimate f'(1) by

(a) using a graphing utility to zoom in at an appropriate
point until the graph looks like a straight line, and then
estimating the slope

(b) using acaculating utility to estimate the limit in Defi-
nition 3.2.3 by making atable of valuesfor asuccession
of values of w approaching 1.

Let f(x) = sinx. Estimate f'(7r/4) by

(a) using a graphing utility to zoom in at an appropriate
point until the graph looks like a straight line, and then
estimating the slope

(b) using acaculating utility to estimate the limit in Defi-
nition 3.2.3 by making atable of valuesfor asuccession
of values of w approaching /4.

Suppose that the cost of drilling x feet for an oil well is

C = f(x) dollars.

(8 What arethe unitsof f'(x)?
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(b) In practical terms, what does f’(x) mean in this case?

(c) What can you say about the sign of f'(x)?

(d) Estimate the cost of drilling an additional foot, starting
at adepth of 300 ft, given that f'(300) = 1000.

A paint manufacturing company estimates that it can sell

g = f(p) galonsof paint at aprice of p dollars.

(d) What arethe unitsof dg/dp?

(b) Inpractical terms, what doesdg/dp mean in this case?

(c) What can you say about the sign of dg/dp?

(d) Given that dg/dp|,—10 = —100, what can you say
about the effect of increasing the price from $10 per
gallon to $11 per gallon?

It is a fact that when a flexible rope is wrapped around a
rough cylinder, a small force of magnitude Fp at one end
canresist alargeforce of magnitude F at the other end. The
size of F depends on the angle 6 through which the ropeis
wrapped around the cylinder (seethe accompanying figure).
That figure shows the graph of F (in pounds) versus 6 (in
radians), where F isthe magnitude of the force that can be
resisted by aforce with magnitude Fo = 10 |b for a certain
rope and cylinder.

(@) Estimate the values of F and dF/d6 when the angle
6 = 10 radians.

(b) It can be shown that the force F satisfies the equation
dF/d6 = uF, where the constant . is called the coef-
ficient of friction. Usetheresultsin part (a) to estimate
the value of .

i
10 12 14
Angle 6 (rad)

Figure Ex-37

According to the U. S. Bureau of the Census, the estimated

and projected midyear world population, N, in billions for

the years 1950, 1975, 2000, 2025, and 2050 was 2.555,

4.088, 6.080, 7.841, and 9.104, respectively. Although the

increase in population is not a continuous function of the

timez, we can apply theideasin this section if we are will-
ing to approximate the graph of N versust by acontinuous
curve, as shown in the accompanying figure.

(@) Usethetangent line at + = 2000 shown in the figure to
approximate the value of dN/dt there. Interpret your
result as arate of change.

(b) Theinstantaneous growth rate is defined as

dN/dt
N
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Useyour answer to part (a) to approximate theinstanta-
neous growth rate at the start of the year 2000. Express
the result as a percentage and include the proper units.

g

10
3 9 g
S8 //
z /
Z 6
S s
8 /
S 4 /
g, y 4
o
=l
IS
= 1
0

1950 1975 2000 2025 2050
Time t (years) Figure Ex-38
According to Newton’s Law of Cooling, therate of change
of an object’s temperature is proportional to the differ-
ence between the temperature of the object and that of the
surrounding medium. The accompanying figure shows the
graph of the temperature T' (in degrees Fahrenheit) versus
timer (in minutes) for acup of coffee, initialy with atem-
perature of 200°F, that is allowed to cool in aroom with a
constant temperature of 75°F.
(@) Estimate T and dT/dt whent = 10 min.
(b) Newton's Law of Cooling can be expressed as

d—T = k(T — To)

dt
where k is the constant of proportionality and 7p is
the temperature (assumed constant) of the surrounding
medium. Usetheresultsin part (a) to estimate the value
of k.

200
150

100

Temperature T (°F)

50

i i i I i j
10 20 30 40 50 60
Time t (min)

Figure Ex-39
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Write aparagraph that explainswhat it meansfor afunction
tobedifferentiable. Include some examplesof functionsthat
are not differentiable, and explain the relationship between
differentiability and continuity.
Show that f(x) = &x iscontinuous a x = 0 but not dif-
ferentiable at x = 0. Sketch the graph of 1.
Show that f(x) = J(x — 2)2 is continuous at x = 2 but
not differentiable at x = 2. Sketch the graph of f.
Show that
2
15
f) = {;x -

is continuous and differentiable at x = 1. Sketch the graph
of f.

x<1
x>1

. Show that
x24+2 x<1
f(x)={x+2, x>1
is continuous but not differentiable at x = 1. Sketch the
graph of f.
Show that
_ [xsin(1/x), x#0
fo) = {0’ o

is continuous but not differentiable at x = 0. Sketch the
graph of f near x = 0. (See Figure 2.6.7b and the remark
following Example 3in Section 2.6.)

Show that
_ [x%sin(1/x), x#0
fx) = {0’ x=0

is continuous and differentiable at x = 0. Sketch the graph
of f nearx = 0.

Suppose that afunction f isdifferentiableat x = 1 and
lim AT _ g
h—0 h
Find f(1) and f'(1).
Supposethat f isadifferentiablefunction with the property
that
B - f(h)
fx+y)= f(x)+ f(y) +5xy and ;!'—%T =3

Find f(0) and f'(x).

Suppose that f has the property f(x 4+ y) = f(x) f(y) for
al values of x and y and that f(0) = f'(0) = 1. Show that
f is differentiable and f’(x) = f(x). [Hint: Start by ex-
pressing f'(x) asalimit.]

3.3 TECHNIQUES OF DIFFERENTIATION

In the last section we defined the derivative of a function f as a limit, and we used
that limit to calculate a few simple derivatives. In this section we will develop some
important theorems that will enable us to calculate derivatives more efficiently.
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T
:
|
|
X

The tangent line to the graph of
f(X) = c has slope O for all x.

Figure 3.3.1
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Thegraph of aconstant function f(x) = cisthehorizontal liney = ¢, and hencethetangent
line to this graph has slope 0 at every value of x (Figure 3.3.1). Thus, we should expect the
derivative of a constant function to be O for all x.

3.3.1 THEOREM. The derivative of a constant function is O; that is, if ¢ is any real
number, then

d
E[C] =0

Proof. Let f(x) = c. Then from the definition of aderivative,

L= fey = tim LW =S i €7¢ imo=o |
dx w—>x w

— — X w—x W — X w—x

Example 1 If f(x) = 5forall x, then f'(x) = Ofor al x; that is,
d
—[8=0 <

For our next derivative rule, we will need the algebraic identity

wh — x" = (w _ x)(wn—l + wn—2x + wn—3x2 IS wxn—Z + xn—l)

which is valid for any positive integer n. This identity may be verified by expanding the
right-hand side of the equation and noting the cancellation of terms. For example, with
n = 4 wehave

(w — x)(w® + wox + wx? 4+ x%) = w* + (W3 — xw®) + (Wx% — xw?x)

+ (wx® — xwx?) — x4

=w*+0+0+0—x*

=w4—x4

3.3.2 THEOREM (ThePower Rule). If n isa positive integer, then

Iy = n—1
dx[x] nx

Proof. Let f(x) = x". Then from the definition of the derivative we obtain
Sw) — f(x) _im X
w—X w—x W —X

d .
L=/ = lim

w—>Xx

(w — )C)(w”_1 w2 w32 wx 2 xn—l)

= lim
w—Xx w—X
=limuw T4+ w2+ w3+ w2
w—>X
— xn-1 + xn-1 4+ 4 x1 n termsin al
:nxnfl I

In words, the derivative of x raised to a positive integer power is the product of the
integer exponent and x raised to the next lower integer power.

Example 2
d . s 4 d 0 d 1 11
il =5x [x]=1-x"=1 = — 12x <
dx [ " dx [x] * dx [
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DERIVATIVE OF A CONSTANT
TIMES A FUNCTION

DERIVATIVES OF SUMS AND
DIFFERENCES
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3.3.3 THEOREM. If f isdifferentiable at x and ¢ isany real number, then ¢f isalso
differentiable at x and

d d
E[Cf(x)] = Ca[f(x)]

Proof.
Liefo] = tim LW =D i [M]
dx w=x w—Xx w— x w— X
Clim S I® 4 ;

A constant factor can be
moved through alimit sign.

In function notation, Theorem 3.3.3 states

(cf) =cf’
Inwords, a constant factor can be moved through a derivative sign.

Example 3
d 8 d 8 7 7
—[4x®] = 4——[x®] = 4[8x"] = 32«
dx dx

4 1 di  om
dx[x]—( 1)dx[X]— 12x

£[E]=2im -2 :

3.34 THEOREM. If f and g aredifferentiableat x, thensoare f + g and f — g and

d d d
E[f(x) +gW)] = E[f(x)] =+ E[g(x)]

d d d
E[f(x) —g] = E[f(x)] - E[g(X)]

Proof.
di[f(x) +g(x)] = lim [f(w) +gw)] — [f(x) + g(x)]
X w—X w— X
_ Jim @) = fOT +[gw) — g)]
T wox w— x

. w)— J(x . w) — 2(x Thelimit of a
= lim M + lim —g( it 152 sum is the sum of
w—x w—x w—>x w—x the limits.

d d
= E['f(x)] + E[g(x)]

The proof for f — g issimilar. |
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In function notation, Theorem 3.3.4 states

(f+e)' =1f+¢ (f-9' =f-¢

In words, the derivative of a sum equals the sum of the derivatives, and the derivative of
a difference eguals the difference of the derivatives.

Example 4

d 4 2 d 4 d 2 3

—_— = — —_— = 4

dx[x + x“] dx[x]+dx[x] x° + 2x

d d d

—[6x? — 9] = —[6x] — —[9] = 66x1° — 0 = 66x1° |
dx dx dx

Although Theorem 3.3.4 was stated for sums and differences of two terms, it can be
extended to any mixture of finitely many sums and differences of differentiable functions.
For example,

d 8 5 d 8 d 5 d d
— — +6x+1] =— — —[2°1+ — + —[1
dx[3x 2x” + 6x + 1] dx[3x] x[ ] dx[6x] dx[]

=24x" —10x* 4+ 6

DERIVATIVE OF A PRODUCT 3.3.5 THEOREM (TheProduct Rule). If f and g are differentiable at x, then so is the
product f-g, and

d d d
E[f(x)g(X)] = f(X)E[g(x)] + g(x)a[f(x)]

Proof. Theearlier proofsin thissection were straightforward applications of the definition
of the derivative. However, this proof requires a trick—adding and subtracting the quantity
f(w)g(x) to the numerator in the derivative definition as follows:

Jw) - gw) — f(x) - g(x)

d .
@] = fim
X

w— X w— X
— lim f@®sw) — fw)g(x) + f(w)g(x) — f(x)g(x)
w— X w—X

fim [ s £ 8 g L]

- X
g(w) — g(x) Jw) — f(x)
w—Xx w

= lim f(w) - lim + lim g(x) - lim
w—Xx w—X w—X — X

. d . d
=[lim f(w)]d*[g(X)] +[Iim g()]——[f(x)]
w— X X w—> X dx

d d
= f(X)*d [ + gx)—[f(x)]
X dx

[Note: In the last step f(w)— f(x) as w— x because f is continuous at x by Theorem
3.24, and g(x) — g(x) as w— x because g(x) does not involve w and hence remains
constant.]

The product rule can be written in function notation as

(f-8)=rg+sgf
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In words, the derivative of a product of two functions is the first function times the
derivative of the second plus the second function times the derivative of the first.

¢ WARNING. Notethatingeneral (f-g) # f'-g’; thatis, the derivative of a product is not
i generally the product of the derivatives!

Example 5 Finddy/dx if y = (4x? — 1)(7x% + x).

Solution. There are two methods that can be used to find dy/dx. We can either use the
product rule or we can multiply out the factorsin y and then differentiate. We will give both
methods.

Method I. (Using the Product Rule)

dy _d .2 3
dx dx[(4x D +0]

d d
= (Ax%2 = 1) —[7x3 +x] + (Tx3+ x)—[4x2 — 1]
dx dx
= [4x? - 1DL%+ 1) + (7x® + x)(8x) = 140x* —W? — 1
Method I1. (Multiplying First)
y = Ax? —D(Tx3+x) =28 -3 —x

Thus,
d d
L @ 18x5 — 33— x] = 140x* — k2 — 1
dx dx
which agrees with the result obtained using the product rule. |
DERIVATIVE OF A QUOTIENT 3.3.6 THEOREM (TheQuotientRule).  If f and g are differentiable at x and g(x) # O,

then f/g isdifferentiable at x and

d d
i[f(x):| g [f (] = () ——[g()]

dx | g(x) [g(x0)]?
Proof.
fw)  fx)
d /] _ lim 8 g) _ o f(w)-g() — f(x) - g(w)
dx | gx)] wox  w—x wox o (w—x)-gx) - g(w)

Adding and subtracting f(x) - g(x) inthe numerator yields

AT _ lim L) - 8&) = fx) - g(x) = fx) - g(w) + f(x) - g(x)
dx Lgx)] w—x (w—x)-gx)-g(w)
[g(x) fw) — f(x)} B [ oy B0 g(x)}
— lim w—X w—X
W g(x) - g(w)
lim gy - fim L 7SO iy g fjm 80 80
w—X w—> X w —X w—X w—>X w — X

lim g(x)- lim g(w)
w—X w—X
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. d . d
[lim g(0] - T-[700] = [lim f0] - 2—[g0]

lim g(x) - lim g(w)

d d
g () [ = f(x) [ (x)]
— X dx
[g(x)]?
[Seethe note at the end of the proof of Theorem 3.3.5 for an explanation of the last step.] |

The quotient rule can be written in function notation as

([)’z g f —f¢
g g2

In words, the derivative of a quotient of two functions is the denominator times the
derivative of the numerator minusthe numerator timesthe derivative of the denominator,
all divided by the denominator squared.

¢ WARNING. Notethatingeneral (f/g) # f'/g’; thatis, thederivative of aquotient isnot
i generaly the quotient of the derivatives.

x2-1
x4+1

(@ Graphy = f(x), and use your graph to make rough estimates of the locations of all
horizontal tangent lines.

Example 6 Let f(x) =

(b) By differentiating, find the exact locations of the horizontal tangent lines.

Solution (a). In Figure 3.3.2 we have shown the graph of the equation y = f(x) in the

(25, 2.5] < [-1, 1] window [—2.5, 2.5] x [—1, 1]. This graph suggests that horizontal tangent lines occur at
xScl = 1,yScl =1 x=0,x~ 15 andx ~ —15.
_x2-1 Solution (b). To find the exact locations of the horizontal tangent lines, we must find the
x+1 points where dy/dx = 0 (why?). We start by finding dy/dx:
Figure 3.3.2 d d
dy d x2_1 (x4+1)a[x2—1] —(xz—l)a[x4+1]
E_E[x4+l}_ (x4+1)2
_ (x4 +D(2x) - (XZ -1 (4)63) The differentiation is complete.
(x4 + 1)2 Therest is simplification.
. —2x°% 4+ 4x3 + 2x o 2x(x* —2x%2 1)
(vt 1) (vt 1)

Now we will set dy/dx = 0 and solve for x. We obtain
_2x(x4— 22 -1) 0
(417
The solutions of this equation are the values of x for which the numerator is0:
2@t —22 -1 =0
The first factor yields the solution x = 0. Other solutions can be found by solving the
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equation

xf—22-1=0
This can be treated as a quadratic equation in x? and solved by the quadratic formula. This
yields

2+4/8

X2 = 2‘/_ =1++/2
The minus sign yields imaginary values of x, which we ignore since they are not relevant
to the problem. The plus sign yields the solutions

x=+V14++2
In summary, horizontal tangent lines occur at

x=0, x=v1++/2~155 ad x=-vV1++/2~-155
whichisconsistent with the rough estimatesthat we obtained graphically in part (a). <

In Theorem 3.3.2 we established the formula

5[)6”] = nx"t
for positive integer values of n. Eventually, we will show that this formula appliesif n is
any real number. Asour first step in this direction we will show that it appliesfor all integer

values of n.

3.3.7 THEOREM. If nisanyinteger, then

d
—[x"] = nx"?t

Ix D

Proof. The result has already been established in the casewheren > 0. If n < O, then let
m = —n S0 that

1
)y =x"=—
xm
From Theorem 3.3.6,
d d d
P R T L el 0 I
)= —|=|= X X _ _ax
dx [ xm (xm)? (xm)?
Sincen < O, it followsthat m > 0, so x™ can be differentiated using Theorem 3.3.2. Thus,
m—1
ey — MY m—l-2m w1 a1
fx) = o mx mx nx

which proves (1). In the case n = 0 Formula (1) reducesto
d
—[1]=0-x"1=0
dx

which is correct by Theorem 3.3.1. |

Example 7

d
d—[x_g] =—0x 91— _09gy 10
X

dalil_d. 4 o1 2 1
dx|:xi|_dx[x I=Dx - = <
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In Example 4 of Section 3.2 we showed that

d 1

il = 2

wV=57 @

which shows that Formula (1) also works withn = % since

dogyp 1 1 ap

1= 5=

If thederivative f’ of afunction f isitself differentiable, then the derivative of f’isdenoted
by f” and is called the second derivative of f. Aslong as we have differentiability, we
can continue the process of differentiating derivativesto obtain third, fourth, fifth, and even
higher derivatives of f. The successive derivatives of f are denoted by

o= =, Y=g, =0y
These are called thefirst derivative, the second derivative, the third derivative, and so forth.
Beyond the third derivative, it is too clumsy to continue using primes, so we switch from
primesto integersin parentheses to denote the order of the derivative. In this notation it is
easy to denote a derivative of arbitrary order by writing

f(n)

The significance of the derivatives of order 2 and higher will be discussed later.

The nth derivative of f

Example 8 If f(x) = 3x* — 2x% 4 x? — 4x + 2, then
flx) =12x°—6x2+2x—4
f’(x) =36x2—12x 42
f"(x) =72x —12

fAx) =72
O =0
fP()=0 (n=5) <

Successive derivatives can aso be denoted as follows:
d

flx) = d—[f(x)]
X

y d[d d?
ffx) = d_x [a[f(x)]] = ﬁ[f(x)]
oo d [ d? _d®
fx) = o [ﬁ[f(x)]} = ﬁ[f(x)]

In general, we write

dn

(n) —
fOw =

[f(x)]

which isread “the nth derivative of f with respect to x.”
When a dependent variable isinvolved, say y = f(x), then successive derivatives can
be denoted by writing

dy dzy d3y d*y d"y

dx’  dx?2  dx3®  dx* 7 dxn T
or more briefly,

A O AT T S L
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In Exercises 1-12, find dy/dx.

1 y=4" 2. y=—3%
3y=3x+2r+1 4. y=1x*+7)
5. y=n° 6. vy =+2x + (1/V/2)
2
1
7.y:—%(x7+2x—9) 8.y:x;_

9 y= ax®+bx’+cx +d (a, b, ¢, d constant)
10. y = % <x2 + %x + c) (a, b, ¢ constant)
11 y=-3x"84+2/x 12. y=7x%-5/x
In Exercises 13-20, find f(x).

13. f(x) =x°+ % 14. f(x) = /x + !
X X

15. f(x) = (3x?+6) (2x — 3)
16. f(x) = (2 —x — 33 (T + x5
17. f(x) = (P +7x2 = 8)(2x 3 +x7%

18. f(x) = (% + %) (33 +27)
19, f(x) = (3% + 1) 20. f(x) = (x* + 2x)

In Exercises 21 and 22, find y'(1).

3
YT 53 YT At2
In Exercises 23 and 24, find dx/dt.
3t ?+1
YTt T Ty
In Exercises 25-28, find dy/dx|,—1.
2x —1 Ix+1
25. = 26_ =
Y x+3 Y x2-5

2
27. y = (3"+ )(x*5+1)
X

28 y= (2 —x?) (x - 1)

x+1

In Exercises 29 and 30, approximate f’'(1) by considering

difference quotients

S — f(D)

X1—1

for values of x; near 1, and then find the exact value of f'(1)

by differentiating.

29. fx)=x3—3x+1 30. f(x) = x/x

In Exercises 31 and 32, use agraphing utility to estimate the
value of f’(1) by zooming in on the graph of f, and then
compare your estimate to the exact value obtained by differ-
entiating.

X x2—1

x2+1 R 32 J0) =777

K~ 3L fx) =
In Exercises 33-36, find the indicated derivative.

d dcC
33. —[1617] 34. —, where C = 2nr
dt dr

d
35. V/(r), whereV = mr3 36. d—[zofl + ]
o

37. A spherical balloon is being inflated.

(& Find a general formula for the instantaneous rate of
change of the volume V with respect to the radius r,
giventhat V = 472,

(b) Find the rate of change of V with respect to r at the
instant when theradiusisr = 5.

. d [Aarg+AS ,
38. Find ’ry [ 2 7o ] (Ao isconstant).
39. Find g’(4) giventhat f(4) = 3and f'(4) = —5.
@ g(0) = VE/(x) ® 500 = I

40. Find g’ (3) giventhat f(3) = —2and f'(3) = 4.
2x+1
(8 g) =32 —5f(0)  (b) g(x) =~
fx)
41. Find F’(2) giventhat f(2) = -1, f'(2) = 4,¢g(2) = 1, and
g'(2) = -b.
(@ F(x) =5f(x) +2g(x) (b) F(x)= f(x)—3g(x)
(€) F(x) = fx)g(x) (d) F(x) = f(x)/g(x)
42. Find F'(7) giventhat f(r) = 10, f'(7) = —1,
g(m) =—=3,and g’ () = 2.
(@ F(x) =6f(x) —5g(x) (b) F(x)= x({(gxg +g()
X
(©) F(x)=2f(x)g(x) (d) F(x) = A+ e()
43. Find anequation of thetangent linetothegraphof y = f(x)
ax =-3if f(-3)=2and f'(—3) =5.
44. Find an equation for the line that is tangent to the curve
y=1-x)/A+x)ax=2.

In Exercises 45 and 46, find d°y/dx?.

45. (@) y = 7x> —5x2 4 x (b) y=12x2—-2x+3

(© y= x;:l (d) y = (5x2 = 3)(7x3 + x)

46. (@ y=4x"—5x3+2x (b)) y=3x+2

3x -2
© =" @ y= (3= 5@r+3)

In Exercises 47 and 48, find y”’.
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47.

48.

49.

50.

51.
52.

53.

@ y=x>+x° (b) y=1/x
(©) y=ax®+bx+c (a,b,cconstant)
@ y=5¢*—4x+7 (b) y=32+4x 1 +x
(©) y=ax*+bx?>+c (a,b,cconstant)
Find
(@ f"(2), where f(x) =3x%—2
d2
0 L2 wherey = 6x° — 4x2
dx?|._;
a*
© W[X ] -
Find
(@ y"(0), wherey = 4x*+ 2x3+3
d*y 6
b —| ,wheey=—.
() dx*| .4 W Y x4
Show that y = x3 4+ 3x + 1 satisfies y” + xy” — 2y’ = 0.

Show that if x # 0, then y = 1/x satisfies the equation
xSy// + xzy/ —xy = 0.

Find a genera formulafor F”(x) if F(x) = xf(x) and f
and f’ are differentiable at x.

Suppose that the function f is differentiable everywhere
and F(x) = xf(x).

(8) Express F”(x) interms of x and derivatives of f.

(b) Forn > 2, conjecture aformulafor F™ (x).

In Exercises 55 and 56, use a graphing utility to make rough
estimates of the locations of all horizontal tangent lines, and
then find their exact locations by differentiating.

K 55.
57.

58.
59.

60.

61.

62.

63.

X
x24+9
Find a function y = ax? + bx + ¢ whose graph has an
x-intercept of 1, ay-intercept of —2, and atangent linewith
aslope of —1 at the y-intercept.

y:%xS—%xZ—}—Zx [~ 56. y=

Find k if thecurve y = x? 4 k istangent to theline y = 2x.

Find the x-coordinate of the point on the graph of y = x?
where the tangent line is parallel to the secant line that cuts
thecurveatx = —land x = 2.

Find the x-coordinate of the point on the graph of y = /x
where the tangent line is parallel to the secant line that cuts
thecurveat x = land x = 4.

Find the coordinates of all pointsonthegraphof y = 1—x2
at which the tangent line passes through the point (2, 0).

Show that any two tangent lines to the parabola y = ax?,
a # 0, intersect at apoint that ison the vertical line halfway
between the points of tangency.

Suppose that L isthetangent lineat x = xq to the graph of
the cubic equation y = ax?® + bx. Find the x-coordinate of
the point where L intersects the graph a second time.

Show that the segment of the tangent line to the graph of
y = 1/x that is cut off by the coordinate axesis bisected by
the point of tangency.
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65. Show that the triangle that is formed by any tangent line to
the graph of y = 1/x, x > 0, and the coordinate axes has
an area of 2 sguare units.

66. Find conditions on a, b, ¢, and d so that the graph of the
polynomial f(x) = ax® 4 bx?+ cx + d has
(a) exactly two horizontal tangents
(b) exactly one horizontal tangent
(¢) no horizontal tangents.
67. Newton’sLaw of Universal Gravitation states that the mag-

nitude F of the force exerted by a point with mass M on a
point with massm is

GmM
F —

2
-
where G isaconstant and r isthe distance between the bod-
ies. Assuming that the points are moving, find aformulafor
the instantaneous rate of change of F with respecttor.

68. In the temperature range between 0°C and 700° C the re-
sistance R [in ohms (2)] of a certain platinum resistance
thermometer is given by

R = 10+ 0.04124T — 1.779 x 10°°T?

where T is the temperature in degrees Celsius. Where in
theinterval from 0° C to 700° C isthe resistance of the ther-
mometer most sensitive and least sensitive to temperature
changes?[Hint: Consider the size of dR/dT intheinterval
0<T <700]

In Exercises 69 and 70, use a graphing utility to make rough
estimates of the intervals on which f/(x) > 0, and then find
those intervals exactly by differentiating.

1
71. Apply theproduct rule (3.3.5) twiceto show that if f, g, and

h are differentiable functions, then f- g - # isdifferentiable,
and

(f-gh)=f-gh+fgh+fgh

72. Based on theresultin Exercise 71, make a conjecture about
aformulafor differentiating a product of n functions.

73. Usetheformulain Exercise 71 to find
d 1
(@ — [(zx +1 (1 + 7> 34+ 7)}
dx X

d
b) — [(x"+2x —3)%].
®) - [(x"+ )°]
74. Usethe formulayou obtained in Exercise 72 to find

@ % [x 2% + 20) (4 — 30)(2x° + 1)]

(b) % [(x* + D).
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In Exercises 75-78, you are asked to determine whether
a piecewise-defined function f is differentiable at a value
x = xo, Where f is defined by different formulas on differ-
ent sides of xg. You may use the following result, whichisa
conseguence of the Mean-Value Theorem (discussed in Sec-
tion 4.8). Theorem. Let f be continuous at xo and suppose
that lim,_, ,, f'(x) exists. Then f isdifferentiable at xo, and

[ (xo) = lime /().

75.

76.

7.

Show that

+x+1 x<1

X, x>1

o]

is continuous a x = 1. Determine whether f is differen-
tiableat x = 1. If so, find the value of the derivative there.
Sketch the graph of f.
Let

x2 — 16x,

12 /x,

Is f continuous a x = 9? Determine whether f is dif-
ferentiable at x = 9. If so, find the value of the derivative
there.

x<9

x>9

f(X)=[

Let

x2, x<1

VX,

Determine whether f isdifferentiable at x = 1. If so, find
the value of the derivative there.

x>1

f(X)=[
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82.

83.
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Determine whether f isdifferentiable at x = % If o, find
the value of the derivative there.

Find al points where f fails to be differentiable. Justify
your answer.

@ f(x)=1[3x—2| (b) f(x)=|x*—4

In each part compute 1/, f”, f” and then state the formula
for £,

@ f(x)=1/x (b) f(x) =1/x*

[Hint: The expression (—1)" hasavaue of 1 if n is even
and —1if n isodd. Use this expression in your answer.]

. (& Prove:

d? d?
ﬁ[cf(x)] = C@[f(x)]

d? d? d?
ﬁ[f(x) +g()] = ﬁ[f(x)] + ﬁ[g(x)]

(b) Do theresultsin part (a) generalize to nth derivatives?
Justify your answer.

Prove:
(f-8)=f"¢g+2f-g+f4g"

(@ Find f™(x) if f(x) = x".

(b) Find f™(x) if f(x) = x* andn > k, wherek isa
positive integer.

(©) Find £ (x) if

f(x):ao+(l1x+a2x2+...+anxn

Let f(x) = x8 — 2x + 3; find
lim f'w) — (2
w—2 w—2

(& Prove: If f”(x) existsfor each x in (a, b), then both f
and f’ are continuous on (a, b).

(b) What can be said about the continuity of f and its
derivativesif £ (x) existsfor each x in (a, b)?

3.4 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS

The main objective of this section is to obtain formulas for the derivatives of trigono-

For the purpose of finding derivatives of the trigonometric functions sinx, cosx, tanx,
cot x, secx, and csc x, wewill assume that x is measured in radians. We will also need the

following limits, which were stated in Theorem 2.6.3 (with x rather than / asthe variable):

78. Let
x3 + 1—16, x < %
fx) = 3 1
32 X=z3
metric functions.
DERIVATIVES OF THE
TRIGONOMETRIC FUNCTIONS
. Sinh
lim —— =1 and
h—>0 h

1— cosh B

=0
h

We begin with the problem of differentiating sinx. Using the aternative form

f'(x) =h|

[
=

im X — fO)
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for the definition of a derivative (Formula (11) of Section 3.2), we have

d . . Sin(x +h) —sinx
— [sinx] = lim
dx h—0 h
Sinx COSh + cosx Sinh — Sinx — -
= |lm By the addition formulafor sine
h—0 h

. . cosh —1 sinh
lim|sinx [ ——— | +cosx | —
h—0 h h

. sinh . 1— cosh
lim|cosx | — ) —sinx | ————
h—0 h h

Since sinx and cosx do not involve i, they remain constant as 2 — 0; thus,

lim(sinx) =sinx and lim(cosx) = cosx
h—0 h—0

Consequently,
d . ) sinh . . 1— cosh
—I[sinx] =cosx - lim|[ — ) —sinx - lim | ————
dx h—0 h h—0 h
= cosx - (1) — sinx - (0) = cosx
Thus, we have shown that

%[sinx] = COSx )

The derivative of cosx can be obtained similarly, resulting in the formula
d .
—[cosx] = —sinx 2
dx

The derivatives of the remaining trigonometric functions are

d d

— [tanx] = sec®x —[secx] = secx tanx (3-4)
dx dx

d ) d

— [cotx] = —csct x — [cscx] = —cscx cotx (5-6)
dx dx

These can al be obtained from (1) and (2) using the relationships

sinx COSx 1 1
tanx = , Cotx = — , SeCx = , CSCx =—

cosx sinx cosx sinx

For example,
d . . . d
d d Tsinx CoSx - d—[smx] —sinx - d—[COSx]
—[tanx] = — = X 5 X
dx dx | cosx COS* x
COSx - COSx — Sinx - (—sinx)  cos?x + sin’x 1
= = = = X
cos? x cos? x cos? x

¢ REMARK. Thederivative formulasfor the trigonometric functions should be memorized.
: Aneasy way of doing thisis discussed in Exercise 42. Moreover, we emphasize again that
in al of the derivative formulas for the trigonometric functions, x is measured in radians.

Example 1 Find f'(x) if f(x) = x?tanx.
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Solution. Using the product rule and Formula (3), we obtain

d d
f(x) = x?. —[tanx] + tanx - —[x?] = x?sec®x + 2x tanx |
dx dx
sinx
Example 2 Finddy/dx if y = ———.
P yldx ity 1+ cosx

Solution. Using the quotient rule together with Formulas (1) and (2) we obtain

d . . d
d_y _ (1+ cosx) - E[smx] —sinx - a[l—f-COSx]

dx (1+ cosx)?
_ (1+cosx)(cosx) — (Sinx)(—sinx)
o (1 4+ cosx)?2
_cosx+cos’x+sinx  cosx+1 1 <
- (1 + cosx)? " (l+cosx)2 1+ cosx
Example 3 Find y"(x/4) if y(x) = secx.
Solution.
y/(x) = secx tanx
d d
y'(x) = secx - —[tanx] + tanx - —[secx]
dx dx
= secx - Sec?x + tanx - secx tanx
= sec3 x + secx tan®x
Thus,
Yy (7r/4) = sec®(m/4) + sec(n/4) tan?(rr/4)
= 2%+ W2)(1)?=3V2 <

Example 4 On asunny day, a50-ft flagpole casts a shadow that changes with the angle
of elevation of the Sun. Let s be thelength of the shadow and 6 the angle of elevation of the
Sun (Figure 3.4.1). Find the rate at which the length of the shadow is changing with respect
to & when @ = 45°. Express your answer in units of feet/degree.

Solution. Thevariabless and 6 arerelated by tané = 50/, or equivalently,
s = 50cotd @)

If 6 is measured in radians, then Formula (5) is applicable, which yields
d
Y _50cs?0
do
which is the rate of change of shadow length with respect to the elevation angle 6 in units
of feet/radian. When 8 = 45° (or equivalently, 0 = 7/4 radians), we obtain
ds
do 0=n/4
Converting radians (rad) to degrees (deg) yields
ft =7 rad 5
o 180deg ~ o VU 5ft/deg
Thus, when 6 = 45°, the shadow length is decreasing (because of the minus sign) at an
approximate rate of 1.75 ft/deg increase in the angle of elevation. <«

= —50csc?(nr/4) = —100 feet/radian
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EXERCISE SET 3.4 [ Graphing Calculator

In Exercises 1-18, find f'(x).

1
3.

5.

7.
9.

11.
12.

13.

15.

17.

18.

19.
21.
23.
25.

26.

f(x) =2cosx — 3sinx 2. f(x) = sinxcosx
sinx 2
fx)=—— 4. f(x) = x“coSx
X
f(x) = x3sinx —5cosx 6. flx) = —*
xsinx
f(x) =secx —/2tanx 8. f(x) = (x> + 1)secx
Secx
= t 10. =
Sf(x) = secxtanx JFx) Trtanx
f(x) = cscx cotx
f(x) =x —4cscx + 2cotx
fo) = 2 W, f(x) = -
X)) = ——— . X) =
’ 1+ cscx tanx
1
= sin? <3 16. =
f(x) =8in“x + cos” x f(x) P
Sinx Secx
fo = 1+ xtanx
(x2 + 1) cot x
fo) = 3 — COSx CSCx
In Exercises 19-24, find d?y/dx?.
y = X COSx 20. y = csCcx
y =xSnx — 3C0Sx 22. y = x2cosx + 4sinx
y = Sinx cosx 24. y =tanx
Find the equation of the line tangent to the graph of tanx at
@ x=0 (b) x =n/4 (©) x = —n/4
Find the equation of the line tangent to the graph of sinx at
@ x=0 o) x=m (€) x =n/4.
(@ Showthat y = x sinx isasolutionto y” +y = 2cosx.

27.

28.

29.

K 30.

31

(b) Show that y = xsinx is a solution of the equation
y@ +y” = —2cosx.

(a8 Show that y = cosx and y = sinx are solutions of the
equation y” + y = 0.

(b) Show that y = Asinx + B cosx is a solution of the
equation y” + y = Ofor all constants A and B.

Find al valuesin theinterval [—27, 2] at which the graph
of f hasahorizontal tangent line.

(@ f(x) =sinx (b) f(x) = x + cosx

(©) f(x) =tanx (d) f(x) = secx

(8 Use agraphing utility to make rough estimates of the
values in the interval [0, 2] a which the graph of
y = sinx cosx has ahorizontal tangent line.

(b) Find the exact locations of the points where the graph
has a horizontal tangent line.

A 10-ft ladder leans against a wall at an angle 6 with the
horizontal, as shown in the accompanying figure. The top
of the ladder is x feet above the ground. If the bottom of
the ladder is pushed toward the wall, find the rate at which
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x changes with respect to & when 6 = 60°. Express the
answer in units of feet/degree.

An airplane is flying on a horizontal path at a height of
3800 ft, as shown in the accompanying figure. At what rate
is the distance s between the airplane and the fixed point
P changing with respect to & when 6 = 30°? Express the
answer in units of feet/degree.

10 ft J(
0 l
Figure Ex-31 Figure Ex-32

A searchlight istrained on the side of atall building. Asthe
light rotates, the spot it illuminates moves up and down the
side of thebuilding. That is, the distance D between ground
level and the illuminated spot on the side of the building is
afunction of the angle 6 formed by the light beam and the
horizontal (see the accompanying figure). If the searchlight
is located 50 m from the building, find the rate at which D
is changing with respect to 6 when 6 = 45°. Express your
answer in units of meters/degree.

. An Earth-observing satellite can see only a portion of the

Earth’s surface. The satellite has horizon sensors that can
detect the angle 6 shown in the accompanying figure. Let
r be the radius of the Earth (assumed spherical) and / the
distance of the satellite from the Earth’s surface.

(@ Show that h = r(csch — 1).

(b) Usingr = 6378km, find therateat which 2 ischanging
with respect to # when 6 = 30°. Expressthe answer in
unitsof kilometers/degree. [ Adapted from Space Math-
ematics, NASA, 1985.]

h satellite

1? e

ﬁ_f\ﬂ_@m___

Earth

Figure Ex-33 Figure Ex-34

In Exercises 35 and 36, make a conjecture about the deriva-
tive by calculating the first few derivatives and observing the
resulting pattern.
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35.

36.
37.

38.

39.

40.

d87 ) leO
(8) ——glsin] (b) ——gglcosa]
arr
m[x sinx]
In each part, determine where 1 is differentiable.

(@ f(x) =sinx
(©) f(x) =tanx

(b) f(x) =cosx
(d) f(x) =cotx

() f(x) =secx (f) f(x) = cscx

9 f&x) = m (h) f&x) = m
. COSx

() fx) = m

(a) Derive Formula(2) using the definition of aderivative.

(b) UseFormulas (1) and (2) to obtain (5).

(c) UseFormula(2) to obtain (4).

(d) UseFormula(1) to obtain (6).

Let f(x) = cosx. Find al positive integers n for which

f®(x) =sinx.

@ Showthat}!irrz)? =1

(b) Usetheresult in part (a) to help derive the formulafor
the derivative of tan x directly from the definition of a
derivative.

3.5 THE CHAIN RULE
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Without using any trigonometric identities, find

. tan — tan
lim 2G4 y) y
x—0 X

[Hint: Relate the given limit to the definition of the deriva-
tive of an appropriate function of y.]

Let us agree to call the functions cosx, cotx, and cscx
the cofunctions of sinx, tanx, and sec x, respectively. Con-
vince yourself that the derivative of any cofunction can be
obtained from the derivative of the corresponding function
by introducing a minus sign and replacing each function in
the derivative by its cofunction. Memorize the derivatives
of sinx, tanx, and sec x and then use the above observation
to deduce the derivatives of the cofunctions.

The derivative formulas for sinx, cosx, tanx, cot x, secx,
and csc x were obtained under the assumption that x ismea-
sured in radians. This exercise shows that different (more
complicated) formulas result if x is measured in degrees.
Provethat if 4 and x are degree measures, then
cosh —1 sinh T

lim —— = lim —=-—
@ fim — 0 OlIn="=1%

d . T
€) —[sinx] = — cosx.
(©) gy (8N« = 7gq Co8x

In this section we will derive a formula that expresses the derivative of a composition
fog interms of the derivatives of f and g. This formula will enable us to differentiate
complicated functions using known derivatives of simpler functions.

DERIVATIVES OF COMPOSITIONS

3.5.1 PROBLEM.

If we know the derivatives of f and g, how can we use this infor-

mation to find the derivative of the composition fog?

The key to solving this problem is to introduce dependent variables

y=(fog)x) = f(gx)) and

u=g(x)

sothat y = f(u). We are interested in using the known derivatives

dy , du o

E_f(u) and E_g(x)
to find the unknown derivative

dy d

I E[f(g(x))]

Stated another way, we are interested in using the known rates of changedy/du and du/dx
to find the unknown rate of change dy/dx. But intuition suggests that rates of change
multiply. For example, if y changes at 4 times the rate of change of u and u changes at 2
times the rate of change of x, then y changes at 4 x 2 = 8 times the rate of change of x.

This suggests that
dy dy du
dx  du dx

These ideas are formalized in the following theorem.
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3.5.2 THEOREM (ThecChainRule). If g isdifferentiableat x and f is differentiable at
g(x), then the composition f o g isdifferentiable at x. Moreover,

(fog) (x) = f'(g(x)g'(x)
Alternatively, if
y=f(glx)) and u=g(x)
theny = f(u) and
dy _dy du "
dx  du dx

The proof of thisresult is given in Appendix G.
Example 1 Find &'(x) if h(x) = 4cos(x3).
Solution. Wefirst find functions f and g such that f o g = h. Observethat if g(x) = x3
and f(u) = 4cosu, then
(fog)(x) = f(g(x)) = 4cos(g(x)) = 4cos(x®) = h(x)
Also,
f'(u) = —4sinu and g'(x) = 3x?
Using the chain rule,
h(x) = f'(g(x)) g'(x) = (—=4sing(x))(3x?) = —12xsin(x®)

Alternatively, set y = h(x) and let u = x>. Then y = 4cosu. By the form of the chain rule
in Formula (1),

dy dy d d d
W (x) = ﬁ - ﬁ : ﬁ = —-[4cosu] - - [x°]
= (—4sinu) - (3x?) = (=4sin(x%)) - (3x?) = —12x%sin(x®) |

Formula(1) iseasy toremember becausetheleft sideisexactly what resultsif we* cancel”
the du’s on the right side. This “canceling” device provides a good way to remember the
chain rule when variables other than x, y, and u are used.

Example 2 Finddw/dt if w = tanx and x = 413 + 1.

Solution. In this case the chain rule takes the form

dw dw dx d d
— = — = —[tanx] - —[4 +1¢
ar T dxar ~ axianl gl
= (sec®x)(12t2 + 1) = (1212 + 1) sec?® (4¢3 + 1) |
""""""""""""""""""""""" Although Formula (1) is useful, it is sometimes unwieldy because it involves so many

AN ALTERNATIVE APPROACH TO

USING THE CHAIN RULE variables. Asyou become more comfortable with the chain rule, you may want to dispense

with actually writing out all these variables. To accomplish this, it is helpful to note that
since (fog)(x) = f(g(x)), the chain rule may be written in the form

d
E[f(g(X))] = (fog)(x) = fl(g(x)g'(x)

If wecall g(x) the“inside function” and f the “outside function,” then this equation states
that:

Thederivative of f(g(x)) isthe derivative of the outside function evaluated at theinside
function times the derivative of the inside function.
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That is,
d ! /
d—[f(g(x))] = fl(g(x)) - g'x) 2
X ———— ———
Derivativeof = Derivative
the outside of theinside
evaluated at
theinside
For example,

d .
—[cos(x?+9)] = —sin(x>+9) - 2x
dx = =

Derivative of the Derivative
outside evaluated of theinside
at theinside

d d
—[tan?x] = — [(tanx)?] = 2tanx) - (sec®x) = 2tanx sec’x
dx dx — S —’

Derivative of Derivative
the outside of theinside
evaluated at

theinside

Substituting u = g(x) into (2) yields the following alternative form:

d du
- — () — 3
P [fWw]=f (u)dx ©)
For example, to differentiate the function
o) = —x+1)7 @)
we can let u = x? — x 4+ 1 and then apply (3) to obtain

du

d 2 23_d 231 _ 22
O =+ DF] = [u®] = 236

dx
Sl

_ 2 2d 5
_23(x x+1) dx[x x +1]
=23(x2—x+ 1% @ -1

Moregeneraly, if u were any other differentiablefunction of x, the pattern of computations
would be virtually the same. For example, if u = cosx, then

d d d d
Lo x] = L[u®) = 23u2E — 230082 x - [cosx]
dx dx dx dx

= 230082 x - (—sinx) = —23sinx cos? x
In both of the preceding computations, the chain rule took the form
d . 2 du
- —2 -
o [4] 3u Ty (5)
Thisformulais a generalization of the more basic formula
d
—[x%] = 23x?% (6)
dx

In fact, in the special case where u = x, Formula (5) reducesto (6) since
d d d
4y =g 2 _ 32 _ g 22
dx dx dx

Table 3.5.1 contains a list of generalized derivative formulas that are consequences
of (3).
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Table3.5.1

GENERALIZED DERIVATIVE FORMULAS

d%[u”] = nu”‘l%( (n an integer) d—‘i[xﬁ] :ﬁg—i
c%([sinu] =cosu3—l): c%([cosu] =—sinug—)li
d%([tanu] =sec2ug—)l: dgx[cotu] =—csczu$
d%([w:u] =$cutanug—§ d%([cscu] =—cscucotu3—::

Example 3 Find
@ Lz © Liaeien © LT
dx dx dx

d s d 1

Solution (a). Teking u = 2x in the generalized derivative formulafor sinu yields
d . d . d d
—[sin(2x)] = —[sinu] = cosu ™l — cos2x - —[2x] = cos2x - 2 = 2cos2x
dx dx dx dx
Solution (b). Taking u = x? 4 1in the generalized derivative formulafor tanu yields
du
2

d 9 d
—[tan 1] = —[tanu] = sec“u—
S LEnG” + D] = ——tanu] —

=sec®?(x2 4+ 1) - di[x2+1] =sec®(x?+1) - 2x
X

= 2x sec?(x2 + 1)
Solution (c). Taking u = x3 + cscx in the generalized derivative formulafor /u yields
d r—+———" d 1 du 1 d
_ 3 CSsC = — = _— = - —_ 3 CSsC
dx[ X+ osea] dx[ﬁ] 2Judx 2 x3+cscx dx [x"+ csea]
1 2 3x2 — cscx cot x
= ———— (3x“ —CXCx Cotx) = ——=——
2/ x3 4+ cscx 2/ x3 4+ cscx
Solution (d). Takingu = 1+ x® cot x inthe generalized derivative formulafor «~8 yields
d du
~[A+x°cotx) 8] = —[u® = —8u 2 —
dx [( e x) ] dx [u™] " dx

9 d
= —8(1+x>cotx) °. d—[1+x5cotx]
X

=—-8(1+x° cotx)f9 - (x3(—csc? x) + 5x* cot x)
= (8x®csc? x — 40x* cot x) (1—|—x5 Cotx)_9
Solution (e). Takingu = x3+ 2x — 3in the generalized derivative formulafor u~! yields
d 1 d_ 4 1 d
Sl |=-Z 2% —3) 1= L
dx [x3+2x—3i| dx[(x * )] dx[u ]
d d
=2 -3 2 P 2n -3
dx dx
3242

(43 o -2 2 _
= (3 +2x—3) 32 +2) = P T
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Sometimes you will have to make adjustments in notation or apply the chain rule more

than once to calculate a derivative.

Example 4 Find
€) %[si Nn(~/1+ cosx)]

d
(b) d_l: if u = sec /i (w constant)

Solution (a). Takingu = /1 + cosx inthegeneralized derivativeformulafor sinu yields

d . d . d
—[sin(v/1+4 cosx)] = —[sinu] = cosu 2t
dx dx dx

d
= cos(+/1+ cosx) - d—[«/l + cosx]
X

We use the generalized
derivative formulafor /u
withu = 1+ cosx.

—gin
= CcoS(+/1+ cosx) - 5 al

1+ cosx
_ sinxcos(v/1+ cosx)
B 2J/1+ cosx
Solution (b).
d d d We used the generalized
adad = —[secv/wt] = sec v/ wt tan /wt —[+/wt]  derivative formulafor
dt dt dt secu withu = /wr.
We used the generalized
= Sec+/wt tan \/wt @ derivative formulafor /u |
2»\/ wt withu = wt.

DIFFERENTIATING USING
COMPUTER ALGEBRA SYSTEMS

Although the chain rule makes it possible to differentiate extremely complicated functions,
the computations can be time-consuming to execute by hand. For complicated derivatives

engineers and scientists often use computer algebra systems such as Mathematica, Maple,
and Derive. For example, although we have al of the mathematical tools to perform the

differentiation
d [ (2 +1)°sin*(y/x)
dx V1+cscx

(")

by hand, the computations are sufficiently tedious that it would be more efficient to use a

computer algebra system.

¢ FOR THE READER.

EXERCISE SET 3.5 [ Graphing Calculator CAS

If you have a CAS, useit to perform the differentiation in (7).

1. Given that f(0) = 2, g(0) = 0, and ¢’(0) = 3, find

5. Given the following table of values, find the indicated

(fog)(0). derivativesin parts (a) and (b).
2. Giventhat f'(9) = 5, ¢g(2) = 9, and ¢g'(2 = -3, find
(fo8) (D x 0 FM g0 g
3. Let f(x) = x® and gx) =2x - 3. 3 5 ) 5 7
(@ Find (fog)(x) and (fog) (x). 5 3 -1 @12 4

(b) Find (go f)(x) and (go f)'(x).

4. Let f(x) = 5/x and g(x) = 4 + cosx.
(@ Find (fog)(x)and (fog)(x).
(b) Find (go f)(x) and (go f)'(x).

(8 F'(3), where F(x) = f(g(x))
(b) G'(3), where G(x) = g(f(x))
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6. Given the following table of values, find the indicated
derivativesin parts (a) and (b).

x 00 ) 9 g(
-1 2 3 2 -3
2 0 4 1 -5

(@ F'(~1), where F(x) = f(g(x))
(b) G'(~1), where G(x) = g(f(x))

In Exercises 726, find f'(x).

7. fx) = (x*+2x)7 8. f(x) = (3% +2x —1)°
-2
9. f(x) = <x3 — Z) 10. f(x) = ————
x (S—x+1)
11. f(x) = % 12. f(x) =+/x3—2x+5
(3x2 —2x + 1)
13. f(x) = vV4++/3x 14. f(x) =sin®x

15.
17.

. f(x) = cos?(3V/x)

. f(x) = cse(x®)

f(x) =sin(x®)
f(x) = 4cos x

(1
f(x) =sn (P)

flx) =2sec?(x")
f(x) = +/cos(bx)

£ =[x + csc(x® + 3] °
f) = [x* —secdr? —2)] "

19. . fx) = tan*(x®)

21. . f(x) = cos® <L>

x+1
23. . f(x) = V3x — sin?(4x)
25.

26.

In Exercises 2740, find dy/dx.

27. y = x3sin?(5x) 28. y = J/xtan*(V/x)
sinx
29. y = x®sec(l 30. y= ———
y =x"s(1/x) YT s®c@Br+ 1)
31. y = cos(cosx) 32. y = sin(tan3x)
. 1+ csc(x?)
33. y = cos’(sin2x 4 y=""""7
Y ( ) Y=z cot(x2)
35. y = (5x +8)3 (x*+ 7x) "

36. y = (2x —5)?(x2 4 4)°

_(x—5 3
YT\
2x +3)°
3g.y=(;)8
(4x2 —1)

3r. 38 y=

1+X2 17
(i)
40. y = [1+sn(:®)]”
In Exercises 41 and 42, use aCAStofind dy/dx.

41. y = [x sin2x + tan4(x7)]5
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(7 — x)V/3x2 + 5)
24— =

x34sinx

209

42. y=tan4(

In Exercises 43-50, find an equation for the tangent line to
the graph at the specified value of x.

43. y=xC0S3x, x =7

44, y = Sin(l+x3), x=-3

45, y=SeC3<Z—x), X =—

z
2 2

1 3
46. y:(x—f>,x:2 47. y =tan(4x?), x = /7
X

49. y =x2/5-x2, x =1

48. y = 3cot’x, x = %

X
50. y = ,x=0
Y V1 —x2

In Exercises 51-54, find d?y/dx?.

52. y = sin(3x?)

()
54. y =xtan| —
X

In Exercises 55-58, find the indicated derivative.

51. y = x cos(bx) — sin® x

B 1+ x

53. y 1

. dy
55. y = cot3(m — 0); find —=.
y (r—0);fi 70

6
56. A — (““H’) find ©
du

(a, b, c, d constants).
cu+d

d .
57. d—[a cos’ nw 4+ bsin’ nw]  (a, b constants).
w

58.

K 5o.

x = csc? (g —y);find %‘.

(8 Useagraphing utility to obtainthegraph of thefunction
f(x) = x4 — x2,

Use the graph in part (a) to make arough sketch of the
graph of f’.

Find f'(x), and then check your work in part (b) by
using the graphing utility to obtain the graph of f”.
Find the equation of the tangent line to the graph of f
at x = 1, and graph f and the tangent line together.

(b)
(©
(d)
(@) Useagraphing utility to obtainthe graph of thefunction
f(x) = sinx?cosx over theinterval [—m/2, 7/2].
Use the graph in part (a) to make arough sketch of the
graph of f’ over theinterval.

Find f’(x), and then check your work in part (b) by
using the graphing utility to obtain the graph of f” over
theinterval.

Find the equation of thetangent lineto the graph of f at

x = 1, and graph f and the tangent line together over
the interval.

K 60.
(b)
(©

(d)
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61.

62.

63.

If an object suspended from a spring is displaced vertically
from its equilibrium position by a small amount and re-
leased, and if the air resistance and the mass of the spring
are ignored, then the resulting oscillation of the object is
called simple harmonic motion. Under appropriate condi-
tions the displacement y from equilibrium in terms of time
t isgiven by

y = A coswt

where A istheinitia displacement at times = 0, and w is
a constant that depends on the mass of the object and the
stiffness of the spring (see the accompanying figure). The
constant |A| is called the amplitude of the motion and w the
angular frequency.

(8 Show that

2
2y 2y
dr?

(b) Theperiod T isthetimerequired to make one complete
oscillation. Show that T = 27/ w.

(c) Thefreguency f of the vibration is the number of os-
cillationsper unittime. Find f intermsof theperiod 7'.

(d) Find the amplitude, period, and frequency of an ob-
ject that is executing simple harmonic motion given by
y = 0.6cos15¢, wherer isin seconds and y isin cen-

timeters.
y
A
‘ t
-A
y = Acos wt
Figure Ex-61

Findthevalueof theconstant A sothat y = A sin 3z satisfies
the equation

d?y .
— 4+ 2y =4sin3t
dr? +ey
The accompanying figure shows the graph of atmospheric
pressure p (Ib/in?) versusthealtitudes (mi) abovesealevel.
(8 From the graph and the tangent line at & = 2 shown
on the graph, estimate the values of p and dp/dh at an

altitude of 2 mi.

(b) If the altitude of a space vehicle is increasing at the
rate of 0.3 mi/s at theinstant when it is 2 mi above sea
level, how fast isthe pressure changing with timeat this
instant?

Sheet number 42 Page number 210

65.

66.

67.

black

cyan magenta

15

—_
(=}

W

Pressure P (Ib/in?)

Altitude h (mi)

Figure Ex-63

. Theforce F (in pounds) acting at an angle 6 with the hor-

izontal that is needed to drag a crate weighing W pounds
along a horizontal surface at a constant velocity is given by

_ W
"~ cosf + using

where 1 is a constant called the coefficient of sliding fric-

tion between the crate and the surface (see the accompany-

ing figure). Suppose that the crate weighs 150 b and that

n=0.3.

(@) FinddF/d6 whend = 30°. Expresstheanswer inunits
of pounds/degree.

(b) FinddF/dt when® = 30° if ¢ isdecreasing at the rate
of 0.5°/sat thisinstant.

7

B

Figure Ex-64
Recall that
d 1, x>0
E(M) - {—1, x <0
Use thisresult and the chain rule to find
i(IsirUCI)
dx

for nonzero x intheinterval (—m, ).
Use the derivative formulafor sinx and the identity

cos —sin(n )
X = 2 X

to obtain the derivative formulafor cosx.
Let

@) = {”"”i’

’

x#0
x=0

(& Show that f iscontinuousat x = 0.
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(b) Use Definition 3.2.1 to show that f'(0) does not exist.
(¢) Find f'(x) for x # 0.
(d) Determine whether Iim0 f(x) exists.
Let
1
x?2sin=, x#0
f) = x
0, x=0
(@) Show that f iscontinuousat x = 0.
(b) UseDefinition 3.2.1tofind f7(0).
(¢) Find f'(x) for x #£ 0.
(d) Show that " isnot continuousat x = 0.

Given the following table of values, find the indicated
derivativesin parts (a) and (b).

x | f(x) (X
2 1 7
8 5 -3

@ ¢'(2), whereg(x) = [f(x)]®
(b) #'(2), where h(x) = f(x®)
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Giventhat f'(x) = /3x + 4and g(x) = x2—1,find F'(x)
if F(x) = f(gx)).

Given that f'(x) = xzxﬁ and g(x) = /3r — 1, find
F'(x)if F(x) = f(g(x).

Find f/(x2) if i[f(xz)] = x2
dx

d d
Find —[ f(x)] if —[f(3x)] = 6x.

dx dx
Recall that a function f iseven if f(—x) = f(x) and odd
if f(—x) = —f(x),foral x inthedomain of f.Assuming
that f isdifferentiable, prove:
(@ f'isoddif fiseven
(b) f'isevenif f isodd.
Draw some pictures to illustrate the results in Exercise 74,
and write a paragraph that gives an informal explanation of
why the results are true.
Lety = fi(w), u = fo(v),v = fa(w),andw = fa(x). Ex-
pressdy/dx interms of dy/du, dw/dx, du/dv, and dv/dw.
Find aformulafor

d
ax [f(g(h(x)))]
X

3.6 IMPLICIT DIFFERENTIATION

FUNCTIONS DEFINED EXPLICITLY
AND IMPLICITLY

In earlier sections we were concerned with differentiating functions that were given by
equations of the form y = f(x). In this section we will consider methods for differen-
tiating functions for which it is inconvenient or impossible to express them in this form.

An equation of theform y = f(x) issaid to define y explicitly as afunction of x because

thevariable y appears alone on one side of the equation. However, sometimes functions are

defined by equationsin which y is not alone on one side; for example, the equation
yx+y+l=x 1)

isnot of theform y = f(x). However, this equation still defines y as afunction of x since
it can be rewritten as
x—1
- x+1
Thus, we say that (1) defines y implicitly as a function of x, the function being
x—1
fx) = i1

Aneguationin x and y can implicitly define more than one function of x; for example,
if we solve the equation

)CZ + y2 -1 (2)
for y in terms of x, we obtain y = £+/1 — x2, so we have found two functions that are

y
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GRAPHS OF EQUATIONS IN
x AND y
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defined implicitly by (2), namely

) =vV1-x2 ad fox) = —v1—x? )

The graphs of these functions are the upper and lower semicirclesof thecirclex? + y2 = 1
(Figure 3.6.1).

y y

A anY |
Y,

X2+y?=1 y=V1-x? y=—1-x

Figure 3.6.1

Observe that the complete circle x? 4 y? = 1 does not pass the vertical line test, and
hence is not itself the graph of a function of x. However, the upper and lower semicircles
(which are only portions of the entire circle) do pass the vertical line test, and hence are
graphs of functions. In general, if we have an equation in x and y, then any portion of its
graph that passes the vertical line test can be viewed as the graph of a function defined by
the equation. Thus, we make the following definition.

3.6.1 DEFINITION. Wewill say that agivenequationinx and y definesthefunction f
implicitly if thegraph of y = f(x) coincideswith aportion of the graph of the equation.

Thus, for example, the equation x2 + y? = 1 defines the functions f1(x) = +/1 — x2 and
f2(x) = —+/1 — x2implicitly, sincethe graphs of thesefunctionsare contained inthecircle
x>+ y?=1

Sometimesit may be difficult or impossibleto solvean equationin x and y for y interms
of x. For example, with persistence the equation

24+ y3 = 3xy 4

can be solved for y interms of x, but the algebra is tedious and the resulting formulas are
complicated. On the other hand, the equation

sin(xy) =y
cannot be solved for y in terms of x by any elementary method. Thus, even though an

equation in x and y may define one or more functions of x, it may not be practical or
possible to find explicit formulas for those functions.

When an equation in x and y cannot be solved for y in terms of x (or x in terms of y),
it may be difficult or time-consuming to obtain even a rough sketch of the graph, so the
graphing of such equationsis usually best |eft for graphing utilities. In particular, the CAS
programs Mathematica and Maple both have “implicit plotting” capabilities for graphing
such equations. For example, Figure 3.6.2 shows the graph of Equation (4), whichiscalled
the Folium of Descartes.

FOR THE READER.  Figure 3.6.3 shows the graphs of two functions (in solid color) that
are defined implicitly by (4). Sketch some more.
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y y
2 2
1 / 1+
| | | | | | | | | é | | | | | | é
-3 2 -1 -3 2 -1 1 2 3 -3 2 -1 1 2 3
—1F -1+
-2+ -2+
-3+ -3+
x3+y3 = 3xy -4+ -4+
Figure 3.6.2 Figure 3.6.3
"""""""""""""""""""""" Ingeneral, itisnot necessary to solvean equation for y intermsof x in order to differentiate
IMPLICIT DIFFERENTIATION

thefunctions defined implicitly by the equation. To illustrate this, let us consider the simple
equation

xy=1 5)
One way to find dy/dx isto rewrite this equation as
1
X
from which it follows that
dy 1
= 7
dx x? Y

However, there is another way to obtain this derivative. We can differentiate both sides of
(5) before solving for y interms of x, treating y asa(temporarily unspecified) differentiable
function of x. With this approach we obtain

d d

- E—

bl = (1]

d d
Xa[ﬂ + YE[X] =0

x% +y=0
dy __Y
dx X
If we now substitute (6) into the last expression, we obtain
dy 1
dx ~  x?

which agreeswith (7). Thismethod of obtaining derivativesiscalledimplicit differentiation.
Example 1 Useimplicit differentiation to find dy/dx if 5y% + siny = x2.
d d
5 2 : — 2
Sy Fsinyl = —[x7]
d d
5—[y?] + —[siny] = 2x
A o lsny]
The chain rule was

d d
S <2yﬁ) + (COSy)ﬁ =2 used here becatise

yisafunction of x.

dy dy
10y — COSy)— = 2x
ydx + (cosy) dx



January 17, 2001 10:52

214 The Derivative

265-ch3

Figure 3.6.4

Sheet number 46 Page number 214 cyan magenta black

Solving for dy/dx we obtain
dy 2x
o (€)
dx 10y 4+ cosy

Note that this formula involves both x and y. In order to obtain a formula for dy/dx that
involves x alone, we would have to solve the original equation for y interms of x and then
substitutein (8). However, it isimpossible to do this, so we are forced to leave the formula
for dy/dx intermsof x and y. |

Example 2 Useimplicit differentiation to find d?y/dx? if 4x?> — 2y? = 9.

Solution. Differentiating both sides of 4x2 — 2y? = 9 implicitly yields
dy
8x — 4yd_x =0
from which we obtain
dy 2x
= = 9
o )
Differentiating both sides of (9) implicitly yields
d_zy (N2 — (2x0)(dy/dx)
dx2 y2
Substituting (9) into (10) and simplifying using the original equation, we obtain
d?y 2y —2x(2x/y)  2y% —4x? 9

_— = —— 4
dx2 2 3 3

(10)

In Examples 1 and 2, the resulting formulas for dy/dx involved both x and y. Although
it is usually more desirable to have the formula for dy/dx expressed in terms of x alone,
having the formulain terms of x and y isnot an impediment to finding slopes and equations
of tangent lines provided the x- and y-coordinates of the point of tangency are known. This
isillustrated in the following example.

Example 3 Find the slopes of the curve y2 — x + 1 = O at the points (2, —1) and (2, 1).

Solution. Wecould proceed by solvingtheequationfor y intermsof x, and then evaluating
thederivativeof y = «/x — 1at (2, 1) andthederivativeof y = —+/x — 1at (2, —1) (Figure
3.6.4). However, implicit differentiation is more efficient since it gives the slopes of both
functions. Differentiating implicitly yields

d. 4
DA x+ 1= [0

d d d d
E[)’Z] - a[x] +E[1] = E[O]

2y——-1=0

ydx

dy 1

dx 2y
At (2, —1)wehavey = —1,and at (2, 1) wehave y = 1, so the slopes of the curve at those
points are

dy 1 dy 1

- = —— and - —

dx | =2 2 dx =2 2 <

y=—1
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Example 4

(@ Useimplicit differentiation to find dy/dx for the Folium of Descartes x3 + y* = 3xy.

(b) Find an equation for the tangent line to the Folium of Descartes at the point (g %)

() At what point(s) in the first quadrant is the tangent line to the Folium of Descartes
horizontal ?

Solution (a). Differentiating both sides of the given equation implicitly yields

d_ 5 5 d
- - I3
dx[x + 7] dx[Xy]

3x2+3y2;l—i} = xj—z + 3y
x2+y2;1y =xd—y+y

Solution (b). Atthepoint (2, 2), wehavex = 3 and y = 3, so from (11) the slope mn
of the tangent line at this point is

_dy _ (3/2—(3/22
T dx e T (3/22-3/2)

y

Mtan

Thus, the equation of the tangent line at the point (3, 3) is
y—%:—l(x—%) o x+y=3

which is consistent with Figure 3.6.5.

Solution (c). Thetangent lineishorizontal at the points where dy/dx = 0, and from (11)
this occurs only where y — x? = 0 or

y=x* (12
Substituting this expression for y in the equation x* + y3 = 3xy for the curve yields
x4+ (x2)3 = 33
x—2x3=0
Ba2-2=0
whose solutionsare x = 0and x = 2V/3, From (12), thesolutionsx = O and x = 23 yield

the points (0, 0) and (2%/3, 22/3) ~ (1.26, 1.59), respectively. Of thesetwo, only (2%/3, 22/3)
isin thefirst quadrant. Substituting x = 2%/3, y = 223 into (11) yields

0
s A3 _02/3
22/3

y=1

dy
dx

0

We conclude that (21/3, 22/3) isthe only point on the Folium of Descartes in the first quad-
rant at which the tangent lineis horizontal (Figure 3.6.6). ) |
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REMARK.  Note that (11) gives an undefined expression for dy/dx at (O, 0). However,
using more advanced techniques it can be shown that the x-axis is tangent to a portion of

© the Folium of Descartes at the origin.

When differentiating implicitly, it is assumed that y represents a differentiable function of
x. If thisis not so, then the resulting calculations may be nonsense. For example, if we
differentiate the equation

x24+y241=0 (13)
we obtain
d d
a4+ 0 o o1t
dx dx y

However, this derivative is meaningless because (13) does not define afunction of x. (The
left side of the equation is greater than zero.)

In general, differentiability of implicitly defined functions can be difficult to determine
analytically. For example, the first function in Figure 3.6.3 appears to have zero derivative
at the origin, whereas the second function in that figure is not differentiable at the origin.
However, from Example 4(a) we note that the formula derived for the implicit derivative
cannot be evaluated at the origin. This results from the ambiguity created by the curve
crossing itself at the origin. We leave a more careful discussion of differentiability for
implicitly defined functions for an advanced course in analysis.

In Theorem 3.3.7 and the discussion immediately following it, we showed that the formula

d

—[x"] = nx"71 (14)
dx

holds for integer values of n and for n = % We will now use implicit differentiation to

show that this formula holds for any rational exponent. More precisely, we will show that

if r isarational number, then

d r1o__ r—
5[)6 ]=rx"1 (15)

wherever x” and x"~* are defined. For now, we will assume without proof that x” is differ-
entiable; the justification for thiswill be considered | ater.
Let y = x". Since r is arationa number, it can be expressed as a ratio of integers
r=m/n.Thus, y = x” = x™/" can be written as
d d
"=x" sotha —[y"]=—[x"
y'=x o=

By differentiating implicitly with respect to x and using (14), we obtain

d
ny"fl—y =mx"1 (16)
dx
But
yn—l — [xm/n]’1_1 — xm—(m/n)
Thus, (16) can be written as
nxm—(m/n)d_y — mxm—l
dx
S0 that
d_y _ ﬂx(m/n)fl — 1
dx n

which establishes (15).
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Example 5 From (15)

d o as_ 4 wmo1_ 4 s

=g =5

d -7/81 _ 7 (-7/8)-1 __ 7 —15/8

=g =g

d 3 d 1z 1 o 1

—_ = — = — = — 4
I = S = e -

If u isadifferentiablefunction of x, and r isarational number, then the chain ruleyields
the following generalization of (15):

d . du
S = s 1
= o 17
Example 6
d 3 - d
P —x2 = S x4 e x4 2)
3 _
=2 —x+2 @ -
d 4 d
—[(secwx) %] = —=(secx)"¥® . —[secrx]
dx 5 dx
= —g(seCnx)_g/E’ -secnxtanmx -
4
= —%(sec;rx)“‘“tannx <
EXERCISE SET 3.6 CAS
In Exercises 1-8, find dy/dx. In Exercises 1120, find dy/dx by implicit differentiation.
1 y= Y2 —5 2. y=\3/2+tan(x2) 11. x2+y2:100 12. x3—y3:6xy
2 r—1\%? . \/m 13. x%y+3xy*—x =3 14. 3y —Bx?y+x =1
'y_(X+2> Vs 5. 2yt 16, 2= 1Y
y X X =y
B 3_ 2x)4/3
5 y=x*(x2+1)° 6. y= B 20
Y ( ) Y x2 17. sin(x%y?) = x 18. x? = _coty
1+cscy
I 5/2 _ 3,112 3
7y = [SnG/] 8. v = [cost™)] 19, tan(xy? + y) = x 20 ;o f}s;ec =14y
. . . L y
In Exercises 9 and 10: (a) Find dy/dx by differentiating im-
plicitly. (b) Solve the equation for y as afunction of x, and In Exercises 21-26, find d%y/dx? by implicit differentiation.
find dy/dx from that equation. (c) Confirm that the two re-
sults are consistent by expressing the derivative in part (a) as 21 32— 4y? =7 2. x34+y3=1
afunction of x alone. 23 x3y3 _4-0 24, 2y — y2 _3

9 x*4xy—2r=1 10. /y —sinx =2 25. y+siny =x 26. xcosy =y
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In Exercises 27 and 28, find the slope of the tangent line to
the curve at the given points in two ways: first by solving
for y in terms of x and differentiating and then by implicit
differentiation.

27. x2+y? =1, (1/V2,1/2), (1/¥2.-1/V2)
28. y2—x+1=0; (10,3), (10,-3)
In Exercises 29-32, use implicit differentiation to find the

slope of the tangent line to the curve at the specified point,
and check that your answer is consistent with the accompa-

nying graph.

29. x* 4+ y*=16; (1, ¥15) [Lamé'sspecial quartic]

30. 34+ yx2+x?2—-3y2=0; (0,3) [trisectrix]

3L 2(x2+y?)° =25(x2—y?); (3,1) [lemniscate]

32, x¥34y23 = 4; (—1,3y/3) [ four-cusped hypocycloid]

Figure Ex-29 Figure Ex-30

Figure Ex-31 Figure Ex-32

33. If you have a CAS, read the documentation on “implicit

plotting,” and then generate the four curves in Exercises

29-32.

34. Curves with equations of the form y? = x(x — a)(x — b),
wherea < b are called bipartite cubics.

(8 Usetheimplicit plotting capability of a CAS to graph
the bipartite cubic y? = x(x — 1)(x — 2).

(b) At what points does the curve in part (&) have a hori-
zontal tangent line?

(c) Solve the equation in part (a) for y in terms of x, and
use the result to explain why the graph consists of two
separate parts (i.e., is bipartite).

(d) Graphtheequationinpart (a) without using theimplicit
plotting capability of the CAS.

35.

(8) Usetheimplicit plotting capability of a CAS to graph
the rotated ellipse x? — xy + y? = 4.

(b) Usethe graph to estimate the x-coordinates of all hori-
zontal tangent lines.

(c) Find the exact values for the x-coordinatesin part (b).

In Exercises 36-39, use implicit differentiation to find the
specified derivative.

36.
38.
39.
40.

41.

42.

43.

45,

Vu+Jv="5 du/dv  37. a* -1 =64%; da/dt
y =sinx; dx/dy.

a?w? 4+ b2 =1 (a,b constants); dw/dxr

At what point(s) is the tangent line to the curve y? = 2x3

perpendicular to theline4x — 3y + 1 = 0?

Find the values of ¢ and b for the curve x2y + ay? = b if
the point (1, 1) ison its graph and the tangent line at (1, 1)
has the equation 4x + 3y = 7.

Find the coordinates of the point in the first quadrant at
which the tangent line to the curve x3 — xy + y3 = O'is
parallel to the x-axis.

Find eguations for two lines through the origin that are tan-
gent to the curve x2 — 4x + y2 +3=0.

. Useimplicit differentiation to show that the equation of the

tangent line to the curve y? = kx at (xo, yo) iS
Yoy = 3k(x + x0)
Find dy/dx if

2 3t t3 =1 and _— = —
YAy dx (6057

In Exercises 46 and 47, find dy/dt in terms of x, y, and
dx/dt, assuming that x and y are differentiable functions of
the variable 7. [Hint: Differentiate both sides of the given

equation with respect to 7.]
46. x3y2+y=3 47. xy?> =sin3x
48. (a) Show that f(x) = x*3 is differentiable at 0, but not

twice differentiable at 0.

(b) Show that f(x) = x”/3 istwice differentiable at 0, but
not three times differentiable at 0.

(c) Findanexponent k suchthat f(x) = x*is(n—1) times
differentiable at 0, but not n times differentiable at 0.

In Exercises 49 and 50, find al rational values of r such that
y = x" satisfies the given equation.

49.

3%y +4xy —2y =0  50. 16x%y"+24xy'+y=0
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52. The accompanying figure shows some typical members
of the families of hyperbolas xy = ¢ (black curves) and
x% —y? = k (gray curves), wherec # Oand k # 0. Usethe
hintin Exercise51 to show that thesefamiliesare orthogonal
trajectories of one another.

Two curvesare said to be orthogonal if their tangent linesare
perpendicular at each point of intersection, and two families
of curvesaresaidto beorthogonal trajectoriesof oneanother
if each member of one family is orthogonal to each member
of the other family. Thisterminology is used in Exercises 51

and 52. y

51. The accompanying figure shows some typical members of s N
thefamilies of circlesx2 + (y — ¢)? = ¢2 (black curves)and [N 7\ N\ X
(x — k)? + y? = k? (gray curves). Show that these families \ \ / J
areorthogonal trajectoriesof oneanother. [Hint: For thetan- = -
gent lines to be perpendicular at a point of intersection, the
slopes of those tangent lines must be negative reciprocals
of one another.] Figure Ex-51 Figure Ex-52

3.7 RELATED RATES

In this section we will study related rates problems. In such problems one tries to find
the rate at which some quantity is changing by relating the quantity to other quantities
whose rates of change are known.

"""""""""""""""""""""" Figure 3.7.1 showsaliquid draining through a conical filter. Astheliquid drains, itsvolume
DIFFERENTIATING EQUATIONS TO V, height h, and radius r are functions of the elapsed time 7, and at each instant these
RELATE RATES . .
variables are related by the equation
V= grzh

If we differentiate both sides of this equation with respect to ¢, then we obtain

dv  nw [ ,dh dr odh dr
dt 3[ dr * ( dt)] 3( dr + dt)

Thus, if at agiven instant we have valuesfor r, i, and two of the threeratesin this equation,
then we can solve for the value of the third rate at this instant. In this section we present
some specific examples that use this basic idea.

——
T
V!V ¢

Example 1 Assume that oil spilled from aruptured tanker spreadsin a circular pattern
whoseradiusincreases at aconstant rate of 2 ft/s. How fast isthe areaof the spill increasing
when the radius of the spill is 60 ft?
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Solution. Let
t = number of seconds elapsed from the time of the spill
r = radius of the spill in feet after ¢+ seconds
A = areaof the spill in square feet after r seconds
(Figure 3.7.2). We know the rate at which the radius isincreasing, and we want to find the
rate at which the areaisincreasing at the instant when » = 60; that is, we want to find
dA

dr
— iventhat — = 2ft/s
dt 9 dt /

r=60
From the formula for the area of acircle we obtain
A = nr? (1)

Because A and r are functions of 7, we can differentiate both sides of (1) with respect to ¢
to obtain

dA dr
— = 2nr—
dt dt
Thus, when r = 60 the area of the spill isincreasing at the rate of

dA
d r=60
or approximately 754 ft?/s. <

— 27(60)(2) = 240r ft?/s

With only minor variations, the method used in Example 1 can be used to solve avariety
of related rates problems. The method consists of five steps:

A Strategy for Solving Related Rates Problems

Step 1.  Identify therates of changethat are known and therate of change that
is to be found. Interpret each rate as a derivative of a variable with
respect to time, and provide a description of each variable involved.

Step 2. Find an equation relating those quantities whose rates are identified
in Step 1. In ageometric problem, thisis aided by drawing an appro-
priately labeled figure that illustrates a relationship involving these
quantities.

Step 3. Obtain an equation involving the rates in Step 1 by differentiating
both sides of the equation in Step 2 with respect to the time variable.

Step 4. Evaluate the equation found in Step 3 using the known valuesfor the
quantities and their rates of change at the moment in question.

Step 5.  Solve for the value of the remaining rate of change at this moment.

* WARNING. Do not substitute prematurely; that is, always perform the differentiation in

Step 3 before performing the substitution in Step 4.

Example 2 A baseball diamond is a square whose sides are 90 ft long (Figure 3.7.3).
Suppose that a player running from second base to third base has a speed of 30 ft/s at the
instant when he is 20 ft from third base. At what rate is the player’s distance from home
plate changing at that instant?

Solution. The rate we wish to find is the rate of change of the distance from the player
to home plate. We are given the speed of the player as he moves along the base path from
second to third base, which tells us both the speed with which he is moving away from



January 17, 2001 10:52

g65-ch3

Rocket

Elevation

angle
\ 3000 ft ‘
Camera Launching
pad
Figure3.7.4
Rocket
h
¢
X
\ 3000 ft ‘
Camera
Figure3.7.5

Sheet number 53 Page number 221 cyan magenta black

3.7 Related Rates 221

second base and the speed with which he is approaching third base. Let

t = number of seconds since the player left second base
w = distancein feet from the player to second base

x = distance in feet from the player to third base

y = distancein feet from the player to home plate

Thus, we want to find

dy given that dw =30ft/s and i—x = -30ft/s

dt |,z I lx=20 ! lx=20
[Notethat (dy/dx),—20 is negative because x is decreasing with respect to z.]
From the Theorem of Pythagoras,

x2 4 90° = y? 2
Differentiating both sides of this equation with respect to ¢ yields
dx dy dx dy
2x—=2y— o x—=y— 3
dr ~ “r Yar T ®)

To evaluate (3) at the instant when x = 20 we need avaluefor y at thisinstant. Substituting
x = 20into (2) yields

400 + 8100 = (y|,—20)®> OF y|,—p0 = +/8500 = 10+/85
Then, evaluating (3) when x = 20 yields

d d —600 60
20 (—30) = 10v/85. & R — >~ _651ft/s
dt [,y dt|,_,0 1085 V85

The negative sign in the answer tells us that y is decreasing, which makes sense in the
physical situation of the problem (Figure 3.7.3). <

FORTHEREADER.  Inour solutionfor Example2wechosetorelatex and y. Analternative
approach would be to relate w and y. Solve the problem using this alternative approach.

Example 3 InFigure 3.7.4 we have shown acamera mounted at a point 3000 ft from the
base of arocket launching pad. If the rocket isrising vertically at 880 ft/swhen it is 4000
ft above the launching pad, how fast must the camera elevation angle change at that instant
to keep the camera aimed at the rocket?

Solution. Let
t = number of seconds elapsed from the time of launch
¢ = camera elevation angle in radians after + seconds
h = height of the rocket in feet after + seconds

(Figure 3.7.5). At each instant the rate at which the camera elevation angle must change is
d¢/dt, and the rate at which the rocket isrising isdh/dt. We want to find

d . dh

¢ giventhat —

dt | —ao00 ! | h=a000
From Figure 3.7.5 we see that

ang = 3000 (4)

Because ¢ and i are functions of ¢, we can differentiate both sides of (4) with respect to ¢
to obtain

= 880ft/s

(se? ¢)d¢ 1 dn
dr 3000 dr
When h = 4000, it follows that

5000 5

(SeC @) p—a000 = 3000~ 3

©)
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(Figure 3.7.6), so that from (5)

5\% d¢ 1 22
2) £ =_——_.880= —
(3) di 3000 75
h=4000
de 2 9 66
@ =2 . - = — ~0.11rad/s~6.05d
dt |y—soe 75 25 625 rad/s eg/s <

Example 4 Supposethat liquidisto becleared of sediment by allowingit to drain through
aconical filter that is 16 cm high and has aradius of 4 cm at the top (Figure 3.7.7). Suppose
also that the liquid flows out of the cone at a constant rate of 2 cm3/min.

(& Doyou think that the depth of the liquid will decrease at aconstant rate? Give averbal
argument that justifies your conclusion.

(b) Find aformulathat expresses the rate at which the depth of the liquid is changing in
terms of the depth, and use that formulato determine whether your conclusion in part
(a) iscorrect.

(c) Atwhat rateisthe depth of the liquid changing at the instant when the liquid in the
coneis 8 cm deep?

Solution (a). For the volume of liquid to decrease by afixed amount, it requires a greater
decrease in depth when the coneis close to empty than when it isalmost full (Figure 3.7.8).
This suggests that for the volume to decrease at a constant rate, the depth must decrease at
anincreasing rate.

Solution (b). Let

t = time elapsed from the initial observation (min)
V = volume of liquid in the cone at time ¢ (cm?®)

y = depth of the liquid in the cone at time ¢ (cm)

r = radius of the liquid surface at time ¢ (cm)

(Figure 3.7.7). At each instant the rate at which the volume of liquid is changing isdV /dt,
and the rate at which the depth is changing isdy/dt. We want to express dy/dt in terms of
y given that dV /dt has a constant value of dV /dt = —2. (We must use a minus sign here
because V decreases ast increases.)

From the formulafor the volume of a cone, the volume V, the radius r, and the depth y
arerelated by

V = inr?y (6)

If we differentiate both sides of (6) with respect to ¢, the right side will involve the quantity
dr/dt. Since we have no direct information about dr/dt, it isdesirable to eliminate » from
(6) before differentiating. This can be done using similar triangles. From Figure 3.7.7 we
see that

r 4

- = or — —
y 16 TR
Substituting this expression in (6) gives
_ .3
V=g ()

Differentiating both sides of (7) with respect to r we obtain

av b4 dy
L 2 3y22E
i 48<ydt)

or
d 16 dv 16 32
d_y__z_:_z(_z =-= 8)
t mys dt Ty Ty
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which expressesdy/dt intermsof y. Theminussign tellsusthat y is decreasing with time,
and

dy| 32

di| my?

tells us how fast y is decreasing. From this formula we see that |dy/dt| increases as y
decreases, which confirms our conjecture in part (a) that the depth of the liquid decreases
more quickly as the liquid drains through the filter.

Solution (c). The rate at which the depth is changing when the depth is 8 cm can be
obtained from (8) with y = 8:
dy 32 1

=——— =—-—~-016 i
i ) o cm/min |

In Exercises 1-4, both x and y denote functions of ¢ that are
related by the given equation. Use thisequation and the given
derivative information to find the specified derivative.

1. Equation: y = 3x + 5.
(8 Giventhat dx/dt = 2, finddy/dt when x = 1.
(b) Giventhat dy/dt = —1, find dx/dt when x = 0.
2. Equation: x + 4y = 3.
(@ Giventhat dx/dt = 1, find dy/dt whenx = 2.
(b) Giventhat dy/dt = 4, find dx/dt when x = 3.
3. Equation: x? + y? = 1.
(@ Giventhat dx/dt = 1, find dy/dr when
13
27 2
(b) Giventhat dy/dt = —2, find dx/dt when

(x,y) = (ﬁ ﬁ)

(x,y) =

2° 2
4, Equation: x? + y? = 2x.
(@) Giventhat dx/dt = —2, finddy/dt when

(x,»)=@QD.
(b) Giventhat dy/dt = 3, find dx/dt when

(2+\f2 ﬁ)
(x,y) = —

2 72

5. Let A betheareaof asquare whose sides havelength x, and

assume that x varies with thetimez.

(@) Draw a picture of the square with the labels A and x

placed appropriately.
(b) Write an equation that relates A and x.

(c) Use the equation in part (b) to find an equation that

relates dA/dt and dx/dt.

(d) Atacertaininstant thesidesare 3ftlongandincreasing
at arate of 2 ft/min. How fast is the areaincreasing at

that instant?

6.

10.

Let A bethe area of acircle of radius r, and assume that

increases with thetimez.

(@) Draw a picture of the circle with the labels A and r
placed appropriately.

(b) Write an equation that relates A and r.

(c) Use the equation in part (b) to find an equation that
relates dA/dt and dr/dt.

(d) Atacertaininstant theradiusis’5 cm and increasing at
the rate of 2 cm/s. How fast is the area increasing at
that instant?

. Let vV bethevolumeof acylinder having height 2 and radius

r, and assumethat /2 and r vary with time.

(@ How aredV/dt,dh/dt, and dr/dr related?

(b) Atacertaininstant, theheightis6inandincreasing at 1
in/s, while the radiusis 10 in and decreasing at 1 in/s.
How fast is the volume changing at that instant? Is the
volume increasing or decreasing at that instant?

. Let/ bethelength of adiagonal of arectangle whose sides

have lengths x and y, and assume that x and y vary with

time.

(@) How aredl/dt,dx/dt, and dy/dt related?

(b) If x increasesat aconstant rate of % ft/sand y decreases
at a constant rate of %1 ft/s, how fast is the size of the
diagonal changing when x = 3ftand y = 4 ft? Isthe
diagonal increasing or decreasing at that instant?

. Let 6 (inradians) be an acute angle in aright triangle, and

let x and y, respectively, be the lengths of the sides adjacent

to and opposite . Suppose also that x and y vary withtime.

(d) How ared®/dt,dx/dt, and dy/dt related?

(b) At acertaininstant, x = 2 unitsand isincreasing at 1
unit/s, while y = 2 units and is decreasing at % unit/s.
How fast is 6 changing at that instant? Is 6 increasing
or decreasing at that instant?

Suppose that z = x3y?, where both x and y are changing
with time. At acertaininstantwhenx = landy = 2, x is
decreasing at therate of 2 units/s, and y isincreasing at the
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11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

rate of 3 units/s. How fast is z changing at thisinstant? Is z
increasing or decreasing?

The minute hand of a certain clock is 4 in long. Starting
from the moment when the hand is pointing straight up,
how fast is the area of the sector that is swept out by the
hand increasing at any instant during the next revolution of
the hand?

A stone dropped into a still pond sends out a circular rip-
ple whose radius increases at a constant rate of 3 ft/s. How
rapidly is the area enclosed by the ripple increasing at the
end of 10 s?

QOil spilled from aruptured tanker spreadsin acircle whose
areaincreases at a constant rate of 6 mi2/h. How fast isthe
radius of the spill increasing when the areais 9 mi2?

A spherical balloon isinflated so that its volume isincreas-
ing at the rate of 3 ft3/min. How fast is the diameter of the
balloon increasing when the radiusis 1 ft?

A spherical balloon is to be deflated so that its radius de-
creases at a constant rate of 15 cm/min. At what rate must
air be removed when the radiusis 9 cm?

A 17-ft ladder isleaning against awall. If the bottom of the
ladder is pulled aong the ground away from the wall at a
constant rate of 5 ft/s, how fast will the top of the ladder be
moving down the wall when it is 8 ft above the ground?

A 13-ft ladder is leaning against a wall. If the top of the
ladder dlips down the wall at arate of 2 ft/s, how fast will
the foot be moving away from the wall when the top is 5 ft
above the ground?

A 10-ft plank isleaning against awall. If at acertain instant
the bottom of the plank is 2 ft from the wall and is being
pushed toward the wall at the rate of 6 in/s, how fast isthe
acuteanglethat the plank makeswith thegroundincreasing?

A softball diamond is a square whose sides are 60 ft long.
Supposethat aplayer running from first to second base hasa
speed of 25 ft/sat theinstant when sheis 10 ft from second
base. At what rate is the player’s distance from home plate
changing at that instant?

A rocket, rising vertically, is tracked by aradar station that
is on the ground 5 mi from the launchpad. How fast is the
rocket rising when it is 4 mi high and its distance from the
radar station isincreasing at arate of 2000 mi/h?

For thecameraand rocket shownin Figure 3.7.4, at what rate
is the camera-to-rocket distance changing when the rocket
is 4000 ft up and rising vertically at 880 ft/s?

For thecameraand rocket showninFigure3.7.4, at what rate
is the rocket rising when the elevation angle is r/4 radians
and increasing at arate of 0.2 radian/s?

A satelliteisin an elliptical orbit around the Earth. Its dis-
tance r (in miles) from the center of the Earth is given by

4995
" T 11012coso

Sheet number 56 Page number 224

24.

25.

26.

27.

28.
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where 6 is the angle measured from the point on the orbit

nearest the Earth’s surface (see the accompanying figure).

(8 Find the altitude of the satellite at perigee (the point
nearest the surface of the Earth) and at apogee (the point
farthest from the surface of the Earth). Use 3960 mi as
the radius of the Earth.

(b) Attheinstant when 6 is120°, the angle 6 isincreasing
at the rate of 2.7°/min. Find the altitude of the satel-
lite and the rate at which the altitude is changing at this
instant. Express the rate in units of mi/min.

Apogee Perigee
Figure Ex-23
Anaircraftisflying horizontally at aconstant height of 4000

ft aboveafixed observation point (seethe accompanying fig-

ure). At acertain instant the angle of elevation 6 is 30° and

decreasing, and the speed of the aircraft is 300 mi/h.

(8 How fast is 6 decreasing at this instant? Express the
result in units of degrees/s.

(b) How fast is the distance between the aircraft and the
observation point changing at this instant? Express the
result in units of ft/s. Use 1 mi = 5280 ft.

7
7
7

7
- 4000 ft

7
7
@
Figure Ex-24

A conical water tank with vertex down has a radius of 10
ft at the top and is 24 ft high. If water flows into the tank
at arate of 20 ft3/min, how fast is the depth of the water
increasing when the water is 16 ft deep?

Grain pouring from a chute at the rate of 8 ft3/min forms a
conical pile whose altitude is always twice its radius. How
fast isthe altitude of the pileincreasing at the instant when
the pileis 6 ft high?

Sand pouring from achuteformsaconical pilewhose height
is always egual to the diameter. If the height increases at a
constant rate of 5 ft/min, at what rate is sand pouring from
the chute when the pileis 10 ft high?

Wheat is poured through a chute at the rate of 10 ft3/min,
andfallsinaconical pilewhosebottom radiusisawayshalf
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the altitude. How fast will the circumference of the base be
increasing when the pile is 8 ft high?

Anaircraftisclimbing at a30° angleto the horizontal. How
fast isthe aircraft gaining altitude if its speed is 500 mi/h?

A boat ispulled into adock by means of arope attached to a
pulley on the dock (see the accompanying figure). The rope
is attached to the bow of the boat at a point 10 ft below the
pulley. If theropeis pulled through the pulley at arate of 20
ft/min, at what rate will the boat be approaching the dock
when 125 ft of ropeisout?

Pulley
Boat

Dock
Figure Ex-30

For the boat in Exercise 30, how fast must theropebe pulled
if wewant theboat to approach thedock at arate of 12ft/min
at the instant when 125 ft of ropeis out?

A man 6 ft tall is walking at the rate of 3 ft/s toward a
streetlight 18 ft high (see the accompanying figure).

(@) Atwhat rateis his shadow length changing?

(b) How fast isthetip of his shadow moving?

Figure Ex-32

A beacon that makes onerevolution every 10 sislocated on
aship anchored 4 kilometersfrom astraight shoreline. How
fast is the beam moving along the shoreline when it makes
an angle of 45° with the shore?

An aircraft is flying at a constant altitude with a constant
speed of 600 mi/h. An antiaircraft missile is fired on a
straight line perpendicul ar to the flight path of the aircraft so
thatitwill hittheaircraft at apoint P (seetheaccompanying
figure). At the instant the aircraft is 2 mi from the impact
point P themissileis4 mi from P and flying at 1200 mi/h.
At that instant, how rapidly is the distance between missile
and aircraft decreasing?

/m
-

=
Figure Ex-34
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Solve Exercise 34 under the assumption that the angle be-
tween the flight pathsis 120° instead of the assumption that
the paths are perpendicular. [Hint: Use the law of cosines.]

A police helicopter is flying due north at 100 mi/h and at a
constant altitude of % mi. Below, acar istraveling west on a
highway at 75 mi/h. At the moment the helicopter crosses
over the highway the car is2 mi east of the helicopter.

(8 How fast isthe distance between the car and helicopter
changing at the moment the helicopter crossesthe high-
way?

(b) Isthedistancebetweenthecar and helicopter increasing
or decreasing at that moment?

A particle is moving along the curve whose equation is

xy® 8

1+y2 5
Assume that the x-coordinate is increasing at the rate of 6
units/s when the particleis at the point (1, 2).
(a8 Atwhat rate is the y-coordinate of the point changing
at that instant?
(b) Isthe particlerising or falling at that instant?

A point P is moving along the curve whose equation is
y = +/x3+ 17. When P isat (2,5), y isincreasing at the
rate of 2 units/s. How fast is x changing?

A point P is moving along the line whose eguation is
y = 2x. How fast is the distance between P and the point
(3,0) changing at the instant when P is at (3, 6) if x is
decreasing at the rate of 2 units/s at that instant?

A point P is moving along the curve whose equation is

y = 4/x. Supposethat x isincreasing at therate of 4 units/s

when x = 3.

(8 How fast isthe distance between P and the point (2, 0)
changing at this instant?

(b) How fast isthe angle of inclination of the line segment
from P to (2, 0) changing at thisinstant?

A particleis moving along the curve y = x/(x2 + 1). Find
al values of x at which the rate of change of x with respect
totimeisthreetimesthat of y. [Assumethat dx/dt isnever
zero.]

A particle is moving along the curve 16x2 4+ 9y2 = 144.
Find al points (x, y) at which the rates of change of x and
y with respect to time are equal. [Assume that dx/dt and
dy/dt are never both zero at the same point.]

Thethin lensequation in physicsis
1 1 1

s S f

where s isthe object distance from thelens, S istheimage
distance from thelens, and f isthefocal length of the lens.
Suppose that a certain lens has a focal length of 6 cm and
that an object ismoving toward thelensat therateof 2cm/s.
How fast isthe image distance changing at the instant when
the object is 10 cmfrom thelens? | stheimage moving away
from the lens or toward the lens?
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45.

46.

Water is stored in a cone-shaped reservoir (vertex down).
Assuming the water evaporates at arate proportional to the
surface area exposed to the air, show that the depth of the
water will decrease at a constant rate that does not depend
on the dimensions of the reservoir.

A meteor enters the Earth’s atmosphere and burns up a a
rate that, at each instant, is proportional to its surface area.
Assuming that the meteor is always spherical, show that the
radius decreases at a constant rate.

On acertain clock the minute hand is 4 in long and the hour
hand is 3 in long. How fast is the distance between the tips
of the hands changing at 9 o’ clock?
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47. Coffeeis poured at a uniform rate of 20 cm®/s into a cup

whoseinsideisshaped likeatruncated cone (seethe accom-
panying figure). If the upper and lower radii of the cup are
4 cm and 2 cm and the height of the cup is 6 cm, how fast
will the coffee level be rising when the coffee is halfway
up? [Hint: Extend the cup downward to form a cone.]

Figure Ex-47

f(x)

Near Xy the tangent line closely
approximates the curve.

Figure 3.8.1

Figure 3.8.2

3.8 LOCAL LINEAR APPROXIMATION; DIFFERENTIALS

In this section we will show how derivatives can be used to approximate nonlinear
functions by simpler linear functions. We will also define the differentials dy and dx
and use them to interpret the derivative dy/dx as a ratio of differentials.

In the solution of certain problems, it can be useful (and sometimes even necessary) to
approximate a nonlinear function by a linear function. For example, the equations that
describe the motion of a swinging pendulum may be greatly simplified by using the fact
thatif x iscloseto0, thensinx ~ x. Theexistence of suchlinear approximationsprovidesus
with ageometric interpretation of differentiability. We saw in Section 3.2 that if afunction
f is differentiable at a number xg, then the tangent line to the graph of f through the
point P = (xp, f(x0)) will very closely approximate the graph of f for values of x near
xo (Figure 3.8.1). This linear approximation may be described informally in terms of the
behavior of the graph of f under magnification: if f is differentiable at xo, then stronger
and stronger magnifications at P eventually make the curve segment containing P look
more and more like a nonvertical line segment, that line being the tangent line to the graph
of f at P. For thisreason, afunction that is differentiable at xo is said to be locally linear
at the point P (xo, f(xo)) (Figure 3.8.2a). By contrast, the graph of a function that is not
differentiableat xo dueto acorner at the point P (xo, f(xo)) cannot be magnifiedtoresemble
astraight line segment at that point (Figure 3.8.2b).

This curve is locally linear at P. | This curve is not locally linear at P.

(@ (b)

To capture this intuitive idea analytically, assume that a function f is differentiable at
xo and recall that the equation of the tangent line to the graph of the function f through
P = (xo0, f(x0)) iSy = f(x0) + f'(x0)(x — xp). Since this line closely approximates the
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graph of f for values of x near xo, it follows that

)~ f(xo) + f'(x0)(x — x0) D

provided x iscloseto xg. Wecall (1) thelocal linear approximation of f at Xo. Furthermore,
it can be shownthat (1) isactually the best linear approximation of f near xq inthe sensethat
any other linear function will fail to give as good an approximationto f for valuesof x very
closeto xqo. An dternative version of this formulacan be obtained by letting Ax = x — xo,
in which case (1) can be expressed as

flxo + Ax) = f(xo0) + f'(x0) Ax %)

Example 1

(@ Findtheloca linear approximation of f(x) = /x at xo = 1.

(b) Use the local linear approximation obtained in part (@) to approximate +/1.1, and
compare your approximation to the result produced directly by a calculating utility.

Solution (a). Since f'(x) = 1/(2/x), it followsfrom (1) that the local linear approxima-
tionof \/x atxo = 1is

1 1 1
f~ﬁ+2—ﬁ(x—1)=1+§(x—1)=§(x+1)

In other words, if x is close to 1, then we expect /x to be about %(x + 1). Figure 3.8.3

shows both the graph of f(x) = /x and the local linear approximation y = %(x + 1).

Solution (b). Applying the local linear approximation from part (a) yields
VIi~x1l11+1) =105

Sincethetangentliney = %(x +1) inFigure 3.8.3 liesabove the graph of f(x) = /x, we
would expect this approximation to be slightly too large. This expectation is confirmed by
the calculator approximation +/1.1 ~ 1.04881. <

Figure 3.8.3

Example 2

(@ Show thatif x iscloseto O, thensinx ~ x.

(b) Usetheapproximation from part (a) to approximatesin 2°, and compare your approx-
imation to the result produced directly by your calculating utility.

Solution (a). Since we are interested in approximating sinx for values of x close to 0,
we compute the local linear approximation of f(x) = sinx at xg = 0. With f(x) = sinx,
f'(x) = cosx, and xo = 0, the approximation in (1) becomes

sinx ~ SN0+ cosO(x —0) =0+ 1(x) = x
Figure 3.8.4 showshboththegraph of f(x) = sinx andthelocal linear approximationy = x.
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Figure 3.8.4

Solution (b). In the approximation sinx ~ x, the variable x isin radian measure, so we
must first convert 2° to radians before we can apply this approximation. Since
T b
20 = 2 — ) = — X U. i
(180) o5~ 00349066 radian
it follows that sin2° &~ 0.0349066. Comparing the two graphs in Figure 3.8.4, we would
expect this approximation to be slightly too large. The calculator approximation sin2° ~

0.0348995 shows that thisis indeed the case. |

¢ REMARK. Part (b) in both Example 1 and Example 2 is meant to be illustrative only.

i We are not suggesting that you replace individual calculator computations with the local

¢ linear approximation. Local linear approximations are significant because they allow usto
model a complicated function by a simple one. Thisideawill be pursued in greater detail
in Chapter 10.

Asageneral rule, theaccuracy of thelocal linear approximationto f(x) at xo will deteriorate
as x getsprogressively farther from xq. Toillustrate thisfor the approximation sinx ~ x in
Example 2, let us graph the function

E(x) =|sinx — x|

which is the absolute value of the error in the approximation (Figure 3.8.5).

In Figure 3.8.5, the graph shows how the absolute error in the local linear approximation
of sinx increases as x moves progressively farther from 0 in either the positive or negative
direction. The graph also tells us that for values of x between the two vertical lines, the
absolute error does not exceed 0.01. Thus, for example, we could use the loca linear
approximationsinx ~ x for al valuesof x intheinterval —0.35 < x < 0.35 (radians) with
confidence that the approximation is within 0.01 of the exact value.

Newton and Leibniz independently developed different notations for the derivative. This
created anotational divide between Britain and the European continent that lasted for more
than 50 years. The Leibniz notation dy/dx eventually prevailed for its superior utility. For
example, we have already mentioned that the L eibniz notation makes the chain rule

dy dy du

dx  du dx
easy to remember.

Up to now we have been interpreting dy/dx asasingle entity representing the derivative
of y with respect to x, but we have not attached any meaning to theindividual symbols*“dy”
and“dx.” Early in the development of calculus, these symbolsrepresented “infinitely small
changes’ inthe variables y and x and the derivative dy/dx wasthought to be aratio of these
infinitely small changes. However, the precise meaning of an “infinitely small change” ina
variable turned out to be logically elusive and eventually such arguments were replaced by
an analysis that was based on the more modern concept of alimit.
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Our next objective is to define the symbols dy and dx so that dy/dx can actualy be
treated as aratio. We begin by defining the symbol “dx” to be avariable that can assume
any real number asitsvalue. The variable dx is called the differential of x. If we are given
afunction y = f(x) that is differentiable at x = xq, then we define the differential of f at
Xo to be the function of dx given by the formula

dy = f'(xo) dx (©)

where the symbol “dy” is simply the dependent variable of this function. The variable dy
is called the differential of y and we note that it is proportional to dx with constant of
proportionality f'(xo). If dx # 0, then we can divide both sides of (3) by dx to obtain
dy /
i /" (x0)
Thus, we have achieved our goal of defining dy and dx so that their ratio is aderivative. It
is customary to omit the subscript on x and simply write the differential dy as

dy = f'(x)dx (4)

where it is understood that x is regarded as fixed at some value.

Because f/(x) is equal to the slope of the tangent line to the graph of f at the point
(x, f(x)), thedifferentialsdy and dx can be viewed as a corresponding rise and run of this
tangent line (Figure 3.8.6).

Example 3 Giventhefunction y = x2, geometrically interpret the relationship between
the differentials dx and dy when x = 3.

Solution. Sincedy/dx = 2x,wehavedy = 2x dx = 6dx whenx = 3. Thistellsusthat
if we travel along the tangent line to the curve y = x2 at the point (3, 9), then any change
of dx unitsin the horizonal direction produces a change of dy = 6dx unitsin the vertical
direction. |

Recall that given afunction y = f(x), wedefined Ay = f(x + Ax) — f(x) to denote
the signed changein y from its value at some initial number x to its value at anew number
x 4+ Ax. It isimportant to understand the distinction between the increment Ay and the
differential dy. To see the difference, let us assign the independent variables dx and Ax
the same value, so dx = Ax. Then Ay represents the change in y that occurs when we
start at x and travel along the curve y = f(x) until we have moved Ax (= dx) unitsin the
x-direction, and dy represents the change in y that occursif we start at x and travel along
the tangent line until we have moved dx (= Ax) unitsin the x-direction (Figure 3.8.7).

Example 4 Lety = /x.Finddy and Ay at x = 4 withdx = Ax = 3. Then make a
sketch of y = /x, showing dy and Ay in the picture.

Solution. With f(x) = \/x weobtain
Ay = f(x + Ax) — f(x) = Vx + Ax — /X = VT — V4~ 0.65

If y = /x, then
dy 1 1 1 3
9 = dy=——dx=—-(3)=-=075
dx 2% y=on =549
Figure 3.8.8 shows the curve y = /x together with dy and Ay. |

Although Ay and dy are generally different, the differential dy will nonetheless be a
good approximationfor Ay provideddx = Ax iscloseto 0. To seethis, recall from Section
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3.2 that

f(x)= lim Ay

Ax—0 Ax

It followsthat if Ax iscloseto 0, then wewill have f/(x) ~ Ay/Ax or, equivalently,
Ay~ f'(x)Ax = f'(x)dx = dy ©)

Asthe reader might guess by comparing Figure 3.8.1 with Figure 3.8.7, the approximation
Ay ~ dy issimply arestatement of the local linear approximation of a function.

FOR THE READER.  Obtain the approximation Ay =~ dy directly from the local linear
approximation (2) by renaming some parameters and using some algebra.

In applications, small errorsinvariably occur in measured quantities. When these quantities
are used in computations, those errors are propagated in turn to the computed quantities.
For example, suppose that in an application the variables x and y are related by afunction
y = f(x). If x, isthe actua value of x, but it is measured to be xo, then we define the
difference dx = xg — x, to be the error in the measurement of x. Note that if the error
is positive, the measured value is larger than the actual value, and if the error is negative,
the measured value is smaller than the actual value. Since y is determined from x by the
function y = f(x), the true value of y is f(x,) and the value of y computed from the
measured value of x is f(xg). The propagated error in the computed value of y is then
defined to be f(xo) — f(x,). Note that if the propagated error is positive, the calculated
value of y will betoo large, and if thiserror is negative, the calculated value of y will betoo
small. If f isdifferentiable at the measured value xq, and if the error in the measurement
of x iscloseto 0, then the local linear approximation (1) (with x replaced by x,) becomes

Jf(xa) & f(xo0) + f'(x0)(xs — x0) = f(x0) — f'(x0)(x0 — x4) = f (x0) — f'(x0) dx
We can now use this approximation in our formula for the propagated error to obtain

f(xo0) — f(xa) = f(x0) — (f(x0) — f'(x0) dx) = f'(x0) dx
In other words, the propagated error may be approximated by

J(xo) = fxa) = dy (6)

wheredy = f'(xo) dx isthe value of the differential of f at xo when dx = xo — x, isthe
error in the measurement of x.

Unfortunately, this approximation cannot be used directly in applied problems because
the measurement error dx = xo — x, will in general be unknown. (Keep in mind that
the only value of x that is available to the researcher is the measured value xq.) However,
athough the exact value of the error in measuring x will generally be unknown, it is often
possible to determine upper and lower bounds for this error. Upper and lower bounds for
the propagated error can then be approximated by using the differential dy = f”(xo) dx.

Example 5 Suppose that the side of a square is measured with aruler to be 10 inches
with a measurement error of at most 13—12 of aninch.

(8 Useadifferential to estimate the error in the computed area of the square.
(b) Compare the estimate from part (a) with the actual possible error computed using a
calculating utility.

Solution (a). Thesideof asquarex and theareaof the square y arerelated by the equation
y = x2.Sincedy = 2x dx, if weset x = 10, thendy = 20dx. To say that the measurement
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error isat most :l:3—12 of aninch meansthat the measurement error dx = xo — x, satisfiesthe

inequalities— & < dx < 3. Multiplying each term by 20 yieldsthe equivalent inequalities

20(—%) <dy<20(%) o —2<dy<?

Since we are using the differential dy to approximate the propagated error, we estimate this
propagated error to be between —g and g of asquare inch. In other words, we estimate the

propagated error to be at most ig of asquareinch.

Solution (b). The area of the square is computed to be 100 square inches, but the actual
area could be as much as

(10+ 2)" =100+ § + &; oraslitieas (10— 4)*=100— 2 + 21

The propagated error is therefore between —2 + & and 2 + 155, Therefore, the upper
and lower bounds for the propagated error that we found in part (@) differ from the actual
upper and lower bounds by ﬁ of asquareinch. <

FOR THE READER.  Examine aruler and explain why a measurement error of at most 3—12
of aninch isreasonable.

The ratio of the error in some measured or calculated quantity to the true value of the
quantity is called the relative error of the measurement or calculation. When expressed
as a percentage, the relative error is called the percentage error. For example, suppose
that the side of a square is measured to be 10 inches, but the actual length of the side is
9.98 inches. The relative error in this measurement is then 0.02/9.98 ~ 0.002004008 or
about 0.2004008%. However, as a practical matter the relative error cannot be computed
exactly, since both the error and the true value of the quantity are usually unknown. To
approximate the relative error in the measurement or computation of some quantity ¢, we
use the ratio dg/q, where g is the measured or calculated value of the quantity. If ¢ isa
measured quantity, the numerator dq of this ratio denotes a measurement error, and if ¢ is
acomputed quantity, dq isan estimate of the propagated error given by (6).

Example 6 Theradius of asphereis measured with a percentage error within £0.04%.
Estimate the percentage error in the calculated volume of the sphere.

Solution. ThevolumeV of asphereisV = 2713, s0dV = 4rr? dr. It then fol lows from
theformulasfor vV and dV that

dV _ Apr?dr _dr
v o 23 T

If dr denotes the error in measurement of the radius of the sphere, then the relative error
in this measurement is estimated by the ratio dr/r, where r is the measured value of
the radius. Our assumption that the percentage error in this measurement iswithin +0.04%
then becomes —0.0004 < dr/r < 0.0004. Multiplying each term by 3yieldsthe equivalent
inequalities

—0.0012 = 3(—0.0004) < dV/V < 3(0.0004) = 0.0012

Sincewe are using 4V /V to approximate the relative error in the calculated volume of the
sphere, we estimate this percentage error to be within 4-0.12%. <

The symbol df is another common notation for the differential of a function y = f(x).
For example, if f(x) = sinx, then we can write df = cosx dx. We can also view the
symbol “d” asan operator that acts on afunction to produce the corresponding differential.
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For example, d[x?] = 2x dx, d[sinx] = cosx dx, and so on. All of the general rules of
differentiation then have corresponding differential versions:

DERIVATIVE FORMULA

DIFFERENTIAL FORMULA

d[c] =0
d[cf] = cdf
d[f+g] = df +dg

d{fg] = fdg +gdf

df - f d
d[f]:g g

g9 g2

d%([c]=0
d%([cf]:cg—)f(
dirg =19+ g
d f]:gj;-fjg
dx[ g g2
For example,

d[x?sinx] = (x?cosx + 2x Sinx) dx
= x2(cosx dx) + (2x dx) Sinx
= x?d[sinx] + (sinx)d[x?]

illustrates the differential version of the product rule.

EXERCISE SET 3.8 [ Graphing Calculator

1. (@) Use Formula (1) to obtain the local linear approxima-
tion of x3 at xg = 1.
(b) Use Formula(2) to rewrite the approximation obtained
inpart (a) interms of Ax.
(c) Use the result obtained in part (a) to approximate
(1.02)3, and confirm that the formula obtained in part
(b) produces the same resullt.

2. (8 Use Formula (1) to obtain the local linear approxima-
tionof 1/x at xg = 2.
(b) Use Formula(2) to rewrite the approximation obtained
inpart (a) interms of Ax.
(c) Use the result obtained in part (a) to approximate
1/2.05, and confirm that the formula obtained in part
(b) produces the same resullt.

3. (8 Findthelocal linear approximation of f(x) = +/1+ x
at xo = 0, and use it to approximate /0.9 and v/1.1.
(b) Graph f and itstangent line at xq together, and use the
graphs to illustrate the relationship between the exact
values and the approximations of +/0.9 and +/1.1.

4. (@ Findthelocal linear approximation of f(x) = 1//x at

1
5 1+ x)®~1+15x 6. ~ 1+ ix
( ) T 5
1
7. tanx ~ x 8. ~1—x
1+ x

In Exercises 9-12, confirm that the stated formulaisthelocal
linear approximation of f at xo = 1, where Ax = x — 1.

9. f(x) =x% (14 Ax)*~1+4Ax
10. f(x) = /x; VI+Ax~ 1+ JAx
1 ofmyet, 1 11

I Y 3 A 3 9
12. f(x) = (44 x)3% 5+ Ax)® ~ 1254 75Ax

In Exercises 13-16, confirm that the formulaisthelocal lin-

ear approximation at xo = 0, and use a graphing utility to

estimate an interval of x-values on which the error is at most
+0.1.

xo = 4, and useit to approximate 1/+/3.9 and 1//4.1. — 1
(b) Graph f and itstangent line at x( together, and use the M 18 vx+3~ V3+ 2\/§x
graphs to illustrate the relationship between the exact 1 1 1
values and the approximations of 1/+/3.9 and 1/+/4.1. 14, —— ~ -4 =
app ~ 5 3 + 01"
In Exercises 5-8, confirm that the stated formulais the local 1
linear approximation at xq = O. N 15 tan2x ~ 2x K 16 ~1—10x
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(8 Usethe local linear approximation of sinx a xog = 0
obtained in Example 2 to approximate sin 1°, and com-
pare the approximation to the result produced directly
by your calculating device.

(b) How would you choose xq to approximate sin44°?

(c) Approximatesin44°; comparetheapproximationtothe
result produced directly by your calculating device.

(8) Usethelocal linear approximation of tanx at xo = 0to
approximate tan 2°, and compare the approximation to
the result produced directly by your calculating device.

(b) How would you choose xq to approximate tan 61° ?

(c) Approximate tan61°; compare the approximation to
the result produced directly by your calculating device.

In Exercises 19-27, use an appropriate local linear approxi-
mation to estimate the value of the given quantity.

19.
22.
25.

28.

29.

30.

31.

32.

(3.02)* 20. (1.97)° 21. /65
V24 23. 4/80.9 24. \/36.03
sin0.1 26. tan0.2 27. cos3l°
The approximation (1 4 x)* ~ 1 + kx is commonly used

by engineersfor quick calculations.

(@) Derivethisresult, and use it to make a rough estimate
of (1.001)%".

(b) Compare your estimate to that produced directly by
your calculating device.

(c) Show that thisformula produces a very bad estimate of
(1.1)%, and explain why.

(@ Lety=x? Finddy and Ay at x = 2 with
dx = Ax = 1.

(b) Sketch the graph of y = x2, showing dy and Ay in the
picture.

(@ Lety=x% Finddy and Ay at x = 1 with
dx = Ax =1

(b) Sketch the graph of y = x3, showing dy and Ay inthe
picture.

(@) Lety =1/x.Finddy and Ay at x = 1 with
dx = Ax = —0.5.

(b) Sketch the graph of y = 1/x, showing dy and Ay in
the picture.

(@ Lety = ./x.Finddy and Ay at x = 9with
dx = Ax = —1.

(b) Sketch the graph of y = 4/x, showing dy and Ay in
the picture.

In Exercises 33-36, find formulasfor dy and Ay.

33.
35.

34, y=8x—-4
36. y =sinx

y=2x°
y=x?—2x+1

In Exercises 3740, find the differential dy.

37.
38.

@ y=4x>—7x?
@ y=1/x

(b) y = xcosx
(b) y =5tanx
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(@ y=xvl-x () y=1+x)7"
1 1—x8
@y=3-7 O y=-—

In Exercises 41-44, use dy to approximate Ay when x
changes as indicated.

41.
42.

43.

44,
45,

46.

47.

48.

49,

50.

51.

52.

y=+/3x —2; fromx =2tox =2.03
y =+/x2+8; fromx = 1tox = 0.97

X
y=x+/8x+1; fromx =3tox =3.05

The side of asquareis measured to be 10 ft, with a possible

error of £0.1 ft.

(@) Usedifferentialsto estimate the error in the calculated
area.

(b) Estimate the percentage errorsin the side and the area.

The side of acube is measured to be 25 cm, with apossible

error of +£1 cm.

() Usedifferentialsto estimate the error in the calculated
volume,

(b) Estimate the percentage errorsin the side and volume.

The hypotenuse of aright triangle is known to be 10 in ex-

actly, and one of the acute angles is measured to be 30°,

with apossible error of +1°.

() Usedifferentials to estimate the errors in the sides op-
posite and adjacent to the measured angle.

(b) Estimate the percentage errorsin the sides.

One side of aright triangle is known to be 25 cm exactly.

The angle opposite to this side is measured to be 60°, with

apossible error of +0.5°.

(8) Use differentials to estimate the errors in the adjacent
side and the hypotenuse.

(b) Estimate the percentage errors in the adjacent side and
hypotenuse.

The electrical resistance R of a certain wire is given by
R = k/r?2, where k is a constant and r is the radius of the
wire. Assuming that the radius » has a possible error of
+5%, use differentials to estimate the percentage error in
R. (Assumek isexact.)

A 12-foot ladder leaning against a wall makes an angle 6
with the floor. If the top of the ladder is & feet up the wall,
express h in terms of 6 and then use dh to estimate the
changein h if 6 changes from 60° to 59°.

Theareaof aright triangle with ahypotenuse of H iscalcu-
lated using the formula A = %HZ sin26, where 6 is one of
the acute angles. Use differentials to approximate the error
in calculating A if H = 4 cm (exactly) and 6 is measured
to be 30°, with apossible error of +15'.

The side of asquare is measured with a possible percentage
error of +1%. Use differentials to estimate the percentage
error in the area.
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53. The side of a cube is measured with a possible percentage
error of £2%. Use differentials to estimate the percentage
error in the volume.

54. Thevolume of asphereisto be computed from ameasured
value of its radius. Estimate the maximum permissible per-
centage error in the measurement if the percentage error in
the volume must be kept within +3%. (V = %ﬂr3 is the
volume of a sphere of radiusr.)

55. Theareaof acircleistobecomputed from ameasured value
of itsdiameter. Estimate the maximum permissible percent-
age error in the measurement if the percentage error in the
areamust be kept within +1%.

56. A steel cubewith 1-in sidesis coated with 0.01 in of copper.
Use differentials to estimate the volume of copper in the
coating. [Hint: Let AV be the change in the volume of the
cube.]

57. A metal rod 15 cm long and 5 cm in diameter isto be cov-
ered (except for the ends) with insulation that is 0.001 cm
thick. Use differentialsto estimate the volume of insulation.
[Hint: Let AV be the change in volume of the rod.]

58. Thetime required for one complete oscillation of a pendu-
lumiscalleditsperiod. If L isthelength of the pendulum,
thentheperiodisgivenby P = 27,/L/g, where g isacon-
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stant called the accel eration dueto gravity. Usedifferentials
to show that the percentage error in P isapproximately half
the percentage error in L.

59. If thetemperature T' of ametal rod of length L ischanged by
an amount AT, then the length will change by the amount
AL = aL AT, where « is caled the coefficient of linear
expansion. For moderate changesin temperature - istaken
as constant.

() Suppose that arod 40 cm long at 20°C is found to be
40.006 cm long when thetemperatureisraised to 30°C.
Find «.

(b) If ana@uminum poleis 180 cmlong at 15°C, how long
isthe pole if the temperature is raised to 40°C? [Take
a=23x10"5/°C]

60. If the temperature T of a solid or liquid of volume V is
changed by an amount AT, then the volume will change by
theamount AV = 8V AT, where 8 iscalled the coefficient
of volume expansion. For moderate changesin temperature
B istaken as constant. Suppose that atank truck |oads 4000
galonsof ethyl alcohol at atemperature of 35° C and deliv-
ersitsload sometime later at atemperature of 15°C. Using
B = 7.5 x 10~4/°C for ethyl alcohol, find the number of
gallons delivered.

SUPPLEMENTARY EXERCISES

™ Graphing Calculator CAS

1. State the definition of a derivative, and give two interpreta-
tions of it.

2. Explain the difference between average and instantaneous
rate of change, and discuss how they are calcul ated.

3. Giventhat y = f(x), explainthedifference betweendy and
Ay. Draw apicturethat illustrates the relationship between
these quantities.

4. Use the definition of a derivative to find dy/dx, and check
your answer by cal culating the derivative using appropriate
derivative formulas.

(8 y=vo—4x 0 y= "

In Exercises 5-8, find the values of x at which the curve
y = f(x) hasahorizontal tangent line.

(x—23*
X2 4 2x

) 3 +1)\°
7. fx)=vV3x+1lx -1 8. f(x):( 2 )

5 fx)=2x+7°x—2° 6. f(x)=

9. Theaccompanying figure showsthegraph of y = f’(x) for
an unspecified function f.
(a) For what values of x does the curve y = f(x) have a
horizontal tangent line?

(b) Over what intervals doesthe curve y = f(x) have tan-
gent lines with positive slope?

(c) Over what intervals doesthe curve y = f(x) havetan-
gent lines with negative slope?

(d) Given that g(x) = f(x)sinx, and f(0) = —1, find
g"(0).

Figure Ex-9

10. In each part, evaluate the expression given that f(1) = 1,
g =-2f(1)=3 adg'(1) = -1

@ 1ol 0~ [f <X>]

x=1 x Lglx)
d d
© V] @ LW )]

x=1

x=1
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16.
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18.

19.
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Find the equations of &l lines through the origin that are
tangent to the curve y = x3 — 9x2 — 16x.

Findall valuesof x for whichthetangentlinetoy = 2x3—x2
is perpendicular to theline x + 4y = 10.

Find all values of x for which the line that is tangent to
y = 3x —tanx ispardlel totheliney — x = 2.

x2—1,
k(x — 1),

For what values of k is f
(a) continuous?

x<1

Suppose that f(x) = {

x > 1

(b) differentiable?

Let f(x) = x2. Show that for any distinct values of ¢ and
b, theslope of thetangent lineto y = f(x) atx = 3(a+b)
is equal to the slope of the secant line through the points
(a,a?) and (b, b?). Draw apicture to illustrate this result.

A car is traveling on a straight road that is 120 mi long.
For the first 100 mi the car travels at an average velocity of
50 mi/h. Show that no matter how fast the car travels for
the final 20 mi it cannot bring the average velocity up to 60
mi/h for the entire trip.

In each part, use the given information to find Ax, Ay, and
dy.

(@ y =1/(x — 1); x decreasesfrom 2to 1.5.

(b) y =tanx; x increasesfrom —m/4to 0.

(©) y =+/25— x2; x increasesfrom 0 to 3.

Use the formula V = I3 for the volume of a cube of side !

to find

(a) the averagerate at which the volume of a cube changes
with/ as/ increasesfrom! = 2tol =4

(b) the instantaneous rate at which the volume of a cube
changeswith ! when [ = 5.

The amount of water in atank r minutes after it has started

todrainisgivenby W = 100( — 15)? gal.

() At what rate is the water running out at the end of 5
min?

(b) What is the average rate at which the water flows out
during the first 5 min?

Use an appropriate local linear approximation to estimate
the value of cot 46°, and compare your answer to the value
obtained with a calculating device.

The base of the Great Pyramid at Giza is a square that is

230 m on each side.

(8) Asillustrated in the accompanying figure, suppose that
an archaeologist standing at the center of a side mea-
sures the angle of elevation of the apex to be ¢ = 51°
with an error of £0.5°. What can the archaeol ogist rea-
sonably say about the height of the pyramid?

(b) Use differentials to estimate the allowable error in the
elevation angle that will ensurean error inthe height is
at most =5 m.
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L

230,,,
\/ —

/\ 'L%Q«\

Figure Ex-21

The period T of aclock pendulum (i.e., the time required

for one back-and-forth movement) is given in terms of its

length L by T = 2n,/L/g, where g is the gravitational

constant.

(8 Assuming that the length of a clock pendulum can
vary (say, due to temperature changes), find the rate
of change of the period T with respect to the length L.

(b) If L isinmeters(m) and T isin seconds (s), what are
the units for the rate of changein part (8)?

(c) If apendulum clock isrunning slow, should the length
of the pendulum be increased or decreased to correct
the problem?

(d) Theconstant g generally decreaseswith atitude. If you
move a pendulum clock from sea level to a higher ele-
vation, will it run faster or slower?

(e) Assuming the length of the pendulum to be constant,
find therate of change of the period 7" with respect to g.

(f) Assumingthat T isin seconds(s) and g isin meters per
second per second (m/<%), find the units for the rate of
changein part (e).

In Exercises 23 and 24, zoominonthegraph of f onaninter-
val containingx = xo until thegraphlookslikeastraight line.
Estimate the slope of thisline and then check your answer by
finding the exact value of f'(xo).

M 23 (@ f(x)=x*-1, xo=18

2

(b) f(x) = ——, x0=35
x—2
M 24 @ f()=x>—x*+1, x=23
X
(b) fx) = m: xo=—-0.5

In Exercises 25 and 26, approximate f’(2) by considering the
difference quotients

fx) — f(2

x1—2

for values of x; near 2. If you have a CAS, seeif it can find
the exact value of the limit of these difference quotients as
X1—> 2.

25. f(x)=2"

26. f(x) =x9"
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27.

At time ¢t = 0 a car moves into the passing lane to pass
a slow-moving truck. The average velocity of the car from
t=1tor=1+his
3(h + 1) + 580h — 3
v =
ae 10h

Estimate the instantaneous velocity of the car at r = 1,
wheretimeisin seconds and distance isin feet.
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(b) For) = 1/x
@ for =241
x—1

(f) f(x) =sin3x

@ flx)=x°
© flx)=1/Vx
(6 f(x) =v3x2+5

In Exercises32-37: (a) UseaCAStofind f’(x) viaDefinition
3.2.3; (b) usethe CASto find f”(x).

[ 28. A sky diver jumps from an airplane. Suppose that the dis- 2.
tance shefallsduring thefirst  secondsbefore her parachute 2. fl) =x7sinx
opensiss(r) = 986((0.835)' — 1) + 1761, wheres isin feet 2?2 —x+5 tanx

33. f(x) = +/x + COS* x

andr > 1. Graph s versus ¢ for 1 < r < 20, and use your 3. S = 3x+2 . f(x):1+x2
graph to estimate the instantaneous velocity at 1 = 15. 1 /x4 _3x + 2
29. Approximate the values of x at which thetangent lineto the 36. f(x) = ;sinﬁ 37 f) = *(2 — cosx)

graph of y = x® — sinx is horizontal.
[ 30. Useagraphing utility to graph the function
) =1f—x =1 —x

In Exercises 38 and 39, find the equation of the tangent line
at the specified point.

and find the values of x where the derivative of thisfunction
does not exist.

31. UseaCASto find the derivative of f from the definition

38 ¥ —y¥3 —y =1; (1,-1)
39. sinxy =y; (7/2,1)

40. The hypotenuse of aright triangle is growing at a constant
rate of a centimeters per second and one leg is decreasing
at a constant rate of » centimeters per second. How fast is
the acute angle between the hypotenuse and the other leg
changing at the instant when both legs are 1 cm?

w— X w—X

and check the result by finding the derivative by hand.

EXPANDING THE CALCULUS

Robotics

Robin desi gns and sells room dividers to defray college expenses. She is soon overwhelmed with orders and decides
to build a robot to spray paint her dividers. Asin most engineering projects, Robin beginswith a simplified model that
she will eventually refine to be more realistic. However, Robin quickly discovers that robotics (the design and control
of robots) involves a considerable amount of mathematics, some of which we will discuss in this module.

== The Design Plan
Robin’s plan is to devel op a two-dimensional version of the robot arm in Figure 1. As shown in
Figure 2, Robin’s robot arm will consist of two links of fixed length, each of which will rotate
independently about a pivot point. A paint sprayer will be attached to the end of the second link,
and a computer will vary the angles 6; and 6, thereby allowing the robot to paint aregion of the
xy-plane.

== The Mathematical Analysis
To analyze the motion of the robot arm, Robin denotes the coordinates of the paint sprayer by
(x, y), asinFigure 3, and she derives the following equations that express x and y in terms of the
angles 6, and 0, and the lengths /; and [, of the links:
x =13 c0S861 + I cos(61 + 62) 0
y =118n61 + [ Sin(61 + 62)
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y y (xy)
Paint sprayer ‘
[
[
Link 2 l2 }Izsin(91+02)
/// b |
0, ~ 2. }
- ~\61 |
R (N A b S o
. 7 la \
Link 1 | psingy
0, X 1 | X
I cos6; 1, cos (6, +6,)
Figure 2 Figure 3

Exercisel  UseFigure 3 to confirm the equationsin (1).

In the language of robotics, 61 and 6, are called the control angles, the point (x, y) is called the
end effector, and the equationsin (1) are called the forward kinematic equations (from the Greek
word kinema, meaning “motion”).

Exercise2  What isthe region of the plane that can be reached by the end effector if:
@l =1z (b)lh>D,and(c) i1 < [2?

Exercise 3 What are the coordinates of the end effector if [1 = 2,1, = 3, 6, = n/4, and
62 = 7'[/67

== Simulating Paint Patterns
Robin recognizes that if 6, and 6, are regarded as functions of time, then the forward kinematic
equations can be expressed as

x = [, C0S6H1(t) + [o cOS(01(1) + O2(1))
y =115in61(t) + [ Sin(01(r) + 62(1))

which are parametric equations for the curve traced by the end effector. For example, if the arms
extend horizontally along the positive x-axis at time r = 0, and if links 1 and 2 rotate at the
constant rates of w; and w, radians per second (rad/s), respectively, then

01(t) = wit and O(1) = wot
and the parametric equations of motion for the end effector become
x = [l1 COSw1t + Io COS(w1t + wot)
y= [y Sinwit + I SiN(w1t + wot)

Exercise4  Showthatifl; = I, = 1, andif w; = 2rad/sand w, = 3rad/s, then the parametric
equations of motion are

X = CO0S2t + cOS5r
y = sin2t 4+ sin5¢

Use a graphing utility to show that the curve traced by the end effector over the time interval
0 <t < 2risasshownin Figure 4. This would be the painting pattern of Robin’s paint sprayer.
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Figure4

Exercise5  Useagraphing utility to explore how the rotation rates of the links affect the spray
patterns of arobot arm for which/; =1, = 1.

Exercise 6  Supposethat I; = I, = 1, and a mafunction in the robot arm causes the second
link to lock at 6, = 0, while thefirst link rotates at a constant rate of 1 rad/s. Make a conjecture
about the path of the end effector, and confirm your conjecture by finding parametric equations
for its motion.

== Controlling the Position of the End Effector
Robin’s plan is to make the robot paint the dividersin vertical strips, sweeping from the bottom
up. After astrip is painted, shewill have the arm return to the bottom of the divider and then move
horizontally to position itself for the next upward sweep. Since the sections of her dividers will
be 3 ft wide by 5 ft high, Robin decides on a robot with two 3-ft links whose base is positioned
near the lower left corner of adivider section, asin Figure 5a. Sincethe fully extended links span
aradius of 6 ft, she feels that this arrangement will work.

y y y
(3,5 Vi (3,9 (3,5
Divider section / 3
/
3
4 —120°
3 3 3 3 3
3
X 60° X X
Base (3,0 Base (3,0 Base (3,0
(@ (b) (©
Figure 5

Robin starts with the problem of painting the far right edge from (3, 0) to (3, 5). With the
help of some basic geometry (Figure 5b), she determines that the end effector can be placed at the
point (3, 0) by taking the control anglesto be 6; = /3 (= 60°) and §, = —27/3 (= —120°)
(verify). However, the problem of finding the control angles that correspond to the point (3, 5)
is more complicated, so she starts by substituting the link lengths /; = I, = 3 into the forward
kinematic equationsin (1) to obtain

x = 3C0S6; + 3cos(61 + 62)

. . 2
y = 3sinf; + 3sin(6y + 62) &)
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Thus, to put the end effector at the point (3, 5), the control angles must satisfy the equations
C0S6; + cos(f1 + 62) = 1
3
3sinf, + 3sin(01 + 6,) =5 ®)

Solving these equations for 6; and 6, challenges Robin’s algebra and trigonometry skills, but she
manages to do it using the procedure in the following exercise.

Exercise 7
() Usetheequationsin (3) and the identity

SiN?(61 + 62) + CoS’ (61 + 6) = 1
to show that
15sin6; + 9cosh; = 17
(b) Solvethelast equation for sind; in terms of cosé, and substitute in the identity
sin?0; + cos’ 6, = 1
to obtain

153 c0s?6; — 153¢cos6; +32 =0

(c) Treat thisasaquadratic equation in cos6;, and use the quadratic formulato obtain

1 5V17
COS@]_ = E :l: ﬁ

(d) Usethe arccosine (inverse cosine) operation of a calculating utility to solve the equationsin
part (c) to obtain

01 ~ 0.792436 rad ~ 45.4032° and 61 ~ 1.26832 rad ~ 72.6693"

(e) Substitute each of these angles into the first equation in (3), and solve for the corresponding
values of 6,.

At first, Robin was surprised that the solutions for 6, and 6, were not unique, but her sketch
in Figure 5¢ quickly made it clear that there will ordinarily be two ways of positioning the links
to put the end effector at a specified point.

== Controlling the Motion of the End Effector

Now that Robin has figured out how to place the end effector at the points (3, 0) and (3, 5), she
turns to the problem of making the robot paint the vertical line segment between those points.
She recognizes that not only must she make the end effector move on avertical line, but she must
control its velocity—if the end effector moves too quickly, the paint will be too thin, and if it
moves too slowly, the paint will be too thick.

After some experimentation, she decidesthat the end effector should have a constant vel ocity
of 1ft/s. Thus, Robin’smathematical problemisto determinetherotationratesdé,/dt andd6,/dt
(inrad/s) that will make dx/dt = 0 and dy/dt = 1. Thefirst condition will ensure that the end
effector moves vertically (no horizontal velocity), and the second condition will ensure that it
moves upward at 1 ft/s.

To find formulasfor dx/dt and dy/dt, Robin uses the chain rule to differentiate the forward
kinematic equationsin (2) and obtains

dx 3 d@l . d91 d92
— = —3sinf;— — [3sin(6, + 6 — + —
i sin,—- [3sin(6; + 2)]<dt+dt)
dy do, d6, ~ db,
— = 3c0s61— + [3cos(b; + 6 — 4+ —
dt 1dt+[ SO+ 2)]<dt+dt>
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Sheusesthe forward kinematic equations again to simplify these formulas and she then substitutes
dx/dt = 0anddy/dt = 1toobtain

49, a9
—y=2 — 38N, + 6) =2 =0
dt dt (4)

d91 d92
— +3c0s(61 +6,)— =1
xdt + S01 + Z)dt

Exercise8  Confirm Robin’s computations.

The equations in (4) will be used in the following way: At a given time ¢, the robot will
report the control angles 6; and 6, of itslinks to the computer, the computer will use the forward
kinematic equationsin (2) to calculate the x- and y-coordinates of the end effector, and then the
valuesof 0y, 6,, x, and y will be substituted into (4) to produce two equationsin the two unknowns
d6,/dt and df,/dt. The computer will solve these equations to determine the required rotation
rates for the links.

Exercise9  Ineach part, use the given information to sketch the position of the links, and then
calculate the rotation rates for the linksin rad/s that will make the end effector of Robin’s robot
move upward with avelocity of 1 ft/sfrom that position.

(a) 91 = 7T/3, 92 = —27[/3 (b) 9]_ = 7t/2, 92 = —7T/2

Module by Mary Ann Connors, USMA, West Point, and Howard Anton, Drexel University, and
based on the article “Moving a Planar Robot Arm” by Walter Meyer, MAA Notes Number 29,
The Mathematical Association of America, 1993.




