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Karl Weierstrass

LIMITS AND
CONTINUITY

The problem of defining and cal culating instantaneous rates
such as speed and acceleration attracted almost all the
mathematicians of the seventeenth century.

( ; —NMuorris Kline

he development of calculus in the seventeenth cen-
tury by Newton and Leibniz provided scientists with their
first real understanding of what is meant by an “instanta-
neous rate of change” such as velocity and acceleration.
Once the idea was understood conceptually, efficient com-
putational methods followed, and science took a quantum
leap forward. The fundamental building block on which
rates of change restis the concept of a “limit,” an idea that
is so important that all other calculus concepts are now
based on it.

In this chapter we will develop the concept of a limit in
stages, proceeding from an informal, intuitive notion to a
precise mathematical definition. We will also develop the-
orems and procedures for calculating limits, and we will
conclude the chapter by using the limits to study “contin-
uous” curves.
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INSTANTANEOUS VELOCITY AND
THE SLOPE OF A CURVE

Figure2.1.1

Figure2.1.2
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2.1 LIMITS (AN INTUITIVE APPROACH)

The concept of a limit is the fundamental building block on which all other calculus
concepts are based. In this section we will study limits informally, with the goal of
developing an “intuitive feel” for the basic ideas. In the following three sections we
will focus on the computational methods and precise definitions.

Recall from Formula (11) of Section 1.5 that if a particle moves alongraxis, then the
average velocity,ye over the time interval fromy to 11 is defined as
As S1 — S0

Vave = E = H 1)
wheresg ands; are thes-coordinates of the particle at timgsandt,, respectively. Geo-
metrically, vaye is the slope of the line joining the points, so) and(z1, s1) on the position
versus time curve for the particle (Figure 2.1.1).

Suppose, however, that we are not interested in average velocity over atime interval,
but rather the velocity ving a aspecific instant in time. It is not a simple matter of applying
Formula (1), since the displacement and the elapsed time in an instant are both zero. How-
ever, intuition suggests that the velocity at an instant ¢+ = ¢y can be approximated by finding
the position of the particle at atime ¢, just before, or just after, time ¢z and computing the
average velocity over the brief time interval between the two moments. That is,

S1— S0

)

Vinst ~ Vave =
h—1o

provided Ar = r; —rgissmall. Moreover, if weare ableto make very precise measurements,
the closer 1, is to 1o, the better vae approximates ving. That is, as we sample at times 14,
closer and closer to 7y, vae approaches alimiting value that we understand to be ving.

Example 1 Suppose that aball isthrown vertically upward and the height in feet of the
ball r seconds after its release is modeled by the function

s(t) = —161% + 29t + 6, 0<t<?2

What is areasonable estimate for the instantaneous velocity of the ball at timer = 0.5 s?

Solution. AtanytimeO < ¢t < 2 wemay envision the height s () of the ball as a position
on a (vertical) s-axis, where s = 0 corresponds to ground level (Figure 2.1.2). The height
of theball at timet = 0.5siss(0.5) = 16.5 ft, and the height of the ball 0.01 s later is
5(0.51) = 16.6284 ft. Therefore, the average velocity of theball over thetimeinterval from
t =0.5tor =0.51is

16.6284 — 16.5  0.1284
051-05 001
Similarly, the height of the ball 0.49 s after its release is 5(0.49) = 16.3684 ft, and the

average velocity of the ball over thetimeinterval froms = 0.49tor = 0.5is
16.3684 — 16.5 —0.1316
049-05  -001
Consequently, we would expect the instantaneous velocity of the ball at timer = 0.5to be
between 12.84 ft/s and 13.16 ft/s. To improve our estimate of this instantaneous velacity,
we can compute the average velocity
s(t;) — 165 —16t2 + 291 + 6 — 16.5 B —16t2 + 291 — 10.5
n—-05 tn—05 - fn—05
for values of r; even closer to 0.5. Table 2.1.1 displays the results of several such computa-

Vave =

= 12.84ft/s

Vave =

= 13.16ft/s

Vave(t1) =
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Table2.1.1
~16t7 + 29t, —10.5
TIME t (S)  vaelty) = ——————F—— (ft/9)
t,—05

0.5010 12.9840
0.5005 12.9920
0.5001 12.9984
0.4999 13.0016
0.4995 13.0080
0.4990 13.0160

tions. It appears from these computations that a reasonable estimate for the instantaneous
velocity of theball at timer = 0.5sis13ft/s. <

FORTHEREADER.  Thedomain of the height function s (1) = —16¢% 429t 4 6in Example
listheclosed interval [0, 2]. Why do we not consider values of ¢ lessthan O or greater than
2 for thisfunction? In Table 2.1.1, why isthere not avalue of vae(t1) for 1, = 0.5?

We can interpret ving geometrically from the interpretation of va.e as the slope of the
line joining the points (7o, s9) and (z1, s1) on the position versus time curve for the particle.
When At = 11 — 1o is small, the points (7, so) and (z1, s1) are very close to each other on
the curve. As the sampling point (z1, s1) is selected closer to our anchoring point (zo, so),
the slope vqe More nearly approximates what we might reasonably call the slope of the
position curve at time ¢ = fo. Thus, ving Can be viewed as the slope of the position curve at
timet = 1o (Figure 2.1.3). We will explore this connection more fully in Section 3.1.

In Example 1 it appeared that choosing values of 7; close to (but not equal to) 0.5 resulted
invalues of vae(t;) that were closeto 13. One way of describing thisbehavior isto say that
the limiting value of vae(f1) ast; approaches 0.5 is 13 or, equivaently, that 13 is the limit
of vae(t1) ast; approaches 0.5. More generally, we will see that the concept of the limit of
afunction provides a foundation for the tools of calculus. Thus, it is appropriate to start a
study of calculus by focusing on the limit concept itself.

The most basic use of limitsis to describe how a function behaves as the independent
variable approaches a given value. For example, let us examine the behavior of the function

fx) = x2—x+1
for x-values closer and closer to 2. It isevident from the graph and tablein Figure 2.1.4 that
the values of f(x) get closer and closer to 3 as values of x are selected closer and closer

to 2 on either the left or the right side of 2. We describe this by saying that the “limit of
x? — x + 1is 3 asx approaches 2 from either side” and we write

|irT12(x2—x+1):3 ©)

Observe that in our investigation of lim,_, » (x2 — x 4+ 1) we are only concerned with the
values of f(x) near x = 2 and not thevalue of f(x) at x = 2.
Thisleads usto the following general idea.

2.1.1 LIMITS (AN INFORMAL VIEW). If the values of f(x) can be made as close as
we like to L by taking values of x sufficiently close to a (but not equal to a), then we
write

lim f(x) =L 4

X—da

whichisread “thelimit of f(x) asx approachesa is L.
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f(%)

3¢

£(x)

1.95 1.99 1.995 1999 |2 2001 @ 2005 2.01 2.05 21 25 3.0

f(x) 1.000000 1.750000 2.710000 2.852500 2.970100 2.985025 2.997001 3.003001 3.015025 3.030100 3.152500 3.310000/ 4.750000 7.000000

>

Figure2.1.4

<
> <

Left side Right side

Equation (4) is also commonly written as
f(x)—>L a x—a

With this notation we can express (3) as

2—x4+1>3 as x—>2

In order to investigate lim, _,, f(x), we ask ourselves the question, “If x is close to,
but different from, a, is there a particular number to which f(x) is close?’ This question
presumes that the function f is defined “everywhere near a,” in other words, that f is
defined at all points x in some open interval containing a, except possibly at x = a. The
valueof f ata,if itexistsat al, isnot relevant to the determination of lim, _, , f(x). Many
important applications of the limit concept involve contexts in which the domain of the
function excludes a. Indeed, our discussion of instantaneous velocity concluded that ving
could be interpreted as a limit of the average velocities, even though the average velocity
at an instant is not defined.

The process of determining a limit generally involves a discovery phase, followed by
a verification phase. The discovery phase begins with sampled x-values, and ends with
a conjecture for the limit. Figure 2.1.4 illustrates the discovery phase for the problem of
finding the value of lim,_ » (x> — x + 1). We sampled values for x near 2 and found that
the corresponding values of f(x) were closeto 3. Indeed, values of x nearer to 2 produced
values of f(x) closer to 3. Our conjecture that lim,_, » (x> — x + 1) = 3 concluded the
discovery phase for this limit. However, a complete treatment of any limit also involves a
verification phase in which it is shown that the conjectured limit is actually correct. For
example, consider our conjecture that lim,_, » (x> — x + 1) = 3. We can only sample a
relatively few values of x near 2, even by using a graphing utility. We cannot sample all
values of x near 2, for no matter how close to 2 we take an x-value, there are infinitely
many values of x nearer yet to 2. To verify that lim, _, » (x? — x + 1) isindeed 3, we need
to resort to an analysis that can overcome this dilemma. This analysis will require a more
mathematically precise definition of limit and is the focus of Section 2.4. In this section,
we concentrate on the discovery phase for limit problems.

Example 2 Make a conjecture about the value of the limit

X
lim — 5
=0/x+1-1 ®
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Solution. Observe that the function

X
() = ——=—
y / Vx+1-1
l/ isnot defined at x = 0. However, f isdefined for x > —1, x # 0, sothedomain of f con-
2 } tains values of x “everywhere near 0.” Table 2.1.2 shows samples of x-values approaching
1

0 from the left side and from the right side. In both cases the values of f(x), calculated to
six decimal places, appear to get closer and closer to 2, and hence we conjecture that

X
lim — =2 6
=0/x+1-1 ©

_‘1 1‘ A graphing utility could beused to produce Figure 2.1.5, providing moreevidencein support
e D — of our conjecture. In the next section we will see that the graph of f(x) isidentical to that
Figure2.1.5 of y = vx + 1+ 1, except for aholeat (0, 2). <
Table2.1.2
X -0.01 —-0.001 —0.0001 —-0.00001 @ 0 0.00001 0.0001 0.001 0.01
f(x)  1.994987 1.999500 1.999950 1.999995 2.000005 2.000050 2.000500  2.004988
Left side " < Right side

¢ FORTHEREADER. Usingagraphing utility, find awindow aboutx = Oinwhichall values
i of f(x) arewithin 0.5 of y = 2. Find awindow in which all values of f(x) arewithin 0.1
of y =2

Example 3 Make aconjecture about the value of the limit

. sn
lim 2% @)
x—0 Xx

Solution. The function f(x) = (sinx)/x is not defined at x = 0, but, as discussed pre-
viously, this has no bearing on the limit. With the help of a calculating utility set in radian
mode, we obtain the table in Figure 2.1.6.

sinx

lim —=1 (8)
x—=0 Xx
Theresult isconsistent with the graph of f(x) = (sinx)/x showninthefigure. Later inthis
chapter we will give a geometric argument to prove that our conjectureis correct. <
X _sinx
(RADIANS) Y=
+1.0 0.84147
+09 0.87036
+0.8 0.89670
+0.7 0.92031 y
+06 0.94107 1 Snx
+05 0.95885 o1 y=10 ==
+0.4 0.97355 T + ***** 1 X
+0.3 0.98507 X — ‘ 0 < X 4
+0.2 0.99335
0.1 0.99833 As X approaches O from the left
+0.01 0.99998 or right, f(x) approaches 1.

Figure2.1.6
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FORTHEREADER. Useacalculating utility to sample x-valuescloser to Othanin Table ??.
Doesthe limit change if x isin degrees?

Although numerical and graphical evidence is helpful for guessing at limits, we can be
misled by an insufficient or poorly selected sample. For example, the table in Figure 2.1.7
shows values of f(x) = sin(/x) at selected values of x on both sides of 0. The data
incorrectly suggest that
4
Jimsin () =0

Thefact that thisisincorrect is evidenced by the graph of f showninthefigure. Thisgraph
indicatesthat asx — 0, thevalues of f oscillate between —1 and 1 with increasing rapidity,
and hence do not approach alimit. The data are deceiving because the table consists only
of sample values of x that are x-interceptsfor f(x).

X
(RADIANS)

E]

X X X X X
| A T V1|

19 = sin (%)
gy y=Esn(3)
+ sin(zm) =0 B —
+107 sin(x107) =0
+1007 sin(+1007) = 0 X

+1000m  sin(+1000m) = 0 = l 1
+10,000m  sin(+10,0007) = 0

Figure2.1.7

ONE-SIDED LIMITS

Figure2.1.8

Numerical evidence can lead to incorrect conclusions about limits because of roundoff
error or because the sample of values used is not extensive enough to give agood indication
of the behavior of the function. Thus, when alimit is conjectured from atable of values, it
isimportant to look for corroborating evidence to support the conjecture.

Thelimitin (4) iscommonly called atwo-sided limit because it requiresthe values of f(x)
to get closer and closer to L asvalues of x are taken from either side of x = a. However,
some functions exhibit different behaviors on the two sides of an x-value a, in which case
it is necessary to distinguish whether values of x near a are on the left side or on the right
side of a for purposes of investigating limiting behavior. For example, consider the function

_xl 1, x>0
B -1, x<0

(Figure 2.1.8). Note that x-values approaching 0 and to the right of O produce f(x) values
that approach 1 (in fact, they are exactly 1 for all such values of x). On the other hand, x-
values approaching 0 and to theleft of O produce f(x) valuesthat approach —1. We describe
these two statements by saying that “the limit of f(x) = |x|/x is1 asx approaches 0 from
theright” and that “the limit of f(x) = |x|/x is —1 as x approaches 0 from the left.” We
denote these limits by writing

lim m=1 and lim m:—1 (9-10)

x—0t Xx x—0" X
With this notation, the superscript “+” indicates a limit from the right and the superscript
“—" indicates alimit from the | eft.

This leads to the following general idea.
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2.1.2 ONE-SIDED LIMITS (AN INFORMAL VIEW). If the values of f(x) can be made
ascloseasweliketo L by taking values of x sufficiently closeto a (but greater than a),
then we write

lim f(x) =L (12)

which isread “the limit of f(x) asx approachesa from therightis L.” Similarly, if the
values of f(x) can be made as close as we like to L by taking values of x sufficiently
closeto a (but less than a), then we write

lim f(x)=L (12)
which isread “the limit of f(x) asx approachesa fromtheleftis L.

Expressions (11) and (12), which are called one-sided limits, are also commonly written as
fx)—>Lasx—at and f(x)—>Lasx—a~

respectively. With this notation (9) and (10) can be expressed as
|x] x|

— »slasx—0" and ——>—-lasx—0"
X X

In general, there is no guarantee that a function will have alimit at a specified location. If

ONE-SIDED LIMITS AND

TWO-SIDED LIMITS

the values of f(x) do not get closer and closer to some single number L as x — a, then
we say that the limit of f(x) asx approachesa does not exist (and similarly for one-sided
limits). For example, thetwo-sided limit lim, _, ¢ |x|/x does not exist because the val ues of
f(x) do not approach a single number as x — 0; the values approach —1 from the left and

1 from theright.

In general, the following condition must be satisfied for the two-sided limit of afunction

to exist.

2.1.3 THE RELATIONSHIP BETWEEN ONE-SIDED AND TWO-SIDED LIMITS. The two-
sided limit of afunction f(x) existsat « if and only if both of the one-sided limits exist
at a and have the same value; that is,

lim f(x) =L ifandonlyif lim f(x)=L = Iim+ f(x)

—da

REMARK.

: Sometimes, one or both of the one-sided limits may fail to exist (which, in
i turn, implies that the two-sided limit does not exist). For example, we saw earlier that the

one-sided limits of f(x) = sin(z/x) do not exist as x approaches 0 because the function
keeps oscillating between —1 and 1, failing to settle on asingle value. Thisimpliesthat the

two-sided limit does not exist as x approaches 0.

Example 4 For the functionsin Figure 2.1.9, find the one-sided and two-sided limits at

x = a if they exist.

Figure2.1.9
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Solution. Thefunctionsin all three figures have the same one-sided limitsas x — a, since
the functions are identical, except at x = a. These limits are

Iim+ f&x)=3 and lim f(x)=1

X—>a

In all three cases the two-sided limit does not exist as x — a because the one-sided limits
are not equal. <

Example 5 For the functions in Figure 2.1.10, find the one-sided and two-sided limits
at x = a if they exist.

3 3+ ° 3

AN R VAN R d y=1(
1F \ 1+ 1+
| X

AN AN AN

Figure 2.1.10

v X<
y X<

Solution. As in the preceding example, the value of f at x = a has no bearing on the
limitsas x — a, so that in al three cases we have

Iim+ f&x)=2 and lim f(x)=2

Since the one-sided limits are equal, the two-sided limit exists and
lim f(x) =2 |

Sometimes one-sided or two-sided limitswill fail to exist because the values of the function
increase or decreaseindefinitely. For example, consider the behavior of thefunction f(x) =
1/x for values of x near 0. It is evident from the table and graph in Figure 2.1.11 that as
x-vaues are taken closer and closer to O from the right, the values of f(x) = 1/x are
positive and increase indefinitely; and as x-values are taken closer and closer to 0 from the
left, the values of f(x) = 1/x are negative and decrease indefinitely. We describe these

—>

1
X X
?
!
—¢1
1 1
lim 3 =-c lim & =+oco
x—0- X x—0* X
x - 01 | -001 | -0.001 -00001 0 00001 0001 001 01 1
% 1 10 | -100 | -1000 | —10,000 10,000 1000 = 100 10 1
Left side T Right side

Figure2.1.11



January 10, 2001 13:09

g65-ch2

Sheet number 9 Page number 115 cyan magenta black

2.1  Limits (An Intuitive Approach) 115

limiting behaviors by writing

lim

x—0"

. 1
lim = =4« and

x—0t Xx

More generally:

2.1.4 INFINITELIMITS (AN INFORMAL VIEW). If the values of f(x) increase indefi-
nitely as x approaches a from the right or left, then we write
Iim+ f(x) =4 or

X—a

as appropriate, and we say that f(x) increases without bound, or f(x) approaches
+o, asx—at or asx — a~. Similarly, if the values of f(x) decrease indefinitely as x
approaches a from the right or left, then we write

lim f(x) = 4o

Iim+ f(x) =—00 or lim f(x) = —o

as appropriate, and say that f(x) decreaseswithout bound, or f(x) approaches —o, as
x—at orasx— a~. Moreover, if both one-sided limits are +o0, then we write

and if both one-sided limits are —oo, then we write

X—a

REMARK. It should be emphasized that the symbol s+ and —cc arenot real numbers. The
phrase” f(x) approaches+«” isakinto sayingthat “ f(x) approachesthe unapproachable’;
itisacolloquialismfor “ f(x) increases without bound.” The symbols +o and —o are used
here to encapsulate a particular way in which limits fail to exist. To say, for example, that
f(x) > 4+ asx — a' istoindicate that lim, _, .+ f(x) does not exist, and to say further

that thislimit fails to exist because values of f(x) increase without bound as x approaches
i a from the right. Furthermore, since -+ and —o are not numbers, it is inappropriate to

manipulate these symbols using rules of algebra. For example, it is not correct to write
(490) — (4o0) = 0.

Example 6 Forthefunctionsin Figure2.1.12, describethelimitsat x = a in appropriate
[imit notation.

Figure 2.1.12

Solution (a). InFigure2.1.12a, the function increasesindefinitely asx approachesa from
the right and decreases indefinitely as x approaches a from the left. Thus,

lim

x—a- X —d

lim = 4o and

x—at X —a

—00
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Solution (b). InFigure2.1.12b, the function increasesindefinitely as x approachesa from
both the left and right. Thus,

lim

x—a (x —a)2 - x—at (x —a)2 =x—>a* (x —a)2 =t

Solution (). InFigure2.1.12c, thefunction decreasesindefinitely as x approachesa from
the right and increases indefinitely as x approaches a from the left. Thus,

lim =-—0 and Iim

x—at X —a x—>a- X —da

:+CD

Solution (d). In Figure 2.1.12d, the function decreases indefinitely as x approaches a
from both the left and right. Thus,

lim |

i>a (x —a)2 xl—l>rg+ (x—a)? XILT* (x —a)?

Geometricaly, if f(x)— 4w asx —a~ or x — a*, then the graph of y = f(x) rises
without bound and squeezes closer to the vertical linex = a ontheindicated sideof x = a.
If f(x)—> —casx—a~ orx—a™,thenthegraph of y = f(x) falls without bound and
sgueezes closer to the vertical linex = a on theindicated side of x = a. In these cases, we
cal theline x = a avertical asymptote. (“Asymptote” comes from the Greek asymptotos,
meaning “nonintersecting.” We will soon see that taking “asymptote” to be synonymous
with “nonintersecting” is a bit misleading.)

215 DEFINITION. A linex = a iscaled a vertical asymptote of the graph of a
function f if f(x)— 4o or f(x) — —o asx approachesa from the left or right.

Example 7 Thefour functions graphed in Figure 2.1.12 all have avertical asymptote at
x = a, which isindicated by the dashed vertical linesin thefigure. <

Thusfar, we have used limitsto describe the behavior of f(x) asx approachesa. However,
sometimes we will not be concerned with the behavior of f(x) near a specific x-value, but
rather with how thevaluesof f(x) behaveasx increaseswithout bound or decreaseswithout
bound. Thisis sometimes called the end behavior of the function because it describes how
the function behaves for values of x that are far from the origin. For example, it is evident
from the table and graph in Figure 2.1.13 that as x increases without bound, the values of

—
lim X =0
X—>+00

X ... -10,000 -1000  -100 -10 -1 X 1 10 100 1000 | 10,000

f(x) --- -00001 -0001 -001 -0.1 -1 f) 1 01 001 0001 00001

<
<

Figure2.1.13

\

X decreasing without bound X increasing without bound



January 10, 2001 13:09 g65-ch2

Figure2.1.15

HOW LIMITS AT INFINITY CAN FAIL
TO EXIST

Sheet number 11 Page number 117 cyan magenta black

2.1  Limits (An Intuitive Approach) 117

f(x) = 1/x are positive, but get closer and closer to 0; and as x decreases without bound,
thevaluesof f(x) = 1/x arenegative, and also get closer and closer to 0. We indicate these
limiting behaviors by writing

lim E=0 and lim E=0

X —>+®o X xX——wo X

More generally:

2.1.6 LIMITSATINFINITY (AN INFORMAL VIEW). If thevaluesof f(x) eventualy get
closer and closer to anumber L as x increases without bound, then we write

Iirpr f(x)y=L or f(x)—>Lasx— +w (13)

Similarly, if the values of f(x) eventually get closer and closer to a number L as x
decreases without bound, then we write

ﬂ@ fx)=L o f(x)—>Lasx——w (14

Geometricaly, if f(x)— L asx — 4, then the graph of y = f(x) eventualy gets
closer and closer to the line y = L asthe graph is traversed in the positive direction (Fig-
ure 2.1.14a); and if f(x)— L as x — —x, then the graph of y = f(x) eventually gets
closer and closer to the line y = L as the graph is traversed in the negative x-direction
(Figure 2.1.14b). In either case we call theline y = L ahorizontal asymptote of the graph
of f. For example, the function in Figure 2.1.13 @l have y = 0 as a horizontal asymptote.

y \Y
Horizontal asymptote y=1L Horizontal asymptote y =1L

@) (b)

Figure2.1.14

2.1.7 DEFINITION. A liney = L iscalled ahorizontal asymptote of the graph of a
function f if

Iirﬂ f(x)y=L or Iirp f(x)y=L

Sometimestheexistence of ahorizontal asymptoteof afunction f will bereadily apparent
from the formulafor f. For example, it is evident that the function

3 1 1
fay = 2F

=34 —
X

has a horizontal asymptote at y = 3 (Figure 2.1.15), sincethe value of 1/x approaches 0 as

x — 4o Or x — —oo. FOr more complicated functions, algebraic manipulations or special

techniques that we will study in the next section may have to be applied to confirm the

existence of horizontal asymptotes.

Limits at infinity can fail to exist for various reasons. One possibility is that the values of
f(x) may increase or decrease without bound as x — 40 Or asx — —o. For example, the
values of f(x) = x2 increase without bound as x — 4o and decrease without bound as
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y Increases
y=x% without
bound
X

Decreases
without
bound

y

y=-x3

Increases
without
bound

X

Figure 2.1.16

Decreases
without
bound

There is no limit as

X — +oo or X —> —oo.

Figure2.1.17

EXERCISE SET 2.1 B Graphing Calculator

Sheet number 12 Page number 118 cyan magenta black

x — —oo; and for f(x) = —x3 the values decrease without bound as x — 4 and increase
without bound as x — —oo (Figure 2.1.16). We denote this by writing

lim x% =40, lim x3=—-%, lim (=x% = -, lim (=x% =4
X —> +oo X —> —0 X — 4w X—> —w
More generally:
2.1.8 INFINITELIMITSAT INFINITY (AN INFORMAL VIEW). If thevaluesof f(x) in-

crease without bound as x — + or as x — —oo, then we write
lim f(x) =40 or |lim f(x)=+w
X —> —o0

X —> 4o
as appropriate; and if the values of f(x) decrease without bound as x — 4+ or as
x — —oo, then we write

Iirﬂ f(x) = — oOr Iirp f(x) = —oo

as appropriate.

Limits at infinity can also fail to exist because the graph of the function oscillates indef-
initely in such away that the values of the function do not approach afixed number and do
not increase or decrease without bound; the trigonometric functions sinx and cosx have
this property, for example (Figure 2.1.17). In such cases we say that the limit failsto exist
because of oscillation.

CAS

1. Forthefunction f graphed inthe accompanying figure, find
(b) lim /()
© lim f(x)

@ lim fCo)

CIE)

y y =f(x)

3. For thefunction g graphed in the accompanying figure, find
@ lmg) (B limg@) (0 limg(x)
@ 5@ @ lim g0 (f) lim gx).

Y y=9(¥

(© lim ()
() im_fe.

W

.-

2. Forthefunction f graphed inthe accompanying figure, find
(b) lim f(x)
@ lim f@)

@ lim /)

d (@

y y=f(x

Figure Ex-1

[
[
|

Figure Ex-3
© lim f(x)
(f) lim fo.

4. For thefunction g graphed in the accompanying figure, find
@ limg(x) () lim glx) (0 limg(x)

(d) 50 @ lim g () lim ().
y y=9(x
\ M /
\ /

¥ <

Figure Ex-2 Figure Ex-4
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5. For thefunction F graphed in theaccompanying figure, find 9. Forthefunction f graphed in the accompanying figure, find
@ 1im F(x) (0 lim F@&x) (9 lim F(x) @ lim fC) (0 lim fx) (9 lim f(x)
(@ F(-2) @ lim Fe) () lim F(o. @ 13 @ lim f@ () lim feo.
Y y=F(K) y y = f(x)

\

|

)

/
/V S

\
x

-

Figure Ex-5

6. Forthefunction F graphedinthe accompanying figure, find Figure Ex-9
@ lim F(x) (b) lim F(x) (©) lim F(x) . . N ,
x—>3" x—3* x—3 10. Forthefunction f graphedinthe accompanying figure, find

@ e ® Ao Feo O I Fo. @ lim fo O lim 0 (© lim fex)
Yy y=F(® @ 70 ® lim fey () lim f@o).
’ Zd Y y=)
// //
7 X l/
/ /
r ~ /
J/ / X
Figure Ex-6 ? |
7. For thefunction ¢ graphed inthe accompanying figure, find

€) Xﬂrpzfp(x) (b) xﬂrp%d)(X) (© xirgqu(x) Figure Ex-10
@ ¢(=2 © xllnjm¢(x) () Xlingmfp(x) ’ 11. Forthefunction G graphedin the accompanyingfigure, find
Yy em @ lim G () lim G (©) lim G
\ @ GO @ lm Gw (@ lim Gw).
= x y y =G
‘\ s}
\-2
X
\
|
|
Figure Ex-7 Figure Ex-11

8. For thefunction ¢ graphed inthe accompanying figure, find . . N .
. - . 12. Forthefunction G graphedin theaccompanyingfigure, find
@ [lim ¢ (b) lim ¢x) (@ limee) @ lim G () lim G (©) im G
A ¢ © [lim ¢ () lim ¢(x). (d) GO @ lim G () lim Gw.
y y= ()

y y=G(x)

iy

'S

o=t

Figure Ex-8 Figure Ex-12
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13.

14.

Consider the function g graphed in the accompanying fig-
ure. For what values of xo does lim g(x) exist?
X —>XQ

Y y=9(x)

Figure Ex-13

Consider the function f graphed in the accompanying fig-
ure. For what values of xo does lim f(x) exist?
X — Xg

y y =f(x)
J\ ]
1\ /
) Y
/ - p
/ \
/ \\\ X
/
Figure Ex-14
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In Exercises 15-18, sketch a possible graph for afunction f

with the specified properties. (Many different solutions are
possible.)

15. (i) f(0)=2and f(2) =1
(i) lim f(xr) = +eoand lim f(x) = —e

(i) lim f0o) =0and lim f(x) =+

6. () /O=f2=1

17.

18.

(i) ‘Iinz[ f(x) =+wand Iirr21+ fx)=0

(iii) ”[nl, f(x) = —wand Iirfn1+ f(x) = 4o

(iv) Iirﬂ f)=2and lim f(x) =+

(i) f(x) =0if x isaninteger and f(x) # 0if x isnot an
integer

(i) I_|)n1 fGx)=0and lim f(x)=0

(i) f(x) = 1if x isapositive integer and f(x) # 1if
x > Oisnot apositive integer

(i) f(x) = —1if x isanegative integer and f(x) # —1
if x < Oisnot anegativeinteger

(i) lim f()=1and lim f(x)=-1

black

cyan magenta

In Exercises 19-22: (i) Make a guess at the limit (if it ex-
ists) by evaluating the function at the specified x-values.
(if) Confirm your conclusions about the limit by graphing
the function over an appropriate interval. (iii) If you have a
CAS, then useit to find the limit. [Note: For the trigonomet-
ric functions, be sure to set your calculating and graphing
utilities to the radian mode.]

~1
19. (3) Iimlxsil; x=21511 101 1001 0,05, 0.9,
x—>1 XY —
0.99, 0.999
1
(b) lim %; x=2,15,1.1,1.01, 1.001, 1.0001
X — + X p—
. 1
Clmxi;xz,.,.,.,.,.
lim 3+1 0,0.5, 0.9, 0.99, 0.999, 0.9999
x—1" X2 —
 rri-o1
20. @ lim N T~ 40.25,40.1, £0.001,
X —> X
-£0.0001
Vitisl
(b) lim Nt — 025 0.1, 0.001, 0.0001
X — X
Viti+l
© lim X .~ _0.25,-01, —0.001,
x— 0" x
~0.0001
21 (@) lim SN 10.25,40.1, 40,001, +0.0001
x— X
Ccos
(b) L. —0,-05,-0.9, —0.99, —0.999,
x—>-1x+ 1
~15,-1.1,-1.01, —1.001
ot 1
22. (@ lim 2D 6 05 09, -0.99, —0.999,
xr—>-1 x4+1
_ ~15,-1.1, ~1.01, —1.001
() tim 3"V 1025 101, 40,001, +0.0001
x—0 S|n(2x)
23. Consider the motion of the ball described in Example 1. By

24.

interpreting instantaneous velocity as alimit of average ve-
locity, make a conjecture for the value of the instantaneous
velocity of the ball 0.25 s after its release.

Consider the motion of the ball described in Example 1. By
interpreting instantaneous velocity as alimit of average ve-
locity, make a conjecture for the value of the instantaneous

velocity of the ball 0.75 s after its release.

In Exercises 25 and 26: (i) Approximate the y-coordinates
of al horizontal asymptotes of y = f(x) by evaluat-
ing f at the x-vaues +10, +100, +1000, +100,000, and
4100,000,000. (ii) Confirm your conclusions by graphing
y = f(x) over an appropriate interval. (iii) If you have a
CAS, then useit to find the horizontal asymptotes.

2x+3 3\"

B@ =200 o= (14 )
x2+1
© fw =21
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2_1 1\
%@ f0)=g5 5 (b) f(x) = (2+ ;)
© foo =30
X

27. Assume that a particle is accelerated by a constant force.
Thetwo curvesv = n(t) and v = e(r) inthe accompanying
figure provide velocity versus time curves for the particle
as predicted by classical physics and by the special theory
of relativity, respectively. The parameter ¢ designates the

Sheet number 15 Page number 121
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31. Supposethat f(x) denotesafunction such that

Iin?)f(l/t) =L
t—
What can be said about

Qrgm SO and - lim f(x)?

32. (& Do any of the trigonometric functions, sinx, cosx,

tanx, cot x, secx, cscx, have horizontal asymptotes?
(b) Do any of them have vertical asymptotes? Where?

speed of light. Using the language of limits, describe the [ 33. (a) Let

differencesin the long-term predictions of the two theories.

v =n(t)
(Classical)

v =e(t)
(Relativity)

Velocity

Time
Figure Ex-27

28. Let T = f(r) denote the temperature of a baked potato ¢
minutes after it has been removed from a hot oven. The ac-
companying figure showsthetemperature versustime curve
for the potato, where r is the temperature of the room.

(8 What isthe physical significance of tirg f@®)?

(b) What isthe physical significanceoftlirr f@®?

T

E 400¢

(o)

Ei

g T =1(t)

€

& ree—m———1————(—(———=——___
t

Time (min)
Figure Ex-28

In Exercises 29 and 30: (i) Conjecture alimit from numerical
evidence. (ii) Use the substitution r = 1/x to express the
limit as an equivalent limit in whicht — 0t ort — 0, as
appropriate. (iii) Use agraphing utility to make a conjecture
about your limit in (ii).

. (1 . 1—x
N 29. (@ xl_l)nlwxsn<;> (b) xl—l>m}—ool+x
(© lim <1+2>X
x> —o0 X
R 30. @ lim costr/x) () lim

x>+ q/x x>0 14 x

© lim 1-—20)Y*

1.1/x?

flx) = (l + xz)

Graph f inthewindow [—1, 1] x [2.5, 3.5] and usethe
calculator’strace feature to make a conjecture about the
limit of f asx— 0.

(b) Graph f inthewindow [—0.001, 0.001] x[2.5, 3.5] and
use the calculator’s trace feature to make a conjecture
about the limit of f asx — 0.

(c) Graph f in the window [—0.000001, 0.000001] x
[2.5, 3.5] and use the calculator’s trace feature to make
a conjecture about the limit of f asx — 0.

(d) Later wewill be able to show that

X2
lim (1++%)"" ~ 3.00416602

What flaw do your graphsreveal about using numerical
evidence (as revealed by the graphs you obtained) to
make conjectures about limits?

Roundoff error is one source of inaccuracy in calculator
and computer computations. Another source of error, called
catastrophic subtraction, occurswhentwo nearly equal num-
bers are subtracted, and the result is used as part of another
calculation. For example, by hand calculation we have

(0.123456789012345 — 0.123456789012344) x 10" =1

However, a calculator that can only store 14 decimal digits
produces a value of 0 for this computation, since the num-
bersbeing subtracted areidentical inthefirst 14 digits. Catas-
trophic subtraction can sometimes be avoided by rearranging
formulas algebraically, but your best defense is to be aware
that it can occur. Watch out for it in the next exercise.

34. (3 Let

X —Sinx

f(x):T

Make a conjecture about the limit of f asx — 0" by
evaluating f(x) at x = 0.1, 0.01, 0.001, 0.0001.

(b) Evaluate f(x) a x = 0.000001, 0.0000001,
0.00000001, 0.000000001, 0.0000000001, and make
another conjecture.

(c) What flaw does this reveal about using numerical evi-
dence to make conjectures about limits?

(d) If you have a CAS, use it to show that the exact value
of thelimit s £.
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[ 35. (8 Theaccompanying figure showstwo different views of
the graph of the function in Exercise 34, as generated
by Mathematica. What is happening?

. 166666

(b) Use your graphing utility to generate the graphs, and
see whether the same problem occurs.

0. 166666

0. 166666
(c) Would you expect a similar problem to occur in the
vicinity of x = 0 for the function

0.005 0.01

— COSx "

1
fx) =

Seeif it does.

-0.001-0.0005 "™ 0. 0005 0’001
Erratic graph generated by Mathematica
Figure Ex-35

2.2 COMPUTING LIMITS

In this section we will discuss algebraic techniques for computing limits of many func-
tions. WWe base these results on the informal development of the limit concept discussed
in the preceding section. A more formal derivation of these results is possible after
Section 2.4.

Our strategy for finding limits algebraically has two parts:
SOME BASIC LIMITS o g g y P
o First we will obtain the limits of some simple functions.

« Then we will develop a repertoire of theorems that will enable us to use the limits
of those simple functions as building blocks for finding limits of more complicated
functions.

We start with the cases of a constant function f(x) = k, the identity function f(x) = x,
and the reciprocal function f(x) = 1/x.

2.2.1 THEOREM. Leta andk bereal numbers.

limk=k limx=a
X—a X—a

1 1

lim — = —w lim — = +ow
x—0 X x—0t Xx

The four limitsin Theorem 2.2.1 should be evident from inspection of the function graphs
shown in Figure 2.2.1.

In the case of the constant function f(x) = k, the values of f(x) do not change as x
varies, so the limit of f(x) is k, regardless of at which number a the limit is taken. For
example,

lim 3=3, [im3 =3, Iim3=3

x——25 x—0 X—>1
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y y=x
fo)=x¢-————————
|
¢ | 1
77777 | =
ae— ‘ X X
1 o f
|
f) =X b — | | 43
. ) L X i
X —» a «— X
A 1
i = lim & =- lim &%=+
le]ax a ang* X “ ><|An;)l‘r X «

Since the identity function f(x) = x just echoesitsinput, itisclear that f(x) = x —a
as x — a. Interms of our informal definition of limits (2.1.1), if we decide just how close
toa we would like the value of f(x) = x to be, we need only restrict itsinput x to be just
asclosetoa.

The one-sided limits of the reciprocal function f(x) = 1/x about 0 should conform
with your experience with fractions: making the denominator closer to zero increases the
magnitude of thefraction (i.e., increasesitsabsolutevalue). Thisisillustratedin Table2.2.1.

Table2.2.1
VALUES CONCLUSION
X -1 -0.1 -0.01 -0.001 -0.0001 ---| As x — 0O thevaue of 1/x
1/x | -1 -10 -100 -1000 -10,000 --- | decreaseswithout bound.
X 1 01 001 0001 0.0001 ---| As x — 0*thevalue of 1/x
1/x 1 10 100 1000 10,000 --- | increaseswithout bound.

The following theorem, parts of which are proved in Appendix G, will be our basic tool
for finding limits algebraically.

2.2.2 THEOREM. Leta beareal number, and suppose that
lim f(x) =L; and limg(x) =1L,
That is, the limits exist and have values L; and L, respectively. Then,
@ lim [f0) +g0] = lIm f(x) + [im g(x) = L1+ L2
(b) x'[]l [f(x) —gx)] = Jﬂ]}l fx) — Xlﬂjl gx)=L1— Ly
© lim[fgol = ( lim £0) ( limg()) = LaLo
lim f(x)
fim L&

x—a 1

= = ided L
I e = Tmetm L, Provdedlz#0

(d)

(e lim /f(x) = »/lim f(x) = /Ly, provided L1 > Oif n iseven,

Moreover, these statements are also true for one-sided limits.
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LIMITS OF POLYNOMIALS AND
RATIONAL FUNCTIONS AS x — a
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A casual restatement of thistheorem is as follows:

(@ Thelimit of a sumisthe sum of the limits.
(b) Thelimit of a difference is the difference of the limits.
(c) Thelimit of a product is the product of the limits.

(d) Thelimit of a quotient isthe quotient of the limits, provided the limit of the denom-
inator is not zero.

(e) Thelimit of an nth root is the nth root of the limit.

¢ REMARK. Although results(a) and (c) in Theorem 2.2.2 are stated for two functions, they

hold for any finite number of functions. For example, if the limitsof f(x), g(x), and A (x)
exist as x — a, then the limit of their sum and the limit of their product also exist asx — a
and are given by the formulas

Nim [0 + g(x) + )] = lim f(x) + [Im g(x) + lim A (x)

lim{feg@he] = (lim @) (lim go) ( lim h@))
In particular, if f(x) = g(x) = h(x), thenthisyields

lim[f@)]* = ( lim f(x))3

More generaly, if n isapositive integer, then the limit of the nth power of afunction isthe

nth power of the function’s limit. Thus,

lim x" = ( lim x)" — g )
For example,
limx*=3*=81

Another useful result follows from part (c) of Theorem 2.2.2 in the special case when
one of the factorsis a constant k:

lim (k- £y = (Jim k) - (Jim f0) =k - (lim fx)) )

X—a

and similarly for lim, _, , replaced by a one-sided limit, lim, _, ,+ or lim, _, ,-. Rephrased,

thislast statement says:

A constant factor can be moved through a limit symbol.

Example 1 Find lim (x2 — 4x + 3) and justify each step.

Solution. First notethat lim, _, 5 x2 = 5% = 25 by Equation (1). Also, from Equation (2),
lim, . s4x = 4(lim, . sx) = 4(5) = 20. Sincelim, .53 = 3 by Theorem 2.2.1, we may
appeal to Theorem 2.2.2(a) and (b) to write

lim (x2 —4x +3) = limx? — lim4x + lim3=25—-20+3=8
x—5 x—5 x—5 x—5

However, for conciseness, it is common to reverse the order of this argument and simply
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write
Iim5 (x> —4x +3) = limx?— lim 4x + Iim53 Theorem 2.2.2(a), (b)
. 2 - .
= ( lim x) —4limx + lim3 Equations(1), (2)
x—5 x—5 x—5
=52_4(5)+3 Theorem 2.2.1
=8 <

¢ REMARK. Inour presentation of limitarguments, wewill adopt the convention of providing
i just aconcise, reverse argument, bearing in mind that the validity of each equality may be
i conditional upon the successful resolution of the remaining limits.

Our next result will show that the limit of a polynomial p(x) at x = a isthe same as
the value of the polynomial at x = a. This greatly simplifies the computation of limits of
polynomials by allowing usto simply evaluate the polynomial.

2.2.3 THEOREM. For any polynomial
px) =co+crx + -+ cpx”
and any real number a,
lim p(x) =co+cra+---+cua" = pla)

Proof.
lim p(x) = lim (co +cx 4+ c,,x")

=limco+ limex +---+ limc¢,x"
X—a X—a X—a
=limcg+cylimx+---+¢, limx"
x—a x—a x—a
=co+cra+--+cpa" = pla) |

Recall that arational functionisaratio of two polynomials. Theorem 2.2.3 and Theorem
2.2.2(d) can often be used in combination to compute limits of rational functions.
5x% + 4

Example 2 Find li :
ple 2 Find im, =3

Solution.
H 3
544 im G+

lim = Th 2.2.2(d
x—2 x —3 |im2(x—3) corem 2224)
5.254+4
= T—g = -44 Theorem 2.2.3 |

2.24 THEOREM. Consider therational function

_ )
fx) = 400

wheren(x) and d(x) are polynomials. For any real number a,
(@) ifd(a) #0, then lim f(x) = f(a).
(b) ifd(a) =0butn(a) # 0, then lim f(x) doesnot exist.
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Proof. If d(a) # 0, then

m £ = fim ")
lef(x) - Ji’l d(x)
lim n(x)

~ Timd)

X—a

Theorem 2.2.2(d)

= —ZEZ; = f(a) Theorem 2.2.3
If d(a) = 0and n(a) # O, then we again appea to your experience with fractions. For
values of x sufficiently near a, the value of n(x) will be near n(a) and not zero. Thus, since
0=4d(a) =lim,_ ,d(x), asvalues of x approach a, the magnitude (absolute value) of the

fraction n(x)/d(x) will increase without bound, so lim, . , f(x) does not exist. |

Asan illustration of part (b) of Theorem 2.2.4, consider

. 5x%44
lim
x—>3 X —
Note that lim, ,3(5x3 +4) = 5-3%+4 = 139 and lim, ,3(x —3) =3—-3=0.Itis
evident from Table 2.2.2 that
. 5x%44
lim
x—3 X —
does not exist.
Table2.2.2
VALUES CONCLUSION
3
X 2.99 2.999 2.9999 ... | Thevalueof 52(( +34 decreases
3 _
% _13,765.45 —138,865.04 —1,389,865.00 ... | without boundas X — 3.
3
3X 3.01 3.001 3.0001 ... | Thevaueof 51(( +34 increases
5x°+4 . B
;(_3 14,035.45 139,135.05 1,390,135.00 ... | without bound as x — 3.

In Theorem 2.2.4(b), where the limit of the denominator is zero but the limit of the
numerator is not zero, the response “does not exist” can be elaborated upon in one of the
following three ways.

e Thelimit may be —oo.
e Thelimit may be +oo.
o Thelimit may be — from one side and +oo from the other.

Figure2.2.2illustrates these three possihilitiesgraphically for rational functions of theform
1/(x —a), 1/(x —a)?, and —1/(x — a).

Example 3 Find
2—x 2—x . 2—x

@M ety OMeacry 9MGTac+2

Solution. Withn(x) =2 —-x andd(x) = (x — 4 (x + 2), we see that n(4) = —2 and
d(4) = 0. By Theorem 2.2.4(b), each of the limits does not exist. To be more specific, we
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t++ - - -0+t - ==
| | |
-2 2 4
) 2—-X
Sign of —<=%
o S T Hx+2)
Figure2.2.3

INDETERMINATE FORMS OF TYPE
0/0
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1 __ 1 _ 1
= — y= y=-—
Yox-a (x-a)? (x-a)?
X X X
a a a
. 1
lim g—=% =+
+ X—a
X—a lim 1 2:+<>o lim — 1 2=~
lim =g =—e0 x—a(X—a) x—a (X—a)
X—a~
Figure2.2.2

analyze the sign of the ratio n(x)/d(x) near x = 4. The sign of the ratio, which is given
in Figure 2.2.3, is determined by the signs of 2 — x, x — 4, and x + 2. (The method of
test values, discussed in Appendix A, provides asimple way of finding the sign of theratio
here.) It follows from this figure that as x approaches 4 from the l€ft, the ratio is always
positive; and as x approaches 4 from the right, the ratio is always negative. Thus,
I 2—x d i 2—x
e —da+r2 T M aa+r2

Because the one-sided limits have opposite signs, all we can say about the two-sided limit
isthat it does not exist. <

The missing case in Theorem 2.2.4 is when both the numerator and the denominator of a
rational function f(x) = n(x)/d(x) have azero at x = a. Inthiscase, n(x) and d(x) will
each have afactor of x — a, and canceling this factor may result in arational function to
which Theorem 2.2.4 applies.

2
—4
Example 4 Find lim = 5

x—=2 X —

Solution. Since 2 isazero of both the numerator and denominator, they share acommon

factor of x — 2. The limit can be obtained as follows:
. x?—4  x=2(x+2
lim =lim ————

x—>2 X — x—2 X —

= lim (x+2) =4 <

REMARK. Although correct, the second equality in the preceding computation needs some

justification, since canceling the factor x — 2 alters the function by expanding its domain.

However, asdiscussed in Example5 of Section 1.2, thetwo functionsareidentical, except at

x = 2 (Figure 1.2.9). From our discussionsin the last section, we know that this difference

has no effect on the limit as x approaches 2.

Example 5 Find

2 2
— — —1

a) lim T
@ x>-4x24x —12 x—5x2 —10x + 25

x—3 x—3
Solution (a). The numerator and the denominator both have azero at x = 3, so thereisa
common factor of x — 3. Then,

x2—6x+9 . (x=23)2
m————=lim

x—3 x—3 x—>3 X —

=)!I_r)r13(x—3):0
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Solution (b). The numerator and the denominator both have azero at x = —4, sothereis

acommon factor of x — (—4) = x + 4. Then,

2x +8 _ 2(x + 4) _ 2 2
lim ———— = |lim

[im ——— = = —
xo—4x24x—12 x>-4(x+Hx—-3) 1>-4x-—3 7

Solution (c). The numerator and the denominator both have azero at x = 5, sothereisa
common factor of x — 5. Then,

2_3x—-10 -5 2 2
X X _“mw_“m”

lim —— = =
x>5x2—-10x+25 x>5(x —-5(x—-5 xr-5x—-5
However,
Iim5(x+2)=7;£0 and |im5(x—5)=0
By Theorem 2.2.4(b),
. x2-3x—10 Lox+2
lim ———— = |Iim
x»5x2—10x+25 x>5x —5
does not exist. |

The case of alimit of aquotient,

lim fx)

x—a g(x)
where lim, _,, f(x) = 0and lim,_,, g(x) = 0, is caled an indeterminate form of type
0/0. Note that the limits in Examples 4 and 5 produced a variety of answers. The word
“indeterminate” here refers to the fact that the limiting behavior of the quotient cannot
be determined without further study. The expression “0/0" is just a mnemonic device
to describe the circumstance of a limit of a quotient in which both the numerator and
denominator approach 0.

X
Example 6 Find lim ———.
P =0 /x+1-1

Solution. Recall that in Example 2 of Section 2.1 we conjectured this limit to be 2. Note
that this limit expression is an indeterminate form of type 0/0, so Theorem 2.2.2(d) does
not apply. One strategy for resolving this limit isto first rationalize the denominator of the
function. Thisyields

X _x(vx+1+l)_m+l

= 0
itiol G+D-1 7
Therefore,
X
[im —— =IlimWx+14+1) =2 |
X%O«/x_{-l_]_ an( . )

For functions that are defined piecewise, atwo-sided limit at an x-value where the formula
changes is best obtained by first finding the one-sided limits at that number.

Example 7 Let
/(x+2), x<-2

flx) = x2—5, —2<x<3
Vx + 13, x >3
Find

@ lim fx) () Iim fG)  (¢) lim f(x)
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Solution (a). Asx approaches —2 from the left, the formulafor £ is

fa) = —

= x+2

so that
g 0= iy ==

As x approaches —2 from theright, the formulafor f is
f(x)=x2-5

so that

|im2+ flx) = Iin;(xz -5 =(-2%?-5=-1
Thus, lim, _, _» f(x) does not exist.

Solution (b). Asx approaches 0 from either the |eft or the right, the formulafor f is
fx)=x*-5

Thus,
fim 0) = s =9 = - 5= -5

Solution (c). Asx approaches 3 from the left, the formulafor f is
f(x)=x2-5
o that
i )= lim (-9 =5~ 5 =4
As x approaches 3 from theright, the formulafor f is
fx) =+x+13
So that
lim o = lim, Vx+13= lim (x +13) = V3+13=4
Since the one-sided limits are equal, we have
fim 1) =4 <

1. Ineach part, find the limit by inspection.

@ IimS7
(©) Iim23x

2. In each part, find the stated limit of f(x) = x/|x| by in-

spection.
(@ lim (o)
© lim /)
3. Giventhat
lim f(x) =2,

limgkx)=-4, limh(x)=0

(b)
(d)

(b)
(d)

find the limits that exist. If the limit does not exist, explain

lim 7 why.
x 0 @ lim [f(x) + 2g(x)] (b) lim [A(x) — 3g(x) + 1]
||n’]4r 12y x—a x—a
Vs (© lim [f(x)g(x)] (d) xlig]l[g(x)]z
(@ lim J6+ f(x) (f) lim 5
lim_ f(x) e B roa
x?—S (g) lim Bf(x) 8g(x) (h) lim 7g(x)
Jim 7 AT 2 2£(0) + (o)

4. Use the graphs of f and g in the accompanying figure to
find the limits that exist. If the limit does not exist, explain
why.
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5.

11.

13.

15.

17.

19.

21.

23.

25.

27.

29.

1
© lim /& () lim =+ 8&)
x»21+g(x) x—2 f(x)
@ lim v f(x) ) lim Vf()
Y y=1 Y
N
™ {
x /
/
/
Figure Ex-4
In Exercises 5-30, find the limits.
-1 _2 2_2x
lim =D =2 6. lim >
y—>2- y+1 =3 x+1
jim © 16 8 lim >~ 9
Txo4 x—4 " x>0x3—12x + 3
4 _ 3
lim a ! 10. lim r+8
r—>1r x =1 t>-21+2
. x°46x+5 X2 —4dx+4
lim —M— 12. lim ——
x—>-1x2—3x —4 x>2 x24+x—6
13432121+ 4 3412 -5 43
lim 14. lm —————
(—2 13— 4t t>1 3—-3t+4+2
lim 16. lim
X*>3+X—3 x~>3*x—3
lim 18.
r—3x —3 x—2tx2—4
li 20. lim ———
anZ]* x2—4 0 x@2x2—4
y+6 . y+6
im 22. i
y—6" y2 — 36 y—6- y2—36
. y+6 ) 3—x
lim 24. i
v—>6y2—36 x~>4+x2—2x—8
3—x 3—x
lim 26. lim
x—>4‘x2—2x—8 x»4x2—2x—8
li ! 28. i !
x— 2 |2—x| x—3 |x—3|
-9 4 —
lim - 30. i Y
x—>9,/x — 3 y—>42—/y

@ 1im [ +g)]
© lim [70) +g(@)]

X

() lim [£(x) + g(o)
(@ lim [0 +g ()]
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31.

32.

33.

35.

36.

37.

38.

black
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Verify the limit in Example 1 of Section 2.1. That is, find
. —1612 4 291 — 10.5
lim
11— 0.5 1 — 0.5
Let s(r) = —16¢2 + 29 + 6. Find
s(t) —s(1.5)
—-15 t—15
Let
Foo) = x—1 x<3
= x—-7, x>3
Find
@ lim fey (0 lim f) (9 lim f(x).
Let
o = 12, t>0
0%l —2 <o
Find
@ lim g () 1im (1) (© limg ().
3
-1
Let f(x) = ——~.
x—1

(& Find !imlf(x).
(b) Sketchthe graphof y = f(x).

Let
x2-9
i -3
fo=1x13 *7
k, x=-3

(@ Findk sothat f(—3) = Iin_13f(x).

(b) With k assigned the value lim, _, _3 f(x), show that
f(x) can be expressed as a polynomial.

(& Explain why the following calculation is incorrect.
1 1
lim|-——= )= lim —— lim —
x—0F \ X x2 x—0t Xx x— 0+ x2

11
(b) Show that lim (7 - 7) = —c,

X X

. . 1 1
Find lim ( — + = )
x—0" \ x X

In Exercises 39 and 40, first rationalize the numerator, then

find the limit.
o Vx4+4-2 . Vx24+4-2
39. lim — 40. lim ———
x—0 X x—0 X
41. Let p(x) and g (x) be polynomials, and suppose g (xo) = O.

Discuss the behavior of the graph of y = p(x)/g(x) inthe
vicinity of x = xo. Give examples to support your conclu-
sions.
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2.3 COMPUTING LIMITS: END BEHAVIOR

In this section we will discuss algebraic techniques for computing limits at +o for
many functions. We base these results on the informal development of the limit concept
discussed in Section 2.1. A more formal development of these results is possible after
Section 2.4.

The behavior of afunction toward the extremes of its domain is sometimes called its end

SOME BASIC LIMITS behavior. Herewewill uselimitsto investigate the end behavior of afunctionasx — —o or
asx — 4. Asinthelast section, wewill begin by obtaining limits of somesimplefunctions
and then use these as building blocks for finding limits of more complicated functions.

2.3.1 THEOREM. Letk beareal number.
lim k=k lim k=k
X — —oo X —> 4+
lim x = — lim x = 4o
X —> —oo X — 4+
1 .1
lim —=0 lim —=0
X—>—w X X—>+w X
The six limits in Theorem 2.3.1 should be evident from inspection of the function graphs
in Figure 2.3.1.
y y y=X
<« X X T
1
j ‘ f) =xb
—(x) = \
K y=f(x) =k } }
\
\ \
| | A 1100 =x |
| X
\ \ .
. s X ¢ X —>
<« X X —>»
y=x
lim k=k, lim k=k lim X =—o0 lim X =+oc0
X—>+oo X—>—00 X——o0 X—>+oo

X[

. . 1
lim Y=0 lim =0
X——o0 X—>+oo

Figure2.3.1
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The limits of the reciprocal function £ (x) = 1/x should make sense to you intuitively,
based on your experience with fractions: increasing the magnitude of x makesitsreciprocal
closer to zero. Thisisillustrated in Table 2.3.1.

Table2.3.1

VALUES CONCLUSION

X -1 -10 -100 -1000 -10,000 --- | As x — —oo thevalue of 1/x

1/x | -1 -01 -0.01 -0.001 -0.0001 --- | increasestoward zero.
X 1 10 100 1000 10,000 --- | As X — +oo the value of 1/x
1/x 1 0.1 001 0.001 0.0001 --- | decreasestoward zero.

The following theorem mirrors Theorem 2.2.2 as our tool for finding limits at +-o alge-
braically. (The proof is similar to that of the portions of Theorem 2.2.2 that are proved in
Appendix G.)

2.3.2 THEOREM. Supposethat
lim f(x)=L; and Iirﬂ gx) =L,

X — +oo
That is, the limits exist and have values L1 and L, respectively. Then,
@ lim [f0)+g@] = lim fG)+ lim g)=Li+ Lo

® lim [0 —g@] = lim ()~ lim g = Ly~ Ls
© Jim e = (im go0) (lim_ew) = Lats

lim f(x)
lim Ao ot = E provided L, # 0
x—>+x g(x) |IT glx) Lo

(d)

@ lim Vfx) = C/xﬂ)rﬂmf(x) = /Ly, provided L, > Oif n iseven.

X — 4o

Moreover, these statements are also true if x — —co.

¢ REMARK. Asintheremark following Theorem2.2.2, results(a) and (c) can be extended to
i sumsor products of any finite number of functions. In particular, for any positiveinteger n,

im (G0 = (xﬂ”lw f(x)) lim ()" = ( lim_ f(x))

Also, sincelim, _, ,..(1/x) = O, if n isapositive integer, then

1 1y
lim —=< lim —> =0 1)
x——o0o xN X—>—0 X

1 1y
lim —:( lim —) =0
x—+oo x" X —+ow X
For example,
. 1 . 1
lim —=0 and Im — =0
X —> +oo x4 X —> —0 x4

Another useful result follows from part (c) of Theorem 2.3.2 in the special case where
one of the factorsis a constant :

Jim (k- fQ0) = ()ﬂmj) : (xﬂmw f(x)> =k- (xﬂmwf(x)> )
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and similarly, for lim, _, ;. replaced by lim, _, ... Rephrased, this last statement says.

A constant factor can be moved through a limit symbol.

""""""" e n Figure 2.3.2 we have graphed the polynomials of the form x” for n = 1,2, 3, and 4.
LIMITS OF x" AS x — oo Below each figure we have indicated the limits as x — +o0 and as x — —c. Theresultsin
the figure are special cases of the following general results:
Iirn x'"=4w, n=123,... 3
. —o, n=135,...
lim x" = 4
X —o 40, n=24,6,...
LY y y AY
8 8 g |y=x3 sh | y=x'
Toy=x - [y=x® i i
| | X | | X | | X | | X
-4 4 -4 4 -4 4 —4 4
-8 -8F -8 F -8F
lim X = +oo lim X% = 4o lim x3 = 4o lim x* = +oo
lim x=—oo lim x%= oo lim x%= —co lim x* = +eo
Figure 2.3.2
Multiplying x" by apositivereal number doesnot affect limits(3) and (4), but multiplying
by a negative real number reverses the sign.
Example 1
lim 2¢° = +oo, lim 2x° = —oo
lim —7x% = —o0, lim —7x° = —o <
"""""""""""""""""""""" Thereis auseful principle about polynomials which, expressed informally, states that:
LIMITS OF POLYNOMIALS AS

X — Zoo
The end behavior of a polynomial matches the end behavior of its highest degree term.

More precisaly, if ¢, # 0then

lim (co+clx+-~-+cnx") = lim ¢,x" (5)
X —> —0o0 X —> —0

lim (co +cox 4+ c,,x”) = lim ¢,x" (6)
X —> +oo X —> too

We can motivate these results by factoring out the highest power of x from the polynomial
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and examining the limit of the factored expression. Thus,
co Cc1
cotcix+ - Fopx =x" <’1+ﬁ+~-~+cn>
X X
ASx — — OF x — o, it follows from (1) that all of the terms with positive powers of x
in the denominator approach 0, so (5) and (6) are certainly plausible.

Example 2
lim (7x® =4 +2x —9) = lim 7x® = —o
lim (—4x®+17x° —5x + 1) = Nim —4x8 = —oo <
xX—> —® o

A useful techniquefor determining theend behavior of arational function f(x) = n(x)/d(x)
is to factor and cancel the highest power of x that occurs in the denominator d(x) from
both n(x) and d(x). The denominator of the resulting fraction then has a (nonzero) limit
equal to the leading coefficient of d(x), so the limit of the resulting fraction can be quickly
determined using (1), (5), and (6). The following examplesillustrate this technique.

Example 3 Find lim 3x+5.

xX—> 4o OX —

Solution. Divide the numerator and denominator by the highest power of x that occurs
in the denominator; that is, x* = x. We obtain

. 3x+5 . x(3+5/x) . 345/« xﬂrgw(3+5/x)
lim = lim =——~2 — l|im _

x>+26x —8 x—>+ox(6—8/x) x1—>+»6—8/x |il”51r (6 —8/x)

[im 3+ lim 5/x 345 I|m 1/x

Irnie—ilmis/x i
Example 4 Find
@ im 2t @ im 22

Solution (a). Dividethe numerator and denominator by the highest power of x that occurs
in the denominator, namely x2. We obtain

lim 4x? — x _ lim x3(4/x — 1/x?) — lim 4/x —1/x?

xX— — 002x3 _x—>—°c x3(2—5/x3) _X—>—°° 2—5/}63
_m @ -1 “0-0_0_,
~ lim 2-5/x%)  2-(5- 0) T2

Solution (b). Divide the numerator and denominator by x to obtain
5x3 —2x2 +1 . Bx?2—2x +1/x

Iim ————m— = Im ——————— =4

X— — 3x+5 X —> —w 3+5/X
where the final step isjustified by the fact that
1 5

5x2 —2x— 4w, -—0, ad 3+=-—3
X X

asx — —oo. |
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y=Vx8+5x3-x3 x>0

(b)
Figure2.3.3
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. . 3x+5
Example 5 Find lim 3 .
P x—>+ | 6x — 8

Solution.
. 3 3x+5 3 . 3x+5
lim — = lim Theorem 2.3.2(€)
x—+o | 6x — 8 x—+» B6x — 8
3/l
= — Ex le3
5 ample ) |

Example 6 Find

@ lim Y5F2 gy jim Y F2
x—+x 3x — 6 x—>—-» 3x — 6

In both parts it would be helpful to manipulate the function so that the powers of x are

transformed to powersof 1/x. Thiscan be achieved in both cases by dividing the numerator

and denominator by |x| and using the fact that +/x2 = |x|.

Solution (a). Asx — oo, the values of x under consideration are positive, so we can
replace |x| by x where helpful. We obtain
Va2 +2/v/x?

Vx2+2 lim Vx242/|x|

_xi+w(3x—6)/|x| @ —e)x (3x—6)/x

lim

V1+2/x2 xﬂmw V1+2/x2

= ~ Tlim 3-6/x)
X — +oo

x—>+o 3—6/x
/ I|m 1+ 2/x?) \/ I|m 1 ZXI_LTxl/x)

e (mﬁ)—(ﬁxml/x)
1r2.0 1
T 3-(6.0 3

Solution (b). Asx — —o, the values of x under consideration are negative, so we can
replace x| by —x where helpful. We obtain
VaZ+2 lim Vx2+2/Ix| Vx2 +2//x?
T B 6)/l| e By~ 6)/(—x)
V1+2/x2 1

= lim Y228 2
i>-x —3+6/x 3 <

lim

x——-» 3x — 6

FOR THE READER.
/ 2+2
-6

Use a graphing utility to explore the end behavior of

fx) =

: Your mvestlgatlon should support the results of Example 6.

Example 7 Find

(@ L'T (Vx8+5—x3) (b) L'T (vx8 +5x3 — x3)

Solution. Graphsof thefunctions f(x) = v/x6 +5—x3and g(x) = v/x6 + 5x3 —x3 for
x > Oareshownin Figure 2.3.3. From the graphs we might conjecture that the limitsare 0
and 2.5, respectively. To confirm this, we treat each function as afraction with denominator
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1 and rationalize the numerator.

/x6 £ 51 3
”T (Vx8+5—x% = ”T (Vx8+ —x3)< i +x>

x84+ 54 x3
. (x®+5) — x . 5
= |lim ————— = Iim ——
xote X6+ 54 x3 w36+ 54 x3
= lim 5/ =
—x_>+oc 1—|—5/x6—|—1 x6=x3forx >0
C J1+0+1
/x84 5x3 4 x8
lim (vVx8+5x3 —x%) = lim (Vx8+5x3 —x%) | ——
X — +o X — +o /x6+5x3+x3
— im (x84 5x%) — x5 — lim 5x3
x—> +o /x6+5x3+x3 X — +o /x6+5x3+x3
lim —5 N 3
= x6=x3forx >0
x=e T4 /x5 + 1 =
5 5
== - <
J1+0+1 2
¢ REMARK. Example 7 illustrates an indeterminate form of type co — co. Exercises 31-34

explore more examples of thistype.

EXERCISE SET 2.3 ™ Graphing Calculator

1. Ineach part, find the limit by inspection. @ E)nj [2f(x) —g(x)] (D) UJU [6f(x) + 7g(x)]

@ lim (-3

(b) lim (—2h)

. In each part, find the stated limit of f(x) = x/|x| by in-
spection.
@ lim f)

. Given that

® lim @)

Jim ) =3, lim g(x)=-5 lim h(x)=0

find the limits that exist. If the limit does not exist, explain
why.
@ lim [f() +3g(0)]

© 1im [£0g)]

() lim [h(x)—4g(0)+1]
@ lim [g00)?

. 3 . 3
@ lm ¥ O lim =
. 3h(x)+4 . 6f(x)
@.Im O 570 + 3%
. Given that
|ir£l fx) =17, |irTJ g(x)=—-6

find the limits that exist. If the limit does not exist, explain
why.

(© lim [*+ g(0)]

@ lim [x*g(0)]

: g(x) xfx)
@ tim_[s0+52] @ im0

In Exercises 5-28, find the limits.

. . 1
5 lim 3—x) 6. lim <5—7>
X — —o0 X —> — X
7. Iirn (1+ 2x — 3x°) 8. Iir’rl (2x3—100x +5)
9. Iirﬂ Jx 10. lim +/5—x
2 _
11, lim >+t 12 lim X%
x—>+22x — 5 x>+ 2243
13. lim i 14. lim
y_>_my+4 x—>+°cx—12
x—2 5x2 4+ 7
15. lim —— 16. lim
x> - x2 4 2x + 1 x>+ 3x2 — x
_ 52 7 _ A5
17. lim g2+ 3x —5x* 18. lim 33’ —4s®
xoto | 1+ 8x2 s\ 257+ 1
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19.

21.

23.
25.

27.
29.

30.

g65-ch2 Sheet number 31
5x2 -2 5x2 -2
lim Y22 < 20. lim Y2
x>-w  x+4+3 x—>te x4+ 3
. 2—y . 2—y
lim —— 22. lim ———
y— —% /7+6y2 y— 4o /7+6y2
. V3t +x V3t +x
lim ———— 24. lim ———
X—> —0 x2—8 X — 4o x2—8
7 —6x° 5— 218
li 26. lim =———
xiﬂ x+3 t~l>700 211
6—r° x4 4x3
lim ——— 28. lim ——————
UL 7343 xlfwl—x2+7x3
Let
2x2 45, x<0
fx) = 3—5x83
— x>0
1+4x +x3
Find
@ Ilim f(x) (b) _“fﬂ f(x).
Let 243
et i < 1,000,000
© 5t2 + 6
g =
3612 — 100
:, t > 1,000,000
5-1¢
Find
@ lim g ) lim ().

In Exercises 31-34, find the limits.

31

33.

34.
35.

36.

37.

38.

39.

Iirn (Vx2+3—x)
lim (vVx24+ax — x)

X —> +o

Iirﬂ W2+ ax —/x2 + bx)

32. Iirﬂ (Vx2—=3x —x)

Discuss the limits of p(x) = (1 — x)" asx — 4o and
x — —oo for positive integer values of n.

Let p(x) = (1 — x)" and g(x) = (1 — x)™. Discuss the
limits of p(x)/gq(x) asx — 4o and x — — for positive
integer values of m and n.

Let p(x) be a polynomial of degree n. Discuss the limits
of p(x)/x™ as x — 4o and x — —oo for positive integer
values of m.

In each part, find examples of polynomias p(x) and g (x)
that satisfy the stated condition and such that p(x) — +o
and g (x) — +oo asx — +oo.

(8 lim %=1 ®) lim %_o
© Jim 20— @ lim [p0 —g0] =3

Assuming that m and n are positive integers, find
. 243"
lim

x—>—w 1 —xm

[Hint: Your answer will depend on whether m < n, m = n,
orm > n.]
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40. Find

lim co+c1x + -+ cpx”
x>todo+dix + -+ dypx™
wherec, # 0and d,, # 0. [Hint: Your answer will depend
onwhetherm < n,m =n,orm > n.]

Thenotion of an asymptote can be extended to include curves
as well as lines. Specificaly, we say that f(x) is asymptotic
tog(x) asx — +co if

Jim [f() —g()] =0
and that f(x) isasymptotic to g(x) asx — —oo if
Jim [£00) —g@)] =0

Informally stated, if f(x) isasymptotic to g(x) asx — o,
thenthegraphof y = f(x) getscloser and closer to thegraph
of y = g(x) asx — 4o, and if f(x) isasymptoticto g(x) as
x — —oo, then the graph of y = f(x) gets closer and closer
to the graph of y = g(x) asx — —w. For example, if

f(x)=xz+72 and g(x):x2

x—1
then f(x) isasymptotic to g(x) as x — +o and as x — —oo
since

xl—l>m¢—oo[f(x) B g(x)] - xir—rgoo x—1 -

lim [0 — ] = lim 2= =0

— -0 X —

Thisasymptotic behavior isillustrated inthefollowingfigure,
which also shows the vertical asymptote of f(x) at x = 1.

In Exercises 4146, determine afunction g(x) towhich f(x)
is asymptotic asx — 4o or x — —c. Use agraphing utility
togeneratethegraphsof y = f(x) andy = g(x) andidentify
all vertical asymptotes.

2 _ 3_
K 4L f(x)=xx_22 K 42 f(x):%x—i_s
—x3 424 x-1
N 43 flx)= -
x°—x343
B M0 =mT
i 1 x3—x242
~ 45 f(x):smerm N 46. f(x) = —
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2.4 LIMITS (DISCUSSED MORE RIGOROUSLY)

Thus far, our discussion of limits has been based on our intuitive feeling of what it
means for the values of a function to get closer and closer to a limiting value. How-
ever, this level of informality can only take us so far, so our goal in this section is to
define limits precisely. From a purely mathematical point of view these definitions are
needed to establish limits with certainty and to prove theorems about them. However,
they will also provide us with a deeper understanding of the limit concept, making it
possible for us to visualize some of the more subtle properties of functions.

In Sections2.1to 2.3 our emphasiswasonthediscovery of valuesof limits, either throughthe
sampling of selected x-values or through the application of limit theorems. In the preceding
sections we interpreted lim, ., f(x) = L to mean that the values of f(x) can be made
as close as we like to L by selecting x-values sufficiently close to a (but not equal to a).
Although this informal definition is sufficient for many purposes, we need a more precise
definition to verify that aconjectured limit isactually correct, or to prove the limit theorems
in Sections 2.2 and 2.3. One of our goalsin this section is to give the informal phrases “as
close aswe liketo L” and “sufficiently closeto a” a precise mathematical interpretation.
Thiswill enable usto replace the informal definition of limit given in Definition 2.1.1 with
amore fully developed version that may be used in proofs.

To start, consider thefunction f graphed in Figure 2.4.1afor which f(x) - L asx — a.
We have intentionally placed a hole in the graph at x = a to emphasize that the function
f need not be defined at x = a to have alimit there. Also, to simplify the discussion, we
have chosen afunction that is increasing on an open interval containing a.

y y=1(x) y y=1(x) y y=1(x)
7777777777 L+ep— +el
v ! ! - —————— |
L ‘ | Li———— ‘ | LpF———— - |
\
| | |
1‘7/ | L‘e/ | L-e / L
| 1 X I 1 X Lo x
—> a<— Xo a X, Xp a X Xq
@ (b) ©
Figure2.4.1

To motivate an appropriate definition for atwo-sided limit, suppose that we choose any
positive number, say €, and draw horizontal linesfrom L 4+ € and L — € on the y-axisto the
curvey = f(x) andthen draw vertical linesfrom those points on the curveto the x-axis. As
shown in Figure 2.4.1b, let xg and x; be points where the vertical linesintersect the x-axis.

Next, imagine that x gets closer and closer to a (from either side). Eventually, x will
lie inside the interval (xo, x1), which is marked in green in Figure 2.4.1c; and when this
happens, the value of f(x) will fall between L — € and L + ¢, marked in red in the figure.
Thus, we conclude:

If f(x)— L asx — a, then for any positive number ¢, we can find an open interval
(x0, x1) on the x-axis that contains a and has the property that for each x in that
interval (except possibly for x = a), thevalue of f(x) isbetween L — ¢ and L + €.

¢ FORTHE READER. Consider the limit, lim, _, o(sinx)/x, conjectured to be 1 in Example
¢ 3of Section 2.1. Draw afigure similar to Figure 2.4.1 that illustrates the preceding analysis
¢ for thislimit.
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What is important about this result is that it holds no matter how small we make e.
However, making ¢ smaller and smaller forces f(x) closer and closer to L—which is
precisely the concept we were trying to capture mathematically.

Observe that in Figure 2.4.1c the interval (xq, x1) extends farther on the right side of a
than on the left side. However, for many purposes it is preferable to have an interval that
extends the same distance on both sides of a. For this purpose, let us choose any positive
number § that issmaller than both x; —a and a — xo, and consider theinterval (a — 68, a +6).
Thisinterval extends the same distance § on both sides of a and lies inside of the interval
(x0, x1) (Figure 2.4.2). Moreover, the condition L — ¢ < f(x) < L + € holds for every
x inthisinterval (except possibly x = a), since this condition holds on the larger interval
(x0, x1). Thisisillustrated by graphing f inthewindow (¢ — 8, a+8) x (L —¢, L +¢) and
observing that the graph “exits’ the window at the sides, not at the top or bottom (except
possibly at x = a).

Example 1 Let f(x) = 3x +  sin(zx/2). It can be shown that lim f(x) = L = 0.75.
Let e = 0.05. it

(8 Useagraphing utility to find an openinterval (xg, x1) containing a = 1 such that for
each x inthisinterval, f(x) isbetween L —e¢ = 0.75— ¢ = 0.75— 0.05 = 0.70 and
L+¢e¢=0.75+¢=0.75+40.05 = 0.80.

(b) Find avalue of § such that f(x) is between 0.70 and 0.80 for every x in the interval
(1-14,1+9).

Solution (a). Figure 2.4.3 displays the graph of f. With a graphing utility, we discover
that (to five decimal places) the points (0.90769, 0.70122) and (1.09231, 0.79353) are
on the graph of f. Suppose that we take xo = 0.908 and x; = 1.09. Since the graph
¢ t—— —> of f rises from left to right, we see that for xg = 0.908 < x < 1.090 = x;, we have

X a-=9§ a aro Xy
Figue24.2 0.90769 < x < 1.09231 and therefore 0.7 < 0.70122 < f(x) < 0.79353 < 0.8.
1gu 4.
Solution (b). Sincex; —a = 1.09—1 = 0.09anda — xo = 1—0.908 = 0.902, any value
or § that isless than 0.09 will be acceptable. For example, for § = 0.08, if x belongsto the
interval (1 —6,1+ 8) = (0.92, 1.08), then f(x) will lie between 0.70 and 0.80. |
Note that the condition L — € < f(x) < L + € can be expressed as
|f(x) =Ll <e
and the condition that x liesin theinterval (a — 8, a + 8), but x # a, can be expressed as
1 ky H H H H H H H O < |x - al < 8
= %Xi 2115,"‘ W—ZX) Thus, we can summarize this discussion in the following definition.
T A
R //
0.5 ) 24.1 LIMIT DEFINITION. Let f(x) be defined for al x in some open interval con-
,// taining the number a, with the possible exception that f(x) need not be defined at a. We
R will write
00: ::0:.5:::::1:; x”flf(x):L
Figure2.4.3

if given any number ¢ > 0 we can find anumber § > 0 such that
|[fx)—Ll<e if O<|x—al<?$

¢ REMARK. With this definition we have made the transition from informal to formal in
i the definition of a two-sided limit. The phrase “as close as we like to L” has been given
quantitative meaning by the number ¢ > 0, and the phrase “ sufficiently closeto a” hasbeen
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made precise by the number § > 0. Commonly known as the “e-§ definition” of alimit,
Definition 2.4.1 was devel oped primarily by the German mathematician Karl Weierstrass'
in the nineteenth century.

The definitions for one-sided limits are similar to Definition 2.4.1. For example, in the
definition of lim, _, .+ f(x) we assume that f(x) is defined for all x in an interval of the
form (a, b) and replace the condition 0 < |x — a| < § by the conditiona < x < a + 4.
Comparable changes are made in the definition of lim, _, .- f(x).

In the preceding sections we illustrated various numerical and graphical methods for
guessing at limits. Now that we have a precise definition to work with, we can actually
confirm the validity of those guesses with mathematical proof. Hereisatypica example of
such a proof.

Example 2 Use Definition 2.4.1 to prove that Iim2 (3x =5 =1

Solution. We must show that given any positive number €, we can find a positive number
8 such that

|3x—-5) — 1|<e if O<|x—2]|<3$ Q)
—_— -
f(x) L a

There are two things to do. First, we must discover a value of § for which this statement
holds, and then we must prove that the statement holds for that §. For the discovery part we
begin by simplifying (1) and writing it as

[3x — 6] <¢ if O<|x—2/ <3

Next, we will rewrite this statement in aform that will facilitate the discovery of an appro-
priate §:

x—2<e if O0<|x—2<$§

@
x—2<e/3 if O0<|x—2<$

It should be self-evident that this last statement holds if § = ¢/3, which completes the
discovery portion of our work. Now we need to prove that (1) holds for this choice of §.
However, statement (1) is equivalent to (2), and (2) holds with § = ¢/3, so (1) also holds
with § = ¢/3. Thisprovesthat lim,_, » (3x — 5) = 1. |

*KARL WEIERSTRASS (1815-1897). Weierstrass, the son of a customs officer, was born in Ostenfelde, Germany.
As a youth Weierstrass showed outstanding skills in languages and mathematics. However, at the urging of his
dominant father, Weierstrass entered the law and commerce program at the University of Bonn. To the chagrin of
his family, the rugged and congenial young man concentrated instead on fencing and beer drinking. Four years
later he returned home without adegree. In 1839 Welerstrass entered the Academy of Minster to study for acareer
in secondary education, and he met and studied under an excellent mathematician named Christof Gudermann.
Gudermann’sideas greatly influenced the work of Weierstrass. After receiving histeaching certificate, Welerstrass
spent the next 15 years in secondary education teaching German, geography, and mathematics. In addition, he
taught handwriting to small children. During this period much of Welerstrass's mathematical work was ignored
because he was a secondary schoolteacher and not a college professor. Then, in 1854, he published a paper of
major importance that created a sensation in the mathematics world and catapulted him to international fame
overnight. He was immediately given an honorary Doctorate at the University of Konigsberg and began a new
career in college teaching at the University of Berlin in 1856. In 1859 the strain of his mathematical research
caused a temporary nervous breakdown and led to spells of dizziness that plagued him for the rest of his life.
Weierstrass was a brilliant teacher and his classes overflowed with multitudes of auditors. In spite of his fame,
he never lost his early beer-drinking congeniality and was always in the company of students, both ordinary and
brilliant. Weierstrass was acknowledged as the leading mathematical analyst in the world. He and his students
opened the door to the modern school of mathematical analysis.
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REMARK. Thisexampleillustrates the general form of alimit proof: We assume that we
are given apositive number €, and wetry to prove that we can find a positive number § such

|f(x) =Ll <e if O<|x—a|l<$ (©)]

This is done by first discovering 8, and then proving that the discovered § works. Since
i the argument has to be general enough to work for al positive values of ¢, the quantity

8 has to be expressed as a function of €. In Example 2 we found the function § = /3
by some simple algebra; however, most limit proofs require a little more algebraic and
logical ingenuity. Thus, if you find our ensuing discussion of “e-3" proofs challenging, do
not become discouraged; the concepts and techniques are intrinsically difficult. In fact, a
precise understanding of limits evaded the finest mathematical minds for more than 150

years after the basic concepts of cal culus were discovered.

Example 3 Provethat ,”n& Jx =0.

Solution. Notethat thedomainof \/x isO < x, soitisvalidtodiscussthelimitasx — 0.
We must show that given € > 0, thereexistsa§ > 0 such that

[Vx—0<e if O0<x<O0+43$

or more simply,

Jx<e if 0<x<3$ (@]
But, by sguaring both sides of the inequality /x < €, we can rewrite (4) as
x<e€X if 0<x<3$ (5)

It should be self-evident that (5) istrueif § = €2; and since (5) isareformulation of (4), we
have shown that (4) holds with § = €2. This provesthat lim, _, o+ /x = 0. |

REMARK. In this example the limit from the left and the two-sided limit do not exist at

x = 0 because the domain of /x includes no numbers to the left of O.

In preparation for our next example, we note that the value of § in Definition 2.4.1 is not
unique; once we have found avalue of § that fulfills the requirements of the definition, then
any smaller positive number §; will also fulfill those requirements. That is, if it istrue that

|f(x)— Ll <e if O<|x—al<$
then it will also be true that
|[f(x) =Ll <e if O<|x—al<é;

Thisisbecause {x : 0 < |x —a| < &1} isasubset of {x : 0 < |x — a| < 8§} (Figure 2.4.4),
and henceif | f(x) — L| < e issatisfied for all x inthelarger set, then it will automatically
be satisfied for all x in the subset. Thus, in Example 2, where we used § = ¢/3, we could
have used any smaller value of § suchass = ¢/4,8 = ¢/5,0r § = ¢/6.

Example 4 Provethat Iim3x2 =0

Solution. We must show that given any positive number ¢, we can find a positive number
8 such that

x2—9<e if O<|x—3 <3 (6)

Because |x — 3| occurs on theright side of this*“if statement,” it will be helpful to factor the
left side to introduce a factor of |x — 3|. Thisyields the following alternative form of (6)

[x+3|lx -3 <e if O<|x—3]<$ @)
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Using the triangle inequality, we see that
x+3=[x—3)+6/<|x—3+6
Therefore, if 0 < |x — 3| < § then
x+3[x =3 <(x—3+6)|x—3 < (+6)§

It follows that (7) will be satisfied for any positive value of § such that (§ + 6)8 < €. Let
us agree to restrict our attention to positive values of § such that § < 1. (Thisisjustified
because of our earlier observation that once avalue of § isfound, then any smaller positive
value of § can be used.) With thisrestriction, (§ + 6)8 < 78, so that (7) will be satisfied as
long asit isaso the case that 76 < . We can achieve this by taking é to be the minimum
of the numberse/7 and 1, which is sometimeswritten as§ = min(e/7, 1). This provesthat
Iimx -3 x2=09. R |

REMARK. Youmay havewondered how weknew to maketherestrictions < 1 (asopposed

tos < % or § < 5, for example). Actually, it does not matter; any restriction of the form
i 8§ < ¢ would work equally well.

In Section 2.1 we discussed the limits
IirE fx)=L and Iirp fx)=L

from an intuitive viewpoint. We interpreted the first statement to mean that the values of
f(x) eventually get closer and closer to L as x increasesindefinitely, and weinterpreted the
second statement to mean that the values of f(x) eventually get closer and closer to L as x
decreases indefinitely. These ideas are captured more precisely in the following definitions
and areillustrated in Figure 2.4.5.

2.4.2 DEFINITION. Let f(x) be defined for al x in some infinite open interval ex-
tending in the positive x-direction. We will write
lim f(x)=1L

X — 4o
if given any number ¢ > 0, there corresponds a positive number N such that
|f(x) — Ll <e if x>N

2.4.3 DEFINITION. Let f(x) be defined for al x in some infinite open interval ex-
tending in the negative x-direction. We will write

lim f(x) =L

if given any number € > 0, there corresponds a negative number N such that
|[f(x)— Ll <e if x<N

To see how these definitions relate to our informal concepts of these limits, suppose
that f(x) — L as x — +oo, and for a given ¢ let N be the positive number described in
Definition 2.4.2. If x is allowed to increase indefinitely, then eventually x will lie in the
interval (N, +o0), which is marked in green in Figure 2.4.5a; when this happens, the value
of f(x) will fall between L — € and L + ¢, marked in red in the figure. Sincethisistruefor
all positive values of ¢ (no matter how small), we can force the values of f(x) asclose as
we liketo L by making N sufficiently large. This agrees with our informal concept of this
limit. Similarly, Figure 2.4.5b illustrates Definition 2.4.3.
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Ay y
L+e /[‘\j 77777777777777777 r[\ L+e
| |
O s N e
Symy L
| |
| |

| X | X
N X —>» «— X N
[f(X)—L|<eifx>N [f()-L|l<eifx<N
@) (b)
Figure 2.4.5

1
Example 5 Provethat lim = =0.

X— 4o X
Solution. Applying Definition 2.4.2 with f(x) = 1/x and L = 0, we must show that
given e > 0, we can find anumber N > 0 such that

1
~-0
X

<e if x>N (8)

Because x — +o0 we can assume that x > 0. Thus, we can eliminate the absolute valuesin
this statement and rewrite it as

—<e if x>N
X
or, on taking reciprocals,
1
x>—- if x>N 9)
€

It is self-evident that N = 1/e satisfies this requirement, and since (9) is equivalent to (8)
for x > O, the proof is complete. |

In Section 2.1 we discussed limits of the following type from an intuitive viewpoint:

lim f(x) = 4o, lim f(x) = —e0 (10)
lim f(x) = +, lim f(x) = —o (12)
lim f(x) = 4, lim f(x) = — (12)

Recall that each of these expressions describes a particular way in which the limit failsto
exist. The +« indicates that the limit fails to exist because f(x) increases without bound,
and the —oo indicates that the limit fails to exist because f(x) decreases without bound.
These ideas are captured more precisely in the following definitions and are illustrated in
Figure 2.4.6.

24.4 DEFINITION. Let f(x) bedefined for al x in some open interval containing a,
except that f(x) need not be defined at a. We will write

lim f(x) =+«

X—a

if given any positive number M, we can find anumber § > 0 such that f(x) satisfies
fx)>M if O<|x—a|l<$
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f(x)>MifO<|x—al<é f(x)<MifO<|x—al<é

@ (b)

Figure 2.4.6

245 DEFINITION. Let f(x) bedefined for al x in some open interval containing a,
except that f(x) need not be defined at a. We will write

lim f(x) = —o

if given any negative number M, we can find anumber § > 0 such that f(x) satisfies
fx)<M if O<|x—al<$§

To see how these definitions relate to our informal concepts of these limits, suppose
that f(x) — 4+« asx — a, and for agiven M let § be the corresponding positive number
described in Definition 2.4.4. Next, imagine that x gets closer and closer to a (from either
side). Eventualy, x will lie in the interval (a — 8, a + §), which is marked in green in
Figure 2.4.6a; when this happensthe value of f(x) will be greater than M, markedinredin
thefigure. Sincethisistrue for any positive value of M (no matter how large), we can force
thevalues of f(x) to beaslarge aswe like by making x sufficiently closeto a. Thisagrees
with our informal concept of thislimit. Similarly, Figure 2.4.6b illustrates Definition 2.4.5.

¢ REMARK. Thedefinitionsfor theone-sided limitsaresimilar. For example, inthedefinition
ioof lime_, 4, f(x) = 4+ we assume that f(x) is defined for al x in some interval of the
¢ form (c, @) and replace the condition 0 < |x — a| < § by the conditiona — § < x < a.

1
Example 6 Provethat lim — = +oo.

x—>0Xx

Solution. Applying Definition 2.4.4 with f(x) = 1/x? and a = 0, we must show that
given anumber M > 0, we can find anumber § > 0 such that

1
—>M if O<|x-0<3 (13)
X
or, on taking reciprocals and simplifying,
1
x2<= if 0<|x|<3$ (14)
M
Butx? < 1/M if |x| < 1/v/M, sothat § = 1/+/M satisfies (14). Since (13) is equivalent
to (14), the proof is complete. <

¢ FORTHEREADER. How would you define

lim f(x) = 4oo, lim f(x) = —o
X — 4o X — 4o

. . (15)

lim fG) =+, lim f(x) = —x?
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EXERCISE SET 2.4 [ Graphing Calculator

1

K 5.

(a) Findthelargest openinterval, centered at the origin on
the x-axis, such that for each x in theinterval the value
of the function f(x) = x + 2 iswithin 0.1 unit of the
number f(0) = 2.

Find the largest open interval, centered at x = 3, such
that for each x in the interval the value of the func-
tion f(x) = 4x — 5 iswithin 0.01 unit of the number
f3 =T

Find the largest open interval, centered at x = 4, such
that for each x in the interval the value of the func-
tion f(x) = x? is within 0.001 unit of the number
f(4) =16.

In each part, find the largest open interval, centered at
x =0, such that for each x in the interval the value of
f(x) = 2x + 3iswithin € units of the number f(0) = 3.
@ =01 (b) e =0.01

(c) e =0.0012

(@) Findthevaluesof x; and x; intheaccompanying figure.

(b) Find apositive number § such that |/x — 2| < 0.05 if
O<|x—4] <.

(b)

(©

y
y =X
24005 -——————————————— —
N = \ |

2-0.05 f————— \ ‘

| | |

L

\ \ L X

X, 4 Xy
Not drawn to scale

Figure Ex-3

(@) Findthevaluesof x; and x; intheaccompanying figure.
(b) Find apositive number § suchthat |(1/x) — 1| < 0.1if
O<|x—1] <é.

1+0.1}F—

e
e
| | \

x1ox

Not drawn to scale
Figure Ex-4
Generate the graph of f(x) = x% — 4x + 5 with a graph-
ing utility, and use the graph to find a number § such that
[f(x) — 2] < 0.05if 0 < |x — 1] < 4. [Hint: Show

Sheet number 39 Page number 145

=K
=

=K

black

cyan magenta

2.4 Limits (Discussed More Rigorously) 145

that the inequality | f(x) — 2| < 0.05 can be rewritten as
1.95 < x% — 4x + 5 < 2.05, and estimate the values of x
for whichx® —4x + 5= 1.95and x® — 4x + 5= 2.05]

Use the method of Exercise 5 to find a number § such that
[vB5x +1—4| <05if0 < |x — 3| < 3.

Let f(x) = x+/xwithL =lim,_ 1 f(x) andlete = 0.2.
Use agraphing utility and its trace feature to find a positive
number § suchthat | f(x) — L| < €if 0 < |x — 1| < 6.
Let f(x) = (sin2x)/x and use agraphing utility to conjec-
turethevalue of L = lim, . f(x). Thenlet e = 0.1 and
usethegraphing utility and itstracefeatureto find apositive
number § suchthat | f(x) — L| < €if 0 < |x| < 4.

In Exercises 9-18, a positive number ¢ and the limit L of
a function f at a are given. Find a number § such that
|[f(x) — L] <€if0O<|x —al <.

9.
11.
12.

13.

14.

15.

17.

10. Iimzix =-1 =01

X——

Iim42x =8, ¢=0.1
Iiml(7x +5) =-2; ¢ =0.01
Iim3(5x —2)=13;, ¢ =0.01

2 _
Iimx 4:4; e =0.05
x—=2 X —2
2 _
lim ~ =2 ¢=005
x—>-1x+1
Iim4x2:16; e =0001 16 |imgf=3; e = 0.001
. 1 .
lim - =—-; €e=0.05 18. lim |x|=0; ¢ =0.05
x—=5Xx 5 x—0

In Exercises 19-32, use Definition 2.4.1 to prove that the
stated limit is correct.

19.
21.

23.

25.

27.

29.

31.

32.
33.

lim 3r = 15 20. lim (4x —5) =7
Iim2(2x—7)=—3 22. Iiml(2—3x)=5
2 2 _

lim X _q 24 lim *—2_ 6

x—=0 X x—-3 x4+ 3
Iim12x2:2 26. |irr13(x2—5):4
. 1 .

lim — =3 28. lim =-1
x—1/3 X r—>-2x+1
Iim4f=2 30. IimG\/x+3=3
. x+2, x#1
lim = 3, where =

x_>1f(x) Sx) 10, P

lim (*+3r —1) =9

(a) Findthe smallest positive number N such that for each
x in the interval (N, +0), the value of the function
f(x) = 1/x? iswithin 0.1 unit of L = 0.
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(b) Find the smallest positive number N such that for each
x intheinterval (N, +),thevalueof f(x) = x/(x+1)
iswithin 0.01 unit of L = 1.

(c) Find the largest negative number N such that for each
x in the interval (—«, N), the value of the function
f(x) = 1/x2 iswithin 0.001 unit of L = O.

(d) Find the largest negative number N such that for each
x in the interval (—«, N), the value of the function
f(x) = x/(x + 1) iswithin 0.01 unit of L = 1.

34. Ineach part, find the smallest positive value of N such that
foreach x intheinterval (N, +o), thefunction f(x) = 1/x°
iswithin e units of the number L = 0.

(@ e=01 (b) € = 0.01 (©) € = 0.001

35. (8 Findthevauesof x1 and x; intheaccompanying figure.
(b) Find apositive number N such that

X

1

2
‘ <€

14+ x2 B

forx > N.
(c) Find anegative number N such that

2
X
72—1 <€
1+x
forx < N.
AY
2
X
y= 2
[ | R S
€
|
|
| .
X Xa

Not drawn to scale
Figure Ex-35

36. (8) Findthevaluesof x; and x; intheaccompanyingfigure.
(b) Find apositive number N such that

1 ' 1

— —0|=|w=| <€

Ix Ix
forx > N.

(c) Find anegative number N such that

1 0' 1 .
R I
x I

forx < N.
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In Exercises 3740, a positive number ¢ and the limit L of a
function f at 4o are given. Find a positive number N such
that | f(x) — L| <eifx > N.

37. lim iz =0, e =0.01

x— 4w X

1
38. lim —0; € =0.005
x—>+4w x + 2
39. lim —— =1; e = 0.001
x>+ x + 1
4y — 1
40. i —2 =01
LU

In Exercises 4144, a positive number € and thelimit L of a
function f at —co are given. Find a negative number N such
that | f(x) — L| <eifx < N.

41. lim ! 5= 0; € =0.005

x—)—mx+

42. lim e =0, e =0.01

xX—> —x xz

4 — 1
43. |im =2, ¢=01
w245 €
44, lim —— =1 ¢ = 0001
x—>-wnx 4+ 1

In Exercises 45-52, use Definition 2.4.2 or 2.4.3to provethat
the stated limit is correct.

1 1
45, lim —2=O 46. lim — =0
X—> 4w X X—>—w X
. ) 1
47. lim =0 48. lim =0
x—>—wx + 2 x—>+w x + 2
49. lim =1 50. lim -1
x—>+o x 4+ 1 x—>-ox +1
51 lim X —1_ 52, lim X1 _
x—)—x2x+5 x—>+oc2x+5

53. (&) Findthelargest openinterval, centered at the origin on
the x-axis, such that for each x in the interval, other
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than the center, the values of f(x) = 1/x? are greater
than 100.

(b) Find the largest open interval, centered at x = 1, such
that for each x in the interval, other than the center, the
values of the function

Je) =1/lx =1

are greater than 1000.

(c) Find the largest open interval, centered at x = 3, such
that for each x in theinterval, other than the center, the
values of the function

f(x) = —1/(x — 3)?

are less than —1000.

(d) Findthelargest openinterval, centered at the origin on
the x-axis, such that for each x in the interval, other
than the center, the values of f(x) = —1/x* are less
than —10,000.

54. In each part, find the largest open interval, centered at
x = 1, such that for each x in the interval the value of
f(x) = 1/(x — 1)? isgreater than M.
@ M =10 (b) M = 1000 (c) M = 100,000

In Exercises 55-60, use Definition 2.4.4 or 2.4.5to provethat

the stated limit is correct.

1 -1

55. lim —— = 56. lim —— = —
I Y A 13 (x — 3)2

57. lim i =+ 58. lim = 4o
X—>0|X| x—>l|x—l|
. 1 1

59. lim <——4) = —© 60. lim == ~+o0
x—0 X x—0x

In Exercises61-66, usetheremark following Definition 2.4.1
to prove that the stated limit is correct.

2.5 CONTINUITY
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6L lim (x+1)=3 62. lim 3r+2) =5

63. lim Vx—4=0 64. lim —x =0
65. lim f(x) =2, where f(x) = % x>2
T xo2+ V= V= 3x, x<2
66. lim f(xv) = 6, where f(x) = 1~ 72
. | = ,W =
x—>2*fx f&x 3x, x<2

In Exercises 67 and 68, use the remark following Definitions
2.4.4 and 2.4.5 to prove that the stated limit is correct.

1
@ lmy—y="> O Img7==+
1 1
68. (@) lim — =+4ow (b) lim = = -
x—0t X x—>0" X

For Exercises 69 and 70, write out definitions of thefour lim-
itsin (18), and use your definitions to prove that the stated
limits are correct.

69. (@ lim (x+D =+ (B) lim (x+1)=—c

X

70. (@) lim (x> =3)=+= (b Erp‘(x3+5):_oo

71. Prove the result in Example 4 under the assumption that
8 < 2rather than§ < 1.

72. (&) In Definition 2.4.1 there is a condition requiring that
f(x) bedefined for al x in some open interval contain-
ing a, except possibly at a itself. What is the purpose
of thisrequirement?

(b) Why is xll_r)nof = 0 an incorrect statement?

(©) Is Ii%nmf = 0.1 acorrect statement?
X — U,

A moving object cannot vanish at some point and reappear someplace else to con-
tinue its motion. Thus, we perceive the path of a moving object as an unbroken curve,
without gaps, breaks, or holes. In this section, we translate “unbroken curve’ into a
precise mathematical formulation called continuity, and develop some fundamental
properties of continuous curves.

DEFINITION OF CONTINUITY

Recall from Theorem 2.2.3 that if p(x) is a polynomia and ¢ is a rea number, then
lim,_ . p(x) = p(c) (see Figure 2.5.1). Together with Theorem 2.2.2, we are able to

calculate limits of a variety of combinations of functions by evaluating the combination.
That is, we saw many examples of functions f(x) such that lim, . . f(x) = f(c) if f(x)
is defined on an interval containing a number c. In this case, function values f(x) can be
guaranteed to be near f(c) for any x-value selected close enough to c. (See Exercise 53 for
a precise formulation of this statement.)
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PO~ fim P09 = p(©)
\
\
/ N ¢
Figure 2.5.1

On the other hand, we have a so seen functions for which this nice property is not true.
For example,

. sin(r/x), x#0
fx) = {07 =0
does not satisfy lim, .o f(x) = f(0), sincelim,_, o f(x) failsto exist.
y
B —
Al /.
-1 l 1

Figure 2.5.2

The term continuous is used to describe the useful circumstance where the calculation
of alimit can be accomplished by mere evaluation of the function.

251 DEFINITION. A function f is said to be continuous at x = ¢ provided the
following conditions are satisfied:

1. f(c) isdefined.
2. lim f(x) exists.

3. lim f(x) = f(o).

If one or more of the conditions of this definition fails to hold, then we will say that f
has a discontinuity at X = ¢. Each function drawn in Figure 2.5.3 illustrates a discontinuity
at x = c. In Figure 2.5.3a, the function is not defined at ¢, violating the first condition
of Definition 2.5.1. In Figures 2.5.3b and 2.5.3c, lim, .. f(x) does not exist, violating
the second condition of Definition 2.5.1. In Figure 2.5.3d, the function is defined at ¢ and
lim,_, . f(x) exists, but these two values are not equal, violating the third condition of
Definition 2.5.1.

From such graphs we can develop an intuitive, geometric feel for where a function is
continuous and where it is discontinuous. Observe that continuity at ¢ may fail due to a
“break” in the graph of the function, either due to ahole or to ajump asin Figure 2.5.3, or
perhaps due to awild oscillation asin Figure 2.5.2. Although the intuitive interpretation of
“ f iscontinuous at ¢” as “the graph of f is unbroken at ¢” lacks precision, it is a useful
guide in most circumstances.
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y y y y
y=1(x) }
y =) / | y=f()

T C\Y=fK T

/ \ / [ | / \
/ } / } 1 1 X } X

C C C C

(@ () (© (d)
Figure2.5.3

CONTINUITY IN APPLICATIONS

¢ REMARK. Note that the third condition of Definition 2.5.1 really implies the first two

conditions, since it is understood in the statement lim, .. f(x) = f(c) that the limit on

the left exists, the expression f(c¢) on the right is defined and has a finite value, and that

guantitites on the two sides are equal. Thus, when we want to establish continuity of a

function at apoint our usual procedure will beto establish the validity of thethird condition

only.

Example 1 Determine whether the following functions are continuous at x = 2.

2 4 x?—4 42 x?—4 42
_ x Cox
fO =" g={x-2 Wy =1 x=2
—
3, x =2, 4, x=2
Solution. In each case we must determine whether the limit of the function asx — 2 is

the same as the value of the function at x = 2. In all three cases the functions are identical,
except at x = 2, and hence al three have the same limit at x = 2, namely
2 _

. . . . oxc—4 .

xlinzf(x) = leng(x) = JLn}h(x) = JLmZ P Jm(x +2) =4

Thefunction f isundefined at x = 2, and henceisnot continuousat x = 2 (Figure 2.5.4a).
Thefunction g isdefined at x = 2, but itsvaluethereis g(2) = 3, whichisnot the same as
the limit as x approaches z; hence, g is also not continuous at x = 2 (Figure 2.5.4b). The
value of thefunction 7 at x = 2ish(2) = 4, which isthe same asthe limit asx approaches
z; hence, i is continuous at x = 2 (Figure 2.5.4c). (Note that the function / could have
been written more ssimply as(x) = x + 2, but we wroteit in piecewise form to emphasize

itsrelationshipto f and g.) <

(@)

Figure2.5.4

In applications, discontinuities often signal the occurrence of important physical phenom-
ena. For example, Figure 2.5.5a is agraph of voltage versus time for an underground cable
that isaccidentally cut by awork crew at timet = 1y (the voltage dropsto zero when theline
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CONTINUITY ON AN INTERVAL AND
CONTINUITY OF POLYNOMIALS
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AV (Voltage) A 'Y (Units of inventory)
'V\N\/\,—~

|
|
|
|
|
| t
Line-" 1o
cut Restocking occurs
(@ (b)
Figure 2.5.5

iscut). Figure 2.5.5b shows the graph of inventory versustime for acompany that restocks
its warehouse to y;1 units when the inventory fallsto yo units. The discontinuities occur at
those times when restocking occurs.

Given the possible physical significance of discontinuities, it isimportant to be able to
identify discontinuities for specific functions, and to be able to make general statements
about the continuity properties of entire families of functions. Thisis our next goal.

If afunction f iscontinuous at each number in an openinterval (a, b), thenwesay that f is
continuous on (a, b). This definition appliesto infinite open intervals of the form (a, +),
(—o0, b), and (—o, +0). In the case where f is continuous on (—oo, +c0), we will say that
f iscontinuous everywhere.

The general procedure for showing that a function is continuous everywhere is to show
that it is continuous at an arbitrary real number. For example, we showed in Theorem 2.2.3
that if p(x) isapolynomia and a isany real number, then

lim p(x) = p(a)

Thus, we have the following result.

252 THEOREM. Polynomialsare continuous everywhere.

Example 2 Show that |x| is continuous everywhere (Figure 1.2.5).

Solution. We can write |x| as
x if x>0
x| = 0 if x=0
—x if x<0O

S0 |x| is the same as the polynomial x on the interval (0, +%) and is the same as the
polynomial —x on the interval (—oo, 0). But polynomials are continuous everywhere, so
x = 0isthe only possible discontinuity for |x|. Since |0] = 0, to prove the continuity at
x = 0 we must show that

xlﬁno x| =0 1)

Because the formulafor |x| changesat O, it will be helpful to consider the one-sided limits
at 0 rather than the two-sided limit. We obtain

[im |x|= limx=0 and Ilim |x|= lim (—x)=0
x—0F x—0* x—0- x—0-

Thus, (1) holdsand |x| is continuous at x = O. <



January 10, 2001 13:09 g65-ch2

SOME PROPERTIES OF
CONTINUOUS FUNCTIONS

CONTINUITY OF RATIONAL
FUNCTIONS

CONTINUITY OF COMPOSITIONS

Sheet number 45 Page number 151 cyan magenta black

2.5 Continuity 151

The following theorem, which is a consequence of Theorem 2.2.2, will enable us to reach
conclusions about the continuity of functions that are obtained by adding, subtracting,
multiplying, and dividing continuous functions.

253 THEOREM. Ifthefunctions f and g are continuous at ¢, then

(@ f + giscontinuousat c.

(b) f — giscontinuousat c.

() fgiscontinuousat c.

(d) f/giscontinuousat c if g(c) # 0and has a discontinuity at c if g(c) = 0.

We will prove part (d). The remaining proofs are similar and will be omitted.

Proof. First, consider the case where g(c¢) = 0. In this case f(c)/g(c) is undefined, so
the function f/g has adiscontinuity at c.

Next, consider the case where g(c) # 0. To provethat f/g is continuous at ¢, we must
show that

jim L0 _ /@)

x=ecg(x)  glo)
Since f and g are continuous &t c,

|i£ﬂ. fx) = f(e) and |i_f)T1,g(X) = g(c)
Thus, by Theorem 2.2.2(d)

i F00 MO g

megl)  limel)  glo)

)

which proves (2). |

Since polynomials are continuous everywhere, and since rational functions are ratios of
polynomials, part (d) of Theorem 2.5.3 yields the following result.

254 THEOREM. A rational function is continuous at every number where the de-
nominator is nonzero.

Example 3 For what vaues of x isthere ahole or agap in the graph of
x2—-9
Y= e
x2—5x+6
Solution. The function being graphed is a rational function, and hence is continuous at
every number where the denominator is nonzero. Solving the equation
x*—5x+6=0

yields discontinuitiesat x = 2 and at x = 3. |

FOR THE READER.  If you use a graphing utility to generate the graph of the equation in

this example, then there is a good chance that you will see the discontinuity at x = 2 but

not at x = 3. Try it, and explain what you think is happening.

The following theorem, whose proof is given in Appendix G, will be useful for calculating
limits of compositions of functions.
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255 THEOREM. If lim,_ .g(x) = L andif thefunction f iscontinuousat L, then
lim, .. f(g(x)) = f(L). Thatis,

lim £g() = £ lim g(x))

This equality remains valid if lim,_, . is replaced everywhere by one of lim, _, .+,
limx—>c” limx—)-‘roc» or Iimx—>—w-

In words, this theorem states:

Alimit symbol can be moved through a function sign provided the limit of the expres-
sion inside the function sign exists and the function is continuous at this limit.

Example 4 We know from Example 2 that the function |x| is continuous everywhere;
thus, it followsthat if lim, _, , g(x) exists, then

3

That is, alimit symbol can be moved through an absolute value sign, provided the limit of
the expression inside the absolute value signs exists. For example,

lim |g(ol = | lim g()

Iims|5—x2|=)Iim3(5—x2)‘=|—4|=4 <

The following theorem is concerned with the continuity of compositions of functions;
thefirst part deals with continuity at a specific number, and the second part with continuity
everywhere.

25.6 THEOREM.

(a) If thefunction g iscontinuous at ¢, and the function f is continuous at g(c), then
the composition f o g iscontinuous at c.

(b) If thefunction g is continuous everywhere and the function f is continuous every-
where, then the composition f o g is continuous everywhere.

Proof. Wewill prove part (a) only; the proof of part (b) can be obtained by applying part
(a) at an arbitrary number c. To prove that f o g is continuous at ¢, we must show that the
value of fog andthe value of itslimit are the same at x = ¢. But thisis so, since we can
write

lim (fog)() = lim f(g(x)) = f(lim g(x)) = f(g(c)) = (fog)(c) i
Theorem 2.5.5 g iscontinuousat c.

We know from Example 2 that the function |x| is continuous everywhere. Thus, if g(x)

is continuous at ¢, then by part (a) of Theorem 2.5.6, the function |g(x)| must also be

continuous at ¢; and, more generally, if g(x) is continuous everywhere, then so is |g(x)|.
Stated informally:

The absolute value of a continuous function is continuous.

For example, the polynomial g(x) = 4 — x? is continuous everywhere, so we can conclude
that the function |4 — x2| is aso continuous everywhere (Figure 2.5.6).

FOR THE READER.  Can the absolute value of afunction that is not continuous be contin-
uous? Justify your answer.
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Because Definition 2.5.1 involves atwo-sided limit, that definition does not generally apply
at the endpoints of a closed interval [a, b] or at the endpoint of an interval of the form
[a, b), (a, b], (—x, b], Or [a, +). To remedy this problem, we will agree that a function
is continuous at an endpoint of an interval if its value at the endpoint is equal to the appro-
priate one-sided limit at that endpoint. For example, the function graphed in Figure 2.5.7 is
continuous at the right endpoint of the interval [a, b] because

x[”;_ f(&x) = f(®)
but it is not continuous at the left endpoint because
xl_ifT} fx) # fla)
In general, we will say afunction f is continuous from theleft at ¢ if
lim fo) = f(o)
and is continuous from theright at ¢ if
x“jCL fx) = f(o)

Using this terminology we define continuity on a closed interval as follows.

2.5.7 DEFINITION. A function f issaid to be continuous on a closed interval [a, b]
if the following conditions are satisfied:

1. fiscontinuouson (a, b).
2. fiscontinuous from theright at a.
3. fiscontinuous from the left at b.

FOR THE READER.  We leave it for you to modify this definition appropriately so that it
appliesto intervals of the form [a, +), (—o, b], (a, b], and [a, b).

Example 5 What can you say about the continuity of the function f(x) = v/9 — x2?

Solution. Because the natural domain of this function is the closed interval [—3, 3], we
will need to investigate the continuity of f on the open interval (—3, 3) and at the two
endpoints. If ¢ isany number intheinterval (—3, 3), then it followsfrom Theorem 2.2.2(€)
that

lim f(x) = lim \/9—x2=\/|i£1(9—x2)=\/9—c2=f(c)

which proves f iscontinuous at each number in theinterval (—3, 3). Thefunction f isalso
continuous at the endpoints since

lim () = |ir27\/9—x2= lim 9-x2)=0= /@

lim fo) = lim Vo—x2= | lim (9-x?)=0=f(-3)

x— =3t

Thus, f iscontinuous on the closed interval [—3, 3]. <

Figure 2.5.8 shows the graph of afunction that is continuous on the closed interval [a, b].
The figure suggests that if we draw any horizontal line y = k, where k is between f(a)
and f(b), then that line will crossthe curve y = f(x) at least once over theinterval [a, b].
Stated in numerical terms, if f is continuous on [a, b], then the function f must take on
every value k between f(a) and f(b) at least once as x varies from a to b. For example,
the polynomial p(x) = x> — x + 3hasavaueof 3at x = 1 andavalueof 33 at x = 2.
Thus, it follows from the continuity of p that the equation x°® — x 4+ 3 = k has at least one
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solutionintheinterval [1, 2] for every value of k between 3 and 33. Thisideais stated more
precisely in the following theorem.

2.5.8 THEOREM (Intermediate-Value Theorem).  If f is continuous on a closed interval
[a, b] and k is any number between f(a) and f(b), inclusive, then thereis at least one
number x intheinterval [a, b] suchthat f(x) = k.

Although thistheorem isintuitively obvious, its proof depends on amathematically precise
development of the real number system, which is beyond the scope of thistext.

A variety of problems can be reduced to solving an equation f(x) = O for itsroots. Some-
timesit ispossible to solve for the roots exactly using algebra, but often thisis not possible
and one must settle for decimal approximations of the roots. One procedure for approxi-
mating roots is based on the following consequence of the Intermediate-Value Theorem.

2.5.9 THEOREM. If fiscontinuouson [a, b], andif f(a) and f(b) are nonzero and
have opposite signs, then there is at least one solution of the equation f(x) = 0inthe
interval (a, b).

Thisresult, whichisillustrated in Figure 2.5.9, can be proved as follows.

Proof. Since f(a) and f(b) have opposite signs, 0 is between f(a) and f(b). Thus, by
the Intermediate-Value Theorem there is at least one number x in the interval [a, b] such
that f(x) = 0. However, f(a) and f(b) are nonzero, so x must lie in the interval (a, b),
which completes the proof.

Beforeweillustrate how thistheorem can be used to approximate roots, it will be hel pful
to discuss some standard terminology for describing errors in approximations. If x is an
approximation to a quantity xo, then we call

€ =[x — xol

the absolute error or (less precisely) the error in the approximation. The terminology in
Table 2.5.1 is used to describe the size of such errors:

Table2.5.1
ERROR DESCRIPTION
[X—%o| < 0.1 X approximates Xo with an error of at most 0.1.

[X—X%o| < 0.01 X approximates Xy with an error of at most 0.01.
[Xx—Xo| £0.001  x approximates g with an error of at most 0.001.
[Xx—Xo| < 0.0001 x approximates X with an error of at most 0.0001.

X=Xl £ 0.5 X approximates xg to the nearest integer.

|[X—Xo| < 0.05 X approximates xg to 1 decimal place (i.e., to the nearest tenth).
[X—Xg| £0.005  x approximates Xy to 2 decimal places (i.e., to the nearest hundredth).
[Xx—Xg| £ 0.0005 X approximates Xy to 3 decimal places (i.e., to the nearest thousandth).

Example 6 The equation
P¥—x—-1=0

cannot be solved algebraically very easily because the left side has no simple factors.
However, if we graph p(x) = x% — x — 1 with agraphing utility (Figure 2.5.10), then we
areled to conjecturethat thereisonereal root and that thisroot liesinsidetheinterval [1, 2].
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The existence of aroot inthisinterval isalso confirmed by Theorem 2.5.9, since p(1) = —1
and p(2) = 5 have opposite signs. Approximate this root to two decimal-place accuracy.

Solution. Our objective is to approximate the unknown root xo with an error of at most
0.005. It followsthat if we can find an interval of length 0.01 that containsthe root, then the
midpoint of that interval will approximate the root with an error of at most 0.01/2 = 0.005,
which will achieve the desired accuracy.

We know that the root xq lies in the interval [1, 2]. However, this interval has length
1, which is too large. We can pinpoint the location of the root more precisely by dividing
the interval [1, 2] into 10 equal parts and evaluating p at the points of subdivision using
a calculating utility (Table 2.5.2). In this table p(1.3) and p(1.4) have opposite signs, so
we know that the root liesin the interval [1.3, 1.4]. Thisinterval has length 0.1, which is
still too large, so we repeat the process by dividing the interval [1.3, 1.4] into 10 parts and
evaluating p at the points of subdivision; thisyields Table 2.5.3, which tells us that the root
isinside the interval [1.32, 1.33] (Figure 2.5.11). Since this interval has length 0.01, its
midpoint 1.325 will approximate the root with an error of at most 0.005. Thus, xo &~ 1.325
to two decimal-place accuracy. <

Table 2.5.2

X 1 11 12 13 14 15 16 1.7 18 1.9 2
f(X) -1 | -077 -047 -010 034 088 150 221 3.03 396 5

Table2.5.3

X 13 131 132 133 134 135 13 137 138 139 14
f(x) -0.103 -0.062 —0.020 0.023 0.066 0.110 0.155 0.201 0.248 0.296 0.344

AY

0.02 y:p(x):x3_x_1

0.01 |

1 1 1 1 X

I
1.322 1324 1326 1.328 1.330
-0.01 |
-0.02

Figure 2.5.11

The method illustrated in Example 6 can also be implemented with a graphing utility as
follows.

Step 1.  Figure2.5.12a showsthegraph of f inthewindow [—5, 5] x [—5, 5]
with xScl = 1 and yScl = 1. That graph places the root between
x=1andx =2

Step 2. Since we know that the root lies between x = 1 and x = 2, we will
zoom in by regraphing f over an x-interval that extends between
thesevaluesandinwhich xScl = 0.1. The y-interval and yScl are not
critical, aslong asthe y-interval extends above and below the x-axis.
Figure 2.5.12b shows the graph of f inthewindow [1, 2] x [—1, 1]
with xScl = 0.1 and yScl = 0.1. That graph places the root between
x=13andx = 1.4.
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Step 3. Since we know that the root lies between x = 1.3 and x = 1.4, we
will zoom in again by regraphing f over an x-interval that extends
betweenthesevaluesandinwhich xScl = 0.01. Figure2.5.12c shows
the graph of f inthe window [1.3, 1.4] x [—0.1, 0.1] with xScl =
0.01 and yScl = 0.01. That graph places the root between x = 1.32

and x = 1.33.

Step 4. Since the interval in Step 3 has length 0.01, its midpoint 1.325 ap-
proximates the root with an error of at most 0.005, so xg ~ 1.325 to
two decimal-place accuracy.

[-5, 5] %[5, 5]
xScl = 1,yScl = 1

Figure 2.5.12 (@

[1,2] x[-1, 1] [1.3, 1.4] x [-0.1, 0.1]
xScl = 0.1, yScl = 0.1 xScl = 0.01, yScl = 0.01

(b) (©

¢ REMARK. To say that x approximates xo to n decimal places does not mean that the first
¢ n decimal places of x and xo will be the same when the numbers are rounded to n decimal

places. For example, x = 1.084 approximates xo = 1.087 to two decimal places because
i |x — xo| = 0.003(<0.005). However, if we round these values to two decimal places, then
: weobtain x &~ 1.08 and xo ~ 1.09. Thus, if you approximate anumber to » decimal places,
©then you should display that approximation to at least n + 1 decimal places to preserve the

accuracy.

¢ FORTHEREADER. Useagraphingor calculating utility toshow that theroot xq in Example
i 6 can be approximated as xg ~ 1.3245 to three decimal-place accuracy.

EXERCISE SET 2.5 B Graphing Calculator
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In Exercises 14, let f bethefunction whose graphis shown.
Onwhich of thefollowing intervals, if any, is f continuous?
@I[L3 (@3 (912

@ L2 (@23 @3

For eachinterval onwhich f isnot continuous, indicatewhich
conditions for the continuity of f do not hold.

1 y 2. y

3. 4y 4. Ay

|
|
|
|
|
|
|
|
|
I i
2 3 1 2 3

|
|
|
|
[
|
|
|
|
|
1

InExercises5and 6, find all valuesof ¢ such that the specified
function has a discontinuity at x = ¢. For each such value of
¢, determine which conditions of Definition 2.5.1 fail to be
satisfied.
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5. (8 Thefunction f in Exercise 1 of Section 2.1.
(b) Thefunction F in Exercise 5 of Section 2.1.
(c) Thefunction f in Exercise 9 of Section 2.1.

6. (8 Thefunction f in Exercise 2 of Section 2.1.
(b) Thefunction F in Exercise 6 of Section 2.1.
(c) Thefunction f in Exercise 10 of Section 2.1.

. Suppose that f and g are continuous functions such that
f(2)=1land Iimz[f(x) +4g(x)] = 13. Find

(@ g2 (b) Xli_rng(x).

. Suppose that f and g are continuous functions such that
Iimag(x) =5and f(3) = —2. Find Iims[f(x)/g(x)].

9. In each part sketch the graph of afunction f that satisfies

the stated conditions.

(@) f iscontinuous everywhere except at x = 3, at which
point it is continuous from the right.

(b) f hasatwo-sidedlimitatx = 3, butitisnot continuous
ax =3

(c) fisnotcontinuousat x = 3, but if itsvalueat x = 3
is changed from f(3) = 1to f(3) = O, it becomes
continuous at x = 3.

(d) f iscontinuous on theinterval [0, 3) and is defined on
theclosed interval [0, 3]; but f isnot continuous on the
interval [0, 3].

10. Findformulasfor some functionsthat are continuous on the
intervals (—oo, 0) and (0, ++o0), but are not continuouson the
interval (—oo, +0).

11. A student parking lot at a university charges $2.00 for the
first half hour (or any part) and $1.00 for each subsequent
half hour (or any part) up to a daily maximum of $10.00.
(a) Sketch agraph of cost as afunction of the time parked.
(b) Discuss the significance of the discontinuities in the

graph to a student who parks there.

12. In each part determine whether the function is continuous
or not, and explain your reasoning.
(@) The Earth’s population as a function of time
(b) Your exact height as afunction of time
(c) Thecost of ataxi ridein your city as a function of the
distance traveled
(d) Thevolume of amelting ice cube as a function of time

~

o]

In Exercises 13-24, find the values of x (if any) at which f
is not continuous.

13. f(x) =x3—2x+3 14. f(x) = (x = 5Y

15. f(x) = )CZLH 16. f(x) = o —
—4 3r+1
70 = g 180 = 5 e
5
19. f(x):|x|xi_3 2. f ="+ "
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22. f(x) = _x+3

21. = |x% = 2x?
) =Ix | 21 3

2x+3, x<4
23. f(x)= 16
_}_7

7 , x>4
X

3
2 fy=dx_1 71
3, x=1

25. Find avalue for the constant k, if possible, that will make
the function continuous everywhere.

a _ x—2, x<1

@ flx)= ka2, to 1

b B kx?, x <2

(b) flx)= etk x=2

26. On which of the following intervalsis
1
T0=7r5=
continuous?
@ [2,4+%) (b)) (-, +%) (¢) (2 +) (d) [12)

A function f is said to have a removable discontinuity at
x = ciflim,_ . f(x) existsbut f isnot continuousat x = c,
either because f isnot defined at ¢ or because the definition
for f(c) differsfrom the value of the limit. Thisterminology
will be needed in Exercises 27-30.

27. (a) Sketch the graph of a function with a removable dis-
continuity at x = ¢ for which f(c) isundefined.
(b) Sketch the graph of a function with a removable dis-
continuity at x = ¢ for which f(c) is defined.

28. (8) The terminology removable discontinuity is appropri-
ate because a removable discontinuity of a function f
at x = ¢ can be “removed” by redefining the value of
f appropriately at x = ¢. What valuefor f(c) removes
the discontinuity?

(b) Show that the following functions have removable dis-
continuitiesat x = 1, and sketch their graphs.

2 1, x>1

fo=""" ad gw=1]0 x=1
x—1

1, x<1

(c) What values should be assigned to f(1) and g(1) to
remove the discontinuities?

In Exercises 29 and 30, find the values of x (if any) at which
f isnot continuous, and determine whether each such value
is aremovable discontinuity.

Il 243

29. (@ flx) = o (b) flx) = 13
x—2
© f0 =15
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30.

K 3L

K 32

33.

35.

36.
37.

38.

39.

40.

41.

X x> —4
@ fx)= B_8
) -3 x=2
fo = x2, x> 2
3245 x#£1
© f() = { N L
(8 Useagraphing utility to generate the graph of the func-

tion f(x) = (x + 3)/(2x? + 5x — 3), and then use
the graph to make a conjecture about the number and
locations of all discontinuities.

(b) Check your conjecture by factoring the denominator.

(8 Useagraphing utility to generate the graph of the func-
tion f(x) = x/(x% — x 4 2), and then use the graph to
make a conjecture about the number and locations of
all discontinuities.

(b) Use the Intermediate-Value Theorem to approximate
thelocation of all discontinuitiesto two decimal places.

Provethat f(x) = x¥5 iscontinuous everywhere, carefully
justifying each step.

. Provethat f(x) = 1/vx*+ 7x2 + 1 is continuous every-

where, carefully justifying each step.

Let f and g be discontinuous at c¢. Give examples to show
that

(@ f 4+ g can be continuous or discontinuous at ¢

(b) fg can be continuous or discontinuous at c.

Prove Theorem 2.5.4.

Prove:

(8) part (a) of Theorem 2.5.3
(b) part (b) of Theorem 2.5.3
(c) part (c) of Theorem 2.5.3.

Prove: If f and g arecontinuouson[a, b],and f(a) > g(a),
f(b) < g(b), thenthereisat least one solution of the equa-
tion f(x) = g(x) in (a, b). [Hint: Consider f(x) — g(x).]

Give an example of afunction f that is defined on a closed
interval, and whose values at the endpoints have opposite
signs, but for which the equation f(x) = 0 has no solution
inthe interval.

Usethe Intermediate-Value Theorem to show that thereisa
sguare with a diagonal length that is between r and 2r and
an areathat is half the area of acircle of radiusr.

Use the Intermediate-Value Theorem to show that thereis
aright circular cylinder of height 4 and radius less than r
whose volume is equal to that of aright circular cone of
height 7 and radiusr.

In Exercises 42 and 43, show that the equation has at |east
one solution in the given interval.

42.
44,

¥ —4x+1=0; [1,2] 43 34x*-2x=1; [-1.1]

Prove: If p(x) isapolynomial of odd degree, then the equa-
tion p(x) = O hasat least one rea solution.
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Theaccompanying figureshowsthegraphof y = x*+x—1.
Use the method of Example 6 to approximate the x-
intercepts with an error of at most 0.05.

[-5,4] x[-3, 6]

xScl =1,yScl =1
Figure Ex-45

Use a graphing utility to solve the problem in Exercise 45
by zooming.

Theaccompanying figureshowsthegraphof y = 5—x —x*.
Use the method of Example 6 to approximate the roots of
the equation 5— x — x* = 0 to two decimal-place accuracy.

[-5,4] x[-3, 6]

xScl =1,yScl =1
Figure Ex-47

Use a graphing utility to solve the problem in Exercise 47
by zooming.

Usethefact that /5 isasolution of x2 — 5 = 0 to approxi-
mate +/5 with an error of at most 0.005.

Prove that if « and b are positive, then the equation
a b

x—1 + x—3
has at least one solution in the interval (1, 3).

=0

A sphere of unknown radius x consists of a spherical core
and acoating that is 1 cm thick (see the accompanying fig-
ure). Given that the volume of the coating and the volume of
the core are the same, approximate the radius of the sphere
to three decimal-place accuracy.

1lcm
<*

Figure Ex-51
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52. A monk begins walking up a mountain road at 12:00 noon that he reaches at the same time of day on theway up ason
and reaches the top at 12:00 midnight. He meditates and the way down.
rests until 12:00 noon the next day, at which time he begins 53. Let f bedefinedat c. Provethat f iscontinuousat c if, given
walking down the same road, reaching the bottom at 12:00 e > 0, thereexistsas > O such that | £(x) — f(c)| < e if
midnight. Show that there is at least one point on the road Ix —c| < 6.

CONTINUITY OF TRIGONOMETRIC

FUNCTIONS

2.6 LIMITS AND CONTINUITY OF TRIGONOMETRIC FUNCTIONS

In this section we will investigate the continuity properties of the trigonometric func-
tions, and we will discuss some important limits involving these functions.

Before we begin, recall that in the expressions sinx, cosx, tanx, cotx, secx, and cscx it
is understood that x isin radian measure.

In trigonometry, the graphs of sinx and cosx are drawn as continuous curves (Fig-
ure 2.6.1). To actually prove that these functions are continuous everywhere, we must show
that the following equalities hold for every real number c:

limsinx =sinc and lim cosx = cosc (1-2)

X—>cC X—>cC

Although we will not formally prove these results, we can make them plausible by consid-
ering the behavior of the point P(cosx, sinx) as it moves around the unit circle. For this
purpose, view ¢ asafixed anglein radian measure, andlet Q (cosc, sin¢) bethe correspond-
ing point on the unit circle. Asx — ¢ (i.e., asthe angle x approachesthe angle c), the point
P movesaong thecircletoward Q, and thisimpliesthat the coordinates of P approach the
corresponding coordinates of Q; that is, cosx — cosc, and sinx — sinc¢ (Figure 2.6.2).

/27:

Figure 2.6.

\4 KA TN T

1

Q(cosc, sinc)

\

P(cosx, sinx)

Figure 2.6.2

y =sinx y = COSX

Formulas (1) and (2) can be used to find limits of the remaining trigonometric functions
by expressing them in terms of sinx and cosx; for example, if cosc # 0, then
. . sSinx sinc
limtanx = lim = =tanc
x—c x—c COSx COSc
Thus, we are led to the following theorem.

2.6.1 THEOREM. If ¢ isany number inthe natural domain of the stated trigonometric
function, then

limsinx = sinc lim cosx = cosc lim tanx = tanc
xX—c xX—cC X—>c
limcscx = csce lim secx = secc lim cotx = cotc
X—>C X—>C X—>C

It follows from this theorem, for example, that sinx and cosx are continuous everywhere
and that tan x is continuous, except at the points where it is undefined.
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OBTAINING LIMITS BY SQUEEZING

y
y=h(x)
M‘X’
Lt \
|
y=9 |
} X
c
Figure 2.6.3
y .
_sinx
P Y=~
—l ! /‘I\ [ -
-2r ’: 2
. sinx
lim =5~ =1
xTo X
I:y _1-cosx
y= X
R R R I,K\\ X
-2r — 2
lim l—cosx:0

x—0 X

Figure 2.6.4
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Example 1 Find thelimit

. <x2 — 1)
lim cos
x—1 x—1
Solution. Recall from the last section that since the cosine function is continuous every-

where,

Iim1 cos(g(x)) = cos( Iimlg(x))

provided lim, _, 1 g(x) exists. Thus,

2
lim cos(x 1) = Iimlcos(x +1) = cos(liml(x + 1)) = C0S2 |

x—1

In Section 2.1 we used the numerical evidence in Table ?? to conjecture that
. sinx
lim

x—>0 Xx
However, it is not a simple matter to establish this limit with certainty. The difficulty is
that the numerator and denominator both approach zero as x — 0. As discussed in Section
2.2, such limits are called indeterminate forms of type 0/0. Sometimesindeterminate forms
of this type can be established by manipulating the ratio algebraically, but in this case no
simple a gebraic manipulation will work, so we must look for other methods.

The problem with indeterminate forms of type 0/0 is that there are two conflicting
influences at work: as the numerator approaches O it drives the magnitude of the ratio
toward 0, and asthe denominator approaches0it drivesthe magnitude of theratio toward £«
(depending on the sign of the expression). The limiting behavior of the ratio is determined
by the precise way in which these influences offset each other. Later in this text we will
discuss general methods for attacking indeterminate forms, but for the limit in (3) we can
use amethod called squeezing.

In the method of squeezing one proves that afunction f hasalimit L at anumber ¢ by
trapping thefunction between two other functions, g and i, whoselimitsat ¢ areknownto be
L (Figure2.6.3). Thisistheideabehind thefoll owing theorem, which westatewithout proof.

-1 (©)

2.6.2 THEOREM (The Squeezing Theorem).  Let f, g, and i be functions satisfying

g(x) = f(x) = h(x)
for all x in some open interval containing the number ¢, with the possible exception that
theinequalities need not hold at c. If ¢ and i have the same limit asx approachesc, say

limgkx)=Ilimh(x) =L

X—cC

then f also hasthislimit asx approachesc, that is,
lim f(x) =L

¢ FORTHEREADER. The Squeezing Theorem also holds for one-sided limits and limits at

+o0 and —oo. How do you think the hypotheses of the theorem would change in those cases?

The usefulness of the Squeezing Theorem will be evident in our proof of the following
theorem (Figure 2.6.4).

2.6.3 THEOREM.

@ Iim3% 1 () lim 2= g

x—0 Xx x—0 X
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However, before giving the proof, it will be helpful to review the formulafor the area A of
asector with radius » and a central angle of 6 radians (Figure 2.6.5). The area of the sector
can be derived by setting up the following proportion to the area of the entire circle:

A 0 areaof thesector  central angle of the sector
w2 27

From this we obtain the formula

areaof thecircle ~ central angle of thecircle

A =S %}"29 (4)
Now we are ready for the proof of Theorem 2.6.3.

Proof (a). In this proof we will interpret x as an angle in radian measure, and we will
assumeto start that 0 < x < 7/2. It follows from Formula (4) that the area of a sector of
radius 1 and central angle x isx/2. Moreover, it is suggested by Figure 2.6.6 that the area
of this sector lies between the areas of two triangles, one with area (tan x)/2 and one with
area(sinx)/2. Thus,
tanx x  Sinx
> - > —
2 — 27 2
Multiplying through by 2/(sinx) yields
1 b
> .
CoOSx ~ Sinx
and then taking reciprocals and reversing the inequalities yields

<1 5)

Moreover, these inequalities also hold for —7/2 < x < 0, sincereplacing x by —x in (5)
and using the identities sin(—x) = —sinx and cos(—x) = cosx leaves the inequalities
unchanged (verify). Finally, since the functions cosx and 1 both have limits of 1 as x — 0,
it follows from the Squeezing Theorem that (sinx)/x also hasalimit of 1 asx — 0.

>1

sin
Cosx <
X

(1, tanx)
4/:’ (cosx, sinx)

| \ \
N\ | tanx | b
X \ (1,0 "X X X
— 1

\
|
[
|
1

1

Areaof triangle > Areaof sector > Areaof triangle
tan x > X S sinx
2 2 - 2

Proof (b). For thisproof wewill usethelimitin part (a), the continuity of thesinefunction,
and the trigonometric identity sin? x = 1 — cos? x. We obtain

. 1l-—cosx . 1—cosx 1+ cosx , sin® x

[im ——— = lim . =lim —-——

x—0 X x—0 X 1+ cosx x—0 (14 cosx)x
. 8n ) sin 0

= 1im 22 lim ——~ =1)(——)=0 |
x—=0 X x—01+4 cosx 1+1
Example 2 Find
tanx sin26 sin3x
lim —— li li
(a) x!;nO X (b) QT}) 0 (C) x!;no sinbx
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y=Ix

\

y=-Ix|
y=xan ()

(b)
Figure 2.6.7
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Solution (a).
. tan . sin 1
lim ——~ = im (—x : —> =MD =1
x—0 Xx x—0 X COSx

Solution (b). Thetrick isto multiply and divide by 2, which will make the denominator
the same as the argument of the sine function [just asin Theorem 2.6.3(a)]:

. sin20 . sin29 . sSn20
Iim ——=1im2- =21
>0 @ 60 260 >0 260
Now make the substitution x = 26, and use the fact that x — 0 as6 — 0. Thisyields
. sSin20 . sin20 . 8§n
lim =2Ilim =2I|m—x=2(1)=2
0—0 0—0 x—0 Xx
Solution (c).
sin3x 3 sin3x
T 3.1 3
m — = lIm — = Iim - = — = = |
x—=08Nnbx x—0 sinbx x—>05 sin5x 5.1 5
X 5x

FOR THE READER.  Useagraphing utility to confirm the limitsin the last example graph-
ically, and if you have a CAS, then use it to obtain the limits.

Example 3 Make conjectures about the limits

@ lim sin(l) (b) lim xsin <}>
x—0 X x—0 X
and confirm your conclusions by generating the graphs of the functions near x = O using a
graphing utility.

Solution (a). Since 1/x — +w as x — 0T, we can view sin(1/x) asthe sine of an angle
that increases indefinitely as x — 0. Asthis angle increases, the function sin(1/x) keeps
oscillating between —1 and 1 without approaching alimit. Similarly, thereisno limit from
the left since 1/x — —o as x — 0. These conclusions are consistent with the graph of
y = sin(1/x) shownin Figure 2.6.7a. Observe that the oscillations become more and more
rapid as x approaches 0 because 1/x increases (or decreases) more and more rapidly as x
approaches 0.

Solution (b). If x > 0, —x < xsin(1/x) < x,andif x < 0,x < xsin(l/x) < —x.
Thus, for x # 0, —|x| < xsin(1/x) < |x|. Since both |x| - 0 and —|x| - 0 asx — O,
the Squeezing Theorem applies and we can conclude that x sin(1/x) — 0 as x — 0. Thisis
illustrated in Figure 2.6.7h. |

REMARK. It follows from part (b) of this example that the function

xsin(l/x), x#0

f) = {0’ o

is continuous at x = 0, since the value of the function and the value of the limit are the

same at 0. This shows that the behavior of a function can be very complex in the vicinity

of an x-value ¢, even though the function is continuous at c.
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In Exercises 1-10, find the discontinuities, if any.

1. f(x) =sinx?—2)

3. f(x) = cotx

5. f(x) =cscx

7. f(x) =|cosx|

9 fx) = 1-2sinx

2.

4,

6.

f(x) =cos<
X —T

f(x) =secx

_ 1
fx)= Tisms

2.6 Limits and Continuity of Trigonometric Functions 163
35. lim 2¢ t+sinx
x—0 X
) In Exercises 36-39: (i) Construct atable to estimate the limit

by evaluating the function near the limiting value. (ii) Find
the exact value of the limit.

36.

8. f(x) =+2+tan’x

10.

Fo) = ——

5+ 2cosx

38.

40.

11. Use Theorem 2.5.6 to show that the following functions
are continuous everywhere by expressing them as compo-
sitionsof simpler functionsthat are known to be continuous.
(b) |sinx|

(d) v3+sin2x

(@ sin(x3+7x + 1)

(c) cos’(x + 1)
(e) sin(sinx)

(f) cos®x —2cos’x + 1

41.

12. (@) Provethatif g(x) iscontinuouseverywhere, then so are
sin(g(x)), cos(g(x)), g(sin(x)), and g(cos(x)).
(b) Iustrate the result in part () with some of your own

Find the limitsin Exercises 13-35.

:)

13.

15.

17.

19.

21.

23.

choicesfor g.

lim cos

X — +o

lim sin

X —> +ow

0—0 ]

(

sin30
m

lim sinx
I —_—
x— 0t Sﬁ

tan7x
x—0Sn3x

lim

25, lim —
h—0tanh
92

27, lm ———
6—~01— cosf

29

. lim ——
6—0 CoSH

2—3x

X

1— cos5h

31 lim

33.

h—0c0S7h — 1

lim cos
x— 0t

<1

X

)

)

14.

16.

18.

20.

22. lim

24.

sinh

26. lim

28.

30.

32.

. lim

h—01— cosh
x~0c0s (37 — x)
lim
t—01— cos?t

. ) (l)
lim sin| —
x— 0t X

x2—3sinx

x—0 X

42.

43.

45,

i~ 4r.

K 48.

lim SN =5 37, lim 3N~ %
x—5 x2—25 x—2 x2—4

H 2 : 2
lim sin(x<+ 3x + 2) 39. lim sin(x“ + 3x + 2)
x— -2 x+2 x—-1 x3+1
Find avaue for the constant £ that makes

sin3x X0
fx) = x
k, x=0

continuous at x = 0.

Find anonzero value for the constant k that makes

tankx’ ‘<0
flx) = x

3x4+2k%2, x>0
continuousat x = 0.
Is
sinx
— x#0
fo=1 T 7
1, x=0

continuous at x = 0?

In each part, find the limit by making the indicated substi-
tution.

. 1 1
@ lim xsn—; t=-—
X —> +oo X X
. 1 1
(b) lim x(l—cosf); t=—
X —> —0 x x
T—X
c) lim Hint: Lett = 7 — x.
© lim Snx [ m—x]
. . COS
.FmdhmM; t=f—z.
x—=2 x—2 2 x
. . sin . . tanx—1
Find lim (nx). 46. Find lim al .
x>l x — x—n/4 x—1/4

Use the Squeezing Theorem to show that
. 50
limxcos— =0
x—0 X
and illustratethe principleinvolved by using agraphing util-
itytograph y = |x|, y = —|x|, and y = x cos(50r/x) on
the same screen in the window [—1, 1] x [—1, 1].

Use the Squeezing Theorem to show that

. . (50
lim x2sin <3—n> =0
=0 Ix
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R 49.

K 50.

51.

52.

and illustratethe principleinvolved by using agraphing util-
itytography = x2,y = —x2,and y = x?sin(50z/ &x ) on
the same screenin thewindow [—0.5, 0.5] x [—0.25, 0.25].
Sketch thegraphsof y = 1 — x2, y = cosx, and y = f(x),
where f isafunction that satisfies the inequalities

1—x? < f(x) < cosx
forall x intheinterval (—x/2, 7/2). What can you say about
thelimit of f(x) asx — 0? Explain your reasoning.

Sketch the graphsof y = 1/x, y = —1/x,and y = f(x),
where f isafunction that satisfies the inequalities

1 1
——=fx=-
X X
foral x intheinterval [1, +c0). What can you say about the
limit of f(x) asx — +? Explain your reasoning.

Find formulasfor functions ¢ and  such that g(x) — 0 and
h(x)— 0asx — +o and such that

g() < S'xﬂ < h(x)

for positive values of x. What can you say about the limit

. sin

lim 227

X—> 4 X

Explain your reasoning.
Draw pictures analogous to Figure 2.6.3 that illustrate the
Squeezing Theorem for limits of the formslim, _ ;.. f(x)
andlim, _, _., f(x).

Recall that unless stated otherwise the variable x in trigono-
metric functions such as sinx and cosx is assumed to bein
radian measure. The limits in Theorem 2.6.3 are based on
that assumption. Exercises 53 and 54 explore what happens

to those limits if degree measure is used for x.

53.

54.
55.

56.

(& Show that if x isin degrees, then
i snx 7
AT T 180
(b) Confirm that the limit in part (@) is consistent with the
results produced by your calculating utility by setting
the utility to degree measure and calculating (sinx)/x
for some values of x that get closer and closer to 0.

What isthelimit of (1—cosx)/x asx — Qif x isindegrees?

It follows from part (a) of Theorem 2.6.3 that if 0 is small
(near zero) and measured in radians, then one should expect
the approximation

sing ~ 6
to be good.
(8 Findsin10° using acalculating utility.
(b) Estimate sin10° using the approximation above.
() Use the approximation of sind that is given in Exer-

cise 55 together with theidentity cos2e = 1—2sin«
with @ = 6/2 to show that if 0 is small (near zero)
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and measured in radians, then one should expect the
approximation

cosf ~ 1 — 162

to be good.
(b) Find cos10° using a calculating utility.
(c) Estimate cos10° using the approximation above.
It followsfrom part (a) of Example 2 that if 6 issmall (near
zero) and measured in radians, then one should expect the
approximation

tand ~ 60

to be good.

(8 Findtan5° using acalculating utility.

(b) Find tan5° using the approximation above.

Referring to the accompanying figure, suppose that the an-

gle of elevation of the top of a building, as measured from

apoint L feet from its base, is found to be o degrees.

(8 Usetherelationship i = L tan« to calculate the height
of abuilding for which L = 500 ft and o = 6°.

(b) Show that if L islarge compared to the building height
h, then one should expect good resultsin approximating
hbyh ~ wLa/180.

(c) Usethe result in part (b) to approximate the building
height / in part (a).

Figure Ex-58

(8 Use the Intermediate-Value Theorem to show that the
equation x = cosx has at least one solution in the in-
terval [0, 7r/2].

(b) Show graphically that there is exactly one solution in
theinterval.

(c) Approximate the solution to three decimal places.

(@) Use the Intermediate-Value Theorem to show that the
equation x + sinx = 1 has at least one solution in the
interval [0, 7r/6].

(b) Show graphically that there is exactly one solution in
theinterval.

(c) Approximate the solution to three decimal places.

In the study of falling objects near the surface of the Earth,
the acceleration g due to gravity is commonly taken to be
9.8 m/s? or 32 ft/s?. However, the elliptical shape of the
Earth and other factors cause variationsin this constant that
arelatitude dependent. Thefollowing formula, known asthe
Geodetic Reference Formula of 1967, is commonly used to
predict thevalue of g at alatitude of ¢ degrees (either north
or south of the equator):

g = 9.7803185(1.0 + 0.005278895 sin? ¢
— 0.000023462sin* ¢) m/<?

() Observethat g isan even function of ¢. What doesthis
suggest about the shape of the Earth, as modeled by the
Geodetic Reference Formula?
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(b) Show that g = 9.8 m/s? somewhere between |atitudes

of 38° and 39°.
Let
fx) = {

1 if x isarationa number
0 if x isanirrationa number
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Supplementary Exercises 165

(8) Make aconjecture about the limit of f(x) asx— 0.
(b) Make aconjecture about the limit of x f(x) asx — 0.
(c) Proveyour conjectures.

SUPPLEMENTARY EXERCISES

1

=K

6.

For thefunction f graphed in the accompanying figure, find
thelimit if it exists.

@ lim £
(@ lim £
© lim f

(b) lim f(x)
(€ [lim f(x)

© lim 7
() lim_fe)
() lim ()

X

() lim o)

Figure Ex-1

(8 Find aformulafor arationa function that has a verti-
cal asymptote at x = 1 and a horizontal asymptote at
y =2

(b) Check your work by using a graphing utility to graph
the function.

(&) Writeaparagraph or two that describes how thelimit of
afunction can fail to exist at x = a. Accompany your
description with some specific examples.

(b) Write a paragraph or two that describes how the limit
of afunction can fail to exist as x — +ow Or x — —oo.
Also, accompany your description with some specific
examples.

(c) Write a paragraph or two that describes how afunction
can fail to be continuous at x = a. Accompany your
description with some specific examples.

Show that the conclusion of the Intermediate-Value The-
orem may be false if f is not continuous on the interval
[a, b].

In each part, evaluate the function for the stated values of x,
and make a conjecture about the value of the limit. Confirm
your conjecture by finding the limit algebraically.

-2
@ fix) = );—; lim f(x); x =25,21,201,
xe—4 x-2r
2.001, 2.0001, 2.00001
tan4.
) f(x) = D, lim f(0; x = 10,401, +0.01,
X x—
+0.001, +0.0001, +0.00001
In each part, find the horizontal asymptotes, if any.

8.

10.

2x —7 x%—x2+10
= — b = —-————-
@ v x2 — 4x ®) y 3x2 — 4x
2x%2 — 6
© y= x2 + bx
(8 Approximate the value for the limit
L=
lim
x—0 X

to three decimal places by constructing an appropriate
table of values.
(b) Confirm your approximation using graphical evidence.

According to Ohm'’s law, when a voltage of V voltsis ap-
plied acrossaresistor with aresistance of R ohms, acurrent
of I = V/R amperes flows through the resistor.

(& How much current flows if avoltage of 3.0 voltsis ap-
plied across aresistance of 7.5 ohms?

(b) If the resistance varies by +0.1 ohm, and the voltage
remains constant at 3.0 volts, what isthe resulting range
of valuesfor the current?

(c) If temperature variations cause the resistance to vary
by +4 from its value of 7.5 ohms, and the voltage re-
mains constant at 3.0 volts, what is the resulting range
of values for the current?

(d) If the current is not allowed to vary by more than
€ = +0.001 ampere at avoltage of 3.0 volts, what vari-
ation of 46 from the value of 7.5 ohmsis allowable?

(e) Certain alloys become superconductors as their tem-
perature approaches absol ute zero (—273° C), meaning
that their resistance approaches zero. If the voltage re-
mains constant, what happens to the current in a super-
conductor as R — 0*?

Supposethat f iscontinuous on the interval [0, 1] and that

0 < f(x) < 1foral x inthisinterval.

(a) Sketch the graph of y = x together with a possible
graph for f over theinterval [0, 1].

(b) Usethelntermediate-Value Theorem to help prove that
thereisat least one number ¢ intheinterval [0, 1] such
that f(c) = c.

Use algebraic methods to find

. 1 — cosé r—1
o () 0 1
. (2x —1)°
© . Im Ger - -
. sin(@ + )
(d) J%COS(T)
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11.

12.

13.

14.

15.

16.
17.

18.

Suppose that f is continuous on the interval [0, 1], that
f(0) = 2,and that f hasno zerosin theinterval. Prove that
f(x) > Oforal xin [0, 1].
Suppose that
—x4 43,
fx) =

x <2

X249, x>2

Is f continuous everywhere? Justify your conclusion.
Show that the equation x* + 5x% 4 5x — 1 = 0 has at least
two real solutionsin theinterval [—6, 2].

Use the Intermediate-Value Theorem to approximate +/11
to three decimal places, and check your answer by finding
the root directly with a calculating utility.

Supposethat f iscontinuousat xo andthat f(xo) > 0. Give
either an €-§ proof or aconvincing verbal argument to show
that there must be an open interval containing xo on which
f(x) > 0.

Sketch the graph of f(x) = |x% — 4|/(x? — 4).

In each part, approximate the discontinuities of f to three
decimal places.

x+1
@ I0=z s

x+3
(b) f(x):m

In Example 3 of Section 2.6 weused the Squeezing Theorem
to prove that

1
lim x sin (—) =0
x—0 X

Why couldn’t we have obtained the same result by writing

. . (1 . .. (1
limxsin{ —)=Ilimx-limsin| —
x—0 X x—0 x—0 X

=0- Iimsin<}> =07
x—0 X

In Exercises 19 and 20, find lim f(x), if it exists, for

19.
20.

a=0,5", =57, =5, 5, —0, +w

@ f)=+v5-x (b) f(x) = (x*~25)/(x—5)
(@ fx)=(x+5)/(x?—25
(x—5)/lx—5], x#5

(b) f() = {O’ .

In Exercises 21-28, find the indicated limit, if it exists.

21.

22.

23.

. tanax
lim —
x—0Sinbx
. Sin3x
lim

x—0 tan 3x
. sin20
lim

0—>0 @2

(a#0,b#0)

xSinx
x—01— cosx

24.
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; ;2
n n?(k

lim 2% 26, lim 370 g

x— 0t ﬁ x—0 x2

. 3x —snk

lim 2= SNED

x—0 X

. 2x +xSin3x

lim

x—+42b5x2 —2x +1

One dictionary describes a continuous function as “one

whosevalueat each pointisclosely approached by itsvalues

at neighboring points.”

(& How would you explain the meaning of the terms
“neighboring points’ and “closely approached” to a
nonmathematician?

(b) Write aparagraph that explainswhy the dictionary def-
inition is consistent with Definition 2.5.1.

(8 Show by rationalizing the numerator that
. o Vx24+4-2 1
lim ———— = -
x—0 x2 4
(b) Evaluate f(x) for

x = =+1.0, +0.1, £0.01, +0.001, +0.0001, +-0.00001

and explain why the values are not getting closer and
closer to the limit.

(c) The accompanying figure shows the graph of f gen-
erated with a graphing utility and zooming in on the
origin. Explain what is happening.

[-0.5, 0.5] x [-0.1, 0.5]
xScl = 0.1, yScl = 0.1

[-5, 5] x [-0.1, 0.5]
xScl = 1,yScl = 0.1

[-5x 1075, 5% 107%] x [-0.1, 0.5]
xScl = 1076, yScl = 0.1

Figure Ex-30

In Exercises 31-36, approximate the limit of the function
by looking at its graph and calculating values for some ap-
propriate choices of x. Compare your answer with the value
produced by a CAS.
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35.

36.

37.
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2 —
lim (14 x)Y* 2. lim
x—>0( +X) s x—>3 X —

sinx —sinl
lim —— >~ . lim x~2(1.001)~ ¥~
x—1 x—l 34 x—»O*x ( OO)

lim (Vx+vx—x)

X —> +oo

lim (3*+5)"

X — +o

The limit
. Snx
lim —=1
x—0 Xx

ensures that there is a number § such that
in
snx 1‘ <0001

X

if 0 < |x| < §. Estimate the largest such §.

If $1000 is invested in an account that pays 7% interest
compounded n times each year, then in 10 years there will
be 1000(1 + 0.07/1)°" dollars in the account. How much
money will be in the account in 10 years if the interest is
compounded quarterly (n = 4)? Monthly (n = 12)? Daily
(n = 365)? Estimate the amount of money that will be in
the account in 10 years if the interest is compounded con-
tinuously, that is, asn — +0?

There are various numerical methods other than the method
discussed in Section 2.5 to obtain approximate solutions of
equations of theform f(x) = 0. One such method requires
that the equation be expressed in theform x = g(x), sothat
asolution x = ¢ can beinterpreted as the value of x where
theliney = x intersectsthecurvey = g(x), asshowninthe
accompanying figure. If x; isaninitial estimate of ¢ and the
graph of y = g(x) isnot too steep in the vicinity of ¢, then
a better approximation can be obtained from x; = g(x1)
(see the figure). An even better approximation is obtained
from x3 = g(x2), and so forth. The formula x, .1 = g(x,)
forn = 1,2,3,... generates successive approximations
X2, X3, X4, . .. that get closer and closer to c.
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Supplementary Exercises 167

(@ Theequationx®—x —1 = 0 hasonly onereal solution.
Show that this equation can be written as

x:g(x):v3x+1

(b) Graph y = x and y = g(x) in the same coordinate
systemfor —1 < x < 3.

(c) Starting with an arbitrary estimate x;, make a sketch
that shows the location of the successive iterates

x2=g(x1), x3=g(x2),...

(d) Usex; = 1and caculate xz, x3, ..., continuing until
you obtain two consecutive values that differ by less
than 10~*. Experiment with other starting values such
asx; =2o0rx; =15

y —

y=X y=9()

@

\

\

\

|

v | |

L |
L] \ | X

C X3 X5 X,

Figure Ex-39

40. The method described in Exercise 39 will not always work.

(@ The equation x® — x — 1 = 0 can be expressed as
x=g(x)=x-1Graphy = xandy = g(x) in
the same coordinate system. Starting with an arbitrary
estimate x;, make a sketch illustrating the locations of
the successive iterates x, = g(x1), x3 = g(x2), ....

(b) Usex; = 1 and caculate the successive iterates x,, for
n=2734075,6.

In Exercises 41 and 42, use the method of Exercise 39 to
approximate the roots of the eguation.

42. x —cosx =0



