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Rene Descartes

FUNCTIONS

ne of the important themes in calculus is the anal-
ysis of relationships between physica or mathematical
guantities. Such relationships can be described in terms of
graphs, formulas, numerical data, or words. Inthischapter
we will develop the concept of a function, which is the
basicideathat underliesalmost all mathematical and phys-
ical relationships, regardless of theform in which they are
expressed. We will study properties of some of the most
basic functions that occur in calculus, and we will exam-
ine some familiar ideasinvolving lines, polynomials, and
trigonometric functionsfrom viewpointsthat may be new.
We will also discussideas relating to the use of graphing
utilities such as graphing calculators and graphing soft-
ware for computers. Before you start reading, you may
want to scan through the appendices, since they contain
various kinds of precalculus material that may be helpful
if you need to review some of those idess.
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SCATTER PLOTS AND TABULAR

DATA

Table1.1.1

INDIANAPOLIS 500
QUALIFYING SPEEDS

YEAR t

1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999

EXTRACTING INFORMATION FROM

GRAPHS

SPEED S
(mi/h)
192.256
200.546
207.004
207.395
210.029
212.583
216.828
215.390
219.198
223.885
225.301
224.113
232.482
223.967
228.011
231.604
233.100
218.263
223.503
225.179
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1.1 FUNCTIONS AND THE ANALYSIS OF GRAPHICAL
INFORMATION

In this section we will define and develop the concept of a function. Functions are
used by mathematicians and scientists to describe the relationships between variable
guantities and hence play a central role in calculus and its applications.

Many scientific laws are discovered by collecting, organizing, and analyzing experimental
data. Since graphs play amajor role in studying data, we will begin by discussing the kinds
of information that a graph can convey.

To start, we will focus on paired data. For example, Table 1.1.1 showsthe top qualifying
speed by year in the Indianapolis 500 auto race from 1980 to 1999. Thistable pairs up each
year t between 1980 and 1999 with the top qualifying speed S for that year. These paired
data can be represented graphically in a number of ways:

« One possibility isto plot the paired data points in a rectangular tS-coordinate system
(t horizontal and S vertical), in which case we obtain a scatter plot of S versus ¢
(Figure 1.1.1a).

o A second possibility isto enhance the scatter plot visually by joining successive points
with straight-line segments, in which case we obtain aline graph (Figure 1.1.1b).

o A third possibility isto represent the paired data by a bar graph (Figure 1.1.1c).

All three graphical representations reveal an upward trend in the data, as one would expect
with improvements in automotive technol ogy.
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One of the first books to use graphs for representing numerical data was The Commercial
and Political Atlas, published in 1786 by the Scottish political economist William Play-
fair (1759-1823). Figure 1.1.2a shows an engraving from that work that compares exports
and imports by England to Denmark and Norway (combined). In spite of its antiquity, the
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engraving is modern in spirit and provides a wealth of information. You should be able to
extract the following information from Playfair’'s graphs:

« Inthe year 1700 imports were valued at about 70,000 pounds and exports at about
35,000 pounds.

o During the period from 1700 to about 1754 imports exceeded exports (a trade deficit
for England).

« Intheyear 1754 theimportsand exportswere equal (atradebalanceintoday’seconomic
terminology).

o From1754to 1780 exports exceeded imports (atrade surplusfor England). The greatest
surplus occurred in 1780, at which time exports exceeded imports by about 95,000
pounds.

o During the period from 1700 to 1725 imports were rising. They peaked in 1725, and
then slowly fell until about 1760, at which time they bottomed out and began to rise
again slowly until 1780.

o During the period from 1760 to 1780 exports and imports were both rising, but exports
were rising more rapidly than imports, resulting in an ever-widening trade surplus for

England.
Exports and Imports t and from DENMARK & NORWAY from oo 1 1780 CIGARETTE CONSUMPTION PER U.S. ADULT
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Playfair's Graph of 1786: The horizontal scale is in years from 1700 Source: U.S. Department of Health and Human Services.
to 1780 and the vertical scale is in units of 1,000 pounds sterling
from O to 200.

@) (b)

Figure1.1.2

Figure 1.1.2b is a more contemporary graph; it describes the per capita consumption of
cigarettesin the United States between 1925 and 1995.

¢ FORTHE READER.  Usethe graph in Figure 1.1.2b to provide reasonable answers to the
i following questions:;

o When did the maximum annual cigarette consumption per adult occur and how many
were consumed?

o What factors are likely to cause sharp decreases in cigarette consumption?
« What factors are likely to cause sharp increases in cigarette consumption?

« What were the long- and short-term effects of the first surgeon general’s report on the
health risks of smoking?
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Graphscan beusedto describemathematical equationsaswell asphysical data. For example,
consider the equation

y=xv9—x2 (1)

For each value of x in theinterval —3 < x < 3, this equation produces a corresponding
real value of y, which is obtained by substituting the value of x into the right side of the
equation. Some typical values are shown in Table 1.1.2.

Table1.1.2

X -3 -2 -1 0 1 2 3
y 0 -2V5=-447214 -2V2=~-2.82843 0 2V2=282843 2V5=~447214 0

The set of all points in the xy-plane whose coordinates satisfy an equation in x and
y is caled the graph of that equation in the xy-plane. Figure 1.1.3 shows the graph of
Equation (1) in the xy-plane. Notice that the graph extends only over the interval [—3, 3].
Thisisbecausevalues of x outside of thisinterval produce complex valuesof y, andinthese
cases the ordered pairs (x, y) do not correspond to points in the xy-plane. For example, if
x = 8, then the corresponding value of y is y = 8,/—55 = 8/55i, and the ordered pair
(8, 8+/55i) isnot apoint in the xy-plane.

Example 1 Figure 1.1.4 shows the graph of an unspecified equation that was used to
obtain the values that appear in the shaded parts of the accompanying tables. Examine the
graph and confirm that the values in the tables are reasonabl e approximations. <

X y X y
-3 0 None -3
-2 -1 -2.8,-2.3 -2
-1 09 -29,-2,24,29 -1

0 07 -3,-1.7,21,3 0

1 2 0.3,1.8 1
2 04 1,14 2
3 0 None 3

Figure1.1.4

Tables, graphs, and equations provide three methods for describing how one quantity de-
pends on anothe—numerical, visual, and algebraic. The fundamental importance of this
idea was recognized by Leibniz in 1673 when he coined the term function to describe the
dependence of one quantity on another. The following examplesillustrate how thistermis
used:

o Thearea A of acircle depends on itsradius r by the equation A = 72, so we say that
A isafunction of .
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« The velocity v of abal faling freely in the Earth’s gravitationa field increases with
time ¢ until it hits the ground, so we say that v is a function of ¢.

« Inabacteria culture, the number n of bacteria present after 1 hour of growth depends
on the number nq of bacteria present initialy, so we say that n isa function of ng.

Thisideais captured in the following definition.

1.1.1 DEFINITION. If avariable y depends on a variable x in such a way that each
value of x determines exactly one value of y, then we say that y is a function of x.

In the mid-eighteenth century the Swiss mathematician Leonhard Euler” (pronounced
“oiler”) conceived the idea of denoting functions by letters of the alphabet, thereby making
it possible to describe functions without stating specific formulas, graphs, or tables. To
understand Euler’s idea, think of a function as a computer program that takes an input x,
operateson it in someway, and produces exactly one output y. The computer programisan
object in itsown right, so we can give it aname, say f. Thus, thefunction f (the computer
program) associates a unigque output y with each input x (Figure 1.1.5). This suggests the
following definition.

1.1.2 DEFINITION. A function f isarule that associates a unique output with each
input. If the input is denoted by x, then the output is denoted by f(x) (read “ f of x").

REMARK. Inthisdefinition the term unique means “exactly one.” Thus, afunction cannot
assign two different outputs to the same input. For example, Figure 1.1.6 shows a scatter
plot of weight versus age for a random sample of 100 college students. This scatter plot
does not describe the weight W asafunction of the age A because there are some values of
A with more than one corresponding value of W. Thisis to be expected, since two people
with the same age need not have the same weight. In contrast, Table 1.1.1 describes S as
a function of ¢ because there is only one top qualifying speed in a given year; similarly,
Equation (1) describes y asafunction of x because eachinput x intheinterval -3 < x < 3
produces exactly one output y = x+/9 — x2.

* LEONHARD EULER (1707-1783). Euler was probably the most prolific mathematician who ever lived. It has
been said that “ Euler wrote mathematics as effortlessly as most men breathe” He was born in Basel, Switzerland,
and was the son of a Protestant minister who had himself studied mathematics. Euler’s genius developed early.
He attended the University of Basel, where by age 16 he obtained both a Bachelor of Arts degree and a Master’s
degree in philosophy. While at Basel, Euler had the good fortune to be tutored one day a week in mathematics by
a distinguished mathematician, Johann Bernoulli. At the urging of his father, Euler then began to study theology.
The lure of mathematics was too great, however, and by age 18 Euler had begun to do mathematical research.
Nevertheless, the influence of his father and his theological studies remained, and throughout his life Euler was
a deeply religious, unaffected person. At various times Euler taught at St. Petersburg Academy of Sciences (in
Russia), the University of Basel, and the Berlin Academy of Sciences. Euler’s energy and capacity for work were
virtually boundless. His collected works form more than 100 quarto-sized volumes and it is believed that much
of hiswork has been lost. What is particularly astonishing is that Euler was blind for the last 17 years of hislife,
and this was one of his most productive periods! Euler’s flawless memory was phenomenal. Early in hislife he
memorized the entire Aeneid by Virgil and at age 70 could not only recite the entire work, but could al so state the
first and last sentence on each page of the book from which he memorized the work. His ability to solve problems
inhishead was beyond belief. Heworked out in hishead major problems of lunar motion that baffled | saac Newton
and oncedid acomplicated cal culation in hishead to settle an argument between two students whose computations
differed in the fiftieth decimal place.

Following the development of calculus by Leibniz and Newton, results in mathematics developed rapidly in a
disorganized way. Euler’s genius gave coherence to the mathematical landscape. He was the first mathematician to
bring the full power of calculusto bear on problems from physics. He made major contributionsto virtually every
branch of mathematics as well as to the theory of optics, planetary motion, electricity, magnetism, and general
mechanics.
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Functions can be represented in various ways:

Numerically by tables
Geometrically by graphs
Algebraically by formulas
Verbally

The method of representation often depends on how the function arises. For example:

D

Time of Arrival of Arrival of
earthquake P-waves Swaves
shock

9.4
minutes i

11.8
minutes

Time in minutes
0 10

Table1.1.1isanumerical representation of S asafunction of z. Thisisthe natural way
in which data of this type are recorded.

Figure 1.1.7 shows a record of the amount of deflection D of a seismograph needle
during an earthquake. The variable D isafunction of thetime ¢ that has elapsed since
the shock wave left the earthquake's epicenter. In this case the function originates as a
graph.

Some of the most familiar examples of functions arise as formulas; for example, the
formulaC = 27r expressesthe circumference C of acircleasafunction of itsradiusr.

Sometimes functions are described in words. For example, Isaac Newton's Law of
Universal Gravitation is often stated as follows: The gravitational force of attraction
between two bodies in the Universe is directly proportional to the product of their
masses and inversely proportional to the square of the distance between them. Thisis
the verbal description of the formula

F = GmlmZ

= @

inwhich F istheforceof attraction, m1 and m» arethe masses, r isthe distance between
them, and G is a constant.

Wewill seelater that functions can also arise through limiting processes, some of which
we discussed informally in the Introduction.

Surface waves

Figure 1.1.7

Sometimes it is desirable to convert one representation of a function into another. For

example, in Figure 1.1.1 we converted the numerical relationship between S and 7 into a
graphical relationship, and in writing Formula (2) we converted the verbal representation
of the Law of Universal Gravitation into an algebraic relationship.

Theproblem of converting numerical representationsof functionsinto algebraic formulas

often requires special techniques known as curve fitting. For example, Table 1.1.3 gives
the U.S. population at 10-year intervalsfrom 1790 to 1850. Thistableisanumerical repre-
sentation of thefunction P = f(r) that relatesthe U.S. population P totheyear ¢. If we plot
P versus r, we obtain the scatter plot in Figure 1.1.8a, and if we use curve-fitting methods
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Table1.1.3
U.S. POPULATION

YEAR t POPULATION P
(millions)
1790 3.9
1800 5.3
1810 7.2
1820 9.6
1830 12
1840 17
1850 23

Source: The World Almanac.

DISCRETE VERSUS CONTINUOUS
DATA

GRAPHS AS PROBLEM-SOLVING
TOOLS
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that will be discussed |ater, we can obtain the approximation
P ~ 3.94(1.03)" 1%
Figure 1.1.8b shows the graph of this equation imposed on the scatter plot.

Engineers and physicists distinguish between continuous data and discrete data. Contin-
uous data have values that vary continuously over an interval, whereas discrete data have
values that make discrete jumps. For example, for the seismic data in Figure 1.1.7 both
the time and intensity vary continuously, whereas in Table 1.1.3 and Figure 1.1.8a both
the year and population make discrete jumps. As a rule, continuous data lead to graphs
that are continuous, unbroken curves, whereas discrete data lead to scatter plots consisting
of isolated points. Sometimes, asin Figure 1.1.8b, it is desirable to approximate a scatter
plot by a continuous curve. This is useful for making conjectures about the values of the
quantities between the recorded data points.

Sometimes a function is buried in the statement of a problem, and it is up to the problem
solver to uncover it and useit in an appropriate way to solvethe problem. Hereisan example
that illustratesthe power of graphical representations of functionsasaproblem-solving tool.

Example 2 Figure1.1.9ashowsan offshoreoil well located at apoint W thatis5kmfrom
the closest point A on astraight shoreline. Qil isto be piped from W to ashore point B that
is8kmfrom A. It costs $1,000,000/km to lay pipe under water and $500,000/km over land.
In your role as project manager you receive three proposals for piping the oil from W to B.
Proposal 1 claimsthat it ischeapest to pipedirectly from W to B, since the shortest distance
between two points is a straight line. Proposal 2 claims that it is cheapest to pipe directly
to point A and then along the shoreline to B, thereby using the least amount of expensive
underwater pipe. Proposal 3 claimsthat it is cheapest to compromise by piping under water
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= 5 /[ '
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. S st '
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\v E 3p |

B © 2 |
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Distance x from point A (km)
(b) (0

Figure1.1.9



January 12, 2001 11:10

14 Functions

265-chl

Sheet number 8 Page number 14 cyan magenta black

to some well-chosen point between A and B, and then piping along the shoreline to B.
Which proposal is correct?

Solution. Let P be any point between A and B (Figure 1.1.9b), and let
x = distance (in kilometers) between A and P
¢ = cost (in millions of dollars) for the entire pipeline

Proposal 1 claimsthat x = 8 resultsin the least cost, Proposal 2 claimsthat itisx = 0, and
Proposal 3 claimsit is some value of x between 0 and 8. From Figure 1.1.9b the length of
pipe aong the shoreis

8—x ©)]
and from the Theorem of Pythagoras, the length of pipe under water is
N @

Thus, from (3) and (4) the total cost ¢ (in millions of dollars) for the pipelineis
c=1 (\/x2 + 25) +0.58 — x) = vx2+ 25+ 0.5(8 — x) 5)

where 0 < x < 8. The graph of Equation (5), shown in Figure 1.1.9c, makes it clear that
Proposal 3 is correct—the most cost-effective strategy is to pipeto apoint alittle less than
3 km from point A. |

EXERCISE SET 1.1 ™ Graphing Calculator

1. Usethecigarette consumption graphin Figure 1.1.2bto an-

rapidly during thefirst 2 years or the second 2 years of

swer the following questions, making reasonable approxi-

mations where needed.

(& When did the annual cigarette consumption reach 3000
per adult for the first time?

(b) When did the annual cigarette consumption per adult
reach its peak, and what was the peak value?

(c) Canyoutell from the graph how many cigarettes were
consumed in agiven year? If not, what additional infor-
mation would you need to make that determination?

(d) What factors are likely to cause a sharp increasein an-
nual cigarette consumption per adult?

(e) Whatfactorsarelikely to causeasharp declineinannual
cigarette consumption per adult?

2. The accompanying graph showsthe medianincomein U.S.

households (adjusted for inflation) between 1975 and 1995.

Use the graph to answer the following questions, making

reasonabl e approximations where needed.

(& When did the median incomereach its maximum value,
and what was the median income when that occurred?

(b) When did the median income reach its minimum val ue,
and what was the median income when that occurred?

(c) The median income was declining during the 4-year
period between 1989 and 1993. Was it declining more

that period? Explain your reasoning.

MEDIAN U.S. HOUSEHOLD INCOME IN
THOUSANDS OF CONSTANT 1995 DOLLARS

A\ 36

$35

$33
$32
$31

T T T T [ T T T [ T T T [T T T [T 1T 1] $30
1975 1979 1983 1987 1991 1995

Source: Census Bureau, March 1996
[1996 measures 1995 incomel.

Figure Ex-2

. Use the accompanying graph to answer the following ques-

tions, making reasonable approximations were needed.

(8 Forwhat valuesof x isy = 1?

(b) For what valuesof x isy = 3?

(c) Forwhat valuesof yisx = 3?

(d) Forwhat valuesof x isy < 0?

(e) What are the maximum and minimum values of y and
for what values of x do they occur?
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over a 1-week period, would you expect the graph of
the number of boxes on the shelf versus time to be a
continuous (unbroken) curve? Explain your reasoning.

R 9. A construction company wants to build a rectangular en-

closure with an area of 1000 square feet by fencing in three

X sidesand using itsoffice building asthefourth side. Your ob-
jective as supervising engineer isto design the enclosure so
that it usesthe least amount of fencing. Proceed as follows.
(8 Let x and y be the dimensions of the enclosure, where
x is measured parallel to the building, and let L be

the length of fencing required for those dimensions.
Since the area must be 1000 square feet, we must have

3 2 0 1 b 3 xy = 1000. Find aformulafor L in terms of x and y,
Figure Ex-3 andthen express L intermsof x aloneby using thearea
equation.
) ) (b) Arethere any restrictions on the value of x? Explain.
4. Use the accompanying table to answer the questions posed (c) Makeagraph of L versus x over areasonableinterval
in Exercise 3. '

and use the graph to estimate the value of x that results
in the smallest value of L.

x 2. 1 0 2 3 4 5 86 (d) Estimate the smallest value of L.
y 5 1 =2 7 -1 1 0 9 [ 10. A manufacturer constructs open boxes from sheets of card-
board that are 6 inches square by cutting small squaresfrom
Table Ex-4 the corners and folding up the sides (as shown in the ac-

companying figure). The Research and Development De-

partment asks you to determine the size of the square that

produces a box of greatest volume. Proceed as follows.

(8 Let x be the length of a side of the square to be cut,
and let V bethe volume of the resulting box. Show that
V = x(6 — 2x)2.

(b) Arethere any restrictions on the value of x? Explain.

(c) Make agraph of V versus x over an appropriate inter-
val, and use the graph to estimate the value of x that
resultsin the largest volume.

(d) Estimate the largest volume.

5. Usetheequation y = x2 — 6x + 8 to answer the following
questions.
(@) For what valuesof x isy = 0?
(b) For what valuesof x isy = —10?
(c) Forwhat valuesof x isy > 0?
(d) Does y have aminimum value? A maximum value? If
so, find them.

6. Usetheequationy = 1+ ./x to answer thefollowing ques-
tions.
(a) Forwhat valuesof x isy = 4?
(b) For what valuesof x isy = 0?
(c) Forwhat valuesof x isy > 6?
(d) Does y have a minimum value? A maximum value? If
o, find them.

7. (a) If you had a device that could record the Earth’'s pop-
ulation continuously, would you expect the graph of
population versus time to be a continuous (unbroken)
curve? Explain what might cause breaks in the curve.

(b) Suppose that a hospital patient receives an injection of
an antibiotic every 8 hours and that between injections
the concentration C of the antibiotic in the bloodstream R 11. A soup company wants to manufacture a can in the shape

Figure Ex-10

decreases as the antibiotic is absorbed by the tissues. of aright circular cylinder that will hold 500 cm? of liquid.
What might the graph of C versus the elapsed time ¢ The material for the top and bottom costs 0.02 cent/cm?,
look like? and the material for the sides costs 0.01 cent/cm?.
8. (a) If you had a device that could record the temperature (8) Usethemethod of Exercises9 and 10to estimatethera-
of aroom continuously over a 24-hour period, would diusr and height /2 of the can that coststheleast to man-
you expect the graph of temperature versustimeto bea ufacture. [Suggestion: Expressthecost C intermsof r.]
continuous (unbroken) curve? Explain your reasoning. (b) Suppose that the tops and bottoms of radius r are
(b) If you had a computer that could track the number of punched out from sgquare sheets with sides of length

boxes of cereal on the shelf of a market continuously 2r and the scraps are waste. |f you allow for the cost of
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INDEPENDENT AND DEPENDENT

the waste, would you expect the can of |east cost to be
taller or shorter than the one in part (a)? Explain.

(c) Estimate the radius, height, and cost of the can in part
(b), and determinewhether your conjecturewas correct.

The designer of a sports facility wants to put a quarter-
mile (1320 ft) running track around afootball field, oriented
as in the accompanying figure. The football field is 360 ft
long (including the end zones) and 160 ft wide. The track
consists of two straightaways and two semicircles, with the
straightaways extending at least the length of the football
field.

(&) Show thatitispossibleto construct aquarter-miletrack
around the football field. [Suggestion: Find the shortest
track that can be constructed around the field.]

(b) Let L bethe length of a straightaway (in feet), and let
x be the distance (in feet) between a sideline of the

Sheet number 10 Page number 16
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football field and a straightaway. Make a graph of L
Versus x.

(c) Usethe graph to estimate the value of x that produces
the shortest straightaways, and then find this value of x
exactly.

(d) Usethegraph to estimate the length of the longest pos-
sible straightaways, and then find that length exactly.

NS —

} 360" }
Figure Ex-12

1.2 PROPERTIES OF FUNCTIONS

In this section we will explore properties of functions in more detail. e will assume
that you are familiar with the standard notation for intervals and the basic properties
of absolute value. Reviews of these topics are provided in Appendices A and B.

Recall from the last section that afunction f isarule that associates a unique output f(x)
with each input x. This output is sometimes called the value of f at x or the image of x

under f. Sometimes we will want to denote the output by a single letter, say y, and write

This equation expresses y as a function of x; the variable x is called the independent
variable (or argument) of f, and thevariable y is called the dependent variable of f. This
terminology isintended to suggest that x isfreeto vary, but that once x hasaspecific valuea
corresponding valueof y isdetermined. For now wewill only consider functionsinwhichthe

independent and dependent variablesarereal numbers, inwhich casewesay that f isareal-

valued function of areal variable. Later, we will consider other kinds of functions aswell.

VARIABLES

y=fx)
Table1.2.1

x 0 1 2 3

y 3 4 -1 6 function we have
[0 =3
fH=4
f@=-1
f3) =6

Table 1.2.1 can be viewed as a numerical representation of a function of f. For this

f associates y = 3withx = 0.
f associates y = 4 withx = 1.
f associates y = —1withx = 2.

f associates y = 6 withx = 3.

To illustrate how functions can be defined by equations, consider

y=3x?—4x+2

(D

Thisequation hastheform y = f(x), where

f(x) =3x%—4x +2

2

The outputs of f (the y-values) are obtained by substituting numerical valuesfor x in this

formula. For example,

f(0) =302 —4(0) +2=2
f(=17) =3(-17)? - 4(-17) +2=17.47
f(V2)=3(2)?—4J/2+2=8-4/2

f associates y = 2withx = 0.
f associates y = 17.47 withx = —1.7.

f associates y = 8 — 42 withx = /2.
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1.2 Properties of Functions 17

REMARK. Although £, x, and y arethemost common notationsfor functionsand variables,
any letters can be used. For example, to indicate that the area A of a circle is a function
of theradius r, it would be more natural to write A = f(r) [where f(r) = nr?]. Similarly,
to indicate that the circumference C of a circle is a function of the radius r, we might

write C = g(r) [where g(r) = 2nr]. The areafunction and the circumference function are

different, which iswhy we denoted them by different letters, f and g.

If y = f(x), thenthe set of all possibleinputs (x-values) is called the domain of f, andthe
set of outputs (y-values) that result when x varies over thedomainis called therange of f.
For example, consider the equations

y:x2 and y:xz, x>2
In the first equation there is no restriction on x, so we may assume that any real value
of x isan alowable input. Thus, the equation defines a function f(x) = x? with domain
—o < x < +oo. Inthe second equation, the inequality x > 2 restricts the allowabl e inputs
to be greater than or equal to 2, so the equation defines afunction g(x) = x2, x > 2 with
domain2 < x < 4.

Asx variesover thedomain of thefunction f(x) = x?, thevaluesof y = x? vary over the
interval 0 < y < +o, sothisistherange of f. By comparison, asx varies over the domain
of thefunction g(x) = x2, x > 2, thevaluesof y = x? vary over theinterval 4 < y < 4,
so thisistherange of g.

It is important to understand here that even though f(x) = x? and g(x) = x%,x > 2
involve the same formula, we regard them to be different functions because they have
different domains. In short, to fully describe a function you must not only specify the rule
that relates the inputs and outputs, but you must also specify the domain, that is, the set of
allowable inputs.

If fisareal-valued function of areal variable, thenthegraph of f inthexy-planeisdefined
to be the graph of the equation y = f(x). For example, the graph of the function f(x) = x
isthe graph of theequation y = x, shownin Figure 1.2.1. That figure also shows the graphs

4 4 :
-4-3-2-1 0 1 2

AN
-101234567389

Figure1.2.1
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of some other basic functions that may aready be familiar to you. Later in this chapter we
will discuss techniques for graphing functions using graphing calculators and computers.

Graphs can provide useful visua information about a function. For example, because
the graph of afunction f in the xy-plane consists of all points whose coordinates satisfy
the equation y = f(x), the points on the graph of f are of the form (x, f(x)); hence each
y-coordinate is the value of f at the x-coordinate (Figure 1.2.2a). Pictures of the domain
and range of f can be obtained by projecting the graph of f onto the coordinate axes
(Figure 1.2.2b). The values of x for which f(x) = 0 are the x-coordinates of the points
where the graph of f intersects the x-axis (Figure 1.2.2c); these values of x are called the
zerosof f,therootsof f(x) = 0, or the x-interceptsof y = f(x).

y =1f(x)
(%, f(x))
y=1(X) ,} ,,,,,,

|

|

|

\ \

| | X )‘ X
X Domain X1 0 X2 X3

f has zeros at Xy, 0, Xp, X3,

@ (b) (©

Range

00 |4

Figure1.2.2

Not every curve in the xy-plane is the graph of afunction. For example, consider the curve
THE VERTICAL LINE TEST ey Xy-p grapi p

in Figure 1.2.3, whichis cut at two distinct points, (a, b) and (a, ¢), by avertical line. This
curve cannot be the graph of y = f(x) for any function f; otherwise, we would have

y flay=b ad f(a)=c

which is impossible, since f cannot assign two different values to a. Thus, there is no
function f whose graph is the given curve. This illustrates the following general result,

@9 which we will call the vertical line test.
a, C,

:> 121 THEVERTICALLINETEST. Acurveinthexy-planeisthegraph of somefunction
/_' (ab) fifand only if no vertical line intersects the curve more than once.

a

Figure1.2.3 Example 1 The graph of the equation
x2 + y2 — 25 (3)

isacircle of radius 5, centered at the origin (see Appendix D for areview of circles), and
hence there are vertical lines that cut the graph more than once. This can aso be seen
algebraically by solving (3) for y interms of x:

y =425 —x2

Thisequation does not define y asafunction of x becausetheright sideis* multiple valued”
in the sense that values of x in theinterval (—5, 5) produce two corresponding values of y.
For example, if x = 4, then y = £3, and hence (4, 3) and (4, —3) are two points on the
circle that lie on the same vertical line (Figure 1.2.4a). However, we can regard the circle
as the union of two semicircles:

y=+v25—-x2 and y=—v25—x?

(Figure 1.2.4b), each of which defines y as afunction of x. |



January 12, 2001 11:10 g65-chl Sheet number 13 Page number 19 cyan magenta black

1.2 Properties of Functions 19

y y
6F y=v25-x? 6 y=—25-x2
| \\\\\7\\\\\X \\\\\\7 X
-6 -6 L 6 -6
6l 6
(b)
Figure1.2.4
"""""""""""""""""""""" Recall that the absolute value or magnitude of areal number x is defined by
THE ABSOLUTE VALUE FUNCTION
N x, x>0
X| =
—x, x<20

The effect of taking the absolute value of a number is to strip away the minus sign if the
number is negative and to leave the number unchanged if it is nonnegative. Thus,

5l=5 [-7|=3 10=0

A more detailed discussion of the properties of absolute value is given in Appendix B.
However, for convenience we provide the following summary of its algebraic properties.

1.2.2 PROPERTIES OF ABSOLUTE VALUE. If a and b arereal numbers, then

@ | —al =lal A number and its negative have the same absol ute val ue.
(b) |ab| = |a]|b| The absolute value of a product is the product of the absolute val ues.
(©) |a/b| = |a|/|b]| The absolute value of aratio isthe ratio of the absolute values.

(d) |la+b| <|a|+ |b] Thetriangleinequality

¢ REMARK. Symbols such as +x and —x are deceptive, since it is tempting to conclude

i that +x ispositive and —x is negative. However, this need not be so, since x itself can be
positive or negative. For example, if x is negative, say x = —3, then —x = 3 is positive
and +x = —3isnegative.

The graph of the function f(x) = |x| can be obtained by graphing the two parts of the
equation

x, x>0
y:

—x, x<20

: separately. For x > 0, the graph of y = x isaray of slope 1 with its endpoint at the origin,
2 e e i  andfor x < 0, thegraph of y = —x isaray of slope —1 with its endpoint at the origin.
Lt ; (o Combining the two parts produces the V-shaped graph in Figure 1.2.5.
- Absolute values have important rel ationshipsto square roots. To seewhy thisisso, recall
from algebra that every positive real number x has two sguare roots, one positive and one
: HEERE negative. By definition, the symbol /x denotes the positive square root of x. To denote the
"Is_43-2-1 0 1 2 3 4 5 negative square root you must write —,/x. For example, the positive square root of 9 is
Figure 1.2.5 V9 = 3, and the negative square root is —v/9 = —3. (Do not make the mistake of writing
V9 =43)
Caremust be exercised in simplifying expressions of theform +/x2, sinceit isnot always
truethat +/x2 = x. Thisequation is correct if x isnonnegative, but it is false for negative x.
For example, if x = —4, then

Vat= (-2 =V16=4+#x
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FUNCTIONS DEFINED PIECEWISE

[

-2 -1
Figure 1.2.6

Figure 1.2.7
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A statement that is correct for all real values of x is

Vx2 = |x]|

FOR THE READER.  Verify this relationship by using a graphing utility to show that the
equations y = +/x2 and y = |x| have the same graph.

Theabsolutevaluefunction f(x) = |x| isan example of afunction that i s defined piecewise
in the sense that the formulafor f changes, depending on the value of x.

Example 2 Sketch the graph of the function defined piecewise by the formula

0, x<-1
f)=1v1-x%? —-1<x<1
X, x>1

Solution. Theformulafor f changes at the points x = —1 and x = 1. (We call these the
breakpointsfor theformula.) A good procedure for graphing functions defined piecewiseis
to graph the function separately over the open interval s determined by the breakpoints, and
then graph f at the breakpoints themselves. For the function f in thisexamplethe graphis
the horizontal ray y = O ontheinterval (—oo, —1), it isthe semicircley = +/1 — x2 onthe
interval (—1, 1), anditistheray y = x ontheinterval (1, +«). Theformulafor f specifies
that the equation y = 0 applies at the breakpoint —1[so y = f(—1) = 0], and it specifies
that the equation y = x applies at the breakpoint 1 [so y = f(1) = 1]. The graph of f is
shown in Figure 1.2.6. <

REMARK. In Figure 1.2.6 the solid dot and open circle at the breakpoint x = 1 serve

to emphasize that the point on the graph lies on the ray and not the semicircle. There is

no ambiguity at the breakpoint x = —1 because the two parts of the graph join together
continuously there.

Example 3 Increasing the speed at which air movesover aperson’sskinincreasestherate
of moisture evaporation and makes the person feel cooler. (This is why we fan ourselves
in hot weather.) The windchill index is the temperature at a wind speed of 4 mi/h that
would produce the same sensation on exposed skin as the current temperature and wind
speed combination. An empirical formula (i.e., aformula based on experimental data) for
the windchill index W at 32°F for awind speed of v mi/his

32, O0<v<4
W = 91.4 + 59.4(0.0203v — 0.304,/v — 0.474), 4 <v <45
-38 wv=>45

A computer-generated graph of W(v) isshownin Figure 1.2.7. <

Windchill Versus Wind Speed at 32°F

Windchill W (°F)
S
/

0 5 10152025 30 35 4045 50 55 60 65 70 75
Wind speed v (mi/h)
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Sometimes, restrictions on the allowable values of an independent variable result from a
mathematical formula that defines the function. For example, if f(x) = 1/x,thenx = 0
must be excluded from the domain to avoid division by zero, and if f(x) = /x, then
negative values of x must be excluded from the domain, since we are only considering
real-valued functions of areal variable for now. We make the following definition.

1.2.3 DEFINITION. If areal-valued function of areal variableisdefined by aformula,
and if no domain is stated explicitly, then it isto be understood that the domain consists
of al real numbers for which the formulayields areal value. Thisis called the natural
domain of the function.

Example 4 Find the natural domain of
@ flx)=x° (b) f(x) =1/[(x = D(x = 3I)]
(©) f(x)=tanx (d) f(x)=+x2—5x+6

Solution (@). The function f has real values for all real x, so its natural domain is the
interval (—oo, 400).

Solution (b). Thefunction f hasreal valuesfor all real x, except x = 1and x = 3, where
divisions by zero occur. Thus, the natural domainis

{x:ix#landx # 3} = (—,1) U (L, 3) U (3, +x)
Solution (c). Since f(x) = tanx = sinx/ cosx, the function f has real values except

where cosx = 0, and thisoccurswhen x isan odd integer multiple of /2. Thus, the natural
domain consists of all real numbers except

7w 37 bm
x=x—,+—, +—, ...
2 2 2

Solution (d). Thefunction f hasreal values, except when the expressioninsidetheradical
is negative. Thus the natural domain consists of all real numbers x such that
—5x4+6=x-3)(x—-2>0
Thisinequality is satisfied if x < 2 or x > 3 (verify), so the natural domain of f is
(=, 2] U[3, +) <

REMARK. In some problems we will want to limit the domain of a function by imposing
specific restrictions. For example, by writing

f(x):xz, x>0

© we can limit the domain of f tothe positive x-axis (Figure 1.2.8).

y y
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THE EFFECT OF ALGEBRAIC
OPERATIONS ON THE DOMAIN
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Algebraic expressions are frequently simplified by canceling common factors in the nu-
merator and denominator. However, care must be exercised when simplifying formulas for
functionsin this way, since this process can ater the domain.

Example 5 The natura domain of the function

x2—4
x—2
consistsof all real x except x = 2. However, if we factor the numerator and then cancel the
common factor in the numerator and denominator, we obtain

F) = x—-—2)(x+2) P

x—2

which isdefined at x = 2 [since f(2) = 4 for the altered function f]. Thus, the algebraic
simplification has altered the domain of thefunction. Geometrically, thegraphof y = x +2
isaline of slope 1 and y-intercept 2, whereas the graph of y = (x? — 4)/(x — 2) isthe
sameline, but withaholeinitat x = 2, since y isundefined there (Figure 1.2.9). Thus, the
geometric effect of the algebraic cancellation isto eliminate the hole in the original graph.
In some situations such minor aterations in the domain areirrelevant to the problem under
consideration and can be ignored. However, if we wanted to preserve the domain in this
example, then we would express the simplified form of the function as

fxX)=x+2, x#2 |

fx) =

Figure1.2.9

Example 6 Find the domain and range of
@ f)=2+vx—-1 (b f)=x+D/(x-1

Solution (a@). Since no domain is stated explicitly, the domain of f isthe natural domain
[1, +<0). Asx variesover theinterval [1, +«), the value of v/x — 1 varies over theinterval
[0, +), sothevaueof f(x) =2+ /x — 1 variesover theinterval [2, +o), which isthe
range of . The domain and range are shown graphically in Figure 1.2.10a.

Solution (b). The given function f is defined for all real x, except x = 1, so the natural
domainof fis

{X - X # 1} = (_m7 1) U (17 +m)
To determine the range it will be convenient to introduce a dependent variable

x+1
4
) 4

Although the set of possible y-values is not immediately evident from this equation, the
graph of (4), which is shown in Figure 1.2.10b, suggests that the range of f consists of all

y:
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y
sL y=2+Vx-1
4+
3+
2+
s X
| L L L L L L L L
12345678 910
I
@) (b)
Figure 1.2.10

y, except y = 1. To seethat thisis so, we solve (4) for x intermsof y:

x—Dy=x+1

xy—y=x+1
xy—x=y+1
xy-D=y+1
Lo tl
y—1

Itisnow evident from theright side of thisequation that y = 1isnot intherange; otherwise
we would have a division by zero. No other values of y are excluded by this equation, so
the range of the function f is{y : y # 1} = (—w, 1) U (1, +%), which agrees with the
result obtained graphically. <

In applications, physical considerations often impose restrictions on the domain and range
of afunction.

Example 7 An open box is to be made from a 16-inch by 30-inch piece of cardboard
by cutting out squares of equal size from the four corners and bending up the sides (Fig-
urel.2.11a).

(8 Let V bethevolume of the box that results when the squares have sides of length x.
Find aformulafor V asafunction of x.

(b) Find the domain of V.
() Usethegraph of V givenin Figure 1.2.11c to estimate the range of V.
(d) Describein wordswhat the graph tells you about the volume.

— < ~ 800
2 P NI e
| | 7 x 600 /‘
16in] 1 | S 500 \
o I 16 - 2x S 400 \
| P // Ay, \
i e — £ 200 \
\ 30in } 30-2x } 2 100
01 23 456 789
Side x of square cut (in)
(@ (b) (©

Figure 1.2.11



January 12, 2001 11:10 g65-chl

24 Functions

Radar Tracking
6000
5000
4000
3000
2000
1000

Distance D (ft)

0 10 20 30 40 50 60
8:05a.M. Timet(s) 8:06A.M.
Figure 1.2.12

The circle is squashed because 1
unit on the y-axis has a smaller
length than 1 unit on the x-axis.

Figure 1.2.13
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Solution (a). Asshown in Figure 1.2.11b, the resulting box has dimensions 16 — 2x by
30 — 2x by x, so the volume V (x) is given by

V(x) = (16 — 2x)(30 — 2x)x = 480x — 92x? + 4x°

Solution (b). The domain is the set of x-values and the range is the set of V-vaues.
Because x isalength, it must be nonnegative, and because we cannot cut out squares whose
sides are more than 8 in long (why?), the x-values in the domain must satisfy

0<x<8

Solution (c). Fromthegraph of V versusx in Figure 1.2.11c we estimate that the V -values
in the range satisfy

0<V <725
Note that thisis an approximation. Later we will show how to find the range exactly.

Solution (d). The graph tells usthat the box of maximum volume occurs for avalue of x
that is between 3 and 4 and that the maximum volume is approximately 725 in®. Moreover,
the volume decreases toward zero as x gets closer to O or 8. |

In applications involving time, formulas for functions are often expressed in terms of a
variable r whose starting value istaken to ber = 0.

Example 8 At8:05A.M. acarisclocked at 100 ft/sby aradar detector that is positioned
at the edge of astraight highway. Assuming that the car maintains aconstant speed between
8:05A.M. and 8:06 A.M., find afunction D(¢) that expressesthe distance traveled by the car
during that time interval as afunction of thetimez.

Solution. Itwould beclumsy to useclock timefor thevariabler, solet usagreeto measure
the elapsed time in seconds, starting with + = 0 at 8:05 A.M. and ending with r = 60 at
8:06 A.M. At each instant, the distance traveled (in ft) is equal to the speed of the car (in
ft/s) multiplied by the elapsed time (in s). Thus,

D()=100t, O0<r <60
The graph of D versust isshownin Figure 1.2.12. |

In geometric problems where you want to preserve the “true”’ shape of a graph, you must
use units of equal length on both axes. For example, if you graph a circle in a coordinate
system in which 1 unit in the y-direction is smaller than 1 unit in the x-direction, then the
circlewill be squashed vertically into an elliptical shape (Figure 1.2.13). You must also use
units of equal length when you want to apply the distance formula

d =/(x2 — x1)2 + (y2 — y1)?

to calculate the distance between two points (x1, y1) and (x2, y2) in the xy-plane.
However, sometimes it is inconvenient or impossible to display a graph using units of
equal length. For example, consider the equation

y =x?

If we want to show the portion of the graph over the interval —3 < x < 3, then thereis
no problem using units of equal length, since y only varies from 0 to 9 over that interval.
However, if we want to show the portion of the graph over theinterval —10 < x < 10, then
there is a problem keeping the units equal in length, since the value of y varies between 0
and 100. In this case the only reasonable way to show all of the graph that occurs over the
interval —10 < x < 10 isto compress the unit of length along the y-axis, asillustrated in
Figure 1.2.14.
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y y
9 —
gl 100 [
T 80 |-
67
sk 60 |-
4
N mys
2r 20+
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X X
| | | | | | > | | | | >
321 | 123 ~10 -5 5 10
Figure1.2.14

¢ REMARK. In applications where the variables on the two axes have unrelated units (say,
i centimeters on the y-axis and seconds on the x-axis), then nothing is gained by requiring
i the unitsto have equal lengths; choose the lengths to make the graph as clear as possible.

EXERCISE SET 1.2 X Graphing Calculator

©0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

1. Find £(0). f(2). f(—2). f3). f(~/2),and f(3r). K5 @ f)=+v3—x () g(x) = VA2
1 3 (©) h(x) =3+ Vx (d) Gx)=x>+2
@ f0)=32-2 (B fa)=1x () H(x) =3sinx
2x, x=<3 ~ 6. (a f(x):m (b) g(x):\/m
1 3
2. Findg(3), g(~1), g(m), g(~1.1), and g (:* — 1). ©) h(x) = RV @ G ==
@ g(X)=x+1 (b) g(X)=[m’ x=z1 (e) H(x) =sin’/x o |
x -1 3, x<1 7. Ineach part of the accompanying figure, determine whether

the graph defines y asafunction of x.
In Exercises 3-6, find the natural domain of the function al-

gebraically, and confirm that your result is consistent with y y
the graph produced by your graphing utility. [Note: Set your
graphing utility to the radian mode when graphing trigono- / \
metric functions) X X
1
B3 @ f=—7 (b) g(x) = vx?—3
(© G(x)=Vx2—2x+5 @ fx)= %' @ (b)
1 y y
@ h) = T gnx \\
4 (@) fa)= — (b) h(x) = v/x — 3x2 « /| N\«
R~ 5 +7 k_/
x2—4 x? -1
©Go=\"—F @ f®="1
d
© he) = 3 © (d)

2 — COSx Figure Ex-7
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10.

11.

12.

Expressthelength L of achord of acirclewithradius10cm
as afunction of the central angle 6 (see the accompanying
figure).

L

u 10

cm

Figure Ex-8

As shown in the accompanying figure, a pendulum of con-

J . X
v X X

} 15in }
Figure Ex-15

stant length L makes an angle 6 with its vertical position. [ 16. Asshownin the accompanying figure, acamerais mounted

Express the height /2 as afunction of the angle 6.

Figure Ex-9

A cup of hot coffee sits on a table. You pour in some cool
milk and let it sit for an hour. Sketch a rough graph of the
temperature of the coffee as a function of time.

A boat is bobbing up and down on some gentle waves. Sud-
denly it gets hit by alarge wave and sinks. Sketch a rough
graph of the height of the boat above the ocean floor as a
function of time.

Make a rough sketch of your weight as a function of time
from birth to the present.

In Exercises 13 and 14, express the function in piecewise
form without using absolute values. [ Suggestion: It may help
to generate the graph of the function.]

K 13
N 14

15.

@ f)=Ix[+3x+1 (D) g&x)=Ix[+[x—1]

@ fx)=3+]2x =5 (b gx) =3lx—2|—|x+1
As shown in the accompanying figure, an open box isto be
constructed from a rectangular sheet of metal, 8 inches by
15inches, by cutting out squareswith sides of length x from
each corner and bending up the sides.

() Expressthevolume V asafunction of x.

(b) Find the natural domain and the range of the function,
ignoring any physical restrictions on the values of the
variables.

(c) Modify the domain and range appropriately to account
for the physical restrictions on the values of V and x.

(d) Inwords, describe how the volume V' of the box varies
with x, and discuss how one might construct boxes of
maximum volume and minimum volume.

at a point 3000 ft from the base of arocket launching pad.

The shuttlerisesvertically when launched, and the camera’s

elevation angleis continually adjusted to follow the bottom

of the rocket.

(@) Choose |etters to represent the height of the rocket and
theelevation angle of the camera, and expressthe height
as afunction of the elevation angle.

(b) Find the natural domain and the range of the function,
ignoring any physical restrictions on the values of the
variables.

(c) Modify the domain and range appropriately to account
for the physical restrictions on the values of the vari-
ables.

(d) Generate the graph of height versus the elevation on
a graphing utility, and use it to estimate the height of
the rocket when the elevation angle is /4 ~ 0.7854
radian. Compare this estimate to the exact height. [Sug-
gestion: If you are using agraphing cal culator, thetrace
and zoom features will be helpful here.

Rocket

1 3000 ft I
Camera

Figure Ex-16

In Exercises 17 and 18: (i) Explain why the function f has
oneor more holesinitsgraph, and state the x-values at which
those holes occur. (i) Find afunction ¢ whose graph isiden-
tical to that of f, but without the holes.

x+2(x2-1) X+ Jx
IO = e fo==7
19. For a given outside temperature 7 and wind speed v, the

windchill index (WCI) is the equivalent temperature that
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exposed skin would feel with awind speed of 4 mi/h. An
empirical formula for the WCI (based on experience and
observation) is

In Exercises 2022, use the formula for the windchill index
described in Exercise 19.

T, 0<v<4 20. Find the air temperature to the nearest degreeif the WCl is
WCl = {914+ (91.4 — T)(0.0203v — 0.304,/v — 0.474), 4 <v <45 reported as —60° F with awind speed of 48 mi/h.

LT =55 v=45 21. Find the air temperature to the nearest degreeif the WCl is
where T is the air temperature in °F, v is the wind speed reported as —10° F with awind speed of 8 mi/h.
inmi/h, and WCl is the equivalent temperature in °F. Find 22. Find the wind speed to the nearest mile per hour if the WCI
the WCI to the nearest degreeif the air temperature is 25°F isreported as —15°F with an air temperature of 20°F.
and . i 23. At9:23 A.M. alunar lander that is 1000 ft above the Moon's
@ v=3mi/h (b) v =15mi/h

surface begins a vertical descent, touching down at 10:13
A.M. Assuming that the lander maintains a constant speed,
find afunction D(r) that expressesthe dtitude of the lander
above the Moon's surface as a function of .

(¢) v=46mi/h.
[Adapted from UMAP Module 658, Windchill, W. Bosch
and L. Cobb, COMAR, Arlington, MA.]

1.3 GRAPHING FUNCTIONS ON CALCULATORS
AND COMPUTERS; COMPUTER ALGEBRA SYSTEMS

In this section we will discuss issues that relate to generating graphs of equations
and functions with graphing utilities (graphing calculators and computers). Because
graphing utilities vary widely, it is difficult to make general statements about them.
Therefore, at various places in this section we will ask you to refer to the documenta-
tion for your own graphing utility for specific details about the way it operates.

"""""""""""""""""""""" The development of new technology has significantly changed how and where mathemati-

ggf\\n';w"l\!chﬂlé:EuBL:/I%?(ig:v?s cians, engineers, and scientists perform their work, as well as their approach to problem
solving. Not only have portable computers and handheld calcul ators with graphing capa-
bilities become standard tools in the scientific community, but there have been major new
innovations in computer software. Among the most significant of these innovations are
programs called Computer Algebra Systems (abbreviated CAS), the most common be-
ing Mathematica, Maple, and Derive.” Computer algebra systems not only have powerful
graphing capabilities, but, as their name suggests, they can perform many of the symbolic
computations that occur in algebra, calculus, and branches of higher mathematics. For
example, itisatrivial task for a CASto perform the factorization

x® + 23x° 4 147x* — 139x° — 3464x? — 2112x + 23040 = (x + 5)(x — 3)%(x +8)®
or the exact numerical computation

63456 43907 \° _ 2251912457164208291259320230122866923
3177295 22854377/  382895955819369204449565945369203764688375

Technology has also made it possible to generate graphs of equations and functions in
seconds that in the past might have taken hours to produce. Graphing technology includes
handheld graphing calculators, computer algebra systems, and software designed for that
purpose. Figure 1.3.1 showsthe graphs of the function f(x) = x* — x3 — 2x? produced with
variousgraphing utilities; thefirst two were generated with the CA Sprograms, Mathematica
and Maple, and the third with a graphing calculator. Graphing cal culators produce coarser
graphsthan most computer programs but have the advantage of being compact and portable.

*Mathematicaisa product of Wolfram Research, Inc.; Maple is a product of Waterloo Maple Software, Inc.; and
Deriveisaproduct of Soft Warehouse, Inc.
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VIEWING WINDOWS

TICK MARKS AND GRID LINES
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-4 4L
Generated by Mathematica Generated by Maple Generated by a graphing calculator
Figure 1.3.1

Graphing utilities can only show a portion of the xy-plane in the viewing screen, so the
first step in graphing an equation is to determine which rectangular portion of the xy-plane
you want to display. This region is called the viewing window (or viewing rectangle).
For example, in Figure 1.3.1 the viewing window extends over the interval [—3, 3] in the
x-direction and over the interval [—4, 4] in the y-direction, so we say that the viewing
window is[—3, 3] x [—4, 4] (read “[—3, 3] by [—4, 4]"). In general, if the viewing window
is[a, b] x [c, d], then the window extends between x = a and x = b in the x-direction
and between y = ¢ and y = d in the y-direction. We will call [a, b] the x-interval for the
window and [¢, d] the y-interval for the window (Figure 1.3.2).

(a, d) (b, d)
[c, d]
(a0 ‘ [a b] } (F,C)

The window [a, b] x [c, d]

Figure 1.3.2

Different graphing utilities designate viewing windows in different ways. For example,
the first two graphsin Figure 1.3.1 were produced by the commands

Plot[x"4 - x"3 -2*x"2, {x, -3, 3}, PlotRange->{-4, 4}]
(Mathematica)

plot( x4 - x"3 -2*x"2, x =-3..3, y = -4..4);

(Maple)

andthelast graph was produced on agraphing cal cul ator by pressing the GRAPH button after
setting the following values for the variables that determine the x-interval and y-interval:

xMin= -3, xMax=3, yMin=-4, yMax=4

FOR THE READER.  Use your own graphing utility to generate the graph of the function
f(x) = x* —x3 — 2x%inthewindow [—3, 3] x [—4, 4].

To help locate pointsin a viewing window visually, graphing utilities provide methods for
drawing tick marks (also called scale marks) on the coordinate axes or at other locationsin
the viewing window. With computer programs such as Mathematica and Maple, there are
specific commands for designating the spacing between tick marks, but if the user does not
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specify the spacing, then the programs make certain default choices. For example, in the
first two parts of Figure 1.3.1, the tick marks shown were the default choices.

On some graphing cal cul ators the spacing between tick marksis determined by two scale
variables (also called scale factors), which we will denote by

xScl and yScl

(The notation varies among calculators.) These variables specify the spacing between the
tick marks in the x- and y-directions, respectively. For example, in the third part of Fig-
ure 1.3.1 the window and tick marks were designated by the settings

xMin= -3 xMax =3

yMin= -4 yMax =4

xScl =1 yScl =1
Most graphing utilities allow for variations in the design and positioning of tick marks.
For example, Figure 1.3.3 shows two variations of the graphsin Figure 1.3.1; the first was
generated on acomputer using an option for placing the ticks and numbers on the edges of

a box, and the second was generated on a graphing calculator using an option for drawing
grid lines to simulate graph paper.

4
s
or
-2r
43210 1 2 3
Generated by Mathematica Generated by a graphing cal culator
Figure 1.3.3

Example 1 Figure 1.3.4a shows the window [—5, 5] x [—5, 5] with the tick marks
spaced .5 unit apart in the x-direction and 10 units apart in the y-direction. Note that no
tick marks are actualy visible in the y-direction because the tick mark at the origin is
covered by the x-axis, and al other tick marksin the y-direction fall outside of the viewing
window. <

[-5, 5]  [5, 5] [10, 10] x [~10, 10]

xScl = .5, yScl = 10 xScl =.1,yScl =.1
(@) (b)
Figure1.3.4

Example 2 Figure 1.3.4b showsthe window [—10, 10] x [—10, 10] with the tick marks
spaced .1 unitapartinthex- and y-directions. Inthiscasethetick marksare so closetogether
that they create the effect of thick lines on the coordinate axes. When this occurs you will
usually want to increase the scal e factors to reduce the number of tick marks and make them
legible. |
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¢ FOR THE READER.  Graphing calculators provide a way of clearing all settings and re-
¢ turning them to default values. For example, on one calculator the default window is
i [-10,10] x [—10, 10] and the default scale factors are xScl = 1 and yScl = 1. Check
i your documentation to determine the default values for your calculator and how to reset
© thecalculator to its default configuration. |f you are using acomputer program, check your

documentation to determine the commands for specifying the spacing between tick marks.

When the graph of a function extends indefinitely in some direction, no single viewing
CHOOSING A VIEWING WINDOW

window can show the entire graph. In such cases the choice of the viewing window can
drastically affect one's perception of how the graph looks. For example, Figure 1.3.5 shows
acomputer-generated graph of y = 9 — x2, and Figure 1.3.6 shows four views of this graph
generated on a calculator.

o In part (a) the graph falls completely outside of the window, so the window is blank
(except for the ticks and axes).

« Inpart(b) thegraphisbroken into two piecesbecauseit passesin and out of the window.

« Inpart (c) the graph appearsto be a straight line because we have zoomed in on such a
small segment of the curve.

¢ Inpart (d) we have a more complete picture of the graph shape because the window
encompasses all of the important points, namely the high point on the graph and the
intersections with the x-axis.

2,21 x[-2,2] [—4, 4] x[-2, 5] ‘ /\ ‘
xSel =1,yScl =1 xScl=1,yScl =1 F

Y @ (b)

B \ [2.5,3.5] x[-1, 1] [—4, 4] x [-3, 10] \ / \ \
L x xScl =.1,yScl = 1 xScl=1,yScl =1 [ £
-lr (© (d)

Four views of y = 9 —x?

Figure 1.3.5 Figure 1.3.6

For afunction whose graph does not extend indefinitely in either the x- or y-directions,
the domain and range of the function can be used to obtain a viewing window that contains
the entire graph.
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[-3,3] x[-1,4]

xScl=1,yScl=1
Figure 1.3.7
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Example 3 Usethe domain and range of the function f(x) = +/12 — 3x2 to determine
aviewing window that contains the entire graph.

Solution. The natural domain of f is[—2, 2] and the range is [0, v/12] (verify), so the
entire graph will be contained in the viewing window [—2, 2] x [0, +/12]. For clarity, it is
desirable to use a dlightly larger window to avoid having the graph too close to the edges
of the screen. For example, taking the viewing window to be [—3, 3] x [—1, 4] yields the
graphin Figure 1.3.7. |

If the graph of f extends indefinitely in either the x- or y-direction, then it will not
be possible to show the entire graph in any one viewing window. In such cases one tries
to choose the window to show all of the important features for the problem at hand. (Of
course, what isimportant in one problem may not be important in another, so the choice of
the viewing window will often depend on the objectives in the problem.)

Example 4 Graphtheequationy = x3—12x2+ 18inthefollowing windowsand discuss
the advantages and disadvantages of each window.

(@ [-10,10] x [—10, 10] with xScl = 1, yScl = 1
(b) [-20,20] x [—20, 20] with xScl = 1, yScl = 1
(©) [-20,20] x [—300, 20] with xScl = 1, yScl = 20
(d) [-5,15] x [—300, 20] with xScl = 1, yScl = 20
© [L 2] x[-1, 1] withxScl = .1, ySdl = .1

Solution (a). The window in Figure 1.3.8a has chopped off the portion of the graph that
intersects the y-axis, and it shows only two of three possible real roots for the given cubic
polynomial. To remedy these problems we need to widen the window in both the x- and
y-directions.

Solution (b). The window in Figure 1.3.8b shows the intersection of the graph with the
y-axis and the three real roots, but it has chopped off the portion of the graph between
the two positive roots. Moreover, the ticks in the y-direction are nearly illegible because
they are so close together. We need to extend the window in the negative y-direction and
increase yScl. We do not know how far to extend the window, so some experimentation will
be required to obtain what we want.

Solution (¢). The window in Figure 1.3.8c shows al of the main features of the graph.
However, we have some wasted space in the x-direction. We can improve the picture by
shortening the window in the x-direction appropriately.

Solution (d). The window in Figure 1.3.8d shows all of the main features of the graph
without a lot of wasted space. However, the window does not provide a clear view of the
roots. To get acloser view of the rootswe must forget about showing all of the main features
of the graph and choose windows that zoom in on the roots themselves.

Solution (€). Thewindow in Figure 1.3.8e displays very little of the graph, but it clearly
shows that the root in the interval [1, 2] is slightly lessthan 1.3. <

FOR THE READER.  Sometimesyou will want to determine the viewing window by choos-
ing the x-interval for the window and allowing the graphing utility to determinea y-interval

that encompasses the maximum and minimum values of the function over the x-interval.

Most graphing utilities provide some method for doing this, so check your documentation to
determine how to use thisfeature. Allowing the graphing utility to determine the y-interval
of the window takes some of the guesswork out of problems like that in part (b) of the
preceding example.
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[~10, 10] x [10, 10] [-20, 20] x [-20, 20] [-20, 20] x [-300, 20]

xScl=1,yScl =1 xScl=1,yScl =1 xScl =1, yScl =20
(@ (b) (©

[-5, 15] x [-300, 20] [1,2] x[-1, 1]
xScl =1, yScl =20 xScl =.1,yScl =.1
(d) C

Figure 1.3.8

The process of enlarging or reducing the size of aviewing window iscalled zooming. If you
reduce the size of the window, you see less of the graph as awhole, but more detail of the
part shown; thisiscalled zoomingin. In contrast, if you enlarge the size of the window, you
see more of the graph as awhole, but less detail of the part shown; thisis called zooming
out. Most graphing cal cul ators provide menu items for zooming in or zooming out by fixed
factors. For example, on one cal culator the amount of enlargement or reductioniscontrolled
by setting values for two zoom factors, xFact and yFact. If

xFact =10 and yFact=5

then each time azoom command isexecuted the viewing window isenlarged or reduced by a
factor of 10 inthe x-direction and afactor of 5 in the y-direction. With computer programs
such as Mathematica and Maple, zooming is controlled by adjusting the x-interval and
y-interval directly; however, there are ways to automate this by programming.

FOR THE READER.  If you are using a graphing calculator, read your documentation to
determine how to use the zooming feature.

Enlarging the viewing window for a graph has the geometric effect of compressing the
graph, since more of the graph is packed into the calculator screen. If the compression is
sufficiently great, then some of the detail in the graph may be lost. Thus, the choice of the
viewing window frequently depends on whether you want to see more of the graph or more
of the detail. Figure 1.3.9 shows two views of the equation

y=x"(x -2

In part (a) of the figure the y-interval isvery large, resulting in avertical compression that
obscures the detail in the vicinity of the x-axis. In part (b) the y-interval is smaller, and
conseguently we see more of the detail in the vicinity of the x-axis but less of the graph in
the y-direction.
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[-5, 5] x [-1000, 1000]
xScl = 1, yScl = 500

@

[-5, 5] x [-10, 10]

xScl =1,yScl =1
(b)
Figure 1.3.9
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Example 5 Describe the graph of the function f(x) = x + 0.01sin507xx; then graph
the function in the following windows and explain why the graphs do or do not differ from
your description.

@ [-10,10] x [-10,10]  (b) [-1,1] x [~1, 1]
© [-.1,.1] x [—.1,.1] (d) [-.01,.01] x [—.01,.01]

Solution. Theformulafor f isthe sum of the function x (whose graph is a straight line)
and the function 0.01 sin 50rx (whose graphisasinusoidal curvewith an amplitude of 0.01
and aperiod of 277/507r = 0.04). Intuitively, this suggeststhat the graph of # will follow the
genera path of theline y = x but will have small bumps resulting from the contributions
of the sinusoidal oscillations.

To generate the four graphs, we first set the calculator to the radian mode.” Because
the windows in successive parts of this example are decreasing in size by a factor of 10,
it will be convenient to use the zoom in feature of the calculator with the zoom factors set
to 10 in the x- and y-directions. In Figure 1.3.10a the graph appears to be a straight line
because compression has hidden the small sinusoidal oscillations. (Keep in mind that the
amplitude of the sinusoidal portion of the function isonly 0.01.) In part (b) the oscillations
have begun to appear since the y-interval has been reduced, and in part (c) the oscillations
have become very clear because the vertical scale is morein keeping with the amplitude of
the oscillations. In part (d) the graph appears to be aline segment because we have zoomed
in on such asmall portion of the curve. <

[-10, 10] x [-10, 10]
XxScl=1,yScl=1

@)
Figure 1.3.10

ASPECT RATIO DISTORTION

[-1, 1) x[-1, 1] [-1,.1] x[-1,.1] [-01, .01] x [-.01, .01]
XxScl=.1,yScl=.1 xScl =.01, yScl =.01 xScl =.001, yScl =.001

(b) © (d)

Figure 1.3.11a showsacircleof radius5 and two perpendicular lines graphed in the window
[—10, 10] x [—10, 10] with xScl = 1 and yScl = 1. However, the circle is distorted and
the lines do not appear perpendicular because the calculator has not used the same length
for 1 unit onthe x-axisand 1 unit on the y-axis. (Compare the spacing between theticks on
the axes.) Thisis called aspect ratio distortion. Many calculators provide a menu item for
automatically correcting the distortion by adjusting the viewing window appropriately. For
example, onecal cul ator makesthiscorrectiontotheviewingwindow [—10, 10] x [—10, 10]
by changing it to

[—16.9970674487, 16.9970674487] x [—10, 10]

(Figure 1.3.11b). With computer programs such as Mathematica and Maple, aspect ratio
distortion is controlled with adjustments to the physical dimensions of the viewing window
on the computer screen, rather than altering the x- and y-intervals of the viewing window.

FOR THE READER.  Read the documentation for your graphing utility to determine how

© to control aspect ratio distortion.

*In this text we follow the convention that angles are measured in radians unless degree measure is specified.
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[~10, 10] x [-10, 10] [~16.9970674487, 16.9970674487] x [-10, 10]

xScl=1,yScl=1 xScl=1,yScl=1
@ (b)
Figure 1.3.11

Sometimesgraphing utilities produce unexpected results. For example, Figure 1.3.12 shows
the graph of y = cos(10xx), which was generated on a graphing calculator in four differ-
ent windows. (Your own calculator may produce different results.) The first graph has the
correct shape, but the remaining three do not. To explain what is happening here we need
to understand more precisely how graphing utilities generate graphs.

[-1, 1] x [, 1]
xScl = 5,yScl= 5

@)
Figure 1.3.12

} 127 Pixels }

A viewing window with
resolution 63 x 127
(63 rows of 127 pixels)

Figure 1.3.13

SAMPLING ERROR

[-12.6, 12.6] x [-1, 1] [~12.5, 12.6] x [-1, 1] [-6, 6] x [, 1]

xScl=1,yScl= 5 xScl=1,yScl= 5 xScl=1,yScl =5
(b) (© (d)

Screen displays for graphing utilities are divided into rows and columns of rectangular
blocks, called pixels. For black-and-white displays each pixel has two possible states—an
activated (or dark) state and a deactivated (or light) state. Since graphical elements are
produced by activating pixels, the more pixels that a screen has to work with, the greater
the amount of detail it can show. For example, one calculator has aresolution of 63 x 127,
meaning that there are 63 rows with 127 pixels per row (Figure 1.3.13). In contrast, a
computer screen may have a resolution of 1024 x 1280 (1024 rows with 1280 pixels per
row), so the computer screen is capable of displaying much smoother graphs than the
calculator.

FOR THE READER.  If you are using a graphing calculator, check the documentation to
determine its resolution.

The procedure that a graphing utility follows to generate a graph is similar to the proce-
dure for plotting points by hand. When a viewing window is selected and an equation is
entered, the graphing utility determines the x-coordinates of certain pixels on the x-axis
and computes the corresponding points (x, y) on the graph. It then activates the pixels
whose coordinates most closely match those of the cal culated points and uses some built-in
algorithm to activate additional intermediate pixels to create the curve shape. The point to
keep in mind here isthat changing the window changes the points plotted by the graphing
utility. Thus, it is possible that a particular window will produce a false impression about
the graph shape because significant characteristics of the graph occur between the plotted
pixels. Thisis called sampling error. Thisis exactly what occurred in Figure 1.3.12 when
we graphed y = cos(10xx). In part (b) of the figure the plotted pixels happened to fall at
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the peaks of the cosine curve, giving the false impression that the graph isahorizontal line
at y = 1. In part (c) the plotted pixels fell at successively higher points along the graph,
and in part (d) the plotted pixels fell in a strange way that created yet another misleading
impression of the graph shape.

¢ REMARK. Figure 1.3.12 suggests that for trigonometric graphs with rapid oscillations,
i restricting the x-interval to afew periodsislikely to produce amore accurate representation
about the graph shape.

"""""""""""""""""""""" Sometimes graphs that are continuous appear to have gaps when they are generated on a
FALSE GAPS calculator. These false gaps typically occur where the graph rises so rapidly that vertical
space is opened up between successive pixels.

Example 6 Figure1.3.14 showsthegraph of the semicircley = +/9 — x2intwo viewing
windows. Although this semicircle has x-intercepts at the points x = +3, part (a) of the
figure shows fal se gaps at those points because there are no pixelswith x-coordinates +3in
the window selected. In part (b) no gaps occur because there are pixels with x-coordinates
x = £3inthewindow being used. <

[-5, 5] % [5, 5] [-6.3, 6.3] X [-5, 5]

xScl=1,yScl=1 xScl=1,yScl=1
@) (b)
Figure 1.3.14
"""""""""""""""""""""" In addition to creating false gaps in continuous graphs, calculators can err in the opposite

FALSE LINE SEGMENTS direction by placing false line segments in the gaps of discontinuous curves.

Example 7 Figure 1.3.15a shows the graph of y = 1/(x — 1) in the default window on
acalculator. Although the graph appears to contain vertical line segments near x = 1, they
should not be there. There is actually agap in the curve at x = 1, since adivision by zero

occurs at that point (Figure 1.3.15b). |

y

TN

\

X
-5 —— 5
— \
[-10, 10] x [-10, 10] AR
xScl =1, yScl =1 N
y = 1/(x—1) with false line segments Actual curve shape of y=1/(x—1)
(@ (b)

Figure 1.3.15



January 12, 2001 11:10 g65-chl

36 Functions

ERRORS OF OMISSION

WHAT IS THE TRUE SHAPE OF A
GRAPH?

MORE INFORMATION ON
GRAPHING AND CALCULATING
UTILITIES

Sheet number 30 Page number 36 cyan magenta black

Most graphing utilitiesuselogarithmsto eval uatefunctionswith fractional exponentssuchas
flx) = x?3 = Jx2. However, because logarithms are only defined for positive numbers,
many (but not all) graphing utilities will omit portions of the graphs of functions with
fractional exponents. For example, one calculator graphs y = x?/3 asin Figure 1.3.16a,
whereas the actual graph isasin Figure 1.3.16b. (See the discussion preceding Exercise 29
for away of circumventing this problem.)

pY
4 —
3 —
2 —
1 —
X
H 1 1 1 1 1 1 1 1 >
-4 -3 -2 -1 1 2 3 4
[-4, 4] x [-1, 4]
xScl=1,yScl=1
(@ (b)
Figure 1.3.16

FOR THE READER.  Determine whether your graphing utility produces the graph of y =

© x23 for both positive and negative values of x.

Although graphing utilities are powerful tools for generating graphs quickly, they can pro-
duce misleading graphs asaresult of compression, sampling error, false gaps, and falseline
segments. In short, graphing utilities can suggest graph shapes, but they cannot establish
them with certainty. Thus, the more you know about the functions you are graphing, the
easier it will be to choose good viewing windows, and the better you will be able to judge
the reasonableness of the results produced by your graphing utility.

The main source of information about your graphing utility is its own documentation,
and from time to time we will suggest that you refer to that documentation to learn some
particular technique.

EXERCISE SET 1.3 ™ Graphing Calculator

M 1. Useagraphing utility to generate the graph of the function
f(x) = x* — x2 inthe given viewing windows, and specify
the window that you think gives the best view of the graph.

(b) [-5.5] x [-5,5]

(d) [-2.2] x [-1.1]

(@ [-50, 50] x [—50, 50]
(© [-2,2] x[-2,2]
(€) [-1.5, 1.5] x [—0.5, 0.5]

=

(a) [—50, 50] x [—50, 50]
(© [-2.2] x [-2,2]
(e) [-15, 1.5] x [-0.5, 0.5]

=i

Use agraphing utility to generate the graph of the function
F(x) = x® — x% in the given viewing windows, and specify
the window that you think gives the best view of the graph.
(b) [-5,3] x [-5,9]
(d [-2.2] x[-11]

Use agraphing utility to generate the graph of the function

the window that you think gives the best view of the graph.
@ [—1,1] x [13,15] (b) [-2,2] x [11, 15]
(o) [—4,4] x [10, 28] (d) A window of your choice

Use agraphing utility to generate the graph of the function
f(x) = —12 — x? inthe given viewing windows, and spec-
ify the window that you think gives the best view of the
graph.

@ [1,1] x [-15,-13]
() [—4,4] x [—28, —10Q]

~ 4

(b) [-2,2] x [—15, —11]
(d) A window of your choice

In Exercises 5 and 6, use the domain and range of f to deter-
mine a viewing window that contains the entire graph, and
generate the graph in that window.

f(x) = x2 4 12 in the given viewing windows, and specify
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stated windows and tick spacing, and discussthe advantages
and disadvantages of each window.
(@ [—10, 10] x [—10, 10] with xScl = 1and yScl =1
(b) [—20, 20] x [—20, 20] withxScl = 1and yScl = 1
() [-5, 20] x [—500, 50] with xScl = 5 and yScl = 50
(d) [-2, —1] x [-1, 1] withxScl = 0.1and yScl = 0.1
(e) [9, 11] x [—486, —484]

withxScl = 0.1 and yScl = 0.1
Graphthefunction f(x) = —x%—12x2+4x 4+ 48 using the
stated windows and tick spacing, and discussthe advantages
and disadvantages of each window.
(@ [—10,10] x [—10, 10] with xScl = 1 and yScl = 1
(b) [—20, 20] x [—20, 20] with xScl = 1and yScl = 1
(c) [—16, 4] x [—250, 50] with xScl = 2 and yScl = 25
(d) [-3, —1] x [—1, 1] withxScl = 0.1and yScl = 0.1
(e [-9, —7] x [—241, —239]

withxScl = 0.1and yScl = 0.1

N 22

23.

24,

K 25.

Read the documentation for your graphing utility to deter-
mine how to graph functionsinvolving absol ute val ues, and
graph the given equation.

@ y=Ix| (b) y=Ix -1
© y=Ix-1 (d) y=Isinx]
(€) y=sin|x| ) y=IxI-Ix+1

Based on your knowledge of the absolute value function,
sketch the graph of f(x) = |x|/x. Check your result using
agraphing utility.

M ake a conjecture about the rel ationship between the graph
of y = f(x) and the graph of y = | f(x)|; check your con-
jecture with some specific functions.

M ake a conjecture about the rel ationship between the graph
of y = f(x) and the graph of y = f(]x|); check your con-
jecture with some specific functions.

(a) Based on your knowledge of the absolute value func-
tion, sketch the graph of y = |x — a|, wherea isa
constant. Check your result using agraphing utility and
some specific values of a.

(b) Sketch the graphof y = [x — 1| + |x — 2|; check your

In Exercises 9-16, generate the graph of f inaviewing win-
dow that you think is appropriate.

2 g X+
E’Q. fx)=x 9x — 36 E’lO. f()c)_x_9

11. f(x) = 2cos80x R 12. f(x) = 12sin(x/80)
13. f(x) = 300 — 10x2 + 0.01x°
14. f(x) = x(30 — 2x)(25 — 2x)

K] 16. f(x) = v1lx — 18

Rl RRE

15. f(x) = x?+ 1
X

InExercises17 and 18, generatethegraph of f and determine
whether your graphs contain false line segments. Sketch the
actual graph and seeif you can make the false line segments
disappear by changing the viewing window.

X xz

B 7 f0=5— B 18 f0=7"75

[ 19. Thegraph of the equation x?+y? = 16isacircleof radius

4 centered at the origin.

(8 Find afunctionwhose graph isthe upper semicircleand
graphit.

(b) Findafunctionwhosegraphisthelower semicircleand
graphit.

(c) Graph the upper and lower semicircles together. If the
combined graphs do not appear circular, seeif you can
adjust the viewing window to eliminate the aspect ratio
distortion.

(d) Graph the portion of the circle in the first quadrant.

(e) Isthere afunction whose graph is the right half of the
circle? Explain.

In each part, graph the equation by solving for y in terms

of x and graphing the resulting functions together.

(@ x2/4+y%/9=1 (b) y>2—x?2=1

K 20.

K 26.

result with a graphing utility.

How arethegraphsof y = |x| and y = +/x2 related? Check
your answer with a graphing utility.

Most graphing utilities provide some way of graphing func-
tions that are defined piecewise; read the documentation for
your graphing utility to find out how to do this. However, if
your godl isjust to find the general shape of the graph, you
can graph each portion of the function separately and com-
bine the pieces with a hand-drawn sketch. Use this method
in Exercises 27 and 28.

27. Draw the graph of

I =2, x<2
fx) =4,
x°—2x—4, x>2
28. Draw the graph of
x3—x2, x<1
1
fx) = , l<x<4
1—x
x2cos/x, 4<x

We noted in the text that for functions involving fractional

exponents (or radicals), graphing utilities sometimes omit

portions of the graph. If f(x) = x?/4, where p/q is a pos-

itive fraction in lowest terms, then you can circumvent this

problem as follows:

o If pisevenandq isodd, then graph g(x) = |x|”/? instead
of f(x).

o If pisoddand g isodd, then graph g(x) = (|x|/x)|x|?/4
instead of f(x).

We will explain why this works in the exercises of the next

section.
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K 30.

K 3L

K 32

ARITHMETIC OPERATIONS ON
FUNCTIONS

(@) Generatethegraphsof f(x) = x¥%and g(x) = |x|?/,
and determinewhether your graphing utility missed part
of the graph of f.

(b) Generate the graphs of the functions f(x) = x%/® and
g(x) = (Jx|/x)|x|Y®, and then determine whether your
graphing utility missed part of the graph of f.

(c) Generateagraph of thefunction f(x) = (x —1)¥5 that
shows all of itsimportant features.

(d) Generateagraph of thefunction f(x) = (x 4+ 1)%* that
shows all of itsimportant features.

The graphs of y = (x% — 4)2/3 andy = [(x*— 4)2]1/3

should be the same. Does your graphing utility produce the

same graph for both equations? If not, what do you think is

happening?

In each part, graph the function for various values of ¢, and

write a paragraph or two that describes how changesin ¢

affect the graph in each case.

@ y=cx?

(b) y=x2+cx

© y=x2+x+c

The graph of an equation of theform y? = x(x —a)(x — b)

(where0 < a < b) iscalled abipartite cubic. The accom-

panying figure shows atypical graph of thistype.

(@ Graphthebipartitecubic y? = x(x — 1) (x — 2) by solv-
ing for y in terms of x and graphing the two resulting
functions.
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(b) Find the x-intercepts of the bipartite cubic
y2 =x(x—a)(x —b)

and make a conjecture about how changesin the values
of a and b would affect the graph. Test your conjecture
by graphing the bipartite cubic for various values of a
and b.

Bipartite cubic .
Figure Ex-32

Based on your knowledge of the graphs of y = x and
y = sinx, make asketch of thegraph of y = x sinx. Check
your conclusion using a graphing utility.

What do you think the graph of y = sin(1/x) looks like?
Test your conclusion using a graphing utility. [ Suggestion:
Examine the graph on a succession of smaller and smaller
intervals centered at x = 0.]

1.4 NEW FUNCTIONS FROM OLD

Just as numbers can be added, subtracted, multiplied, and divided to produce other

numbers, so functions can be added, subtracted, multiplied, and divided to produce

other functions. In this section we will discuss these operations and some others that
have no analogs in ordinary arithmetic.

formula

(f +8)(x) = fx)+g)
which states that for each input the value of f + g is obtained by adding the values of f

and g. For example, if

fx)=x and gx)=x?

then

Two functions, f and g, can be added, subtracted, multiplied, and divided in a natural way
to form new functions f + g, f — g, fg, and f/g. For example, f + g is defined by the

1)

(f +8) ) = f(x) +g(x) =x +x?

Equation (1) provides aformulafor f + g but does not say anything about the domain of
f + g. However, for the right side of this equation to be defined, x must lie in the domain
of f and in the domain of g, so we define the domain of f + g to be the intersection of
those two domains. More generally, we make the following definition:
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1.4.1 DEFINITION. Givenfunctions f and g, we define

(f +8)(x) = f(x) +g)

(f —8)(x) = f(x) — g)

(fox) = fx)gx)

(f/e)(x) = fx)/g(x)
For the functions f + g, f — g, and fg we define the domain to be the intersection
of the domains of f and g, and for the function /g we define the domain to be the

intersection of the domains of f and g but with the points where g(x) = 0 excluded (to
avoid division by zero).

¢ REMARK. If fisaconstant function, say f(x) = c for all x, then the product of f and g
i iscg, so multiplying afunction by aconstant isaspecial case of multiplying two functions.

Example 1 Let
fxX)=14+/x—-2 and gkx)=x-3
Find (f +£)(x), (f —8)(x), (f&)(x), (f/g)(x), and (7 f)(x); state the domains of f + g,

Solution. First, wewill find formulasfor thefunctionsand then the domains. Theformulas
are

(f+90)=f0)+gx) =Q+vVx=2)+x -3 =x—-2+vx-2 (2
(f—9@0) =fx)—gx) =A+vVx—-2)—x -3 =4-—x+vx-2 (3

(O = fg) =@+ Vi—2)x—3) (@)
14+4/x—2
(fle)0) = f0)/g(x) = % 5)

(7fHx) =T7f(x) =T74+7Vx -2 (6)

In al five cases the natural domain determined by the formula is the same as the domain
specified in Definition 1.4.1, so there is no need to state the domain explicitly in any of
these cases. For example, thedomain of f is[2, +«), thedomain of g is(—ow, +x), and the
natural domain for f(x) + g(x) determined by Formula (2) is[2, +«), which is precisely
the intersection of the domains of f and g. <

¢ REMARK. There are situations in which the natural domain associated with the formula

resulting from an operation on two functionsis not the correct domain for the new function.
i Forexample, if f(x) = /x and g(x) = /x, then according to Definition 1.4.1 the domain
¢ of fg should be [0, +) N [0, +o) = [0, ). However, (fg)(x) = /x+/x = x, which
: has anatural domain of (—c, +o0). Thus, to be precise in describing the formula for fg,
: wemust write (fg)(x) = x, x > 0.

"""""""""""""""""""""" Multiplying afunction f by a positive constant ¢ has the geometric effect of stretching or
STRETCHES AND COMPRESSIONS compressing the graph of y = f(x) inthe y-direction. For example, examine the graphs of
y=f(x),y=2f(x),and y = %f(x) shown in Figure 1.4.1a. Multiplying by 2 doubles
each y-coordinate, thereby stretching thegraph, and multiplying by % cutseach y-coordinate
in half, thereby compressing the graph. In generd, if ¢ > 0O, thenthegraphof y = ¢f(x) can
be obtained from the graph of y = f(x) by compressing the graph of y = f(x) verticaly
by afactor of 1/c¢ if 0 < ¢ < 1, or stretching it by afactor of ¢ if ¢ > 1.
Analogously, multiplying x by apositive constant ¢ hasthe geometric effect of stretching
or compressing the graph of y = f(x) inthe x-direction. For example, examine the graphs



January 12, 2001 11:10 g65-chl

40 Functions

SUMS OF FUNCTIONS
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32 /
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1985 1990 1995
Source: NADA.
Figure 1.4.2

COMPOSITION OF FUNCTIONS
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- Y=2f(9
_y=f Y=12)

(o y=11 Cy=1
« y =f(2X) "

T XA

(@ (b)

Figure1.4.1

of y = f(x),y = f(2x),and y = f(x/2) shown in Figure 1.4.1b. Multiplying x by 2
compresses the graph by afactor of 2 and multiplying x by % stretchesthe graph by afactor
of 2. [Thisisalittle confusing, but think of it thisway: The value of 2x changes twice as
fast asthe value of x, so a point moving along the x-axis will only have to move half asfar
from the origin for y = f(2x) to havethe samevaueasy = f(x).] Ingenerd, if ¢ > 0,
then the graph of y = f(cx) can be obtained from the graph of y = f(x) by stretching the
graph of y = f(x) horizontally by a factor of 1/c if 0 < ¢ < 1, or compressing it by a
factor of ¢ if ¢ > 1.

Adding two functions can be accomplished geometrically by adding the corresponding y-
coordinates of their graphs. For example, Figure 1.4.2 shows line graphs of yearly new car
sales N (t) and used car sales U (¢) in the United States between 1985 and 1995. The sum
of thesefunctions, T'(t) = N(¢) + U(t), representsthe yearly total car salesfor that period.
Asillustrated in the figure, the graph of T'(¢) can be obtained by adding the values of N (¢)
and U (¢) together at each time ¢ and plotting the resulting value.

Example 2 Referring to Figure 1.2.1 for the graphs of y = /x and y = 1/x, make a
sketch that shows the general shape of the graph of y = /x + 1/x for x > 0.

Solution. To add the corresponding y-values of y = /x and y = 1/x graphicaly, just

imagine them to be “ stacked” on top of one another. Thisyields the sketch in Figure 1.4.3.
|

//////////’ //////////’ =
/&I X Ux} X X

Figure1.4.3

We now consider an operation on functions, called composition, which has no direct analog
in ordinary arithmetic. Informally stated, the operation of composition is performed by
substituting some function for the independent variable of another function. For example,
suppose that

fx)=x2 and gx)=x+1
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If we substitute g(x) for x in the formulafor f, we obtain a new function
f(@(x) = (g(0)? = (x + 1)?

which we denote by fog. Thus,
(fe@)x) = f(g() = (g())* = (x + 1)?
In general, we make the following definition.

1.4.2 DEFINITION. Given functions f and g, the composition of f with g, denoted
by f og, isthefunction defined by

(fog)(x) = f(g(x))
Thedomain of fog isdefinedto consist of al x inthe domain of g for which g(x) isin
thedomain of f.

REMARK. Although the domain of f o g may seem complicated at first glance, it makes

sense intuitively: To compute f(g(x)) one needs x in the domain of g to compute g(x),
¢ then one needs g(x) in the domain of f to compute f(g(x)).

In Section 1.1 we noted that afunction f can be viewed as a computer program that takes
an input x, operates on it, and produces an output f(x). From this viewpoint composition
can be viewed astwo programs, g and 1, operating in succession: Aninput x isfedfirsttoa
program g, which produces the output g (x); then this output isfed asinput to a program f,
which produces the output f(g(x)) (Figure 1.4.4). However, rather than have two separate
programs operating in succession, we could create a single program that takes the input
x and directly produces the output f(g(x)). This program is the composition f o g since

(feg)x) = fgx)).

g f
Computer Computer
Program Program
Output @09)
fog
Computer

Program
Output f(g(X)

Figure1.4.4

Example 3 Let f(x) = x?>+ 3and g(x) = /x. Find
@ (fog)x) (b) (gofH(x)
Solution (a). Theformulafor f(g(x)) is

flgx) =g +3=(WVx)?>+3=x+3

Since the domain of g is [0, +oc) and the domain of f isS (—oo, +), the domain of fog
consists of all x in [0, +) such that g(x) = /x liesin (—co, +0); thus, the domain of
fogis[0, +). Therefore,

(fog)x) =x+3 x=0
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Solution (b). The formulafor g(f(x)) is

g(f(x) =y f(x) =vx?+3

Since the domain of f is (—o, +%) and the domain of g is [0, +«), the domain of go f
consists of al x in (—oe, +0) suchthat f(x) = x?+ 3liesin [0, +o0). Thus, the domain of
go f is(—ow, +x). Therefore,

(gof)(x) =+vx2+3
There is no need to indicate that the domain is (—w, +0), since thisis the natural domain

of v/x2 4+ 3. |

REMARK. Note that the functions fog and go f in the preceding example are not the

same. Thus, the order in which functions are composed can (and usually will) make a

difference in the end result.

Compositions can a so be defined for three or morefunctions; for example, (f ogoh)(x)
is computed as

(fogoh)(x) = f(g(h(x)))
In other words, first find 4 (x), then find g(h(x)), and then find f(g(h(x))).

Example 4 Find (fogoh)(x) if
f)=vx, gx)=1/x, h(x)=x°
Solution.
(fogoh)(x) = f(gh(x) = flg(x®) = f(1/x°) = V1/x® = 1/x? <

Many problemsin mathematicsare attacked by “ decomposing” functionsinto compositions
of simpler functions. For example, consider the function 4 given by

h(x) = (x + 1)?

To evaluate h(x) for agiven value of x, we would first compute x + 1 and then square the
result. These two operations are performed by the functions

gx)=x+1 and f(x)=x?
We can express i interms of f and g by writing
h(x) = (x + 1% = [g0)]* = flg()

so we have succeeded in expressing 4 as the composition 2 = fog.
The thought process in this example suggests a general procedure for decomposing a
function & into acompositionh = fog:

« Think about how you would evaluate /1 (x) for aspecific value of x, trying to break the
evaluation into two steps performed in succession.

o Thefirst operation in the evaluation will determine afunction ¢ and the second a func-
tion f.
o Theformulafor 4 canthen bewritten asi(x) = f(g(x)).
For descriptive purposes, wewill refer to g asthe“insidefunction” and f asthe“outside
function” in the expression f(g(x)). The inside function performs the first operation and
the outside function performs the second.

Example 5 Expressi(x) = (x — 4)° asacomposition of two functions.
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Solution. To evaluate 4 (x) for agiven value of x we would first compute x — 4 and then
raise the result to the fifth power. Therefore, the inside function (first operation) is

gx) =x—4
and the outside function (second operation) is

fe) =x°
so h(x) = f(g(x)). Asacheck,
f(g(x) = [g()]° = (x — 4> = h(x) <

Example 6 Expresssin(x®) asacomposition of two functions.

Solution. To evaluate sin(x®), we would first compute x® and then take the sine, so
g(x) = x3istheinside function and f(x) = sinx the outside function. Therefore,

Sin(x3) = f(g(x)) g(x) =x3and f(x) = sinx «

Example 7 Table 1.4.1 gives some more examples of decomposing functions into com-
positions.

Table1.4.1
9(x) f()
FUNCTION INSIDE OUTSIDE COMPOSITION
(x®+ 10 x2+1 x10 O+ 1) = f(9(¥)
sin®x sinx x3 sin®x = f(g(X)
tan (x5) x> tan x tan (x%) = f(g(X)
V4 -3x 4-3x VX N4 —3x = f(g(x)
8+X N 8+x 8+ X = F(g(x))
1 1 1 _
x+1 x+1 X x+1- (00

REMARK. It should be noted that there is always more than one way to express afunction
as a composition. For example, here are two ways to express (x2 + 1)1° as a composition

. that differ from that in Table 1.4.1:

@24+ DO = [(x2+ 12" = f(g(x)) 60 = (2 + 1 and f) = 1

(% + D0 = [(a2 + '

= f(g(x)) g) = (x2+ 1) and f(x) = x1073
Figure 1.4.5 shows the graphs of three curves that have certain obvious symmetries. The
graphin part (a) is symmetric about the x-axisin the sense that for each point (x, y) onthe
graph the point (x, —y) isaso on the graph; the graph in part (b) is symmetric about the
y-axis in the sense that for each point (x, y) on the graph the point (—x, y) is aso on the
graph; and thegraphin part (c) issymmetric about the origin in the sensethat for each point
(x, y) onthegraph thepoint (—x, —y) isalso on the graph. Geometrically, symmetry about
the origin occurs if rotating the graph 180° about the origin leaves the graph unchanged.
Symmetries can often be detected from the equation of acurve. For example, the graph of

y=x° ©
must be symmetric about the origin because for any point (x, y) whose coordinates satisfy
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Figure 1.4.5

(7), the coordinates of the point (—x, —y) also satisfy (7), since substituting these coordi-
natesin (7) yields

-y =(=x)°
which simplifiesto (7). This suggests the following symmetry tests (Figure 1.4.6).

y y y y

(=x.y) ) (=x.y) (xy) xy) )

I - | I I 1 % d

\ | X 1 | X | 1 X \ | X

| ; | — T 7 ;

o JA P JAR M B 'y
(=%,-y) x-y) x-) (=%,-y)

Symmetric about Symmetric about Symmetric about
the y-axis the x-axis the origin

Figure 1.4.6

1.4.3 THEOREM (Symmetry Tests).

(a8 Aplanecurveissymmetric about the y-axisif and only if replacing x by —x inits
equation produces an equivalent equation.

(b) Aplanecurveissymmetric about the x-axisif and only if replacing y by —y inits
equation produces an equivalent equation.

(c) Anplane curveissymmetric about the origin if and only if replacing both x by —x
and y by —y in its equation produces an equivalent equation.

For the graph of afunction f to be symmetric about the y-axis, the equationsy = f(x) and
y = f(—x) must be equivalent; for thisto happen we must have
Jx) = f(=x)

A function with this property is called an even function. Some examples are x2, x*, x6,
and cosx. Similarly, for the graph of a function f to be symmetric about the origin, the
equationsy = f(x) and —y = f(—x) must be equivalent; for thisto happen we must have

Jx) =—=f(=x)
A function with this property is called an odd function. Some examples are x, x3, x®, and
sinx.

FOR THE READER.
about the x-axis.

Explain why the graph of a nonzero function cannot by symmetric
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Once you know the graph of an equation y = f(x), there are some techniques that can be
used to help visualize the graphs of the equations

y=fx)+ec, y=f)—c, y=[flx+o),
where ¢ is any positive constant.

If a positive constant is added to or subtracted from f(x), the geometric effect is to
trandate the graph of y = f(x) paralel to the y-axis; addition translates the graph in the
positive direction and subtraction translatesit in the negative direction. Thisisillustrated in
Table 1.4.2. Similarly, if a positive constant is added to or subtracted from the independent
variable x, the geometric effect isto trand ate the graph of thefunction parallel to the x-axis;
subtraction tranglates the graph in the positive direction, and addition trandates it in the

y=fx—c)

negative direction. Thisisalsoillustrated in Table 1.4.2.

Table1.4.2

OPERATION ON
y="1(x)

Add apositive
constant c to f(x)

Subtract a positive
constant ¢ from f(x)

Add a positive
constant c to x

Subtract a positive
constant ¢ from x

NEW EQUATION

y=f(x)+c

y=f(x)—c

y =f(x+c)

y =f(x—c)

GEOMETRIC
EFFECT

Trand ates the graph of
y = f(X) up c units

Trand ates the graph of
y = f(X) down c units

Trand ates the graph of
y = f(X) left c units

Trand ates the graph of
y = f(X) right c units

EXAMPLE

Y y=x2+2

- Jy=x2
/
N .

y=(x+2)?
y=x

y
y=(x-2)?
— 2
) ySxt N
\ I/

b P I

2

Before proceeding to the following examples, it will be helpful to review the graphsin
Figures1.2.1 and 1.2.5.

Example 8 Sketch the graph of

@y=+vx-3 (b)) y=+vx+3
Solution. Thegraph of the equation y = +/x — 3 can be obtained by translating the graph
of y = /x right 3 units, and the graph of y = /x + 3 by trandlating the graph of y = /x
left 3 units (Figure 1.4.7). <

y=Vx+3

y=1x

Figure 1.4.7

y=Vx-3

Example 9 Sketchthegraphof y = |x — 3| + 2.

Solution. The graph can be obtained by two trandations: first translate the graph of
y = |x| right 3 units to obtain the graph of y = |x — 3|, then trandate this graph up 2 units
to obtain the graph of y = |x — 3| + 2 (Figure 1.4.8). <
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Figure 1.4.8

¢ REMARK. Thegraphinthe preceding example could also have been obtained by perform-

ing the trandations in the opposite order: first trandating the graph of y = |x| up 2 unitsto
obtain the graph of y = |x| + 2, then translating this graph right 3 unitsto obtain the graph
of y=1|x -3 +2

Example 10 Sketch the graph of y = x? — 4x + 5.

Solution. Completing the square on the first two terms yields
y=x?—4x+4)-44+5=x—-2°+1
(see Appendix D for areview of thistechnique). In this form we see that the graph can be

obtained by translating the graph of y = x? right 2 units because of the x — 2, and up 1 unit
because of the +1 (Figure 1.4.9). |

Example 11 By completing the square, an equation of theform y = ax? + bx + ¢ with
a # 0 can be expressed as

y:a(x—h)2+k (8)
Sketch the graph of this equation.

Solution. We can build up Equation (8) in three steps from the equation y = x?. First,
we can multiply by a to obtain y = ax?. If a > 0, this operation has the geometric effect
of stretching or compressing the graph of y = x?; and if a < 0, it has the geometric
effect of reflecting the graph about the x-axis, in addition to stretching or compressing it.
Since stretching or compressing does not alter the general parabolic shape of the original
curve, thegraph of y = ax? looksroughly like one of those in Figure 1.4.10a. Next, we can
subtract # from x to obtain the equation y = a(x — h)?, and then we can add & to obtain
y = a(x — h)? + k. Subtracting / causes a horizontal tranglation (right or left, depending
on the sign of /), and adding k causes a vertical translation (up or down, depending on the
sign of k). Thus, the graph of (8) looks roughly like one of those in Figure 1.4.10b, which

are shown with 7 > Oand k > O for simplicity. <
y y y y
X X KN . k,m X
! h
h \
y=ax? y = ax? y=a(x—h)2+k y=a(x-h)2+k
a>0 a<o a>0 a<o
@) (b)

Figure1.4.10
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The graph of y = f(—x) isthe reflection of the graph of y = f(x) about the y-axis, and
the graph of y = — f(x) [or equivalently, —y = f(x)] is the reflection of the graph of
y = f(x) about the x-axis. Thus, if you know what the graph of y = f(x) looks like, you
can obtain the graphs of y = f(—x) and y = — f(x) by making appropriate reflections.
Thisisillustrated in Table 1.4.3.

Table1.4.3
OPERATION ON
y=f(x) Replace x by —x Multiply f(x) by —1
NEW EQUATION y =f(-x) y =-f(x)
GEOMETRIC Reflects the graph of Reflects the graph of
EFFECT y = f(x) about the y-axis y = f(x) about the x-axis
y y
y=Vx y=\x 3V&
EXAMPLE \\\\\\\\\\\\X \\\\\\\\\\\\X
-6 6 -6 6

-3 -3 y= _\&

FORTHEREADER.  Describethegeometric effect of multiplying afunction f by anegative

constant in terms of reflection and stretching or compressing. What is the geometric effect
of multiplying the independent variable of afunction f by a negative constant?

Example 12 Sketchthegraphof y = 2 — x.

Solution. The graph can be obtained by a reflection and a translation: first reflect the
graph of y = &/x about the y-axis to obtain the graph of y = &/—x, then translate this
graph right 2 units to obtain the graph of the equation y = &/—(x — 2) = J2 — x (Fig-
ure 1.4.11). <

y y y
6 6 6
I S | I I | I N | I I I | I S | | X
—10 10 -10 — 10 ~10 10
-6 -6 -6
y=3x y=3x y=32-x
Figure 1.4.11
Example 13 Sketchthegraphof y =4 — |x — 2|.

Solution. The graph can be obtained by a reflection and two translations: first translate
the graph of y = |x| right 2 unitsto obtain the graph of y = |x — 2|; then reflect this graph
about the x-axis to obtain the graph of y = —|x — 2|; and then trandate this graph up 4
units to obtain the graph of theequation y = —|x — 2| + 4 =4 — |x — 2| (Figure 1.4.12).

<
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Y Y y y
8 8 8t 8t
111 | :\ 11 | 11 | I I 11 1 :\ | X L1 \/7\ | L1 X
-8 B 8 -6 i 10 -6 10 -6 i Y’
_sl _sl % _sl
y=1Ix y=Ix-2 y=-Ix-2| y=4-1Ix-2|
Figure 1.4.12

EXERCISE SET 1.4 [ Graphing Calculator

1. The graph of afunction f is shown in the accompanying
figure. Sketch the graphs of the following equations.

@ y=f(x)—-1 () y=fx—-1
© y=3/(0) @ y=r(-i)
AY

Figure Ex-1

. Usethe graph in Exercise 1 to sketch the graphs of the fol-
lowing equations.

@ y=—f(=x) () y=rf2-x)
©y=1-f2-x) @ y=3/2)

. The graph of a function f is shown in the accompanying
figure. Sketch the graphs of the following equations.

@ y=fx+1 (o) y = f(2x)
© y=1fx]l (d y=1-1]fx)|

AY

1
T

Figure Ex-3

. Usethegraph in Exercise 3 to sketch the graph of the equa-
tiony = f(lx]).

In Exercises 5-12, sketch the graph of the equation by trans-
lating, reflecting, compressing, and stretching the graph of
y = x2 appropriately, and then use a graphing utility to con-
firm that your sketch is correct.

5 y=1+@x-27
K7 vy=-2x+1?-3
~ 9 y = x% 4 6x

6 y=2—(x+17?
N 8 y=%(x—3)2—|—2
~ 10. y =x2+46x —10

1Ly =142 —x? 12 y=31x2-2x+3)

In Exercises 13-16, sketch the graph of the equation by trans-
lating, reflecting, compressing, and stretching the graph of
y = /x appropriately, and then use a graphing utility to
confirm that your sketch is correct.

13 y=3-+vx+1 N 14 y=1+vx—4
15 y=3/x+1 K 16. y = —v3«

In Exercises 17-20, sketch the graph of the equation by trans-
lating, reflecting, compressing, and stretching the graph of
y = 1/x appropriately, and then use a graphing utility to
confirm that your sketch is correct.

1
1—
x —

x—3

18 y=
~ 20. y=

In Exercises 21-24, sketch the graph of the equation by trans-
lating, reflecting, compressing, and stretching the graph of
y = |x| appropriately, and then use a graphing utility to con-
firm that your sketch is correct.

N 17 y=

19 y=2-

X
1

x+1

X

~ 2L y=|x+2|-2
N 23 y=[2x-1+1

K22 y=1—|x—3|

24 y=vx?—4x+4

In Exercises 25-28, sketch the graph of the equation by trans-
lating, reflecting, compressing, and stretching the graph of
y = ¥x appropriately, and then use a graphing utility to
confirm that your sketch is correct.

K 25 y=1-2¥ K26 y=vx-2-3
K27 y=2+vx+1 K28 y+vx-2=0
29. (a) Sketch the graph of y = x + |x| by adding the cor-
responding y-coordinates on the graphs of y = x and
y=lx|.
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(b) Expressthe equation y = x + |x| in piecewise form
with no absol ute values, and confirm that the graph you
obtained in part (&) is consistent with this equation.

[ 30. Sketchthegraphof y = x+(1/x) by adding corresponding

y-coordinates on the graphsof y = x and y = 1/x. Use a
graphing utility to confirm that your sketch is correct.

In Exercises 31-34, find formulasfor f + ¢, f — g, fg, and
f/g, and state the domains of the functions.

3L f(x) =2x, g(x) =x%+1
32. f(x) =3x -2, g(x) = x|
33. flx) = 2«/x -1 gx)y=+/x-1
1
4. flx) = 132 gx) =
35. Let f(x) = /x and g(x) = x® + 1. Find
(@ f(g(2) (b) g(f(D)

(c) f(f(16)) (d) g(g(0)).
36. Let g(x) = —x?and h(x) = cosx. Find
(@ g(n(0) (b) h(g(v7/2))
(c) g(g(1) (d) h(h(7/2)).
37. Let f(x) = x?>+ 1. Find

@ f? (b) f(t+2) © f(x+2)
@ f (%) © fae+m () fn
@ F(/x) (h) f(3x).
38. Let g(x) = 4/x. Find
(@ gBs+2 () g(vx+2  (c) 3g(5x)
1
d — (e g(g(x) () (g(x)?—g(x?
g(x)

(@) g(1/V/x) () g((x — ).

In Exercises 3944, find formulas for f og and go f, and
state the domains of the functions.

39. f(x) =2x+1, g(x)—xz—x

40. f(x) =2—x2 g(x)=x°

41. f(x) = x? (x) V1—x

42, f(x)=+/x—-3, glx) =+/x2+3

B =155 g =
—x

M. f() = 10 80 =

In Exercises 45 and 46, find aformulafor fogoh.

45 f(x) =x%+1, gx) = % h(x) = x3
46. f(r) = 1% () = Y3, h(x) = —
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In Exercises 47-50, express f asacomposition of two func-
tions; that is, find ¢ and & such that f = goh. [Note: Each
exercise has more than one solution.]

47. (@ f(x) =vx+2 (b) f(x) =|x?—3x +5|
48. (8 flx) =x*+1 B f)=—

— qn? —
49. (8) f(x) =sin"x () f) = goex

50. (&) f(x) = 3sin(x?) (b) f(x) =3sin’x +4sinx
In Exercises 51 and 52, express F' as a composition of three
functions; that is, find f, g, and 7 suchthat F = fogoh.

[Note: Each exercise has more than one solution.]

51 (@) F(x) = (1+sin(x))° (b) Fox)=vV1i— ¥
1

53. Use the accompanying table to make a scatter plot of y =
Fg(x)).

x -3 2 - 0o 1 2 3
f) -4 -3 -2 -1 0 1
g® -1 0 1 2 3 -2 -3

Table Ex-53

54. Find thedomain of go f for the functions f and g in Exer-
cise 53.

55. Sketch the graph of y = f(g(x)) for the functions graphed
in the accompanying figure.

y
3
AN
\ f
X
/ N\
AENEAN
Figure Ex-55

56. Sketch the graph of y = g(f(x)) for the functions graphed
in Exercise 55.

57. Use the graphs of f and g in Exercise 55 to estimate the
solutions of the equations f(g(x)) = 0and g(f(x)) = 0.

58. Use the table in Exercise 53 to solve the eguations
f(g(x)) =0and g(f(x)) =0.
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In Exercises 59-62, find
fx+h) — f(x) and Sw) — f(x)

h w—Xx
Simplify as much as possible.

59. f(x) =3x?>—-5 60. f(x) = x2+ 6x
61. f(x)=1/x 62. f(x) =1/x?
63. In each part of the accompanying figure determine whether

the graph is symmetric about the x-axis, the y-axis, the ori-
gin, or none of the preceding.

y y

A
TN

(@ (b)
y y

© (d)
Figure Ex-63

64. Theaccompanying figure shows aportion of agraph. Com-
plete the graph so that the entire graph is symmetric about
(&) the x-axis (b) the y-axis (c) theorigin.

y

Figure Ex-64

65. Complete the accompanying table so that the graph of
y = f(x) (which isascatter plot) is symmetric about
(@) the y-axis (b) theorigin.

X -3 -2 -1 0 1 2 3
f) 1 1 0 -5
Table Ex-65

66. The accompanying figure shows a portion of the graph of a
function f. Complete the graph assuming that
(@ fisanevenfunction (b) f isan odd function.
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Figure Ex-66

67. Classify the functions graphed in the accompanying figure
as even, odd, or neither.

y y

yk |
© (d)
Figure Ex-67

68. Classify the functionswhose values are given in thefollow-
ing table as even, odd, or neither.

X -3 -2 -1 1 2
f) 5 3 2 3 1 -3
gx) 4 1 -2 2 -1 -4
h(x) 2 -5 8 | -2 8 -5 2

69. In each part, classify the function as even, odd, or neither.

@ flx)=x? (b) fx) =3

(© fx)=I|x| d fry=x+1
5_

(e fix)= h ) foy=2

In Exercises 70 and 71, use Theorem 1.4.3 to determine
whether the graph has symmetries about the x-axis, the y-
axis, or the origin.

70. (@) x =5y°+9 (b) x> —2y>=3
() xy=5

71 4 =28 b) v—
@ x Yo +y () ¥ 352

© y*=Ix|-5
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In Exercises 72 and 73: (i) Use a graphing utility to graph 75. Theequation y = |/(x)| can bewritten as

the equation in the first quadrant. [Note: To do this you will _ { f&x), fx)=0
have to solve the equation for y interms of x.] (ii) Use sym- —fx), f(x)<O
metr)_/ to make a hand-drawn sl_<etch of the entire graph. (_iii) which shows that the graph of y = | £(x)| can be obtained
Confirm your work by generating the graph of the equation fromthegraphof y = f(x) by retaining the portion that lies

in the remaining three quadrants. on or above the x-axis and reflecting about the x-axis the
portion that lies below the x-axis. Use this method to obtain

K 72. 9x®+4y* =36 R 73. 4x” + 16y° = 16 the graph of y = |2x — 3| from thegraph of y = 2x — 3.
[ 74. Thegraph of the equation x*= + y?/® = 1, which is shown
in the accompanying figure, is called a four-cusped hypo-

cycloid.
(8 Use Theorem 1.4.3 to confirm that this graph is sym-
metric about the x-axis, the y-axis, and the origin.

(b) Find a function f whose graph in the first quadrant
coincides with the four-cusped hypocycloid, and use a
graph| ng uti|ity to confirm your work. 78. The greatest integer function, [x], is defined to be the

greatest integer that is less than or equal to x. For example,

[2.7] = 2,[—2.3] = —3, and [4] = 4. Sketch the graph of

@ f() =[x () f(x) = [x7]

y © f(x) = [x]? (d f(x) = [sinx].

79. Isitevertruethat fog = go f if f and g are nonconstant
functions? If not, prove it; if so, give some examples for
which itistrue.

80. In the discussion preceding Exercise 29 of Section 1.3,
we gave a procedure for generating a complete graph of
f(x) = x”/4 in which we suggested graphing the function
g(x) = |x|”/% instead of f(x) when p iseven and g isodd
and graphing g(x) = (|x|/x)|x|?/4 if p isodd and ¢ isodd.
Show that in both cases f(x) = g(x)ifx >0 or x <O.
[Hint: Show that f(x) isan even function if p is even and

Figure Ex-74 g isodd and is an odd function if p isodd and ¢ isodd.]

In Exercises 76 and 77, use the method described in Exer-
cise 75.

76. Sketchthegraphof y = |1 — x2|.
77. Sketch the graph of
(& f(x)=|cosx| (b) f(x) =cosx + |cosx|.

(c) Repeat part (b) for the remaining three quadrants.

Four-cusped hypocycloid

1.5 LINES

This section includes a quick review of precalculus material on lines. Readers who
want to review this material in more depth are referred to Appendix C.

An eguation that is expressible in the form
EQUATIONS OF LINES

Ax+By+C=0 (1)

where A and B are not both zero, is called afirst-degree equation or alinear equation in
x and y. Itisshown in precalculus that every first-degree equation in x and y has a straight
line as its graph and, conversely, every straight line can be represented by a first-degree
equation in x and y. For thisreason (1) is sometimes called the general equation of aline.
Recall that equations of lines may be written in severa different forms:

y=mx+b Slope-intercept form (2)
y—yr=m(x — x1) Point-slope form (3)
X + Y= 1 Double-intercept form 4

a b
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y=mx+b
Figure 1.5.2

INTERPRETATIONS OF SLOPE
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In these equations m is the slope of the line, a is the x-intercept, b is the y-intercept, and
(x1, y1) isany point on the line (Figure 1.5.1). Keep in mind that these equations do not
apply tovertical lines. For vertical linesthe slopeisundefined, or stated informally, avertical
line has infinite slope. Vertical and horizontal lines have particularly simple equations:

XxX=ua The vertical line with x-intercept a (5)
y=>b The horizontal line with y-intercept » (6)
y y y AY
(X1, y1) X=a
y=b
b Slope=m Slope =m b
X X X X
y=mx+b y—y; = mX—x,) xla+y/b=1 x=aandy=b
Figure 1.5.1

Equation (2) is especially useful because the slope and the y-intercept of the line can
be determined by inspection: the slope is the coefficient of x, and the y-intercept is the
constant term (Figure 1.5.2). This equation expresses y as a function of x, the function
being f(x) = mx + b. A function of thisformiscalled alinear function of x.

The slopem of anonvertical line y = mx + b hastwo important interpretations (which are
related but different in viewpoint):

o m isameasure of the steepness of the line.
« m istherate of change of y with respect to x.

The steepness interpretation has an analog in surveying. Surveyors measure the grade or
dlope of a hill as the ratio of its rise over its run (Figure 1.5.3a). The same idea applies
to lines. Consider a particle that moves left to right along a nonvertical line from a point
Pi(x1, y1) to apoint Po(x2, y2). In the course of its travel the point moves y, — y; units
verticaly asit travels x, — x; unitshorizontally (Figure 1.5.3b). Thevertical change, which
isdenoted by Ay = y, — y;, iscalled therise, and the horizontal change, which is denoted
by Ax = x, — x1, iscalled the run. The ratio of the rise over the run is always equal to the

y

Slope = Mse = 2ft _ 1 Pl Y)

P run  20ft 10

Expressed as a percentage, )

this is a 10% grade. (Rise)
Py (%, y)

iiiiiiiiiiiiiiii | Rise =2 ft
<—————Run =20 ft—>| T (Run) X
(@ (b)

Figure 1.5.3
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ANGLE OF INCLINATION

Positive
slope

Figure 1.5.5

Negative
slope

m=-2

m=-3

SLOPES OF LINES IN APPLIED

PROBLEMS
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slope, regardless of where the points P; and P, are located on the line; that is,

Ay _y2—n
Ax Xo — X1

(7)

REMARK. The symbols Ax and Ay should not be interpreted as products; rather, Ax
should be viewed as a single entity representing the change in the value of x, and Ay asa
single entity representing the changeinthevalueof y. In general, if v isany variablewhose

value changes from an initial value of v, to afinal value of v,, thenwe call Av = v, — vy

(final value minusinitial value) an increment in v. Increments can be positive or negative,
depending on whether the final valueislarger or smaller than the initial value.

Thedopeof anonvertical line L isrelated to the anglethat L. makeswith the positive x-axis.
If ¢ isthe smallest positive angle measured counterclockwise from the x-axis to L, then
the slope of the line can be expressed as

m =tan¢ (8)

(Figure 1.5.4a). The angle ¢, which is called the angle of inclination of the line, satisfies
0° < ¢ < 180° in degree measure (or, equivalently, 0 < ¢ < minradian measure). If ¢ is
an acute angle, then m = tan¢ is positive and the line slopes up to the right, and if ¢ isan
obtuse angle, then m = tan ¢ is negative and the line slopes down to theright. For example,
alinewhose angle of inclination is45° hasslopem = tan45° = 1, and alinewhose angle
of inclination is 135° has a slope of m = tan135° = —1 (Figure 1.5.4b). Figure 1.5.5
shows a convenient way of using thelinex = 1asa“ruler” for visualizing the relationship
between lines of various slopes.

Y y
m=-1 m=1
Rise /
135°
¢ 2 & X
Run /
_ rise _
m=n tan ¢
(@ (b)
Figure 1.5.4

In applied problems, changing the units of measurement can change the slope of aline,
S0 it is essential to include the units when calculating the slope. The following example
illustratesthis.

Example 1 Suppose that a uniform rod of length 40 cm (= 0.4 m) is thermally insu-
lated around the lateral surface and that the exposed ends of the rod are held at constant
temperatures of 25°C and 5°C, respectively (Figure 1.5.6a). It is shown in physics that
under appropriate conditions the graph of the temperature 7' versus the distance x from the
left-hand end of the rod will be a straight line. Parts (b) and (c) of Figure 1.5.6 show two
such graphs: onein which x is measured in centimeters and one in which it is measured in
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;(3 25 08 25
— 20 — 20
25°C 5°C 5 5
Thermal insulation s 15 s 15
T 10 T 10
3 5 3 5
| Rod ‘ X % GE)
— [
0 40 0 10 20 30 40 0O 01 02 03 04
Distance x (cm) Distance x (m)
@) (b) (©
Figure 1.5.6

A X

A 1-unit increase in X always
produces an m-unit change iny.

Figure 1.5.7

meters. The slopesin the two cases are
5-25 -20

5-25 —-20
04-0 04 (19

The slope in (9) implies that the temperature decreases at a rate of 0.5°C per centimeter
of distance from the left end of the rod, and the slope in (10) implies that the temperature
decreases at a rate of 50° C per meter of distance from the left end of the rod. The two
statements are equivalent physically, even though the slopes differ. <

Example 2 Find the slope-intercept form of the equation of the temperature distribution

in the preceding example if the temperature 7' is measured in degrees Celsius (° C) and the

distance x ismeasured in (a) centimeters and (b) meters.

Solution (a). Theslopeism = —0.5 and the intercept on the T-axis is 25, so
T=-05x+25 0<x<40

where the restriction on x is required because the rod is 40 cm in length. The graph of this
equation with the restriction is aline segment rather than aline.

Solution (b). Theslopeism = —50, the intercept on the T-axisis 25, and the restriction
onx is0 < x < 0.4. Thus, the equation is

T=-50x+25 0<x<04 |

If y isalinear function of x, say y = mx + b, thenit follows from (7) that
Ay = mAx

Thus, al-unitincreaseinx (Ax = 1) producesanm-unitchangeiny (Ay = m). Moreover,
thisistrue at every point on the line (Figure 1.5.7), so we say that y changes at a constant
rate with respect to x, and we call m the rate of change of y with respect to x. Thisidea
can be summarized as follows.

1.5.1 CONSTANT RATE OF CHANGE. If avariabley isrelated toavariable x insuch
away that the rate of change of y with respect to x isconstant, say m, then y isalinear
function of x of the form

y=mx+b

Conversely, if y isalinear function of x whose graph hasslopem, thentherate of change
of y with respect to x is constant and equal to m.

It followsfrom thisthat linear functionsare appropriate whenever experimentation or theory
suggests that the rate of change of y with respect to x is constant.
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One of the important themes in calculus is the study of motion. To describe the motion of
an object completely, one must specify its speed (how fast it is going) and the direction in
which itismoving. The speed and the direction of motion together comprise what is called
thevel ocity of the object. For example, knowing that the speed of an aircraftis500 mi/htells
us how fast it isgoing, but not which way itismoving. In contrast, knowing that the vel ocity
of the aircraft is 500 mi/h due south pins down the speed and the direction of motion.

Later, we will study the motion of particles that move along curves in two- or three-
dimensional space, but for now wewill focuson motionaongaline; thisiscalledrectilinear
motion. In general rectilinear motion, a particle can move back and forth along the line (as
with a piston moving up and down in a cylinder); however, for now we will only consider
the simple case in which the particle movesin just one direction along aline (aswith acar
traveling on a straight road).

For simplicity, wewill assumethat themotionisalong acoordinateline, such asan x-axis
or y-axis, and that the particle is moving in the positive direction. In general discussions
we will usually name the coordinate line the s-axis to avoid being specific. A graphical
description of rectilinear motion along an s-axis can be obtained by making a plot of the
s-coordinate of the particle versusthe elapsed timer. Thisiscalled the position versustime
curve for the particle. Figure 1.5.8a shows a typical position versus time curve for a car
moving in the positive direction along an s-axis.

0
! AS
Position versus
time curve
Elapsed time
—_—
7/ N
[ S0=—=0>, f t
(@ (b)

Figure 1.5.8

¢ FORTHEREADER. How canyou tell from the position versustime curvein Figure 1.5.8a

that the car does not reverse direction?

Because we are assuming that the particle is moving in the positive direction of the s-
axis, there is no ambiguity about the direction of motion, and hence the terms “ speed” and
“velocity” canbeusedinterchangeably. However, later, whenwe consider general rectilinear
motion or motion along acurved path, it will be necessary to distinguish between theseterms,
since the direction of motion may vary.

For aparticlein rectilinear motion along acoordinate axis, we define the average vel ocity
vave Of the particle during the time interval from #q to 71 to be

S1— So As

=" === 11
11— 1o At ( )

Vave =
where sg and s; are the s-coordinates of the particle at times ¢y and ¢;, respectively. Ge-
ometricaly, this is the slope of the secant line connecting the points (7o, so) and (1, s1)
on the position versus time curve (Figure 1.5.8b). The quantity As = s; — sg is called
the displacement or change in position of the particle during the time interval from 7o to
t;. With this terminology, Formula (11) states that for a particle in rectilinear motion the
average velocity over a time interval is the displacement during the time interval divided

by the length of the time interval. For example, if a car moving in one direction along a
straight road travels 75 milesin 3 hours, then its average velocity is 75/3 = 25 mi/h.
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s(ft)

1000

s =100 + 88t

500

100

Position versus time curve for
a particle with coordinate s,
at time t =0 and moving with
constant velocity v

Figure 1.5.10
s(m)
4——————— ‘
|
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|
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|
1= i }
SR
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Figure 1.5.11
CONSTANT ACCELERATION

Velocity versus time curve for
a particle with velocity v at
time t = 0 and moving with
constant acceleration a

Figure 1.5.12
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In the specia case where the average velocity of a particle in rectilinear motion is the
same over every time interval, the particle is said to have constant velocity or uniform
rectilinear motion. If the average velocity over every time interval is v, then we will refer
to v asthe velocity of the particle (dropping the adjective “average’).

For aparticle with uniform rectilinear motion the displacement over any timeinterval is
given by the formula

displacement = velocity x elapsed time (12

Example 3 Suppose that a car moves with a constant velocity of 88 ft/sin the positive
direction of an s-axis. Given that the s-coordinate of the car at timer = 0iss = 100, find
an equation for s asafunction of 7, and graph the position versus time curve.

Solution. It follows from (12) that in a period of ¢ seconds, the car will move 88¢ feet
from its starting point, so its coordinate s at time ¢ will be

s = 100 + 88¢
The graph of thisequation isthe linein Figure 1.5.9. <

It is not accidental that the position versus time curve turned out to be alinein the last
example; thiswill always be the case for uniform rectilinear motion. To see why thisis so,
suppose that a particle moves with constant velocity v in the positive direction aong an
s-axis, starting at the point s at time+ = 0. It follows from (12) that in z units of time the
particle will move vr units from its starting point so, So its coordinate s at time ¢ will be

s = 8o + vt

whichisalinewith s-intercept so and slope v (Figure 1.5.10). It follows from this equation
and 1.5.1 that we can view the velocity v asthe rate of change of s with respect to 7, that is,
the rate of change of position with respect to time.

Example 4 Figure 1.5.11 shows the position versus time curve for a particle moving
along an s-axis. Describe the motion of the particle in words.

Solution. Attimer = 0the particleis at the origin. Fromtimer = Otot = 2 the Sope
of theline segment is % so the particle is moving with a constant velocity of % =0.5m/s.
At timer = 2 the particleis at the point s = 1 (i.e., 1 meter from the origin). From time
t = 2tot = 4 the slope of the line segment is %’ so the particle is moving with a constant
velocity of % = 15m/s Attimer = 4itisat thepoints = 4. <

In everyday language we say that an object is“accelerating” if it is speeding up and “ decel-
erating” if it is slowing down. Mathematically, the acceleration of a particle in rectilinear
motion is defined to be the rate of change of vel ocity with respect to time, where the accel-
eration is positive if the velocity is increasing and negative if it is decreasing. Thus, for a
particle that moves in the positive direction of an s-axis, negative acceleration means the
particleis*“ decelerating” in everyday language. Acceleration, like velocity, can be variable
or constant. For example, by pressing the gas pedal of a car toward the floor smoothly, the
driver can makethe car’s vel ocity increase at a constant rate (a constant accel eration); how-
ever, if thedriver suddenly slamsthe pedal to the floor, the car will lurch forward, reflecting
a nonconstant acceleration. Later in the text we will study acceleration in more depth, but
for now we will only consider the case in which acceleration is constant.

REMARK. The units of acceleration are units of velocity divided by units of time. For
example, if the velocity of aparticleisincreasing at arate of 3 feet per second each second,
then its acceleration is 3 ft/s/s (velocity in ft/s divided by timein s); thisis usualy written
as 3 ft/s? (read “ 3 feet per second per second” or “3 feet per second squared”). Similarly,
if the velocity of aparticleis decreasing at arate of 3 feet per second each second, then it
has an acceleration of —3 ft/s%.
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Velocity versus time curve for

a particle with a velocity of 88 ft/s
at time t =0 and moving with a
constant acceleration of 2 ft/s?

Figure 1.5.13

y is directly proportional to x.

Figure 1.5.14

Figure 1.5.15
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Graphical information about the accel eration of aparticle can be obtained from the graph
of velocity versus time; thisis called the velocity versus time curve. In the case where the
particle has constant accel eration, the vel ocity versustime curvewill belinear, and itsslope,
which isthe rate of change of velocity with time, will be the acceleration (Figure 1.5.12).

Example 5 Supposethat acar movesin the positive direction of an s-axisin such away
that its velocity v increases at a constant rate of 2 ft/s?.

(@ Assuming that the velocity of the car is88 ft/sat time+ = 0, find an equation for v as
afunction of 7.

(b) Make agraph of velocity versus time, and mark the point on the graph at which the
car attains avelocity of 100 ft/s.

Solution (@). Since the rate of change of v with respect to ¢ is 2 ft/s?, and since v = 88
ft/sif t = 0, the equation for velocity as afunction of timeis

v=88+2 (13)

Solution (b). To find the time it takes for the car to reach a velocity of 100 ft/s, we
substitute v = 100 in (13) and solve for 7. Thisyields ¢ = 6. The graph of (13) and the
point at which the velocity reaches 100 ft/sis shown in Figure 1.5.13. A |

Recall that avariable y issaid to bedirectly proportional to avariable x if thereisapositive
constant &, called the constant of proportionality, such that

y = kx (14)
The graph of this equation is a line through the origin whose slope k is the constant of
proportionality. Thus, linear functions are appropriate in physical problems where one
variable is directly proportional to another.

Hooke's law” in physics provides a nice example of direct proportion. It follows from
this law that if a weight of x units is suspended from a spring, then the spring will be
stretched by an amount y that is directly proportional to x, that is, y = kx (Figure 1.5.14).
The constant & depends on the stiffness of the spring: the stiffer the spring, the smaller the
value of k (why?).

Example 6 Figure1.5.15 showsan old-fashioned spring scalethat iscalibrated in pounds.
(@ Given that the pound scale marks are 0.5 in apart, find an equation that expresses the

length y that the spring is stretched (in inches) in terms of the suspended weight x (in
pounds).

(b) Graph the equation obtained in part (a).

y = 0.5x

[ S I R A =)

—_

Length stretched y (in)

0 2 4 6 8 10 12
Weight x (Ib)

*Hooke's law, named for the English physicist Robert Hooke (1635-1703), applies only for small displacements
that do not stretch the spring to the point of permanently distorting it.
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LINEAR DATA

Figure 1.5.16

Table1.5.1

X y
15 03
25 11
35 19
55 35
95 6.7

S I N R S |
4 2 ¥ 2 4 6 8 10

-4

OTHER APPLICATIONS OF LINEAR
FUNCTIONS
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Solution (a). It follows from Hooke's law that y isrelated to x by an equation of the form
y = kx. To find k we rewrite this equation as k = y/x and use the fact that a weight of
x = 1lb stretchesthe spring y = 0.5in. Thus,

y 05
~—=—=05
X 1

Solution (b). The graph of the equation y = 0.5x isshown in Figure 1.5.15. <

and hence

y = 0.5x

One method for determining whether n points

(x1, y1), (x2, ¥2), - -, (X, V)

lie on aline is to compare the slopes of the line segments joining successive points. The
pointslieon alineif and only if those slopes are equal (Figure 1.5.16).

yn 77777777777777
Y3 ———————
Yol ————

Y1

|

|

| |

\ \ \

\ \ \

l l l
X1 Xo X3

Successive line segments
have the same slope.

Example 7 Consider thedatain Table 1.5.1.

(& Explainwhy alinear function is appropriate for the datain the table.
(b) Findalinear equationthat relatesx and y, and graph the equation and the datatogether.

Solution (a). The five data points lie on aline, since each 1-unit increase in x produces
acorresponding 0.8-unit increase in y. Thus, the slope of the line segment joining any two
successive datapointsis

A .

m=2Y_%8_og

Ax 1
Solution (b). A linear equation relating x and y can be obtained from the point-slopeform
of thelineusing the slopem = 0.8 calculated in part (a) and any one of the five data points.
If we use the first data point, (1.5, 0.3), we obtain

y—03=0.8(x—-15)
or in slope-intercept form,
y=0.8x — 0.9
The graph of this equation together with the given data are shown in Figure 1.5.17. |

REMARK. Sometimes, data pointsthat should theoretically lie on aline do not because of
experimental error and other factors. In such cases curve-fitting techniques are used to find
alinethat most closely fits the data. Such techniques will be discussed later in the text.

Linear functions arise in avariety of practical problems. Hereis atypical example.

Example 8 A university parking lot charges $3.00 per day but offers a $40.00 monthly
sticker with which the student pays only $0.25 per day.
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(@ Find equations for the cost C of parking for x days per month under both payment
methods, and graph the equationsfor 0 < x < 30. (Treat C as a continuous function

(b) Find the value of x for which the graphsintersect, and discuss the significance of this

Solution (a). Thecostindollarsof parking for x daysat $3.00 per day is C = 3x, and the
cost for the $40.00 sticker plus x days at $0.25 per day is C = 40 + 0.25x (Figure 1.5.18).
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of x, even though x only assumes integer values.)
¢ Cc=3
- =oX
0 100r value.
s 80
3 0f
S 60 [
£ 50f
2 00 | C=40+025x
© 0 . Solution (b). The graphsintersect at the point where
! ! It ! ! !
S 10 15 20 25 30 3x =40+ 0.25x

Number of parking days

Figure 1.5.18

which is x = 40/2.75 ~ 14.5. This value of x is not an option for the student, since x
must be an integer. However, it is the dividing point at which the monthly sticker method
becomes less expensive than the daily payment method; that is, for x > 15t is cheaper to
buy the monthly sticker and for x < 14 it is cheaper to pay the daily rate. <

EXERCISE SET 1.5 ™ Graphing Calculator

Exercises 1-26 involvethebasic propertiesof linesand slope.
In some of these exercises you will need to use slopesto de-
termine whether two lines are paralel or perpendicular. If
you have forgotten how to do this, review Appendix C.

1. (@) Findthe slopesof the sides of the triangle with vertices
(0,3),(2,0),and (6, §).
(b) Isthisaright triangle? Explain.
2. (@) Find the slopes of the sides of the quadrilateral with
vertices (—3, —1), (5, —1), (7, 3), and (-1, 3).
(b) Isthisaparalelogram? Explain.
3. List the lines in the accompanying figure in the order of
increasing slope.

y y
X \\X
| I
\ky y
N T

Il v
Figure Ex-3

4. List the lines in the accompanying figure in the order of
increasing slope.

y y

X X
| I

Y y

\ X X
\\
11 v
Figure Ex-4

5. Use dopesto determine whether the given pointslie on the
sameline.
@ (1,1),(—2,-5),and (0, —1)
(b) (—2,4),(0,2),and (1,5)

6. A particle, initialy at (7, 5), moves along a line of slope
m = —2to anew position (x, y).
(@ Findyifx =0. (b) Find x if y = 12.

7. A particle, initialy at (1, 2), moves along a line of slope
m = 3toanew position (x, y).
(@ Findyif x =5. (b) Findx if y = —2.
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Find x and y if the line through (0, 0) and (x, y) has slope

£, and the line through (x, y) and (7, 5) has slope 2.

Find x if the slope of thelinethrough (1, 2) and (x, 0) isthe

negative of the slope of the line through (4, 5) and (x, 0).

In Exercises10and 11, find theangle of inclination of theline
with slope m to the nearest degree. Use a calculating utility,

where needed.
10. (a)m=% (b)y m=-1
(©)m=2 (d) m =-57
11. @ m=—13 (b)y m=1
(€ m=-2 (d) m =57

In Exercises 12 and 13, find the angle of inclination of the
line to the nearest degree. Use a calculating utility, where
needed.

12.
13.
14.

(@ 3y =2—+/3x (b) y—4x+7=0
@ y=+3x+2 (b) y+2x+5=0
Find equations for the x- and y-axes.

In Exercises 1522, find the slope-intercept form of the equa-
tionof thelinesatisfying the stated conditions, and check your
answer using agraphing utility.

R K & RRRE

N
w

24.

15.
16.
17.
18.

19.

N
©

=

Slope = —2, y-intercept = 4
m=5b=-3
Thelineisparalel to y = 4x — 2 and its y-intercept is 7.

The line is parallel to 3x + 2y = 5 and passes through
(-1, 2.

Thelineisperpendicular to y = 5x + 9 and has y-intercept
6.

Thelineisperpendicular to x — 4y = 7 and passes through
The line passes through (2, 4) and (1, —7).

. Theline passes through (-3, 6) and (-2, 1).
. In each part, classify the lines as parallel, perpendicular, or

neither.

@ y=4—7andy=4x+9
(b)y=2x—3andy=7—%x

() 5x —3y+6=0and10x — 6y +7=10
(d Ax+By+C=0andBx —Ay+ D=0
(e y—2:4(x—3)andy—7:;11(x—3)
In each part, classify the lines as parallel, perpendicular, or
neither.

@ y=-5r+1landy =3—5x

(b) y—1=2:x—-3andy —4=—-1(x+7)
(¢) 4x+5y+7=0and5x —4y+9=0
(d Ax+By+C=0andAx+By+ D=0
(e y:%xandx:%y
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In Exercises 25 and 26, use the graph to find the equation of
the line in slope-intercept form, and then check your result
by using a graphing utility to graph the equation.

K 25

K 26.

27.

28.

AY AY
/ N\
/ X \‘ X
/ AN
(@ (b)
Figure Ex-25
AY AY
X 7 X
,/
(@ (b)
Figure Ex-26
The accompanying figure shows the position versus time

curve for a particle moving along an x-axis.
(8 What isthe velocity of the particle?

(b) What isthe x-coordinate of the particle at time ¢ = 0?
(c) What isthe x-coordinate of the particleat time ¢t = 2?
(d) At what time does the particle have an x-coordinate of

x =47
A X (ft)
5
//
/ t(s)
LA 10
/
Figure Ex-27

A particle moving along an x-axis with constant velocity is

at the point x = 1whent = 2 andisat thepoint x = 5

whent = 4.

(& Find the velocity of the particle if x isin metersand ¢
isin seconds.

(b) Find an equation that expresses x as a function of ¢.
(c) What isthe coordinate of the particle at timer = 0?
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32.

g65-chl

A particle moving along an x-axis with constant acceler-

ation has velocity v = 3 ft/sat time s = 1 and velocity

v=-—1ft/satimer = 4.

(8) Find the acceleration of the particle.

(b) Find an equation that expresses v as afunction of 7.

(c) What isthe velocity of the particle at time s = 0?

The accompanying figure shows the velocity versus time

curve for a particle moving along the x-axis.

(@) What isthe acceleration of the particle?

(b) What isthe velocity of the particle at time ¢ = 0?

(c) What isthe velocity of the particleat timer = 2?

(d) Atwhat time does the particle have avelocity of v = 3
ft/s?

v (ft/s)

t(s)

Figure Ex-30

The accompanying figure shows the position versus time

curve for a particle moving along an x-axis.

(a) Describe the motion of the particle in words.

(b) Find the average velocity of the particlefrom ¢t = 0 to
t = 10.

(c) Find the average speed of the particle froms = 0 to
t = 10.

A X (cm)
10

t(s)
10 Figure Ex-31

The accompanying figure shows the velocity versus time
curve for a particle moving along an x-axis. Describe the
motion of the particle in words.

v (km/h)

t (h)
10 Figure Ex-32
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A locomotive travels on a straight track at a constant speed
of 40 mi/h, then reversesdirection and returnsto its starting
point, traveling at a constant speed of 60 mi/h.

(8 What isthe average velocity for the round-trip?

(b) What isthe average speed for the round-trip?

(c) What is the total distance traveled by the train if the
total trip took 5 h?

A ball istossed straight up at time s = O with aninitial ve-

locity of 64 ft/s. We will show later using basic principles

of physicsthat the velocity of the ball as afunction of time

isv=064—32s.

(8 What direction is the ball traveling 3 s after it is re-
leased? Explain your reasoning.

(b) At what time does the ball reach its maximum height
above the ground? Explain your reasoning.

(c) What can you say about the acceleration of the ball?

A car isstopped at atoll booth on astraight highway. Start-
ing at time+ = Ot accelerates at a constant rate of 10 ft/s?
for 10s. It then travel s at a constant speed of 100 ft/sfor 90
s. At that time it beginsto decelerate at a constant rate of 5
ft/s? for 20 s, at which point in time it reaches a full stop at
atraffic light.

(a) Sketch the velocity versustime curve.

(b) Expressv as a piecewise function of ¢.

M ake areasonabl e sketch of aposition versustime curvefor
aparticlethat movesinthepositive x-direction with positive
constant acceleration.

A spring with anatural length of 15 in stretches to alength

of 20 in when a 45-1b object is suspended from it.

(8 UseHooke'slaw to find an equation that expresses the
amount y by which the spring is stretched (in inches)
in terms of the suspended weight x (in pounds).

(b) Graph the equation obtained in part (a).

(c) Find the length of the spring when a 100-1b object is
suspended from it.

(d) What isthe largest weight that can be suspended from
the spring if the spring cannot be stretched to more than
twice its natural length?

The spring in a heavy-duty shock absorber has a natura
length of 3 ft and iscompressed 0.2 ft by aload of 1 ton. An
additional load of 5tonscompressesthe spring an additional
1ft.

(8 Assuming that Hooke's law applies to compression as
well as extension, find an equation that expresses the
length y that the spring is compressed from its natural
length (in feet) in terms of the load x (in tons).

(b) Graph the equation obtained in part (a).

(c) Find the amount that the spring is compressed from its
natural length by aload of 3 tons.

(d) Find the maximum load that can be applied if safety
regulations prohibit compressing the spring to lessthan
half its natural length.
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In Exercises 39 and 40, confirm that a linear function is ap-
propriate for the relationship between x and y. Find alinear
equation relating x and y, and verify that the data pointslie
on the graph of your equation.

39.

40.

41.

42.

43.

x 0 1 2 4 6
y 2 32 44 68 92

x -1 0 2 5 8
y 126 105 63 0 -6.3

There are two common systems for measuring temperature,

Celsius and Fahrenheit. Water freezes at 0° Celsius (0°C)

and 32° Fahrenheit (32°F); it boils at 100°C and 212°F.

(& Assuming that the Celsius temperature 7 and the
Fahrenheit temperature T arerelated by alinear equa-
tion, find the equation.

(b) What isthe slope of thelinerelating T and T¢ if T is
plotted on the horizontal axis?

(c) Atwhat temperature is the Fahrenheit reading equal to
the Celsius reading?

(d) Normal body temperature is 98.6°F. What isitin °C?

Thermometers are calibrated using the so-called “triple

point” of water, which is 273.16 K on the Kelvin scale and

0.01°C ontheCelsiusscale. A one-degree differenceonthe

Celsius scale is the same as a one-degree difference on the

Kelvin scale, so there is a linear relationship between the

temperature T¢ in degrees Celsius and the temperature Tk

in kelvins.

(8 Find an equation that relates T and T .

(b) Absolute zero (0 K on the Kelvin scale) is the tem-
perature below which a body’s temperature cannot be
lowered. Express absolute zero in °C.

To the extent that water can be assumed to be incompress-
ible, the pressure p in abody of water varies linearly with
the distance i below the surface.

(8) Given that the pressure is 1 atmosphere (1 atm) at the
surface and 5.9 atm at a depth of 50 m, find an equation
that relates pressure to depth.

(b) At what depth isthe pressure twice that at the surface?

. A resistance thermometer is a device that determines tem-

perature by measuring the resistance of a fine wire whose
resistance varies with temperature. Suppose that the resis-
tance R in ohms (2) varies linearly with the temperature
T in°Candthat R = 123.4 Q@ when T = 20°C and that
R =133.9QwhenT = 45°C.

(& Findanequationfor R intermsof T.

(b) If R ismeasured experimentally as 128.6 2, what isthe

temperature?
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Suppose that the mass of a spherical mothball decreases

with time, due to evaporation, at arate that is proportional

toitssurfacearea. Assuming that it alwaysretainsthe shape

of a sphere, it can be shown that the radius r of the sphere

decreases linearly with thetime 7.

(& If, at acertain instant, the radiusis 0.80 mm and 4 days
lateritis0.75mm, find anequationfor » (inmillimeters)
in terms of the elapsed time 7 (in days).

(b) How long will it take for the mothball to completely
evaporate?

The accompanying figure shows three masses suspended

from a spring: amass of 11 g, amass of 24 g, and an un-

known mass of W g.

(& What will the pointer indicate on the scaleif no massis
suspended?

(b) Find .

=

— — —s0

40 T .

— 60 —

C P4i C C
Figure Ex-46

The price for around-trip bus ride from auniversity to cen-

ter city is $2.00, but it is possible to purchase a monthly

commuter pass for $25.00 with which each round-trip ride
costs an additional $0.25.

(& Find equations for the cost C of making x round-trips
per month under both payment plans, and graph the
equations for 0 < x < 30 (treating C as a continu-
ous function of x, even though x assumes only integer
values).

(b) How many round-trips per month would a student have
to make for the commuter pass to be worthwhile?

A student must decide between buying one of two used cars:
car A for $4000 or car B for $5500. Car A gets 20 miles
per gallon of gas, and car B gets 30 miles per galon. The
student estimates that gas will run $1.25 per gallon. Both
cars are in excellent condition, so the student feels that re-
pair costs should be negligible for the foreseeable future.
How many miles would the student have to drive before car
B becomes the better buy?
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1.6 FAMILIES OF FUNCTIONS

Functions are often grouped into families according to the form of their defining for-
mulas or other common characteristics. In this section we will discuss some of the
most basic families of functions.

This section includes quick reviews of precalculus material on polynomials and
trigonometry. Readers who want to review this material in more depth are referred to
Appendices E and F. I nstructors who want to spend some additional time on precal culus
review can divide this section into two parts, covering the trigonometry material in a
second lecture.

A function f whose values are all the sameis called a constant function. For example, the
formula f(x) = ¢ defines the constant function whose valueis ¢ for all x. The graph of the
constant function f(x) = c isthe horizontal line y = ¢ (Figure 1.6.1a). If we vary c, then
we obtain a set or family of horizontal lines (Figure 1.6.1b).

y y
I c=4
0,0) y=c¢ c=3
c=2
c=1
X c=0 X
c=-1
c=-2
c=-3
n c=-45
@ (b)

Figure 1.6.1

REMARK. Theexpression f(x) = ¢ can be confusing because it can be interpreted either
as an equation that is satisfied for certain x (asin x? = ¢) or as an identity that is satisfied

for al x; it isthe latter interpretation that defines a constant function. Thus, when you see

an expression of theform f(x) = ¢, you will have to determine from its context whether it
isintended as an equation or a constant function.

Thequantitiesm and b intheequation y = mx +b can beviewed as unspecified constants
whose values may change from one application to another; such changeable constants are
called parameters.

If we keep b fixed and vary the parameter m inthe equation y = mx + b, then we obtain
afamily of lines whose members al have y-intercept b (Figure 1.6.2a); and if we keep m
fixed and vary the parameter b, then we obtain afamily of parallel lineswhose membersall
have slope m (Figure 1.6.2b).

Example 1

(@ Find an equation for the family of lineswith slope %
(b) Find the member of the family in part (a) that passes through the point (4, 1).

(c) Findan equation for the family of lines whose members are perpendicular to the lines
in part (a).
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y=mx+b y=nmx+b
(b fixed and mvarying) (m fixed and b varying)
@ (b)

Figure 1.6.2

Solution (a). Thelinesof slope § are of the form
y=132x+0b 1)
where the parameter b can have any real value.

Solution (b). To find the line in the family that passes through the point (4, 1), we must
find the value of b for which the coordinatesx = 4 and y = 1 satisfy (1). Substituting these
coordinatesinto (1) and solving for b yields b = —1, and hence the equation of thelineis

(Figure 1.6.3a).
y y=-2x+b y
y= Ex+b
st sr
4+ 4% /
31 3k /
2F Y= %X_l /}//// /
Lt ® 10 /
1 L | | | //X )’ C X
=5—4-3-2 1 2.3 4.5 =4 A=2AC NAS DA 4
L j/ // >
S /_}/ //
v
_3 = 4
-4+ /—4 -
5+ =5
(a) (b)
Figure1.6.3

Solution (c). Since the slopes of perpendicular lines are negative reciprocals, it follows
that the lines perpendicular to those in part (a) have slope —2 and hence are of the form

y=-2x+b
Some typical linesin families (1) and (2) are graphed in Figure 1.6.3b. <

"""""""""""""""""""" A function of theform f(x) = x?, where p isconstant, is called apower function. Consider

THE FAMILY y = x" the case where p is a positive integer, say p = n. The graphs of the curves y = x" for
n=1,2,3, 4 and5areshowninFigure 1.6.4. Thefirst graphistheline y = x withslope 1
that passes through the origin, and the second is a parabola that opens up and has its vertex
at the origin (see Appendix D).
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y y=xt Ly YEX

1F 1+ 1F \1 / 1 /
X X X X X
1 1 1 1 1 1 1 1 1 1
-1 1 -1 1 -1 1 -1 1 -1 1
-1t -1t -1f -1t -1f

Figure1.6.4

For n > 2 the shape of the graph of y = x" depends on whether » is even or odd
(Figure 1.6.5). For even values of n the graphs have the same general shape as the parabola
y = x? (though they are not actually parabolasif n > 2), and for odd values of n greater
than 1 they have the same general shape as y = x3. The graphsin the family y = x" share
anumber of important characteristics:

o Forevenvauesof n thefunctions f(x) = x" are even, and their graphs are symmetric
about the y-axis; for odd values of n the functions f(x) = x" are odd, and their graphs
are symmetric about the origin.

o For al values of n the graphs pass through the origin and the point (1, 1). For even
values of n the graphs pass through (—1, 1), and for odd values of n they pass through
(-1, -1).

e Increasing n causes the graph to become flatter over the interval —1 < x < 1 and
steeper over theintervalsx > 1land x < —1.

y YoXa
y=x"[/V 2%
1,
| | X
-1 1
1} |
-1
y:xn y:x”
(n odd) (neven)

Figure 1.6.5

¢ REMARK. Thelast characteristic can be explained numerically by considering the effect of
i raising areal number x to successively higher powers. If x isafraction, thatis, —1 < x < 1,
i then the absolute value of x” decreases as n increases (try raising % or —% to higher and
¢ higher powers, for example). This explains why successive graphsin Figure 1.6.5 become
i flatter over theinterval —1 < x < 1. On the other hand, if x > 1or x < —1, then the
© absolute value of x” increases as n increases (try raising 2 or —2 to higher and higher
powers). This explains why successive graphs become steeper if x > 1orx < —1.

THE FAMILY o If p isanegative integer, say p = —n, then the power functions f(x) = x? have the form
y=x"

f(x) = x™ = 1/x". Figure 1.6.6a shows the graphs of y = 1/x and y = 1/x?, and
Figure 1.6.6b shows how these graphs relate to other members of the family. The graph of
y = 1/x iscalled an equilateral hyperbola (for reasons to be discussed later).
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~1,-1
1k (-1,1) ( )

@)

Figure 1.6.6

THE FAMILY y = x1/n

(b)

For odd values of n the graphs have the same general shape as y = 1/x, and for even
valuesof n they havethesamegeneral shapeasy = 1/x2. Thegraphsinthefamily y = 1/x"
share a number of important characteristics:

o Forevenvaluesof n thefunctions f(x) = 1/x" areeven, andtheir graphsare symmetric
about the y-axis; for odd values of n the functions f(x) = x" are odd, and their graphs
are symmetric about the origin.

o For al values of n the graphs pass through the point (1, 1) and have a break (called a
discontinuity) at x = 0. Thisis caused by the division by zero that occurswhen x = 0.
For even values of n the graphs pass through (—1, 1), and for odd values of n they pass
through (-1, —1).

o Increasing n causes the graph to become steeper over the intervals —1 < x < 0 and
0 < x < 1, and flatter over theintervalsx > 1and x < —1.

REMARK. Thelast characteristic can be explained numerically by considering the effect of
raising thereciprocal of anumber x to successively higher powers. If x isanonzero fraction,

. thenitliesintheinterval —1 < x < 1, and its reciprocal satisfies 1/x > 1 or 1/x < —1.
i Thus, asn increasesthe absolute value of 1/x" alsoincreases. Thisexplainswhy successive

graphsin Figure 1.6.6 become successively steeper over theinterval —1 < x < 1. Onthe
other hand,if x > 1lorx < —1,then—1 < 1/x < 1. Thus, asn increasesthe absolute value
of 1/x" decreases. This explains why successive graphs in Figure 1.6.6 get successively

flatter if x > 1orx < —1.

If p = 1/n, where n is a positive integer, then the power functions f(x) = x? have the
form f(x) = x/7 = 2/x. In paticular, if n = 2, then f(x) = /x, and if n = 3, then
f(x) = Jx. The graphs of these functions are shown in parts (a) and (b) of Figure 1.6.7.

Y y y

y=1x y=x

1Ly X

Figure 1.6.7

@) (b) ©
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Observe that the graph of y = &x extends over the entire x-axis because f(x) = Jx is
defined for al real values of x (every real number has a cube root); in contrast, the graph
of y = /x only extends over the nonnegative x-axis (negative numbers have imaginary
square roots). Observe also that the graph of y = ./x is the upper half of the parabola
x = y? (Figure 1.6.7¢).

For even vaues of n the graphs of y = /x have the same general shapeas y = /x,
and for odd values of n they have the same general shapeasy = J/x.

FOR THE READER.  Sketch the graphs of y = {/x for n = 2, 4, 6 on one set of axes and

for n = 3,5, 7 on another set. Use a graphing utility to check your work.

Power functions can also have fractional or irrational exponents. For example,
fO =x23 f) =V, fo=x"8 ad f(x)=x" 3)

are all power functions of thistype; we will discuss power functions of these formsin later
sections.

FOR THE READER.  The graph of f(x) = x%2 isgiven in Figure 1.3.16b. Read the note
preceding Exercise 29 of Section 1.3, and use a graphing utility to generate graphs of
f(x) = ¥x and f(x) = x~7/8 that show all of their significant features.

Read the note preceding Exercise 29 of Section 1.3, and use agraphing utility to generate
complete graphs of the functionsin (3).

Recall that a variable y is said to be inversely proportional to a variable x if there is a
positive constant k, called the constant of proportionality, such that

y=- 4
X

Since k is assumed to be positive, the graph of this equation has the same basic shape as
y = 1/x but is compressed or stretched in the y-direction.

Observethat in Formula(4) doubling x decreases y by afactor of 1/2, tripling x decreases
y by afactor of 1/3, and, more generally, increasing x by a factor of » decreases y by a
factor of 1/r.

Functions involving inverse proportion arise in various laws of physics. For example,
Boyle's law in physics states that at a constant temperature the pressure P exerted by a
fixed quantity of anideal gasisinversely proportional to the volume V occupied by the gas,
that is,

k
P=—
Vv
(Figure 1.6.8).
If y isinversely proportional to x, then it follows from (4) that the product of y and x is
constant, since yx = k. This provides a useful way of identifying inverse proportionality
in experimental data.

Example 2 Table 1.6.1 shows some experimental data.

(@ Explain why the data suggest that y isinversely proportional to x.
(b) Expressy asafunction of x.
(c) Graph your function and the data together for x > 0.

Solution. For every data point we have xy = 5, so y isinversely proportional to x and
y = 5/x. The graph of this equation with the data pointsis shown in Figure 1.6.9. <
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Boyle's Law (P =k/V)

Pressure P

—

Temperature Volume V

control unit

As the volume of the gas changes,
the temperature control unit adds or
removes heat to maintain a constant
temperature.

Figure 1.6.8

Table1.6.1
EXPERIMENTAL DATA

x 08 1 25 4
y 625 5 2

6.25 10
125 08 05

A detailed review of polynomialsisgivenin Appendix F, but for conveniencewewill review
some of the terminology here.

A polynomial in x is a function that is expressible as a sum of finitely many terms
of the form cx”, where ¢ is a constant and » is a nonnegative integer. Some examples of
polynomials are

2x+ 1, 3x%+5x -2, x5

The function (x2 — 4)3 is aso a polynomial because it can be expanded by the binomial
formula (see the inside front cover) and expressed as a sum of terms of the form cx”:

(2=4)°=(x?)°=3(x)° @ +3:H@) — @) =x°— 12" + 48&° —64  (5)

A genera polynomia can be written in either of the following forms, depending on
whether one wants the powers of x in ascending or descending order:

4(=4x%, 5Bx'—x*+3

co+ c1x + x4 -+ cpx”
X" ey X" T ey + e

The constants c, c1, . . . , ¢, are called the coefficients of the polynomial. When a polyno-
mial is expressed in one of these forms, the highest power of x that occurs with a nonzero
coefficient is called the degree of the polynomial. Nonzero constant polynomials are con-
sidered to have degree 0, since we can write ¢ = cx°. Polynomials of degree 1, 2, 3, 4, and
5aredescribed aslinear, quadratic, cubic, quartic, and quintic, respectively. For example,

3+ 5x Has degree 1 (linear)

x2—3x+1 Has degree 2 (quadratic)

2x3 -7 Has degree 3 (cubic)
8x*—9x3+5x—3 Has degree 4 (quartic)
V3+ x84+ x5

(x2 2y

Has degree 5 (quintic)

Hasdegree 6 [see (5)]
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The natural domain of apolynomial in x is(—ew, 4+x), sincethe only operationsinvolved
are multiplication and addition; the range depends on the particular polynomial. We already
know that the graphs of polynomials of degree 0 and 1 are lines and that the graphs of
polynomials of degree 2 are parabolas. Figure 1.6.10 shows the graphs of some typical
polynomials of higher degree. Later, we will discuss polynomia graphs in detail, but for
now it sufficesto observe that graphs of polynomiasare very well behaved in the sense that
they have no discontinuities or sharp corners. Asillustrated in Figure 1.6.10, the graphs of
polynomials wander up and down for awhilein aroller-coaster fashion, but eventualy that
behavior stops and the graphs steadily rise or fall indefinitely as one travels along the curve
in either the positive or negative direction. We will see later that the number of peaks and
valleysisless than the degree of the polynomial.

y y y

/|
<

\ / /N /x\/\/x /\/x
Vv

/

\\/ \J //\/

Degree 2
Figure 1.6.10
"""""""""""""""""""""" A function that can be expressed asaratio of two polynomialsiscalled arational function.
RATIONAL FUNCTIONS If P(x) and Q(x) are polynomials, then the domain of the rational function
P(x)
(x) =
! 0(x)
consists of all values of x such that Q(x) # 0. For example, the domain of the rational
function
X2+ 2x
fx) = m
consists of all values of x, except x = 1 and x = —1. Itsgraph is shown in Figure 1.6.11
along with the graphs of two other typical rational functions.
i4 \ y | Y
L ap
o o
,,,,,,, A I D N I e
T [ L. X T ST R
-5 { { 5 -5 L | 7 —4
\ \ B
\ \ 50 ‘ L
\ \ -3 ‘
\ \ ‘ L
4F1
| \
_ X%+ 2x __x2-1 __3
T X1 Y e -3 Y=
Figure1.6.11

The graphs of rational functions with nonconstant denominators differ from the graphs
of polynomialsin some essential ways:

« Unlike polynomias whose graphs are continuous (unbroken) curves, the graphs of
rational functions have discontinuities at the points where the denominator is zero.
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« Unlikepolynomials, rational functionsmay have numbersat which they are not defined.
Near such points, many (but not all) rational functions have graphs that approximate a
vertical line, called a vertical asymptote. These are represented by the dashed vertical

¢ Unlike the graphs of polynomials, which eventualy rise or fall indefinitely, the graphs
of many (but not all) rational functions eventually get closer and closer to some hori-
zontal line, called a horizontal asymptote, as one travels along the curve in either the
positive or negative direction. The horizontal asymptotes are represented by the dashed
horizontal linesin thefirst two parts of Figure 1.6.11; in the third part of the figure the
x-axisis ahorizontal asymptote.

Functionsthat can be constructed from polynomials by applying finitely many algebraic op-
erations (addition, subtraction, division, and root extraction) are called algebraic functions.

f(x) =32+ x),

fO0) = x3xc +2)°
Asillustrated in Figure 1.6.12, the graphs of algebraic functionsvary widely, soitisdifficult

to make general statements about them. Later in thistext we will develop general calculus
methods for analyzing such functions.

\
X -3 =2

y=3x(2+%)

-2 -1 1

y= X2/3(X + 2)2

A detailed review of trigonometric functionsis given in Appendix E, but for convenience

we will summarize some of the main ideas here.
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linesin Figure 1.6.11.
ALGEBRAIC FUNCTIONS
Some examples are
f) =vx2 -4,
y
5 -
4 -
3 -
2 -
1 -
| | | | | | | |
-5-4-3-2-1 123 45
y=Vx2-4
Figure 1.6.12
A QUICK REVIEW OF
TRIGONOMETRIC FUNCTIONS

It is often convenient to think of the trigonometric functions in terms of circles rather
than triangles. For this purpose, consider a point that moves either clockwise or counter-
clockwisealong theunit circleu?+v? = lintheuv-plane, starting at (1, 0) and stopping at
apoint P (Figure 1.6.13a). Let x denote the signed arc length traveled by the moving point,
taking x to be positive for counterclockwise motion and negative for clockwise motion.
(We allow for the possibility that the point may traverse the circle more than once.) When
convenient, the variable x can also be interpreted as the angle in radians that is swept out
by the radial line from the origin to P, with the usual convention that angles are positive if
generated by counterclockwise rotations and negative if generated by clockwise rotations.
We can define cosx to be the u-coordinate of P and sinx to be the v-coordinate of P
(Figure 1.6.13b).

The remaining trigonometric functions can be defined in terms of the functionssin x and

COSx:
sinx COSx
tanx = cotx = —
CoSx sinx
1
X = CSCx = ——
CoSx sinx

The graphs of the six trigonometric functions in Figure 1.6.14 should already be familiar
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1% 1% 1%
P P(cosx, sinx)
X
u u u
(1,0 (1,0 (1,0
X
P(cos x, sin x)
The unit circle U +v2 = 1 Positive X Negative X

@ (b)

Figure1.6.13

D
>
>

/\ ****** [
L UL ML

Figure 1.6.14

to you, but try generating them using a graphing utility, making sure to use radian measure
for x.

¢ REMARK. Inthistext we will always assume that the independent variable in a trigono-
i metric function isin radians unless specifically stated otherwise.

PROPERTIES OF sin x, cos x,
AND tan x

Many of the basic properties of sinx and cosx can be deduced from the circle definitions
of these functions. For example:

o Asthepoint P(cosx, sinx) movesaround the unit circle, its coordinates vary between
—1and 1, and hence

—1l<snx<1l and —-1<cosx <1
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P(cos x, sinx)
1 .
sinx
X u
COS X ”
Slope of L = g)nT))(( =tan x
Figure 1.6.15
RADIANS AS A DIMENSIONLESS
UNIT

r

If 0 is in radians,
then s=ré.

Figure 1.6.16

Figure1.6.17
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o |If x increases or decreases by 27 radians, then the point P(cosx, sinx) makes one
complete revolution around the unit circle, and the coordinates return to their starting
values. Thus, sinx and cosx have period 27; that is,

sin(x £ 27) = sinx
Ccos(x + 2m) = coSx

e AsP(cosx, sinx) movesaroundtheunitcircle, sin x iszerowhen P isonthehorizontal
axis (which occurs when x is an integer multiple of ), and cosx is zero when P ison
the vertical axis (which occurs when x is an odd multiple of 7/2). Thus,

sinx =0 ifandonlyif x =0, +m, £27, +37,...
cosx =0 ifandonlyif x = 4n/2, £37/2, £57/2,...

o AsP(cosx, sinx) movesaround the unit circleu? + v? = 1, its coordinates satisfy this
equation for all x, which produces the fundamental trigonometric identity

cox +sinx =1

Observe that the graph of y = tanx has vertical asymptotes at the points x = +7/2,
+37/2, £57/2, . ... Thisis to be expected since tanx = sinx/ cosx, and these are the
valuesof x at which cosx iszero. What isless obvious, however, isthefact that tan x repeats
every mr radians (i.e., has period ), even though sinx and cosx have period 2. This can
be explained by interpreting

sinx

COSx
asthe slope of theline L that passes through the origin and the point P (cosx, sinx) onthe
unit circlein the uv-plane (Figure 1.6.15). Each time x increases or decreases by n radians,
the point P traverses half the circumference, and theline L rotates  radians, so its starting
and ending slope are the same.

tanx =

The choice of radian measure as opposed to degree measure depends on the nature of the
problem being considered; degree measure is usually chosen in engineering problems in-
volving measurements of angles, and radian measure is usually chosen when the function
properties of sinx, cosx, tanx, ... are the primary focus. Radian measure is also usually
chosen in problemsinvolving arc lengths on circles because of the basic result in trigonom-
etry which states that the arc length s of a sector with radius r and a central angle of 6
(radians) is given by

s =rf (6)

(Figure 1.6.16).

In applications involving angles, radians require special treatment to ensure that quanti-
ties are assigned proper units. To see why thisis so, let us rewrite (6) as

o="

-

Theleft side of thisequation isin radians, and the right sideis theratio of two lengths, say
meters/ meters or feet/feet. However, because these units of length cancel, the right side of
this equation is actually dimensionless (has no units). Thus, to ensure consistency between
the two sides of the equation, we would have to omit the units of radians on the left side
to make it dimensionless aswell. In practical terms this means that units of radians can be
used in intermediate computations, when convenient, but they need to be omitted in the end
result to ensure consistency of units. Thisis confusing, to say the least, but the following
example should clarify the idea.

Example 3 Suppose that two satellites circle the equator in an orbit whose radius is
r = 4.23 x 10" m (Figure 1.6.17). Find the arc length s that separates the satellitesif they
have an angular separation of 6 = 2.00°.
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Solution. To apply Formula (6), we must convert the angular separation to radians:

b4
200° = —
180

Thus, from (6)
s =rf ~ (4.23 x 10’ m)(0.0349 rad) ~ 1.48 x 10° m

(2.00) ~ 0.0349 rad

Inthiscomputation the product r0 producesunitsof meters x radians, but if wetreat radians
as dimensionless, we have meters x radians = meters, which correctly produces units of
meters (m) for the arc length s. <

Many important applications lead to trigonometric functions of the form
f(x) =Asin(Bx —C) and g(x) = Acos(Bx — C) (7)

where A, B, and C are nonzero constants. The graphs of such functions can be obtained by
stretching, compressing, translating, and reflecting the graphs of y = sinx and y = cosx
appropriately. To see why thisis so, let us start with the case where C = 0 and consider
how the graphs of the equations

y=AsnBx and y= AcosBx

relate to the graphs of y = sinx and y = cosx. If A and B are positive, then the effect of
the constant A isto stretch or compress the graphs of y = sinx and y = cosx vertically
by a factor of A, and the effect of the constant B is to compress or stretch the graphs of
sinx and cosx horizontally by afactor of B. For example, the graph of y = 2sin4x can be
obtained by stretching the graph of y = sinx vertically by afactor of 2 and compressing it
horizontally by afactor of 4. (Recall from Section 1.4 that the multiplier of x stretcheswhen
itislessthan 1 and compresseswhen it is greater than 1.) Thus, as shown in Figure 1.6.18,
the graph of y = 2sin4x varies between —2 and 2, and repeats every 277/4 = /2 units.

Figure 1.6.18

In general, if A and B are positive numbers, then the graphs of
y=AsnBx and y= AcosBx

oscillate between —A and A and repeat every 2/ B units, so we say that these functions
have amplitude A and period 27/ B. In addition, we define the frequency of these functions
to be the reciprocal of the period, that is, the frequency is B/2x. If A or B is negative,
then these constants cause reflections of the graphs about the axes as well as compressing
or stretching them; and in this case the amplitude, period, and frequency are given by |A|,
2n/|B|, and | B|/ 2, respectively.

Example 4 Make sketches of the following graphs that show the period and amplitude.
(@ y =3sin2nx (b) y = —3c0s0.5x (©) y=1+sinx
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Solution (a). The equation is of the foom y = AsinBx with A = 3 and B = 2,
so the graph has the shape of a sine function, but with amplitude A = 3 and period
27/B = 27/27w = 1 (Figure 1.6.19a).

IV T IAN PAY- o AN -
J

Figure 1.6.19

THE FAMILIES y = A sin(Bx - C)

AND y = A cos(Bx - C)

Figure 1.6.20

Period Period

@ (b) (0

Solution (b). Theequationisof theformy = A cos Bx withA = —3and B = 0.5, sothe
graph has the shape of a cosine function that has been reflected about the x-axis (because
A = —3is negative), but with amplitude |A| = 3 and period 27/B = 27/0.5 = 4x
(Figure 1.6.19b).

Solution (c). The graph has the shape of a sine function that has been translated up 1 unit
(Figure 1.6.19c). |

To investigate the graphs of the more general families
y=Asn(Bx—C) and y= Acos(Bx —C)
it will be helpful to rewrite these equations as

= ssnfa(s- )] wo s reu[an(x-5)]

In this form we see that the graphs of these equations can be obtained by trandating the
graphsof y = AsinBx and y = A cos Bx to the left or right, depending on the sign of
C/B. For example, if C/B > 0, then the graph of

y = Asin[B(x — C/B)] = Asin(Bx — C)
can be obtained by trandating the graph of y = AsinBx to the right by C/B units
(Figure1.6.20).1f C/B < 0, thegraphof y = A sin(Bx — C) isobtained by trandlating the
graph of y = A sin Bx totheleft by |C/B| units
Example 5 Find the amplitude and period of
T
y = 3¢0s <2x + E)

and determine how the graph of y = 3cos2x should be translated to produce the graph of
this equation. Confirm your results by graphing on a calculator or computer.

y CIB

AN
NUAVVAVIAVE-»
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Solution. The equation can be rewritten as

y =3cos[2¢ — (=3) | = 3eos[2(x - (-5) )]

which is of the form

)

withA = 3, B = 2,andC/B = —x/4.Thus,theamplitudeisA = 3,theperiodis2r/B = ,
and the graph isobtained by translating the graph of y = 3cos2x left by |C/B| = /4 units
(Figure 1.6.21). <

In addition to the functions mentioned in this section, there are exponential and logarithmic
functions, which we will study later, and various special functions that arise in physics and
engineering. There are a'so many kinds of functionsthat have no names; indeed, one of the
important themes of calculusisto provide methods for analyzing new types of functions.

EXERCISE SET 1.6 ™ Graphing Calculator

1. (@) Findanequationfor thefamily of lineswhose members 8. Find an eguation for the family of lines that pass through

have slopem = 3.

(b) Find an equation for the member of the family that
passes through (—1, 3).

(c) Sketch some members of the family, and label them
with their equations. Include the linein part (b).

2. Find an equation for the family of lineswhose membersare
perpendicular to those in Exercise 1.

3. (8 Findanequationfor thefamily of lineswith y-intercept
b=2.
(b) Find an equation for the member of the family whose
angle of inclination is 135°.
(c) Sketch some members of the family, and label them
with their equations. Include the linein part (b).

4. Find an equation for
(@) thefamily of linesthat pass through the origin
(b) thefamily of lineswith x-intercepta = 1
(c) thefamily of linesthat pass through the point (1, —2)
(d) thefamily of lines parallel to 2x + 4y = 1.

In Exercises 5 and 6, state a geometric property common to
all linesin the family, and sketch five of thelines.

5. (@ Thefamilyy =—x+b
(b) Thefamily y =mx —1
(c) Thefamily y =m(x +4) +2
(d) Thefamilyx —ky =1
6. (&) Thefamilyy =5
(b) Thefamily Ax +2y+1=0
(¢) Thefamily2x + By +1=0
(d) Thefamily y —1=m(x + 1)
7. Find an equation for the family of linestangent to the circle
with center at the origin and radius 3.

theintersection of 5x — 3y +11=0and2x — 9y +7 = 0.

9. TheU.S. Internal Revenue Service usesa 10-year linear de-

preciation schedul e to determine the value of various busi-
ness items. This means that an item is assumed to have a
value of zero at the end of the tenth year and that at inter-
mediate times the value is a linear function of the elapsed
time. Sketch some typical depreciation lines, and explain
the practical significance of the y-intercepts.

10. Find al lines through (6, —1) for which the product of the

x-and y-interceptsis 3.

11. In each part, match the equation with one of the accompa-

nying graphs.

@ y=vx (b) y=2x°

(© y=—1/x" (d) y=vx2-1
(@ y=VYx-2 (f) y=—Va?

= ..

RN

VI

Figure Ex-11
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12. The accompanying table gives approximate values of three
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functions: one of the form kx2, one of the form kx—3, and
oneof theform kx%2. |dentify whichiswhich, and estimate

13. (@) y = —x"
14. (@) y =2x"

16. (@)

k in each case.

X 025 037 21 40 58 62 79 93
fx) 640 @ 197
g(x) 0.0312 00684 220 800 | 168 192 312 432
h(x) 0250 0450 609 160 279 309 444 567

Table Ex-12

In Exercises 13 and 14, sketch the graph of the equation for
n = 1, 3, and 5 in one coordinate system and for n = 2, 4,
and 6 in another coordinate system. Check your work with a

graphing utility.
(b) y=2v"

() y=—x"
© y=-3x+2""

15. (a) Sketchthe graph of y = ax?fora = 41, +2, and +3

in asingle coordinate system.

(b) Sketch the graph of y = x? + b for b = +1, £2, and

+3in asingle coordinate system.

(c) Sketch some typical members of the family of curves

y =ax®+b.

in asingle coordinate system.

(b) Sketchthegraphof y = /x + b for b = £1, +2, and

+3in asingle coordinate system.

(c) Sketch some typical members of the family of curves

y = a/x +b.

In Exercises 17-20, sketch the graph of the equation by mak-
ing appropriate transformationsto the graph of abasic power
function. Check your work with a graphing utility.

M 17. @ y=2(x+1? (b) y=—-3(x—-2)°
-3 1
(© y= G2 (d) y= G35
K18 (8 y=1-vVx+2 b y=1—Jx+2
C) y= 5 dy= 2
()y_(l—x)3 ()y—m
19 @ y=vx+1 (b) y=1—x—-2
@y=G-17+2 (@ y=1T1
1 1
B2 @y=1+— O =112
2
(C)y=—ﬁ (d) y=x2+2x

1.08 0.156 0.0513 0.0420 0.0203 0.0124

© y=(x-1

Sketch thegraph of y = a+/x fora = +1, £2, and +3

21.

22.

23.

24.
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Sketch the graph of y = x2 + 2x by completing the square

and making appropriate transformations to the graph of
2

y=x“.

(@) Usethe graph of y = /x to help sketch the graph of
y = /Ixl.

(b) Usethe graph of y = ¥x to help sketch the graph of
y = Yl

Asdiscussed in thissection, Boyle'slaw statesthat at acon-

stant temperature the pressure P exerted by agasisrelated

to the volume V by the equation P = k/V.

(8 Findthe appropriate units for the constant k if pressure
(which is force per unit area) isin newtons per square
meter (N/m?) and volume is in cubic meters (m°).

(b) Findk if the gasexertsapressure of 20,000 N/m? when
the volumeis 1 liter (0.001 m®).

(c) Make atable that shows the pressures for volumes of
0.25, 0.5, 1.0, 1.5, and 2.0 liters.

(d) Makeagraphof P versus V.

A manufacturer of cardboard drink containerswantsto con-
struct a closed rectangular container that has a square base
and will hold -5 liter (100 cm?). Estimate the dimension of
the container that will require the least amount of material
for its manufacture.

A variabley issaidto beinversely proportional tothesquare
of avariablex if y isrelated to x by an equation of the form
y = k/x?, where k isanonzero constant, called the constant
of proportionality. Thisterminology is used in Exercises 25
and 26.

25.

26.

According to Coulomb’s law, the force F' of attraction be-
tween positive and negative point charges is inversely pro-
portional to the square of the distance x between them.

(8 Assuming that theforce of attraction between two point
charges is 0.0005 newton when the distance between
them is 0.3 meter, find the constant of proportionality
(with proper units).

(b) Find the force of attraction between the point charges
when they are 3 meters apart.

(c) Make a graph of force versus distance for the two
charges.

(d) What happenstotheforceasthe particlesget closer and
closer together? What happens as they get farther and
farther apart?

It follows from Newton’s Law of Universal Gravitation that

theweight W of an object (relative to the Earth) isinversely

proportional to the sguare of the distance x between the

object and the center of the Earth, that is, W = C/x?.

(8 Assuming that a weather satellite weighs 2000 pounds
on the surface of the Earth and that the Earth isasphere
of radius 4000 miles, find the constant C.
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(b) Find the weight of the satellite when it is 1000 miles
above the surface of the Earth.

(c) Makeagraph of thesatellite'sweight versusitsdistance
from the center of the Earth.

(d) Is there any distance from the center of the Earth at
which the weight of the satellite is zero? Explain your
reasoning.

In each part, match the equation with one of the accompa-

nying graphs, and give the equations for the horizontal and

vertical asymptotes.
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2. @ 3 ® -2 © 7
(@ -1 @7 0 &
30. (a) %’ (b) —57” ©
@ > @ 4 0 2"

In Exercises 31 and 32, use a calculating utility set to the ra-
dian mode to confirm the approximations sin(xr/5) ~ 0.588
and cos(r/8) ~ 0.924, and then use these values to approx-
imate the given expressions by hand cal culation. Check your
answers using the trigonometric function operations of your

x? x—1
(a)y=7xz_4x_2 ®y=5—""%
2x 4
= d =
© vy i1 (d y G roe
y
I
|
|
\\
|
|
|
|
|
|
|
|
|
|
I
I % Figure Ex-27

[ 28. Find an equation of the form y = k/(x? + bx 4 ¢) whose
graph is a reasonable match to that in the accompanying
figure. Check your work with a graphing utility.

Y X

Figure Ex-28

In Exercises 29 and 30, draw aradial linefromtheoriginwith
the given angle, and determine whether the six trigonometric
functions are positive, negative, or undefined for that angle.

calculating utility.

31

32.

33.

35.

36.

37.

@ Sin%n (b) cos(—g) © sjn%”
Do @l (s

@ s’an?ﬂ (b) cos(—%) © gn%’f
(d) sin(—%) (e cos%ﬂ (f) tanzg

Assumingthat sine = a,cosB = b,andtany = c, express
the stated quantitiesin terms of a, b, and c.

(@ sin(—a) (b) cos(—p) (c) tan(—y)
(d) sin (g - a) (e cos(r— ) (f) sin(@ + )
(9) sin(2B) (h) cos(28) (i) sec(B + 2m)

() cscla +m) (k) cot(y +5m) (1) sin? (g)

. A ship travels from a point near Hawaii at 20° N latitude

directly north to apoint near Alaska at 56° N latitude.
(8 Assuming the Earth to be a sphere of radius 4000 mi,
find the actual distance traveled by the ship.

(b) What fraction of the Earth’s circumference did the ship
travel?

The Moon completes one revol ution around the Earthin ap-
proximately 27.3 days. Assuming that the Moon'sorbitisa
circle with aradius of 0.38 x 10° m from the center of the
Earth, find the arc length traveled by the Moon in 1 day.

A spoked wheel with adiameter of 3ft rollsalong aflat road
without slipping. How far a ong the road doesthe wheel roll
if the spokes turn through 225°?

Asillustrated in the accompanying figure, suppose that you
hold onequarter flat against atablewhileyou rotate asecond
quarter around it without slippage. Through what anglewill
the second quarter have turned about its own center when it
returnsto its original location?
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41.

Figure Ex-37

38. Supposethat you begin cutting wedge-shaped piecesfrom a
pie so that the arc length along the outer crust of each piece
is equal to the radius. What fraction of the pie will remain
after all piecesthat can be cut in thisway are eaten?

In Exercises 39 and 40, find an equation of the form y =
D+ AsinBx or y = D + A cos Bx for each graph.

AN N
I VA AV

(b)

X 42.

@

K 43.

©
Figure Ex-39 =i 44.
40. y y
. ; ~ 45,
|
1/: X AN/
‘ 5 B % \_/ 2%
(@ (b)
y
5
1 iﬁ X
V \
-5 ‘
© 46.
Figure Ex-40 B
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In each part, find an equation for the graph that has the form
y =yo+ Asin(Bx — C).

y
3
/\ _
I
. }/ \J”
(©)
Figure Ex-41
In the United States, a standard electrical outlet supplies

sinusoidal electrical current with a maximum voltage of
V = 1202 volts (V) at a frequency of 60 Hertz (Hz).
Write an equation that expresses V asafunction of thetime
t,assumingthat V = 0if r = 0. [Note: 1 Hz = 1 cycle per
second.]

In Exercises 43 and 44, find the amplitude, period, and phase
shift, and sketch at least two periods of the graph by hand.
Check your work with a graphing utility.

(& y =3sin4dx

(©y= 2+cos(%)

(@ y=-1—4sin2x
© y= —4sin(% + 271)

Equations of the form

(b) y = —2cosmx

(b) y = 3 cos(3x — )

x = Ai1Sinwt + A coswt

arise in the study of vibrations and other periodic motion.
(8 Use the trigonometric identity for sin(e + B) to show
that this equation can be expressed in the form

x = Asin(wt + 0)

(b) Stateformulasthat express A and 6 interms of the con-
stants A1, A, and w.
(c) Expressthe equation

x = 5v3sin2xr + 3 cos2nt
intheformx = A sin(wr+6), and useagraphing utility
to confirm that both equations have the same graph.

Determine the number of solutions of x = 2sinx, and use
agraphing or calculating utility to estimate them.
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1.7 MATHEMATICAL MODELS

In this section we will introduce some simple mathematical models that are based on
linear, quadratic, and trigonometric functions. The method of “ least squares’ will be
discussed briefly within the context of linear and quadratic regression.

A mathematical model of a physical law or phenomenon is a description of that law or
phenomenon in the language of mathematics. The modern scientific view about mathe-
matical modelswas first expressed in the seventeenth century by the Italian mathematician
and scientist Galileo Galilel (1564-1642) who wrote, “The book of nature is written in
mathematics.” This seemingly innocuous statement represented a major departure from the
approach of the ancient Greek scientists and philosophers, who generally described sci-
entific laws in words. For example, the Greek philosopher Aristotle (384 B.C.—322 B.C.)
would have described the motion of afalling body by saying that such bodies “seek their
natural position”, whereas today we would use functions, equations, or other mathematical
means to describe the motion precisely.

Mathematical models allow us to use mathematical models to deduce results about
the physical world that are not evident or have never been observed. For example, the
possibility of placing asatellitein orbit around the Earth was deduced mathematically from
Issac Newton’s model of mechanics nearly 200 years before the launching of Sputnik, and
Albert Einstein (1879-1955) gave arelativistic model of mechanicsin 1915 that explained
aprecession (position shift) in the perihelion of the planet Mercury that was not confirmed
by physical measurement until 1967.

One of the most important steps in creating a mathematical model of a physical phe-
nomenon is deciding which factors to consider and which to ignore—the more factors one
takes into account the more complicated the formulas and equations of the model tend to
become, so thereis always abalance to be struck between keeping a model mathematically
simple and considering enough factors to make the model useful. For example, if a meteo-
rologist were trying to model the relationship between the speed of araindrop when it hits
the ground and the height of the cloud inwhich it wasformed, then he or shewould certainly
have to take air resistance into account, but with equal certainty he or she would ignore
the infinitesimal effect that the Pluto’s gravitational pull has on the raindrop. The danger
isthat in trying to keep a mathematical model from becoming too complicated one might
oversimplify to the point where the results it produces do not agree with reality. We arere-
minded of thisby Einstein’sadmonition: “Everything must be as simple as possible, but not
simpler.” A good mathematical model is one that produces results that are consistent with
the physical world. If atime comes when the mathematical results produced by the model
do not agree with real-world observations, then the model must be abandoned or modified
in favor of anew model that does. This is the nature of the scientific method—old models
constantly being replaced by new models that more accurately describe the real world.

In this section we will consider some simple models that involve only two variables. In our
genera discussion wewill refer to these variablesas x and y, but in specific examples other
letters will be more appropriate. We will assume that the data for the phenomenon being
modeled consists of a collection of ordered pairs of measurements

(x1, y1), (x2,¥2), (x3,¥3), ..., (Xn, Yu)

that relate corresponding val ues of the variables x and y. We distinguish between two types
of phenomena—deterministic phenomena in which each value of x determines one value
of y and probabilistic phenomena in which the value of y associated with a specific x is
not uniquely determined, but rather depends on probabilities in some way. For example,
if y isthe amount that a spring is stretched by aforce x, then for a given spring the value
of y is uniquely determined by the value of x, so this is a deterministic phenomenon. In
contrast, if y isthe weight of person whose height is x, then the value of y is not uniquely
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Figure 1.7.2
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determined by x, but there is a correlation between weight and height that makes it more
likely for ataller person to weigh more, so thisis a probabilistic phenomenon.

In adeterministic model the variable y isafunction of x, so the goal isto usethedatain
somereasonableway tofindaformulay = f(x) for thisfunction. For example, Figure1.7.1
strongly suggests that the relationship between x and y islinear, so in absence of additional
information it would be natural to look for alinear function y = mx + b asamodel. Ina
probabilistic model thevariable y need not beafunction of x, sothegoal istofind aneguation
y = f(x) that specifies the average value of y that can be expected to occur for agiven x.
A more precise explanation of what is meant by “average value” and “ expected to occur”
requires ideas from probability and statistics, so we will depend on your intuition here.

Let us suppose that we have decided to model a particular phenomenon with a (yet to
be determined) linear function y = mx + b. ldealy, we would then like to choose the
parameters m and b such that the line y = mx + b passes through all our data points. In
practice, this may be impossible, either because of errorsin our measurements or because
thereis not a strictly linear relationship between the variables x and y. We are then faced
with the problem of finding the line y = mx + b that “best fits" our set of data points.
The key to determining this line is based on the following idea: For any proposed linear
function y = mx + b, we draw avertical connector from each datapoint (x;, y;) to the point
(x;, mx; + b) ontheline and consider the differences y; — (mx; + b) (Figure 1.7.2). These
differences, which are called residuals, may be viewed as“errors’ that result when the line
is used to model the data. Data points above the line have positive errors, those below the
line have negative errors, and those on the line have no error. One of the most common
proceduresisto look for aline such that the sum of the squares of the residuals is as small
aspossible. Thisline, known asaleast squareslineor linear regression line, isone choice
for aline that “best fits” a given set of data. Most graphing calculators, spreadsheets, and
CAS programs provide methods for finding regression lines. We will assume that you have
access to some such method in this section.

It is possible to compute a regression line, even in cases where the data have no appar-
ent linear pattern. Thus, it is important to have some quantitative method of determining
whether alinear model is appropriate for the data. The most common measure of linearity
in datais called the correlation coefficient. Following convention, we denote the correla-
tion coefficient by the letter r. Although a detailed discussion of correlation coefficientsis
beyond the scope of thistext, here are some of the basic facts:

o Thevaluesof r areintheinterval —1 < r < 1, where r has the same sign as the slope
of the regression line.

o Ifrisequa tolor —1,thenthedatapointsall lieonaline, soalinear model isaperfect
fit for the data.

« Ifr = 0,thenthedatapointsexhibit nolinear tendency, so alinear model isinappropriate
for the data.

Thecloser r isto 1 or —1, the more tightly the data points hug the regression line and the
more appropriate the regression line is as a model; the closer r isto 0, the more scattered
the points and the less appropriate the regression lineis asamodel (Figure 1.7.3).

y y y y

r=_1 ' r=1 ' r=07 ' r=0
Figure 1.7.3



January 12, 2001 11:10

g65-chl

Table1.7.1
TEMPERATURE PRESSURE
TCO) p (atm)
0 2.54
50 3.06
100 346
150 4.00
200 441
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Roughly stated, the value of »2 is a measure of the percentage of data points that fall in
a“tight linear band.” Thusr = 0.5 meansthat 25% of the pointsfall in atight linear band,
and r = 0.9 meansthat 81% of the pointsfall in atight linear band. (A precise explanation
of what is meant by a“tight linear band” requires ideas from statistics.)

Example 1 Table 1.7.1 gives a set of data points relating the pressure p in atmospheres
(atm) and thetemperature T (in ° C) of afixed quantity of carbon dioxideinaclosed cylinder.
Theassociated scatter plotin Figure 1.7.4a suggeststhat thereisalinear rel ationship between
the pressure and the temperature.

45 ° 45
:‘g 40 . g 4.0
& )
o 35 (] o 35
g g
> L L] >
é 3.0 é 3.0
& 25¢ & 259
| | | | | | | |
0 50 100 150 200 0 50 100 150 200
Temperature T (°C) Temperature T (°C)
@ (b)
Figure1.7.4

(8 Useyour calculating utility to find the least squares line for the data. If your utility
can produce the correlation coefficient, then find it.

(b) Use the model obtained in part (a) to predict the pressure when the temperature is
250°C.

() Usethe model obtained in part (a) to predict a temperature at which the pressure of
the gas will be zero.

Solution (a). The least squares line is given by p = 0.00936T + 2.558 (Figure 1.7.4b)
with correlation coefficient r = 0.999475.

Solution (b). If T = 250, then p = (0.0094)(250) + 2.54 = 4.898 (atm).

Solution (c). Solving theequation0 = p = 0.009367 + 2.558yields T ~ —273.291°C.
<

It is not always convenient (or necessary) to obtain the least squares line for a linear
phenomenon in order to create a model. In some cases, more elementary methods suffice.
Hereis an example.

Example 2 Figure 1.7.5a shows a graph of temperature versus altitude that was trans-
mitted by the Magellan spacecraft when it entered the atmosphere of Venus in October
1991. The graph strongly suggests that there is a linear relationship between temperature
and altitude for altitudes between 35 km and 60 km.

(@ Usethe graph transmitted by the Magellan spacecraft to find a linear model of tem-
perature versus atitude in the Venusian atmosphere that is valid for altitudes between
35 km and 60 km.

(b) Usethemodel obtained in part (a) to estimate the temperature at the surface of Venus,
and discuss the assumptions you are making in obtaining the estimate.

Solution (a). Let T bethetemperatureinkelvinsand 4 the altitude in kilometers. We will
first estimate the slope m of the linear portion of the graph, then estimate the coordinates
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of adata point (1, T1) on that portion of the graph, and then use the point-slope form of a
line

T —Ty=m(h— hy) (1)
The graph nearly passesthrough the point (60, 250), sowewill takez; ~ 60and T; ~ 250.

In Figure 1.7.5b we have sketched aline that closely approximates the linear portion of the
data. Using the intersections of that line with the edges of the grid box, we estimate the

slopeto be
100 — 490 390
N—— =—— =-8125K/k
"~ 78_30 48 /km

Substituting our estimates of /1, 71, and m into (1) yields the equation
T — 250 = —8.125(h — 60)
or equivalently,
T = —8.125h + 737.5 2

Solution (b). The Magellan spacecraft stopped transmitting data at an atitude of approxi-
mately 35 km, so we cannot be certain that the linear model appliesat lower atitudes. How-
ever, if weassumethat the model isvalid at all lower altitudes, then we can approximate the
temperatureat the surface of Venusby settings = 0in(2). Weobtain T ~ 737.5K. |

¢ REMARK.  The method of the preceding example is crude, at best, since it relies on

i extracting rough estimates of numerical data from a graph. Nevertheless, the final result is
quite good, since the most recent information from NASA places the surface temperature
of Venus at about 740 K (hot enough to melt lead).

500 - 500
[ Temperature of Venusian Atmosphere [\ Temperature of Venusian Atmosphere
450 - Magellan orbit 3213 450 - Magellan orbit 3213
C Date: 5 October 1991 C Date: 5 October 1991
- Latitude: 67 N - Latitude: 67 N
400 - LTST: 22:05 400 - LTST: 22:05
< 3s0f € 0L
o C = c
g E g c
2 300F 2 300F
@ a 5] -
=3 E =3 =
E 250F £ 250
= C [ —
200 | 200 [
150 | 150 |-
100:IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 100:IIIIIIIIIIIIIIIIIIIIIII | T
30 40 50 60 70 80 90 100 30 40 50 60 70 80 90 100
Altitude h (km) Altitude h (km)
Source: NASA Source: NASA
(@ (b)
Figure 1.7.5
"""""""""""""""""""" Although modelsbased on linear functionsy = mx + b aresimple, the rel ationship between

QUADRATIC AND TRIGONOMETRIC

FUNCTIONS AS MODELS the variables x and y associated with a particular phenomenon may be nonlinear, in which

case replacing the function y = mx + b by the quadratic function y = ax? + bx + ¢ may
provide a better model. Most calculators, spreadsheets, and CAS programs will perform a
least squares quadratic regression in a manner that is similar to linear regression.
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Table1.7.2

TIME t (S) HEIGHT h (cm)

0.008333
0.025
0.04167
0.05833
0.075
0.09167
0.10833
0.125
0.14167
0.15833

98.4
96.9
95.1
92.9
90.8
88.1
85.3
82.1
78.6
74.9
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Example 3 A student in a physics lab is studying the equations of motion of a falling
body. She collects the data displayed in Table 1.7.2, which gives the height of the object at
anumber of times over a0.15-speriod of time. She knowsthat if air resistanceisnegligible
and if the accel eration of the object dueto gravity is assumed to be constant, then the height
h of the object should be aquadratic function of timez. A scatter plot of the datais provided
in Figure 1.7.6a, which suggests a portion of an inverted parabola.

100 - 100 -
L]
L]
95 - [ 95
L]
E 0 S £ 90
S o S
< 8 . < 8
) . w
o 80 - . o 80
75 [} 75+
T | | | T | | |
0 0.05 0.1 0.15 0 0.05 0.1 0.15
Time t (s) Time t (s)
(@ (b)
Figure 1.7.6

(@) Determine the quadratic regression curve for the datain Table 1.7.2.
(b) According to the model obtained in part (a), when will the object strike the ground?

Solution (a). Using the quadratic regression routine on a calculator, we find that the
quadratic curve that best fits the datain Table 1.7.2 has equation

h = 99.02 — 73.21r — 499.13¢2

Figure 1.7.6b shows the data points and the graph of this quadratic function on the same set
of axes. It appears that we have excellent agreement between our curve and the data.

Solution (b). Solving the equation 0 = 7 = 99.02 — 73.21r — 499.13:?, we find that the
object will striketheground at r ~ 0.38s. |

Thetrigonometricfunctionsy = Asin(Bx —C) and y = A cos(Bx —C) areparticularly
useful for modeling periodic phenomena.

Example 4 Figure 1.7.7a shows a table and scatter plot of temperature data recorded
over a24-hour period in the city of Philadelphia.” Find afunction that models the data, and
graph your function and data together.

Solution. The pattern of the data suggests that the relationship between the temperature
T and the time r can be modeled by a sinusoidal function that has been translated both
horizontally and vertically, so we will look for an equation of the form

T=D+Asin[Bt—C]=D+Asin[B<t—%>} (©)]

Sincethe highest temperatureis 95° F and the lowest temperatureis 75° F, wetake 2A = 20
or A = 10. The midpoint between the high and low is 85°F, so we have a vertical shift of
D = 85. The period seems to be about 24, so 2n/B = 24 or B = 7/12. The horizontal
shift appears to be about 10 (verify), so C/B = 10. Substituting these valuesin (3) yields

*This example is based on the article “ Everybody Talks About It!—Weather Investigations,” by Gloria S. Dion
and Iris Brann Fetta, The Mathematics Teacher, Vol. 89, No. 2, February 1996, pp. 160-165.
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PHILADELPHIA TEMPERATURES
FROM 1:00 A.M. TO 12:00 MIDNIGHT ON 27 AUGUST 1993
(t = HOURS AFTER MIDNIGHT AND T = DEGREES FAHRENHEIT)

AM. P.M.
t T t T |
1:00 1 78° 13 91° '
2:00 2 77 14 93° t
3:00 3 77° 15 94° i
4:00 4 76° 16 95°
5:00 5 76° 17 93° L
6:00 6 75° 18 92° Scatter plot of data Model for data
7:00 7 75° 19 89° [0, 25] x [70, 100] T = 85+ 10sin[(w/12)(t - 10)]
8:00 8 77° 20 86° t T [0, 25] x [70, 100]
9:00 9 79° 21 84° t T
10:00 10 83° 22 83° () (b)
11:00 11 87° 23 81°
12:00 12 90° 24 79°

Source: Philadelphia Inquirer, 28 August 1993.
Figure 1.7.7

the equation
. T
T =85+ 10sin [1—20 - 10)}

(Figure 1.7.7b). <4

Note that in Example 4 we did not use a regression routine to fit the curve to the data.
Some calculators may not be equipped to compute regression for trigonometric functions.
In this case, we can use the calculator’s graphing capability to see that a proposed model
gives areasonablefit to the data points, though it may not be the best fit.

¢ FORTHEREADER. Using regression, abest fit to the datain Example 4 is
' y = 84.203713 + 9.5964 sin(0.2849¢ — 2.9300)
How does the graph of this best-fit curve compare with that found in Example 4?

EXERCISE SET 1.7 ™ Graphing Calculator

1. Oneof thelinesintheaccompanyingfigureistheregression 2. Conjecture an appropriate model (linear, quadratic, or trig-
line. Which oneisit? onometric), if any, for each of the data sets shown in the
scatter plots.
Y |
7
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5 // 12+ ° S ... ‘.
4 / 101 o' * 0. . ..' ..
/ 8 S °
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Figure Ex-2

Table 1.1.1 provides data for the top qualifying speeds at
the Indianapolis 500 from 1980 to 1999. Find the least
squares line for these data. What is the correlation coef-
ficient? Sketch the least squares line on a scatter plot of the
data points.

A 25-liter container holds 150 g of O,. The pressure p of

the gas is measured at various temperatures T' (see the ac-

companying table).

(@) Determine the least squares line for the data given in
the table.

(b) Usethe model obtained in part (a) to estimate the pres-
sure of the gas at atemperature of —50°C.

TEMPERATURE T (°C)  PRESSURE p (atm)

0 4.18
50 4.96
100 574
150 6.49
200 7.26

Table Ex-4
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A 20-liter container holds 100 g of N,. The pressure p of
this gas is measured at various temperatures 7 (see the ac-
companying table).

(8 Find the least squares line for this collection of data
points. If your calculating utility can produce the cor-
relation coefficient, then find it.

(b) Usethemodel obtainedinpart (a) to predict thepressure
of the gas at atemperature of —50°C.

(c) Usethe model obtained in part (a) to predict atemper-
ature at which the pressure of the gas will be zero.

TEMPERATURE T (°C)  PRESSURE P (@tm)

0 3.99
25 4.34
50 4.70
75 5.08
100 5.45
Table Ex-5
A 40-liter container holds 20 g of H,. The pressure p of this

gasis measured at various temperatures T' (see the accom-

panying table).

(8) Find the least squares line for this collection of data
points. If your calculating utility can produce the cor-
relation coefficient, then find it.

(b) Usethe model obtained in part (a) to predict atemper-
ature at which the pressure of the gas will be zero.

(c) At approximately what temperature of the gas will a
10°Cincreasein temperatureresultin a5% increasein
pressure?

TEMPERATURE T (°C) = PRESSURE p (atm)

0 5.55
30 6.13
60 6.75
90 7.35
120 7.98
Table Ex-6
Theresistivity of ametal isameasure of the extent to which

a wire made from the metal will resist the flow of electri-

cal current. (The actua resistance of the wire will depend

on both the resistivity of the metal and the dimensions of

the wire)) A common unit for resistivity is the ohm-meter

(£2-m). Experiments show that lowering the temperature of

ametal also lowersits resistivity. The accompanying table

givesthe resistivity of copper at various temperatures.

(8 Find the least squares line for this collection of data
points.

(b) Using the model obtained in part (@), at what tempera-
ture will copper have aresistivity of zero?
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TEMPERATURE (°C)  RESISTIVITY (10-8Q2 - m)

-100 0.82
-50 1.19
0 154
50 191
100 227
150 2.63
Table Ex-7

The accompanying table gives the resistivity of tungsten at

various temperatures.

(8 Find the least squares line for this collection of data
points.

(b) Using the model obtained in part (a), at what tempera-
ture will tungsten have aresistivity of zero?

TEMPERATURE (°C)  RESISTIVITY (10-8Q - m)

-100 2.43
-50 3.61
0 478
50 5.96
100 7.16
150 8.32
Table Ex-8

The accompanying table gives the number of inches that a

spring is stretched by various attached weights.

(8 Use linear regression to express the amount of stretch
of the spring as a function of the weight attached.

(b) Use the model obtained in part (a) to determine the
weight required to stretch the spring 8 in.

STRETCH (in)

0

0.99
201
2.99
4.00
5.03
6.01

WEIGHT (Ib)

oo h~NO

1

12 Table Ex-9

The accompanying table gives the number of inches that a

spring is stretched by various attached weights.

(8 Use linear regression to express the amount of stretch
of the spring as a function of the weight attached.

(b) Suppose that the spring has been stretched a certain
amount by aweight and that adding another 5 Ib to the
weight doubles the stretch of the spring. Use the model
obtained in part (a) to determine the original amount
that the spring was stretched.

The accompanying table provides the heights and rebounds
per minute for players on the 1998-1999 Davidson Col-
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lege women’s basketball team who played more than 100

minutes during the season.

(8 Find the least squares line for these data. If your cal-
culating utility can produce the correlation coefficient,
then find it.

(b) Sketchtheleast squaresline on ascatter plot of the data
points.

(c) Isthe least squares line a good model for these data?
Explain.

REBOUNDS
HEIGHT = PER MINUTE
511" 0.25
. 62" 0.176
Ib n

WEIGHT (Ib)  sTRETCH (in) 56" 0.141

0 0 511" 0.162

1 0.73 6'1" 0.167

2 1.50 58" 0.091

3 2.24 511" 0.278

4 3.02 63" 0.167

5 3.77 6'0" 0.214

Table Ex-10 Table Ex-11

The accompanying table provides the heights and weights
for players on the 19992000 Davidson College men’s bas-
ketball team.

(8 Find the least squares line for these data. If your cal-
culating utility can produce the correlation coefficient,
then find it.

(b) Sketchtheleast squaresline on ascatter plot of the data
points.

(c) Usethismodel to predict the weight of the team’s new
7-ft recruit.

HEIGHT = WEIGHT (Ib)
6'0" 165
6'0" 180
6'4" 195
6'3" 185
6' 7" 210
6'4" 190
6'3" 190
6'9" 240
72" 280
5'10" 175
67" 215
67" 235
6'8" 225

Table Ex-12

(TheAgeof theUniver se) Intheearly 1900stheastronomer
Edwin P. Hubbl e (1889-1953) noted an unexpected rel ation-
ship betweentheradial velocity of agalaxy anditsdistanced
fromany referencepoint (Earth, for example). That relation-
ship, now known as Hubble's law, states that the galaxies
arereceding with avelocity v that isdirectly proportional to
thedistanced. Thisisusualy expressed asv = Hd, where
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H (the constant of proportionality) iscalled Hubble'scon- [ 15. A student is studying the equations of motion for an ob-

stant. When applying this formulait is usual to express v
in kilometers per second (km/s) and d in millions of light-
years (Mly), in which case H has units of km/s/Mly. The
accompanying figure showsan origina plot andtrend line of
the vel ocity-distance rel ationship obtained by Hubble and a
collaborator Milton L. Humason (1891-1972).

(8 Use the trend line in the figure to estimate Hubble's

constant.

(b) An estimate of the age of the universe can be obtained
by assuming that the galaxies move with constant ve-
locity v, in which case v and d arerelated by d = wvz.
Assuming that the Universe began with a “big bang”
that initiated its expansion, show that the Universe is
roughly 1.5 x 10'° yearsold. [Usethe conversion 1 Mly
~ 9.048 x 10% and take H = 20 km/s/Mly, which is
in keeping with current estimates that place H between
15 and 27 km/s/Mly. (Note that the current estimates
are significantly less than that resulting from Hubble's

data,)]

Inamorerealistic model of the Universe, the velocity v
would decrease with time. What effect would that have
on your estimate in part (b)?

©

20,000 D
2
E 15000
2
8 10,000 [
4
S 5000 - .
2 (s
o
| | | | | J
0 20 40 60 80 100 120
Distance (millions of light-years)
Figure Ex-13

A professor wishes to use midterm grades as a predictor of

final gradesin asmall seminar that he teaches once a year.

The midterm grades and final gradesfor last year's seminar

are listed in the accompanying table.

(a) Findthelinear regression model that expressesthefinal
grade in terms of the midterm grade.

(b) Suppose that a student in this year’'s seminar earned a
midterm grade of 88. Use the model obtained in part (a)
to predict the student’s final grade in the seminar.

MIDTERM GRADE = FINAL GRADE

78 78
94 91
78 76
84 82
95 92
96 93
77 75

Table Ex-14

K 16.

N 17.

K 18.

ject moving along anumber line with constant accel eration.

The accompanying table gives the position in meters of the

object at various times.

(8) Use quadratic regression to model the position of the
object as afunction of time.

(b) Based on the model obtained in part (a), what will be
the position of the object after 2 s?

TIME (S)  POSITION (M)
0.2537 0.045
0.4064 0.09
0.5981 0.165
0.75 0.24
0.8781 0.315
1.032 0.42
1.1846 0.54
1.3208 0.66

Table Ex-15

Table 1.1.3 gives data for the U.S. population at 10-year
intervals from 1790 to 1850. Use quadratic regression to
model the U.S. population as afunction of time since 1790.
What does your model predict as the population of the
United Statesin the year 20007 How accurate isthis predic-
tion?

The accompanying table gives the minutes of daylight pre-
dicted for Davidson, North Carolina, in 10-day increments
during the year 2000. Find a function that models the data
in thistable, and graph your function on ascatter plot of the
data.

DAY DAYLIGHT (MiN) DAY  DAYLIGHT (min)
10 716 190 986
20 727 200 975
30 744 210 961
40 762 220 944
50 783 230 926
60 804 240 905
70 826 250 883
80 848 260 861
90 872 270 839

100 894 280 817

110 915 290 795

120 935 300 774

130 954 310 755

140 969 320 738

150 982 330 723

160 990 340 712

170 993 350 706

180 992 360 706

Table Ex-17

The accompanying table gives the fraction of the Moon that
is illuminated at midnight and visible from Earth (eastern
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standard time) in 2-day intervals for the first 60 days of

: . S d
1999. Find afunction that models the datain thistable, and (meters) 0 25 5 10 15 20 25
graph your function on a scatter plot of the data.
t
(scondg O 07 10 14 17 2 23
DAY ILLUMINATION DAY ILLUMINATION Table Ex-19
2 1 32 1 . . ]
M 20. (& The accompanying table below provides data on five
4 0.94 34 0.93 . .
6 0.81 36 0.79 moons of the planet Saturn. In this table r is the or-
8 0.63 38 0.62 bital radius (the average distance between the moon
10 0.44 40 0.43 and Saturn) and 7 is the time in days required for the
12 0.26 42 0.25 moon to complete one orbit around Saturn. For each
14 0.12 44 0.10 data pair calculate t~%/2, and use your resultsto find a
16 0.02 46 0.01 reasonable model for r asafunction of 7.
18 0 48 0.01 (b) Usethemodel obtainedin part (a) to estimatetheorbital
20 0.07 50 0.11 radius of the moon Enceladus, given that its orbit time
22 0.22 52 0.29 ist ~ 1.370 days.
24 0.43 54 0.51 (c) Usethe model obtained in part (a) to estimate the orbit
26 0.66 56 0.73 time of the moon Tethys, given that its orbital radiusis
28 0.85 58 0.90 r A 2.9467 x 10° km.
30 0.97 60 0.99
Table Ex-18

MOON RADIUS ORBIT TIME
(100,000 km) (days)

[ 19. The accompanying table provides data about the relation- ggggg 13;2; 8'2(132
ship between distance d traveled in meters and elapsed time : :
¢ in seconds for an object dropped near the Earth’s surface. 132826 igﬂg 8252
Plot time versus distance and make aguess at a“ square-root 1080S1 1‘5 147 0. 695
function” that provides areasonable model for ¢ in terms of : :
d. Use a graphing utility to confirm the reasonableness of Table Ex-20

your guess.

1.8 PARAMETRIC EQUATIONS

Thus far, our study of graphs has focused on graphs of functions. However, because

such graphs must pass the vertical |

ine test, this limitation precludes curves with self-

intersections or even such basic curves as circles. In this section we will study an
alternative method for describing curves algebraically that is not subject to the severe

restriction of the vertical line test.

This material is placed here to provide an early parametric option. However, it can be
deferred until Chapter 11, if preferred.

"""""""""""""""""""" Suppose that a particle moves along a curve C in the xy-planein such away that its x- and

PARAMETRIC EQUATIONS

x=f@), y=g®

y-coordinates, as functions of time, are

We call these the parametric equations of motion for the particle and refer to C as the
trajectory of the particle or the graph of the equations (Figure 1.8.1). The variable ¢ is
called the parameter for the equations.

Example 1 Sketchthetrgjectory over thetimeinterval 0 < ¢ < 10 of the particle whose

parametric equations of motion are
x =1t—3sint, y=4—3cost

D
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A moving particle with trajectory C

Figure1.8.1

t

(xy)

(L0

X = cost, y=sint

Figure 1.8.3

O<t<2m)

Sheet number 83 Page number 89 cyan magenta black

1.8 Parametric Equations 89

Solution. One way to sketch the trajectory is to choose a representative succession of
times, plot the (x, y) coordinates of points on the trgjectory at those times, and connect the
points with a smooth curve. The trajectory in Figure 1.8.2 was obtained in this way from
Table 1.8.1inwhich the approximate coordinates of the particle are given at timeincrements
of 1 unit. Observe that thereis no ¢-axisin the picture; the values of ¢ appear only aslabels
on the plotted points, and even these are usually omitted unlessit isimportant to emphasize

the location of the particle at specific times. <
Table1.8.1

t X y
y 0 00 10
1 -15 24
2 -07 52
3 26 70
4 6.3 6.0
5 79 31
6 68 11
7 50|17
X 8 50 4.4
9 78 6.7
10 | 116 65

Figure 1.8.2

FORTHEREADER. Readthedocumentation for your graphing utility tolearn how to graph
parametric equations, and then generate the trgjectory in Example 1. Explore the behavior
of the particle beyond time ¢t = 10.

Although parametric equations commonly arise in problems of motion with time as the
parameter, they arise in other contexts as well. Thus, unless the problem dictates that the
parameter ¢ in the equations

x=f@), y=g®
representstime, it should be viewed simply as anindependent variable that varies over some
interval of real numbers. (In fact, there is no need to use the letter r for the parameter; any
letter not reserved for another purpose can be used.) If no restrictions on the parameter are
stated explicitly or implied by the equations, then it is understood that it varies from —c to
+o. To indicate that a parameter ¢ isrestricted to an interval [a, b], we will write

x=f@), y=g@ (@<t =<b)

Example 2 Find the graph of the parametric equations
X =Ccost, y=sint O<t<2m) 2

Solution. Oneway to find the graph is to eliminate the parameter ¢ by noting that

2+ y?=dn’t +cosft =1
Thus, thegraphiscontainedintheunitcirclex?+y? = 1. Geometrically, r can beinterpreted
as the angle swept out by the radial line from the origin to the point (x, y) = (cost, sint)
on the unit circle (Figure 1.8.3). As ¢ increases from 0 to 27, the point traces the circle
counterclockwise, starting at (1, 0) when r = 0 and completing one full revolution when
t = 2. One can obtain different portions of the circle by varying the interval over which
the parameter varies. For example,

X = COost, y=sint O=<t=<m (©)]

represents just the upper semicirclein Figure 1.8.3. <
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X (1,0
=

7 y

*y)

X = €0S (-t), y = sin (-t)
(0<t<2n)

Figure 1.8.4

X=2t-3, y=6t-7

Figure 1.8.5
y
(-1,1) 1,1
N 7
Figure 1.8.6
EXPRESSING ORDINARY

FUNCTIONS PARAMETRICALLY
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The direction in which the graph of apair of parametric equationsistraced asthe parameter
increases is called the direction of increasing parameter or sometimes the orientation
imposed on the curve by the equations. Thus, we make a distinction between a curve,
which is a set of points, and a parametric curve, which is a curve with an orientation
imposed on it by a set of parametric equations. For example, we saw in Example 2 that the
circle represented parametrically by (2) istraced counterclockwise ast increases and hence
has counterclockwise orientation. As shown in Figures 1.8.2 and 1.8.3, the orientation of a
parametric curve can be indicated by arrowheads.

To obtain parametric equations for the unit circle with clockwise orientation, we can

replace t by —r in (2), and use the identities cos(—¢) = cost and sin(—r) = — sin¢. This
yields
X =Cost, y=—sint O<r<2m)

Here, the circleistraced clockwise by apoint that startsat (1, 0) when = 0 and completes
one full revolution when ¢+ = 2 (Figure 1.8.4).

FOR THE READER.  When parametric equations are graphed using a calculator, the orien-

tation can often be determined by watching the direction in which the graph istraced on the
screen. However, many computers graph so fast that it is often hard to discern the orien-
i tation. Seeif you can use your graphing utility to confirm that (3) has a counterclockwise

orientation.

Example 3 Graph the parametric curve
x=2t—3, y=6t—7
by eliminating the parameter, and indicate the orientation on the graph.

Solution. To eliminate the parameter we will solve the first equation for ¢ as a function
of x, and then substitute this expression for ¢ into the second equation:

t=03)x+3)
y=6(3)x+3) -7
y=3x+4+2

Thus, the graph is aline of slope 3 and y-intercept 2. To find the orientation we must look
to the original equations; the direction of increasing ¢ can be deduced by observing that
x increases as ¢ increases or by observing that y increases as ¢ increases. Either piece of
information tells us that the line is traced left to right as shown in Figure 1.8.5. <

REMARK. Not all parametric equations produce curves with definite orientations; if the
equations are badly behaved, then the point tracing the curve may leap around sporadically
or move back and forth, failing to determine a definite direction. For example, if

x=sint, y=sn’s

then the point (x, y) moves along the parabola y = x2. However, the value of x varies

periodically between —1 and 1, so the point (x, y) moves periodically back and forth along

the parabola between the points (—1, 1) and (1, 1) (as shown in Figure 1.8.6). Later in the
i text we will discuss restrictions that eliminate such erratic behavior, but for now we will
¢ just avoid such complications.

An equation y = f(x) can be expressed in parametric form by introducing the parameter
t = x; thisyields the parametric equations x = 7, y = f(¢). For example, the portion of
the curve y = cosx over theinterval [—27, 2] can be expressed parametrically as

X =1, y=CO0St (=2 <t < 2n)
(Figure 1.8.7).
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y
t=-27 1l t=0 t=2mw
| | | | | | /\ | | | | | | X
-7 \/ 7
_1 -
t=-mw t=m
Figure 1.8.7
"""""""""""""""""""""" Many graphing utilitiesallow youto graph equationsof theformy = f(x) but not equations

GENERATING PARAMETRIC

CURVES WITH GRAPHING UTILITIES of theformx = g(y). Sometimesyouwill beabletorewritex = g(y) intheformy = f(x);

however, if thisisinconvenient or impossible, then you can graph x = g(y) by introducing
a parameter 1 = y and expressing the equation in the parametric form x = g(¢), y = ¢.
(You may have to experiment with various intervals for ¢ to produce a complete graph.)

Example 4 Useagraphing utility to graph the equation x = 3y® — 5y + 1.

AY
L Solution. If welett = y bethe parameter, then the equation can be written in parametric
ar—, formas
X
R R TR R S R R R 5 3
—5—4—3—2—1_75345 x=3"-5"+1 y=t1
Py Figure 1.8.8 shows the graph of these equationsfor —1.5 < ¢ < 1.5. <

Some parametric curves are so complex that it is virtually impossible to visualize them

x=3t5-5t3+1, y=t . . . . . -
without using some kind of graphing utility. Figure 1.8.9 shows three such curves.

-15<t<15
Figure 1.8.8
y y y
X X X
x = 31cost —7cos (31/7)t x = 17cost + 7cos (17/7)t X =cost+ (1/2)cos 7t + (1/3)sin 17t
y =31sint—7sin (31/7)t y = 17sint—7sin (17/7)t y=sint+(U2)sin 7t + (1/3)cos 17t
(0<t< 14m) (0<t< 14m) (0<t<2m)
Figure 1.8.9
¢ FOR THE READER.  Without spending too much time, try your hand at generating some
i parametric curves with agraphing utility that you think are interesting or beautiful.
"""""""""""""""""""""" If aparametric curve C isgiven by theequationsx = f(¢), y = g(¢), then adding aconstant
TRANSLATION to f(¢) trandates the curve C in the x-direction, and adding a constant to g(¢) translates

it in the y-direction. Thus, a circle of radius r, centered at (xg, yo) can be represented
parametrically as

X =xo+rcost, y=yo+rsint O<r<2m) 4
(Figure 1.8.10). If desired, we can eliminate the parameter from these equations by noting
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Figure 1.8.10

SCALING
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N

X =acost,y=bsint
(O0<t<2n)

Figure1.8.11

LISSAJOUS CURVES

Sheet number 86 Page number 92 cyan magenta black

X = Xg+ 1 cost
y=yg+rsint
(0<t<2m)

that
(x —x0)2+ (y — yo)?> = (rcost)?> + (rsint)? = r

Thus, we have obtained the familiar equationin rectangular coordinatesfor acircle of radius
r, centered at (xo, yo):

(x —x0)?+ (y —yo)? =r? (5)

2

FOR THE READER.  Use the parametric capability of your graphing utility to generate a
circle of radius 5 that is centered at (3, —2).

If a parametric curve C is given by the equations x = f(r), y = g(r), then multiplying
f(¢) by aconstant stretches or compresses C in the x-direction, and multiplying g(¢) by a
constant stretches or compresses C in the y-direction. For example, we would expect the
parametric equations

x = 3cost, y=2sint O<r<2n)

to represent an ellipse, centered at the origin, since the graph of these equationsresultsfrom
stretching the unit circle

X =Ccost, y=sint 0<t<2nm

by afactor of 3inthe x-direction and afactor of 2 in the y-direction. In general, if « and b
are positive constants, then the parametric equations

x=acost, y=bsint (0<t<27) (6)

represent an ellipse, centered at the origin, and extending between —a and a on the x-axis
and between —b and b on the y-axis (Figure 1.8.11). The numbers a and b are called the
semiaxes of the ellipse. If desired, we can eliminate the parameter ¢ in (6) and rewrite the
equations in rectangular coordinates as

x2 y2

Stp=tl ©)

FOR THE READER.  Use the parametric capability of your graphing utility to generate an
ellipse that is centered at the origin and that extends between —4 and 4 in the x-direction
and between —3 and 3 in the y-direction. Generate an ellipse with the same dimensions,
but trandated so that its center isat (2, 3).

In the mid-1850s the French physicist Jules Antoine Lissajous (1822-1880) became inter-
ested in parametric equations of the form

x =Sinat, y=-snbt (8)
in the course of studying vibrations that combine two perpendicular sinusoidal motions.
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Thefirst equation in (8) describes asinusoidal oscillation in the x-direction with frequency
a/2m, and the second describes a sinusoidal oscillation in the y-direction with frequency
b/27. 1f a/b isarational number, then the combined effect of the oscillationsis a periodic
motion along a path called a Lissajous curve. Figure 1.8.12 shows some typical Lissajous
CUrves.

a=1b=2

Figure 1.8.12

FOR THE READER.  Generate some Lissgjous curves on your graphing utility, and also see
if you can figure out when each of the curvesin Figure 1.8.12 begins to repeat.

If awhed rollsin astraight line along aflat road, then a point on the rim of the wheel will
trace a curve called a cycloid (Figure 1.8.13). This curve has a fascinating history, which
wewill discuss shortly; but first we will show how to obtain parametric equationsfor it. For
this purpose, let us assume that the wheel hasradiusa and rolls along the positive x-axis of
arectangular coordinate system. Let P (x, y) bethe point on the rim that tracesthe cycloid,
and assume that P isinitidly at the origin. We will take as our parameter the angle 6 that
is swept out by the radial lineto P asthe wheel rolls (Figure 1.8.13). It is standard here to
regard 6 to be positive, even though it is generated by a clockwise rotation.

The motion of P isacombination of the movement of the wheel’s center parallel to the
x-axisand therotation of P around the center. Astheradial line sweeps out an angle 6, the
point P traverses an arc of length a6, and the wheel moves a distance a6 aong the x-axis
(why?). Thus, as suggested by Figure 1.8.14, the center movesto the point (a6, a), and the
coordinates of P(x, y) are

x=a0l —asin®, y=a—acosO 9
These are the equations of the cycloid in terms of the parameter 6.

Figure 1.8.13

A cycloid

Figure 1.8.14

FOR THE READER.  Use your graphing utility to generate two “arches’ of the cycloid
produced by a point on the rim of awheel of radius 1.
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THE ROLE OF THE CYCLOID IN

MATHEMATICS HISTORY
[=]

Q
Figure 1.8.15
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The cycloid is of interest because it provides the solution to two famous mathematical
problems—the brachistochrone problem (from Greek words meaning “ shortest time”) and
the tautochrone problem (from Greek words meaning “equal time”). The brachistochrone
problem is to determine the shape of awire along which abead might slide from apoint P
to another point Q, not directly below, in the shortest time. The tautochrone problem isto
find the shape of awire from P to Q such that two beads started at any points on the wire
between P and Q reach Q inthe same amount of time (Figure 1.8.15). The solution to both
problems turns out to be an inverted cycloid.

In June of 1696, Johann Bernoulli” posed the brachistochrone problem in the form of a
challenge to other mathematicians. At first, one might conjecture that the wire should form
astraight line, since that shape results in the shortest distance from P to Q. However, the
inverted cycloid allows the bead to fall more rapidly at first, building up sufficient initial
speed to reach Q in the shortest time, even though it travels alonger distance. The problem
was solved by Newton and Leibniz as well as by Johann Bernoulli and his older brother

*BERNOULLI. An amazi ng Swiss family that included several generations of outstanding mathematicians and
scientists. Nikolaus Bernoulli (1623-1708), a druggist, fled from Antwerp to escape religious persecution and
ultimately settled in Basel, Switzerland. There he had three sons, Jakob | (also called Jacques or James), Nikolaus,
and Johann | (&l so called Jean or John). The Roman numeral sare used to distinguish family memberswith identical
names (see the family tree below). Following Newton and Leibniz, the Bernoulli brothers, Jakob | and Johann I,
are considered by someto be the two most important founders of calculus. Jakob | was self-taught in mathematics.
His father wanted him to study for the ministry, but he turned to mathematics and in 1686 became a professor
at the University of Basel. When he started working in mathematics, he knew nothing of Newton’s and Leibniz’
work. He eventually became familiar with Newton’s results, but because so little of Leibniz’ work was published,
Jakob duplicated many of Leibniz' results.

Jakob's younger brother Johann | was urged to enter into business by hisfather. Instead, he turned to medicine
and studied mathematics under the guidance of his older brother. He eventually became a mathematics professor
at Groningen in Holland, and then, when Jakob died in 1705, Johann succeeded him as mathematics professor at
Basel. Throughout their lives, Jakob | and Johann | had amutual passion for criticizing each other’s work, which
frequently erupted into ugly confrontations. L eibniz tried to mediate the disputes, but Jakob, who resented L eibniz’
superior intellect, accused him of siding with Johann, and thus Leibniz became entangled in the arguments. The
brothers often worked on common problems that they posed as challenges to one another. Johann, interested in
gaining fame, often used unscrupul ous means to make himself appear the originator of his brother’s results; Jakob
occasionally retaliated. Thus, it is often difficult to determine who deserves credit for many results. However, both
men made major contributions to the development of calculus. In addition to his work on calculus, Jakob helped
establish fundamental principlesin probability, including the Law of Large Numbers, which is a cornerstone of
modern probability theory.

Among the other members of the Bernoulli family, Daniel, son of Johann I, is the most famous. He was a
professor of mathematics at St. Petersburg Academy in Russia and subseguently a professor of anatomy and then
physics at Basel. He did work in calculus and probability, but is best known for hiswork in physics. A basic law
of fluid flow, called Bernoulli’s principle, is named in his honor. He won the annual prize of the French Academy
10 times for work on vibrating strings, tides of the sea, and kinetic theory of gases.

Johann |1 succeeded his father as professor of mathematics at Basel. His research was on the theory of heat
and sound. Nikolaus | was a mathematician and law scholar who worked on probability and series. On the
recommendation of Leibniz, he was appointed professor of mathematics at Padua and then went to Basel as a
professor of logic and then law. Nikolaus I was professor of jurisprudence in Switzerland and then professor of
mathematics at St. Petersburg Academy. Johann |11 was a professor of mathematics and astronomy in Berlin and
Jakob 11 succeeded his uncle Daniel as professor of mathematics at St. Petersburg Academy in Russia. Truly an
incredible family!

Nikolaus Bernoulli
(1623-1708)

Jakab | Nikolaus Johann |
(1654—1705) (1667—-1748)
(Jacques, James) (Jean, John)
I [ |
Nikolaus | Nikolaus 1 Daniel Johann 1

(1687-1759) (1695-1726) (1700-1782)  (1710-1790)

Johann 111 Jakob 11
(1744-1807) (1759-1789)
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Jakob; it was formulated and solved incorrectly years earlier by Galileo, who thought the

answer was acircular arc.
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1

(a) By eiminating the parameter, sketch thetrajectory over

thetimeinterval 0 < ¢ < 5 of the particle whose para-
metric equations of motion are

x=t—1 y=r+1
(b)
(0)

Indicate the direction of motion on your sketch.

Make atable of x- and y-coordinates of the particle at
timest =0,1, 2, 3,4,5.

Mark theposition of theparticleonthecurveat thetimes
inpart (c), and label those positionswith thevaluesof 7.

(d)

(a) By eliminating the parameter, sketch thetrajectory over

thetimeinterval 0 < ¢ < 1 of the particle whose para-
metric equations of motion are

x = cos(nt), y = sin(mt)

(b)
(©

Indicate the direction of motion on your sketch.

Make atable of x- and y-coordinates of the particle at
timest = 0, 0.25, 0.5, 0.75, 1.

(d) Mark theposition of theparticleonthecurveat thetimes
inpart (c), and label those positionswith the valuesof ¢.

In Exercises 3-12, sketch the curve by eliminating the pa-
rameter, and indicate the direction of increasing ¢.

10.
11.
12.

© o N o AW

x=3t—-4, y=6r+2

x=t—-3, y=3t—-7 (0<r<3

x =2cost, y=>5sinr (0<t<2nm)
x=4+t, y=2t+4

x =342cost, y=2+4snt (0<t<2n)
x=sect, y=tant (<t < 31/2)

X =00S2t, y=8int (—n/2<t<mn/2)
x=4+3 y=16:2-9

x =2sin’t, y = 3co ¢

x =sec’t, y=tan’t

K R @ & ©&

In Exercises 1318, find parametric equations for the curve,
and check your work by generating the curve with agraphing
utility.

13.

14.

15.

16.
17.

18.

19.

A circle of radius 5, centered at the origin, oriented clock-
wise.

The portion of the circle x? + y? = 1 that liesin the third
quadrant, oriented counterclockwise.

A vertical line intersecting the x-axis at x =
upward.

2, oriented

The ellipse % + % = 1, oriented counterclockwise.

The portion of the parabola x = y? joining (1, —1) and
(1, 1), oriented down to up.

The circle of radius 4, centered at (1, —3), oriented coun-
terclockwise.

In each part, match the parametric equation with one of the
curves labeled (1)—(V1), and explain your reasoning.
(@ x =+, y=sin3t (b) x = 2cost, y = 3sint
3t 32
1+ 14173

() x =tcost, y =tsint

13 212 .
(f) x =2cost, y =sin2s

142 r= 1412
y
e
I

NN A
N

VN
Pp

@ x=1>5 7=

e x =

Figure Ex-19
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[ 20. Useagraphing utility to generate the curvesin Exercise 19,
and in each case identify the orientation.
[ 21. (&) Useagraphing utility to generatethetrgjectory of apar-
ticle whose equations of motion over the time interval
O<r<b5are

x=6t—%t3, y=1+%t2

(b) Make atable of x- and y-coordinates of the particle at
timestr =0,1,2, 3,4,5.

(c) Atwhat timesisthe particle on the y-axis?

(d) During what timeinterval isy < 5?

(e) At what time is the x-coordinate of the particle maxi-
mum?

[ 22. (8 Use agraphing utility to generate the trgjectory of a

paper airplane whose equations of motion for ¢ > O are

x =t—2sint, y=3-—2cost

(b) Assuming that the plane flies in a room in which the
floorisat y = 0, explain why the plane will not crash
into the floor. [For simplicity, ignore the physical size
of the plane by treating it as a particle.]

(c) How high must the ceiling be to ensure that the plane
does not touch or crash into it?

In Exercises 23 and 24, graph the equation using a graphing
utility.

H 23 (8 x=y2+2y+1
(b) x =siny, —2r <y <2n

@ x=y+2y°—y°
(b) x =tany, —m/2 <y < 7/2

(&) By eliminating the parameter, show that the equations

K 24

25.

X =x0+ (x1 —x0)t, y=yo+ (y1— Yot

represent the line passing through the points (xo, yo)

and (x1, y1).

Show that if 0 < ¢ < 1, then the equations in part (a)

represent the line segment joining (xo, yo) and (x1, y1),

oriented in the direction from (xg, yo) to (x1, y1)-

Usetheresultin part (b) to find parametric equationsfor

the line segment joining the points (1, —2) and (2, 4),

oriented in the direction from (1, —2) to (2, 4).

Usetheresultin part (b) to find parametric equationsfor

theline segment in part (c), but oriented in the direction

from (2, 4) to (1, —2).

Usetheresult in Exercise 25 to find

(a) parametric equations for the line segment joining the
points (—3, —4) and (-5, 1), oriented from (—3, —4)
to(=5,1)

(b) parametric equations for the line segment traced from
(0, b) to (a, 0), oriented from (0, b) to (a, 0).

27. (8) Supposethat the line segment from the point P (xo, yo)
to Q(x1, y1) isrepresented parametrically by

(b)

(©

(d)

26.

x = xp + (x1 — x0)t,
O0=<r=D
y =yo+ (y1— Yot
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and that R(x, y) isthe point on the line segment corre-
sponding to aspecified valueof ¢ (seetheaccompanying
figure). Show that r = r/q, wherer isthedistancefrom
P to R and ¢ isthe distance from P to Q.

(b) What value of ¢ produces the midpoint between points
P and Q?

(c) What value of ¢ produces the point that is three-fourths
of theway from P to Q?

P(Xg: Yo)
Figure Ex-27

28. Find parametric equations for the line segment joining
P(2,—1) and Q(3,1), and use the result in Exercise 27
to find

(& the midpoint between P and Q
(b) the point that is one-fourth of the way from P to Q

(c) the point that is three-fourths of the way from P to Q.

29. Explain why the parametric curve

2

x=1* y=t* (-l<r<1

does not have a definite orientation.

[ 30. (& Inparts(a) and (b) of Exercise 25 we obtained paramet-
ric equations for aline segment in which the parameter
varied from ¢ = 0tor = 1. Sometimes it is desir-
able to have parametric equations for aline segment in
which the parameter variesover someother interval, say
fo <t < 1. Usetheideasin Exercise 25 to show that
the line segment joining the points (xg, yo) and (x1, y1)
can be represented parametrically as

t—1o
X = xo+ (x1 — x0) ,
1h—1o
(o<t =<t)
t—1o
y=yo+ (y1— yo)
n—1to

(b) Which way isthe line segment oriented?

(c) Find parametric equations for the line segment traced
from (3, —1) to (1, 4) ast variesfrom 1 to 2, and check
your result with agraphing utility.

31. (@) By eiminating the parameter, show that if a and ¢ are
not both zero, then thegraph of the parametric equations

x=at+b, y=ct+d (to<t=t)

isaline segment.
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(b) Sketch the parametric curve

x=2t—-1, y=t+1 1<t<?2

and indicate its orientation.

(8 What can you say about the linein Exercise 31 if a or
¢ (but not both) is zero?

(b) What do the equations represent if a and ¢ are both
zero?

Parametric curves can be defined piecewise by using differ-
ent formulas for different values of the parameter. Sketch
the curve that is represented piecewise by the parametric
equations

x=2t, y=4r? (0<r<3)

Xx=2-2t, y=2 (<<
Find parametric equations for the rectangle in the accom-
panying figure, assuming that the rectangle is traced coun-
terclockwise ast variesfrom Oto 1, starting at (3. 3) when
t = 0. [Hint: Represent the rectangle piecewise, letting ¢
vary from 0 to 3 for the first edge, from % to 1 for the
second edge, and so forth.]

(_1 1 11
20 2 212

(_1 _1 (1 _1
212 2:72

Figure Ex-34

(a) Findparametric equationsfor theellipsethat iscentered
at the origin and has intercepts (4, 0), (—4, 0), (0, 3),
and (0, —3).

(b) Find parametric equationsfor the ellipse that results by
tranglating the ellipse in part (a) so that its center is at
(-1, 2).

(c) Confirmyour resultsin parts (a) and (b) using a graph-
ing utility.

Wewill show later in thetext that if aprojectileisfired from

ground level with an initial speed of vg meters per second

at an angle @ with the horizontal, and if air resistance is
neglected, then its position after ¢ seconds, relative to the
coordinate system in the accompanying figure is

x = (vpcosa)t, y= (vpSina)t — %gt2

where g ~ 9.8 m/S%.
(8) By eliminating the parameter, show that the trajectory
isaparabola.

(b) Sketch thetrajectory if o = 30° and v = 1000 m/s.
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a \Q/X

| Figure Ex-36

A shell isfired from a cannon at an angle of o = 45° with

aninitial speed of vy = 800 m/s.

(8) Find parametric equations for the shell’strajectory rel-
ative to the coordinate system in Figure Ex-36.

(b) How high does the shell rise?

(c) How far doesthe shell travel horizontally?

A robot arm, designed to buff flat surfaceson an automobile,
consists of two attached rods, one that moves back and forth
horizontally, and a second, with the buffing pad at the end,
that moves up and down (see the accompanying figure).

(8) Suppose that the horizontal arm of the robot moves so
that the x-coordinate of the buffer's center at time ¢
isx = 25sinat and the vertica arm moves so that
the y-coordinate of the buffer's center at time ¢ is
y = 12.5sinxt. Graph the trgjectory of the center of
the buffing pad.

Suppose that the x- and y-coordinates in part (a) are
x = 25sinmwat and y = 12.5sinxbt, where the con-
stants a and b can be controlled by programming the
robot arm. Graph the trgjectory of the center of the pad
ifa =4andb =5.

Investigate the trgjectoriesthat result in part (b) for var-
ious choices of @ and b.

Y Buffing
pad
X

(b)

(©

Figure Ex-38

Describe the family of curves described by the parametric
equations

X =acost+h, y=bsint+k O<t<2n
if

(& h andk arefixed but a and b can vary

(b) a and b arefixed but & and k can vary

(c) a=1landb =1 buthandk vary sothat h = k + 1.

A hypocycloid is a curve traced by a point P on the cir-
cumference of acirclethat rollsinside alarger fixed circle.
Suppose that the fixed circle hasradius a, the rolling circle
has radius b, and the fixed circle is centered at the origin.
Let ¢ be the angle shown in the following figure, and as-
sumethat thepoint P isat (a, 0) when ¢ = 0. Show that the



January 12, 2001 11:10

265-chl

98 Functions

hypocycloid generated is given by the parametric equations
x = (a — b) cOS$ + bcos(?q&)

a —

y=(a—b)sing —bSiﬂ(qu’))

AY

¢\\’< X

%/\ (@0

Figure Ex-40
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If b = 1a in Exercise 40, then the resulting curve is called
afour-cusped hypocycloid.
(a) Sketch thiscurve.

(b) Show that the curveisgiven by the parametric equations
x=acos¢p, y=asne.

(c) Show that the curveis given by the equation

X2/3 4 y2/3 — (12/3

in rectangular coordinates.

() Use agraphing utility to study how the curves in the

family

x=2acost, y=2acostsint (—2mw<t<2m)

change asa variesfrom0to 5.
(b)
(©

Confirm your conclusion algebraically.
Write a brief paragraph that describes your findings.

SUPPLEMENTARY EXERCISES

1. Referring to the cigarette consumption graph in Figure

1.1.2b, during what 5-year period was the annual cigarette
consumption per adult increasing most rapidly on average?
Explain your reasoning.

. Usethegraphsof thefunctions f and g intheaccompanying
figure to solve the following problems.

(8 Findthevaluesof f(—1) and g(3).

(b) For what values of x is f(x) = g(x)?

(c) Forwhat valuesof x is f(x) < 2?

(d) What are the domain and range of f?

(e) What are the domain and range of g?

(f) Findthe zerosof f and g.

A Y
; /
jam /
\[f
[ ] 1 [ | . X
T /s
/ /
/
/ 5
Figure Ex-2

. A glass filled with water that has a temperature of 40°F
is placed in aroom in which the temperature is a constant
70°F. Sketch a rough graph that reasonably describes the
temperature of the water in the glass as a function of the
elapsed time.

4.

A student begins driving toward school but 5 minutes into
the trip remembers that he forgot his homework. He drives
home hurriedly, retrieves his notes, and then drives at great
speed toward school, hitting a tree 5 minutes after leaving
home. Sketch a rough graph that reasonably describes the
student’s distance from home as a function of the elapsed
time.

A rectangular storage container with an open top and a
square base has avolume of 8 cubic meters. Material for the
base costs $5 per square meter, and material for the sides $2
per square meter. Express the total cost of the materials as
afunction of the length of a side of the base.

You want to paint the top of acircular table. Find aformula
that expresses the amount of paint required as a function
of the radius, and discuss al of the assumptions you have
made in finding the formula.

Sketch the graph of the function
-1, x < -5
fx) = m, -5<x<5b
x —5, x>5

A ball of radius3inchesiscoated uniformly with plastic. Ex-
press the volume of the plastic asafunction of itsthickness.

A box with a closed top is to be made from a 6-ft by 10-ft

piece of cardboard by cutting out four squares of equal size

(see the accompanying figure), folding along the dashed

lines, and tucking the two extra flaps inside.

(8 Findaformulathat expressesthevolume of thebox asa
function of thelength of the sidesof the cut-out squares.
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(b) Find an inequality that specifies the domain of the
function in part (a).
(c) Estimate the dimensions of the box of largest volume.

p— — |

6 ft

I

e— 5t —f— 5t —
Figure Ex-9
10. Let f(x) = —x? and g(x) = 1//x. Find the natural

domainsof fogandgo f.

11. Giventhat f(x) = x>+ 1and g(x) = 3x +2, findall values
of x such that f(g(x)) = g(f(x)).

12. Let f(x) = (2x — 1)/(x + D and g(x) = 1/(x — 1).

(@ Find f(g(x)).
(b) Isthe natural domain of the function f(g(x)) obtained
in part (a) the same as the domain of f o g? Explain.

13. Find f(g(h(x))), given that

_ X
f('x) - ma

14. Giventhat f(x) = 2x + 1 and h(x) = 2x? + 4x + 1, find
afunction g suchthat f(g(x)) = (x).

15. Complete the following table.

gx) = 5, h(x) =x*—1
X

X -4 -3 =2 -1 0 1 2 3 4
f@) O -1 2 1 3 2 -3 4 -4
g9 3 2 1 3 -1 4 4 =2 0
(feg)(®)
(9°F)(®)

16. (8) Write an equation for the graph that is obtained by re-
flecting the graph of y = |x — 1| about the y-axis, then
stretching that graph vertically by a factor of 2, then
trangdating that graph down 3 units, and then reflecting
that graph about the x-axis.

(b) Sketch the original graph and the final graph.

17. In each part, classify the function as even, odd, or nei-

ther.
(@ x2sinx (b) sin®x
(©) x + x? (d) sinxtanx

1 18. (a) Find exact valuesfor al x-intercepts of
y = COSx — Sin2x

intheinterval —27 < x < 2.

(b) Find the coordinates of all intersections of the graphs
of y=cosxandy = sin2x if —27 < x < 27, and use
agraphing utility to check your answer.
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19. (a) A surveyor measurestheangleof elevation o of atower
fromapoint A due south of thetower and al so measures
the angle of elevation 8 from a point B that is d feet
due east of the point A (see the accompanying figure).
Show that the height 4 of the tower in feet is given by

dtanatan g

tan’ o — tan? B

(b) Use acalculating utility to approximate the height of
the tower to the nearest tenth of a foot if « = 17°,
B = 12°,and d = 1000 ft.

Figure Ex-19

20. Suppose that the expected low temperature in Anchorage,
Alaska (in °F), ismodeled by the equation

2
T = in— (¢t —101) + 2
503m365(t 01) + 25

wherer isin daysand ¢ = O corresponds to January 1.
(a) Sketch the graph of T versus: for 0 < r < 365.

(b) Use the model to predict when the coldest day of the
year will occur.

(c) Based on this model, how many days during the year
would you expect the temperature to be below 0°F?

21. The accompanying figure shows the graph of the equa-
tionsy =1+ 2sinx and y = 2sin(x/2) + 2cos(x/2) for
—27 < x < 27. Without the aid of a calculator, label each
curve by its equation, and find the coordinates of the points
A, B, C,and D. Explain your reasoning.

‘ /\ /o x
\\D/zn

~on \/

A

Figure Ex-21

22. The accompanying figure shows amodel for the tide varia-
tioninaninletto San Francisco Bay during a24-hour period.
Find an equation of the form y = yg + yi Sin(ar + b) for
the model, assuming that + = 0 corresponds to midnight.
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§ 30
5 OF
§ 20:
S 15:
E 10
.20 B
2 °F
1 1 1 1 1 1 1 1 1 1 1 J
4 8 12 4 8 12
AM. Noon PM.
Time t (h)
Figure Ex-22
23. In each part describe the family of curves.

K 24

25.
26.

K 27.

28.

@ (x—aP+(y—a>?=1

(b) y=a+(x-2a)?

(8 Supposethattheequationsx = f (), y = g(¢) describe
acurve C ast increases from 0 to 1. Find parametric
equations that describe the same curve C but traced in
the opposite direction as ¢ increases from 0 to 1.

(b) Check your work using the parametric graphing feature
of agraphing utility by generating the line segment be-
tween (1, 2) and (4, 0) in both possible directions as ¢
increasesfrom 0 to 1.

Sketch the graph of the equation x? — 4y? = 0.

Find an equation for a parabola that passes through the
points (2, 0), (8, 18), and (-8, 18).

Sketch the curve described by the parametric equations
X =1cos(2nt), y =tSin(2nt)
and check your result with a graphing utility.

The electrical resistance R in ohms (2) for a pure meta
wireisrelated to its temperature 7 in °C by the formula

R = Ro(1L+kT)

inwhich Rq and k are positive constants.

(8 Make ahand-drawn sketch of the graph of R versus T,
and explain the geometric significance of Ry and & for
your graph.

(b) Intheory, theresistance R of apure metal wiredropsto
zero when the temperature reaches absolute zero (7' =
—273°C). What information doesthisgiveyou about £ ?

(c) A tungsten bulb filament has aresistanceof 1.1 Q at a
temperature of 20° C. What information does this give
you about Ry for the filament?

(d) At what temperature will a tungsten filament have a
resistance of 1.5 Q?
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Find the distance between the point P (1, 2) and an arbitrary
point (x, /x) on the curve y = ./x. Graph this distance
versus x, and use the graph to find the x-coordinate of the
point on the curve that is closest to the point P.

Find the distance between the point P (1, 0) and an arbi-
trary point (x, 1/x) on the curve y = 1/x, where x > 0.
Graph this distance versus x, and use the graph to find the
x-coordinate of the point on the curve that is closest to the
point P.

In Exercises 31 and 32, use Archimedes' principle: A body
wholly or partially immersedin afluidisbuoyed up by aforce
equal to the weight of the fluid that it displaces.

3L

K 32

K 33.

A hollow metal sphereof diameter 5 feet weighs 108 pounds
and floats partially submerged in seawater. Assuming that
seawater weighs 63.9 pounds per cubic foot, how far be-
low the surface is the bottom of the sphere? [Hint: If a
sphere of radius r is submerged to a depth £, then the vol-
ume V of the submerged portion is given by the formula
V = ah?@r — h/3)]

Suppose that a hollow metal sphere of diameter 5 feet and
weight w pounds floats in seawater. (See Exercise 31.)
(& Graphw versushforO<h <5.

(b) Find the weight of the sphere if exactly half of the
sphereis submerged.

A breeding group of 20 bighorn sheep is released in a pro-
tected area in Colorado. It is expected that with careful
management the number of sheep, N, after ¢ years will be
given by the formula
220
~ 1+10(0.83)

and that the sheep population will be able to maintain itself
without further supervision once the population reaches a
size of 80.

(8 Graph N versust.

(b) How many years must the state of Colorado maintain
aprogram to care for the sheep?

(c) How many bighorn sheep can the environment in the
protected area support? [Hint: Examine the graph of N
versus ¢ for large values of 7.]

Most of the following exercises require access to graphing
and calculating utilities. When you are asked to find an an-
swer or to solve an equation, you may choose to find either
an exact result or a numerical approximation, depending on
the particular technology you are using and your own imag-
ination.

In Exercises 34 and 35, use the following empirical formula
for thewindchill index (WCI) [see Example 3 of Section 1.2]:

T, 0<v<4

WCI = {914 + (91.4 — T)(0.0203v — 0.304,/v — 0.474),
167 —55, v>45

4<v<45

where T isthe air temperature in °F, v isthe wind speed in
mi/h, and WCI isthe equivalent temperature in °F.
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(8 Graph T versus v over the interval 4 < v < 45 for
WCI = 0.

Useyour graph to estimatethevaluesof 7 for WCIl = 0
corresponding to v = 10, 20, 30, to the nearest degree.

(b)
(@ Graph WCI versus v over theinterval 0 < v < 50 for
T = 20.

Use your graph to estimate the values of the WCI cor-
responding to v = 10, 20, 30, 40, to the nearest degree.
Use your graph to estimate the values of v correspond-
ing to WCI = —20, —10, 0, 10, to the nearest mile per
hour.

(b)
(©

Find the domain and range of the function
sinx
fx) = 1315

Find the domain and range of the function

fx)=x>—V14+x—x*

An oven is preheated and then remains at a constant tem-
perature. A potato is placed in the oven to bake. Suppose
that the temperature T (in °F) of the potato  minutes later
isgivenby 7 = 400 — 325(0.97"). The potato will be con-
sidered done when its temperature is anywhere between
260°F and 280°F.

(a) During what interval of time would the potato be con-
sidered done?

(b) How long doesit take for the temperature of the potato
to reach 95% of the oven temperature?

Supposethat apackage of medical suppliesisdropped from
a helicopter straight down by parachute into aremote area.
Thevelocity v (in feet per second) of the package t seconds
after itisreleased isgiven by v = 24.61(1 — 0.273").

(a8 Graphv versus:.

(b) Show that the graph has a horizontal asymptote v = c.
(c) The constant ¢ is called the terminal velocity. Explain
what the terminal velocity meansin practical terms.

(d) Can the package actually reach its termina velocity?

Explain.
(e) How long doesiit take for the package to reach 98% of
its terminal velocity?

An ancient Babylonian tablet known as Plimpton 322 con-

tains a sequence of numbers that appear to be the squares

of secants of various angles ranging from about 45° to 31°.

The secants of these angles are listed in the accompanying

table.

(8 Using linear regression, find a function that (approxi-
mately) expresses these secants in terms of their posi-
tion number within the table.

(b) Do you see any connection between your linear func-
tion from part (a) and the fact that the base for the
Babylonian number system was 60?
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ENTRY NUMBER  FUNCTION VALUE

1 1.4083
2 1.3961
3 1.3852
4 1.3734
5 1.3472
6 1.3361
7 1.3110
8 1.3010
9 1.2817
10 1.2594
11 1.2500
12 1.2204
13 1.2042
14 1.1959
15 1.1778
Table Ex-40

An important problem addressed by calculusisthat of find-
ing agood linear approximation to the function f(x) near a
particular x-value. One possible approach (not the best) is
to sample values of the function near the specified x-value,
find the least squares line for this sample, and transl ate the
least squares line so that it passes through the point on the
graph of y = f(x) corresponding to the given x-value. Let
fx) = x?sinx.

(8 Make atable of (x, f(x)) valuesfor x = 1.9, 1.92,
194,...,21.

(b) Find aleast squareslinefor the datain part (a).

(c) Find the equation of the line passing through the point
(2, (2)) and parallel to the least squaresline.

(d) Using agraphing utility with a graphing window con-
taining (2, f(2)), graph y = f(x) and the line you
found in part (c). How do the graphs compare as you
zoom closer to the point (2, f(2))?

[Note: The best linear approximation to y = x2sinx near
x = 2isgivenby y ~ 1.9726x — 0.308015. In Chapter
3, we will see how to use the tools of calculus to find
this answer.]

An extension of the linear approximation problemisfinding

agood polynomial approximation to thefunction f(x) near

aparticular x-value. One possible approach (not the best) is

to sample values of the function near the specified x-value,

apply polynomial regression to this sample, and trandate

the regression curve so that it passes through the point on

the graph of y = f(x) corresponding to the given x-value.

Let f(x) = cosx.

(8 Makeatableof (x, f(x)) valuesfor x = —0.1, —0.08,
-0.06,...,0.1

(b) Use quadratic regression to model the data in part (a)
with a quadratic polynomial.

(c) Trandlate your quadratic modeling function from part
(b) to obtain a quadratic function that passes through
the point (0, £ (0)).
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(d) Using a graphing utility with a graphing window con-

o s HOUR WATER LEVEL (M)  HOUR WATER LEVEL (M)
taining (O, f(0)), graph y = f(x) and the polynomial

you found in part (c). How do the graphs compare as 0 0.526 36 0.534
you zoom closer to the point (0, f(0))? 2 0.157 38 0.192
[Note: The best quadratic approximation to y = cosx near 4 0.161 40 0141
x = 0isgivenby y ~ —0.5x2 + 1] 6 0.486 42 0426
_ _ _ 8 0.779 44 0.849
[ 43. The accompanying table gives the water level (in meters 10 0.740 46 1.032
above the mean low-water mark) at a Cape Hatteras, North 12 0412 48 0.765
Carolina, fishing pier, recorded in 2-hour increments start- 14 0.141 50 0.281
ing from midnight, July 1, 1999. Why should we expect 16 0.260 52 0.042
that a trigonometric function should fit these data? Find a 18 0.633 54 0.157
function that models the data, and graph your function on 20 1.015 56 0.587
a scatter plot. 22 1.021 58 0.777
24 0.670 60 0.620
26 0.231 62 0.241
28 0.128 64 0.045
30 0.345 66 0.195
32 0.697 68 0.613
34 0.821 70 0.945

Table Ex-43

EXPANDING THE CALCULUS

Iteration and Dynamical Systems

\/Vhat do the four figures below havein common? Theanswer isthat all of themare of interest in contemporary research
and all involve a mathematical process called iteration. In this module we will introduce this concept and touch on
some of the fascinating ideas to which it leads.

PR
P NWS OO N

0 0.2 0.4 0.6 0.8 1
Barnsley's fern The Sierpinski triangle A cobweb diagram A Julia set

= [terative Processes

Recall that in the notation y = f(x), the variable x is called an input of the function f, and
the variable y is called the corresponding output. Suppose that we start with some input, say
x = ¢, and each time we compute an output we feed it back into f asan input. This generatesthe
following sequence of numbers:

f), f(f), [fUFU©@), FUSLTN), ...
Thisiscalled an iterated function sequencefor f (from the Latin word iteratus, meaning “to re-
peat”). The number ¢ iscalled the seed value for the sequence, the termsin the sequence are called
iterates, and each time f is applied we say that we have performed an iteration. Iterated function
sequences arise in a wide variety of physical processes that are collectively called dynamical
systems.
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Exercisel Let f(x) = x2.

(a) Calculatethefirst 10iteratesin theiterated function sequencefor f, starting with seed values
of ¢ = 0.5,1, and 2. In each case make a conjecture about the long-term behavior of the
iterates, that is, the behavior of the iterates as more and more iterations are performed.

(b) Try your own seed values, and make a conjecture about the effect of a seed value on the
long-term behavior of the iterates.

= Recursion Formulas

The proliferation of parentheses in an iterated function sequence can become confusing, so for
simplicity let usintroduce the following notation for the successive iterates

yo=c¢, y1=fle), y2=f(f(©), yz=f(f(f(©), ya= ff(ff()....

or expressed more simply,

yo=c¢  y1=f0o), y2=f0), ys=[ 02, ya=f(ya),...
Thus, successive termsin the sequence are related by the formulas

Yo=2¢, Yn+1l = f(yn) (I’l :Ov 17 27 3a)

These two formulas, taken together, comprise what is called a recursion formula for the iterated
function sequence. In general, arecursion formulaisany formulaor set of formulasthat provides
amethod for generating the terms of a sequence from the preceding terms and a seed value. For
example, therecursion formulafor theiterated function sequenceof f(x) = x?withseedvaluecis

Yo=C  Yur1=Y:

As another example, the recursion formula

1 p
Yo = i, Ynt+1 = E <yn + _) (1)

n

produces an iterated function sequence whose iterates can be used to approximate ,/p to any
degree of accuracy.

Exercise?2  Use (1) to approximate +/5 by generating successive iterates on a calculator until
you encounter two successive iterates that are the same. Compare this approximation of /5 to
that produced directly by your calculator.

Exercise 3
(a) Find iterates y; up to ye of the sequence that is generated by the recursion formula

Yo = 1, Yn+l = %yn
(b) By examiningthetermsgeneratedin part (a), find aformulathat expressesy,, asafunction of n.

Exercise4  Suppose that you deposit $1000 in a bank at 5% interest per year and allow it to
accumul ate value without making withdrawals.

(@) If y, denotesthe value of the account at the end of the nth year, how could you find the value
of y,1 if you knew the value of y,?

(b) Starting with yg = 1000 (dollars), use the result in part (a) to calculate y1, y2, y3, y4, and ys.
(¢) Find arecursion formulafor the sequence of yearly account values assuming that yo = 1000.

(d) Find aformulathat expresses y, asafunction of », and usethat formulato cal culate the value
of the account at the end of the 15th year.
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== Exploring Iterated Function Sequences
Iterated function sequences for a function f can be explored in various ways. Here are three
possihilities:
o Choose a specific seed value, and investigate the long-term behavior of the iterates (as in
Exercise 1).
o Let the seed value be avariable x (in which case the iterates become functions of x), and in-
vestigate what happensto the graphs of theiteratesas more and moreiterationsare performed.

« Chooseaspecificiterate, say the 10th, and investigate how the value of thisiterate varieswith
different seed values.

Exercise5  Let f(x) = V.
(a) Findformulasfor thefirst fiveiteratesin theiterated function sequencefor £, taking the seed
valueto be x.

(b) Graph theiteratesin part () in the same coordinate system, and make a conjecture about the
behavior of the graphs as more and more iterations are performed.

== Continued Fractions and Fibonacci Sequences
If f(x) = 1/x,andtheseed valueisx, thentheiterated function sequencefor f flip-flopsbetween
x and 1/x:

1 1 1 1

= —, :—:_)(f7 = —, :—:x’_..
Y1 : Y2 x Y3 : Ya 1x

However, if f(x) = 1/(x+1), thentheiterated function sequence becomes asequence of fractions
that, if continued indefinitely, is an example of a continued fraction:

1 1 1 1
1+x7 1 ’ 1 ’ 1 9ooo

+
1+x

Exercise6 Let f(x)=1/(x+1andc = 1.

(8 Find exact valuesfor thefirst 10 termsin the iterated function sequencefor f; that is, express
each term as afraction p/g with no common factors in the numerator and denominator.

(b) Write down the numerators from part (a) in sequence, and seeif you can discover how each
term after the first two is related to its predecessors. The sequence of numeratorsis caled a
Fibonacci sequence [in honor of its medieval discoverer Leonardo (“Fibonacci”) da Pisa).
Do some research on Fibonacci and his sequence, and write a paper on the subject.

(c) Use the pattern you discovered in part (b) to write down the exact values of the second 10
termsin the iterated function sequence.

(d) Find arecursion formulathat will generate all the terms in the Fibonacci sequence after the
first two.

(e) It can be proved that the termsin the iterated function sequence for f get closer and closer to
one of thetwo solutions of the equation ¢ = 1/(1+ ¢). Which solutionisit? Thissolutioniis
anumber known as the golden ratio. Do some research on the golden ratio, and write a paper
on the subject.

== Applications to Ecology
There are numerous model s for predicting the growth and decline of populations (flowers, plants,
people, animals, etc.). One way to model populationsisto give arecursion formulathat describes
how the number of individuals in each generation relates to the number of individuals in the
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preceding generation. One of the simplest such models, called the exponential model, assumes
that the number of individualsin each generation is afixed percentage of the number of individ-
uals in the preceding generation. Thus, if there are ¢ individuas initially and if the number of
individuals in any generation is r times the number of individuals in the preceding generation,
then the growth through successive generations is given by the recursion formula

Yo=2C, Yntl="rYn n=0123..)

Exercise7  Suppose that a population with an exponential growth model has ¢ individualsini-
tialy.

(8) Expresstheiterates yi, yo, y3, and y4 intermsof ¢ and r.

(b) Find aformulafor y, 1 intermsof ¢ and r.

(c) Describe the eventual fate of the populationif r = 1,7 <1, andr > 1.

There is a more sophisticated model of population growth, called the logistic model, that
takes environmental constraintsinto account. In thismodel, it is assumed that there is some max-
imum population that can be supported by the environment, and the population is expressed as
afraction of the maximum. Thus, in each generation the population is represented as a number
intheinterval 0 < y, < 1. When y, is near 0 the population has lots of room to grow, but when
v, isnear 1 the population is close to the maximum and the environmental factors tend to inhibit
further growth. Models of thistype are given by recursion formulas of the form

Yo=¢C, Ynt1 = kyn(l — Yu) (2)

inwhich k is a positive constant that depends on the ecological conditions.

Figure 1 illustrates a graphical method for tracking the growth of a population described by
(2). That figure, which is called a cobweb diagram, shows graphs of the line y = x and the curve
y =kx(1—x).

Exercise8  Explain why the values y;, y», and ys are the populations for the first three gener-
ations of the logistic growth model given by (2).

Exercise9  Thecobweb diagram in Figure 2 tracks the growth of a population with alogistical
growth model given by the recursion formula

yo=01, yu1=29y,(1—y)

(a) Find the populations yy, y,, ..., ys of thefirst five generations.
(b) What happens to the population over the long term?

Y, 0.8 -
0.7

Y3 0.6 -

Y1 05

0.4 -
03
02
0.1

c 1 0.1 1
Figure 1 Figure 2
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B Chaos and Fractals

Observe that (2) is arecursion formulafor the iterated function sequence of f(x) = kx(1 — x).
Iterated function sequences of this form are called iterated quadratic systems. These are impor-
tant not only in modeling populations but also in the study of chaos and fractals—two important
fields of contemporary research.

Module by: C. Lynn Kiaer, Rose-Hulman Institute of Technology
Howard Anton, Drexel University




