-
-
—
-—
—
—
-
—
-
-
-
—
-

LL L i Y] L]
LTI

EMBEDDED SYSTEMS:

REAL-TIME INTERFACING TO ARM®
CORTEXT™-M MICROCONTROLLERS

Volume 2
Fourth Edition,
July 2014

Jonathan W. Valvano
Fourth edition

2nd Printing

July 2014

ARM and uVision are registered trademarks of ARM Limited.
Cortex and Keil are trademarks of ARM Limited.

Stellaris and Tiva are registered trademarks Texas Instruments.
Code Composer Studio is a trademark of Texas Instruments.

All other product or service names mentioned herein are the trademarks of their respective
owners.

In order to reduce costs, this college textbook has been self-published. For
more information about my classes, my research, and my books, see
http://users.ece.utexas.edu/~valvano/

For corrections and comments, please contact me at:
valvano@mail.utexas.edu. Please cite this book as: J. W. Valvano, Embedded
Systems: Real-Time Interfacing to ARM ® Cortex™-M Microcontrollers,
http://users.ece.utexas.edu/~valvano/, ISBN: 978-1463590154, 2014.

Copyright © 2014 Jonathan W. Valvano

All rights reserved. No part of this work covered by the copyright herein may
be reproduced, transmitted, stored, or used in any form or by any means
graphic, electronic, or mechanical, including but not limited to photocopying,
recording, scanning, digitizing, taping, web distribution, information
networks, or information storage and retrieval, except as permitted under
Section 107 or 108 of the 1976 United States Copyright Act, without the prior
written permission of the publisher.

ISBN-13: 978-1463590154
ISBN-10: 1463590156

Table of Contents

Preface to Third Edition
Preface to Fourth Edition

Preface

Acknowledgements
1. Introduction to Embedded Systems

1.1. Computer Architecture
1.2. Embedded Systems

1.3. The Design Process
1.4. Digital Logic and Open Collector

1.5. Digital Representation of Numbers
1.6. Ethics

1.7. Exercises

1.8. L.ab Assignments

2. ARM Cortex-M Processor

2.1. Cortex™-M Architecture

2.2. Texas Instruments I.M3S and TM4C 1/0 pins
2.3. ARM __ Cortex™-M Assembly L.anguage
2.4. Parallel I/O ports

2.5. Phase-L.ock-L.oop

2.6. SysTick Timer

2.7. Choosing a Microcontroller

2.8. Exercises

2.9. Lab Assignments

3. Software Design
3.1. Attitude

3.2. Quality Programming

3.3. Software Style Guidelines
3.4. Modular Software

3.5. Finite State Machines

3.6. Threads

3.7. First In First Out Queue

3.8. Memory Management and the Heap
3.9. Introduction to Debugging

3.10. Exercises

3.11. L.ab Assignments
4. Hardware-Software Synchronization

4.1. Introduction

4.2, Timing

4.3. Petri Nets

4.4. Kahn Process Networks

4.5. Edge-triggered Interfacing
4.6. Configuring Digital Output Pins

4.7. Blind-cycle Interfacing
4.8. Busy-Wait Synchronization

4.9. UART Interface
4.10. Keyboard Interface

4.11. Exercises

4.12. L.ab Assignments

5. Interrupt Synchronization

5.1. Multithreading

5.2. Interthread Communication and Synchronization
5.3. Critical Sections

5.4. NVIC on the ARM _ Cortex-M Processor

5.5. Edge-triggered Interrupts
5.6. Interrupt-Driven UART

5.7. Periodic Interrupts using SysTick

5.8. Low-Power Design

5.9. Debugging Profile
5.10. Exercises

5.11. L.ab Assignments
6. Time Interfacing

6.1. Input Capture or Input Edge Time Mode
6.2. Output Compare or Periodic Timer

6.3. Pulse Width Modulation

6.4. Frequency Measurement

6.5. Binary Actuators

6.6. Integral Control of a DC Motor

6.7. Exercises

6.8. L.ab Assignments

7. Serial Interfacing

7.1. Introduction to Serial Communication

7.2. RS232 Interfacing

7.3. RS422/USB/RS423/RS485 Balanced Differential Lines

7.4. Logic Level Conversion

7.5. Synchronous Transmission and Receiving using the SSI

7.6. Inter-Integrated Circuit (I2C) Interface
7.7. Introduction to Universal Serial Bus (USB)

7.8. Exercises

7.9. Lab Assignments

8. Analog Interfacing

8.1. Resistors and Capacitors

8.2. Op Amps

8.3. Analog Filters

8.4. Digital to Analog Converters

8.5. Analog to Digital Converters

8.6. Exercises

8.7. L.ab Assignments

9. System-Level Design

9.1. Design for Manufacturability

9.2. Power

9.3 Tolerance

9.4. Design for Testability

9.5. Printed Circuit Board Layout and Enclosures

9.6. Exercises

9.7. Lab Assignments

10. Data Acquisition Systems
10.1. Introduction

10.2. Transducers

10.3. Discrete Calculus

10.4. Data Acquisition System Design
10.5. Analysis of Noise

10.6. Data Acquisition Case Studies

10.7. Exercises

10.8. L.ab Assignments

11. Introduction to Communication Systems
11.1. Fundamentals

11.2. Communication Systems Based on the UARTS
11.3. Wireless Communication

11.4. Internet of Things

11.5. Exercises

11.6. L.ab Assignments

Appendix 1. Glossary

Appendix 2. Solutions to Checkpoints

Index

Reference Material

Preface to Third Edition

There are a new features added to this third edition. The new development platform based
on the TM4C123 is called Tiva LaunchPad. Material in this book on the TM4C also
applies to the LM4F because Texas Instruments rebranded the LM4F series as TM4C
(same chips new name), and rebranded StellarisWare™ as TivaWare™. These new
microcontrollers run at 80 MHz, include single-precision floating point, have two 12-bit
ADCs, and support DMA and USB. A wonderful feature of these new boards is their low
cost. As of December 2013, the boards are available on TI.com as part number EK-
TM4C123GXL for $12.99. They are also available from $13 to $24 at regular electronics
retailers like arrow.com, newark.com, mouser.com, and digikey.com. The book can be
used with either a LM3S or TM4C microcontroller. Although this edition now focuses on
the M4, the concepts still apply to the M3, and the web site associated with this book has
example projects based on the LM3S811, LM351968, and LM3S8962.

Preface to Fourth Edition

This fourth edition includes the new TM4C1294-based LaunchPad. Most of the code in
the book is specific for the TM4C123-based LaunchPad. However, the book website
includes corresponding example projects for the LM3S811, LM3S1968, LM4F120, and
TM4C1294, which are ARM ® Cortex™-M microcontrollers from Texas Instruments.
There are now two lost-cost development platforms called Tiva LaunchPad. The EK-
TM4C123GXL LaunchPad retails for $12.99, and the EK-TM4C1294 XL Connected
LaunchPad retails for $19.99. The various LM3S, LM4F and TM4C microcontrollers are
quite similar, so this book along with the example code on the web can be used for any of
these microcontrollers. Compared to the TM4C123, the new TM4C1294 microcontroller
runs faster, has more RAM, has more ROM, includes Ethernet, and has more I/O pins.
This fourth edition switches the syntax from C to the industry-standard C99, adds a line-
tracking robot, designs an integral controller for a DC motor, and includes an expanded
section on wireless communication and Internet of Things.

Preface

Embedded systems are a ubiquitous component of our everyday lives. We interact with
hundreds of tiny computers every day that are embedded into our houses, our cars, our
toys, and our work. As our world has become more complex, so have the capabilities of
the microcontrollers embedded into our devices. The ARM ® Cortex™-M family
represents a new class of microcontrollers much more powerful than the devices available
ten years ago. The purpose of this book is to present the design methodology to train
young engineers to understand the basic building blocks that comprise devices like a cell
phone, an MP3 player, a pacemaker, antilock brakes, and an engine controller.

This book is the second in a series of three books that teach the fundamentals of embedded
systems as applied to the ARM ® Cortex™-M family of microcontrollers. The three
books are primarily written for undergraduate electrical and computer engineering
students. They could also be used for professionals learning the ARM platform. The first
book Embedded Systems: Introduction to ARM Cortex-M Microcontrollers is an
introduction to computers and interfacing focusing on assembly language and C
programming. This second book focuses on interfacing and the design of embedded
systems. The third book Embedded Systems: Real-Time Operating Systems for ARM
Cortex-M Microcontrollers is an advanced book focusing on operating systems, high-
speed interfacing, control systems, and robotics.

An embedded system is a system that performs a specific task and has a computer
embedded inside. A system is comprised of components and interfaces connected together
for a common purpose. This book presents components, interfaces and methodologies for
building systems. Specific topics include the architecture of microcontrollers, design
methodology, verification, hardware/software synchronization, interfacing devices to the
computer, timing diagrams, real-time operating systems, data collection and processing,
motor control, analog filters, digital filters, real-time signal processing, wireless
communication, and the internet of things.

In general, the area of embedded systems is an important and growing discipline within
electrical and computer engineering. The educational market of embedded systems has
been dominated by simple microcontrollers like the PIC, the 9S12, and the 8051. This is
because of their market share, low cost, and historical dominance. However, as problems
become more complex, so must the systems that solve them. A number of embedded
system paradigms must shift in order to accommodate this growth in complexity. First, the
number of calculations per second will increase from millions/sec to billions/sec.
Similarly, the number of lines of software code will also increase from thousands to
millions. Thirdly, systems will involve multiple microcontrollers supporting many
simultaneous operations. Lastly, the need for system verification will continue to grow as
these systems are deployed into safety critical applications. These changes are more than a
simple growth in size and bandwidth. These systems must employ parallel programming,
high-speed synchronization, real-time operating systems, fault tolerant design, priority
interrupt handling, and networking. Consequently, it will be important to provide our
students with these types of design experiences. The ARM platform is both low cost and
provides the high performance features required in future embedded systems. Although
the ARM market share is currently not huge, its share will grow. Furthermore, students

trained on the ARM will be equipped to design systems across the complete spectrum
from simple to complex. The purpose of writing these three books at this time is to bring
engineering education into the 21* century.

This book employs many approaches to learning. It will not include an exhaustive
recapitulation of the information in data sheets. First, it begins with basic fundamentals,
which allows the reader to solve new problems with new technology. Second, the book
presents many detailed design examples. These examples illustrate the process of design.
There are multiple structural components that assist learning. Checkpoints, with answers
in the back, are short easy to answer questions providing immediate feedback while
reading. Simple homework, with answers to the odd questions on the web, provides more
detailed learning opportunities. The book includes an index and a glossary so that
information can be searched. The most important learning experiences in a class like this
are of course the laboratories. Each chapter has suggested lab assignments. More detailed
lab descriptions are available on the web. Specifically, look at the lab assignments for
EE445L and EE445M.

There is a web site accompanying this book http://users.ece.utexas.edu/~valvano/arm.
Posted here are ARM Keil™ uVision® projects for each the example programs in the
book. Code Composer Studio™ versions are also available for most examples. You will
also find data sheets and Excel spreadsheets relevant to the material in this book.

These three books will cover embedded systems for ARM ® Cortex™-M
microcontrollers with specific details on the LM3S811, LM3S1968, LM3S8962,
LM4F120, TM4C123, and TM4C1294. Most of the topics can be run on the low-cost
TM4C123. Ethernet examples can be run on the LM3S8962 and TM4C1294. In these
books the terms LM3S and LM4F and TMA4C will refer to any of the Texas Instruments
ARM ® Cortex™-M based microcontrollers. Although the solutions are specific for the
L.M3S LMA4F and TMA4C families, it will be possible to use these books for other ARM
derivatives.

Acknowledgements

I owe a wonderful debt of gratitude to Daniel Valvano. He wrote and tested most of the
software examples found in this book. Secondly, he created and maintains the example
web site, http://users.ece.utexas.edu/~valvano/arm. Lastly, he meticulously proofread
this manuscript.

Many shared experiences contributed to the development of this book. First I would like to
acknowledge the many excellent teaching assistants I have had the pleasure of working
with. Some of these hard-working, underpaid warriors include Pankaj Bishnoi, Rajeev
Sethia, Adson da Rocha, Bao Hua, Raj Randeri, Santosh Jodh, Naresh Bhavaraju,
Ashutosh Kulkarni, Bryan Stiles, V. Krishnamurthy, Paul Johnson, Craig Kochis, Sean
Askew, George Panayi, Jeehyun Kim, Vikram Godbole, Andres Zambrano, Ann Meyer,
Hyunjin Shin, Anand Rajan, Anil Kottam, Chia-ling Wei, Jignesh Shah, Icaro Santos,
David Altman, Nachiket Kharalkar, Robin Tsang, Byung Geun Jun, John Porterfield,
Daniel Fernandez, Deepak Panwar, Jacob Egner, Sandy Hermawan, Usman Tarig,
Sterling Wei, Seil Oh, Antonius Keddis, Lev Shuhatovich, Glen Rhodes, Geoffrey Luke,
Karthik Sankar, Tim Van Ruitenbeek, Raffaele Cetrulo, Harshad Desai, Justin Capogna,
Arindam Goswami, Jungho Jo, Mehmet Basoglu, Kathryn Loeffler, Evgeni Krimer,
Nachiappan Valliappan, Razik Ahmed, Sundeep Korrapati, Song Zhang, Zahidul Haq,
Matthew Halpern, Cruz Monrreal II, Pohan Wu, Saugata Bhattacharyya, Omar Baca
Aditya Saraf, and Mahesh Srinivasan. These teaching assistants have contributed greatly
to the contents of this book and particularly to its laboratory assignments. Since 1981, I
estimate I have taught embedded systems to over 5000 students. My students have
recharged my energy each semester with their enthusiasm, dedication, and quest for
knowledge. I have decided not to acknowledge them all individually. However, they know
I feel privileged to have had this opportunity.

Next, I appreciate the patience and expertise of my fellow faculty members here at the
University of Texas at Austin. From a personal perspective Dr. John Pearce provided
much needed encouragement and support throughout my career. In addition, Drs. John
Cogdell, John Pearce, and Francis Bostick helped me with analog circuit design. The book
and accompanying software include many finite state machines derived from the digital
logic examples explained to me by Dr. Charles Roth. Over the last few years, I have
enjoyed teaching embedded systems with Drs. Ramesh Yerraballi, Mattan Erez, Andreas
Gerstlauer, Vijay Janapa Reddi, Nina Telang, and Bill Bard. Bill has contributed to both
the excitement and substance of our laboratory based on this book. With pushing from Bill
and TAs Robin, Glen, Lev, and John, we have added low power, PCB layout, systems
level design, surface mount soldering, and wireless communication to our lab experience.
You can see descriptions and photos of our EE445L design competition at
http://users.ece.utexas.edu/~valvano/. Many of the suggestions and corrections from
Chris Shore and Drew Barbier of ARM about Volume 1 applied equally to this volume.
Austin Blackstone created and debugged the Code Composer Studio™ versions of the
example programs posted on the web. Austin also taught me how to run the CC3000 and
CC3100 WiFi examples on the LaunchPad.

Sincerely, I appreciate the valuable lessons of character and commitment taught to me by
my parents and grandparents. I recall how hard my parents and grandparents worked to
make the world a better place for the next generation. Most significantly, I acknowledge
the love, patience and support of my wife, Barbara, and my children, Ben Daniel and Liz.
In particular, Dan designed and tested most of the LM3S and LM4F/TM4C software
presented in this book.

By the grace of God, I am truly the happiest man on the planet, because I am surrounded
by these fine people. Good luck.

Jonathan W. Valvano

The true engineering experience occurs not with your eyes and ears, but rather with
your fingers and elbows. In other words, engineering education does not happen by
listening in class or reading a book; rather it happens by designing under the
watchful eyes of a patient mentor. So, go build something today, then show it to
someone you respect!

1. Introduction to Embedded Systems

Chapter 1 objectives are to:

» Review computer architecture

* Introduce embedded systems

* Present a process for design

» Discuss practical aspects of digital logic, including open collector
* Review how numbers are represented in binary

* Define ethics

The overall objective of this book is to teach the design of embedded systems. It is
effective to learn new techniques by doing them. But, the dilemma in teaching a
laboratory-based topic like embedded systems is that there is a tremendous volume of
details that first must be learned before hardware and software systems can be designed.
The approach taken in this book is to learn by doing, starting with very simple problems
and building up to more complex systems later in the book.

In this chapter we begin by introducing some terminology and basic components of a
computer system. In order to understand the context of our designs, we will overview the
general characteristics of embedded systems. It is in these discussions that we develop a
feel for the range of possible embedded applications. Next we will present a template to
guide us in design. We begin a project with a requirements document. Embedded systems
interact with physical devices. Often, we can describe the physical world with
mathematical models. If a model is available, we can then use it to predict how the
embedded system will interface with the real world. When we write software, we
mistakenly think of it as one dimensional, because the code looks sequential on the
computer screen. Data flow graphs, call graphs, and flow charts are multidimensional
graphical tools to understand complex behaviors. Because courses taught using this book
typically have a lab component, we will review some practical aspects of digital logic.

Next, we show multiple ways to represent numbers in the computer. Choosing the correct
format is necessary to implement efficient and correct solutions. Fixed-point numbers are
the typical way embedded systems represent non-integer values. Floating-point numbers,
typically used to represent non-integer values on a general purpose computer, will also be
presented.

Because embedded systems can be employed in safety critical applications, it is important
for engineers be both effective and ethical. Throughout the book we will present ways to
verify the system is operating within specifications.

1.1. Computer Architecture

1.1.1. Computers, microprocessors, memory, and
microcontrollers

A computer combines a processor, random access memory (RAM), read only memory
(ROM), and input/output (I/O) ports. The common bus in Figure 1.1 defines the von
Neumann architecture, where instructions are fetched from ROM on the same bus as data
fetched from RAM. Software is an ordered sequence of very specific instructions that are
stored in memory, defining exactly what and when certain tasks are to be performed. The
processor executes the software by retrieving and interpreting these instructions one at a
time. A microprocessor is a small processor, where small refers to size (i.e., it fits in your
hand) and not computational ability. For example, Intel Xeon, AMD FX and Sun SPARC
are microprocessors. An ARM ® Cortex™-M microcontroller includes a processor
together with the bus and some peripherals. A microcomputer is a small computer, where
again small refers to size (i.e., you can carry it) and not computational ability. For
example, a desktop PC is a microcomputer.

Computer Bus

|

RAM i | draits devices

POTS [“|Exterrel[™ |Prysical [SI9HIs

3—Joupi — o Qup
_34 pots 3 — S90S
ROM .
[
ﬁd:fesslcmrd
Déata

Figure 1.1. The basic components of a computer system include processor,
memory and 1/0.

A very small microcomputer, called a microcontroller, contains all the components of a
computer (processor, memory, I/O) on a single chip. As shown in Figure 1.2, the Atmel
ATtiny, the Texas Instruments MSP430, and the Texas Instruments TM4C123 are
examples of microcontrollers. Because a microcomputer is a small computer, this term
can be confusing because it is used to describe a wide range of systems from a 6-pin
ATtiny4 running at 1 MHz with 512 bytes of program memory to a personal computer
with state-of-the-art 64-bit multi-core processor running at multi-GHz speeds having
terabytes of storage.

The computer can store information in RAM by writing to it, or it can retrieve previously
stored data by reading from it. Most RAMs are volatile; meaning if power is interrupted
and restored the information in the RAM is lost. Most microcontrollers have static RAM
(SRAM) using six metal-oxide-semiconductor field-effect transistors (MOSFET) to create
each memory bit. Four transistors are used to create two cross-coupled inverters that store
the binary information, and the other two are used to read and write the bit.

R

EJ

HH A O =

O =

ATtiny MF%E?EBD =]
b | 10mm

HHH Flash 2048 btes] ==

S o RAM 128 by fes =

Flash256kibibtes B2

Fashszbees QHOHHHH RAM i‘?‘hbb}é ==

RAM T2 by fes e > - ~

Figure 1.2. A microcontroller is a complete computer on a single chip.

Information is programmed into ROM using techniques more complicated than writing to
RAM. From a programming viewpoint, retrieving data from a ROM is identical to
retrieving data from RAM. ROMs are nonvolatile; meaning if power is interrupted and
restored the information in the ROM is retained. Some ROMs are programmed at the
factory and can never be changed. A Programmable ROM (PROM) can be erased and
reprogrammed by the user, but the erase/program sequence is typically 10000 times
slower than the time to write data into a RAM. PROMs used to need ultraviolet light to
erase, and then we programmed them with voltages. Now, most PROMs now are
electrically erasable (EEPROM), which means they can be both erased and programmed
with voltages. We cannot program ones into the ROM. We first erase the ROM, which
puts ones into its storage memory, and then we program the zeros as needed. Flash ROM
is a popular type of EEPROM. Each flash bit requires only two MOSFET transistors. The
input (gate) of one transistor is electrically isolated, so if we trap charge on this input, it
will remain there for years. The other transistor is used to read the bit by sensing whether
or not the other transistor has trapped charge. In regular EEPROM, you can erase and
program individual bytes. Flash ROM must be erased in large blocks. On many of
LM3S/LM4F/TM4C microcontrollers, we can erase the entire ROM or just a 1024-byte
block. Because flash is smaller than regular EEPROM, most microcontrollers have a large
flash into which we store the software. For all the systems in this book, we will store
instructions and constants in flash ROM and place variables and temporary data in static
RAM.

Checkpoint 1.1: What are the differences between a microcomputer, a microprocessor
and a microcontroller?

Checkpoint 1.2: Which has a higher information density on the chip in bits per mm?:
static RAM or flash ROM? Assume all MOSFETs are approximately the same size in

mm?.

Observation: Memory is an object that can transport information across time.

The external devices attached to the microcontroller provide functionality for the system.
An input port is hardware on the microcontroller that allows information about the
external world to be entered into the computer. The microcontroller also has hardware
called an output port to send information out to the external world. Most of the pins
shown in Figure 1.2 are input/output ports.

An interface is defined as the collection of the I/O port, external electronics, physical
devices, and the software, which combine to allow the computer to communicate with the
external world. An example of an input interface is a switch, where the operator toggles
the switch, and the software can recognize the switch position. An example of an output
interface is a light-emitting diode (LED), where the software can turn the light on and off,
and the operator can see whether or not the light is shining. There is a wide range of
possible inputs and outputs, which can exist in either digital or analog form. In general, we
can classify I/0 interfaces into four categories

Parallel - binary data are available simultaneously on a group of lines
Serial - binary data are available one bit at a time on a single line
Analog - data are encoded as an electrical voltage, current, or power

Time - data are encoded as a period, frequency, pulse width, or phase shift

Checkpoint 1.3: What are the differences between an input port and an input interface?
Checkpoint 1.4: List three input interfaces available on a personal computer.
Checkpoint 1.5: List three output interfaces available on a personal computer.

In this book, numbers that start with 0x (e.g., 0x64) are specified in hexadecimal, which
is base 16 (0x64 = 6*16'+4*16° = 100). Some assemblers start hexadecimal numbers with
$ (e.g., $64). Other assembly languages add an “H” at the end to specify hexadecimal
(e.g., 64H or 64h). Yale Patt’s LC3 assembler uses just the “x” (e.g., x64).

In a system with memory mapped 1/0, as shown in Figure 1.1, the I/O ports are
connected to the processor in a manner similar to memory. I/O ports are assigned
addresses, and the software accesses I/0O using reads and writes to the specific /O
addresses. The software inputs from an input port using the same instructions as it would
if it were reading from memory. Similarly, the software outputs from an output port using
the same instructions as it would if it were writing to memory. A bus is defined as a
collection of signals, which are grouped for a common purpose. The bus has three types of
signals: address signals, data signals, and control signals. Together, the bus directs the
data transfer between the various modules in the computer. There are five buses on

ARM ® Cortex™-M processor, as illustrated in Figure 1.3. The address specifies which
module is being accessed, and the data contains the information being transferred. The
control signals specify the direction of transfer, the size of the data, and timing
information. The ICode bus is used to fetch instructions from flash ROM. All ICode bus
fetches contain 32 bits of data, which may be one or two instructions. The DCode bus can
fetch data or debug information from flash ROM. The system bus can read/write data
from RAM or I/O ports. The private peripheral bus (PPB) can access some of the

common peripherals like the interrupt controller. The multiple-bus architecture allows
simultaneous bus activity, greatly improving performance over single-bus architectures.
For example, the processor can simultaneously fetch an instruction out of flash ROM
using the ICode bus while it writes data into RAM using the system bus. From a software
development perspective, the fact that there are multiple buses is transparent. This means
we write code like we would on any computer, and the parallel operations occur
automatically. The TM4C123 has 256 kibibytes (22 bytes) of flash ROM and 32768 bytes
of RAM. The TM4C1294 has 1024 kibibytes (2?° bytes) of flash ROM and 256 kibibytes
of RAM. The RAM begins at 0x2000.0000, and the flash ROM begins at 0x0000.0000.

T™M4C123 TM4C1294
0x0000.0000 256k 0x0000.0000 1024k
Flash Flash
0x0003.FFFF ROM 0x000F.FFFF ROM
0x2000.0000 32k 0x2000.0000 256k
Static Static
0x2000.7FFF RAM 0x2003.FFFF RAM
Microcorrder Systembus
ARM ECortex™ —I 1
processor i TR —
F‘F‘B:: :: :: W) T . p:rts E
Irjta’nd i ﬁg
peripherd s Highperf | |] Oupit |2
B * pots [~
o> Iremudions =2 i
x 13 Flash ROM o Daa
|Cock bus DCoce bus|_ RAM

Figure 1.3. Harvard architecture of an ARM ® Cortex -M-based
microcontroller.

The Cortex™-M4 series includes an additional bus called the Advanced High-
Performance Bus (AHB or AHPB). This bus improves performance when communicating

with high-speed 1I/0 devices like USB. In general, the more operations that can be
performed in parallel, the faster the processor will execute. In summary:

ICode bus Fetch opcodes from ROM

DCode bus Read constant data from ROM

System bus Read/write data from RAM or /O, fetch opcode from RAM
PPB Read/write data from internal peripherals like the NVIC
AHB Read/write data from high-speed 1/0O and parallel ports (M4 only)

Instructions and data are accessed the same way on a von Neumann machine. The
Cortex™-M processor is a Harvard architecture because instructions are fetched on the
ICode bus and data accessed on the system bus. The address signals on the ARM ®
Cortex™-M processor include 32 lines, which together specify the memory address
(0x0000.0000 to OxFFFF.FFFF) that is currently being accessed. The address specifies
both which module (input, output, RAM, or ROM) as well as which cell within the
module will communicate with the processor. The data signals contain the information that
is being transferred and also include 32 bits. However, on the system bus it can also
transfer 8-bit or 16-bit data. The control signals specify the timing, the size, and the
direction of the transfer. We call a complete data transfer a bus cycle. Two types of
transfers are allowed, as shown in Table 1.1. In most systems, the processor always
controls the address (where to access), the direction (read or write), and the control (when
to access.)

Type Address Driven | Data Driven by | Transfer
by
Read Cycle Processor RAM, ROM or | Data copied to
Input processor
Write Cycle Processor Processor Data copied to output
or RAM

Table 1.1. Simple computers generate two types of bus cycles.

A read cycle is used to transfer data into the processor. During a read cycle the processor
first places the address on the address signals, and then the processor issues a read
command on the control signals. The slave module (RAM, ROM, or I/0O) will respond by
placing the contents at that address on the data signals, and lastly the processor will accept
the data and disable the read command.

The processor uses a write cycle to store data into memory or I/O. During a write cycle
the processor also begins by placing the address on the address signals. Next, the
processor places the information it wishes to store on the data signals, and then the
processor issues a write command on the control signals. The memory or I/0O will respond
by storing the information into the proper place, and after the processor is sure the data has
been captured, it will disable the write command.

The bandwidth of an I/O interface is the number of bytes/sec that can be transferred. If
we wish to transfer data from an input device into RAM, the software must first transfer
the data from input to the processor, then from the processor into RAM. On the ARM, it
will take multiple instructions to perform this transfer. The bandwidth depends both on the
speed of the I/O hardware and the software performing the transfer. In some
microcontrollers like the TM4C123 and TM4C1294, we will be able to transfer data
directly from input to RAM or RAM to output using direct memory access (DMA). When
using DMA the software time is removed, so the bandwidth only depends on the speed of
the I/O hardware. Because DMA is faster, we will use this method to interface high
bandwidth devices like disks and networks. During a DMA read cycle data flows directly
from the memory to the output device. General purpose computers also support DMA
allowing data to be transferred from memory to memory. During a DMA write cycle data
flows directly from the input device to memory.

Input/output devices are important in all computers, but they are especially significant in
an embedded system. In a computer system with I/O-mapped I/0, the control bus signals
that activate the I/O are separate from those that activate the memory devices. These
systems have a separate address space and separate instructions to access the I/O devices.
The original Intel 8086 had four control bus signals MEMR, MEMW, IOR, and IOW.
MEMR and MEMW were used to read and write memory, while IOR and IOW were used
to read and write I/O. The Intel x86 refers to any of the processors that Intel has developed
based on this original architecture. Even though we do not consider the personal computer
(PC) an embedded system, there are embedded systems developed on this architecture.
One such platform is called the PC/104 Embedded-PC. The Intel x86 processors continue
to implement this separation betweenmemory and I/O. Rather than use the regular
memory access instructions, the Intel x86 processor uses special in and out instructions to
access the I/0 devices. The advantages of I/O-mapped I/O are that software can not
inadvertently access I/0 when it thinks it is accessing memory. In other words, it protects
I/O devices from common software bugs, such as bad pointers, stack overflow, and buffer
overflows. In contrast, systems with memory-mapped I/O are easier to design, and the
software is easier to write.

1.1.2. Cortex™-M processor

The ARM ® Cortex™-M processor has four major components, as illustrated in Figure
1.4. There are four bus interface units (BIU) that read data from the bus during a read
cycle and write data onto the bus during a write cycle. Both the TM4C123 and TM4C1294
microcontrollers support DMA. The BIU always drives the address bus and the control
signals of the bus. The effective address register (EAR) contains the memory address
used to fetch the data needed for the current instruction. Cortex™-M microcontrollers
executeThumb ® instructions extended with Thumb-2 technology. An overview of these
instructions will be presented in Chapter 2. The Cortex™-M4F microcontrollers include a
floating-point processor. However, in this book we will focus on integer and fixed-point
arithmetic.

Processor I - |[Code b
Becjdas i 4 [e— DCodebus
e;:m Bisintaface Lnit s S
=1 ~— Private peripherd bus
R2 Cotraunit] [ALu b > Advanced Hi g parformence bus
7

Figure 1.4. The four basic components of a processor.

The control unit (CU) orchestrates the sequence of operations in the processor. The CU
issues commands to the other three components. The instruction register (IR) contains
the operation code (or op code) for the current instruction. When extended with Thumb-2
technology, op codes are either 16 or 32 bits wide. In an embedded system the software is
converted to machine code, which is a list of instructions, and stored in nonvolatile flash
ROM. As instructions are fetched, they are placed in a pipeline. This allows instruction
fetching to run ahead of execution. Instructions are fetched in order and executed in order.
However, it can execute one instruction while fetching the next.

The registers are high-speed storage devices located in the processor (e.g., RO to R15).
Registers do not have addresses like regular memory, but rather they have specific
functions explicitly defined by the instruction. Registers can contain data or addresses.
The program counter (PC) points to the memory containing the instruction to execute
next. On the ARM ® Cortex™-M processor, the PC is register 15 (R15). In an embedded
system, the PC usually points into nonvolatile memory like flash ROM. The information
stored in nonvolatile memory (e.g., the instructions) is not lost when power is removed.
The stack pointer (SP) points to the RAM, and defines the top of the stack. The stack
implements last in first out (LIFO) storage. On the ARM ® Cortex™-M processor, the SP
is register 13 (R13). The stack is an extremely important component of software
development, which can be used to pass parameters, save temporary information, and
implement local variables. The program status register (PSR) contains the status of the
previous operation, as well as some operating mode flags such as the interrupt enable bit.
This register is called the flag register on the Intel computers.

The arithmetic logic unit (ALU) performs arithmetic and logic operations. Addition,
subtraction, multiplication and division are examples of arithmetic operations. And, or,
exclusive or, and shift are examples of logical operations.

Checkpoint 1.6: For what do the acronyms CU DMA BIU ALU stand?

In general, the execution of an instruction goes through four phases. First, the computer
fetches the machine code for the instruction by reading the value in memory pointed to by
the program counter (PC). Some instructions are 16 bits, while others are 32 bits. After
each instruction is fetched, the PC is incremented to the next instruction. At this time, the
instruction is decoded, and the effective address is determined (EAR). Many instructions
require additional data, and during phase 2 the data is retrieved from memory at the
effective address. Next, the actual function for this instruction is performed. During the
last phase, the results are written back to memory. All instructions have a phase 1, but the
other three phases may or may not occur for any specific instruction.

On the ARM ® Cortex™-M processor, an instruction may read memory or write memory,
but it does not both read and write memory in the same instruction. Each of the phases
may require one or more bus cycles to complete. Each bus cycle reads or writes one piece
of data. Because of the multiple bus architecture, most instructions execute in one or two
cycles. For more information on the time to execute instructions, see Table 3.1 in the
Cortex™-M Technical Reference Manual. ARM is a reduced instruction set computer
(RISC), which achieves high performance by implementing very simple instructions that
run extremely fast.

Phase Function Bus Address | Comment
1 Instruction Read PC++ Put into IR
fetch

2 Data read Read |EAR Data passes through
ALU

3 Operation - - ALU operations, set
PSR

4 Data store Write | EAR Results stored in
memory

Table 1.2. Four phases of execution.

An instruction on a RISC processor does not have both a phase 2 data read cycle and a
phase 4 data write cycle. In general, a RISC processor has a small number of instructions,
instructions have fixed lengths, instructions execute in 1 or 2 bus cycles, there are only a
few instructions (e.g., load and store) that can access memory, no one instruction can both
read and write memory in the same instruction, there are many identical general purpose
registers, and there are a limited number of addressing modes.

Conversely, processors are classified as complex instruction set computers (CISC),
because one instruction is capable of performing multiple memory operations. For
example, CISC processors have instructions that can both read and write memory in the
same instruction. Assume Data is an 8-bit memory variable. The following Intel 8080
instruction will increment the 8-bit variable, requiring a read memory cycle, ALU
operation, and then a write memory cycle.

INR Data ; Intel 8080

Other CISC processors like the 6800, 9512, 8051, and Pentium also have memory
increment instructions requiring both a phase 2 data read cycle and a phase 4 data write
cycle. In general, a CISC processor has a large number of instructions, instructions have
varying lengths, instructions execute in varying times, there are many instructions that can
access memory, the processor can both read and write memory in one instruction, the
processor has fewer and more specialized registers, and the processor has many addressing
modes.

1.1.3. History

In 1968, two unhappy engineers named Bob Noyce and Gordon Moore left the Fairchild
Semiconductor Company and created their own company, which they called Integrated
Electronics (Intel). Working for Intel in 1971, Federico Faggin, Ted Hoff, and Stan Mazor
invented the first single chip microprocessor, the Intel 4004. It was a four-bit processor
designed to solve a very specific application for a Japanese company called Busicon.
Busicon backed out of the purchase, so Intel decided to market it as a “general purpose”
microprocessing system. The product was a success, which lead to a series of more
powerful microprocessors: the Intel 8008 in 1974, the Intel 8080 also in 1974. Both the
Intel 8008 and the Intel 8080 were 8-bit microprocessors that operated from a single +5V
power supply using N-channel metal-oxide semiconductor (NMOS) technology.

Seeing the long term potential for this technology, Motorola released its MC6800 in 1974,
which was also an 8-bit processor with about the same capabilities of the 8080. Although
similar in computing power, the 8080 and 6800 had very different architectures. The 8080
used isolated I/0 and handled addresses in a fundamentally different way than data.
Isolated I/0O defines special hardware signals and special instructions for input/output. On
the 8080, certain registers had capabilities designed for addressing, while other registers
had capabilities for specific for data manipulation. In contrast, the 6800 used memory-
mapped I/O and handled addresses and data in a similar way. As we defined earlier,
input/output on a system with memory-mapped I/O is performed in a manner similar to
accessing memory.

During the 1980s and 1990s, Motorola and Intel traveled down similar paths. The
microprocessor families from both companies developed bigger and faster products: Intel
8085, 8088, 80x86, ... and the Motorola 6809, 68000, 680x0... During the early 1980’s
another technology emerged, the microcontroller. In sharp contrast to the microprocessor
family, which optimized computational speed and memory size at the expense of power
and physical size, the microcontroller devices minimized power consumption and physical
size, striving for only modest increases in computational speed and memory size. Out of
the Intel architecture came the 8051 family (www.semiconductors.philips.com), and out of
the Motorola architecture came the 6805, 6811, and 6812 microcontroller family
(www.freescale.com). Many of the same fundamental differences that existed between the
original 8-bit Intel 8080 and Motorola 6800 have persisted over forty years of
microprocessor and microcontroller developments. In 1999, Motorola shipped its 2
billionth MC68HCO05 microcontroller. In 2004, Motorola spun off its microcontroller
products as Freescale Semiconductor. Microchip is a leading supplier of 8-bit
microcontrollers.

The first ARM processor was conceived in the 1983 by Acorn Computers, which at the
time was one of the leaders of business computers in the United Kingdom. The first chips
were delivered in 1985. At that time ARM referred to Acorn RISC Machine. In 1990, a
new company ARM Ltd was formed with Acorn, Apple, and VLSI Technology as
founding partners, changing the ARM acronym to Advanced RISC Machine. As a
company, the ARM business model involves the designing and licensing of intellectual
property (IP) rather than the manufacturing and selling of actual semiconductor chips.
ARM has sold 600 processor licenses to more than 200 companies. Virtually every
company that manufacturers integrated circuits in the computer field produces a variant of
the ARM processor. ARM currently dominates the high-performance low-power
embedded system market. ARM processors account for approximately 90% of all
embedded 32-bit RISC processors and are used in consumer electronics, including PDAs,
cell phones, music players, hand-held game consoles, and calculators. The ARM Cortex-A
is used in applications processors, such as smartphones. The ARM Cortex-R is appropriate
for real-time applications, and ARM Cortex-M targets microcontrollers. Examples of
microcontrollers built using the ARM ® Cortex™-M core are LM3S/TM4C by Texas
Instruments, STM32 by STMicroelectronics, LPC17xx by NXP Semiconductors,
TMPM330 by Toshiba, EM3xx by Ember, AT91SAM3 by Atmel, and EFM32 by Energy
Micro. As of June 2014 over 50 billion ARM processors have shipped from over 950
companies.

What will the future unfold? One way to predict the future is to study the past. How
embedded systems interact with humans has been and will continue to be critical.
Improving the human experience has been the goal of many systems. Many predict the
number of microcontrollers will soon reach into the trillions. As this happens,
communication, security, energy, politics, resources, and economics will be become
increasingly important. When there are this many computers, it will be possible to make
guesses about how to change, then let a process like evolution select which changes are
beneficial. In fact, a network of embedded systems with tight coupling to the real world,
linked together for a common objective, is now being called a cyber-physical system
(CPS).

One constant describing the history of computers is continuous change coupled with
periodic monumental changes. Therefore, engineers must focus their education on
fundamental principles rather than the voluminous details. They must embrace the concept
of lifelong learning. Most humans are fundamentally good, but some are not. Therefore,
engineers acting in an ethical manner can guarantee future prosperity of the entire planet.

1.2. Embedded Systems

An embedded system is an electronic system that includes a one or more microcontrollers
that is configured to perform a specific dedicated application, drawn previously as Figure
1.1. To better understand the expression “embedded system,” consider each word
separately. In this context, the word embedded means “a computer is hidden inside so one
can’t see it.” The word “system” refers to the fact that there are many components which
act in concert achieving the common goal. As mentioned earlier, input/output devices
characterize the embedded system, allowing it to interact with the real world.

The software that controls the system is programmed or fixed into flash ROM and is not
accessible to the user of the device. Even so, software maintenance is still extremely
important. Software maintenance is verification of proper operation, updates, fixing bugs,
adding features, and extending to new applications and end user configurations.
Embedded systems have these four characteristics.

First, embedded systems typically perform a single function. Consequently, they solve a
limited range of problems. For example, the embedded system in a microwave oven may
be reconfigured to control different versions of the oven within a similar product line. But,
a microwave oven will always be a microwave oven, and you can’t reprogram it to be a
dishwasher. Embedded systems are unique because of the microcontroller’s I/O ports to
which the external devices are interfaced. This allows the system to interact with the real
world.

Second, embedded systems are tightly constrained. Typically, system must operate within
very specific performance parameters. If an embedded system cannot operate with
specifications, it is considered a failure and will not be sold. For example, a cell-phone
carrier typically gets 832 radio frequencies to use in a city, a hand-held video game must
cost less than $50, an automotive cruise control system must operate the vehicle within 3
mph of the set-point speed, and a portable MP3 player must operate for 12 hours on one
battery charge.

Third, many embedded systems must operate in real-time. In a real-time system, we can
put an upper bound on the time required to perform the input-calculation-output sequence.
A real-time system can guarantee a worst case upper bound on the response time between
when the new input information becomes available and when that information is
processed. Another real-time requirement that exists in many embedded systems is the
execution of periodic tasks. A periodic task is one that must be performed at equal time
intervals. A real-time system can put a small and bounded limit on the time error between
when a task should be run and when it is actually run. Because of the real-time nature of
these systems, microcontrollers in the TM4C family have a rich set of features to handle
all aspects of time.

The fourth characteristic of embedded systems is their small memory requirements as
compared to general purpose computers. There are exceptions to this rule, such as those
which process video or audio, but most have memory requirements measured in thousands
of bytes. Over the years, the memory in embedded systems as increased, but the gap
memory size between embedded systems and general purpose computers remains. The
original microcontrollers had thousands of bytes of memory and the PC had millions.
Now, microcontrollers can have millions of bytes, but the PC has billions.

There have been two trends in the microcontroller field. The first trend is to make
microcontrollers smaller, cheaper, and lower power. The Atmel ATtiny, Microchip PIC,
and Texas Instruments MSP430 families are good examples of this trend. Size, cost, and
power are critical factors for high-volume products, where the products are often
disposable. On the other end of the spectrum is the trend of larger RAM and ROM, faster
processing, and increasing integration of complex I/O devices, such as Ethernet, radio,
graphics, and audio. It is common for one device to have multiple microcontrollers, where
the operational tasks are distributed and the microcontrollers are connected in a local area
network (LAN). These high-end features are critical for consumer electronics, medical
devices, automotive controllers, and military hardware, where performance and reliability
are more important than cost. However, small size and low power continue as important
features for all embedded systems.

The RAM is volatile memory, meaning its information is lost when power is removed. On
some embedded systems a battery powers the microcontroller. When in the off mode, the
microcontroller goes into low-power sleep mode, which means the information in RAM is
maintained, but the processor is not executing. The MSP430 and ATtiny require less than
a A of current in sleep mode.

Checkpoint 1.7: What is an embedded system?
Checkpoint 1.8: What goes in the RAM on a smartphone?
Checkpoint 1.9: Why does your smartphone need so much flash ROM?

The computer engineer has many design choices to make when building a real-time
embedded system. Often, defining the problem, specifying the objectives, and identifying
the constraints are harder than actual implementations. In this book, we will develop
computer engineering design processes by introducing fundamental methodologies for
problem specification, prototyping, testing, and performance evaluation.

A typical automobile now contains an average of ten microcontrollers. In fact, upscale
homes may contain as many as 150 microcontrollers and the average consumer now
interacts with microcontrollers up to 300 times a day. The general areas that employ
embedded systems encompass every field of engineering:

* Consumer Electronics * Home
e Communications Automotive
* Military * Industrial

* Business * Shipping

* Medical « Computer components

In general, embedded systems have inputs, perform calculations, make decisions, and then
produce outputs. The microcontrollers often must communicate with each other. How the
system interacts with humans is often called the human-computer interface (HCI) or
man-machine interface (MMI). To get a sense of what “embedded system” means we
will present brief descriptions of four example systems.

Example 1.1: The goal of a pacemaker is to regulate and improve heart function. To be
successful the engineer must understand how the heart works and how disease states cause
the heart to fail. Its inputs are sensors on the heart to detect electrical activity, and its
outputs can deliver electrical pulses to stimulate the heart. Consider a simple pacemaker
with two sensors, one in the right atrium and the other in the right ventricle. The sensor
allows the pacemaker to know if the normal heart contraction is occurring. This
pacemaker has one right ventricular stimulation output. The embedded system analyzes
the status of the heart deciding where and when to send simulation pulses. If the
pacemaker recognizes the normal behavior of atrial contraction followed shortly by
ventricular contraction, then it will not stimulate. If the pacemaker recognizes atrial
contraction without a following ventricular contraction, then is will pace the ventricle
shortly after each atrial contraction. If the pacemaker senses no contractions or if the
contractions are too slow, then it can pace the ventricle at a regular rate. A pacemaker can
also communicate via radio with the doctor to download past performance and optimize
parameters for future operation. Some pacemakers can call the doctor on the phone when
it senses a critical problem. Pacemakers are real-time systems because the time delay
between atrial sensing and ventricular triggering is critical. Low power and reliability are
important.

Example 1.2: The goal of a smoke detector is to warn people in the event of a fire. It has
two inputs. One is a chemical sensor that detects the presence of smoke, and the other is a
button that the operator can push to test the battery. There are also two outputs: an LED
and the alarm. Most of the time, the detector is in a low-power sleep mode. If the test
button is pushed, the detector performs a self-diagnostic and issues a short sound if the
sensor and battery are ok. Once every 30 seconds, it wakes up and checks to see if it
senses smoke. If it senses smoke, it will alarm. Otherwise it goes back to sleep.

Advanced smoke detectors should be able to communicate with other devices in the home.
If one sensor detects smoke, all alarms should sound. If multiple detectors in the house
collectively agree there is really a fire, they could communicate with the fire department
and with the neighboring houses. To design and deploy a collection of detectors, the
engineer must understand how fires start and how they spread. Smoke detectors are not
real-time systems. However, reliability and low power are important.

Example 1.3: The goal of a motor controller is to cause a motor to spin in a desired
manner. Sometimes we control speed, as in the cruise control on an automobile.
Sometimes we control position as in moving paper through a printer. In a complex
robotics system, we may need to simultaneously control multiple motors and multiple
parameters such as position, speed, and torque. Torque control is important for building a
robot that walks. The engineer must understand the mechanics of how the motor interacts
with its world and the behavior of the interface electronics. The motor controller uses
sensors to measure the current state of the motor, such as position, speed, and torque. The
controller accepts input commands defining the desired operation. The system uses
actuators, which are outputs that affect the motor. A typical actuator allows the system to
set the electrical power delivered to the motor. Periodically, the microcontroller senses the
inputs and calculates the power needed to minimize the difference between measured and
desired parameters. This needed power is output to the actuator. Motor controllers are real-
time systems, because performance depends greatly on when and how fast the controller
software runs. Accuracy, stability, and time are important.

Example 1.4: The goal of a traffic controller is to minimize waiting time and to save
energy. The engineer must understand the civil engineering of how city streets are laid out
and the behavior of human drivers as they interact with traffic lights and other drivers. The
controller uses sensors to know the number of cars traveling on each segment of road.
Pedestrians can also push walk buttons. The controller will accept input commands from
the fire or police department to handle emergencies. The outputs are the traffic lights at
each intersection. The controller collects sensor inputs and calculates the traffic pattern
needed to minimize waiting time, while maintaining safety. Traffic controllers are not real-
time systems, because human safety is not sacrificed if a request is delayed. In contrast, an
air traffic controller must run in real time, because safety is compromised if a response to
a request is delayed. The system must be able to operate under extreme conditions such as
rain, snow, freezing temperature, and power outages. Computational speed and
sensor/light reliability are important.

Checkpoint 1.10: There is a microcontroller embedded in an alarm clock. List three
operations the software must perform.

When designing embedded systems we need to know how to interface a wide range of
signals that can exist in digital, analog, or time formats.

Table 1.3 lists example products and the functions performed by their embedded systems.
The microcontroller accepts inputs, performs calculations, and generates outputs.

Functions performed by the microcontroller

Consumer/Home:

Washing machine
and energy

Exercise equipment

Remote controls

how to interact with user

Clocks and watches
Games and toys
Audio/video

Controls the water and spin cycles, saving water

Measures speed, distance, calories, heart rate

Accepts key touches, sends infrared pulses, learns

Maintains the time, alarm, and display
Entertains the user, joystick input, video output

Interacts with the operator, enhances

performance with sounds and pictures

Set-back thermostats
Communication:

Answering machines
messages

Telephone system

Cellular phones
speaker

Satellites
Automotive:
Automatic braking
Noise cancellation
Theft deterrent devices
Electronic ignition
Windows and seats
Instrumentation
Military:
Smart weapons
Missile guidance

Global positioning

Adjusts day/night thresholds saving energy

Plays outgoing messages and saves incoming

Switches signals and retrieves information

Interacts with key pad, microphone, and

Sends and receives messages

Optimizes stopping on slippery surfaces
Improves sound quality, removing noise
Allows keyless entry, controls alarm
Controls sparks and fuel injectors
Remembers preferred settings for each driver

Collects and provides necessary information

Recognizes friendly targets
Directs ordnance at the desired target

Determines where you are on the planet, suggests

paths, coordinates troops
Surveillance Collects information about enemy activities

Industrial/Business/Shipping:

Point-of-sale systems Accepts inputs and manages money, keeps
credit information secure

Temperature control Adjusts heating and cooling to maintain
temperature

Robot systems Inputs from sensors, controls the motors
improving productivity

Inventory systems Reads and prints labels, maximizing profit,
minimizing shipping delay

Automatic sprinklers Controls the wetness of the soil maximizing
plant growth
Medical:

Infant apnea monitors Detects breathing, alarms if stopped

Cardiac monitors Measures heart function, alarms if problem

Cancer treatments Controls doses of radiation, drugs, or heat

Prosthetic devices Increases mobility for the handicapped

Medical records Collect, organize, and present medical information

Computer Components:

Mouse Translates hand movements into commands
for the main computer

USB flash drive Facilitates the storage and retrieval of information

Keyboard Accepts key strokes, decodes them, and transmits
to the main computer

Table 1.3. Products involving embedded systems.

In contrast, a general-purpose computer system typically has a keyboard, disk, and
graphics display and can be programmed for a wide variety of purposes. Typical general-
purpose applications include word processing, electronic mail, business accounting,
scientific computing, cloud computing, and web servers. General-purpose computers have
the opposite of the four characteristics listed above. First, they can perform a wide and
dynamic range of functions. Because the general-purpose computer has a removable disk
or network interface, new programs can easily be added to the system. The user of a
general-purpose computer does have access to the software that controls the machine. In
other words, the user decides which operating system to run and which applications to
launch. Second, they are loosely constrained. For example, the Java machine used by a
web browser will operate on an extremely wide range of computer platforms. Third,
general-purpose machines do not run in real-time. Yes, we would like the time to print a
page on the printer to be fast, and we would like a web page to load quickly, but there are
no guaranteed response times for these types of activities. In fact, the real-time tasks that
do exist (such as sound recording, burning CD, and graphics) are actually performed by
embedded systems built into the system. Fourth, general purpose computers employ
billions, if not trillions of memory cells.

The most common type of general-purpose computer is the personal computer, which is
based on the x86 architecture (below $3,000). Computers more powerful than the personal
computer can be grouped in the workstation ($3,000 to $50,000 range) or the
supercomputer categories (above $50,000). See the web site www.top500.org for a list of
the fastest computers on the planet. These computers often employ multiple processors
and have much more memory than the typical personal computer. The workstations and
supercomputers are used for handling large amounts of information (business
applications), running large simulations (weather forecasting), searching
(www.google.com), or performing large calculations (scientific research). This book will
not cover the general-purpose computer, although many of the basic principles of
embedded systems do apply to all types of systems.

The 1I/0 interfaces are a crucial part of an embedded system because they provide
necessary functionality. Most personal computers have the same basic I/0O devices (e.g.,
mouse, keyboard, video display, CD, USB, and hard drive.) In contrast, there is no
common set of I/O that all embedded system have. The software together with the I/O
ports and associated interface circuits give an embedded computer system its distinctive
characteristics. A device driver is a set of software functions that facilitate the use of an
I/O port. Another name for device driver is application programmer interface (API). In
this book we will study a wide range of I/O ports supported by the LM3S/TM4C
microcontrollers. Parallel ports provide for digital input and outputs. Serial ports employ a
wide range of formats and synchronization protocols. The serial ports can communicate
with devices such as:

* Sensors
* Liquid Crystal Display (LCD) and light emitting diode (LED) displays

 Analog to digital converters (ADC) and digital to analog converters
(DAC)

Analog to digital converters convert analog voltages to digital numbers. Digital to analog
converters convert digital numbers to analog voltages. The timer features include:

* Fixed rate periodic execution
* Pulse Width Modulated outputs (PWM)
* Input capture used for period and pulse width measurement

 Output compare used for generating signals and frequency measurement.

1.3. The Design Process

1.3.1. Requirements document

Before beginning any project, it is a good idea to have a plan. The following is one
possible outline of a requirements document. Although originally proposed for software
projects, it is appropriate to use when planning an embedded system, which includes
software, electronics, and mechanical components. IEEE publishes a number of templates
that can be used to define a project (IEEE STD 830-1998). A requirements document
states what the system will do. It does not state how the system will do it. The main
purpose of a requirements document is to serve as an agreement between you and your
clients describing what the system will do. This agreement can become a legally binding
contract. Write the document so that it is easy to read and understand by others. It should
be unambiguous, complete, verifiable, and modifiable.

The requirements document should not include how the system will be designed. This
allows the engineer to make choices during the design to minimize cost and maximize
performance. Rather it should describe the problem being solved and what the system
actually does. It can include some constraints placed on the development process. Ideally,
it is co-written by both the engineers and the non-technical clients. However, it is
imperative that both the engineers and the clients understand and agree on the specifics in
the document.

1. Overview
1.1. Objectives: Why are we doing this project? What is the purpose?
1.2. Process: How will the project be developed?
1.3. Roles and Responsibilities: Who will do what? Who are the clients?
1.4. Interactions with Existing Systems: How will it fit in?
1.5. Terminology: Define terms used in the document.
1.6. Security: How will intellectual property be managed?

2. Function Description
2.1. Functionality: What will the system do precisely?
2.2. Scope: List the phases and what will be delivered in each phase.
2.3. Prototypes: How will intermediate progress be demonstrated?

2.4. Performance: Define the measures and describe how they will be
determined.

2.5. Usability: Describe the interfaces. Be quantitative if possible.

2.6. Safety: Explain any safety requirements and how they will be measured.
3. Deliverables

3.1. Reports: How will the system be described?

3.2. Audits: How will the clients evaluate progress?

3.3. Outcomes: What are the deliverables? How do we know when it is done?

Observation: To build a system without a requirements document means you are never
wrong, but never done.

1.3.2. Modeling

One of the common threads in the example embedded systems presented in Section 1.2 is
the need to understand the behavior of the physical system with which the embedded
system interacts. Sometimes this understanding is only human intuition. However, the
design process will be much more successful if this understanding can be represented in
mathematical form. Scientists strive to describe physical processes with closed-form
mathematical equations. For example, Newton’s second law for damped harmonic
oscillators is

F(H =mj;;+c-$/+b

where x is the one-dimensional position of the object (m), t is time (s), F is the applied
force (N), m is the mass of the object (kg), c is called the viscous damping coefficient
(kg/s), and k is the spring constant (N/m). Another example is Maxwell-Faraday equation
(or Faraday’s law of induction)

15 2 T as
E =i xif =- :
9t or QE 9

where E is the electric field (V/m), B is the magnetic field (Wb/m?), C is the closed curve
along the boundary of surface S, dl is differential vector element of path length tangential
to the path/curve (m), and , ; magnetic flux through any surface S (Wb). A third example is

heat conduction

2 of 4R A7 Yeel7¢, _ 97

RXAAI) +g=ree N ﬂ?ﬂ?q_mﬁ

where k is thermal conductivity (W/m/°C), T is temperature (°C), x is one-dimensional
distance(m), g is internal heat generations (W/m?), is density (kg/m?), c is specific heat at
constant pressure (W-s/kg/°C) and t is time (s). The system is causal if its output depends
only on current and past inputs. Let S(x) define the output of a model for an input x. A
system is linear if S(ax,+bx,) = aS(x,)+bS(x,). A linear time-invariant system (LTI) is a
system that is both linear and time invariant.

Some of the difficulties in solving closed form equations such as these include
multidimensional space, irregular boundaries, and non-constant properties. These
difficulties can be overcome using computational methods such as the finite element
method (FEM). Still many problems remain. Inaccuracies in property values cause errors
in the computational method. The biggest problem however is in the equations
themselves. Many important real life problems exhibit nonlinear behavior not described
by scientific equations.

Consequentially, engineers tend to use empirical models of the world with which the
embedded system interacts. The parameters of an empirical model are determined by
experimental measurement under conditions similar to how the system will be deployed.
Typically the models are discrete in time, because the measurements are discrete in time.
The models can be linear or nonlinear as needed. These models often have memory,
meaning the outputs are a function of both the current inputs and previous inputs/outputs.
One of the simplest measures of stability is called bounded-input bounded-output, which
means if all input signals are bounded then all output signals will also be bounded. For
example, performance maps are used in engine control to optimize performance. They
are empirical equations relating control parameters (such as applied power) and measured
parameters (such as shaft rotational speed) to desired output parameters (such as generated
torque). Even if difficult, it is appropriate to develop an abstract model describing the
interaction between embedded system and the real world. We will present some models
when designing more complex systems later in the book.

1.3.3. Top-down design

In this section, we will present the top-down design process. The process is called top-
down, because we start with the high-level designs and work down to low-level
implementations. The basic approach is introduced here, and the details of these concepts
will be presented throughout the remaining chapters of the book. As we learn
software/hardware development tools and techniques, we can place them into the
framework presented in this section. As illustrated in Figure 1.5, the development of a
product follows an analysis-design-implementation-testing cycle. For complex systems
with long life-spans, we traverse multiple times around the development cycle. For simple
systems, a one-time pass may suffice. Even after a system is deployed, it can reenter the
life cycle to add features or correct mistakes.

«Blod< dagrars
s Daa flow gaote

Mew recLiremets
MNew cordrans

o Cdl graphs
* Daa drudires

/O irerfaces

Figure 1.5. System development cycle or life-cycle. After the system is
done it can be deployed.

During the analysis phase, we discover the requirements and constraints for our proposed
system. We can hire consultants and interview potential customers in order to gather this
critical information. A requirement is a specific parameter that the system must satisfy,
describing what the system should do. We begin by rewriting the system requirements,
which are usually written as a requirements document. In general, specifications are
detailed parameters describing how the system should work. For example, a requirement
may state that the system should fit into a pocket, whereas a specification would give the
exact size and weight of the device. For example, suppose we wish to build a motor
controller. During the analysis phase, we would determine obvious specifications such as
range, stability, accuracy, and response time. The following measures are often considered
during the analysis phase:

Safety: The risk to humans or the environment.

Accuracy: The difference between the expected truth and the actual parameter
Precision: The number of distinguishable measurements

Resolution: The smallest change that can be reliably detected

Response time: The time between a triggering event and the resulting action
Bandwidth: The amount of information processed per time

Signal to noise ratio: The quotient of the signal amplitude divided by the noise
Maintainability: The flexibility with which the device can be modified
Testability: The ease with which proper operation of the device can be verified
Compatibility: The conformance of the device to existing standards

Mean time between failure: The reliability of the device defining the life if a
product

Size and weight: The physical space required by the system and its mass

Power: The amount of energy it takes to operate the system

Nonrecurring engineering cost (NRE cost): The one-time cost to design and
test

Unit cost: The cost required to manufacture one additional product

Time-to-prototype: The time required to design build and test an example
system

Time-to-market: The time required to deliver the product to the customer

Human factors: The degree to which our customers enjoy/like/appreciate the
product

There are many parameters to consider and their relative importance may be difficult to
ascertain. For example, in consumer electronics the human interface can be more
important than bandwidth or signal to noise ratio. Often, improving the performance on
one parameter can be achieved only by decreasing the performance of another. This art of
compromise defines the tradeoffs an engineer must make when designing a product. A
constraint is a limitation, within which the system must operate. The system may be
constrained to such factors as cost, safety, compatibility with other products, use of
specific electronic and mechanical parts as other devices, interfaces with other instruments
and test equipment, and development schedule.

Checkpoint 1.11: What’s the difference between a requirement and a specification?

When you write a paper, you first decide on a theme, and next you write an outline. In the
same manner, if you design an embedded system, you define its specification (what it
does), and begin with an organizational plan. In this section, we will present three
graphical tools to describe the organization of an embedded system: data flow graphs, call
graphs, and flowcharts. You should draw all three for every system you design.

During the high-level design phase, we build a conceptual model of the
hardware/software system. It is in this model that we exploit as much abstraction as
appropriate. The project is broken in modules or subcomponents. Modular design will be
presented in Chapter 3. During this phase, we estimate the cost, schedule, and expected
performance of the system. At this point we can decide if the project has a high enough
potential for profit. A data flow graph is a block diagram of the system, showing the flow
of information. Arrows point from source to destination. It is good practice to label the
arrows with the information type and bandwidth. The rectangles represent hardware
components and the ovals are software modules. We use data flow graphs in the high-level
design, because they describe the overall operation of the system while hiding the details
of how it works. Issues such as safety (e.g., Isaac Asimov’s first Law of Robotics “A robot
may not harm a human being, or, through inaction, allow a human being to come to
harm”) and testing (e.g., we need to verify our system is operational) should be addressed
during the high-level design.

An example data flow graph for a motor controller is shown in Figure 1.6. Notice that the
arrows are labeled with data type and bandwidth. The requirement of the system is to
deliver power to a motor so that the speed of the motor equals the desired value set by the
operator using a keypad. In order to make the system easier to use and to assist in testing,
a liquid crystal display (LCD) is added. The sensor converts motor speed an electrical
voltage. The amplifier converts this signal into the 0 to +3.3 V voltage range required by
the ADC. The ADC converts analog voltage into a digital sample. The ADC routines,
using the ADC and timer hardware, collect samples and calculate voltages. Next, this
software uses a table data structure to convert voltage to measured speed. The user will be
able to select the desired speed using the keypad interface. The desired and measured
speed data are passed to the controller software, which will adjust the power output in
such a manner as to minimize the difference between the measured speed and the desired
speed. Finally, the power commands are output to the actuator module. The actuator
interface converts the digital control signals to power delivered to the motor. The
measured speed and speed error will be sent to the LCD module.

Spead

Mctor

100Hz

\Voltage

Achetor

100Hz

Ardog
anplifier

Wdltage

Woltagy

|rterface

|rterface

| rerface

100Hz
Digitd
corral

ADC

Figure 1.6. A data flow graph showing how signals pass through a motor

controller.

The next phase is engineering design. We begin by constructing a preliminary design.
This system includes the overall top-down hierarchical structure, the basic I/0 signals,
shared data structures and overall software scheme. At this stage there should be a simple
and direct correlation between the hardware/software systems and the conceptual model
developed in the high-level design. Next, we finish the top-down hierarchical structure,
and build mock-ups of the mechanical parts (connectors, chassis, cables etc.) and user
software interface. Sophisticated 3-D CAD systems can create realistic images of our
system. Detailed hardware designs must include mechanical drawings. It is a good idea to
have a second source, which is an alternative supplier that can sell our parts if the first
source can’t deliver on time. A call graph is a directed graph showing the calling
relationships between software and hardware modules. If a function in module A calls a
function in module B, then we draw an arrow from A to B. If a function in module A
input/outputs data from hardware module C, then we draw an arrow from A to C. If
hardware module C can cause an interrupt, resulting in software running in module A, then
we draw an arrow from C to A. A hierarchical system will have a tree-structured call
graph.

A call graph for this motor controller is shown in Figure 1.7. Again, rectangles represent
hardware components and ovals show software modules. An arrow points from the calling
routine to the module it calls. The I/O ports are organized into groups and placed at the
bottom of the graph. A high-level call graph, like the one shown in Figure 1.7, shows only
the high-level hardware/software modules. A detailed call graph would include each
software function and I/O port. Normally, hardware is passive and the software initiates
hardware/software communication, but as we will learn in Chapter 5, it is possible for the
hardware to interrupt the software and cause certain software modules to be run. In this
system, the timer hardware will cause the ADC software to collect a sample at a regular
rate. The controller software calls the keypad routines to get the desired speed, calls the
ADC software to get the motor speed at that point, determines what power to deliver to the
motor and updates the actuator by sending the power value to the actuator interface. The
controller software calls the LCD routines to display the status of the system. Acquiring
data, calculating parameters, outputting results at a regular rate is strategic when
performing digital signal processing in embedded systems.

ADC Actuator LCD K eypad

Figure 1.7. A call graph for a motor controller.

Checkpoint 1.12: What confusion could arise if two software modules were allowed to
access the same I/O port? This situation would be evident on a call graph if the two
software modules had arrows pointing to the same 1/O port.

Observation: If module A calls module B, and B returns data, then a data flow graph will
show an arrow from B to A, but a call graph will show an arrow from A to B.

Data structures include both the organization of information and mechanisms to access
the data. Again safety and testing should be addressed during this low-level design.

The next phase is implementation. An advantage of a top-down design is that
implementation of subcomponents can occur concurrently. The most common approach to
developing software for an embedded system is to use a cross-assembler or cross-
compiler to convert source code into the machine code for the target system. The machine
code can then be loaded into the target machine. Debugging embedded systems with this
simple approach is very difficult for two reasons. First, the embedded system lacks the
usual keyboard and display that assist us when we debug regular software. Second, the
nature of embedded systems involves the complex and real-time interaction between the
hardware and software. These real-time interactions make it impossible to test software
with the usual single-stepping and print statements.

The next technological advancement that has greatly affected the manner in which
embedded systems are developed is simulation. Because of the high cost and long times
required to create hardware prototypes, many preliminary feasibility designs are now
performed using hardware/software simulations. A simulator is a software application that
models the behavior of the hardware/software system. If both the external hardware and
software program are simulated together, even although the simulated time is slower than
the clock on the wall, the real-time hardware/software interactions can be studied.

During the initial iterations of the development cycle, it is quite efficient to implement the
hardware/software using simulation. One major advantage of simulation is that it is
usually quicker to implement an initial product on a simulator versus constructing a
physical device out of actual components. Rapid prototyping is important in the early
stages of product development. This allows for more loops around the analysis-design-
implementation-testing cycle, which in turn leads to a more sophisticated product.

During the testing phase, we evaluate the performance of our system. First, we debug the
system and validate basic functions. Next, we use careful measurements to optimize
performance such as static efficiency (memory requirements), dynamic efficiency
(execution speed), accuracy (difference between expected truth and measured), and
stability (consistent operation.) Debugging techniques will be presented throughout the
book. Testing is not performed at the end of project when we think we are done. Rather
testing must be integrated into all phases of the design cycle. Once tested the system can
be deployed.

Maintenance is the process of correcting mistakes, adding new features, optimizing for
execution speed or program size, porting to new computers or operating systems, and
reconfiguring the system to solve a similar problem. No system is static. Customers may
change or add requirements or constraints. To be profitable, we probably will wish to
tailor each system to the individual needs of each customer. Maintenance is not really a
separate phase, but rather involves additional loops around the development cycle.

1.3.4. Flowcharts

In this section, we introduce the flowchart syntax that will be used throughout the book.
Programs themselves are written in a linear or one-dimensional fashion. In other words,
we type one line of software after another in a sequential fashion. Writing programs this
way is a natural process, because the computer itself usually executes the program in a
top-to-bottom sequential fashion. This one-dimensional format is fine for simple
programs, but conditional branching and function calls may create complex behaviors that
are not easily observed in a linear fashion. Even the simple systems have multiple
software tasks. Furthermore, a complex application will require multiple microcontrollers.
Therefore, we need a multi-dimensional way to visualize software behavior. Flowcharts
are one way to describe software in a two-dimensional format, specifically providing
convenient mechanisms to visualize multi-tasking, branching, and function calls.
Flowcharts are very useful in the initial design stage of a software system to define
complex algorithms. Furthermore, flowcharts can be used in the final documentation stage
of a project in order to assist in its use or modification.

Figures throughout this section illustrate the syntax used to draw flowcharts. The oval
shapes define entry and exit points. The main entry point is the starting point of the
software. Each function, or subroutine, also has an entry point, which is the place the
function starts. If the function has input parameters they are passed in at the entry point.
The exit point returns the flow of control back to the place from which the function was
called. If the function has return parameters they are returned at the exit point. When the
software runs continuously, as is typically the case in an embedded system, there will be
Nno main exit point.

We use rectangles to specify process blocks. In a high-level flowchart, a process block
might involve many operations, but in a low-level flowchart, the exact operation is defined
in the rectangle. The parallelogram will be used to define an input/output operation.
Some flowchart artists use rectangles for both processes and input/output. Since
input/output operations are an important part of embedded systems, we will use the
parallelogram format, which will make it easier to identify input/output in our flowcharts.
The diamond-shaped objects define a branch point or decision block. The rectangle with
double lines on the side specifies a call to a predefined function. In this book, functions,
subroutines and procedures are terms that all refer to a well-defined section of code that
performs a specific operation. Functions usually return a result parameter, while
procedures usually do not. Functions and procedures are terms used when describing a
high-level language, while subroutines often used when describing assembly language.
When a function (or subroutine or procedure) is called, the software execution path jumps
to the function, the specific operation is performed, and the execution path returns to the
point immediately after the function call. Circles are used as connectors.

Common error: In general, it is bad programming style to develop software that requires
a lot of connectors when drawing its flowchart.

There are a seemingly unlimited number of tasks one can perform on a computer, and the
key to developing great products is to select the correct ones. Just like hiking through the
woods, we need to develop guidelines (like maps and trails) to keep us from getting lost.
One of the fundamental issues when developing software, regardless whether it is a
microcontroller with 1000 lines of assembly code or a large computer system with billions
of lines is to maintain a consistent structure. One such framework is called structured
programming. A good high-level language will force the programmer to write structured
programs. Structured programs are built from three basic building blocks: the sequence,
the conditional, and the while-loop. At the lowest level, the process block contains simple
and well-defined commands. I/O functions are also low-level building blocks. Structured
programming involves combining existing blocks into more complex structures, as shown
in Figure 1.8.

Seqterce Cadiosl Wivleslogo
' P
Block 1
v
Slock 2 Blod< 1 Blod 2 Blodk
T I—T—' L |

Figure 1.8. Flowchart showing the basic building blocks of structured
programming.

Maintenance Tip: Remember to update the flowcharts as modifications are made to the
software

Next, we will revisit the pacemaker example in order to illustrate the flowchart syntax. A
thread is the sequence of actions caused by executing software. The flowchart in Figure
1.9 defines a single-threaded execution because there is one sequence.

Example 1.1 (continued): Use a flowchart to describe an algorithm that a pacemaker
might use to regulate and improve heart function.

Solution: This example illustrates a common trait of an embedded system, that is, they
perform the same set of tasks over and over forever. The program starts at main when
power is applied, and the system behaves like a pacemaker until the battery runs out.
Figure 1.9 shows a flowchart for a very simple algorithm. If the heart is beating normally
with a rate greater than or equal to 1 beat/sec (60 BPM), then the atrial sensor will detect
activity and the first decision will go right. Since this is normal beating, the ventricular
activity will occur within the next 200 ms, and the ventricular sensor will also detect
activity. In this situation, no output pulses will be issued. If the delay between atrial
contraction and ventricular contract were longer than the normal 200 ms, then the
pacemaker will activate the ventricles 200 ms after each atrial contraction. If the ventricle
is beating faster than 60 BPM without any atrial contractions, then no ventricular
stimulations will be issued. If there is no activity from either atrium or the ventricle (or if
that rate is slower than 60 BPM), then the ventricles are paced at 60 BPM.

s

EPtrypoirt - - - - - -

I fram
InpyOcteet == 17 arl uqnlfta' 500 s |r13élcér<ﬂ"ﬂ

Morrd grid conradd on

e e S z Mot et
RS Mo adivity 5 ’

Daore
IrpLt from | nput from
/ |defa~5:0rrs// idefor 200ms R,

Momrd et cular Momnd wertricdar o

\

l cortraction cortraction
EHE’
% No activity Mo adivity feeias
Adivae

Adivate Wvertrice /
vertride I
e Wat(300) . ___

f meli NS || fipeticn calf

Figure 1.9. Flowchart illustrating a simple pacemaker algorithm.

Checkpoint 1.13: Assume you are given a simple watch that just tells you the time in
hours, minutes, and seconds. Let t be an input parameter. Explain how you could use the
watch to wait t seconds.

1.3.5. Parallel, distributed, and concurrent programming

Many problems cannot be implemented using the single-threaded execution pattern
described in the previous section. Parallel programming allows the computer to execute
multiple threads at the same time. State-of-the art multi-core processors can execute a
separate program in each of its cores. Fork and join are the fundamental building blocks
of parallel programming. After a fork, two or more software threads will be run in parallel.
L.e., the threads will run simultaneously on separate processors.

Two or more simultaneous software threads can be combined into one using a join. The
flowchart symbols for fork and join are shown in Figure 1.10. Software execution after the
join will wait until all threads above the join are complete. As an analogy, if I want to dig
a big hole in my back yard, I will invite three friends over and give everyone a shovel. The
fork operation changes the situation from me working alone to four of us ready to dig. The
four digging tasks are run in parallel. When the overall task is complete, the join operation
causes the friends to go away, and I am working alone again. A complex system may
employ multiple microcontrollers, each running its own software. We classify this
configuration as parallel or distributed programming.

Fardld ¥ D gtribuced |rtemupt-criven cx:erer*It
I;IQQL? [hct] [] || [t] g

jon DT T T || B |5 ||| o] | 5 o
e I | L —rtenpt

Figure 1.10. Flowchart symbols to describe parallel, distributed, and
concurrent programming.

Concurrent programming allows the computer to execute multiple threads, but only one
at a time. Interrupts are one mechanism to implement concurrency on real-time systems.
Interrupts have a hardware trigger and a software action. An interrupt is a parameter-less
subroutine call, triggered by a hardware event. The flowchart symbols for interrupts are
also shown in Figure 1.10. The trigger is a hardware event signaling it is time to do
something. Examples of interrupt triggers we will see in this book include new input data
has arrived, output device is idle, and periodic event. The second component of an
interrupt-driven system is the software action called an interrupt service routine (ISR). The
foreground thread is defined as the execution of the main program, and the background
threads are executions of the ISRs.

Consider the analogy of sitting in a comfy chair reading a book. Reading a book is like
executing the main program in the foreground. Because there is only one of you, this
scenario is analogous to a computer with one processor. You start reading at the beginning
of the book and basically read one page at a time in a sequential fashion. You might jump
to the back and look something up in the glossary, then jump back to where you were,
which is analogous to a function call. Similarly, if you might read the same page a few
times, which is analogous to a program loop. Even though you skip around a little, the
order of pages you read follows a logical and well-defined sequence. Conversely, if the
telephone rings, you place a bookmark in the book, and answer the phone. When you are
finished with the phone conversation, you hang up the phone and continue reading in the
book where you left off. The ringing phone is analogous to hardware trigger and the phone
conversation is like executing the ISR.

Example 1.2 (continued): Use a flowchart to describe an algorithm that a stand-alone
smoke detector might use to warn people in the event of a fire.

Solution: This example illustrates a common trait of a low-power embedded system. The
system begins with a power on reset, causing it to start at main. The initialization enables
the timer interrupts, and then it shuts off the alarm. In a low-power system the
microcontroller goes to sleep when there are no tasks to perform. Every 30 seconds the
timer interrupt wakens the microcontroller and executes the interrupt service routine. The
first task is to read the smoke sensor. If there is no fire, it will flash the LED and return
from interrupt. At this point, the main program will put the microcontroller back to sleep.
The letters (A-K) in Figure 1.11 specify the software activities in this multithreaded
example. Initially it executes A-B-C and goes to sleep. Every 30 seconds, assuming there
is no fire, it executes <-D-E-F-G-J-K-J-K-----J-K-H->C This sequence will execute in
about 1 ms, dominated by the time it takes to flash the LED. This is a low-power solution
because the microcontroller is powered for about 0.003% of the time, or 1 ms every 30
seconds.

Nt | A |
Irthfrc:m/
Eo = /j/ i
Wat(i) % Alamond et
.K

Slegp |C Dare

LED e Rdirm

irterruptreturn - o

=

Figure 1.11. Flowchart illustrating a simple smoke detector algorithm.

To illustrate the concept of parallel programming, assume we have a multi-core computer
with four processors. Consider the problem of finding the maximum value in a large
buffer. First, we divide the buffer into four equal parts. Next, we execute a fork, as shown
in the left-most flowchart in Figure 1.10, launching four parallel threads. The four
processors run in parallel each finding the maximum of its subset. When all four threads
are complete, they perform a join and combine the four results to find the overall
maximum. It is important to distinguish parallel programming like this from
multithreading implementing concurrent processing with interrupts. Because most
microcontrollers have a single processor, this book with focus on concurrent processing
with interrupts and distributed processing with a network involving multiple
microcontrollers.

1.3.6. Creative discovery using bottom-up design

Figure 1.5 describes top-down design as a cyclic process, beginning with a problem
statement and ending up with a solution. With a bottom-up design we begin with
solutions and build up to a problem statement. Many innovations begin with an idea,
“what if...?” In a bottom-up design, one begins with designing, building, and testing low-
level components. Figure 1.12 illustrates a two-level process, combining three
subcomponents to create the overall product. This hierarchical process could have more
levels and/or more components at each level. The low-level designs can occur in parallel.
The design of each component is cyclic, iterating through the design-build-test cycle until
the performance is acceptable.

» Spedfications

« Blodk dagas
« Daaflow gashs

Dore

sHardware
« Software

«Cdl gephs
o[Dafa drudires

| /O irtefaces

Idea

Figure 1.12. System development process illustrating bottom-up design.

Bottom-up design is inefficient because some subsystems are designed, built, and tested,
but never used. Furthermore, in a truly creative environment most ideas cannot be
successfully converted to operational subsystems. Creative laboratories are filled with
finished, half-finished, and failed subcomponents. As the design progresses the
components are fit together to make the system more and more complex. Only after the
system is completely built and tested does one define its overall specifications.

The bottom-up design process allows creative ideas to drive the products a company
develops. It also allows one to quickly test the feasibility of an idea. If one fully
understands a problem area and the scope of potential solutions, then a top-down design
will arrive at an effective solution most quickly. On the other hand, if one doesn’t really
understand the problem or the scope of its solutions, a bottom-up approach allows one to
start off by learning about the problem.

Observation: A good engineer knows both bottom-up and top-down design methods,
choosing the approach most appropriate for the situation at hand.

1.4. Digital Logic and Open Collector

Digital logic has two states, with many enumerations such as high and low, 1 and 0, true
and false, on and off. There are four currents of interest, as shown in Figure 1.13, when
analyzing if the inputs of the next stage are loading the output. I;;; and I, are the currents
required of an input when high and low respectively. Furthermore, I, and I, are the
maximum currents available at the output when high and low. In order for the output to
properly drive all the inputs of the next stage, the maximum available output current must

be larger than the sum of all the required input currents for both the high and low
conditions.

|Jlrﬂ"-|3 é |Jlr""'-| and |’Ir£'}'.|'|3 é |’Ir.n'H|

Absolute value operators are put in the above relations because data sheets are inconsistent
about specifying positive and negative currents. The arrows in Figure 1.13 define the
direction of current regardless of whether the data sheet defines it as a positive or negative
current. It is your responsibility to choose parts such that the above inequalities hold.

Arrows signif)’ I
dfﬁﬁmgfwf%rm —1H 5 laoW s
I
Oupit| gy f——2—» It
When F——ma i
Hch ———] oLt

Figure 1.13. Sometimes one output must drive multiple inputs.

Kirchhoff’s Current Law (KCL) states the sum of all the currents into one node must be
zero. The above inequalities are not a violation of KCL, because the output currents are
the available currents and the input currents are the required currents. Once the system is
built and running, the actual output current will of course exactly equal the sum of the
actual input currents. As a matter of completeness, we include Kirchhoff’s Voltage Law
(KVL), which states the sum of all the voltages in a closed loop must be zero. Table 1.4
shows typical current values for the various digital logic families. The LM3S/TM4C
microcontrollers give you three choices of output current for the digital output pins. The
TM4C1294 adds a 12-mA mode.

Family Example Loy I, I, I,

Standard TTL | 7404 0.4mA |16 mA |40 pA | 1.6
mA

Schottky TTL | 74504 1mA |[20mA |50pA |2mA

Low Power 74L.S04 04mA |[4mA |20pA 04
Schottky mA

74HC04 4mA |4mA 1pA |1pA

High Speed
CMOS

Adv High 74AHC04 |4mA |4mA |1pA |1pA
Speed CMOS

TM4C 2mA- TM4C123 |2 mA |2 mA 2pA |2 pA
drive

TMA4C 4mA- T™™M4C123 |4mA |4 mA 2pA | 2pA
drive

TM4C 8mA- T™™M4C123 |8 mA |8 mA 2pA | 2pA
drive

TM4C 12mA- | TM4C1294 | 12mA |12mA |2pA |2 pA
drive

Table 1.4. The input and output currents of various digital logic families and
microcontrollers.

Observation: For TTL devices the logic low currents are much larger than the logic high
currents.

When we design circuits using devices all from a single logic family, we can define fan
out as the maximum number of inputs, one output can drive. For transistor-transistor
logic (TTL) logic we can calculate fan out from the input and output currents:

Fan out = minimum((I,;/1,) , Uy /1))

Conversely, the fan out of high-speed complementary metal-oxide semiconductor
(CMOS) devices, which includes most microcontrollers, is determined by capacitive
loading and not by the currents. Figure 1.14 shows a simple circuit model of a CMOS
interface. The ideal voltage of the output device is labeled V. For interfaces in close

proximity, the resistance R results from the output impedance of the output device, and the
capacitance C results from the input capacitance of the input device. However, if the
interface requires a cable to connect the two devices, both the resistance and capacitance
will be increased by the cable. The voltage labeled V, is the effective voltage as seen by

the input. If V, is below 1.3 V, the LM3S/LM4F/TM4C microcontrollers will interpret the

signal as low. Conversely, the voltage is above 2.0 V, these microcontrollers will consider
it high. The slew rate of a signal is the slope of the voltage versus time during the time
when the logic level switches between low and high. A similar parameter is the transition
time, which is the time it takes for an output to switch from one logic level to another. In
Figure 1.14, the transition time is defined as the time it takes V, to go from 1.3 to 2.0 V.

There is a capacitive load for the output and each input. As this capacitance increases the
slew rate decreases, which will increase the transition time. Signals with a high slew rate
can radiate a lot of noise. So, to reduce noise emissions we sometimes limit the slew rate
of the signals.

There are two ways to determine the fan out of CMOS circuits. First, some circuits have a
minimum time its input can exist in the transition range. For example, it might specify the
signal cannot be above 1.3 and below 2.0 V for more than 20 ns. Clock inputs are often
specified this way. A second way is to calculate the time constant , which is R*C for this
circuit. Let T be the pulse width of the digital signal. If T is large compared to , then the
CMOS interface functions properly. For circuits that mix devices from one family with
another, we must look individually at the input and output currents, voltages and
capacitive loads. There is no simple formula.

Ot R | N Slewrae
i v v B Y
T | = 5
@ c e Vo =3.3—3.3€’U(HC) \fz
1 | = o
= 0 . T
— || e
Trardgtontime

Figure 1.14. Capacitance loading is an important factor when interfacing
CMOS devices.

Figure 1.15 compares the input and output voltages for many of the digital logic families.
V,, is the voltage below which an input is considered a logic low. Similarly, Vs the
voltage above which an input is considered a logic high. The output voltage depends
strongly on current required to drive the inputs of the next stage. V, is the output voltage
when the signal is high. In particular, if the output is a logic high, and the current is less
than I, then the voltage will be greater than V. Similarly, V,,, is the output voltage
when the signal is low. In particular, if the output is a logic low, and the current is less than
I,,, then the voltage will be less than V,,. The digital input pins on the
LM3S/LM4F/TM4C microcontrollers are 5V-tolerant, meaning an input high signal can
be any voltage from 2.0 to 5.0 V.

2.0 T Ve 20 T Ve 2.0 T Ve
4. 4= \-"'OH
o P P o "x-"'||_| 33T \-"',:,: 33T VCC
25TV
25 W) cc
£ 28 TVoH 24 TVo 24TVow 24TVon o,
3 T Vo
16 1 viy 20 TViH 20 7 ViH 20 T My b
15 T VL 15 T V4 15 T W 15 1 4
14 1 W
It 13 TV, 12 1
08 T VL 08 T Vi
05 T VoL 07 T VL
04 T VoL 04 T VoL 0.4 T VoL 04 T VoL
02 T VoL
00 4 Gnd 00 4 Grd 00 4L ad 0.0 - Gnd 00 4+ Gnd 00 L1 Gnd
5V CMOS ETL 5 TTL 3.3V LVTTL 25V CMOS
HC,AHC,AC ABTE LS TTL, S ALS, LM35S LV T, LVC, ALVEC, ALVT
AS,F,BCT,ABT, TMAC LV, ALB
HCT, AHCT,ACT ALVT

Figure 1.15. Voltage thresholds for various digital logic families.

For the output of one circuit to properly drive the inputs of the next circuit, the output low
voltage needs to be low enough, and the output high voltage needs to be high enough.

|2

) . z E z/ 3
"o £V for all inputs and o * i for all inputs

The maximum output current specification on the LM3S/LM4F/TM4C family is 25 mA,
which is the current above which will cause damage. However, we can select I ,; and I,; to

be 2, 4, or 8 mA. Normally, we design the system so the output currents are less than I,
and I,,. V, is the typical threshold voltage, which is the voltage at which the input usually

switches between logic low and high. Formally however, an input is considered in the
transition region (value indeterminate) for voltages between V;, and V. The five

parameters that affect our choice of logic families are
» Power supply voltage (e.g., +5V, 3.3V etc.)
* Power supply current (e.g., will the system need to run on batteries?)

» Speed (e.g., clock frequency and propagation delays)

* Output drive, I,;, Iy (e.g., does it need to drive motors or lights?)

 Noise immunity (e.g., electromagnetic field interference)

» Temperature (e.g., electromagnetic field interference)

Checkpoint 1.14: How will the TM4C123 interpret an input pin as the input voltage
changes from 0, 1, 2, 3, 4, to 5V? l.e., for each voltage, will it be considered as a logic
low, as a logic high or as indeterminate?

Checkpoint 1.15: Considering both voltage and current, can the output of a 74HC04 drive
the input of a 74L.S04? Assume both are running at 5V.

Checkpoint 1.16: Considering both voltage and current, can the output of a 74L.S04 drive
the input of a 74HC04? Assume both are running at 5V.

A very important concept used in computer technology is tristate logic, which has three
output states: high, low, and off. Other names for the off state are HiZ, floating, and
tristate. Tristate logic is drawn as a triangle shape with a signal on the top of the triangle.
In this Figure 1.16, A is the data input, G is the gate input, and B is the data output. When
there is no circle on the gate, it operates in positive logic, meaning if the gate is high, then
the output data equals the input data. If the positive-logic gate is low, then the output will
float. When there is a circle on the gate, it operates in negative logic, meaning if the gate is
low, then the output data equals the input data. If the negative-logic gate is high, then the
output will float.

Figure 1.16. Digital logic drawing of tristate drivers.

There are a wide range of technologies available for digital logic design. To study these
differences consider the 74L.VT245, the 74ALVC245, the 74L.VC245, the 74ALB245, the
74AC245, the 74AHC245, and the 74LV245.

Each of these chips is an 8-input 8-output bidirectional tristate driver. Table 1.5 lists some
of the interfacing parameters for each technology. I is the total supply current required to

drive the chip. t, is the propagation delay from input to output. V. is the supply voltage.

Family Technology ViV Voo Vou | Ior | Iog |1 |t

pd

LVT - Low-Voltage BICMOS | LVTTL |LVTTL | 64 -32 190 | 3.5

ALVC - Advanced Low- LVTTL |LVTTL |24 |-24 |40 3.0
Voltage CMOS

LVC - Low-Voltage CMOS LVITL |LVTTL |24 -24 110 4.0

ALB - Advanced Low-Voltage |LVTTL |LVTTL |25 -25 800 |2.0
BiCMOS

AC - Advanced CMOS CMOS |CMOS |12 -12 120 8.5

AHC - Advanced High Speed |CMOS |CMOS |4 -4 20 11.9
CMOS

LV - Low-Voltage CMOS LVTTL |LVTTL |8 -8 20 14

units mA mA |pA |ns

Table 1.5. Comparison of the output drive, supply current and speed of various 3.3V
logic €245 gates.

Observation: There is an inverse relationship between supply current I .. and propagation
delay ¢ .
The 74L.S04 is a low-power Schottky NOT gate, as shown on the left in Figure 1.17. It is

called Schottky logic because the devices are made from Schottky transistors. The output
is high when the transistor Q, is active, driving the output to V_.. The output is low when

the transistor Q; is active, driving the output to 0.

AT
| % Z4HC04 +3.3V

Priype qum
Qdml =
A —e }iﬁd‘%
rrype ciFaEin
B f
gate l,smme
A |ptypg ntype | B

OV | adive| off +3.3
33| off | adiwve | OV

A S0

Figure 1.17. Two transistor-level implementations of a NOT gate.

It is obviously necessary to read the data sheet for your microcontroller. However, it is
also good practice to review the errata published by the manufacturer about your
microcontroller. The errata define situations where the actual chip does not follow
specifications in the data sheet. For example, the regular TM4C123 data sheet states the
I/O pins are +5V tolerant. However, reading the errata for the LM3S811 version C2
announces that “PB6, PC5, and PC6 are not 5-V tolerant.”

The 74HCO04 is a high-speed CMOS NOT gate, shown on the right in Figure 1.17. The
output is high when the transistor Q, is active, driving the output to 3.3V. The output is
low when the transistor Q, is active, driving the output to 0. Since most microcontrollers
are made with high-speed CMOS logic, its outputs behave like the Q,/Q, “push/pull”
transistor pair. Output ports are not inverting. I.e., when you write a “1” to an output port,
then the output voltage goes high. Similarly, when you write a “0” to an output port, then
the output voltage goes low. Analyses of the circuit in Figure 1.17 reveal some of the
basic properties of high-speed CMOS logic. First, because of the complementary nature of
the P-channel (the one on the top) and N-channel (the one on the bottom) transistors, when
the input is constant (continuously high or continuously low), the supply current, I_, is
very low. Second, the gate will require supply current only when the output switches from
low to high or from high to low. This observation leads to the design rule that the power
required to run a high-speed CMOS system is linearly related to the frequency of its clock,
because the frequency of the clock determines the number of transitions per second. Along
the same lines, we see that if the voltage on input A exists between V,, and V,;, for
extended periods of time, then both Q, and Q, are partially active, causing a short from
power to ground. This condition can cause permanent damage to the transistors. Third,
since the input A is connected to the gate of the two MOS transistors, the input currents
will be very small (*1 A). In other words, the input impedance (input voltage divide by
input current) of the gate is very high. Normally, a high input impedance is a good thing,
except if the input is not connected. If the input is not connected then it takes very little
input currents to cause the logic level to switch.

Common error: If unused input pins on a CMOS microcontroller are left unconnected,
then the input signal may oscillate at high frequencies depending on the EM fields in the
environment, wasting power unnecessarily.

Observation: It is a good design practice to connect unused CMOS inputs to ground or
connect them to +3.3V.

Now that we understand that CMOS digital logic is built with PNP and NPN transistors,
we can revisit the interface requirements for connecting a digital output from one module
to a digital input of another module. Figure 1.18 shows the model when the output is high.
To make the output high, a PNP transistor in the output module is conducting (Q,) driving

+3.3 V to the output. The high voltage will activate the gate of NPN transistors in the
input module (Q,). The I, is the current into the input module needed to activate all gates

connected to the input. The actual current I will be between 0 and I,;,. For a high signal,
current flows from +3.3V, across the source-drain of Q,, into the gate of Q,, and then to
ground. As the actual current I increases, the actual output voltage V will drop. I, is the
maximum output current that guarantees the output voltage will be above V ;. Assuming
the actual I is less than I, the actual voltage V will be between V,, and +3.3V. If the
input voltage is between V,,, and +3.3V, the input signal is considered high by the input.
For the high signal to be transferred properly, V,, must be larger than V,, and I, must be
larger than I,

Figure 1.19 shows the model when the output is low. To make the output low, an NPN

transistor in the output module is conducting (Q,) driving the output to OV. The low
voltage will activate the gate of PNP transistors in the input module (Q,). The I, is the

current out of the input module needed to activate all gates connected to the input. The
actual current I will be between 0 and I;;. For a low signal, current flows from +3.3V in

the input module, across the source-gate of Q,, across the source-drain gate of Q,, and

then to ground. As the actual current I increases, the actual output voltage V will increase.
I, is the maximum output current that guarantees the output voltage will be less than V.

Assuming the actual I is less than I, the actual voltage V will be between 0 and V,,. If
the input voltage is between 0 and V/;, the input signal is considered low by the input. For
the low signal to be transferred properly, V,,, must be less than V,; and I,, must be larger
than I;;.

¥ +i3‘u’ OupLt Irout +?J3‘u’
FAL 5 46.1 Qyl | (i Qg
Vor| v | \/
} oH : I= }_
I : +
Y .) —I _]‘J_r \ Tl Qq
lin Tom = :Ji_

Figure 1.18. Model for the input/output characteristics when the output is
high.

+33V Oupu Irput +3.3v

|

!
I I v, Ci R
-

g

olel ol

M
o
<+

=
14

K P

IL 'OL

.

—T

.||._|

Figure 1.19. Model for the input/output characteristics when the output is
low.

Open collector logic has outputs with two states: low and off. The 74LS05 is a low-power
Schottky open collector NOT gate, as shown in Figure 1.20. When drawing logic
diagrams, we add the ‘x’ on the output to specify open collector logic.

The 74HCO5 is a high-speed CMOS open collector NOT gate is also shown in Figure
1.20. It is called open collector because the collector pin of Q, is not connected, or left

open. The output is off when there is no active transistor driving the output. In other
words, when the input is low, the output floats. This “not driven” condition is called the
open collector state. When the input is high, the output will be low, caused by making the
transistor Q, is active driving the output to 0. Technically, the 74HCO05 implements open

drain rather than open collector, because it is the drain pin of Q, that is left open. In this

book, we will use the terms open collector and open drain interchangeably to refer to
digital logic with two output states (low and off). Because of the multiple uses of open
collector, many microcontrollers can implement open collector logic. On LM3S/TM4C
microcontrollers, we can affect this mode by defining an output as open drain.

OO Vee

ﬁﬂ

Al1Q |B
Low | off [HIZ
High | adive| Low

Figure 1.20. Two transistor implementations of an open collector NOT
gate.

We can use a bipolar junction transistor (BJT) to source or sink current. For most of the
circuits in this book the transistors are used in saturated mode. In general, we will use
NPN transistors to sink current to ground. We turn on an NPN transistor by applying a
positive V. This means when the NPN transistor is on, current flows from the collector to
the emitter. When the NPN transistor is off, no current flows from the collector to the
emitter. Each transistor has an input and output impedance, h,, and h,, respectively. The
current gain is h,or . The hybrid-pi small signal model for the bipolar NPN transistor is
shown in Figure 1.21.

¢ Cdlatar | e
b
; : —'17 .
- Uce Ube h e |c hce vce
Sl =
Erritter
Ve

Figure 1.21. NPN transistor model.

There are five basic design rules when using individual bipolar NPN transistors in
saturated mode:

1) Normally V. > V,

2) Current can only flow in the following directions
from base to emitter (input current)
from collector to emitter (output current)

from base to collector (doesn’t usually happen, but could if V, > V)

3) Each transistor has maximum values for the following terms that should not be
exceeded

I, I.V,and I.*V_,

4) The transistor acts like a current amplifier
I.=hg1I,

5) The transistor will activate if V, > V, + V, o\,
where V., is typically above 0.6V

In general, we will use PNP transistors to source current from a positive voltage supply.
We turn on a PNP transistor by applying a positive V. This means when the PNP
transistor is on, current flows from the emitter to the collector. When the PNP transistor is
off, no current flows from the emitter to the collector. Each transistor has an input and
output impedance, h,, and h,, respectively. The current gain is h,or . The hybrid-pi small

signal model for the bipolar PNP transistor is shown in Figure 1.22.
V

e Emilter e

Figure 1.22. PNP transistor model.

There are five basic design rules when using individual bipolar PNP transistors in
saturated mode:

1) Normally V,> V.

2) Current can only flow in the following directions
from emitter to base (input current)

from emitter to collector (output current)

from collector to base (doesn’t usually happen, but could if V, > V))

3) Each transistor has maximum values for the following terms that should not be
exceeded

I, 1. V,and IV,

4) The transistor acts like a current amplifier
I.=h,*1I,
5) The transistor will activate if V, <V, -V, q,

where V4 is typically above 0.6V

Performance Tip: A good transistor design is one that the input/output response is
independent of h;,. We can design a saturated mode circuit so that I, is 2 to 5 times as large

as needed to supply the necessary I .

The Table 1.6 illustrates the wide range of bipolar transistors that we can use.

Type NPN PNP package Vbe(S AT) Vce(S AT) hfe I
min/max

general 2N3904 | 2N3906 | TO-92 |085V |0.2V 100 10mA

purpose

general PN2222 | PN2907 | TO-92 |1.2V 0.3V 100 150mA

purpose

general 2N2222 | 2N2907 | TO-18 | 1.2V 0.3V 100/300 | 500mA
purpose

power TIP29A | TIP30A | TO-220 | 1.3V 0.7V 15/75 1A
transistor

power TIP31A | TIP32A | TO-220 | 1.8V 1.2V 25/50 3A
transistor

power TIP41A | TIP42A | TO-220 | 2.0V 15V 15/75 3A
transistor

power TIP120 | TIP125 | TO-220 |25V 20V 1000 3A
darlington min

Table 1.6. Parameters of typical transistors used to source or sink current.

Under most conditions we place a resistor in series with the base of a BJT when using it as
a current switch. The value of this resistor is typically 100 to 10k . The purpose of
this base resistor is to limit the current into the base. The h,,is typically around 60 . It

you connect a microcontroller output port directly to the base of a BJT (without the
resistor), then when the output is high it will try and generate a current of 3.3V/60 =50
mA, potentially damaging the microcontroller. If there isa 1k resistor between the
microcontroller and base of the NPN, then the V,, voltage goes to V.., (0.7) and (3.3-

0.7)/1000 or 2.6 mA.

In general, we can use an open collector NOT gate to control the current to a device, such
as a relay, a light emitting diode (LED), a solenoid, a small motor, and a small light. The
74HCO5 can handle up to 4 mA. The 7405 and 7406 can handle up to 16 and 40 mA
respectively, but they must be powered at +5V. For currents up to 150 mA we can use a
PN2222 transistor, as shown in Figure 1.23, to create a low-cost but effective solution.
When output of the microcontroller is high, the transistor is on, making its output low (V,,

or V). In this state, a 10 mA current is applied to the diode, and it lights up. But when

output of the microcontroller is low, the transistor is off, making its output float, which is
neither high nor low. This floating output state causes the LED current to be zero, and the
diode is dark. The resistor is selected to set the LED current. Assume the V. is 0.3V, and

the desired LED operating point is 1.9V 10mA. In this case, the correct resistor value is
(3.3-1.9-0.3V)/10mA = 110

Curert 33 vd Vo) [LMz
I :g l' - =
el TM4C
10
0 Ot
16 20 24
“u’d l:vults]l

Figure 1.23. Open collector used to interface a light emitting diode.
Checkpoint 1.17: What resistor value would you choose to operate the LED at 2V 20mA?

When needed for digital logic, we can convert an open collector output to a digital signal
using a pull-up resistor from the output to V.. In this way, when the open collector

output floats, the signal will be a digital high. How do we select the value of the pull-up
resistor? In general the smaller the resistor, the larger the I, it will be able to supply

when the output is high. On the other hand, a larger resistor does not waste as much I,
current when the output is low. One way to calculate the value of this pull-up resistor is to
first determine the required output high voltage, V., , and output high current, I_ . To

> “out*
supply a current of at least I, at a voltage above V,, the resistor must be less than:
R < (VCC ut)/ out

As an example we will calculate the resistor value for the situation where the circuit needs
to drive five regular TTL loads, with V. equal to 5V. We see from Figure 1.15 that V_,

must be above V; (2V) in order for the TTL inputs to sense a high logic level. We can add
a safety factor and set V,, at 3V. In order for the high output to drive all five TTL inputs,
I, must be more than five I;;. From Table 1.4, we see that I;;; is 40 pA, so I, should be

out

larger than 5 times 40 pA or 0.2mA. For this situation, the resistor must be less than (5-
3V)/0.2mA = 10 kQ.

Another example of open collector logic occurs when interfacing switches to the
microcontroller. The circuit on the left of Figure 1.24 shows a mechanical switch with one
terminal connected to ground. In this circuit, when the switch is pressed, the voltage r is
zero. When the switch is not processed, the signal r floats.

The circuit on the middle of Figure 1.24 shows the mechanical switch witha 10k pull-
up resistor attached the other side. When the switch is pressed the voltage at sstill goes to
zero, because the resistance of the switch (less than 0.1) is much less than the pull-up
resistor. But now when the switch is not pressed the pull-up resistor creates a +3.3V at s.
This circuit is shown connected to an input pin of the microcontroller. The software, by
reading the input port, can determine whether or not the switch is pressed. If the switch is
pressed the software will read zero, and if the switch is not pressed the software will read
one. This middle circuit is called negative logic because the active state, switch is being
pressed, has a lower voltage than the inactive state.

The circuit on the right of Figure 1.24 also interfaces a mechanical switch to the
microcontroller, but it implements positive logic using a pull-down resistor. The signal ¢
will be high if the switch is pressed and low if it is released. This right circuit is called
positive logic because the active state, switch is being pressed, has a higher voltage than
the inactive state.

+3.3V +3.3V

VM=o | (M35 or
i TMAC TMAC

= {irpuepart L irputport

l 10k

#
!
Figure 1.24. Single Pole Single Throw (SPST) Switch interface.

Observation: We can activate pull-up or pull-down resistors on the ports on most
microcontrollers, so the interfaces in Figure 1.24 can be made without the external
resistor.

Earlier we used a voltage and current argument to determine the value of the pull-up
resistor. In this section we present another method one could use to select this resistor. The
LM3S/TM4C microcontrollers havean input current of 2~ A. At 3.3V, this is the
equivalent of an input impedance of about 1 M . A switch has an on-resistance of less
than 1 . We want the resistor to be small when compared to 1M, but large compared
tol .Thel0k pull-up resistor is 100 times smaller than the input impedance and
10,000 times larger than the switch resistance. The internal pull-up mode on LM3S
microcontrollers ranges from an equivalent of 50 to 110 k . The internal pull-downmode

ranges from an equivalent of 55to 180 k . For the TMA4C, the internal pull-up resistor
ranges from 13 to 30 k , and the internal pull-down resistor ranges from 13 to 35 k

1.5. Digital Representation of Numbers

1.5.1. Fundamentals

Information is stored on the computer in binary form. A binary bit can exist in one of two
possible states. In positive logic, the presence of a voltage is called the ‘1°, true, asserted,
or high state. The absence of a voltage is called the ‘0, false, not asserted, or low state.
Conversely in negative logic, the true state has a lower voltage than the false state. Figure
1.25 shows the output of a typical complementary metal oxide semiconductor (CMOS)
circuit. The left side shows the condition with a true bit, and the right side shows a false.
The output of each digital circuit consists of a p-type transistor “on top of” an n-type
transistor. In digital circuits, each transistor is essentially on or off. If the transistor is on, it
is equivalent to a short circuit between its two output pins. Conversely, if the transistor is
off, it is equivalent to an open circuit between its outputs pins. On LM3S/TM4C
microcontrollers powered with 3.3 V supply, a voltage between 2 and 5 V is considered
high, and a voltage between 0 and 1.3 V is considered low. Separating the two regions by
0.7 V allows digital logic to operate reliably at very high speeds. The design of transistor-
level digital circuits is beyond the scope of this book. However, it is important to know
that digital data exist as binary bits and encoded as high and low voltages.

True -5, Equhalece Fadse 53/ Equdlece
ptype | e ptype | +31'3“
4‘:' an o B8 _CI }f aer
out=83v Out=0V
out=_23v Out=0v
nhype } n-type
4' ot icper; 4| an sort
I E 1 E

Figure 1.25. A binary bit is true if a voltage is present and false if the
voltage is 0.

Numbers are stored on the computer in binary form. In other words, information is
encoded as a sequence of 1’s and 0’s. On most computers, the memory is organized into 8-
bit bytes. This means each 8-bit byte stored in memory will have a separate address.
Precision is the number of distinct or different values. We express precision in
alternatives, decimal digits, bytes, or binary bits. Alternatives are defined as the total
number of possibilities as listed in Table 1.7. Let the operation [[x]] be the greatest integer
of x. E.g., [[2.1]] is rounded up to 3. For example, an 8-bit number scheme can represent
256 different numbers, which means 256 alternatives. An 8-bit digital to analog converter
(DAC) can generate 256 different analog outputs. An 8-bit analog to digital converter
(ADC) can measure 256 different analog inputs.

Binary bits Bytes Alternatives

8 1 256

10 1024

12 4096

16 2 65,536

20 1,048,576

24 3 16,777,216

30 1,073,741,824
32 4 4,294,967,296
n [[n/8]] 2

Table 1.7. Relationship between bits, bytes and alternatives as units of precision.

Observation: A good rule of thumb to remember is 2!°"is approximately 103",

Decimal digits are used to specify precision of measurement systems that display results
as numerical values, as defined in Table 1.8. A full decimal digit can be any value 0, 1, 2,
3,4,5,6,7,8,or9. Adigit that can be either O or 1 is defined as a 2 decimal digit. The
terminology of a ¥2 decimal digit did not arise from a mathematical perspective of
precision, but rather it arose from the physical width of the LED/LCD module used to
display a blank or ’1’ as compared to the width of a full digit. Similarly, we define a digit
that can be + or - also as a half decimal digit, because it has two choices. A digit that can
be 0,1,2,3 is defined as a % decimal digit, because it is wider than a ¥ digit but narrower
than a full digit. We also define a digit that can be -1, -0, +0, or +1 as a % decimal digit,
because it also has four choices. We use the expression 4% decimal digits to mean 20,000
alternatives and the expression 4% decimal digits to mean 40,000 alternatives. The use of
a ¥4 decimal digit to mean twice the number of alternatives or one additional binary bit is
widely accepted. On the other hand, the use of 3% decimal digit to mean four times the
number of alternatives or two additional binary bits is not as commonly accepted. For
example, consider the two ohmmeters. Assume bothare set to the 0 to 200 k range.
A3% digit ohmmeter has a resolution of 0.1 k with measurements ranging from 0.0 to
199.9 k . On the other hand, a4' digit ohmmeter has a resolution of 0.01 k with
measurements ranging from 0.00 to 199.99 k . Table 1.8 illustrates decimal-digit
representation of precision.

Decimal digits | Alternatives
3 1000

35 2000

3% 4000

4 10,000

45 20,000

43% 40,000

5 100,000

n 10"

Table 1.8. Definition of decimal digits as a unit of precision.

Checkpoint 1.18: How many binary bits correspond to 2V2 decimal digits?
Checkpoint 1.19: How many decimal digits correspond to 10 binary bits?
Checkpoint 1.20: How many binary bits correspond to 6%2 decimal digits?

Checkpoint 1.21: About how many decimal digits can be presented in a 64-bit 8-byte
number? You can answer this without a calculator, just using the “rule of thumb™.

The hexadecimal number system uses base 16 as opposed to our regular decimal number
system that uses base 10. Hexadecimal is a convenient mechanism for humans to represent
binary information, because it is extremely simple for us to convert back and forth
between binary and hexadecimal. Hexadecimal number system is often abbreviated as
“hex”. A nibble is defined as four binary bits, which will be one hexadecimal digit. In
mathematics, a subscript of 2 means binary, but in this book we will define binary
numbers beginning with %. In assembly language however, we will use hexadecimal
format when we need to define binary numbers. The hexadecimal digits are 0, 1, 2, 3, 4, 5,
6,7,8,9, A, B, C,D,E, and F. Some assembly languages use the prefix $ to signify
hexadecimal, and in C we use the prefix 0x. To convert from binary to hexadecimal, you
simply separate the binary number into groups of four binary bits (starting on the right),
then convert each group of four bits into one hexadecimal digit. For example, if you
wished to convert 10100111, first you would group it into nibbles 1010 0111, then you

would convert each group 1010=A and 0111=7, yielding the result of OxA7. To convert
hexadecimal to binary, you simply substitute the 4-bit binary for each hexadecimal digit.
For example, if you wished to convert 0xB5D1, you substitute B=1011, 5=0101, D=1101,
and 1=0001, yielding the result of 1011010111010001,,.

Checkpoint 1.22: Convert the binary number 111011101011, to hexadecimal.

Checkpoint 1.23: Convert the hex number 0x3800 to binary.
Checkpoint 1.24: How many binary bits does it take to represent 0x12345?

A great deal of confusion exists over the abbreviations we use for large numbers. In 1998
the International Electrotechnical Commission (IEC) defined a new set of abbreviations
for the powers of 2, as shown in Table 1.9. These new terms are endorsed by the Institute
of Electrical and Electronics Engineers (IEEE) and International Committee for Weights
and Measures (CIPM) in situations where the use of a binary prefix is appropriate. The
confusion arises over the fact that the mainstream computer industry, such as Microsoft,
Apple, and Dell, continues to use the old terminology. According to the companies that
market to consumers, a 1 GHz is 1,000,000,000 Hz but 1 Gbyte of memory is
1,073,741,824 bytes. The correct terminology is to use the SI-decimal abbreviations to
represent powers of 10, and the IEC-binary abbreviations to represent powers of 2. The
scientific meaning of 2 kilovolts is 2000 volts, but 2 kibibytes is the proper way to specify
2048 bytes. The term kibibyte is a contraction of kilo binary byte and is a unit of
information or computer storage, abbreviated KiB.

1 KiB = 219 bytes = 1024 bytes
1 MiB = 229 bytes = 1,048,576 bytes
1 GiB = 2% bytes = 1,073,741,824 bytes

These abbreviations can also be used to specify the number of binary bits. The term
kibibit is a contraction of kilo binary bit, and is a unit of information or computer storage,
abbreviated Kibit.

1 Kibit = 219 bits = 1024 bits
1 Mibit = 220 bits = 1,048,576 bits
1 Gibit = 230 bits = 1,073,741,824 bits

A mebibyte (1 MiB is 1,048,576 bytes) is approximately equal to a megabyte (1 MB is
1,000,000 bytes), but mistaking the two has nonetheless led to confusion and even legal
disputes. In the engineering community, it is appropriate to use terms that have a clear and
unambiguous meaning.

Value SI SI Value IEC IEC
Decimal | Decimal Binary Binary
1000! k kilo- 1024¢ Ki kibi-
1000° M mega- 10242 Mi mebi-
1000° giga- 1024° Gi gibi-

1000* T tera- 10244 Ti tebi-

1000° P peta- 1024° Pi pebi-
1000° E exa- 1024° Ei exbi-
10007 Z zetta- 10247 Zi zebi-
10008 Y yotta- 10248 Yi yobi-

Table 1.9. Common abbreviations for large numbers.

1.5.2. 8-bit numbers

A byte contains 8 bits as shown in Figure 1.26, where each bit b.,...,b, is binary and has
the value 1 or 0. We specify b, as the most significant bit or MSB, and b, as the least

significant bit or LSB. In C, the unsigned char or uint8_t data type creates an unsigned
8-bit number.

o7 e [a]o2

Figure 1.26. 8-bit binary format, created using either char or unsigned
char (in C99 int8_t or uint8_t).

If a byte is used to represent an unsigned number, then the value of the number is
N = 128¢b, + 64b + 32¢b, + 16°b, + 8<b, + 4+b, + 2¢b, + b,

Notice that the significance of bit n is 2". There are 256 different unsigned 8-bit numbers.
The smallest unsigned 8-bit number is 0 and the largest is 255. For example, 10000100, is

128+4 or 132.
Checkpoint 1.25: Convert the binary number 01101001, to unsigned decimal.

Checkpoint 1.26: Convert the hex number 0x23 to unsigned decimal.

The basis of a number system is a subset from which linear combinations of the basis
elements can be used to construct the entire set. The basis represents the “places” in a
“place-value” system. For positive integers, the basis is the infinite set {1, 10, 100...} and
the “values” can range from 0 to 9. Each positive integer has a unique set of values such
that the dot-product of the value-vector times the basis-vector yields that number. For
example, 2345 is (..., 2,3,4,5)«(..., 1000,100,10,1), which is 2*1000+3*100+4*10+5. For
the unsigned 8-bit number system, the basis is

{1,2,4,8, 16, 32, 64, 128}

The values of a binary number system can only be 0 or 1. Even so, each 8-bit unsigned
integer has a unique set of values such that the dot-product of the values times the basis
yields that number. For example, 69 is (0,1,0,0,0,1,0,1)(128,64,32,16,8,4,2,1), which
equals 0*128+1*64+0*32+0*16+0*8+1*4+0*2+1*1.

Checkpoint 1.27: Give the representations of decimal 37 in 8-bit binary and hexadecimal.

Checkpoint 1.28: Give the representations of decimal 202 in 8-bit binary and
hexadecimal.

One of the first schemes to represent signed numbers was called one’s complement. It was
called one’s complement because to negate a number, you complement (logical not) each
bit. For example, if 25 equals 00011001 in binary, then —25 is 11100110. An 8-bit one’s
complement number can vary from 127 to +127. The most significant bit is a sign bit,
which is 1 if and only if the number is negative. The difficulty with this format is that
there are two zeros +0 is 00000000, and —0 is 11111111. Another problem is that ones
complement numbers do not have basis elements. These limitations led to the use of two’s
complement.

In C, the char or int8_t data type creates a signed 8-bit number. The two’s complement
number system is the most common approach used to define signed numbers. It was called
two’s complement because to negate a number, you complement each bit (like one’s
complement), and then add 1. For example, if 25 equals 00011001 in binary, then -25 is
11100111. If a byte is used to represent a signed two’s complement number, then the value
is

N = -128¢b, + 64sb, + 32¢b, + 16%b, + 8+b, + 4b, + 2+b, + b,

There are 256 different signed 8-bit numbers. The smallest signed 8-bit number is -128
and the largest is 127. For example, 10000010, equals -128+2 or -126.

Checkpoint 1.29: Are the signed and unsigned decimal representations of the 8-bit hex
number 0x35 the same or different?

For the signed 8-bit number system the basis is
{1, 2, 4,8, 16, 32, 64, -128}

The most significant bit in a two’s complement signed number will specify the sign. An
error will occur if you use signed operations on unsigned numbers, or use unsigned
operations on signed numbers. To improve the clarity of our software, always specify the
format of your data (signed versus unsigned) when defining or accessing the data.

Checkpoint 1.30: Give the representations of -31 in 8-bit binary and hexadecimal.

Observation: To take the negative of a two’s complement signed number, we first
complement (flip) all the bits, then add 1.

Many beginning students confuse a signed number with a negative number. A signed
number is one that can be either positive or negative. A negative number is one less than
zero. Notice that the same binary pattern of 11111111, could represent either 255 or -1. It

is very important for the software developer to keep track of the number format. The
computer can not determine whether the 8-bit number is signed or unsigned. You, as the
programmer, will determine whether the number is signed or unsigned by the specific
assembly instructions you select to operate on the number. Some operations like addition,
subtraction, and shift left (multiply by 2) use the same hardware (instructions) for both
unsigned and signed operations. On the other hand, multiply, divide, and shift right (divide
by 2) require separate hardware (instruction) for unsigned and signed operations.

1.5.3. Character information

We can use bytes to represent characters with the American Standard Code for
Information Interchange (ASCII) code. Standard ASCII is actually only 7 bits, but is
stored using 8-bit bytes with the most significant byte equal to 0. Some computer systems
use the 8th bit of the ASCII code to define additional characters such as graphics and
letters in other alphabets. The 7-bit ASCII code definitions are given in the Table 1.10. For
example, the letter ‘V’ is in the 0x50 row and the 6 column. Putting the two together
yields hexadecimal 0x56. The NUL character has the value 0 and is used to terminate
strings. The ‘0’ character has value 0x30 and represents the zero digit. In C, we use the
char data type for characters.

BITS 4 to 6
0 ‘1 ‘2 ‘3 ‘4 ‘5 ‘6 ‘7

0O NULDLE SP 0 @ P ~ p
B/l SOHXON! 1 A Q a g
[2 STXDC2 « 2 B R b r
T3 ETXXOFF# 3 C S ¢ s
S4FEOTDC4 $ 4 D T d t
5 ENQNAK % 5 E U e u

0 6 ACKSYN & 6 F V f v
7 BELETB * 7 G W g w
T8 BS CAN (8 H X h x

O9HT EM) 9 I Y i 'y
A LF SUB * J Z] //

3 BVIT ESC + ; K [k {
CFF FS , < L \ 1 |
D CR GS - = M] m }
E SO RS . > N A n ~
F SI US / ? 0o _ 0 DEL

Table 1.10. Standard 7-bit ASCII.

Checkpoint 1.31: How is the character ‘0’ represented in ASCII?

One way to encode a character string is to use null-termination. In this way, the characters
of the string are stored one right after the other, and the end of the string is signified by the
NUL character (0). For example, the string “Valvano” is encoded as the following eight
bytes 0x56, 0x61, 0x6C, 0x76, 0x61, O0x6E, 0x6F, and 0x00.

Checkpoint 1.32: How is “Hello World” encoded as a null-terminated ASCII string?

1.5.4. 16-bit numbers

A halfword or short contains 16 bits, where each bit b,.,...,b, is binary and has the value

1 or 0, as shown in Figure 1.27. When we store 16-bit data into memory it requires two
bytes. The memory systems on most computers are byte addressable, which means there is
a unique address for each byte. Therefore, there are two possible ways to store in memory
the two bytes that constitute the 16-bit data. Data could be stored in either little-endian or
big-endian format. Little endian means the least significant byte is at the lower address
and the most significant byte is at the higher address. Big endian means the most
significant byte is at the lower address and the least significant byte is at the higher
address. Freescale microcontrollers implement the big-endian format. Intel computers
implement the little-endian format. Some processors, like the ARM and the PowerPC are
biendian, because they can be configured to efficiently handle both big and little endian.
Bit 15 of the Application Interrupt and Reset Control (APINT) register on the ARM ®
Cortex™-M specifies little-endian (0) or big-endian (1) data access. The Stellaris ® and
Tiva ® microcontrollers (LM3S/TM4C), however, only use little-endian mode. When
communicating data between computers one must know the format used.

B\ te-actiessatlerrerony
Litteadan format Y

Addess

“u
b151P14/013P12)P11]P10f Po | Pe |7 | Ps | bs [P4 | B3| B [b1 | B
Address+1-”

b7 | eee |
b1 eee |bg

Figure 1.27. A halfword is a 16-bit binary number. In C99 intl6_t or
uintl6_t.

If a halfword is used to represent an unsigned number, defined as an unsigned short or
uint16_t, then the value of the number is

N = 32768¢b,. + 16384+b,, + 8192¢b,, + 4096¢b,, + 2048+b,, + 1024b,, + 512+b, + 256¢b,
+128¢b, + 64sb, + 32¢b, + 16¢b, + 8+b, + 4eb, + 2+b, + b,

There are 65536 different unsigned 16-bit numbers. The smallest unsigned 16-bit number
is 0 and the largest is 65535. For example, 0010000110000100, or 0x2184 is

8192+256+128+4 or 8580. For the unsigned 16-bit number system the basis is
{1, 2, 4,8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768}

There are also 65536 different signed 16-bit numbers, defined either as short, signed
short, or int16_t. The smallest two’s complement signed 16-bit number is -32768 and the
largest is 32767. For example, 1101000000000100, or 0xD004 is 32768+16384+4096+4

or 12284. If a halfword is used to represent a signed two’s complement number, then the
value is

N = -327684b, + 16384sb,, + 8192¢b,, + 4096¢b,, + 2048+b,, + 1024+b , + 512b,
+ 256eb, + 128+b,, + 64sb, + 32¢b, + 16¢b, + 8+b, + 4sb, + 2¢b, + b,

An error will occur if you use 16-bit operations on 8-bit numbers, or use 8-bit operations
on 16-bit numbers. To improve the clarity of your software, always specify the precision
of your data when defining or accessing the data. For the signed 16-bit number system the
basis is

{1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, -32768}

1.5.5. 32-bit numbers

The native number on the ARM is a 32-bit word, where each bit b,,,...,b, is binary and
has the value 1 or 0, as shown in Figure 1.28, which is stored in little-endian format.

B teacttessabienerory "
Littlesxdan fermat

Address|oy | eee |

Address+1 bl5 *2e DB

by bsg by by t:’r;:n

Address42 (oo eee D14

Address43|g)| ese |bog

e
Figure 1.28. A word is 32-bit number. In C99 int32_t or uint32_t.

We define unsigned long or uint32_t to be an unsigned 32-bit number. The value is
N = 2%eb,, + 2%0b, + ... + 2%b, + 2'sb, + 2%,

There are 4,294,967,296 (2°?) different unsigned 32-bit numbers. The smallest unsigned
32-bit number is 0 and the largest is 4,294,967,295 (23?). For the unsigned 32-bit number
system the basis is

{20,21,22 .., 230 231}
We define long, signed long, or int32_t to be a signed 32-bit number. The value is
N = -23eb,, + 2%%b, + ... + 4eb, + 2+b, + b,

There are 4,294,967,296 (2°?) different signed 32-bit numbers. The smallest unsigned 32-
bit number is -2,147,483,648 (-2°!) and the largest is +2,147,483,647 (2°!-1). For the
signed 32-bit number system the basis is

{20, 24,22, ..., 2%, -2%1}

When dealing with 16 or 32-bit numbers we normally would not pick out individual bytes,
but rather capture the entire multiple-byte data as one non-divisible piece of information.
On the other hand, if each byte in a multiple-byte data structure is individually
addressable, then both the big- and little-endian schemes store the data in first to last
sequence. For example, assume we wish to store the four ASCII characters “LM3S” as a
string. These five bytes, which are 0x4C4D335300, would exist at five locations in
memory. The first letter, the ASCII ‘L’=0x4C would be stored in first location, regardless
of which endian format the computer uses.

The terms “big and little endian” comes from Jonathan Swift’s satire Gulliver’s Travels.

In Swift’s book, the little people of Blefuscu believed the correct way to crack an egg is on
the big end; hence they were called Big-Endians. In the rival kingdom, the little people of
Lilliput were called Little-Endians because they insisted that the only proper way is to
break an egg on the little end. The Lilliputians considered the people of Blefuscu as
inferiors. The Big- and Little-Endians fought a long and senseless war over which end is
best to crack an egg. Lilliput and Blefuscu were satirical references to 18" century Great
Britain and France. However, one might argue they also refer to Intel and Motorola during
the 1980°s.

1.5.6. Fixed-point numbers

We will use fixed-point numbers when we wish to express values in our computer that
have noninteger values. A fixed-point number contains two parts. The first part is a
variable integer, called I. The second part of a fixed-point number is a fixed constant,
called the resolution . The integer may be signed or unsigned. An unsigned fixed-point
number is one that has an unsigned variable integer. A signed fixed-point number is one
that has a signed variable integer. The precision of a number system is the total number of
distinguishable values that can be represented. The precision of a fixed-point number is
determined by the number of bits used to store the variable integer. On the ARM, we can
use 8, 16 or 32 bits for the integer. Extended precision with more the 32 bits can be
implemented, but the execution speed will be slower because the calculations will have to
be performed using software algorithms rather than with hardware instructions. This
integer part is saved in memory and is manipulated by software. These manipulations
include but are not limited to add, subtract, multiply, divide, and square root. The
resolution is fixed, and cannot be changed during execution of the program. The resolution
is not stored in memory. Usually we specify the value of the resolution using software
comments to explain our fixed-point algorithm. The value of the fixed-point number is
defined as the product of the variable integer and the fixed constant:

Fixed-point value= I+ A

Observation: If the range of numbers is known and small, then the numbers can be
represented in a fixed-point format.

We specify the range of a fixed-point number system by giving the smallest and largest
possible value. The range depends on both the variable integer and the fixed constant. For
example, if the system used a 16-bit unsigned variable, then the integer part can vary from
0 to 65535. Therefore, the range of an unsigned 16-bit fixed-point system is 0 to

65535« . In general, the range of the fixed-point system is

n

Smallest fixed-point value =1 . -, where I . is the smallest integer value

Largest fixed-point value =1 __ -, where I is the largest integer value

ax

Checkpoint 1.33: What is the range of a 16-bit signed fixed-point number with =
0.001?

When interacting with a human operator, it is usually convenient to use decimal fixed-
point. With decimal fixed-point the fixed constant is a power of 10.

Decimal fixed-point value I+ 10™ for some constant integer m

Again, the m is fixed and is not stored in memory. Decimal fixed-point will be easy to
display, while binary fixed-point will be easier to use when performing mathematical
calculations. The ARM processor is very efficient performing left and right shifts. With
binary fixed-point the fixed constant is a power of 2. An example is shown in Figure
1.29.

Binary fixed-point value I+ 2" for some constant integer n

bg | bg|P7|bs|Ps| g 3|2 [b1 bolb-l by bzbgbebg

A
Fixedlbinany paré
Figure 1.29. 16-bit binary fixed-point format with =2,

It is good practice to express the fixed-point resolution with units. For example, a decimal
fixed-point number with a resolution of 0.001 V is really the same thing as an integer with
units of mV. Consider an analog to digital converter (ADC) that converts an analog
voltage in the range of 0 to +5 V into a digital number between 0 and 255. This ADC has a
precision of 8 bits because it has 256 distinct alternatives. ADC resolution is defined as
the smallest difference in input voltage that can be reliably distinguished. Because the 256
alternatives are spread evenly across the 0 to +5V range, we expect the ADC resolution to
be about 5V/256 or 0.02V. When we choose a fixed-point number system to represent the
voltages we must satisfy two constraints. First, we want the resolution of the number
format to be better than the ADC resolution (< 0.02). Second, we want the range of the
number system to encompass all of the voltages in the range of the ADC (65535¢ > 5). It
would be appropriate to store voltages as 16-bit unsigned decimal fixed-point numbers
with a resolution of 0.01V, 0.001V, or 0.0001V.

Using =0.01V, we store 4.23 V by making the integer part equal to 423. If we wished to
use binary fixed-point, then we could choose a resolution anywhere in the range of 2 to 2-
13'V. In general, we want to choose the largest resolution that satisfies both constraints, so
the integer parts have smaller values. Smaller numbers are less likely to cause overflow
during calculations. More discussion of overflow will be presented in the next chapter.

Checkpoint 1.34:Give an approximation of using the decimal fixed-point with =
0.001.

Checkpoint 1.35:Give an approximation of using the binary fixed-point with =27,

Microcontrollers in the LM3S family have a 10-bit ADC and a range of 0 to +3 V.
Microcontrollers in the TM4C family provide a 12-bit ADC and a range of 0 to +3.3 V.
With a 12-bit ADC, the resolution is 3.3V/4096 or about 0.001V. It would be appropriate
to store voltages as 16-bit unsigned fixed-point numbers with a resolution of either 10 or
2719V, Let V, be the analog voltage in volts and N be the integer ADC output, then the

analog to digital conversion is approximately
N=4096*V. /3.3

Assume we use a fixed-point resolution of 10~ V. We use this equation to calculate the
integer part of a fixed-point number given the ADC result N. The definition of the fixed-
point is

V. =1+107
Combining the above two equations yields
I=(3300 * N)/ 4096

It is very important to carefully consider the order of operations when performing multiple
integer calculations. There are two mistakes that can happen when we calculate
3300*N/1024. The first error is overflow, and it is easy to detect. Overflow occurs when
the result of a calculation exceeds the range of the number system. In this example, if the
multiply is implemented as 16-bit operation, then 3000*N can overflow the 0 to 65535
range. One solution of the overflow problem is promotion. Promotion is the action of
increasing the inputs to a higher precision, performing the calculation at the higher
precision, checking for overflow, then demoting the result back to the lower precision. In
this example, the 3300, N, and 4096 are all converted to 32-bit unsigned numbers.
(3300*N)/4096 is calculated in 32-bit precision. Because we know the range of N is 0 to
4095, we know the calculation of I will yield numbers between 0 and 3300, and therefore
it will fit back in a 16-bit variable during demotion. The other error is called drop-out.
Drop-out occurs during a right shift or a divide, and the consequence is that an
intermediate result looses its ability to represent all of the values. To avoid drop-out, it is
very important to divide last when performing multiple integer calculations. If we divided
first, e.g., I=3300*(N/4096), then the values of I would always be 0. We could have
calculated I=(3300*N+2048)/4096 to implement rounding to the closest integer. The value
2048 is selected because it is about one half of the denominator. Sometimes we can
simplify the numbers in an attempt to prevent overflow. In this cause we could have
calculated I=(825*N+256)/1024. However, this formulation could still overflow and
requires promotion to 32 bits to operate correctly.

When adding or subtracting two fixed-point numbers with the same , we simply add or
subtract their integer parts. First, let x, y, and zbe three fixed-point numbers with the
same . Let x=I+, y=J+ , and z=K* . To perform z=x+y, we simply calculate K=I+J.
Similarly, to perform z=x-y, we simply calculate K=I-J.

When adding or subtracting fixed-point numbers with different fixed parts, then we must
first convert the two inputs to the format of the result before adding or subtracting. This is
where binary fixed-point is more efficient, because the conversion process involves
shifting rather than multiplication/division. Many instructions on the ARM allow a data
shift operation to be performed at no added execution time.

For multiplication, we have z=xsy. Again, we substitute the definitions of each fixed-point
parameter, and solve for the integer part of the result. If all three variables have the same
resolution, then z=x+y becomes K¢ = [+ « J* yielding K = I+J+ . If the three variables have
different resolutions, such as x=I2", y=J+2™ and z=K*2?, then z=x*y becomes K*2P = [+2" ¢
Je2™ yielding K = [eJe2™™P.

For division, we have z=x/y. Again, we substitute the definitions of each fixed-point
parameter, and solve for the integer part of the result. If all three variables have the same
resolution, then z=x/y becomes K¢ = (I)/(J*) yielding K = I/J/ . If the three variables have
different resolutions, such as x=I2", y=J«2™, and z=K*2P, then z=x/y becomes K*2? =
(I-2™)/(J*2™) yielding K = (I/J)*2"™?. Again, it is very important to carefully consider the
order of operations when performing multiple integer calculations. We must worry about
overflow and drop-out. If (n-m-p) is positive then the left shift (I-2"™?) should be
performed before the divide (/J). Conversely, if (n-m-p) is negative then the right shift
should be performed after the divide (/J).

We can approximate a non-integer constant as the quotient of two integers. For example,
the difference between 41/29 and V2 is 0.00042. If we need a more accurate
representation, we can increase the size of the integers; the difference between 239/169
and V2 is only 1.2E-05. Using a binary fixed-point approximation will be faster on the
ARM because of the efficiency of the shift operation. For example, approximating v2 as
181/128 yields an error of 0.0002. Furthermore, approximating V2 as 11585/8192 yields
an error of only 2.9E-05.

Observation: For most real numbers in the range of 0.5 to 2, we can find two 3-digit
integers I and J such that the difference between the approximation I/J and truth is less
than 1E-5.

Checkpoint 1.36: What is the error in approximating V5 by 161/72? By 682/305?

We can use fixed-point numbers to perform complex operations using the integer
functions of our microcontroller. For example, consider the following digital filter
calculation.

y = x-0.0532672+x1 + x2 + 0.0506038°y1-0.9025+y2

In this case, the variables y, y1, y2, x, x1, and x2 are all integers, but the constants will be
expressed in binary fixed-point format. The value -0.0532672 will be approximated by
-14+28, The value 0.0506038 will be approximated by 13+2®, Lastly, the value -0.9025
will be approximated by -231+2%, The fixed-point implementation of this digital filter is

y =X+ x2 + (-14+x1 + 13yl - 231+y2)>>8

Common Error: Lazy or incompetent programmers use floating-point in many situations
where fixed-point would be preferable.

Observation: As the fixed constant is made smaller, the accuracy of the fixed-point
representation is improved, but the variable integer part also increases. Unfortunately,
larger integers will require more bits for storage and calculations.

Checkpoint 1.37: Using a fixed constant of 10, rewrite the digital filter y =
x+0.0532672+x1+x2+0.0506038°y1-0.9025+y2 in decimal fixed-point format.

Example 1.5: Implement a function to calculate the surface area of a cylinder using fixed-
point calculations. r is radius of the cylinder, which can vary from 0 to 1 cm. The radius is
stored as a fixed-pointnumber with resolution 0.001 cm. The software variable containing
the integer part of the radius is n, which can vary from 0 to 1000. The height of the
cylinder is 1 cm. The surface area is approximated by

s=2 *(r*+r)

Solution: The surface area can range from 0 to 12.566 cm? (2 *(1% + 1)). The surface
area is stored as a fixed-point number with resolution 0.001 cm?. The software variable
containing the integer part of the surface area is m , which can vary from 0 to 12566. In
order to better understand the problem, we make a table of expected results.

0.000 | 0 0.000 |0

0.001 |1 0.006 |6

0.010 | 10 0.063 |63

0.100 | 100 |0.691 |691

1.000 | 1000 | 12.566 | 12566

To solve this problem we use the definition of a fixed-point number. In this case, ris equal
to n /1000 and s is equal to m/1000. We substitution these definitions into the desired
equation.

s = (6.283)*(r* + r)

m /1000= 6.283*((n /1000)?+ (n /1000))
m = 6.283*(n 21000+ n)

m = 6283*(n >+ 1000* n)/1000000

m = (6283*(n +1000)* n)/1000000

If we wish to round the result to the closest integer we can add %: the divisor before
dividing.

m = (6283*(n +1000)* n +500000)/1000000

One of the problems with this equation is the intermediate result can overflow a 32-bit
calculation. One way to remove the overflow is to approximate 2 by 6.28. However,
this introduces error. A better way to eliminate overflow is to approximate 2 by 289/46.

m = (289*(n +1000)* n +23000)/46000

If we set n to its largest value, n =1000, we calculate the largest value the numerator can
be as (289*(1000 +1000)* 1000 +23000) = 578023000, which fits in a 30-bit number.

1.5.7. Floating-point numbers

We can use fixed-point when the range of values is small and known. Therefore, we will
not need floating-point operations for most embedded system applications because fixed-
point is sufficient. Furthermore, if the processor does not have floating-point instructions
then a floating-point implementation will run much slower than the corresponding fixed-
point implementation. However, it is appropriate to know the definition of floating-point.
NASA believes that there are on the order of 10*! stars in our Universe. Manipulating large
numbers like these is not possible using integer or fixed-point formats. Other limitation
with integer or fixed-point numbers is there are some situations where the range of values
is not known at the time the software is being designed. In a Physics research project, you
might be asked to count the rate at which particles strike a sensor. Since the experiment
has never been performed before, you do not know in advance whether there will be 1 per
second or 1 trillion per second. The applications with numbers of large or unknown range
can be solved with floating-point numbers. Floating-point is similar in format to binary
fixed-point, except the exponent is allowed to change at run time. Consequently, both the
exponent and the mantissa will be stored. Just like with fixed-point numbers we will use
binary exponents for internal calculations, and decimal exponents when interfacing with
humans. This number system is called floating-point because as the exponent varies the
binary point or decimal point moves.

Observation: If the range of numbers is unknown or large, then the numbers must be
represented in a floating-point format.

Observation: Floating-point implementations on computers like the Cortex™-M3 that do
not have hardware support are extremely long and very slow. So, if you really need
floating point, an LM4F/TM4C with floating point hardware support is highly desirable.

The IEEE Standard for Binary Floating-Point Arithmetic or ANSI/IEEE Std 754-1985 is
the most widely-used format for floating-point numbers. The single precision floating
point operations on the LM4F/TM4C microcontrollers are compatible with this standard.
There are three common IEEE formats: single-precision (32-bit), double-precision (64-
bit), and double-extended precision (80-bits). Only the 32-bit short real format is
presented here. The floating-point format, f, for the single-precision data type is shown in
Figure 1.30. Computers use binary floating-point because it is faster to shift than it is to
multiply/divide by 10.

Bit 31 Mantissa sign, s=0 for positive, s=1 for negative
Bits 30:23 8-bit biased binary exponent 0 < e < 255
Bits 22:0 24-bit mantissa, m, expressed as a binary fraction,

A binary 1 as the most significant bit is implied.

m=1.mm,m,...m,

Se? eCI rT].'I. @3

Figure 1.30. 32-bit single-precision floating-point format.

The value of a single-precision floating-point number is

f: (_1)5 . 26-127, m

The range of values that can be represented in the single-precision format is about +10-
to +10"38, The 24-bit mantissa yields a precision of about 7 decimal digits. The floating-
point value is zero if both e and m are zero. Because of the sign bit, there are two zeros,

positive and negative, which behave the same during calculations. To illustrate floating-
point, we will calculate the single-precision representation of the number 10. To find the
binary representation of a floating-point number, first extract the sign.

10 = (-1)? +10

Step 2, multiply or divide by two until the mantissa is greater than or equal to 1, but less
than 2.

10 = (-1)7 «23+ 1.25

Step 3, the exponent e is equal to the number of divide by twos plus 127.

10 = (-1)0 «2130-127. 1 25

Step 4, separate the 1 from the mantissa. Recall that the 1 will not be stored.

10 = (-1)0 «2139-1274 (1+0.25)

Step 5, express the mantissa as a binary fixed-point number with a fixed constant of 2-23.
10 = (-1)° «2130-127¢ (1+2097152¢272)

Step 6, convert the exponent and mantissa components to hexadecimal.

10 = (-1)0 +2%82-127% (1+$200000+223)
Step 7, extract s, e, m terms, convert hexadecimal to binary
10 = (0,$82,$200000) = (0,10000010,01000000000000000000000)

Sometimes this conversion does not yield an exact representation, as in the case of 0.1. In
particular, the fixed-point representation of 0.6 is only an approximation.

Step 1 0.1=(-1)"+0.1

Step 2 0.1=(-1)"<2% 1.6

Step 3 0.1 =(-1)°"212%127« 1.6

Step 4 0.1 = (-1)° 213127+ (140.6)

Step 5 0.1 (-1)° «21%127 (145033165:2%%)

Step 6 0.1 (-1)° 2174 (1+$4CCCCDe2%)

Step 7 0.1 (0,$7B,$4CCCCD) = (0,01111011,10011001100110011001101)

The following example shows the steps in finding the floating-pointapproximation for

Step 1 = (-1)0

Step 2 (-1)° «21 1.570796327

Step 3 (-1)° «2121274 1 570796327

Step 4 (-1)° +2138127 (1+0.570796327)

Step 5 (-1)° +2128127 (1+4788187+2%)

Step 6 (-1)° +2%8%127% (14+$490FDB+2%)

Step 7 (0,$80,$490FDB) = (0,10000000,10010010000111111011011)

There are some special cases for floating-point numbers. When e is 255, the number is
considered as plus or minus infinity, which probably resulted from an overflow during
calculation. When e is 0, the number is considered as denormalized. The value of the
mantissa of a denormalized number is less than 1. A denormalized short result number has
the value,

f=(-1) 2% m where m = 0.m,m,m,...m,,

Observation: The floating-point zero is stored in denormalized format.

When two floating-point numbers are added or subtracted, the smaller one is first
unnormalized. The mantissa of the smaller number is shifted right and its exponent is
incremented until the two numbers have the same exponent. Then, the mantissas are added
or subtracted. Lastly, the result is normalized. To illustrate the floating-point addition,
consider the case of 10+0.1. First, we show the original numbers in floating-point format.
The mantissa is shown in binary format.

10.0 = (-1)° +23 « 1.01000000000000000000000
+0.1=(-1)° 2+ 1.10011001100110011001101

Every time the exponent is incremented the mantissa is shifted to the right. Notice that 7
binary digits are lost. The 0.1 number is unnormalized, but now the two numbers have the
same exponent. Often the result of the addition or subtraction will need to be normalized.
In this case the sum did not need normalization.

10.0 = (-1)° +23 « 1.01000000000000000000000
+0.1 =(-1)° «23+ 0.00000011001100110011001 1001101
10.1 = (-1)° +2*+ 1.01000011001100110011001

When two floating-point numbers are multiplied, their mantissas are multiplied and their
exponents are added. When dividing two floating-point numbers, their mantissas are
divided and their exponents are subtracted. After multiplication and division, the result
must be normalized. To illustrate the floating-point multiplication, consider the case of
10*0.1. Let m1, m2 be the values of the two mantissas. Since the range is 1 < ml, m2 < 2,
the product m1*m2 will vary from 1 < m1*m2 < 4.

10.0 = (-1)° «23 « 1.01000000000000000000000
*0.1=(-1)°+2%+1.10011001100110011001101
1.0 = (-1)° »271«10.00000000000000000000000

The result needs to be normalized.
1.0 = (-1)° «2° « 1.00000000000000000000000

Roundoff is the error that occurs as a result of an arithmetic operation. For example, the
multiplication of two 32-bit mantissas yields a 64-bit product. The final result is
normalized into a normalized floating-point number with a 32-bit mantissa. Roundoff is
the error caused by discarding the least significant bits of the product. Roundoff during
addition and subtraction can occur in two places. First, an error can result when the
smaller number is shifted right. Second, when two n-bit numbers are added the result is
n+1 bits, so an error can occur as the n+1 sum is squeezed back into an n-bit result.

Truncation is the error that occurs when a number is converted from one format to
another. For example, when an 80-bit floating-point number is converted to 32-bit
floating-point format, 40 bits are lost as the 64-bit mantissa is truncated to fit into the 24-
bit mantissa. Recall, the number 0.1 could not be exactly represented as a short real
floating-point number. This is an example of truncation as the true fraction was truncated
to fit into the finite number of bits available.

If the range is known and small and a fixed-point system can be used, then a 32-bit fixed-
point number system will have better resolution than a 32-bit floating-point system. For a
fixed range of values (i.e., one with a constant exponent), a 32-bit floating-point system
has only 23 bits of precision, while a 32-bit fixed-point system has 9 more bits of
precision.

Performance Tip: The single precision floating-point programs written in assembly on
the TM4C run much faster than equivalent C code because you can write assembly to
perform operations in the native floating point assembly instructions.

1.6. Ethics

Because embedded systems are employed in many safety-critical devices, injury or death
may result if there are hardware and/or software faults. Table 1.11 lists dictionary
definitions of the related terms morals and ethics. A moral person is one who knows right

from wrong, but an ethical person does the right thing.

Morals

1. of, pertaining to, or concerned
with the principles or rules of right
conduct or the distinction between
right and wrong; ethical: moral
attitudes.

2. expressing or conveying truths or
counsel as to right conduct, as a
speaker or a literary work;
moralizing: a moral novel.

3. founded on the fundamental
principles of right conduct rather
than on legalities, enactment, or
custom: moral obligations.

4. capable of conforming to the rules
of right conduct: a moral being.

5. conforming to the rules of right
conduct (opposed to immoral): a
moral man.

6. virtuous in sexual matters; chaste.

7. of, pertaining to, or acting on the
mind, feelings, will, or character:
moral support.

8. resting upon convincing grounds
of probability; virtual: a moral
certainty.

Ethics

1. (used with a singular or plural
verb) a system of moral principles:
the ethics of a culture.

2. the rules of conduct recognized in
respect to a particular class of human
actions or a particular group, culture,
etc.: medical ethics; Christian ethics.

3. moral principles, as of an
individual: His ethics forbade
betrayal of a confidence.

4. (usually used with a singular verb)
that branch of philosophy dealing
with values relating to human
conduct, with respect to the rightness
and wrongness of certain actions and
to the goodness and badness of the
motives and ends of such actions.

Table 1.11. Dictionary definitions of morals and ethics

http://dictionary.reference.com

Most companies have a specific and detailed code of ethics, similar to the IEEE Code of
Ethics presented below. Furthermore, patent and copyright laws provide a legal
perspective to what is right and wrong. Nevertheless, many situations present themselves
in the grey area. In these cases, you should seek advice from people whose ethics you
trust. However, you are ultimately responsible for your own actions.

IEEE Code of Ethics

We, the members of the IEEE, in recognition of the importance of our
technologies in daffecting the quality of life throughout the world, and in
accepting a personal obligation to our profession, its members and the
communities we serve, do hereby commit ourselves to the highest ethical and
professional conduct and agree:

1. to accept responsibility in making decisions consistent with the safety,
health, and welfare of the public, and to disclose promptly factors that might
endanger the public or the environment;

2. to avoid real or perceived conflicts of interest whenever possible, and to
disclose them to affected parties when they do exist;

3. to be honest and realistic in stating claims or estimates based on available
data;

4. to reject bribery in all its forms;

5. to improve the understanding of technology; its appropriate application,
and potential consequences;

6. to maintain and improve our technical competence and to undertake
technological tasks for others only if qualified by training or experience, or
dfter full disclosure of pertinent limitations;

7. to seek, accept, and offer honest criticism of technical work, to
acknowledge and correct errors, and to credit properly the contributions of
others;

8. to treat fairly all persons regardless of such factors as race, religion,
gender, disability, age, or national origin;

9. to avoid injuring others, their property, reputation, or employment by false
or malicious action;

10. to assist colleagues and co-workers in their professional development and
to support them in following this code of ethics.

A great volume of software exists in books and on the Internet. How you use this
information in your classes is up to your professor. When you become a practicing
engineer making products for profit, you will wish to use software written by others.
Examples of software in books and on the internet are comprised of two components. The
first component is the software code itself, and the second component is the algorithm
used to solve the problem. To use the algorithm, you should search to see if it has patent
protection. If it is protected, you could purchase or license the technology. If the algorithm
is not protected and you wish to use the software code, you should ask permission from
the author and give citation to source. If the algorithm is not protected and the author does
not grant permission, you can still implement the algorithm by writing your own
software. In all cases, you are responsible for testing.

A very difficult situation results when you leave one company and begin work for another.
Technical expertise (things you know) and procedures (things you know how to do) that
you have learned while working for a company belong to you, not your employer. This is
such a huge problem that many employers have a detailed and legal contract employees
must sign to be hired. A non-compete clause (NCC), also called a covenant not to
compete (CNC), certifies the employee agrees not to pursue a similar job with any
company in competition with the employer. Companies use these agreements to prevent
present and former employees from working with their competitors. An example
agreement follows:

EMPLOYEE NON-COMPETE AGREEMENT

For good consideration and as an inducement for (Company) to

employ (Employee), the undersigned Employee hereby agrees not
to directly or indirectly compete with the business of the Company and its successors and

assigns during the period of employment and for a period of years following

termination of employment and notwithstanding the cause or reason for termination. The
term “not compete” as used herein shall mean that the Employee shall not own, manage,
operate, consult or to be employee in a business substantially similar to or competitive
with the present business of the Company or such other business activity in which the
Company may substantially engage during the term of employment. The Employee
acknowledges that the Company shall or may in reliance of this agreement provide
Employee access to trade secrets, customers and other confidential data and good will.
Employee agrees to retain said information as confidential and not to use said information
on his or her behalf or disclose same to any third party. This agreement shall be binding
upon and inure to the benefit of the parties, their successors, assigns, and personal

representatives.

Signed this day of

Company

Employee

1.7. Exercises

1.1 Is RAM volatile or nonvolatile?
1.2 Is flash ROM volatile or nonvolatile?

1.3 For each term give a definition in 16 words or less: microprocessor, microcomputer,
and microcontroller.

1.4 For each term give a definition in 16 words or less: bandwidth, real-time, latency.
1.5 For each term give a definition in 16 words or less: volatile, nonvolatile.

1.6 List the four components of a processor and define each in 16 words or less

1.7 For each parameter give a definition in 16 words or less: precision, range, resolution
1.8 What are the differences between CISC and RISC processors?

1.9 Describe structured programming in 16 words or less.

1.10 What are the differences between parallel programming and concurrent
programming?

1.11 Define distributed programming in 16 words or less.

1.12 What are the differences between tristate and open collector logic?
1.13 Define open drain logic in 16 words or less?

1.14 Define 5-V tolerant in 16 words or less?

1.15 Considering just current, how many 74S Schottky inputs can one microcontroller
output drive running in 8 mA output mode?

1.16 Considering just current, how many 74LS low-power Schottky inputs can one
microcontroller output drive running in 2 mA output mode?

1.17 What is the qualitative difference in supply current between the CMOS devices and
the non-CMOS devices? What is the explanation for the difference?

1.18 Using the circuit in Figure 1.23, what resistor value operates an LED at 1.8 V and 15
mA?

1.19 Using the circuit in Figure 1.23, what resistor value operates an LED at 1.6 V and 12
mA?

1.20 In 16 words or less describe the differences between positive logic and negative
logic.

1.21 For each ADC parameter give a definition in 20 words or less: precision, range,
resolution

1.22 How many alternatives does a 12-bit ADC have?
1.23 If a system uses an 11-bit ADC, about how many decimal digits will it have?
1.24 What is the difference between the terms kilobit and kibibit?

1.25 How many alternatives does a 13-bit ADC have?
1.26 If a system uses an 14-bit ADC, about how many decimal digits will it have?

1.27 If a system requires 3% decimal digits of precision, what is the smallest number of
bits the ADC needs to have?

1.28 If a system requires 5 decimal digits of precision, what is the smallest number of bits
the ADC needs to have?

1.29 Convert the following decimal numbers to 8-bit unsigned binary: 26, 65, 124, and
202.

1.30 Convert the following decimal numbers to 8-bit signed binary: 23, 61, -122, and -5.

1.31 Convert the following hex numbers to unsigned decimal: 0x2A, 0x69, 0xB3, and
0xDE.

1.32 Convert the 16-bit binary number 0010001001101010, to unsigned decimal.

1.33 Convert the 16-bit hex number 0x5678 to unsigned decimal.

1.34 Convert the unsigned decimal number 12345 to 16-bit hexadecimal.

1.35 Convert the unsigned decimal number 20000 to 16-bit binary.

1.36 Convert the 16-bit hex number 0x7654 to signed decimal.

1.37 Convert the 16-bit hex number OXxBCDE to signed decimal.

1.38 Convert the signed decimal number 23456 to 16-bit hexadecimal.

1.39 Convert the signed decimal number —20000 to 16-bit binary.

1.40 Give an approximation of V7using the decimal fixed-point (= 0.001) format.
1.41 Give an approximation of V7using the binary fixed-point (= 28) format.
1.42 Give an approximation of V103using the decimal fixed-point (= 0.01) format.
1.43 Give an approximation of V93 using the binary fixed-point (= 2**) format.

1.44 A signed 16-bit binary fixed-point number system hasa resolution of 1/256. What
is the corresponding value of the number if the integer part stored in memory is 3857

1.45 An unsigned 16-bit decimal fixed-point number system hasa resolution of 1/100.
What is the corresponding value of the number if the integer part stored in memory is
3857?

1.46 Give the short real floating-point representation of v 2.

1.47 Give the short real floating-point representation of —134.4.

1.48 Give the short real floating-point representation of —0.0123.

D1.49 Draw a flow chart for the embedded system described in Example 1.3.

D1.50 Draw a flow chart for the embedded system in a simple watch that just tells time.

D1.51 Search the internet for a design of a flash ROM cell that uses 2 transistors. Label on
the circuit the voltages occurring when the bit is zero, and when the bit is high.

D1.52 Search the internet for a design of a RAM cell that uses 6 transistors. Label on the
circuit the voltages occurring when the bit is zero, and the voltages occurring when the bit
is high.

D1.53 Design the circuit that interfaces a 1.5V 5mA LED to the microcontroller.

D1.53 Design the circuit that interfaces a 2.5V 1mA LED to the microcontroller.

D1.55 Assume M and N are two integers, each less than 1000. Find the best set of M and
N, such that M/N is approximately V6. (Like 27/11, but much more accurate).

D1.56 Assume M and N are two integers, each less than 1000. Find the best set of M and
N, such that M/N is approximately V7. (Like 8/3, but much more accurate).

D1.57 Assume M and N are two integers, each less than 1000. Find the best set of M and
N, such that M/N is approximately e. (Like 19/7, but much more accurate).

D1.58 Assume M and N are two integers, each less than 1000. Find the best set of M and
N, such that M/N is approximately In(2). (Like 9/13, but much more accurate).

D1.59 First, rewrite the following digital filter using decimal fixed-point math. Assume
the inputs are unsigned 8-bit values (0 to 255). Then, rewrite it so that it can be calculated
with integer math using the fact that 0.22222 is about 2/9 and 0.088889 is about 4/45 and
0.8 is 4/5. In both cases, the calculations are to be performed in 16-bit unsigned integer
form without overflow. y = 0.22222+x +0.08889+x1 + 0.80000°y1

D1.60 Perform the operation 2+ in short real floating-point format. Determine the
difference between what you got and what you should have gotten (2+). This error has
two components: truncation error that results in the approximation itself and roundoff
error that occurs during the addition.

D1.61 Perform the operation 0.2*0.2 in short real floating-point format. Determine the
difference between what you got and what you should have gotten (0.04). This error has
two components: truncation error that results in the approximation of 0.2 itself and
roundoff error that occurs during the multiplication.

D1.62Perform the operation 1 + 1E9 in short real floating-point format. Determine the
difference between what you got and what you should have gotten.

D1.63 Consider the following situation: Suppose that you are a development engineer with
responsibility for an embedded system employed in one of your company’s major
products. You seek to improve the efficiency of the embedded system and, following
some research, you discover an algorithm posted on the Web that would provide a vast
improvement for your system. The algorithm is written in the same language as that used
by your system.

a) Would it ever be ethical to copy the code that implements the algorithm and
incorporate it in your embedded system?

b) Would it ever be good engineering practice to incorporate the code that implements the
algorithm and in your embedded system?

D1.64 Suppose that the Web article containing the code states that it may be copied and
used in any manner providing that it is not used in a product for sale. Are there any
circumstances that would permit the ethical use of the algorithm?

D1.65 You are a development engineer that has recently left a position with a large
corporation to work for a small embedded system company. Your team at the new
company is working on a project that would be vastly improved through the use of a new
procedure that was developed by your previous company. While you did not participate in
the procedure’s development, you are aware of all the technical details necessary to
effectively employ it. Please answer and explain your response to each of the following
questions:

a) Would it ever be ethical to disclose the procedure to your team at the new company?

b) Would it ever be good engineering practice to incorporate the procedure in your new
team’s embedded system?

¢) Assuming that you feel it could be ethical to disclose the procedure, what
considerations or circumstances would influence your decision?

d) Suppose that the considerations/circumstances in (c) above lead you to the conclusion
that it would not be ethical to disclose the procedure. What changes to the considerations
and circumstances would be necessary to permit you to ethically disclose the procedure to
your new team?

1.8. Lab Assignments

Lab 1.1 Your microcontroller development board comes with starter code. Find the
example that flashes an LED. Use this example to discover how to perform the following
tasks. 1) How do you open a software project? 2) How do you compile the software
project? 3) Can the software be run in a simulator? If so, how do you run on the simulator?
4) How do you download object code onto the real board? 5) Within the debugger how do
you perform these operations: see the registers, observe RAM, start/stop execution, and set
breakpoints? Change the software so the LED blinks twice as slow.

Lab 1.2 Your microcontroller development board comes with starter code. Find the
example that outputs to either a serial port or an LCD. Use this example to discover how
to perform the following tasks. 1) How do you open a software project? 2) How do you
compile the software project? 3) Can the software be run in a simulator? If so, how do you
run on the simulator? 4) How do you download object code onto the real board? 5) Within
the debugger how do you perform these operations: see the registers, observe RAM,
start/stop execution, and set breakpoints? Change the software so the system outputs your
name.

Lab 1.3 The system has one LED, two switches, and resistors. In this lab you will not use
a microcontroller. Design, implement, and test a circuit that turns on an LED if both
switches are pressed. Using different resistors measure five different voltage and current
points on the LED operating curve like Figure 1.23. Compare measured data to parameters
from the LED data sheet.

Lab 1.4 The system has one LED, two switches, and resistors. In this lab you will not use
a microcontroller. Design, implement, and test a circuit that turns on an LED if either
switch is pressed. Using different resistors measure five different voltage and current
points on the LED operating curve like Figure 1.23. Compare measured data to parameters
from the LED data sheet.

2. ARM Cortex-M Processor

Chapter 2 objectives are to:

* Introduce Cortex™-M processor architecture

* Present an overview of the Cortex™-M core assembly language

* Define the memory-mapped I/O structure of the LM3S/TM4C family
* Describe the parallel ports on the LM3S/TM4C family

* Present the SysTick timer

* Describe the system clocks

* Present general thoughts about how to choose a microcontroller

In this chapter we present a general description of the ARM Cortex™-M processor. Rather
than reproducing the voluminous details that can be found in the data sheets, we will
present general concepts and give specific examples illustrating these concepts. After
reading this chapter, you should be able to look up and understand detailed specifics in the
ARM Cortex™-M Technical Reference Manual. Data sheets can be found on the web
sites of either ARM or the companies that make the microcontrollers, like Texas
Instruments. Some of these data sheets are also posted on the web site accompanying this
book. This web site can be found at http://users.ece.utexas.edu/~valvano/arm.

There are two reasons we must learn the assembly language of the computer which we are
using. Sometimes, but not often, we wish to optimize our application for maximum
execution speed or minimum memory size, and writing pieces of our code in assembly
language is one approach to such optimizations. The most important reason, however, is
that by observing the assembly code generated by the compiler for our C code we can
truly understand what our software is doing. Based on this understanding, we can
evaluate, debug, and optimize our system.

Our first input/output interfaces will use the parallel ports, allowing us to exchange digital
information with the external world. Specifically, we will learn how to connect switches
and LEDs to the microcontroller. The second technique we will learn is to control time.
We can select the execution speed of the microcontroller using the phase-lock-loop, and
we can perform time delays using the SysTick timer.

Even though we will design systems based specifically on the LM3S/TM4C family, these
solutions can, with little effort, be implemented on other versions of the Cortex™-M
family. We will discuss prototyping methods to build embedded systems and present a
simple example with binary inputs and outputs.

2.1. Cortex™-M Architecture

Figure 2.1 shows a simplified block diagram of a microcontroller based on the ARM ®
Cortex™-M processor. It is a Harvard architecture because it has separate data and
instruction buses. The Cortex™-M instruction set combines the high performance typical
of a 32-bit processor with high code density typical of 8-bit and 16-bit microcontrollers.
Instructions are fetched from flash ROM using the ICode bus. Data are exchanged with
memory and I/O via the system bus interface. On the Cortex™-M4 there is a second I/0
bus for high-speed devices like USB. There are many sophisticated debugging features
utilizing the DCode bus. The nested vectored interrupt controller (NVIC) manages
interrupts, which are hardware-triggered software functions. Some internal peripherals,
like the NVIC communicate directly with the processor via the private peripheral bus
(PPB). The tight integration of the processor and interrupt controller provides fast
execution of interrupt service routines (ISRs), dramatically reducing the interrupt latency.

Microcorirdler Systembus

ARM BCartex™ -M —I 1
processor

L b & [WY T i |n‘l’t

PPB * ports

L B N

"’-tg;e"‘%s AdereEd iI$E
B Highperf | | &—] Ouput
ports

t

"y

BLe *
* *—1 Irnudiors —** i 'L ¥
x Flash ROM i 4 Daa
¢ ¥ F+ H,-‘r-"-LM
Codebus DCode bs

Figure 2.1. Harvard architecture of an ARM ® Cortex™-M-based
microcontroller.

2.1.1. Registers

The registers are depicted in Figure 2.2. RO to R12 are general purpose registers and
contain either data or addresses. Register R13 (also called the stack pointer, SP) points to
the top element of the stack. Actually, there are two stack pointers: the main stack pointer
(MSP) and the process stack pointer (PSP). Only one stack pointer is active at a time. In a
high-reliability operating system, we could activate the PSP for user software and the MSP
for operating system software. This way the user program could crash without disturbing
the operating system. Because of the simple and dedicated nature of the embedded
systems developed in this book, we will exclusively use the main stack pointer. Register
R14 (also called the link register, LR) is used to store the return location for functions. The
LR is also used in a special way during exceptions, such as interrupts. Interrupts are
covered in Chapter 5. Register R15 (also called the program counter, PC) points to the
next instruction to be fetched from memory. The processor fetches an instruction using the
PC and then increments the PC by 2 or 4.

=5 Soeoid regdas

R4 PSR Program stais regj ger
Gereral RS FRIMASK . .
pLrpoee R6 FAULTMASK | ¢ Exception mask reg ers
regj gers v BASEFPR]

ats CONTRCL CONTROL regster

Stack pairter [RIS(MSP) | RI3(PSP)]
Lirkregger | RI4(LR)
Progancounter | R15(PC)

Figure 2.2. Registers on the ARM ® Cortex™-M processor.

The ARM Architecture Procedure Call Standard, AAPCS, part of the ARM
Application Binary Interface (ABI), uses registers R0, R1, R2, and R3 to pass input
parameters into a C function. Also according to AAPCS we place the return parameter in
Register RO.

There are three status registers named Application Program Status Register (APSR), the
Interrupt Program Status Register (IPSR), and the Execution Program Status Register
(EPSR) as shown in Figure 2.3. These registers can be accessed individually or in
combination as the Program Status Register (PSR). The N, Z, V, C, and Q bits give
information about the result of a previous ALU operation. In general, the N bit is set after
an arithmetical or logical operation signifying whether or not the result is negative.
Similarly, the Z bit is set if the result is zero. The C bit means carry and is set on an
unsigned overflow, and the V bit signifies signed overflow. The Q bit is the sticky
saturation flag, indicating that “saturation” has occurred,and is set by

the SSAT and USAT instructions.

0 X 2B 0
R|N|E|C|U|Q| Reserved |

3l 2] 4]

IPSR Reserved ISR NUMBER
il X H M 15 10 0
EPSR| Rewrved [ICINT [T [Resarved] ICIAT | Reserved |
d 0 X XBHEF X S5 M 15 10 2] 0

PSR | n|z[c|vialicinT|T |Reserved| 1CINT ISR NUMBER

Figure 2.3. The program status register of the ARM ® Cortex™-M
processor.

The T bit will always be 1, indicating the ARM ® Cortex™-M is executing Thumb
instructions. The ICI/IT bits are used by interrupts and by the IF-THEN instructions. The
ISR_NUMBER indicates which interrupt if any the processor is handling. Bit O of the
special register PRIMASK is the interrupt mask bit. If this bit is 1 most interrupts and
exceptions are not allowed. If the bit is 0, then interrupts are allowed. Bit 0 of the special
register FAULTMASK is the fault mask bit. If this bit is 1 all interrupts and faults are not
allowed. If the bit is 0, then interrupts and faults are allowed. The nonmaskable interrupt
(NMI) is not affected by these mask bits. The BASEPRI register defines the priority of
the executing software. It prevents interrupts with lower or equal priority but allows
higher priority interrupts. For example if BASEPRI equals 3, then requests with level 0,
1, and 2 can interrupt, while requests at levels 3 and higher will be postponed. The details
of interrupt processing will be presented in Chapter 5.

2.1.2. Memory

Microcontrollers within the same family differ by the amount of memory and by the types
of I/O modules. All LM3S and LM4F/TM4C microcontrollers have a Cortex"™-M
processor. There are hundreds of members in this family; some of them are listed in Table
2.1.

Part number RAM | Flash | I/O | I/O modules

L.M3S811 8 64 32 | PWM

L.M3S51968 64 256 |52 |PWM

LM3S2110 16 64 40 | PWM, CAN

L.M3S3748 64 128 |61 |PWM, DMA, USB

L.M358962 64 256 |42 | PWM, CAN, Ethernet,
IEEE1588

LM4F120H5QR 32 256 |43 | floating point, CAN,
DMA, USB

TM4C123GH6PGE | 32 256 105 | floating point, CAN,
DMA, USB, PWM

TM4C123GH6PM | 32 256 |43 | floating point, CAN,
DMA, USB, PWM

TM4C123GH6ZRB | 32 256 120 | floating point, CAN,
DMA, USB, PWM

TM4C1294NCPDT | 256 | 1024 |90

floating point, CAN,
DMA, USB, PWM,
Ethernet

KiB | KiB | pins

Table 2.1. Memory and I/O modules (all have SysTick, RTC, timers, UART, I°C, SSI,
and ADC).

The memory map of TM4C123 is illustrated in Figure 2.4. Although specific for the
TM4C123, all ARM ® Cortex™-M microcontrollers have similar memory maps. In
general, Flash ROM begins at address 0x0000.0000, RAM begins at 0x2000.0000, the
peripheral I/O space is from 0x4000.0000 to Ox5FFFF.FFFF, and I/O modules on the
private peripheral bus exist from 0xE000.0000 to OxEOOF.FFFF. In particular, the only
differences in the memory map for the various members of the LM3S and LM4F/TM4C
families are the ending addresses of the flash and RAM. Having multiple buses means the
processor can perform multiple tasks in parallel. The following is some of the tasks that
can occur in parallel

ICode bus Fetch opcode from ROM

DCode bus Read constant data from ROM

System bus Read/write data from RAM or I/O, fetch opcode from RAM

PPB Read/write data from internal peripherals like the NVIC

AHB Read/write data from high-speed I/O and parallel ports (M4 only)

The ARM ® Cortex™-M uses bit-banding to allow read/write access to individual bits in
RAM and some bits in the I/O space. There are two parameters that define bit-banding:
the address and the bit you wish to access. Assume you wish to access bit b of RAM
address 0x2000.0000+n, where b is a number 0 to 7. The aliased address for this bit will
be

0x2200.0000 + 32*n + 4*b

Reading this address will return a 0 or a 1. Writing a 0 or 1 to this address will perform an
atomic read-modify-write modification to the bit.

0x2200.0000 R @}m:-g::r:cm
Bit-benced ROM
L OXO003 FFFF
RAM
S AARE | DREDOdE0E
oeh 7
OX220F FFFF /O ports | 0¥4000.0000
04200,0000 D}{ﬁl&;FFFF
Bit-benced
diasof irteme /0 | OEOPOI
/O PPB
Ox43FFFFFF[PO Sl

Figure 2.4. Memory map of the TM4C123. The TM4C1294 is similar but
with 1024k ROM, 256k RAM.

If we consider 32-bit word-aligned data in RAM, the same bit-banding formula still
applies. Let the word address be 0x2000.0000+n. n starts at 0 and increments by 4. In this
case, we define b as the bit from 0 to 31. In little-endian format, bit 1 of the byte at
0x2000.0001 is the same as bit 9 of the word at 0x2000.0000.The aliased address for this
bit will still be

0x2200.0000 + 32*n + 4*b

Examples of bit-banded addressing are listed in Table 2.2. Writing a 1 to location
0x2200.0018 will set bit 6 of RAM location 0x2000.0000. Reading location 0x2200.0024
will return a 0 or 1 depending on the value of bit 1 of RAM location 0x2000.0001.

Checkpoint 2.1: What address do you use to access bit 5 of the byte at 0x2000.1003?
Checkpoint 2.2: What address do you use to access bit 20 of the word at 0x2000.10007?

The other bit-banding region is the I/0 space from 0x4000.0000 through 0x400F.FFFF. In
this region, let the I/O address be 0x4000.0000+n, and let b represent the bit O to 7. The
aliased address for this bit will be

0x4200.0000 + 32*n + 4*b

RAM Offset | Bit | Bit-banded
address n b alias
0x2000.0000 | 0 0 0x2200.0000
0x2000.0000 | O 1 0x2200.0004
0x2000.0000 | 0 2 0x2200.0008
0x2000.0000 | O 3 0x2200.000C
0x2000.0000 | 0 4 0x2200.0010

0x2000.0000 | 0 5 0x2200.0014
0x2000.0000 | 0 6 0x2200.0018
0x2000.0000 | 0 7 0x2200.001C
0x2000.0001 |1 0 0x2200.0020
0x2000.0001 |1 1 0x2200.0024

Table 2.2. Examples of bit-banded addressing.

Checkpoint 2.3: What address do you use to access bit 2 of the byte at 0x4000.0003?

2.1.3. Stack

The stack is a last-in-first-out temporary storage. To create a stack, a block of RAM is
allocated for this temporary storage. On the ARM ® Cortex™-M, the stack always
operates on 32-bit data. The stack pointer (SP) points to the 32-bit data on the top of the
stack. The stack grows downwards in memory as we push data on to it so, although we
refer to the most recent item as the “top of the stack” it is actually the item stored at the
lowest address! To push data on the stack, the stack pointer is first decremented by 4, and
then the 32-bit information is stored at the address specified by SP. To pop data from the
stack, the 32-bit information pointed to by SP is first retrieved, and then the stack pointer
is incremented by 4. SP points to the last item pushed, which will also be the next item to
be popped. The processor allows for two stacks, the main stack and the process stack, with
two independent copies of the stack pointer. The boxes in Figure 2.5 represent 32-bit
storage elements in RAM. The grey boxes in the figure refer to actual data stored on the
stack, and the white boxes refer to locations in memory that do not contain stack data.
This figure illustrates how the stack is used to push the contents of Registers R0, R1, and
R2 in that order. Assume Register RO initially contains the value 1, R1 contains 2 and R2
contains 3. The drawing on the left shows the initial stack. The software executes these six
instructions

PUSH {R0}
PUSH {R1}
PUSH {R2}
POP {R3}
POP {R4}
POP {R5}

The instruction PUSH {R0} saves the value of RO on the stack. It first decrements SP by
4, and then it stores the 32-bit contents of RO into the memory location pointed to by SP.
The four bytes are stored little endian. The right-most drawing shows the stack after the
push occurs three times. The stack contains the numbers 1 2 and 3, with 3 on top.

PUSH {RO} PUSH{R1} PLEH {R2}
SP —= 3
Sp—= 2 2
Sp—= 1 T 1
SP— _|PCP{R5} | PCP {R4} PCP {R3}
Ox2000.FFFC

Figure 2.5. Stack picture showing three numbers first being pushed, then
three numbers being popped.

The instruction POP{R3} retrieves data from the stack. It first moves the value from
memory pointed to by SP into R3, and then it increments SP by 4. After the pop occurs
three times the stack reverts to its original state and registers R3, R4 and R5 contain 3 2 1
respectively. We define the 32-bit word pointed to by SP as the top entry of the stack. If it
exists, we define the 32-bit data immediately below the top, at SP+4, as next to top.
Proper use of the stack requires following these important rules

1. Functions should have an equal number of pushes and pops

2. Stack accesses (push or pop) should not be performed outside the allocated
area

3. Stack reads and writes should not be performed within the free area
4. Stack push should first decrement SP, then store the data
5. Stack pop should first read the data, and then increment SP

Functions that violate rule number 1 will probably crash when incorrect data are popped
off at a later time. Violations of rule number 2 can be caused by a stack underflow or
overflow. Overflow occurs when the number of elements became larger than the allocated
space. Stack underflow is caused when there are more pops than pushes, and is always the
result of a software bug. A stack overflow can be caused by two reasons. If the software
mistakenly pushes more than it pops, then the stack pointer will eventually overflow its
bounds. Even when there is exactly one pop for each push, a stack overflow can occur if
the stack is not allocated large enough. The processor will generate a bus fault when the
software tries read from or write to an address that doesn’t exist. If valid RAM exists
below the stack then pushing to an overflowed stack will corrupt data in this memory.

First, we will consider the situation where the allocated stack area is placed at the
beginning of RAM. For example, assume we allocate 4096 bytes for the stack from
0x2000.0000 to 0x2000.0FFF, see the left side of Figure 2.6. The SP is initialized to
0x2000.1000, and the stack is considered empty. If the SP becomes less than 0x2000.0000
a stack overflow has occurred. The stack overflow will cause a bus fault because there is
nothing at address Ox1FFF.FFFC. If the software tries to read from or write to any location
greater than or equal to 0x2000.1000 then a stack underflow has occurred. At this point
the stack and global variables may exist at overlapping addresses. Stack underflow is a
very difficult bug to recognize, because the first consequence will be unexplained changes
to data stored in global variables.

Stacxgarting at the frd RAM lacalian Stacxgdirgal thelast RAM lacalian
Nathing | Overflow here | Overflow
0x2000.0000) Ox2000,7000)
Allocated Allocaed
SP gack SP gack
aea aea
Ox2000.0FFC 02000, 7FFC
f&ﬂgﬁ \ncerfl ow Nothing | Underflow

Figure 2.6. Drawings showing two possible ways to allocate the stack area
in RAM.

Next, we will consider the situation where the allocated stack area is placed at the end of
RAM. The TM4C123 has 32 KiB of RAM from 0x2000.0000 to 0x2000.7FFF. So in this
case we allocate the 4096 bytes for the stack from 0x2000.7000 to 0x2000.7FFF, shown
on the right side of Figure 2.6. The SP is initialized to 0x2000.8000, and the stack is
considered empty. If the SP becomes less than 0x2000.7000 a stack overflow has
occurred. The stack overflow will not cause a bus fault because there is memory at address
0x2000.6FFC. Stack overflow in this case is a very difficult bug to recognize, because the
first consequence will be unexplained changes to data stored below the stack region. If the
software tries to read from or write to any location greater than or equal to 0x2000.8000
then a stack underflow has occurred. In this case, stack underflow will cause a bus fault.

Executing an interrupt service routine will automatically push information on the stack.
Since interrupts are triggered by hardware events, exactly when they occur is not under
software control. Therefore, violations of rules 3, 4, and 5 will cause erratic behavior
when operating with interrupts. Rules 4 and 5 are followed automatically by

the PUSH and POP instructions.

2.1.4. Operating modes

The ARM ® Cortex™-M has two privilege levels called privileged and unprivileged. Bit
0 of the CONTROL register is the thread mode privilege level (TPL). If TPL is 1 the
processor level is privileged. If the bit is 0, then processor level is unprivileged. Running
at the unprivileged level prevents access to various features, including the system timer
and the interrupt controller. Bit 1 of the CONTROL register is the active stack pointer
selection (ASPSEL). If ASPSEL is 1, the processor uses the PSP for its stack pointer. If
ASPSEL is 0, the MSP is used. When designing a high-reliability operating system, we
will run the user code at an unprivileged level using the PSP and the OS code at the
privileged level using the MSP.

The processor knows whether it is running in the foreground (i.e., the main program) or in
the background (i.e., an interrupt service routine). ARM defines the foreground as thread
mode, and the background as handler mode. Switching from thread mode to handler
mode occurs when an interrupt is triggered. The processor begins in thread mode,
signified by ISR_NUMBER=0. Whenever it is servicing an interrupt it switches to handler
mode, signified by setting ISR_NUMBER to specify which interrupt is being processed.
All interrupt service routines run using the MSP. At the end of the interrupt service routine
the processor is switched back to thread mode, and the main program continues from
where it left off.

2.1.5. Reset

A reset occurs immediately after power is applied and can also occur by pushing the reset
button available on most boards. After a reset, the processor is in thread mode, running at
a privileged level, and using the MSP stack pointer. The 32-bit value at flash ROM
location 0 is loaded into the SP. All stack accesses are word aligned. Thus, the least
significant two bits of SP must be 0. A reset also loads the 32-bit value at location 4 into
the PC. This value is called the reset vector. All instructions are halfword aligned. Thus,
the least significant bit of PC must be 0. However, the assembler will set the least
significant bit in the reset vector, so the processor will properly initialize the thumb bit (T)
in the PSR. On the ARM ® Cortex™-M, the T bit should always be set to 1. On reset, the
processor initializes the LR to OxFFFFFFFF.

2.2. Texas Instruments LM3S and TM4C 1/0 pins

Table 2.1 listed the memory configuration for some of the Texas Instruments
microcontrollers. In this section, we present the I/O pin configurations for the LM3S811,
LM351968, TM4C123 and TM4C1294 microcontrollers. The regular function of a pin is
to perform parallel I/0O, described later in Section 2.4. Most pins, however, have an
alternative function. For example, port pins PA1 and PAO can be either regular parallel
port pins, or an asynchronous serial port called universal asynchronous
receiver/transmitter (UART).

Joint Test Action Group (JTAG), standardized as the IEEE 1149.1, is a standard test
access port used to program and debug the microcontroller board. Each microcontroller
uses four or five port pins for the JTAG interface.

Common error: Even though it is possible to use the four/five JTAG pins as general /O,
debugging most microcontroller boards will be more stable if these pins are left dedicated
to the JTAG debugger.

I/O pins on Stellaris ® and Tiva ® microcontrollers have a wide range of alternative
functions:

e UART Universal asynchronous receiver/transmitter

e SSI Synchronous serial interface

» I2C Inter-integrated circuit

o I’S Inter-IC Sound, Integrated Interchip Sound
e Timer Periodic interrupts, input capture, and output
compare

 PWM Pulse width modulation

« ADC Analog to digital converter, measurement
analog signals

e Analog Comparator Comparing two analog signals

* QEI Quadrature encoder interface

- USB Universal serial bus

» Ethernet High speed network

« CAN Controller area network

The UART can be used for serial communication between computers. It is asynchronous
and allows for simultaneous communication in both directions. The SSI is alternately
called serial peripheral interface (SPI). It is used to interface medium-speed I/O devices.
In this book, we will use it to interface a graphics display, a secure digital card (SDC), and
a digital to analog converter (DAC). I?’C is a simple I/O bus that we will use to interface
low speed peripheral devices. The I?S protocol is used to communicate sound information.
Input capture and output compare will be used to create periodic interrupts, and take
measurements period, pulse width, phase and frequency. PWM outputs will be used to
apply variable power to motor interfaces. In a typical motor controller, input capture
measures rotational speed and PWM controls power. A PWM output can also be used to
create a DAC. The ADC will be used to measure the amplitude of analog signals, and will
be important in data acquisition systems. The analog comparator takes two analog inputs
and produces a digital output depending on which analog input is greater. The QEI can be
used to interface a brushless DC motor. USB is a high-speed serial communication
channel. The Ethernet port can be used to bridge the microcontroller to the Internet or a
local area network. The CAN creates a high-speed communication channel between
microcontrollers and is commonly found in automotive and other distributed control
applications.

2.2.1. Texas Instruments LM3S811 I/O pins

Figure 2.7 draws the I/O port structure for the LM3S811 microcontroller. Most pins have
two names: the port pin (PA0) and the alternate function name (UORX). Because the I/0
ports are connected to the system bus interface, the microcontroller can perform I/O bus
cycles simultaneous with instruction fetches from flash ROM. There are 32 digital I/O
lines and 4 ADC inputs. The ADC has 10 bits of precision and can sample up to 500k
times per second. Table 2.3 lists the regular and alternate names of the port pins. PC4 has
no alternate function.

Regular Alternate Pin Name | Alternate Function

PAO — PA1 UORX, U0OTX Universal Asynchronous
Receiver/Transmitter, UARTO

PA2 — PAS5 SCLK, SFSS, SRX, | Synchronous Serial Interface, SSI0

STX
PBO, PB1 PWM2, PWM3 Pulse Width Modulator 1
PB2 - PB3 SCL, SDA Inter-Integrated Circuit, I*CO
PB4, PB6, CO0-, C0+, COo Analog Comparator 0

PD7

PB5 CCP5 Timer2B Capture/Compare
PB7, PCO - TRST, TCLK, TMS, | JTAG Debugger
PC3 TDI, TDO
PC5 CCP1 Timer OB Capture/Compare
PC6 CCP3 Timer 1B Capture/Compare
PC7 CCP4 Timer 2A Capture/Compare
PDO, PD1 PWMO, PWM1 Pulse Width Modulator 0
PD2 - PD3 U1RX, U1TX Universal Asynchronous
Receiver/Transmitter, UART1
PD4 CCPO Timer 0A Capture/Compare
PD5 CCP2 Timer 1A Capture/Compare
PD6 Fault Hold all PWM outputs in safe state
PEO, PE1 PWM4, PWM5 Pulse Width Modulator 2

Table 2.3. LM3S811 I/0 pins that have alternate functions.

CatexM3 Sydtick
System Bus | rterface MW C
Y
GPIOPotA |e—3=]e—3 GpioPatB
gt e N L PB7/TSRT
T 3] S5 || Andog 1< [—FESCO:
e] e P07) Comparstor | [[~ FBY/CCPS
PAL/UOTK — i e
PAQUORx — | LARTO | et 120 pibd WSS
GPIO Port C - N
™| PwMl o —rEOPVM2
PCTICCPA— || Tiprero Eé:;-} ‘_‘ |
PCHCCPI— = i
<13 GPIOPortD
PCHCCPL — [=
PCA — N P
PCITDOSWO — | o — IC
PC2TDI — = T PCE ¢+ | —rosFait
SJS"H' = A ++ = 3 . [
F?ganrrrqufswELlE — *IE—P;; Timerl s PDSCCP2
GPIOPartE | e)
FELPWMS — [«— pog| || TIMEO [#>| [FD4CCRO
PEGPWMA — |«— PWM2 | oy N B
o —p| UARTL [_%%ﬁ%ﬁ
ADC3 ——] N
ADEZT—3] ADC e | PWMO > —rowpw
ADCO —— o aPwW

¥Peripherd Bus

Figure 2.7. I/O port pins for the LM3S811 microcontroller.

SysTick and the timers can generate periodic interrupts, which will be useful for executing
periodic software tasks like data acquisition and control. Each timer module has two pins,
which can be input capture or output compare. Therefore, the three timer modules provide
six timer pins. Each UART has two pins, one transmitter and one receiver. The I>C port
has two bidirectional pins. The SSI module uses four pins. There are six possible PWM
output pins. The one fault input can be configured to affect all six PWM signals. Port pin
PC4 has no alternate function.

Texas Instruments sells an evaluation kit for the LM3S811. There is one switch and one
LED on the board, see Figure 2.8. The part numbers for the kit are EKK-LM3S811, EKI-
L.M3S811, EKC-LM3S811, EKT-LM3S811, and EKS-LM3S811. The different versions
specify which compiler is included on the CD in the kit. Table 2.4 lists the physical
devices attached to pins on the kit. These connections can be broken by removing a
jumper on the board. This way the pin is available for your circuits.

Pin Function To Isolate,
Remove...
ADCO ADC Input from Thumbwheel JP5
Potentiometer
PAO/UORX Virtual COM Port Receive JP3
PA1/UOTX Virtual COM Port Transmit JP4
PB2/12CSCL [2C SCLO to OLED Display JP1
PB3/12CSDA [2C SDAO to OLED Display JP2
PB7/TRST JTAG Debugger Test Reset Do Not Use
PCO/TCK/SWCLK | JTAG Debugger Clock Do Not Use
PC1/TMS/SWDIO | JTAG Debugger Mode Select Do Not Use
PC2/TDI JTAG Debugger Data In Do Not Use
PC3/TDO/SWO JTAG Debugger Data Out Do Not Use
PC4 User Momentary Negative Logic JP6
Push Button
PC5/CCP1 User LED JP7

PD7/C00 ‘ OLED Display Power Enable JP8

Table 2.4. Port pins connected to physical devices on the LM3S811 evaluation kit.

+3.3V
LM35811
10Kk
PC |
PCH User
220 Status jr—

Figure 2.8. Switch and LED interfaces on the LM3S811 evaluation board.

2.2.2. Texas Instruments LM3S1968 1/0O pins

Figure 2.9 draws the I/O port structure for the LM3S1968 microcontroller. Most pins have
two names: the port pin (PA0) and the alternate function name (UORx). However, pins
PF5, PF7, PG3, PG5, and PH2 have no alternate function. Because the I/O ports are
connected to the system bus interface, the microcontroller can perform I/O bus cycles
simultaneous with instruction fetches from flash ROM. It has 3 UART ports, 2 SSI ports, 2
I°C ports, a 10-bit ADC, 6 PWM outputs, 4 timer input capture/output compare pins, 2
quadrature encoder interfaces, and three analog comparators. The ADC can sample up to
1000k per second. There are 52 digital I/O lines and 8 ADC inputs. Table 2.5 lists the
regular and alternate names of the port pins.

Figure 2.10 shows a Texas Instruments evaluation kit for the LM3S1968. There are five
switches and one LED on the board, see Figure 2.11. The part numbers for these kits are
EKK-LM3S1968, EKI-LM3S1968, EKC-LM3S1968, EKT-LM3S1968, and EKS-
L.LM3S1968. The different versions specify which compiler is included on the CD in the
kit. Table 2.6 lists the physical devices attached to pins on the kit. These connections can
be broken by removing a jumper on the board. By removing the jumper the pin is

available for your circuits. You must enable internal pull-ups to use the switches on the
board.

CortexM3 Systick
Systen Bus | nterface MNWIC
F Y
GPIOPortA |=wla—ae| GpioPartB
airiaet - [%1 |epe — Eracon
PA 5/SSI 0T «—| Andog [=
PA%E'rSSSICR:: s SHO || EEHCOMPREEOT = %g%
PATSSIOFSE | [wa I +—=| |— PBYI2C0SDA
m&s&ﬁk_ — “""’-_lz‘?'ﬂ' | [— PBIIZC0SCL
maUtR: —|_| | UARTO e [B s <3| [Roccro
GPIC Port C |t L[GPIO PartD
pcrce — = — FD3UITK
PCHC2+—| [C;ﬁ;’gor 3l mal UARTL [} [~ odum
e = < B S
_ — FDOIDX0
PCITDO/SWO — [EL) [GRIC Portr — 4
PCUTMSSWDIO — [— — PERICCPL
PCOTCK/SWCLK —] | — FFS
GPIOPortE || | F5 W EREEa
3 > — PF3PWM5
reass i rEe L e
— - g — PFLADX1
PEUSIIFs— lex T | mleel Q10 N [mropiso
GPIO Port H | e |
—l—
mafﬁg— - ¢ lat—p| CQEIL |3 L PG7/PHB1
— = — PGEAPHAL
PHLPWM3— [*+— pwM1 |e=m| LPBL— L PGS
PHOPWMZ2 — [*— H-Tlmerl «— | — PGACCP3
ADET - & PH3 e PO = PG%IE
ADCE ——» [PVM0 F— [pGopw
ADCS—— 5| ADC > - %lﬂJETr:D
ADCA —— [UART2 | | | PooUZRx
ADC3— "7, e
L — [Timerz |
ADC1 — Tirrer3 |
RECR ¥ Peripherd Bus

Figure 2.9. I/0 port pins for the LM3S1968 microcontroller.

Observation:To use the switches on the LM3S1968 board you need to activate the
internal pull-up resistors for the port, set bits 3 — 7 in GPIO_PORTG_PUR_R.

Observation: The switches on the LM3S1968 board are negative logic.
Observation: The LED (PG2) on the LM3S1968 board is positive logic.

Observation: The debugger functionality will be lost if you configure PB7, PC3 — 0 as
regular digital I/0.

Regular Alternate Pin Name | Alternate Function
PAO — PA1 UORX, UOTX Universal Asynchronous
Receiver/Transmitter, UARTO
PA2 — PAS5 SOCLK, SOFS, Synchronous Serial Interface, SSI0
SORX, SOTX
PA6 — PA7 SCL1, SDA1 Inter-Integrated Circuit, I*’C1
PBO CCPO Timer OA Capture/Compare

PB1 CCP2 Timer 1A Capture/Compare

PB2 — PB3 SCLO0, SDAO Inter-Integrated Circuit, I*CO

PB4, PB6, C0-, C0+, CO0o Analog Comparator 0

PF4

PB5, PC5 C1-, C1+ Analog Comparator 1

PB7, PCO — TRST, TCLK, TMS, | JTAG Debugger

PC3 TDI, TDO

PC4, PFO, PHAO, PHBO, IDX0 | Quadrature Encoder Interface, QEIO

PDO

PC6, PC7 C2+, C2- Analog Comparator 2

PD2 - PD3 U1RX, U1TX Universal Asynchronous
Receiver/Transmitter, UART1

PEO — PE3 S1CLK, S1FS, Synchronous Serial Interface, SSI1

S1IRX, S1TX

PF2, PF3 PWM4, PWM5 Pulse Width Modulator 2

PF6 CCP1 Timer 0B Capture/Compare

PGO - PG1 U2RX, U2TX Universal Asynchronous
Receiver/Transmitter, UART?2

PG2, PD1 PWMO, PWM1 Pulse Width Modulator 0

PG4 CCP3 Timer 1B Capture/Compare

PG6, PG7, PHA1, PHBI1, IDX1 | Quadrature Encoder Interface, QEI1

PF1

PHO, PH1 PWM?2, PWM3 Pulse Width Modulator 1

PH3 Fault Hold all PWM outputs in safe state

Table 2.5. LM3S1968 1/O pins that have alternate functions.

Pin

Function

To Isolate,

Remove...

PAO/UORX Virtual COM Port Receive JP4
PA1/U0TX Virtual COM Port Transmit JP13
PA2/SOCLK OLED Display Clock JP11
PA3/SOFS OLED Display Chip Select JP5
PA5/S0TX OLED Display Data In JP10
PB7/TRST JTAG Debugger Test Reset Do Not Use
PCO/TCK/SWCLK | JTAG Debugger Clock Do Not Use
PC1/TMS/SWDIO | JTAG Debugger Mode Select Do Not Use
PC2/TDI JTAG Debugger Data In Do Not Use
PC3/TDO/SWO JTAG Debugger Data Out Do Not Use
PG2/PWMO User LED JP2
PG3 SW3 Up Momentary Negative Logic | JP1

Push Button
PG4 SW4 Down Momentary Negative JP9

Logic Push Button
PG5 SW5 Left Momentary Negative Logic | JP8

Push Button
PG6/PHA1 SW6 Right Momentary Negative JP6

Logic Push Button
PG7/PHBI1 Select Momentary Negative Logic JP7

Push Button
PHO/PWM2 Sound + JP14
PH1/PWM3 Sound - JP15
PH?2 OLED Display Data/Control Select JP12

PH3/Fault OLED Display Power Enable JP3

Table 2.6. Port pins connected to physical devices on the LM3S1968 evaluation kit.

Figure 2.10. Evaluation kit for the LM3S1968 microcontroller.

There are a number of possibilities for designing prototype systems using evaluation Kkits.
One option is to solder individual wires to pins as needed. This approach is simple and
reliable. It is appropriate if the kit is being used for one application and the choice of pins
is unlikely to change. The disadvantage is changing pins requires unsoldering and
resoldering.

LM351968

PG7
PGE
Py
PG4
PG3 | ‘ .
<, 1t \ 36 B (9

Stahe = = e

Figure 2.11. Switch and LED interfaces on the LM3S1968 evaluation
board.

A second approach is to solder a female socket onto the evaluation kit. To connect a pin to
your external circuit, you place a solid wire into the socket. This method is convenient if
you plan to move wires as the design changes. After a long period, the female socket can
wear out or the ends of wires may break off inside the socket. Changing the socket is very
difficult.

A third approach is illustrated in Figure 2.10. The breadboard interface was built using
Samtec TSW-133-09-L-S-RE and TSW-133-08-L-S-RA connectors. Right-angle male-
male headers are soldered to the board in such a way that the male pins can be inserted
into a standard solderless breadboard. This approach is convenient if you are prototyping
on a solderless breadboard. This configuration is extremely robust and can withstand
multiple insertions and extractions. Push straight down to insert the board into the
breadboard. To remove the board, use two small screwdrivers and wedge between the
board and the breadboard on each side a little at a time. To assemble this interface, it may
be helpful to separately insert each unsoldered header into the breadboard to hold it in
place while it is being soldered. If the spacing between the headers and the development
board is not correct, then it will not fit into the breadboard. Notice how the development
board fits into the slit in the middle of the breadboard.

2.2.3. Texas Instruments TM4C123 LaunchPad I/0 pins

Figure 2.12 draws the I/O port structure for the LM4F120H5QR and TM4C123GH6PM.
These microcontrollers are used on the EK-LM4F120XL and EK-TM4C123GXL
LaunchPads. Pins on the LM3S family have two possibilities: digital I/O or an alternative
function. However, pins on the LM4F/TM4C family can be assigned to as many as eight
different I/O functions. Pins can be configured for digital I/0, analog input, timer I/O, or
serial I/0. For example PAO can be digital I/O or serial input. There are two buses used for
I/0. The digital I/O ports are connected to both the advanced peripheral bus (like the
L.M3S family) and the advanced high-performance bus (runs faster). Because of the
multiple buses, the microcontroller can simultaneously perform I/O bus cycles with
instruction fetches from flash ROM. The LM4F120H5QR has eight UART ports, four SSI
ports, four I2C ports, two 12-bit ADCs, twelve timers, a CAN port, and a USB interface.
The TM4C123GH6PM adds up to 16 PWM outputs. There are 43 I/O lines. There are
twelve ADC inputs; each ADC can convert up to 1 million samples per second. Table 2.7
lists the regular and alternate names of the port pins.

Each pin has one configuration bit in the AMSEL register. We set this bit to connect the
port pin to the ADC or analog comparator. For digital functions, each pin also has four bits
in the PCTL register, which we set to specify the alternative function for that pin (0
means regular I/O port). Table 2.7 shows the 4-bit PCTL configuration used to connect
each pin to its alternate function. For example, column “7” means set 4-bit field in PCTL
to 0111,.

Pins PC3 — PCO were left off Table 2.7 because these four pins are reserved for the JTAG
debugger and should not be used for regular I/O. Notice, most alternate function modules
(e.g., UORx) only exist on one pin (PA0). While other functions could be mapped to two

or three pins (e.g., CANORx could be mapped to one of the following: PB4, PE4, or PF0.)

For example, if we wished to use SSI2 on pins PB7—4, we would set bits 7—4 in the DEN
register (enable digital), clear bits 7—4 in the AMSEL register (disable analog), write a
0010,0010,0010,0010 to bits 31-16 in the PCTL register (enable SSI2 functionality), and
set bits 7—4 in the AFSEL register (enable alternate function). If we wished to sample an
analog signal on PD3, we would set bit 3 in the alternate function select register AFSEL,

clear bit 3 in the digital enable register DEN (disable digital), set bit 3 in the analog mode
select register AMSEL (enable analog), and activate one of the ADCs to sample channel
4. Additional examples will be presented throughout the book.

The Texas Instruments LaunchPad evaluation board (Figure 2.13) is a low-cost
development board available as part number EK-TM4C123GXL from www.ti.com and
from regular electronic distributors like Digikey, Mouser, Newark, Arrow, and Avnet. The
kit provides an integrated In-Circuit Debug Interface (ICDI), which allows programming
and debugging of the onboard LM4F microcontroller. One USB cable is used by the
debugger (ICDI), and the other USB allows the user to develop USB applications (device).
The user can select board power to come from either the debugger (ICDI) or the USB
device (device) by setting the Power selection switch.

CatexM4 Systick
SystemBus| nterface MVIC
A A
:;—}I-{—ZF
GPRIO Port A L& }'_| GRIO PotB
PAT — FE7Y
PaE : —— FEG
Eight Four
P 5SS 0T — i el o — PBS
PA4/SS] 0Rx UARTs 1% [pBa
PS5 OF = — PB3N2C050DA
PA2/SSIOCTk — o — PB2)2C0SCL
PAQUCRX —| | __—PBO
ot
pc7 — GPIOPortC |§; ? ir' GRIO Pot D — PD7
PCE — — PD&
PCS — USE20 |l Twelve L PDS
PC4 — —> Tirrers — FPD4
PCITDOMSWO — -« — PD3
PC2TDI — 3 Sz — PDZ
PCUTMISWDI0 — || 1TAC et 64-bit wide — PD1
PCOTCE/SWCLE — == — FPDO
— e fref—f-
. GPIOPotE |enla <> [cPloPotF
PE4 —] ADC - TwoAndog | PF4
EE% — 2 chenndls Comparators — Elﬁg
PE1 — 12U i Two PWM — PF1
PEO — | Modues — PFO

Advanced High Perfonrence Bus ¢ Advenced Peripherd Bus

Figure 2.12. I/O port pins for the LM4F120H5QR / TM4C123GH6PM
microcontrollers. There are no PWM modules on the LM4F120. Also, the
USB on the LM4F120 supports device mode, while the TM4C123 adds
host and on-the-go (OTG) modes.

Pins PA1 — PAO create a serial port, which is linked through the debugger cable to the PC.
The serial link is a physical UART as seen by the LM4F/TM4C and mapped to a virtual
COM port on the PC. The USB device interface uses PD4 and PD5. The JTAG debugger
requires pins PC3 — PCO. The LaunchPad connects PB6 to PD0, and PB7 to PD1. If you
wish to use both PB6 and PDO0 you will need to remove the R9 resistor. Similarly, to use
both PB7 and PD1 remove the R10 resistor. The USB connector on the side of the
LM4F120 LaunchPad has four wires because it supports only device mode. However, the
USB connector on the side of the TM4C123 LaunchPad has five wires because it supports
device, host, and OTG modes.

IO Ain

PAO

PA1

PA2

PA3

PA4

PAS

PAG6

PA7

PB0 USBOID

PB1 USBOVBUS Port U1Tx

pPB2

PB3

PB4 Ainl0

PB5 Ainll

PB6

PB7

PC4 C1-

PC5 C1+

PC6 CO+

PC7 CO-

PDO Ain7

PD1 Ain6

PD2 Ain5

PD3 Ain4

PD4 USBODM

0 1 2 3 4 5 6 7 8
Port UORx CANI1Rx
Port UOTx CANI1Tx
Port SSIOCIk
Port SSIOFss
Port SSIORx
Port SSI0Tx
Port I,C1SCL M1PWM2
Port I,C1SDA M1PWM3
Port UIRx T2CCPO

T2CCP1
Port I,COSCL T3CCPO
Port I,COSDA T3CCP1
Port SSI2Clk MOPWM2 T1CCPO CANORx
Port SSI2Fss MOPWM3 T1CCP1 CANOTx
Port SSI2Rx MOPWMO TOCCPO
Port SSI2Tx MOPWM1 TOCCP1
Port U4Rx UlRx MOPWM6 IDX1 WTOCCPO U1RTS
Port U4Tx Ul1Tx MOPWM?7 PhA1 WTOCCP1 U1CTS
Port U3Rx PhB1 WT1CCPO USBOepen
Port U3Tx WT1CCP1 USBOpflt
Port SSI3Clk SSI1CIk I,C3SCL MOPWM6 M1PWMO WT2CCPO
Port SSI3Fss SSI1Fss I,C3SDA MOPWM7 M1PWM1 WT2CCP1
Port SSI3Rx SSI1Rx MOFault0 WT3CCP0O USBOepen
Port SSI3Tx SSI1Tx IDX0 WT3CCP1 USBOpflt
Port U6Rx WT4CCPO

14

PD5 USBODP

PD6

PD7

PEO Ain3

PE1 Ain?

PE2 Ainl

PE3 Ain0

PE4 Ain9

PE5 Ain8

PFO

PF1

PF2

PE3

PF4

Port U6Tx WT4CCP1

Port U2Rx MOFault0 PhAO WT5CCPO

Port U2Tx PhB0O WT5CCP1 NMI
Port U7Rx

Port U7Tx

Port

Port

Port USRx [,C2SCL. MOPWM4 M1PWM?2 CANORx
Port U5Tx I,C2SDA MOPWMS5 M1PWM3 CANOTx
Port UIRTS SSI1Rx CANORx M1PWM4 PhAO TOCCPO NMI
Port UICTS SSI1Tx M1PWMS5 PhB0O TOCCP1

Port MOFault0 M1PWM6 T1CCPO

Port SSI1Fss CANOTx M1PWM7 T1CCP1

Port

M1Fault0 IDX0 T2CCP0O USBOepen

CoOo

CloTRD1

TRDO

TRCLK

Table 2.7. PMCx bits in the GPIO_PORTx_PCTL_R register on the LM4F/TM4C
specify alternate functions. PB1, PB0, PD4 and PD5 are hardwired to the USB
device. PAO and PA1 are hardwired to the serial port. PWM is not available on

LMA4F120.

Each 32-bit GPIO_PORTx_PCTL_R register defines the alternate function for the eight
pins of that port, 4 bits for each pin. For example, if we wished to specify PA5-2 as SSIO,
we would set Port A PCTL bits 23-16 to 0x2222 like this:

GPIO_PORTA_PCTL_R = (GPIO_PORTA_PCTL_R&0xFF0000FF)+0x00222200;

USE ICDI

Power selection

USH device/host

J1AI3

LMAFI20H50QR
or

TMACI123GHGPM

SWl

Figure 2.13. Texas Instruments LaunchPad based on the LM4F120H5QR
or TM4C123GHG6PM.

The Texas Instruments LaunchPad evaluation board has two switches and one 3-color
LED, as shown in Figure 2.14. The switches are negative logic and will require activation
of the internal pull-up resistors. In particular, you will set bits 0 and

4in GPIO_PORTF_PUR_R register. The LED interfaces on PF3 — PF1 are positive
logic. To use the LED, make the PF3 — PF1 pins an output. To activate the red color,
output a one to PF1. The blue color is on PF2, and the green color is controlled by PF3.
The 0- resistors (R1, R2, R11, R12, R13, R25, and R29) can be removed to disconnect
the corresponding pin from the external hardware.

TM4C 123 PFORY
PF 4w
Searia HFAL R13 oW
—PAD
R29 Blue Red
US:JSW Eg% W = W = 3BOW \
rzs|FD4 PF3 SWL swz)
HA PBO e =
PDO
m PB6 PF2
ERflfD:W Eg% e i DTC114EETIG

Figure 2.14. Switch and LED interfaces on the Texas Instruments
LaunchPad Evaluation Board. The zero ohm resistors can be removed so
the corresponding pin can be used for its regular purpose.

The LaunchPad has four 10-pin connectors, labeled as J1 J2 J3 J4 in Figures 2.13 and
2.15, to which you can attach your external signals. The top side of these connectors has
male pins and the bottom side has female sockets. The intent is to stack boards together to
make a layered system, see Figure 2.15. Texas Instruments also supplies Booster Packs,
which are pre-made external devices that will plug into this 40-pin connector. The Booster
Packs for the MSP430 LaunchPad are compatible (one simply plugs these 20-pin
connectors into the outer two rows) with this board. The inner 10-pin headers (connectors
J3 and J4) are not intended to be compatible with other TI LaunchPads. J3 and J4 apply
only to Cortex-M4 Booster Packs.

There are two methods to connect external circuits to the LaunchPad. One method is to
purchase a male to female jumper cable (e.g., item number 826 at www.adafruit.com). You
could create low-cost male to female jumper wires by soldering a solid wire into a female
sockets (e.g., Hirose DF11-2428SCA). A second method is to use solid 22-gauge or 24-
gauge wire and connect one end of the solid wire into the bottom or female side of the
LaunchPad.

13 [
A3 — 1 |—sv PE2] 1 |—Grd
PB5— 2 2 |—Gnd PF3— 2 2 |—PB2
PB0— 3 3| —PDO PB3—| 3 3 | —PED
PEl1—| 4 4 |—pD1 PC4—| 4 4 |—PFO
PEA—| 5 5 |—rD2 PC5—{ 5 5 | —Rest
PES—| 6 6 |—rD3 PCE—| 6 6 |—PB7
PBa—| 7 7 Pl PC7—] 7 7 |—PB6
PAS—| 8 8 | —PE2 PD6—| 8 8 | —pas
PA6—] 9 o = PD7— 9 9 | —PA3
pa7— 10| |10 —PF1 PF4— 10| |10} —Pa2

Figure 2.15. Interface connectors on the Texas Instruments
LMA4F120/TM4C123 LaunchPad Evaluation Board.

2.2.4. Texas Instruments TM4C1294 Connected LaunchPad
I/0 pins

Figure 2.16 shows the 90 I/O pins available on the TM4C1294NCPDT, which is the
microcontroller used on the Connected LaunchPad. Pins on the TM4C family can be
assigned to as many as seven different I/O functions, see Table 2.8. Pins can be configured
for digital I/0, analog input, timer I/O, or serial I/O. For example PAO can be digital /O,
serial input, I2C clock, Timer I/O, or CAN receiver. There are two buses used for I/O.
Unlike the TM4C123, the digital I/O ports are only connected to the advanced high-
performance bus. The microcontroller can perform I/O bus cycles simultaneous with
instruction fetches from flash ROM. The TM4C1294NCPDT has eight UART ports, four
SSI ports, ten 12C ports, two 12-bit ADCs, eight timers, two CAN ports, a USB interface,
8 PWM outputs, and an Ethernet port. Of the 90 I/O lines, twenty pins can be used for
analog inputs to the ADC. The ADC can convert up to 1M samples per second. Table 2.8
lists the regular and alternate functions of the port pins.

Each 32-bit GPIO_PORTx_PCTL_R register defines the alternate function for the eight
pins of that port, 4 bits for each pin. For example, if we wished to specify PD5-PD4 as
UART?2, we would set Port D PCTL bits 23-16 to 0x11 like this:

GPIO_PORTD_PCTL_R = (GPIO_PORTD_PCTL_R&0xFFO00FFFF)+0x00110000;

Fy
1024k 256k
R.OM g CotexM4 i § sl RAM
& A

8
POt A |- |t | | Port H [

Eight e Ten
2 lport B |p| LUARTS 1%Cs | Port] 2

Four Two
4 sgs [€*€™ cans | Portk 2
4 Port C |

JTAG Eight Port L |2

ig =3~ PO
8 o PC3PCO |e=lutm| T
. USB20 |emfum| Ethema | |7|POtM 7
A POt E |-t
5 [2 charnels Hﬂ%ﬁﬁﬁﬂg
A PortF [2%%?';5 orrparators bortp L2
Eight PW M
e
F{portG || | e fpote| 2
Advanced High Sysem AdvancedHich
Paformence Bus Bue Pafonrence Bus

Figure 2.16. 1/0 port pins for the TM4C1294NCPDT microcontroller.

Figure 2.17 shows the pin locations of the two Booster Pack connectors. There are three
methods to connect external circuits to the Connected LaunchPad. One method uses male
to female jumper cable (e.g., item number 826 at www.adafruit.com) or solder a solid wire
into a female socket (e.g., Hirose DF11-2428SCA) creating a male-to-female jumper wire.
In this method, you connect the female socket to the top of the LaunchPad and the male
pin into a solderless breadboard. The second method uses male-to-male wires interfacing
to the bottom of the LaunchPad. The third method uses two 49-pin right-angle headers so
the entire LaunchPad can be plugged into a breadboard. You will need one each of Samtec
parts TSW-149-09-L-S-RE and TSW-149-08-L-S-RA. This configuration is shown in
Figure 2.18, and directions can be found at
http://users.ece.utexas.edu/~valvano/arm/TM4C1294soldering.pdf

The Connected LaunchPad has two switches and four LEDs. Switch SW1 is connected to
pin PJO, and SW2 is connected to PJ1. These two switches are negative logic and require
enabling the internal pull up (PUR). A reset switch will reset the microcontroller and your
software will start when you release the switch. Positive logic LEDs D1, D2, D3, and D4
are connected to PN1, PNO, PF4, and PFO respectively. A power LED indicates that 3.3
volt power is present on the board. R19 is a 0 Q resistor connecting PA3 and PQ2.
Similarly, R20 is a 0 Q resistor connecting PA2 and PQ3. You need to remove R19 if you
plan to use both PA3 and PQ2. You need to remove R20 if you plan to use both PA2 and
PQ3. See Figures 2.18 and 2.19.

BoosaPack 1 BoogaPak 2
Xa X9 XE KT

341 23 PF1H4 1 2 |Gnrd 341 2[5 PG1{ 1 2 }-Grd
FPEA 3 4 |—Gnd PFZ2— 3 4 -PM3 FOb2< 3 41-Grnd PK4— 3 4 |-PM7
PCA{ 5 & —FED PF3— S & —PHZ PPOH 5 E61-PB4 PE5— 5 6 PP
Pcs—H 7 BI—PEl PGO— 7 8 |-PH3 PPIHq 7 B |-PB5 PMO—4 7 8 |-PAT
PCE— 9 10FEZ PL4—< 9 10|1—Rext JfP4 9 10—PKO PM1—- 9 10| -Resd
PES 11 12 |—FE3 ALs— 11 12FFD1 511 12-PK1 PM24 1O 12 |-PQ2
P03 13 l4—=pPD7 PLO— 13 14}—-PDO 0— 13 l4=PK2 PHO—13 l4|-P0O3
PC7=— 15 16 |=PAG FL1=— 15 16 =FPMNZ PP4— 15 161=PK2 PH1— 15 1l5}-PF3
PE2— 17 18 —-pPM4 PL2— 17 18|—PN3 PMs— 17 18—Pa4 PKE— 17 18}=-PQ1
PE3H 19 20=PM5 PFL3— 19 20}|-PP2 PuaA— 19 20|—=pPAS PK7— 19 20}-PMB&

doseto| TAG d o to BEthamet

Figure 2.17. Interface connectors on the EK-TM4C1294-XL LaunchPad
Evaluation Board.

Jumper JP1 has six pins creating three rows of two. Exactly one jumper should be
connected in the JP1 block, which selects the power source. The top position is for
BoosterPack power. The middle position draws power from the USB connector, labeled
OTG, on the left side of the board near the Ethernet jack. We recommend placing the JP1
jump in the bottom position so power is drawn from the ICDI (Debug) USB connection.
Under normal conditions, you should place jumpers in both J2 and J3. Jumpers J2 and J3
facilitate measuring current to the microcontroller. We recommend you place JP4 and JP5
in the “UART” position so PA1 and PAO are connected to the PC as a virtual COM port.
Your code runs on the 128-pin TM4C1294 microcontroller. There is a second TM4C
microcontroller on the board, which acts as the JTAG debugger for your TM4C1294. You
connect the Debug USB to a PC in order to download and debug software on the board.
The other USB is for user applications.

Debugger
TMAC1294 Debug USB

Ethernet Reset

"il_ r_-,,"'

. . ¥
T,\ Qe LFSH q h-‘._.' E,}h\
i b

A sl . ;
- -.,:l.-THir.l'._"l-!:lL'E-v c -
Y BoosterPack 2

ety

Figure 2.18. EK-TM4C1294-XL Connected LaunchPad.

Pin Analog 1 2 3 5 6 7 11 13 14
PAO - UORx I2C9SCL TOCCPO - - CANORx - - -
PA1 - U0Tx I2C9SDA TOCCP1 - - CANOTx - - -

PA2 - U4Rx [2C8SCL T1CCPO - - - - - -

PA3 -

PA4 -

PAS5 -

PAG6 -

PA7 -

PB0O USBOID

U4Tx

U3Rx

U3Tx

U2Rx

U2Tx

U1Rx

PB1 USBOVBUS U1Tx

PB2 -

PB3 -

PB4 AIN10

PB5 AIN11

PC4 C1-

PC5 C1+

PC6 CO+

PC7 CO-

PDO AIN15

PD1 AIN14

PD2 AIN13

PD3 AIN12

PD4 AIN7

PD5 AING

PD6 AINS5

PD7 AIN4

PEO AIN3

PE1 AIN2

PE2 AIN1

PE3 AINO

UO0CTS

UORTS

U7Rx

U7Tx

US5Rx

US5Tx

U2Rx

U2Tx

U2RTS

U2CTS

UIRTS

[2C8SDA T1CCP1

12C7SCL T2CCPO

[12C7SDA T2CCP1

[2C6SCL T3CCPO

[2C6SDA T3CCP1

[2C5SCL T4CCPO

[2C5SDA T4CCP1

[2COSCL T5CCPO

[2COSDA T5CCP1

[12C5SCL -

[2C5SDA -

[12C7SCL TOCCPO

[12C7SDA TOCCP1

[12C8SCL T1CCPO

[2C8SDA T1CCP1

- T3CCPO

- T3CCP1

- T4CCPO

- T4CCP1

U1DSR - -

U1DCD - -

U1DTR - -

USBOEPEN -

USBOPFLT

COo

Clo

C20

USBOEPEN -

USBOPFLT

CAN1Rx

CANI1Tx

RTCCLK

SSIOXDAT? -

USBOEPEN SSIOXDATS3 -

- USBO0S]]

- USBO0CI

PE4

PE5

PFO

PF1

PF2

PF3

PF4

PGO

PG1

PHO

PH1

PH2

PH3

PJO

PJ1

PKO

PK1

PK2

PK3

PK4

PK5

PK6

PK7

PLO

PL1

PL2

PL3

AIN9

AINS8

AIN16

AIN17

AIN18

AIN19

UlRI - -

- [12C1SCL

- [2C1SDA -

UORTS - -

UOCTS - -

U0DCD - -

UODSR - -

U3Rx - -

U3Tx - -

U4Rx - -

U4Tx - -

U4RTS - -

U4CTS - -

- [12C3SCL -

- [2C3SDA -

- [2C4SCL -

UORI I2CA4SDA -

- [2C2SDA -

- [2C2SCL -

ENOLEDO

ENOLED2

ENOLED1

ENOPPS

ENOPPS

ENOLEDO

ENOLED?2

ENOLED1

RTCCLK

COo

Clo

MOPWMO -

MOPWM1 -

MOPWM2 -

MOPWM3 -

MOFAULTO -

MOPWM4

MOPWM5

MOPWM6G

MOPWM7

MOFAULT1 -

MOFAULT? -

MOFAULTS3 -

PhAO -

PhBO -

IDXO0 -

SSI3XD

SSI3XD

SSI3Fss

SSI3Clk

SSI3XD

USBOD

USBOD:

USBOD:

USBOD:

PL4 - - - TOCCPO - - - - - USBOD:-

Pin Analog 1 2 3 5 6 7 11 13 14
PL5 - - - TOCCP1 - - - - - USBOD!
PL6 USBODP - - T1CCPO - - - - - -

PL7 USBODM - - T1CCP1 - - - - - -

PMO - - - T2CCPO - - - - - -

PM1 - - - T2CCP1 - - - - - -

PM2 - - - T3CCPO - - - - - -

PM3 - - - T3CCP1 - - - - - -

PM4 TMPR3 UOCTS - T4CCPO - - - - - -

PMS5 TMPR2 U0DCD - T4CCP1 - - - - - -

PM6 TMPR1 UODSR - T5CCPO - - - - - -

PM7 TMPRO UORI - T5CCP1 - - - - - -

PNO - UIRTS - - - - - - - -

PN1 - U1CTS - - - - - - - -

PN2 - U1DCD U2RTS - - - - - - -

PN3 - U1DSR U2CTS - - - - - - -

PN4 - U1DTR U3RTS 12C2SDA - - - - - -

PN5 - UIRI U3CTS 12C2SCL - - - - - -

PPO C2+ U6Rx - - - - - - - -

PP1 C2- U6Tx - - - - - - - -

PP2 - UODTR - - - - - - - USBON:
PP3 - U1CTS UODCD - - - RTCCLK - - USBOD!
PP4 - U3RTS UODSR - - - - - - USBOD!
PP5 - U3CTS I12C2SCL - - - - - - USBOD!

PQO - - - - - - - - - SSI3Clk

PQ1 - - - - - - - - - SSI3Fss

PQ2 - - - - - - - - - SSI3XD
PQ3 - - - - - - - - - SSI3XD
PQ4 - UlRx - - - - DIVSCLK -

Table 2.8. PMCx bits in the GPIO_PORTx_PCTL_R register on the TM4C1294
specify alternate functions. PD7 can be NMI by setting PCTL bits 31-28 to 8. PL6
and PL7 are hardwired to the USB.

#E-11

_|
=
&
]
R

e PAl 7

Serid | £ |pps PlO
24 RS VY.
o L PD4
- = pB1 ¥D1

usB —RB0 PG T
0O s s sl
tm“‘*’ PA3 PFAPWEE :))
— P2
PFO
(A% P2

PQ3

D3 GreenLEDs
V=28V
le=1rmA

&

Figure 2.19. Switch and LED interfaces on the Connected LaunchPad
Evaluation Board. The zero ohm resistors can be removed so all the pins
can be used.

Each pin has one configuration bit in the AMSEL register. We set this bit to connect the
port pin to the ADC or analog comparator. For digital functions, each pin also has four bits
in the PCTL register, which we set to specify the alternative function for that pin (0
means regular I/O port). Table 2.8 shows the 4-bit PCTL configuration used to connect
each pin to its alternate function. For example, column “3” means set 4-bit field in PCTL
to 0011.

Pins PC3 — PCO were left off Table 2.8 because these four pins are reserved for the JTAG
debugger and should not be used for regular I/O. Notice, some alternate function modules
(e.g., UORx) only exist on one pin (PA0). While other functions could be mapped to two
or three pins. For example, TOCCPO could be mapped to one of the following: PAO, PDO,
or PL4.

The PCTL bits in Table 2.8 can be tricky to understand. For example, if we wished to use
UARTE6 on pins PP0O and PP1, we would set bits 1,0 in the DEN register (enable digital),
clear bits 1,0 in the AMSEL register (disable analog), write a 0001,0001 to bits 7-0 in the
PCTL register (enable UART6 functionality), and set bits 1,0 in the AFSEL register
(enable alternate function). If we wished to sample an analog signal on PD0, we would set
bit 0 in the alternate function select register AFSEL, clear bit 0 in the digital enable
register DEN (disable digital), set bit 0 in the analog mode select register AMSEL (enable
analog), and activate one of the ADCs to sample channel 15. Additional examples will be
presented throughout the book.

Jumpers JP4 and JP5 select whether the serial port on UARTO (PA1 — PAO) or on UART?2
(PD5 —4) is linked through the debugger cable to the PC. The serial link is a physical
UART as seen by the TM4C1294 and is mapped to a virtual COM port on the PC. The
USB device interface uses PL6 and PL7. The JTAG debugger requires pins PC3 — PCO.

To use the negative logic switches, make the pins digital inputs, and activate the internal
pull-up resistors. In particular, you will activate the Port J clock, clear bits 0 and

lin GPIO_PORTJ_DIR_R register, set bits 0 and 1in GPIO_PORTJ_DEN_R register,
and set bits 0 and 1in GPIO_PORTJ_PUR_R register. The LED interfaces are positive
logic. To use the LEDs, make the PN1, PNO, PF4, and PFO pins an output. You will
activate the Port N clock, set bits 0 and 1in GPIO_PORTN_DIR_R register, and set bits
0 and 1in GPIO_PORTN_DEN_R register. You will activate the Port F clock, set bits 0
and 4in GPIO_PORTF_DIR_R register, and set bits 0 and 4in GPIO_PORTF_DEN_R
register.

2.3. ARM Cortex™-M Assembly Language

This section focuses on the ARM ® Cortex™-M assembly language. There are many
ARM® processors, and this book focuses on Cortex™-M microcontrollers, which
executes Thumb ® instructions extended with Thumb-2 technology. This section does not
present all the Thumb instructions. Rather, we present a few basic instructions in order to
understand how the processor works. For further details, please refer to Volume 1
(Embedded Systems: Introduction to ARM ® Cortex™-M Microcontrollers), and to the
ARM ® Cortex™-M Technical Reference Manual.

2.3.1. Syntax

Assembly language instructions have four fields separated by spaces or tabs. The label
field is optional and starts in the first column and is used to identify the position in
memory of the current instruction. You must choose a unique name for each label. The
opcode field specifies the processor command to execute. The operand field specifies
where to find the data to execute the instruction. Thumb instructions have 0, 1, 2, 3, or 4
operands, separated by commas. The comment field is also optional and is ignored by the
assembler, but allows you to describe the software making it easier to understand. You can
add optional spaces between operands in the operand field. However, a semicolon must
separate the operand and comment fields. Good programmers add comments to explain
the software.

Label Opcode Operands Comment
Func MOV RO, #100 ; this sets R0 to 100
BX LR ; this is a function return

When describing assembly instructions we will use the following list of symbols
Ra Rd Rm Rn Rt and Rt2 represent registers

#imm12 represents a 12-bit constant, 0 to 4095

#imm16 represents a 16-bit constant, 0 to 65535

operand2 represents the flexible second operand as described in Section 2.2.2
{cond} represents an optional logical condition as listed in Table 2.9

{type} encloses an optional data type as listed in Table 2.10

{S} is an optional specification that this instruction sets the condition code bits
R {, shift} specifies an optional shift on Rm as described in Section 2.2.2

Rn {, #offset} specifies an optional offset to Rn as described in Section 2.2.2

Suffix Flags Meaning

EQ Z=1 Equal

NE Z=0 Not equal

CSor HS (C=1 Higher or same, unsigned >

CCor LO (C=0 Lower, unsigned <

MI N=1 Negative

PL N=0 Positive or zero

VS V=1 Overflow

VC V=0 No overflow

HI C=1andZ =0 | Higher, unsigned >

LS C=0orz=1 Lower or same, unsigned <

GE N=V Greater than or equal, signed >

LT N#V Less than, signed <

GT Z=0and N =V | Greater than, signed >

LE Z=1and N#V | Less than or equal, signed <

AL Can have any Always. This is the default when no
value suffix is specified.

Table 2.9. Condition code suffixes used to optionally execution instruction.

For example, the general description of the addition instruction
ADD{cond} {Rd,} Rn, #imm12

could refer to any of the following examples
ADD RO,#1 ; R0=R0+1
ADD RO,R1,#10 ; RO=R1+10
ADDGE R5,#100 ; if N==V, then R5=R5+100
ADDEQ R12,R1,#100 ; if Z=1, then R12=R1+100

All object code is halfword-aligned. This means instructions can be 16 or 32 bits wide,
and the program counter bit O will always be 0. The stack must remain word aligned,
meaning the bottom two bits of the SP will always remain 0.

2.3.2. Addressing modes and operands

A fundamental issue in program development is the differentiation between data and
address. It is in assembly language programming in general and addressing modes in
specific that this differentiation becomes clear. When we put the number 1000 into register
RO, whether this is data or address depends on how the 1000 is used. To run efficiently we
try to keep frequently accessed data in registers. However, we need to access memory to
fetch parameters or save results. The addressing modeis the format the instruction uses to
specify the memory location to read or write data. All instructions begin by fetching the
machine instruction (op code and operand) pointed to by the PC. Some instructions
operate completely within the processor and require no memory data fetches. For
example, the ADD R1,R2 instruction performs R1+R2 and stores the sum back into R1.
If the data is found in the instruction itself, like MOV RO0,#1 , the instruction uses
immediate addressing mode. A register that contains the address or location of data is
called a pointer or index register. Indexed addressing mode uses a register pointer to
access memory. The addressing mode that uses the PC as the pointer is called PC-relative
addressing mode. It is used for branching, for calling functions, and accessing constant
data stored in ROM. The addressing mode is called PC-relative because the machine code
contains the address difference between where the program is now and the address to
which the program will access. There are many more addressing modes, but for now, these
few addressing modes, as illustrated below, are enough to get us started.The LDR
instruction will read a 32-bit word from memory and place the data in a register. With PC-
relative addressing, the assembler automatically calculates the correct PC offset.

Func PUSH {R1,R2,L.LR} ; save registers and return address
MOV R2#100 ; R2=100, immediate addressing
LDR R1,=Count ; R1 points to variable Count, using PC-relative
LDR RO,[R1] ; RO= value of variable Count
LDR RO,[R1,#4] ; R0= word pointed to by R1+4
LDR RO,[R1,#4]! ; first R1=R1+4, then R0= word pointed to by R1
LDR RO,[R1],#4 ; R0= word pointed to by R1, then R1=R1+4
LDR RO0,[R1,R2] ; R0O=word pointed to by R1+R2
LDR RO0,[R1,R2, LSL #2] ; R0= word pointed to by R1+4*R2
BL Subroutine ; call Subroutine, using PC-relative addressing

POP {R1,R2,PC} ; restore registers and return

Checkpoint 2.4: What is the addressing mode used for?

Checkpoint 2.5: Assume R3 equals 0x2000.0000 at the time LDR R2,[R3,#8] is
executed. What address will be accessed? If R3 is changed, to what value will R3
become?

Checkpoint 2.6: Assume R3 equals 0x2000.0000 at the time LDR R2,[R3],#8 is
executed. What address will be accessed? If R3 is changed, to what value will R3
become?

The operations caused by the first two LDR instructions are illustrated in Figure 2.20.
Assume a32-bit variable Count is located in data space at RAM address 0x2000.0000.
First, LDR R1,=Count makes R1 equal to 0x2000.0000.1.e., R1 points to Count . The
assembler places a constant 0x2000.0000 in code space and translates the =Count into
the correct PC-relative access to the constant(e.g., LDR R1,[PC,#28]). Second, the LDR
RO,[R1] instruction will dereference this pointer, bringing the contents at location
0x2000.0000 into RO. Since Count is located at 0x2000.0000, this instruction will read
the value of the variable into RO.

First
LDR R1, =Count Ox2000.0000 Code space
. (eg, ROM)
S
N LER RO [RI]

= Count
R1[02000000 T | >
(eg, RAM)
RO | |

Figure 2.20. Indexed addressing using R1 as a register pointer to access
memory. Data is moved into R0O. Code space is where we place programs
and data space is where we place variables.

Many general data processing instructions have a flexible second operand. This is shown
as Operand?2 in the descriptions of the syntax of each instruction. Operand2 can be a
constant or a register with optional shift.We specify an Operand2 constant in the

form #constant :

ADD Rd, Rn, #constant ;Rd = Rn+constant

where constant can be (X and Y are hexadecimal digits):

Constant produced by shifting an 8-bit value left by any number of bits
Constant of the form 0x00XY00XY

Constant of the form 0xXY00XY00

Constant of the form 0xXYXYXYXY

We can also specify an Operand2 register in the form Rm {,shift} . For example:
ADD Rd, Rn, Rm {,shift} ;Rd = Rn+Rm

where Rm is the register holding the data for the second operand, and shift is an optional
shift to be applied to Rm . shift can be one of:

ASR #n Arithmetic shift right n bits, 1 <n < 32.
LSL #n Logical shift left n bits, 1 <n < 31.
LSR #n Logical shift right n bits, 1 <n < 32.
ROR #n Rotate right n bits, 1 <n < 31.

RRX Rotate right one bit, with extend.

If weomit the shift, or specify LSL #0 , the instruction uses the value in Rm . If we
specify a shift, the shift is applied to the value in Rm, and the resulting 32-bit value is
used by the instruction. However, the contents in the register Rm remain unchanged. For
example,

ADD RO,R1,LSL#4 ; R0 =R0 + R1*¥16 (R1 unchanged)
ADD RO,R1,ASR #4 ; signed R0 = R0 + R1/16 (R1 unchanged)

An aligned access is an operation where a word-aligned address is used for a word, dual
word, or multiple word access, or where a halfword-aligned address is used for a halfword
access. Byte accesses are always aligned. The T specifies the instruction is unprivileged.
The Cortex™-M processor supports unaligned access only for the following instructions:

. LDR, LDRT Load 32-bit word

. LDRH, LDRHT Load 16-bit unsigned halfword
. LDRSH , LDRSHT Load 16-bit signed halfword
. STR , STRT Store 32-bit word

. STRH, STRHT Store 16-bit halfword

All other read and write memory operations generate a usage fault exception if they
perform an unaligned access, and therefore their accesses must be address aligned.

Common Error: Since not every instruction supports every addressing mode, it would be
a mistake to use an addressing mode not available for that instruction.

2.3.3. Memory access instructions

This section presents mechanisms to read from and write to memory. As illustrated in
Figure 2.20, to access memory we first establish a pointer to the object, then use indexed
addressing. Usually code space is in ROM, but it is possible to assign code space to RAM.
Data space is where we place variables. There are four types of memory objects, and
typically we use a specific register to access it.

Memory object type Register Example
operand

Constants in code space PC =Constant
Local variables on the stack SP [SP,#0x04]
Global variables in RAM RO -R12 [RO]
I/O ports RO -R12 [RO]

The ADR uses PC-relative addressing and can be used to establish a pointer to a constant
in ROM or to an address within the program.The general form for ADR is

ADR{cond} Rd, label

where {cond} is an optional condition, Rd is the destination register, and label is a label
within the code space within the range of -4095 to +4095 from the address in the PC.In
reality, the assembler will generate an ADD or SUB instruction to calculate the desired
address using an offset to the PC. DCD is an assembler directive that defines a 32-bit
constant. We use it to create constants in code space (ROM). In the following example,
after executing the ADR instruction, R5 points to Pi, and after executing the LDR
instruction, R6 contains the data.

Access ADR R5,Pi ;R5 = &Pi
LDR R6,[R5] ;R6 = 314159

BX LR
Pi DCD 314159

We use the LDR instruction to load data from memory into a register. There is a special
form of LDR which instructs the assembler to load a constant or address into a register.
This is a “pseudo-instruction” and the assembler will output suitable instructions to
generate the specified value in the register. This form for LDR is

LDR{cond} Rd, =number
LDR{cond} Rd, =label

where {cond} is an optional condition (see Table 2.9), Rd is the destination register,

and label is a label anywhere in memory. Figure 2.20 illustrates how to create a pointer to
a variable in RAM. A similar approach can be used to access I/O ports. On the TM4C123,
Port A exists at address 0x4000.43FC. After executing the first LDR instruction, R5
equals 0x4000.43FC, which is a pointer to Port A, and after executing the second LDR
instruction, R6 contains the value at Port A.

Input LDR R5,=0x400043FC ;R5=0x400043FC, R5 = &PortA

LDR R6,[R5] ;Input from PortA into R6

BX LR
The assembler translated the above assembly into this equivalent
Input LDR R5,[PC,#16] ;PC+16 is the address of the DCD
LDR R6,[R5]

BX LR
DCD 0x400043FC

We use the LDR instruction to load data from RAM to a register and the STR instruction
to store data from a register to RAM. In real life, when we move a box to the basement,
push a broom across the floor, load bullets into a gun, store spoons in a drawer, pop a
candy into your mouth, or transfer employees to a new location, there is a physical object
and the action changes the location of that object. Assembly language uses these same
verbs, but the action will be different. In most cases, it creates a copy of the data and
places the copy at the new location. In other words, since the original data still exists in
the previous location, there are now two copies of the information. The exception to this
memory-access-creates-two-copies-rule is a stack pop. When we pop data from the stack,
it no longer exists on the stack leaving us just one copy. For example in Figure 2.20, the
instruction LDR RO,[R1] loads the contents of the variable Count into RO. At this point,
there are two copies of the data, the original in RAM and the copy in RO. If we next add 1
to RO, the two copies have different values. When we learn about interrupts in Chapter 5,
we will take special care to handle shared information stored in global RAM, making sure
we access the proper copy.

When accessing memory data, the type of data can be 8, 16, 32, or 64 bits wide. For 8-bit
and 16-bit accesses the type can also be signed or unsigned. To specify the data type we
add an optional modifier, as listed in Table 2.10. When we load an 8-bit or 16-bit unsigned
value into a register, the most significant bits are filled with 0, called zero pad.

When we load an 8-bit or 16-bit signed value into a register, the sign bit of the value is
filled into the most significant bits, called sign extension. This way, if we load an 8-bit
-10 (OxF6) into a 32-bit register, we get the 32-bit -10 (OXFFFF.FFF6). When we store an
8-bit or 16-bit value, only the least significant bits are used.

{type} Data type Meaning

32-bit word 0 to 4,294,967,295 or -2,147,483,648
to +2,147,483,647

B Unsigned 8-bit byte | 0 to 255, Zero pad to 32
bits on load

SB Signed 8-bit byte -128 to +127, Sign extend to
32 bits on load
H Unsigned 16-bit 0 to 65535, Zero pad to 32
halfword bits on load
SH Signed 16-bit -32768 to +32768, Sign extend to
halfword 32 bits on load
D 64-bit data Uses two registers

Table 2.10. Optional modifier to specify data type when accessing memory.

Most of the addressing modes listed in the previous section can be used with load and
store. The following lists the general form for some of the load and store instructions

LDR{type}H{cond} Rd, [Rn] ; load memory at [Rn] to Rd
STR{typeH{cond} Rt, [Rn] ; store Rt to memory at [Rn]
LDR{type}{cond} Rd, [Rn, #n] ; load memory at [Rn+n] to Rd
STR{type}{cond} Rt, [Rn, #n] ; store Rt to memory [Rn+n]
LDR{type}H{cond} Rd, [Rn,Rm,LSL #n] ; load memory at [Rn+Rm*2"] to Rd
STR{typeH{cond} Rt, [Rn,Rm,LSL #n] ; store Rt to memory [Rn+Rm*2"]

Program 2.1 sets each element of an array to the index.The AREA DATA directive
specifies the following lines are placed in data space (typically RAM). The Data SPACE
40 allocates ten uninitialized words. The AREA CODE directive specifies the following
lines are placed in code space (typically ROM). The |.text| connects this program to the C
code generated by the compiler. ALIGN=2 will force the machine code to be halfword-
aligned as required.The local variable i contains the array index. In assembly, the index

i is kept in register RO. The LDR instruction establishes R1 as a pointer to the beginning
of the array, or the base address. Since each array element is 32 bits, the address of the i
element of the array is base+4*i. The logical shift left by 2 implements the multiply by 4.
In particular, the addressing mode [R1,R0,L.SL #2] creates an effective address of
R1+4*R0, with neither R1 nor RO being changed by the instruction.

AREA DATA // C language
Data SPACE 40 ; 32-bit data, length=10 '™Plementation

AREA |.text, CODE, READONLY, uint32_t Data[10];
ALIGN=2

Set MOVS RO0,#0x00 ; index i=0 void Set(void){
LDR R1,=Data ; R1 = &Data inti;

loop STR RO,[R1,R0,LSL #2] for(i=0; i<10; i++){
ADDS RO,R0,#1 ; i=i+1 Datali] = i;
CMP RO0,#10 }
BLT loop ; repeatif i<10 }
BX LR

Program 2.1. Assembly and C versions that initialize a global array of ten
elements.

Checkpoint 2.7: Explain how to change Program 2.1 if the array were ten 16-bit
numbers?

2.3.4. Logical operations

Software uses logical and shift operations to combine information, to extract information
and to test information. A unary operation produces its result given a single input
parameter. Examples of unary operations include negate, complement, increment, and
decrement. In discrete digital logic, the complement operation is called a NOT gate,
previously shown in Figure 1.17, see also Table 2.11. CMOS circuits are built with p-type
and n-type transistors. There are just a few rules one needs to know for understanding how
CMOS transistor-level circuits work. Each transistor acts like a switch between its source
and drain pins. In general, current can flow from source to drain across an active p-type
transistor, and no current will flow if the switch is open. From a first approximation, we
can assume no current flows into or out of the gate. For a p-type transistor, the switch will
be closed (transistor active) if its gate is low. A p-type transistor will be off (its switch is
open) if its gate is high. The gate on the n-type works in a complementary fashion, hence
the name complementary metal oxide semiconductor. For an n-type transistor, the switch
will be closed (transistor active) if its gate is high. An n-type transistor will be off (its
switch is open) if its gate is low. Therefore, consider the two possibilities for the circuit in
Figure 1.17. If the input A is high (+3.3V), then the p-type is off and the n-type is active.
The closed switch across the source-drain of the n-type will make the output low (0V).
Conversely, if A is low (0V), then p-type is active and the n-type is off. The closed switch
across the source-drain of the p-type will make the output high (+3.3V).

A |~A
0 1
1 0

Table 2.11. Logical complement.

A binary operation produces a single result given two inputs. The logical and (&)

operation yields a true result if both input parameters are true. The logical or (|) operation
yields a true result if either input parameter is true. The exclusive or () operation yields a
true result if exactly one input parameter is true. The logical operators are summarized in
Table 2.12 and shown as digital gates in Figure 2.21. The logical instructions on the

ARM ® Cortex™-M take two inputs, one from a register and the other from the flexible
second operand. These operations are performed in a bit-wise fashion on two 32-bit
parameters yielding a 32-bit result. The result is stored into the destination register. For
example, the calculation r=m&n means each bit is calculated separately, r;,=m,,&n,,,

3=y, &Ny, ..., ry=m,&n,.

In C, when we write r=m&n; r=m|n; r=m”n; the logical operation occurs in a bit-wise
fashion as described by Table 2.12. However, when we write r=m&&n; r=m||n; , the
logical operation occurs in a word-wise fashion. For example, r=m&&n; means r will
becomezero if either m is zero or n is zero.Conversely, r will become 1 if both m is
nonzero and n is nonzero.

A B A&B |AB |A’B | A&(~B)|A|(~B)
Rn Operand2 AND |ORR |EOR |BIC ORN
0 0 0 0 0 0 1

0 1 0 1 1 0 0

1 0 0 1 1 1 1

1 1 1 1 0 0 1

Table 2.12. Logical operations performed by the Cortex-M.

We can understand the operation of the AND gate by observing the behavior of its six
transistors. If both inputs A and B are high, both T3 and T4 will be active. Furthermore, if
A and B are both high, T1 and T2 will be off. In this case, the signal labeled ~(A&B) will
be low because the T3-T4 switch combination will short this signal to ground. If A is low,
T1 will be active and T3 off. Similarly, if B is low, T2 will be active and T4 off. Therefore
if either A is low or if B is low, the signal labeled ~(A&B) will be high because one or
both of the T1, T2 switches will short this signal to +3.3V. Transistors T5 and T6 create a
logical complement, converting the signal ~(A&B) into the desired result of A&B. We can
use the and operation to extract, or mask, individual bits from a value.

AND Gae OR Gae EOR Gate

=Pl D & o

FAHCOE FAHC32 JAHCES

+33v| 433V
A—ed[rid[T2 H¥
BE —¢ ~(A&B T3
A&B
T6
T3
T4

m I=

AlB

|

Figure 2.21. Logical operations can be implemented with discrete
transistors or digital gates.

We can understand the operation of the OR gate by observing the behavior of its six
transistors. If both inputs A and B are low, both T1 and T2 will be active. Furthermore, if
A and B are both low, T3 and T4 will be off. In this case, the signal labeled ~(A|B) will be
high because the T1-T2 switch combination will short this signal to +3.3V. If A is high,
T3 will be active and T1 off. Similarly, if B is high, T4 will be active and T2 off.
Therefore if either A is high or if B is high, the signal labeled ~(A|B) will be low because
one or both of the T3, T4 switches will short this signal to ground. Transistors T5 and T6
create a logical complement, converting the signal ~(A|B) into the desired result of A|B.
We use the or operation to set individual bits.

All instructions place the result into the destination register Rd . If Rd is omitted, the
result is placed into Rn , which is the register holding the first operand. If the optional S
suffix is specified, the N and Z condition code bits are updated on the result of the
operation. Let B be the 32-bit value generated by the flexible second operand, Operand?2 .
Some flexible second operands may affect the C bit. These logical instructions will leave
the V bit unchanged.

AND{SHcond} {Rd,} Rn, Operand2 ; RAd=Rn&B
ORR{SHcond} {Rd,} Rn, Operand2 ; Rd=Rn|B
EOR{SHcond} {Rd,} Rn, Operand2 ; Rd=Rn/"B
BIC{S}{cond} {Rd,} Rn, Operand2 ; RA&=Rn&(~B)
ORN{S}Hcond} {Rd,} Rn, Operand2 ; Rd=Rn|(~B)

Other convenient logical operators are summarized in Table 2.13 and shown as digital
gates in Figure 2.22. The NAND operation is defined by an AND followed by a NOT. If
you compare the transistor-level circuits in Figures 2.21 and 2.22; it would be more
precise to say AND is defined as a NAND followed by a NOT. Similarly, the OR
operation is a NOR followed by a NOT. The exclusive NOR operation implements the
bit-wise equals operation.

A |B |NAND | NOR | exclusive
NOR

0O |0 |1 1 1

0 1 1 0 0

1 0 |1 0 0

1 1 1|0 0 1

Table 2.13. Convenient logical operations.

The output of an open collector gate, drawn with the ‘x’, has two states low (0V) and HiZ
(floating.) Consider the operation of the transistor-level circuit for the 74HCO5. If A is
high (+3.3V), the transistor is active, and the output is low (0V). If A is low (0V), the
transistor is off, and the output is neither high nor low. In general, we can use an open
collector NOT gate to control the current to a device, such as a relay, an LED, a solenoid,
or a small motor. The 74HCO05, the 7405, and the 7406 are all open collector NOT gates.
74HCO04 is high speed CMOS and can only sink up to 4 mA when its output is low. Since
the 7405 and 7406 are transistor-transistor-logic (TTL) they can sink more current. In
particular, the 7405 has a maximum output low current (I,) of 16 mA, whereas the 7406

has a maximum I;; of 40 mA.

Checkpoint 2.8: Using just the 74HC gates shown in Figures 1.17, 2.21, and 2.22, design
one-bit BIC and ORN circuits as defined in Table 2.12.

MNAND MNCR ExMNCR OpmN c(%l_l_a:‘tur
AERB AB e s

A A A
B B :DD_ B jDDA_ A —I}Oﬁ
74HC00 74HCo2 74HC7266 e TR

S e
g ;|4_(A F -) _li i
b

Figure 2.22. Other logical operations can also be implemented with
discrete logic.

Digital storage devices are essential components used to make registers and memory. The
simplest storage device is the set-reset flip flop. One way to build one is shown on the left
side of Figure 2.23. If the inputs are S*=0 and R*=1, then the Q output will be 1.
Conversely, if the inputs are S*=1 and R*=0, then the Q output will be 0. Normally, we
leave both the S* and R* inputs high. We make the signal S* go low, then back high to set
the flip-flip, making Q=1. Conversely, we make the signal R* go low, then back high to
reset the flip-flip, making Q=0. If both S* and R* are 1, the value on Q will be
remembered or stored. This flip flop enters an unpredictable mode with S* and R* are
simultaneously low.

The gated D flip flop is also shown in Figure 2.23. The front-end circuits take a data input,
D, and a control signal, W, and produce the S* and R* commands for the set-reset flip
flop. For example, if W=0, then the flip flop is in its quiescent state, remembering the
value on Q that was previously written. However, if W=1, then the data input is stored into
the flip flop. In particular, if D=1 and W=1, then S*=0 and R*=1, making Q=1.
Furthermore, if D=0 and W=1, then S*=1 and R*=0, making Q=0. So, to use the gated flip
flop, we first put the data on the D input, next we make W go high, then we make W go
low. This causes the data value to be stored at Q. After W goes low, the data does not
need to exist at the D input anymore. If the D input changes while W is high, then the Q
output will change correspondingly. However, the last value on the D input is remembered
or latched when the W falls, as shown in Table 2.14.

The D flip-flop, shown on the right of Figure 2.23, can also be used to store information.
D flip-flips are the basic building block of RAM and registers on the computer. To save
information, we first place the digital value we wish to remember on the D input, and then
give a rising edge to the clock input. After the rising edge of the clock, the value is
available at the Q output, and the D input is free to change. The operation of the clocked D
flip flop is defined on the right side of Table 2.14. The 74HC374 is an 8-bit D flip-flop,
such that all 8 bits are stored on the rising edge of a single clock. The 74HC374 is similar
in structure and operation to a register, which is high speed memory inside the processor.
If the gate (G) input on the 74HC374 is high, its outputs will be HiZ (floating), and if the
gate is low, the outputs will be high or low depending on the stored values on the flip flop.

Set-Reet flip flop Gated D.ﬂ|pﬂr:p 244CT4 J44C374
p | — D Q =
% —}d DCkQ S clock
R &
S

Figure 2.23. Digital storage elements.

D |W Q D clock | Q
0 0 Qold 0 0 Qold

0 |1 0 1|0 Q.

1 |1 1 1|1 Q.

0 ! 0 0 1 0

1 ! 1 1 1 1

Table 2.14. D flip-flop operation. Q_, is the value of the D input at the time of the
active edge of on W or clock.

Second, the tristate driver, shown in Figure 2.24, can be used dynamically control signals
within the computer. The tristate driver is an essential component from which computers
are built. To active the driver, we make its gate (G*) low. When the driver is active, its
output (Y) equals its input (A). To deactivate the driver, we make its G* high. When the
driver is not active, its output Y floats independent of A. We saw this floating state with the
open collector logic, and it is also called HiZ or high impedance. The HiZ output means
the output is neither driven high nor low. The operation of a tristate driver is defined in
Table 2.15. The 74HC244 is an 8-bit tristate driver, such that all 8 bits are active or not
active controlled by a single gate. The 74HC374 8-bit D flip-flop includes tristate drivers
on its outputs. Normally, we can’t connect to digital outputs together. The tristate driver
provides a way to connect multiple outputs to the same signal, as long as at most one of
the gates is active at a time.

TAHC125 AHC244

8 B8
Adg—y aHEY
G.‘%: G:+:
433
+3.3 j
[‘L TS
T3 —
iy A :I

T6
FY

T8
o

433

1y

Figure 2.24. A 1-bit and an 8-bit tristate driver (G* is in negative logic).

s

Table 2.15 describes how a tristate driver in Figure 2.24 works. Transistors T1 and T2
create the logical complement of G*. Similarly, transistors T3 and T4 create the
complement of A. An input of G*=0 causes the driver to be active. In this case, both T5
and T8 will be on. With T5 and T8 on, the circuit behaves like a cascade of two NOT
gates, so the output Y equals the input A. However, if the input G*=1, both T5 and T8 will
be off. Since T5 is in series with the +3.3V, and T8 in series with the ground, the output Y
will be neither high nor low. Le., it will float.

A | G* 1 (T2 |T3 |T4 |T5 |Te |T7 |18 |Y

0 0 on |off |lon |off lon |off lon |on |0

1 0 on |off |off lon |on |on |off on |1

0 1 off flon |on |off |off |off |on |off |HiZ

1 1 off flon |off lon |off |on |off |off |HiZ

Table 2.15. Tristate driver operation. HiZ is the floating state, such that the output is
not high or low.

2.3.5. Shift operations

Like programming in C, the assembly shift is a binary operation. In C, the << and >>
operators take two inputs and yield one output, e.g., the right shift is R = M>>N. The
logical shift right (LSR) is similar to an unsigned divide by 2", where n is the number of
bits shifted, as shown in Figure 2.25. A zero is shifted into the most significant position,
and the carry flag will hold the bit shifted out. The right shift operations do not round. In
general, the LSR discards bits shifted out, and the UDIV truncates towards 0. Thus, when
using UDIV to divide unsigned numbers by a power of 2, UDIV and LSR yield identical
results. The arithmetic shift right (ASR) is similar to a signed divide by 2". Notice that
the sign bit is preserved, and the carry flag will hold the bit shifted out. This right shift
operation also does not round. In general, the ASR discards bits shifted out, and the SDIV
truncates towards 0. The logical shift left (LSL) operation works for both unsigned and
signed multiply by 2". A zero is shifted into the least significant position, and the carry bit
will contain the bit that was shifted out. The two rotate operations can be used to create
multiple-word shift functions. There is no rotate left instruction, because a rotate left 10
bits is the same as rotate right 22 bits.

All instructions place the result into the destination register Rd . Rm is the register
holding the value to be shifted.The number of bits to shift is either in register Rs , or
specified as a constant n .If the optional S suffix is specified, the N and Z condition code
bits are updated on the result of the operation. The C bit is the carry out after the shift as
shown in Figure 2.25. These shift instructions will leave the V bit unchanged.

LSR{S}Hcond} Rd, Rm, Rs ; logical shift right RA&=Rm>>Rs
(unsigned)

LSR{S}{cond} Rd, Rm, #n ; logical shift right Rd&=Rm>>n
(unsigned)

ASR{SHcond} Rd, Rm, Rs ; arithmetic shift right Rd&=Rm>>Rs
(signed)

ASR{S}Hcond} Rd, Rm, #n ; arithmetic shift right Rd=Rm>>n
(signed)

LSL{SHcond} Rd, Rm, Rs ; shift left RA=Rm<<Rs (signed and
unsigned)

LSL{S}Hcond} Rd, Rm, #n ; shift left Rd&=Rm<<n (signed and

unsigned)

ROR{S}H{cond} Rd, Rm, Rs ; rotate right
ROR{S}Hcond} Rd, Rm, #n ; rotate right
RXX{SHcond} Rd, Rm ; rotate right with extension

Observation: Use logic shift operations on unsigned numbers and use arithmetic shift
operations on signed numbers.

31 0 29 28 27 26 1 0 C
Logicd Shift Rigt

LSR O P Do O e i i e 1 —+ 1lens32
Arithmeti c SHftRight |

ASR L= o e Do de e B e 1 _+ lans2
Logicd Shift Left

LSL L e e}t wy g o w0 ,.(.J Osn<31
Rctae Shift Rigt

HDR el e i -*— i e o ,*_.J_+ 1{1_1*:'32
Rctate Ri ght Extenced J e

RRH} e e i e i 3 3 e L _+ i

Figure 2.25. Shift operations.

2.3.6. Arithmetic operations

When software executes arithmetic instructions, the operations are performed by digital
hardware inside the processor. Even though the design of such logic is complex, we will
present a brief introduction, in order to provide a little insight as to how the computer
performs arithmetic. It is important to remember that arithmetic operations (addition,
subtraction, multiplication, and division) have constraints when performed with finite
precision on a processor. An overflow error occurs when the result of an arithmetic
operation cannot fit into the finite precision of the register into which the result is to be
stored.

For example, consider an 8-bit unsigned number system, where the numbers can range
from 0 to 255. If we add two numbers together the result can range from 0 to 510, which is
a 9-bit unsigned number. These numbers are similar to the numbers 1-12 on a clock, as
drawn in Figure 2.26. If it is 11 o’clock and we wait 3 hours, it becomes 2 o’clock. Shown
in the middle of Figure 2.26, if we add 64 to 224, the result becomes 32. In most cases, we
would consider this an error. An unsigned overflow occurs during addition when we cross
the 255-0 barrier (carry set on overflow). If we subtract two 8-bit unsigned numbers the
result can range from -255 to +255, which is a 9-bit signed number. Subtraction moves in
a counter-clockwise direction on the number wheel. As shown on the right side of Figure
2.26, if we subtract 64 from 32 (32-64), we get the incorrect result of 224. An unsigned

overflow occurs during subtraction if we cross the 255-0 barrier in the other direction
(carry clear on overflow). After a subtraction on the Cortex-M the carry is clear if an error
occurred, and the carry is set if no error occurred and the answer is correct.

+Bhours 464, 64
255 U 255 U
oa . D 4 | D

Figure 2.26. The carry bit is set on addition when crossing the 255-0
boundary. The carry bit is cleared on subtraction when crossing the 255—-0
boundary.

Similarly, when two 32-bit numbers are added or subtracted, the result may not fit back
into a 32-bit register. The same addition and subtraction hardware (instructions) can be
used to operate on either unsigned or signed numbers. Although we use the same
instructions, we must use separate overflow detection for signed and unsigned operations.

Checkpoint 2.9: How many bits does it take to store the result of two unsigned 32-bit
numbers added together?

Checkpoint 2.10: How many bits does it take to store the result of two signed 32-bit
numbers added together?

Checkpoint 2.11: Where is the barrier (discontinuity) on a signed 8-bit number wheel?

Let Mbe the 32-bit value specified by the #imm12 constant or generated by the flexible
second operand, Operand2 . When Rd is absent, the result is placed back in Rn . The
compare instructions CMP and CMN do not save the result of the subtraction, but always
set the condition code. The compare instructions are used to create conditional execution,
such as if-then, for loops, and while loops. The compiler mayuse RSB or CMN to
optimize execution speed.

ADD{SHcond} {Rd,} Rn, Operand2 ;RAd=Rn+M
ADD{S}{cond} {Rd,} Rn, #imm12 ;Rd=Rn+M
SUB{SHcond} {Rd,} Rn, Operand2 ;Rd=Rn-M
SUB{S}{cond} {Rd,} Rn, #imm12 ;Rd=Rn-M
RSB{S}H{cond} {Rd,} Rn, Operand?2 ;Rd=M -Rn
RSB{S}{cond} {Rd,} Rn, #imm12 ;Rd=M -Rn
CMP{cond} Rn, Operand2 ;Rn-M

CMN{cond} Rn, Operand2 ; Rn - (-M)

If the optional S suffix is present, addition and subtraction set the condition code bits as
shown in Table 2.16. The addition and subtraction instructions work for both signed and
unsigned values. As designers, we must know in advance whether we have signed or
unsigned numbers. The computer cannot tell from the binary which type it is, so it sets
both C and V. Our job as programmers is to look at the C bit if the values are unsigned and
look at the V bit if the values are signed.

Bit Name Meaning after addition or
subtraction

N negative Result is negative

Z zero Result is zero

\Y overflow Signed overflow

C carry Unsigned overflow

Table 2.16. Condition code bits contain the status of the previous arithmetic
operation.

If the two inputs to an addition operation are considered as unsigned, then the C bit (carry)
will be set if the result does not fit. In other words, after an unsigned addition, the C bit is
set if the answer is wrong. If the two inputs to a subtraction operation are considered as
unsigned, then the C bit (carry) will be clear if the result does not fit. If the two inputs to
an addition or subtraction operation are considered as signed, then the V bit (overflow)
will be set if the result does not fit. In other words, after a signed addition, the V bit is set
if the answer is wrong. If the result is unsigned, the N=1 means the result is greater than or
equal to 2°'. Conversely, if the result is signed, the N=1 means the result is negative.
Assumingthe optional S suffix is present, condition code bits are set after the addition
R=X+M, where X is initial register value and R is the final register value.

N: result is negative N =R,

. ::_ = T
Z: result is zero Ry &Ry &L &Ry

V: signed overflow V=DM | M

C: unsigned overflow C=Xo&Myy | My &Ry | Anstyy

If the optional S suffix is present, condition code bits are set after the subtraction R=X-M,
where X is initial register value and R is the final register value. If the C bit is clear after
an unsigned subtraction (R=X-M), then the result is incorrect because an unsigned
overflow occurred.

N: result is negative N =R,

: 2= B Bp &L &y
Z.: result is zero 31 & fgg o

V: signed overflow V=B R | M BIGRaR

: C= Xy &M Moy 6 Ry B Mo
C: unsigned overflow g8 Mgy | Mg BBy | by

We begin the design of an adder circuit with a simple subcircuit called a binary full adder,
as shown in Figure 2.27. There are two binary data inputs A, B and a carry input, C, .

There is one data output S, and one carry output, C_ . As shown in Table 2.17, C, A,

and B are three independent binary inputs each of which could be 0 or 1. These three
inputs are added together (the sum could be 0, 1, 2, or 3) and the result is encoded in the
two-bit binary result with C_, as the most significant bit and S_,, as the least significant bit.

C,, Is true if the sum is 2 or 3, and S_, is true if the sum is 1 or 3.

out?

out

N —
AB A“B)"~Cin
A TPD \ -
Ml 74HCes
(A"B)& Cj, ((A"BI&C|R)[A&B)
Cout
AEB
B 7AHC32
74HC08

Figure 2.27. A binary full adder.

A |B |C, |A+B+C, Cout | Sout
0o |0 (0 |0 0 0
0o |o |1 |1 0 1
0o |1 |0 |1 0 1
0o |1 [1 |2 1 0
1 [0 |0 |1 0 1
1 (o |1 |2 1 0
1 (1 |o |2 1 0
1 |1 |1 |3 1 1

Table 2.17. Input/output response of a binary full adder.

We build 32-bit adder by concatenating 32 binary full adders together. The carry into the
32-bit adder is zero, and the carry out will be saved in the carry bit.

Checkpoint 2.12: How many bits does it take to store the result of two unsigned 32-bit
numbers multiplied together?

Checkpoint 2.13: How many bits does it take to store the result of two signed 32-bit
numbers multiplied together?

Multiply(MUL), multiply with accumulate(MLA), and multiply with subtract(MLS)
use 32-bit operands, and producing a 32-bit result. These three multiply instructions only
save the bottom 32 bits of the result. They can be used for either signed or unsigned
numbers, but no overflow flags are generated. If the Rd register is omitted, the Rn
register is the destination. If the S suffix is added to MUL , then the Z and N bits are set
according to the result. The division instructions do not set condition code flags, and will
round towards zero if the division does not evenly divide into an integer quotient.

MUL{S}Hcond} {Rd,} Rn, Rm ; Rd =Rn * Rm
MLA{cond} Rd, Rn, Rm, Ra ; Rd = Ra + Rn*Rm
MLS{cond} Rd, Rn, Rm, Ra ; Rd = Ra - Rn*Rm
UDIV{cond} {Rd,} Rn, Rm ; Rd = Rn/Rm
unsigned

SDIV{cond} {Rd,} Rn, Rm ; Rd = Rn/Rm
signed

The following four multiply instructions use 32-bit operands and produce a 64-bit
result.The two registers RdLo and RdHi contain the least significant and most significant
parts respectively of the 64-bit result, signified as Rd . These multiply instructions do not
set condition code flags

UMULL{cond} RdLo, RdHi, Rn, Rm ; Rd=Rn * Rm
SMULL{cond} RdLo, RdHi, Rn, Rm ; Rd = Rn*Rm
UMLAL{cond} RdLo, RdHi, Rn, Rm ; Rd=Rd + Rn * Rm
SMLAL{cond} RdLo, RdHi, Rn, Rm ; Rd = Rd + Rn*Rm

Checkpoint 2.14: Can the 32 by 32 bit multiply instructions UMULL or SMULL
overflow?

2.3.7. Functions and control flow

Normally the computer executes one instruction after another in a linear fashion. In
particular, the next instruction to execute is found immediately following the current
instruction. We use branch instructions to deviate from this straight line path. Table 2.9
lists the conditional execution available on the ARM ® Cortex™-M. In this section, we
will use the conditional branch instruction to implement if-then, while-loop and for-loop
control structures.

B{cond} label ; branch to label

BX{cond} Rm ; branch indirect to location specified by Rm
BL{cond} label ; branch to subroutine at label
BLX{cond} Rm ; branch to subroutine indirect specified by Rm

Subroutines, procedures, and functions are programs that can be called to perform
specific tasks. They are important conceptual tools because they allow us to develop
modular software. The programming languages Pascal, Fortran, and Ada distinguish
between functions, which return values, and procedures, which do not. On the other hand,
the programming languages C, C++, Java, and Lisp do not make this distinction and treat
functions and procedures as synonymous. Object-oriented programming languages use the
term method to describe programs that are part of objects; it is also used in conjunction
with type classes. In assembly language, we use the term subroutine for all subprograms
whether or not they return a value. Modular programming allows us to build complex
systems using simple components. In this section we present a short introduction on the
syntax for defining subroutines. We define a subroutine by giving it a name in the label
field, followed by instructions, which when executed, perform the desired effect. The last
instruction in a subroutine will be BX LR , which we use to return from the subroutine. In
Program 2.2, we define the subroutine named Change , which adds25 to the

variable Num . The flowchart for this example is drawn in Figure 2.28.In assembly
language, we will use the BL instruction to call this subroutine. At run time, the BL
instruction will save the return address in the LR register. The return address is the
location of the instruction immediately after the BL instruction. At the end of the
subroutine, the BX LR instruction will get the return address from the LR register,
returning the program to the place from which the subroutine was called. More precisely,
it returns to the instruction immediately after the instruction that performed the subroutine
call. The comments specify the order of execution. The while-loop causes instructions 4—
10 to be repeated over and over.

Num =0 MNum =MNums2s
.

Change() RefLrn
L

Figure 2.28. A flowchart of a simple function that adds 25 to a global
variable.

Change LDR R1,=Num ;5)R1= uint32_t Num;

&Num void Change(void){
LDR RO,[R1] ; 6) RO =Num Num = Num+25;

ADD RO,R0,#25 ; 7) RO = Num+25 }

STR RO,[R1] ; 8) Num = Num+25 void main(void){

BX LR ; 9) return Num = 0;

main LDR R1,=Num ;1) R1=&Num while(1){

MOV RO#0 ;2)R0=0 Change();
STR RO,[R1] ;3) Num=0 }

loop BL Change ; 4) function call }

B loop ; 10) repeat

Program 2.2. Assembly and C versions that define a simple function.

In C, input parameters, if any, are passed in RO—R3. The output parameter, if needed, is
returned in RO.

Recall that all object code is halfword aligned, meaning bit 0 of the PC is always clear.
When the BL instruction is executed, bits 31-1 of register LR are loaded withthe address
of the instruction after the BL , and bit O is set to one. When the BX LR instruction is
executed, bits 31-1 of register LR are put back into the PC, and bit 0 of LR goes into the T
bit. On the ARM ® Cortex™-M, the T bit should always be 1, meaning the processor is
always in the Thumb state. Normally, the proper value of bit 0 is assigned automatically.

Decision making is an important aspect of software programming. Two values are
compared and certain blocks of program are executed or skipped depending on the results
of the comparison. In assembly language it is important to know the precision (e.g., 16-bit,
32-bit) and the format of the two values (e.g., unsigned, signed). It takes three steps to
perform a comparison. We begin by reading the first value into a register. The second step
is to compare the first value with the second value. Wecan use either a subtract instruction
(subs) or a compare instruction (cmp). These instructions set the condition code bits.
The last step is a conditional branch. The available conditions are listed in Table 2.9. The
branch will occur if the condition is true.

Program 2.3 illustrates an if-then structure involving testing for unsigned greater than or
equal to. It will increment Num if it is less than 25600. Since the variable is unsigned, we
use an unsigned conditional. Furthermore, we want to execute the incrementif Num is
less than 25600, so we perform the opposite conditional branch (greater than or equal to)
to skip over.

Change LDR R1,=Num ; R1=&Num uint32_t Num;
LDR RO,[R1] ; RO =Num void Change(void){
CMP R0,#25600 if(Num < 25600){
BHS skip Num = Num+1;
ADD RO,R0,#1 ; RO = Num+1 }

STR RO,[R1] ; Num = Num+1 }
skip BX LR ; return

Program 2.3. Assembly and C software showing an if-then control
structure.

Program 2.4 illustrates an if-then-else structure involving signed numbers. It will
increment Num if it is less than 100, otherwise it will set it to -100. Since the variable is
signed, we use an signed conditional. Again, we want to execute the increment if Num is
less than 100, so we perform the opposite conditional branch (greater than or equal to) to
skip over.

Change LDR R1,=Num ; R1=&Num int32_t Num;
LDR RO,[R1] ; RO=Num void Change(void){
CMP RO0,#100 if(Num < 100){
BGE else Num = Num+1;
ADD RO,R0,#1 ; RO = Num+1 }
B skip else{

else MOV R0,#-100; -100 Num = -100;

skip STR RO,[R1] ; update Num }
BX LR ; return }

Program 2.4. Assembly and C software showing an if-then-else control
structure.

Checkpoint 2.15:Why does Program 2.3 use BHS and Program 2.4 use BGE ?

If-then-else control structures are commonly found in computer software. If the BHS in
Program 2.3 or the BGE in Program 2.4 were to branch, the instruction pipeline would
have to be flushed and refilled. In order to optimize execution speed for short if-then and
if-then-else control structures, the ARM ® Cortex™-M employs conditional
execution.The conditional execution begins with the IT instruction, which specifies the
number of instructions in the control structure (1 to 4) and the conditional for the first
instruction. The syntax is

IT{x{y{z}}} cond

where x y and z specify the existence of the optional second, third, or fourth conditional
instruction respectively. We can specify x y and z as T for execute if true or E for else.
The cond field choices are listed in Table 2.9. The conditional suffixes for the 1 to 4
following instruction must match the conditional field of the IT instruction.In particular,
the conditional for the true instructions exactly match the conditional for the IT
instruction. Furthermore, the else instructions must have the logical complement
conditional. If the condition is true the instruction is executed. If the condition is false, the
instruction is fetched, but not executed. For example, Program 2.3 could have been written
as follows. The two T’s in ITT means there are two true instructions.

Change LDR R1,=Num ; R1 = &Num
LDR RO,[R1] ; RO =Num
CMP R0,#25600
ITT LO
ADDLO RO,R0,#1 ; if(R0<25600) RO = Num+1
STRLO RO,[R1] ; if(R0<25600) Num = Num+1
BX LR ; return

Program 2.4 could have been written as follows. The one T and one Ein ITE means there
is one true and one else instruction.

Change LDR R1,=Num ; R1 = &Num
LDR RO,[R1] ; RO=Num
CMP RO0,#100
ITE LT
ADDLT RO,R0,#1 ; if(R0< 100) RO = Num+1
MOVGE R0,#-100 ; if(R0>=100) R0 =-100
STR RO0,[R1] ; update Num
BX LR ; return

The following assembly converts one hex digit (0—15) in RO to ASCII in R1. The one T
and one E in ITE means there is one true and one else instruction.

CMP RO0,#9 ; Convert RO (0 to 15) into ASCII
ITE GT ; Next 2 are conditional

ADDGT R1,R0,#55 ; Convert 0xA -> ‘A’
ADDLE R1,R0,#48 ; Convert 0x0 -> ‘0’

By themselves, the conditional branch instructions do not require a preceding I'T
instruction.However, a conditional branch can be used as the last instruction of an IT
block. There are a lot of restrictions on IT. For more details, refer to the programming
reference manual.

2.3.8. Stack usage

Figure 2.5 shows the push and pop instructions can be used to store temporary
information on the stack. If a subroutine modifies a register, it is a matter of programmer
style as to whether or not it should save and restore the register. According to AAPCS a
subroutine can freely change RO—R3 and R12, but save and restore any other register it
changes. In particular, if one subroutine calls another subroutine, then it must save and
restore the LR. AAPCS also requires pushing and popping multiples of 8 bytes, which
means an even number of registers. In the following example, assume the function
modifies register RO, R4, R7, R8 and calls another function. The programming style
dictates registers R4 R7 R8 and LR be saved. Notice the return address is pushed on the
stack as LR, but popped off into PC. When multiple registers are pushed or popped, the
data exist in memory with the lowest numbered register using the lowest memory address.
In other words, the registers in the { } can be specified in any order. Of course remember
to balance the stack by having the same number of pops as pushes.

Func PUSH {R4,R7,R8,LR} ; save registers as needed
; body of the function
POP {R4,R7,R8,PC} ; restore registers and return

The ARM processor has a lot of registers, and we appropriately should use them for
temporary information such as function parameters and local variables. However, when
there are a lot of parameters or local variables we can place them on the stack. Program
2.5 is similar to Program 2.1, except the data buffer is now local, and placed on the
stack.The SUB instruction allocates 10 words on the stack. Figure 2.29 shows the stack
before and after the allocation. The SP points to the first location of data . The local
variable i is held in R0O.The flexible second operand for the STR instruction uses SP as the
base pointer, and R0*4 as the offset. The ADD instruction deallocates the local variable,
balancing the stack.

Set SUB sp,sp,#0x28 ;allocate // C language
MOVS r0,#0x00 :i=0 implementation
B test

void Set(void){

loop STR r0,[sp,r0,LSL #2]

ADDS r0,r0,#1 ;i++ uint32_t data[10];

test CMP r0,#0x0A nt 1;
BLT loop for(i=0; i<10; i++){
ADD sp,sp,#0x28 ;deallocate datali] = i;
BX LR }
}

Program 2.5. Assembly and C versions that initialize a local array of ten
elements.

ACD SP, SP, #0x28

SP —+ data[0]

dat a[9]

SP —»

" 0000 FFFC
SUB SP, SP, #0x28

Figure 2.29. A stack picture showing a local array of ten elements (40
bytes).

2.3.9. Assembler directives

We use assembler directives to assist and control the assembly process. The following
directives change the way the code is assembled.

AREA CODE ; places code in code space (flash ROM)

AREA DATA ; places objects in data space (RAM)

THUMB ; uses Thumb instructions

ALIGN ; skips 0 to 3 bytes to make next word aligned
END ; end of file

The following directives can add variables and constants.

DCB expr{,expr} ; places 8-bit byte(s) into memory

DCW expr{,expr} ; places 16-bit halfword(s) into memory
DCD expr{,expr} ; places 32-bit word(s) into memory
SPACE size ; reserves size bytes, unitialized

The EQU directive gives a symbolic name to a numeric constant, a register-relative value
or a program-relative value. * is a synonym for EQU . We will use it to define I/O port
addresses. For example, these four definitions will be used to initialize and operate Port D.

GPIO_PORTD_DATA_R equ 0x400073FC
GPIO_PORTD_DIR_R equ 0x40007400
GPIO_PORTD_DEN_R equ 0x4000751C
SYSCTL_RCGCGPIO_R equ 0x400FE608

2.4. Parallel I/0O ports

2.4.1. Basic concepts of input and output ports

The simplest I/O port on a microcontroller is the parallel port. A parallel I/O port is a
simple mechanism that allows the software to interact with external devices. It is called
parallel because multiple signals can be accessed all at once. An input port, which allows
the software to read external digital signals, is read only. That means a read cycle access
from the port address returns the values existing on the inputs at that time. In particular,
the tristate driver (triangle shaped circuit in Figure 2.30) will drive the input signals onto
the data bus during a read cycle from the port address. A write cycle access to an input
port usually produces no effect. The digital values existing on the input pins are copied
into the microcontroller when the software executes a read from the port address. There
are no input-only ports on LM3S/TM4C microcontrollers. LM3S/TM4C microcontrollers
have 5V-tolerant digital inputs, meaning an input high signal can be any voltage from 2.0
to 5.0 V. On the STMicroelectronics STM32F10xx family, some inputs are 5-V tolerant
and others are not.

Fead fromport address
Processor

N

n
~—— |npuEPort
Bus

Figure 2.30. A read only input port allows the software to sense external
digital signals.

Checkpoint 2.16: What happens if the software writes from an input port like Figure
2.30?

Common Error: Many program errors can be traced to confusion between /O ports and
regular memory. For example, you can not write to an input port.

While an input device usually just involves the software reading the port, an output port
can participate in both the read and write cycles very much like a regular memory. Figure
2.31 describes a readable output port. A write cycle to the port address will affect the
values on the output pins. In particular, the microcontroller places information on the data
bus and that information is clocked into the D flip flops. Since it is a readable output, a
read cycle access from the port address returns the current values existing on the port pins.
There are no output-only ports on LM3S/TM4C microcontrollers.

1 Readframport address
Processor .
_—
n
LD Q—L4s™ ourput Port
T
Bus § Witeto pat address

Figure 2.31. A readable output port allows the software to generate
external digital signals.

Checkpoint 2.17: What happens if the software reads from an output port like Figure
2.31?

To make the microcontroller more marketable, most ports can be software-specified to be
either inputs or outputs. Microcontrollers use the concept of a direction register to
determine whether a pin is an input (direction register bit is 0) or an output (direction
register bit is 1), as shown in Figure 2.32. We define an initialization ritual as a program
executed during start up that initializes hardware and software. If the ritual software
makes direction bit zero, the port behaves like a simple input, and if it makes the direction
bit one, it becomes a readable output port. Each digital port pin has a direction bit. This
means some pins on a port may be inputs while others are outputs. The digital port pins on
most microcontrollers are bidirectional, operating similar to Figure 2.32.

L

Fead fromport address

N { N
- e

=—>DQ #.. -:—,er |/ Cueput Port
AN
[
White to pot address
Diredi onkits
r 1 rresris ouput
»DQ 7 O rresns ot

Processor

AN
BUS ¥ T\writeto port diredion reg ser

Figure 2.32. A bidirectional port can be configured as a read-only input
port or a readable output port.

2.4.2. 1/0 Programming and the direction register

On most embedded microcontrollers, the I/O ports are memory mapped. This means the
software accesses an input/output port simply by reading from or writing to the
appropriate address. To make our software more readable we include symbolic definitions
for the I/O ports. We set the direction register(e.g., GPIO_PORTD_DIR_R) to specify
which pins are input and which are output. By default, the alternate function register is
zero, specifying the corresponding bits are regular port pins

(e.g., GPIO_PORTD_AFSEL_R). We will set bits in the alternative function register
when we wish to activate the functions listed in Tables 2.3, 2.5 2.7, and 2.8. Typically, we
write to the direction and alternate function registers once during the initialization phase.
We use the data register(e.g., GPIO_PORTD_DATA_R) to perform input/output on the
port. Conversely, we read and write the data register multiple times to perform input and
output respectively during the running phase. Table 2.18 shows the parallel port registers
for the TM4C123. The other Texas Instruments microcontrollers are similar. The CR,
AMSEL, PCTL, and LOCK registers exist only on LM4F/TM4C. For the LM3S software,
simply remove accesses to these four registers. The only differences among various
members of the Texas Instruments microcontroller familay are the number of ports and
available pins in each port.

For example, the TM4C1294 has fifteen digital I/O ports A (8 bits), B (6 bits), C (8 bits),
D (8 bits), E (6 bits), F (5 bits), G (2 bits), H (4 bits), J (2 bits), K (8 bits), L. (8 bits), M (8
bits), N(6 bits), P (6 bits), and Q (5 bits). Furthermore, the TM4C1294 has different
addresses for ports. Refer to the file tm4c1294ncpdt.h or to the data sheet for more the
specific addresses of its I/O ports

To initialize an LM3S I/O port for general use we perform four steps. First, we activate the
clock for the port. Second, we set its direction register. Third, we clear bits in the alternate
function register, and lastly, we enable the digital port. We need to add a short delay
between activating the clock and accessing the port registers. The direction register
specifies bit for bit whether the corresponding pins are input (0) or output (1).

We use the PUR register to activate an internal pull-up resistor, and we use the PDR
register to activate an internal pull-down resistor.

Common Error: You will get a bus fault if you access a port without enabling its clock.
Also, you have to wait about 5 bus cycles after enabling the clock, before you access the
registers.

In this first example we will make PD7-4 input, and we will make PD3-0 output, as shown
in Program 2.6. To use a port we first must activate its clock in

the SYSCTL_RCGCGPIO_R register. The second step is to unlock the port
(LM4F/TMA4C only), by writing a special value to the LOCK register, followed by setting
bits in the CR register. PC3-0 are locked to the debugger. Only PD7 and PFO on the
TM4C123 need to be unlocked. On the TM4C1294 only PD7 needs to be unlocked. All
the other bits on the two microcontrollers are always unlocked. The third step is to disable
the analog functionality (TM4C only), by clearing bits in the AMSEL register. The fourth
step is to select GPIO functionality (LM4F/TM4C only), by clearing bits in the PCTL
register, as described in Tables 2.7 and 2.8. The fifth step is to specify whether the pin is
an input or an output by clearing or setting bits in the DIR register. Because we are using
the pins as regular digital I/O, the sixth step is to clear the corresponding bits in the
AFSEL register.

Address 7 6 5 4 3 2 1 0 Name
0x400FE608 - - GPIOF GPIOE GPIOD GPIOC GPIOB GPIOA SYSCTL_RCGC
0x400FEA08 - - GPIOF GPIOE GPIOD GPIOC GPIOB GPIOA SYSCTL_PRGPI

0x400043FC DATA DATA DATA DATA DATA DATA DATA DATA GPIO_PORTA [

0x40004400 DIR DIR DIR DIR DIR DIR DIR DIR GPIO_PORTA L

0x40004420 SEL SEL SEL SEL SEL SEL SEL SEL GPIO_PORTA_2

0x40004510 PUE PUE PUE PUE PUE PUE PUE PUE GPIO_PORTA_P

0x4000451C DEN DEN DEN DEN DEN DEN DEN DEN GPIO_PORTA_T

0x40004524 1 1 1 1 1 1 1 1 GPIO_PORTA_C

0x40004528 0 0 0 0 0 0 0 0 GPIO_PORTA_2

0x400053FC DATA DATA DATA DATA DATA DATA DATA DATA GPIO_PORTB_IL

0x40005400 DIR DIR DIR DIR DIR DIR DIR DIR GPIO_PORTB_IL

0x40005420 SEL SEL SEL SEL SEL SEL SEL SEL GPIO_PORTB_2

0x40005510 PUE PUE PUE PUE PUE PUE PUE PUE GPIO_PORTB_FP

0x4000551C DEN DEN DEN DEN DEN DEN DEN DEN GPIO_PORTB_I

0x40005524 1 1 1 1 1 1 1 1 GPIO_PORTB_C

0x40005528 0 0 AMSEL AMSEL 0 0 0 0 GPIO_PORTB_2

0x400063FC DATA DATA DATA DATA JTAG JTAG JTAG JTAG GPIO_PORTC_IL

0x40006400 DIR DIR DIR DIR JTAG JTAG JTAG JTAG GPIO_PORTC_I

0x40006420

0x40006510

0x4000651C

0x40006524

0x40006528

0x400073FC

0x40007400

0x40007420

0x40007510

0x4000751C

0x40007524

0x40007528

0x400243FC

0x40024400

0x40024420

0x40024510

0x4002451C

0x40024524

0x40024528

0x400253FC

0x40025400

0x40025420

0x40025510

0x4002551C

0x40025524

0x40025528

SEL

PUE

DEN

AMSEL

DATA

DIR

SEL

PUE

DEN

CR

SEL

PUE

DEN

AMSEL

DATA

DIR

SEL

PUE

DEN

SEL

PUE

DEN

AMSEL

DATA

DIR

SEL

PUE

DEN

AMSEL

DATA

DIR

SEL

PUE

DEN

AMSEL

SEL

PUE

DEN

AMSEL

DATA

DIR

SEL

PUE

DEN

AMSEL

DATA

DIR

SEL

PUE

DEN

AMSEL

DATA

DIR

SEL

PUE

DEN

JTAG

JTAG

JTAG

JTAG

JTAG

DATA

DIR

SEL

PUE

DEN

AMSEL

DATA

DIR

SEL

PUE

DEN

AMSEL

DATA

DIR

SEL

PUE

DEN

JTAG

JTAG

JTAG

JTAG

JTAG

DATA

DIR

SEL

PUE

DEN

AMSEL

DATA

DIR

SEL

PUE

DEN

AMSEL

DATA

DIR

SEL

PUE

DEN

JTAG

JTAG

JTAG

JTAG

JTAG

DATA

DIR

SEL

PUE

DEN

AMSEL

DATA

DIR

SEL

PUE

DEN

AMSEL

DATA

DIR

SEL

PUE

DEN

JTAG

JTAG

JTAG

JTAG

JTAG

DATA

DIR

SEL

PUE

DEN

AMSEL

DATA

DIR

SEL

PUE

DEN

AMSEL

DATA

DIR

SEL

PUE

DEN

CR

GPIO_PORTC_A

GPIO_PORTC_P

GPIO_PORTC_I

GPIO_PORTC_C

GPIO_PORTC_A

GPIO_PORTD_I

GPIO_PORTD_I

GPIO_PORTD_/

GPIO_PORTD_F

GPIO_PORTD_I

GPIO_PORTD_C(

GPIO_PORTD_/

GPIO_PORTE_L

GPIO_PORTE_L

GPIO_PORTE_A

GPIO_PORTE_P

GPIO_PORTE_L

GPIO_PORTE_C

GPIO_PORTE_A

GPIO_PORTF_LC

GPIO_PORTF_L

GPIO_PORTF_A

GPIO_PORTF_P

GPIO_PORTF_LT

GPIO_PORTF_C

GPIO_PORTF_A

0x4000452C
0x4000552C
0x4000652C
0x4000752C
0x4002452C
0x4002552C
0x40006520
0x40007520

0x40025520

31-28

27-24 ‘ 23-20 ‘ 19-16 ‘ 15-12 ‘ 11-8 7-4 ‘ 3-0 ‘
PMC7 PMC6 PMC5 PMC4 PMC3 PMC2 PMC1 PMCO GPIO_PORTA_F
PMC7 PMC6 PMC5 PMC4 PMC3 PMC2 PMC1 PMCO GPIO_PORTB_F
PMC7 PMC6 PMC5 PMC4 0Ox1 0x1 0x1 0x1 GPIO_PORTC_FP
PMC7 PMC6 PMC5 PMC4 PMC3 PMC2 PMC1 PMCO GPIO_PORTD_F
PMC5 PMC4 PMC3 PMC2 PMC1 PMCO GPIO_PORTE_P
PMC4 PMC3 PMC2 PMC1 PMCO GPIO_PORTF_P
LOCK (write 0x4C4F434B to unlock, other locks) (reads 1 if locked, 0 if unlocked) GPIO_PORTC_L
LOCK (write 0x4C4F434B to unlock, other locks) (reads 1 if locked, 0 if unlocked) GPIO_PORTD_I

LOCK (write 0x4C4F434B to unlock, other locks) (reads 1 if locked, 0 if unlocked) GPIO_PORTF_L

Table 2.18.

Some TM4C123 parallel ports. Each register is 32 bits wide. For PCTL

bits, see Tables 2.7 and 2.8. JTAG means do not use these pins and do not change
any of these bits.

The last step is to enable the corresponding I/0 pins by writing ones to the DEN register.
To run this example on the Texas Instruments LaunchPad, we also set bits in the PUR
register for the two switch inputs (Figure 2.14) to have an internal pull-up resistor.

When the software reads from location 0x400073FC the bottom 8 bits are returned with
the current values on Port D. The top 24 bits are returned zero. As shown in Figure 2.32,
the input pins show the current digital state, and the output pins show the value last written
to the port. The function PortD_Input will read from the four input pins and return a
value, 0x00 to 0xOF, depending on the current status of the inputs. The

function PortD_Output will write new values to the four output pins.

#define GPIO_PORTD_DATA_R (*((volatile uint32_t *)0x400073FC))
#define GPIO_PORTD_DIR_R (*((volatile uint32_t *)0x40007400))
#define GPIO_PORTD_AFSEL_R (*((volatile uint32_t *)0x40007420))
#define GPIO_PORTD_DEN_R (*((volatile uint32_t *)0x4000751C))
#define GPIO_PORTD_LOCK_R (*((volatile uint32_t *)0x40007520))
#define GPIO_PORTD_AMSEL_R (*((volatile uint32_t *)0x40007528))
#define GPIO_PORTD_PCTL_R (*((volatile uint32_t *)0x4000752C))
#define SYSCTL_RCGCGPIO_R (*((volatile uint32_t *)0x400FE608))
void PortD_Init(void){

SYSCTL_RCGCGPIO_R |=0x08; //1) activate clock for Port D

while((SYSCTL_PRGPIO_R&0x08) == 0){};// ready?
GPIO_PORTD_LOCK_R = 0x4C4F434B; // 2) unlock GPIO Port D
GPIO_PORTD_CR_R = 0xFF; // allow changes to PD7-0
GPIO_PORTD_AMSEL_R = 0x00; // 3) disable analog on PD
GPIO_PORTD_PCTL_R = 0x00000000; //4) PCTL GPIO on PD7-0
GPIO_PORTD_DIR_R = 0x0F; /I 5) PD7-4 in, PD3-0 out
GPIO_PORTD_AFSEL_R = 0x00; // 6) disable alt funct on PD7-0
GPIO_PORTD_DEN_R = 0xFF; // 7) enable digital I/O on PD7-0

}

uint32_t PortD_Input(void){
return (GPIO_PORTD_DATA_R>>4); // read PD7-PD4 inputs

}

void PortD_Output(uint32_t data){
GPIO_PORTD_DATA_R = data; // write PD3-PD0 outputs

}

Program 2.6. A set of functions usingPD7-PD4 as inputs and PD3-PD0
as outputs.

Checkpoint 2.18: Does the entire port need to be defined as input or output, or can some
pins be input while others are output?

In Program 2.6 the assumption was the software module had access to all of Port D. In
other words, this software owned all eight pins of Port D. In most cases, a software
module needs access to only some of the port pins. If two or more software modules
access the same port, a conflict will occur if one module changes modes or output values
set by another module. It is good software design to write friendly software, which only
affects the individual pins as needed. Friendly software does not change the other bits in a
shared register. Conversely, unfriendly software modifies more bits of a register than it
needs to. The difficulty of unfriendly code is each module will run properly when tested
by itself, but weird bugs result when two or more modules are combined.

Consider the problem that a software module need to output to just Port D bit 1. After
enabling the clock for Port D, we use read-modify-write software to initialize just pin 1.
Remember only PD7 and PFO require unlocking on the TM4C123, and only PD7 requires
unlocking on the TM4C1294, so this code does not need to unlock.

SYSCTL_RCGCGPIO_R |= 0x08; // 1) activate clock for Port D

while((SYSCTL_PRGPIO_R&0x08) == 0){};// ready?
GPIO_PORTD_DIR_R |= 0x02; // PD1 is an output

GPIO_PORTD_AFSEL_R &=~0x02; // regular port function

GPIO_PORTD_AMSEL_R &=~0x02; // disable analog on PD1
GPIO_PORTD_PCTL_R &= ~0x000000F0; / PCTL GPIO on PD1
GPIO_PORTD_DEN_R |= 0x02; // PD1 is enabled as a digital port

There is no conflict if two or more modules enable the clock for Port D. There are two
ways on the Cortex™-M to access individual port bits. The first method is to use read-
modify-write software to change just pin 1. A read-or-write sequence can be used to set
one or more bits.

GPIO_PORTD_DATA_R |= 0x02; // make PD1 high

A read-and-write sequence can be used to clear one or more bits.
GPIO_PORTD_DATA_R &=~0x02; // make PD1 low

The second method uses the bit-specific addressing. The LM3S/LM4F/TM4C family
implements a more flexible way to access port pins than the bit-banding described earlier
in the chapter. This bit-specific addressing doesn’t work for all the I/O registers, just the
parallel port data registers. The LM3S/LM4F/TM4C mechanism allows collective access
to 1 to 8 bits in a data port. We define eight address offset constants in Table 2.19.
Basically, if we are interested in bit b, the constant is 4*2°. There are 256 possible bit
combinations we might be interested in accessing, from all of them to none of them. Each
possible bit combination has a separate address for accessing that combination. For each
bit we are interested in, we add up the corresponding constants from Table 2.19 and then
add that sum to the base address for the port. The base addresses for the data ports can be
found in GPIO chapter of the microcontroller data sheet. For example, assume we are
interested in Port A bits 1, 2, and 3. The base address for Port A is 0x4000.4000, and the
constants are 0x0020, 0x0010 and 0x008. The sum of
0x4000.4000+0x0020+0x0010+0x008 is the address 0x4000.4038. If we read from
0x4000.4038 only bits 1, 2, and 3 will be returned. If we write to this address only bits 1,
2, and 3 will be modified.

If we wish to access bit | Constant

7 0x0200
6 0x0100
5) 0x0080
4 0x0040

3 0x0020

2 0x0010

1 0x0008

0 0x0004

Table 2.19. Address offsets used to specify individual data port bits.

The base address for Port D is 0x4000.7000. If we want to read and write all 8 bits of this
port, the constants will add up to 0x03FC. Notice that the sum of the base address and the
constants yields the 0x4000.73FC address used in Program 2.6. In other words, read and
write operations to GPIO_PORTD_DATA_R will access all 8 bits of Port D. If we are
interested in just bit 1 of Port D, we add 0x0008 to 0x4000.7000, and we can define this in
Cas

#define PD1 (*((volatile uint32_t *)0x40007008))

Now, a simple write operation can be used to set PD1. The following code is friendly
because it does not modify the other 7 bits of Port D.

PD1=0x02; // make PD1 high

A simple write sequence will clear PD1. The following code is also friendly.
PD1 = 0x00; // make PD1 low

A read from PD1 will return 0x01 or 0x00 depending on whether the pin is high or low,
respectively. The following code is also friendly.

PD1 = PD1/0x01; // toggle PD1

Checkpoint 2.19: According to Table 2.3, what happens to Port D bit 5 if we set bit 5 in
its alternative function register? E.g., GPIO_PORTD_AFSEL_R |= 0x20;

Checkpoint 2.20: What happens if we write to location 0x4000.70007?

Checkpoint 2.21: Specify a #define that allows us to access bits 7 and 2 of Port D. Use
this #define to make both bits 7 and 2 of Port D high.

Checkpoint 2.22: Specify a #define that allows us to access bits 6, 5, 0 of Port B. Use this
#define to make bits 6, 5 and 0 of Port B high.

You can find the code for the next three examples on the book web site as SSR_xxx.zip,
GPIO_xxx.zip, and Switch_xxx.zip, where xxx refers to the specific microcontroller on
which the example was tested.

Example 2.1: The goal is develop a means for the microcontroller to turn on and turn off
an AC-powered appliance. The interface will use a solid state relay (SSR) having a control
portion equivalent to an LED with parameters of 2V and 10 mA. Include appropriate
functions.

Solution: Since we need to interface an LED, we use an open collector NOT gate just like
Figure 1.23. We choose an electronic circuit that has an output current larger than the 10
mA needed by the SSR. Since the maximum I, of the PN2222 is 150 mA, it can sink the
10 mA required by the SSR. A 7405 or 7406 could also have been used, but they require a
+5V supply. The resistor is selected to control the current to the diode. Using the LED
design equation, R = (3.3-V,-V)/1,=(3.3-2-0.3V)/0.01A = 100 . There is a standard
value 5% resistor at 100 . The specification V;=0.3V is a maximum. If V, is actually
between 0.1 and 0.3V, then 10 to 12 mA will flow, and the relay will still activate properly.
When the input to the PN2222 is high (p=3.3V), the output is low (q=0.3V), see Figure
2.33. In this state, a 10 mA current is applied to the diode, and relay switch activates. This
causes 120 VAC power to be delivered to the appliance. But, when the input is low (p=0),
the output floats (q=HiZ, which is neither high nor low). This floating output state causes
the LED current to be zero, and the relay switch opens. In this case, no AC power is
delivered to the appliance.

+3.3
LM3S 100W % %ﬁp{jlaﬁce
TMA4C
PN2222 isgg N zovac()

PD1 —W-Ep Ve @
L Redistor 5% 1/8watt

Figure 2.33. Solid state relay interface using a PN2222 NPN transistor.

The initialization will set bit 1 of the direction register to make PD1 an output, see
Program 2.7. This function should be called once at the start of the system. After
initialization, the on and off functions can be called to control the appliance.

#define PD1 (*((volatile uint32_t *)0x40007008))

void SSR_Init(void){
SYSCTL_RCGCGPIO_R |= 0x08; // 1) activate clock for Port D
while((SYSCTL_PRGPIO_R&0x08) == 0){};// ready?
GPIO_PORTD_DIR_R |= 0x02; // PD1 is an output
GPIO_PORTD_AFSEL_R &= ~0x02; // regular port function
GPIO_PORTD_AMSEL_R &= ~0x02; // disable analog on PD1
GPIO_PORTD_PCTL_R &= ~0x000000F0; // PCTL GPIO on PD1
GPIO_PORTD_DEN_R |= 0x02; // PD1 is enabled as a digital port

void SSR_Off(void){
PD1 =0x00; // turn off the appliance

}
void SSR_On(void){

PD1=0x01; //turn on the appliance
}

Program 2.7. A set of functions using PD7-PD4 as inputs and PD3-PD0
as outputs (SSR_xxx.zip).

Some problems are so unique that they require the engineer to invent completely original
solutions. Most of the time, however, the engineer can solve even complex problems by
building the system from components that already exist. Creativity will still be required in
selecting the proper components, making small changes in their behavior (tweaking),
arranging them in an effective and efficient manner, and then verifying the system satisfies
both the requirements and constraints. When young engineers begin their first job, they are
sometimes surprised to see that education does not stop with college graduation, but rather
is a life-long activity. In fact, it is the educational goal of all engineers to continue to learn
both processes (rules about how to solve problems) and products (hardware and software
components). As the engineer becomes more experienced, he or she has a larger toolbox
from which processes and components can be selected.

The hardest step for most new engineers is the first one: where to begin? We begin by
analyzing the problem to create a set of specifications and constraints in the form of a
requirements document. Next, we look for components, in the form of previously
debugged solutions, which are similar to our needs. Often during the design process,
additional questions or concerns arise. We at that point consult with our clients to clarify
the problem. Next we rewrite the requirements document and get it reapproved by the
clients.

It is often difficult to distinguish whether a parameter is a specification or a constraint. In
actuality, when designing a system it often doesn’t matter into which category a parameter
falls, because the system must satisfy all specifications and constraints. Nevertheless,
when documenting the device it is better to categorize parameters properly. Specifications
generally define in a quantitative manner the overall system objectives as given to us by
our customers.

Constraints, on the other hand, generally define the boundary space within which we must
search for a solution to the problem. If we must use a particular component, it is often
considered a constraint. In this book, we constrain most designs to include an
L.M3S/TM4C microcontroller. Constraints also are often defined as an inequality, such as
the cost must be less than $50, or the battery must last for at least one week.
Specifications on the other hand are often defined as a quantitative number, and the
system satisfies the requirement if the system operates within a specified tolerance of that
parameter. Tolerance can be defined as a percentage error or as a range with minimum and
maximum values.

The high-level design uses data flow graphs. We then combine the pieces and debug the
system. As the pieces are combined we can draw a call graph to organize the parts. If new
components are designed, we can use flowcharts to develop new algorithms. The more we
can simulate the system, the more design possibilities we can evaluate, and the quicker we
can make changes. Debugging involves both making sure it works, together with
satisfying all requirements and constraints.

Observation: Defining realistic tolerances on our specifications will have a profound
effect on system cost.

Checkpoint 2.23: What are the effects of specifying a tighter tolerance (e.g., 1% when the
problem asked for 5%)?

Checkpoint 2.24: What are the effects of specifying a looser tolerance (e.g., 10% when
the problem asked for 5%)?

Example 2.2: Design an embedded system that flashes LEDs in a 0101, 0110, 1010, 1001
binary repeating pattern.

Solution: This system will need four LEDs, and the computer must be able to
activate/deactivate them. Since the problem didn’t specify power source, speed, color, or
brightness, we could either put off these decisions until the engineering design stage in
order to simplify the design or minimize cost, or we could go back to the clients and ask
for additional requirements. In this case, the clients didn’t care about power, speed, color
or brightness, but did think minimizing cost was a good idea. Due to the nature of this
book, we will constrain all designs to include a LM3S/TM4C microcontroller. Because we
have +3.3 V microcontroller systems, we will specify the system to run on +3.3 V power.
We have in stock HLMP-4740 green LEDs that operate at 1.9 V and 2 mA, so we will use
them. Table 2.20 summarizes the specifications and constraints. We will use standard 5%
resistors to minimize cost.

Specifications Constraints

Repeating pattern of 5, TM4C123-based
6, 10,9

Four 1.9V, 2 mA Minimize cost
green LEDs

+3.3V power supply Standard 5%
resistors

Table 2.20. Specifications and constraints of the LED output system.

Tolerance for this LED output system says it is acceptable if it has four LEDs, but
unacceptable if it has three or five of them. Similarly, it will be acceptable as long as the
LED current is between 1.5 and 2.5 mA. If the current drops below 1.5 mA, we won’t be
able to see the LED, and if it goes above 2.5 mA, it might damage the LED. The data flow
graph in Figure 2.34 shows information as it flows from the controller software to the four
LEDs. The data flow graph will be important during the subsequent design phases because
the hardware blocks can be considered as a preliminary hardware block diagram of the
system. The call graph, also shown in Figure 2.34, illustrates this is master/slave
configuration where the controller software will manipulate the four LEDs.

DataFlowGraph Digtal Curert Cal Graph
Pat Irterfacel»| LED3
0 — | IMeface—| LEDZ
Software =
PO [irtertacel>{ LeD] | Ouptpat |
| |
—

Irterface —| LEDQ LED3||LED2||LEDL| | LEDO

Figure 2.34. Data flow graph and call graph of the LED output system.

The hardware design of this system could have used four copies of the LED interface
presented earlier in Figure 1.23. However, from Table 1.4 we see LM3S/TM4C
microcontrollers can source or sink up to 8 mA. We can save money by using low-current
LEDs, which can be connected directly to the microcontroller without a driver. Figure
2.35 shows four simple negative logic LED interfaces. A low output will turn on the LED
and a high output will turn it off. Notice the similarity of the data flow graph in Figure
2.34 with the hardware circuit in Figure 2.35. If the V,,; of the microcontroller is 0.4V, and

the voltage across the LED is 1.9V, then the voltage across the resistor should be 3.3-1.9-
0.4V or 1V. We calculate the resistor value using Ohm’s Law, R is 1V/2mA or 500€2.
Using standard resistor values with a 5% tolerance will be cheaper to build (see Section
9.1). In particular, 470 Q and 510 Q are two standard resistor values near 500 Q. If we
were to use 470 Q, then the LED current would be (3.3-1.9-0.4V)/470Q or 2.1mA.
Similarly, if we were to use 510 Q, then the LED current would be (3.3-1.9-0.4V)/510%Q2 or
1.96mA. Both would have been acceptable, but we will use the 510 Q resistor because it is
acceptable for a wide range of microcontroller output voltages. More specifically, if V,

ranges from 0.13 to 0.63V, then the LED current remains within the 1.5 to 2.5 mA

specification. It would have been more expensive to use 500 €2 resistors.

Pseudo-code is similar to high-level languages, but without a rigid syntax. This means we
utilize whatever syntax we like. Flowcharts are good when the software involves complex
algorithms with many decisions points causing control paths. On the other hand, pseudo-
code may be better when the software is more sequential and involves complex
mathematical calculations.

+3.3v

iElEW 13,3
LED3 510
+3.3
%—_Hi%’ PE3 iLEDE SIOW
FE2 LED1 S 1OW
PEL LEDO
PED , :
Red dors are 5% 1/Bwat LED isHLMP-4740

Figure 2.35. Hardware circuit for the LED output system.

The software design of this system also involves using examples presented earlier with
some minor tweaking. The only data required in this problem is the 5-6—10-9 sequence.
Later in Chapter 3, we will consider solutions to this type of problem using data structures,
but in this first example, we will take a simple approach, not using a data structure. Figure
2.36 illustrates a software design process using flowcharts. We start with general approach
on the left. Flowchart 1 shows the software will initialize the output port, and perform the
output sequence. As we design the software system, we fill in the details. This design
process is called successive refinement. It is also classified as top-down, because we begin
with high-level issues, and end at the low-level. In Flowchart 2, we set the direction
register, and then output the sequence 5-6—10-9. It is at this stage we figured out how to
create the repeating sequence. Flowchart 3 fills in the remaining details. To output the
negative logic pattern 1010 to the LEDs, we will output a 5 to the bottom 4 bits of Port E
on the microcontroller.

Many software developers use pseudo-code rather than flowcharts, because the pseudo-
code itself can be embedded into the software as comments. Program 2.8 shows the C
implementation for this system. Notice the similarity in structure between Flowchart 3 and
this code. The LEDS definition implements friendly access to pins PE3 — PEO.

In order to test the system we need to build a prototype. One option is simulation. A
second option is to use a development system like the ones shown in Figures 2.10, 2.13
and 2.18. In this approach, you build the external circuits on a protoboard and use the
debugger to download and test the software. A third approach is typically used after a
successful evaluation with one of the previous methods. In this approach, we design a
printed circuit board (PCB) including both the external circuits and the microcontroller
itself.

During the testing phase of the project we observe that all four of the LEDs are

continuously on. We use the software debugger to single step our program, which
correctly outputs the 1010, 1001, 0101, 0110 binary repeating pattern. During this single
stepping the LEDs do come on and off in the proper pattern. Using a voltmeter on the
circuit we observe a 0.25V signal on the output of the microcontroller and a 1.9V voltage
drop across the diode whenever the software wishes to turn the LED on. Because the
LEDs are flashing faster than our eyes can see, we test the system at full speed and
observe the four outputs on a logic analyzer, collecting data presented as Figure 2.37. If
we wished to be able to see the LEDs flash with our eyes, we could add a 0.1 second delay
after each output.

Portability is a measure of how easy it is to convert software that runs on one machine to
run on another machine. In general C code is more portable than assembly language.

Flmd'ﬂt 1 Flmd'sat 2 Howdhat 3
Ir'||t|ai|ze Direction to i
uu;:u DIR =0x0F
_E.JE e
LK ot
Semﬁe / SFH / / Fart D\L_ lﬂlq/

+
/ @L%F’I/ / PortD =100/
/ Dbligi /ol PurtD*:DID]/
/ . / / Portl:::mlq/
L] S

Figure 2.36. Software design for the LED output system using flowcharts.

#define LEDS (*((volatile uint32_t *)0x4002403C))
int main(void){
SYSCTL_RCGCGPIO_R |= 0x10; // 1) activate clock for Port E
while((SYSCTL_PRGPIO_R&0x10) == 0){};// ready?
GPIO_PORTE_DIR_R |= 0x0F; // PE3-0 is an output
GPIO_PORTE_AFSEL_R &= ~0x0F; // regular port function
GPIO_PORTE_AMSEL_R &= ~0x0F; // disable analog on PE3-0
GPIO_PORTE_PCTL_R &= ~0x0000FFFF; // PCTL GPIO on PE3-0
GPIO_PORTE_DEN_R |= 0x0F; // PE3-0 enabled as a digital port
while(1){
LEDS =10; /1010, LED is 0101
LEDS =9; /1001, LED is 0110
LEDS =5; //0101, LED is 1010

LEDS =6; // 0110, LED is 1001
}
}
Program 2.8. C software for the LED output system (GPIO_xxx.zip).

iéé s " s 20
== | |] B
EEE]]] |—

PE0 = = = w

Figure 2.37. Logic analyzer waveforms collected during the testing the
LED output system.

Example 2.3: Interface a push button switch to the microcontroller and write software
functions that initialize and read the switch.

Solution: The first step is to draw a hardware circuit connecting the switch to an input
port of the microcontroller. We will use positive logic interface because we want the
digital signal to be high if and only if the switch is pressed, as shown in Figure 2.38.
Similar to Figure 1.24, PB1 contains a signal that is high or low depending on the
position of the switch. If the switch is not pressed, the 10 k resistor creates a 0 V signal
on the port pin, and virtually no current flows through the resistor (I;is 2 A). If the

switch is pressed, a 3.3 V signal is on the port pin and 0.33 mA flows through the 10 k
resistor. Some switches bounce, which means there will be multiple open/closed cycles
when the switch is changed. This simple solution can be used if the switch doesn’t bounce
or if the bouncing doesn’t matter. The software solution requires two functions. The
initialization function is called once when the system starts. Whenever the software wishes
to know the switch status, it calls the input function. When the computer reads Port B it
gets all 8 bits of the input port. The following C code will set a variable to true (nonzero)
if and only if the switch is pressed.

Pressed = GPIO_PORTB_DATA_R&0x02; // true if the switch is pressed

WES +3.|3‘u"
TMAC Switch B3F-1052
FBE1
10N 5846 Lyaw

Figure 2.38. Positive logic interface of a switch to a microcontroller input.

The initialization in Program 2.9 activates the clock, clears the direction register bit for
PB1, and enables Port B bit 1as a digital port. The definition of PB1 in Program 2.9 uses
bit-specific addressing so the software just sees bit 1.

#define PB1 (*((volatile uint32_t *)0x40005008))

void Switch_Init(void){
SYSCTL_RCGCGPIO_R |= 0x02; // 1) activate clock for Port B
while((SYSCTL_PRGPIO_R&0x02) == 0){};// ready?
GPIO_PORTB_DIR_R &= ~0x02; // PB1 is an input
GPIO_PORTB_AFSEL_R &=~0x02; // regular port function
GPIO_PORTB_AMSEL_R &= ~0x02; // disable analog on PB1
GPIO_PORTB_PCTL_R &= ~0x000000F0; / PCTL GPIO on PB1
GPIO_PORTB_DEN_R |= 0x02; // PB3-0 enabled as a digital port

}

uint32_t Switch_Input(void){
return PB1; // 0x02 if pressed, 0x00 if not pressed

}

Program 2.9. A set of functions that interface an input switch to PB1
(Switch_xxx.zip).

2.5. Phase-Lock-Loop

Normally, the execution speed of a microcontroller is determined by an external crystal.
Both LaunchPad boards have a 16 MHz crystal. Most microcontrollers have a phase-lock-
loop (PLL) that allows the software to adjust the execution speed of the computer.
Typically, the choice of frequency involves the tradeoff between software execution speed
and electrical power. In other words, slowing down the bus clock will require less power
to operate and generate less heat. Speeding up the bus clock obviously allows for more
calculations per second at the cost of requiring more power to operate and generating
more heat.

The default bus speed of an LM3S811 microcontroller is that of the crystal attached to the
OSC1 and OSCO pins, meaning the PLL is initially not active The default bus speed of an
L.M3S1968 and TM4C microcontrollers is that of the internal oscillator, also meaning that
the PLL is not initially active. The default bus speed for the TM4C internal oscillator is 16
MHz +1%. The internal oscillator is significantly less precise than the crystal, but it
requires less power and does not need an external crystal. This means for most
applications we will activate the main oscillator and the PLL so we can have a stable bus
clock.

There are two ways to activate the PLL. We could call a library function, or we could
access the clock registers directly. In general, using library functions creates a better
design because the solution will be more stable (less bugs) and will be more portable
(easier to switch microcontrollers). However, the objective of the book is to present
microcontroller fundamentals. Showing the direct access does illustrate some concepts of
the PLL. First, we can include the Stellaris/Tivalibrary and call the SysCtlClockSet
function to change the speed. This function is defined in the sysctl.cfile. The library
function activates the PLL because of the SYSCTL_USE_PLL parameter. The main
oscillator is the one with the external crystal attached. The last parameter specifies the
frequency of the attached crystal. Assume we wish to run an TM4C with a 16 MHz crystal
at 80 MHz. The divide by 2.5 creates a bus frequency of 80 MHz, implemented as 400
MHz divided by 5.

SysCtlClockSet(SYSCTL_SYSDIV_2 5| SYSCTL_USE_PLL |
SYSCTL_OSC_MAIN | SYSCTL_XTAL_16MHZ);

To make our code more portable, it is a good idea to use library functions whenever
possible. However, we will present an explicit example illustrating how the PLL works.
An external crystal is attached to the TM4C microcontroller, as shown in Figure 2.39. The
PLLs on the other Texas Instruments microcontrollers operate in the same basic manner.
Table 2.21 shows the clock registers used to define what speed the processor operates. The
output of the main oscillator (Main Osc) is a clock at the same frequency as the crystal. By
setting the OSCSRC bits to 0, the multiplexer control will select the main oscillator as the
clock source.

For example, the main oscillator for the TM4C on the evaluation board will be 16 MHz.
This means the reference clock (Ref Clk) input to the phase/frequency detector will be 16

MHz. For a 16 MHz crystal, we set the XTAL bits to 10101 (see Table 2.21). In this way, a
400 MHz output of the voltage controlled oscillator (VCO) will yield a 16 MHz clock at
the other input of the phase/frequency detector. If the 400 MHz clock is too slow, the up
signal will add charge, increasing the input to the VCO, leading to an increase in the 400
MHz frequency. If the 400 MHz clock is too fast, down signal to the charge pump will
subtract charge, decreasing the input to the VCO, leading to a decrease in the 400 MHz
frequency. The feedback loop in the PLL will drive the output to a stable 400 MHz
frequency.

Extend COSCSRC
aysd
L1 Man BY PASS
= Oac
L USESY SDIV
16 MHz i
| rterra Oac D400
Mo L 0
A kHz
Irtemd Osc L1 0 L
ReF Phase-| od<-Loop
nH1
Clk Up M L
e e T
Detector |2} Pl “" __ 0 SY SDIV
H fm |= AECEN 12 200 MHz
KTAL

Figure 2.39. Block diagram of the main clock tree on the TM4C including
the PLL (others are similar).

Program 2.10 shows a program to activate a microcontroller with a 16 MHz main
oscillator to run at 80 MHz. 0) Use RCC2 because it provides for more options. 1) The
first step is set BYPASS2 (bit 11). At this point the PLL is bypassed and there is no system
clock divider. 2) The second step is to specify the crystal frequency in the four XTAL bits
using the code in Table 2.21. The OSCSRC2 bits are cleared to select the main oscillator
as the oscillator clock source. 3) The third step is to clear PWRDN2 (bit 13) to activate the
PLL. 4) The fourth step is to configure and enable the clock divider using the 7-bit
SYSDIV?2 field. If the 7-bit SYSDIV?2 is n, then the clock will be divided by n+1. To get
the desired 80 MHz from the 400 MHz PLL, we need to divide by 5. So, we place a 4 into
the SYSDIV?2 field. 5) The fifth step is to wait for the PLL to stabilize by waiting for
PLLRIS (bit 6) in the SYSCTL_RIS_R to become high. 6) The last step is to connect the
PLL by clearing the BYPASS?2 bit. To modify this program to operate on other
microcontrollers, you will need to change XTAL and the SYSDIV2.

XTAL Crystal Freq XTAL Crystal Freq
(MHz) (MHz)

0x4 3.579545 MHz 0x10 10.0 MHz

0x5 3.6864 MHz 0x11 12.0 MHz

0x6 4 MHz 0x12 12.288 MHz

0x7 4.096 MHz - 0x13 13.56 MHz

0x8 4.9152 MHz - 0x14 14.31818 MHz

0x9 5 MHz - 0x15 16.0 MHz

0xA 5.12 MHz - 0x16 16.384 MHz

0xB 6 MHz (reset - 0x17 18.0 MHz

value)

0xC 6.144 MHz - 0x18 20.0 MHz

0xD 7.3728 MHz - 0x19 24.0 MHz

OxE 8 MHz o 0x1A 25.0 MHz

OxF 8.192 MHz - others reserved
Address ~ 26-23 22 13 11 10-6 5-4 Name

$400FE060 SYSDIV ~ USESYSDIV PWRDN BYPASS XTAL OSCSRC SYSCTL_RCC_R

$400FE050 PLLRIS SYSCTL_RIS_R
31 30 28-22 13 11 6-4
$400FE070 USERCC2 DIV400 SYSDIV2 PWRDN2 BYPASS2 OSCSRC2 SYSCTL_RCC2_R

Table 2.21. Main clock registers (RCC2 in LM4F/TMA4C only) (other values of XTAL
are reserved).

void PLL_Init(void){
SYSCTL_RCC2_R |= 0x80000000; // 0) Use RCC2
SYSCTL_RCC2_R |= 0x00000800; // 1) bypass PLL while initializing
SYSCTL_RCC_R = (SYSCTL_RCC_R &~0x000007C0)+0x00000540; //2) 16 MHz
SYSCTL_RCC2_R &= ~0x00000070; // configure for main oscillator source
SYSCTL_RCC2_R &= ~0x00002000; // 3) activate PLL by clearing PWRDN
SYSCTL_RCC2_R |= 0x40000000; // 4) use 400 MHz PLL

SYSCTL_RCC2_R = (SYSCTL_RCC2_R&~ 0x1FC00000)+(4<<22); // 80 MHz
while((SYSCTL_RIS_R&0x00000040)==0){}; // 5) wait for the PLL to lock
SYSCTL_RCC2_R &= ~0x00000800; // 6) enable PLL by clearing BYPASS

}

Program 2.10. Activate the LM4F/TM4C with a 16 MHz crystal to run at
80 MHz (PLL_xxx.zip).

Checkpoint 2.25: How would you change Program 2.10 if your LM4F/TM4C
microcontroller had an 8 MHz crystal and you wish to run at 50 MHz?

We can make a first order estimate of the relationship between work done in the software
and electrical power required to run the system. There are two factors involved in the
performance of software. We define software work as the desired actions performed by
executing software:

Software work = algorithm * speed (in instructions/sec)

In other words, if we want to improve software performance we can write better software
or increase the rate at which the computer executes instructions. Recall that the compiler
converts our C software into Cortex M machine code, so the efficiency of the compiler
will also affect this relationship. Furthermore, most compilers have optimization settings
that allow you to make your software run faster at the expense of using more memory. On
the Cortex M, most instructions execute in 1 or 2 bus cycles. See section 3.3 in
CortexM4_TRM_rOp1.pdf for more details. In CMOS logic, most of the electrical power
required to run the system occurs in making signals change, that is, when a digital signal
rises from O to 1, or falls from 1 to 0. Therefore we see a linear relationship between bus
frequency and electrical power. Let m be the slope of this linear relationship

Power =m * f,

Some of the factors that affect the slope m are operating voltage and fundamental behavior
of how the CMOS transistors are designed. If we approximate the Cortex M processor as
being able to execute one instruction every two bus cycles, we can combine the above two
equations to see the speed-power tradeoff.

Software work = algorithm * ¥: f, . = algorithm * % Power/m

Observation: To save power, we slow down the bus frequency removing as much of the
wasted bus cycles while still performing all of the required tasks.

2.6. SysTick Timer

SysTick is a simple counter that we can use to create time delays and generate periodic
interrupts. It exists on all Cortex™-M microcontrollers, so using SysTick means the
system will be easy to port to other microcontrollers. Table 2.22 shows some of the
register definitions for SysTick. CURRENT is a 24-bit down counter that runs at the bus
clock frequency.

Address 31- 23- 16 15-3 2 1 0 Name
24 17

$EO00E010 O 0 COUNT 0 CLK_SRC INTEN ENABLE NVIC_ST_CTRL_R
$EO00E014 0 24-bit RELOAD value NVIC_ST_RELOAD_R

$EO000E018 0 24-bit CURRENT value of SysTick counter NVIC_ST_CURRENT_R

Table 2.22. SysTick registers.

There are four steps to initialize the SysTick timer. First, we clear the ENABLE bit to turn
off SysTick during initialization. Second, we set the RELOADregister. Third, we write to
the NVIC_ST_CURRENT_R value to clear the counter. Lastly, we write the desired
mode to the control register, NVIC_ST_CTRL_R . We set the CLK_SRC bit specifying
the core clock will be used. We must set CLK_SRC=1, because CLK_SRC=0 mode is
not implemented on the LM3S family. LM4F/TM4C microcontrollers do support
CLK_SRC=0 internal oscillator mode. In Chapter 5, we will set INTEN to enable
interrupts, but in this first example we clear INTEN so interrupts will not be requested.
We need to set the ENABLE bit so the counter will run. When the CURRENT value
counts down from 1 to 0, the COUNT flag is set. On the next clock, the CURRENT is
loaded with the RELOAD value. In this way, the SysTick counter (CURRENT) is
continuously decrementing. If the RELOAD value is n, then the SysTick counter
operates at modulo n+1 (...n, n-1, n-2 ... 1, 0, n, n-1, ...). In other words, it rolls over
every n+1 counts. The COUNT flag could be configured to trigger an interrupt. However,
in this first example interrupts will not be generated. We set RELOAD to OxOOFFFFFF
for a general counter. For a delay timer or a periodic interrupt the value
(RELOAD+1)*busperiod will determine the delay time or interrupt period. If we
activate the PLL to run the microcontroller at 80 MHz, then the SysTick counter
decrements every 12.5 ns. In general, if the period of the core bus clock is t, then the
COUNT flag will be set every (n+1)t. Readingthe NVIC_ST_CTRL_R control register
will return the COUNT flag in bit 16, and then clear the flag. Also, writing any value to
the NVIC_ST_CURRENT_R register will reset the counter to zero and clear the
COUNT flag.

Program 2.11 uses the SysTicktimer to implement a time delay. For example, the user
calls SysTick_Wait10ms(123); and the function returns 1.23 secondslater. In the
function SysTick_Wait() , the NVIC_ST_RELOAD_R value is set to specify the delay.
Writing to CURRENT clears the COUNT flag and reloads the counter. When the counter
goes from 1 to 0, the flag COUNT is set.

The accuracy of SysTick depends on the accuracy of the clock. We use the PLL to derive a
bus clock based on the 16 MHz crystal, the time measured or generated using SysTick will
be very accurate. More specifically, the accuracy of the NX5032GA crystal on the
LaunchPad board is +50 parts per million (PPM), which translates to 0.005%, which is
about +5 seconds per day. One could spend more money on the crystal and improve the
accuracy by a factor of 10. Not only are crystals accurate, they are stable. The NX5032GA
crystal will vary only +150 PPM as temperature varies from -40 to +150 °C. Crystals are
more stable than they are accurate, typically varying by less than 5 PPM per year.

#define NVIC_ST_CTRL_R (*((volatile uint32_t *)0xE000E010))
#define NVIC_ST_RELOAD_R (*((volatile uint32_t *)0xE000E014))
#define NVIC_ST_CURRENT_R (*((volatile uint32_t *)0xE000E018))
void SysTick_Init(void){

NVIC_ST_CTRL_R = 0; // 1) disable SysTick during setup
NVIC_ST_RELOAD_R = 0x00FFFFFF; //2) maximum reload value
NVIC_ST_CURRENT _R =0; // 3) any write to current clears it

NVIC_ST_CTRL_R = 0x00000005; // 4) enable SysTick with core clock
}
void SysTick_Wait(uint32_t delay){ // delay is in 12.5ns units
NVIC_ST_RELOAD_R = delay-1; // number of counts to wait
NVIC_ST CURRENT R = 0; // any value written to CURRENT clears
while((NVIC_ST_CTRL_R&0x00010000)==0){ // wait for COUNT flag
}

}
void SysTick_Wait10ms(uint32_t delay){ // delay is in 10ms units

uint32_t i;
for(i=0; i<delay; i++){
SysTick_Wait(800000); // 800000*%12.5ns equals 10ms
}
}

Program 2.11. Timer functions that implement a time delay
(SysTick_xxx.zip).

Checkpoint 2.26: How would you change SysTick_Wait10ms in Program 2.11 if your
microcontroller were running at 50 MHz?

2.7. Choosing a Microcontroller

I chose to focus this book on the LM3S/TM4C family of microcontrollers, because it has a
rich set of features needed to teach the fundamentals required for both today’s and
tomorrow’s embedded systems. Sometimes, the computer engineer is faced with the task
of selecting the microcontroller for the project. When faced with this decision some
engineers will only consider those devices for which they have hardware and software
experience. Fortunately, this blind approach often still yields an effective and efficient
product, because many microcontrollers overlap in their cost and performance. In other
words, if a familiar microcontroller can implement the desired functions for the project,
then it is often efficient to bypass that more perfect piece of hardware in favor of a faster
development time. On the other hand, sometimes we wish to evaluate all potential
candidates. It may be cost-effective to hire or train the engineering personnel so that they
are proficient in a wide spectrum of potential microcontroller devices. There are many
factors to consider when selecting a microcontroller.

A first group of factors deals with cost, maintenance and production:

. Labor costs includes training, development, and testing

. Material costs includes parts and supplies

. Manufacturing costs depend on the number and complexity of the components
. Maintenance costs involve revisions to fix bugs and perform upgrades

. Second source availability

A second group of factors deals with memory and the processor:

. ROM size must be big enough to hold instructions and fixed data for the
software

. RAM size must be big enough to hold locals, parameters, and global variables
. EEPROM to hold nonvolatile fixed constants that are field-configurable

. Processor must be capable of performing all calculations in real time

. 8-, 16-, or 32-bit data size should match most of the data to be processed

. Numerical operations like multiply, divide, saturation, floating point

. Special functions like multiply/accumulate, fuzzy logic, complex numbers

. Availability of high-level language cross-compilers, simulators, and debuggers

A third group of factors deals with input and output:
. I/O bandwidth determines the input/output rate
. Parallel ports for the input/output digital signals

. Serial ports to interface with other computers or I/0O devices

. Timer functions to generate signals, measure frequency, and measure period
. Pulse width modulation for the output signals in many control applications
. ADC that is used to convert analog inputs to digital numbers

. DAC that is used to convert digital numbers to analog outputs

. Special I/O functions such as CAN, Ethernet and USB

A fourth group of factors deals with system level design:
. Package size and environmental issues affect many embedded systems
. Power requirements because many systems will be battery operated

When considering speed it is best to compare time to execute a benchmark program
similar to your specific application, rather than just comparing bus frequency. One of the
difficulties is that the microcontroller selection depends on the speed and size of the
software, but the software cannot be written without the computer. Given this uncertainty,
it is best to select a family of devices with a range of execution speeds and memory
configurations. In this way a prototype system with large amounts of memory and
peripherals can be purchased for software and hardware development, and once the design
is in its final stages, the specific version of the computer can be selected now knowing the
memory and speed requirements for the project. In conclusion, while this book focuses on
the ARM ® Cortex™-M microcontrollers, it is expected that once the study of this book
is completed, the reader will be equipped with the knowledge to select the proper
microcontroller and complete the software design.

2.8. Exercises

2.1 What is special about Register 13? Register 14? Register 15?

2.2 In 20 words or less describe the differences between von Neumann and Harvard
architectures.

2.3 What happens when you load a value into Register 15 with bit 0 set?
2.4 Write C code that sets bit 31 of memory location 0x2000.1234 using bit-banding.
2.5 Write C code that clears bit 16 of memory location 0x2000.8000 using bit-banding.

2.6 Write C code that sets bit 1 of memory location 0x4000.5400 using bit-banding. What
effect does this operation have?

2.7 Write C code that clears bit 2 of memory location 0x4000.7400 using bit-banding.
What effect does this operation have?

2.8 How much RAM and ROM are in TM4C123? What are the specific address ranges of
these memory components?

2.9 How much RAM and ROM are in LM3S1968? What are the specific address ranges
of these memory components?

2.10 How much RAM and ROM are in LM3S8962? What are the specific address ranges
of these memory components?

2.11 What are the bits in the Program Status Register (PSR) of ARM ® Cortex™-M?
2.12 What happens if you execute these four assembly instructions?

PUSH {R1}

PUSH {R2}

POP {R1}

POP {R2}

2.13 Write assembly code that pushes registers R1 R3 and R5 onto the stack.
2.14 How do you initialize the stack?

2.15 How do you specify where to begin execution after a reset?

2.16 What does word-aligned mean?

2.17 When does the LR have to be pushed on the stack?

2.18Does the associative principle hold for signed integer multiply and divide?
Assume Outl Out2 A B C are all the same precision (e.g., 32 bits). In particular do these
two C calculations always achieve identical outputs? If not, give an example.

Outl = (A*B)/C;
Out2 = A*(B/C);

2.19Does the associative principle hold for signed integer addition and subtraction?
Assume Out3 Out4 A B C are all the same precision (e.g., 32 bits). In particular do these
two C calculations always achieve identical outputs? If not, give an example.

Out3 = (A+B)-C;
Out4 = A+(B-C);

2.20 What are parallel ports are available on the TM4C123?

2.21 What are parallel ports are available on the LM3S1968?

2.22 What are parallel ports are available on the LM3S8962?

2.23 What is a direction register? Why does the microcontroller have direction registers?
2.24 What is the alternative function register?

D2.25 Write software that initializes LM3S/LM4F/TM4C Port A, so pins 7,5,3,1 are
output and the rest are input.

D2.26 Write software that initializes LM3S/LM4F/TM4C Port A, so pins 5,4 are output
and the rest are input.

D2.27 Write software that initializes LM3S/LM4F/TM4C Port A, so pins 5, 4, and 3 are
output. Make the initialization friendly. Design an output function that takes a 3-bit
parameter (0 to 7) and writes the value to these three pins. Use bit-specific addressing for
the output.

D2.28 Write software that initializes LM3S/LM4F/TM4C Port E, so pin 1 is an output.
Make the initialization friendly. Design an output function that takes a 1-bit parameter (0
or 1) and writes the value to this pin. Use bit-specific addressing for the output.

D2.29 Redesign the SSR interface shown in Figure 2.33 using a +5V source. In particular,
recalculate the required resistor value if we were to change the +3.3V to +5V.

D2.30 Redesign the LED interface shown in Figure 2.35 if the four LEDs operated at 1.9
V and 1 mA. In particular, recalculate the required resistor values if we were to change to
these LEDs.

D2.31 Rewrite the software in Program 2.8 so the LED pattern changes every 0.1 sec.

D2.32 Design a switch interface that it is negative logic. I.e., the input is low if the switch
is pressed and high if the switch is not pressed.

2.9. Lab Assignments

The labs in this book involve the following steps:

Part a) During the analysis phase of the project determine additional specifications and
constraints. In particular, discover which microcontroller you are to use, whether you are
to develop in assembly language or in C, and whether the project is to be simulated then
built, just built or just simulated. For example, inputs can be created with switches and
outputs can be generated with LEDs. The UART can be interfaced to a PC, and a
communication program like PuTTY can be used to interact with the system.

Part b) Design, build, and test the hardware interfaces. Use a computer-aided-drawing
(CAD) program to draw the hardware circuits. Label all pins, chips, and resistor values. In
this chapter, there will be one switch for each input and one LED for each output. Connect
the switch interfaces to microcontroller input pins, and connect the LED interfaces to
microcontroller output pins. Pressing the switch will signify a high input logic value. You
should activate the LED to signify a high output logic value.

Part c) Design, implement and test the software that initializes the I/O ports and performs
the specified function. Often a main program is used to demonstrate the system.

Lab 2.1 The overall objective is to create a NOT gate. The system has one digital input
and one digital output, such that the output is the logical complement of the input.
Implement the design such that the complement function occurs in the software of the
microcontroller.

Lab 2.2 The overall objective is to create a 3-input AND gate. The system has three
digital inputs and one digital output, such that the output is the logical and of the three
inputs. Implement the design such that the AND function occurs in the software of the
microcontroller.

Lab 2.3 The overall objective is to create a 2-input EXCLUSIVE OR gate. The system
has two digital inputs and one digital output, such that the output is the logical exclusive
or of the two inputs. Implement the design such that the EXCLUSIVE OR function occurs
in the software.

Lab 2.4 The overall objective is to create a 3-input voting logic. The system has three
digital inputs and one digital output, such that the output is high if and only if two or more
inputs are high. This means the output will be low if two for more inputs are low.
Implement the design such that the voting function occurs in the software of the
microcontroller.

Lab 2.5 The overall objective is to a variable frequency oscillator. The system has two
digital inputs and two digital outputs. If inputl is true the digital output1 oscillates at 262
Hz. If the input1 is false the outputl remains low. If input?2 is true the digital output2
oscillates at 392 Hz. If the input? is false the output2 remains low. If you connect each
outputtoa 10 k resistor as shown in the figure, then you can hear the tones as middle C
and middle G.

10kW

3i3‘u’ 3.3V

10k

Ty

LM35
irpLEtl ougouel

irpLtD ougoueD

3. Software Design

Chapter 3 objectives are to:

* Present the software design process

* Describe a software coding style

* Define modules, board support package, and device drivers

* Present a design method using finite state machines

* Define the concept of threads

 Implement FIFO queues

* Present a simple memory manager as an introduction to the heap

» Introduce the art of debugging

The ultimate success of an embedded system project depends both on its software and
hardware. Computer scientists pride themselves in their ability to develop quality
software. Similarly electrical engineers are well-trained in the processes to design both
digital and analog electronics. Manufacturers, in an attempt to get designers to use their
products, provide application notes for their hardware devices. The main objective of this
book is to combine effective design processes together with practical software techniques
in order to develop quality embedded systems. As the size and complexity of the software
increase, software development changes from simple “coding” to “software engineering”.
Naturally, as the system complexity increases so do the engineering skills required to
design such systems. These software skills presented in this chapter include modular
design, layered architecture, abstraction, and verification. Even if real-time embedded
systems are on the small end of the size scale, never the less, these systems can be quite
complex. Therefore, the above mentioned skills are essential for developing embedded
systems. This chapter on software development is placed early in the book because writing
good software is an art that must be developed and cannot be added on at the end of a
project. Good software combined with average hardware will always outperform average
software on good hardware. In this chapter we will outline various techniques for
developing quality software and then apply these techniques throughout the remainder of
the book.

0L11 10,11
& :LDC‘ ach wl
10000 100010
30 5

00,0110, 11

3.1. Attitude

Good engineers employ well-defined design processes when developing complex systems.
When we work within a structured framework, it is easier to prove our system works
(verification) and to modify our system in the future (maintenance). As our software
systems become more complex, it becomes increasingly important to employ well-defined
software design processes. Throughout this book, a very detailed set of software
development rules will be presented. This book focuses on real-time embedded systems
written in C. At first, it may seem radical to force such a rigid structure to software. We
might wonder if creativity will be sacrificed in the process. True creativity is more about
effective solutions to important problems and not about being sloppy and inconsistent.
Because software maintenance is a critical task, the time spent organizing, documenting,
and testing during the initial development stages will reap huge dividends throughout the
life of the software project.

Observation: The easiest way to debug is to write software without any bugs.

We define clients as people who will use our software. Sometimes, the client is the end-
user who uses the embedded system. Other times, we develop hardware/software
components that plug into a larger system. In this case, the client develops software that
will call our functions. We define coworkers as engineers who will maintain our software.
We must make it easy for a coworker to debug, use, and extend our software.

Writing quality software has a lot to do with attitude. We should be embarrassed to ask our
coworkers to make changes to our poorly written software. Since so much software
development effort involves maintenance, we should create software modules that are easy
to change. In other words, we should expect each piece of our code will be read by another
engineer in the future, whose job it will be to make changes to our code. We might be
tempted to quit a software project once the system is running, but this short time we might
save by not organizing, documenting, and testing will be lost many times over in the
future when it is time to update the code.

As project managers, we must reward good behavior and punish bad behavior. A
company, in an effort to improve the quality of their software products, implemented the
following policies. “The employees in the customer relations department receive a bonus
for every software bug that they can identify. These bugs are reported to the software
developers, who in turn receive a bonus for every bug they fix.”

Checkpoint 3.1: Why did the above policy fail horribly?

We should demand of ourselves that we deliver bug-free software to our clients. Again,
we should be embarrassed when our clients report bugs in our code. We should be
ashamed when other programmers find bugs in our code. There are four steps we can take
to facilitate this important aspect of software design.

Test it now. When we find a bug, fix it immediately. The longer we put off fixing a mistake
the more complicated the system becomes, making it harder to find. Remember that bugs
do not go away automatically, but we can make the system so complex that the bugs will
manifest themselves in a mysterious and obscure fashion. For the same reason, we should
completely test each module individually, before combining them into a larger system. We
should not add new features before we are convinced the existing features are bug-free. In
this way, we start with a working system, add features, and then debug this system until it
is working again.

This incremental approach makes it easier to track progress. It allows us to undo bad
decisions, because we can always revert back to a previous working system. Adding new
features before the old ones are debugged is very risky. With this sloppy approach, we
could easily reach the project deadline with 100% of the features implemented, but have a
system that doesn’t run. In addition, once a bug is introduced, the longer we wait to
remove it, the harder it will be to correct. This is particularly true when the bugs interact
with each other. Conversely, with the incremental approach, when the project schedule
slips, we can deliver a working system at the deadline that supports some of the features.

Maintenance Tip: Go from working system to working system.

Plan for testing. How to test should be considered at the beginning, middle, and end of a
project. In particular, testing should be included as part of the initial design. Our testing
and the client’s usage go hand in hand. In particular, how we test the software module will
help the client understand the context and limitations of how our software is to be used. It
often makes sense to explain the testing procedures to the client as an effort to
communicate the features and limitations of the module. Furthermore, a clear
understanding of how the client wishes to use our software is critical for both the software
design and its testing. For example, after seeing how you tested the module, the client may
respond, “That’s nice, but what I really want it to do is ...”. If this happens, it makes sense
to rewrite the requirements document to reflect this new understanding of the client’s
expectation.

Maintenance Tip: It is better to have some parts of the system that run with 100%
reliability than to have the entire system with bugs.

Get help. Use whatever features are available for organization and debugging. Pay
attention to warnings, because they often point to misunderstandings about data or
functions. Misunderstanding of assumptions can cause bugs when the software is
upgraded, or reused in a different context than originally conceived. Remember that
computer time is a lot cheaper than programmer time. It is a mistake to debug an
embedded system simply by observing its inputs and outputs. We need to use both
software and hardware debugging tools to visualize internal parameters within the system.

Maintenance Tip: It is better to have a system that runs slowly than to have one that
doesn’t run at all.

Divide and conquer. In the early days of microcomputer systems, software size could be
measured in hundreds of lines of source code or thousands of bytes of object code. These
early systems, due to their small size, were inherently simple. The explosion of hardware
technology (both in speed and size) has led to a similar increase in the size of software
systems. The only hope for success in a large software system will be to break it into
simple modules. In most cases, the complexity of the problem itself cannot be avoided.
E.g., there is just no simple way to get to the moon. Nevertheless, a complex system can
be created out of simple components. A real creative effort is required to orchestrate
simple building blocks into larger modules, which themselves are grouped. We use our
creativity to break a complex problem into simple components, rather than developing
complex solutions to simple problems.

Observation: There are two ways of constructing a software design: one way is to make it
so simple that there are obviously no deficiencies and the other way is make it so
complicated that there are no obvious deficiencies. C.A.R. Hoare, “The Emperor’s Old
Clothes,” CACM Feb. 1981.

3.2. Quality Programming

Software development is similar to other engineering tasks. We can choose to follow well-
defined procedures during the development and evaluation phases, or we can meander in a
haphazard way and produce code that is hard to test and harder to change. The ultimate
goal of the system is to satisfy the stated objectives such as accuracy, stability, and
input/output relationships. Nevertheless it is appropriate to separately evaluate the
individual components of the system. Therefore in this section, we will evaluate the
quality of our software. There are two categories of performance criteria with which we
evaluate the “goodness” of our software. Quantitative criteria include dynamic efficiency
(speed of execution), static efficiency (ROM and RAM program size), and accuracy of the
results. Qualitative criteria center on ease of software maintenance. Another qualitative
way to evaluate software is ease of understanding. If your software is easy to understand
then it will be:

e Fasy to debug, including both finding and fixing mistakes
e Fasy to verify, meaning we can prove it is correct
e Fasy to maintain, meaning we can add new features

Common error: Programmers who sacrifice clarity in favor of execution speed often
develop software that runs fast but is error-prone and difficult to change.

Golden Rule of Software Development: Write software for others as you wish they
would write for you.

3.2.1. Quantitative Performance Measurements

In order to evaluate our software quality, we need performance measures. The simplest
approaches to this issue are quantitative measurements. Dynamic efficiency is a measure
of how fast the program executes. It is measured in seconds or processor bus cycles.
Because of the complexity of the Cortex™-M, it will be hard to estimate execution speed
by observing the assembly language generated by the compiler. Rather, we will employ
methods to experimentally measure execution speed. Static efficiency is the number of
memory bytes required. Since most embedded computer systems have both RAM and
ROM, we specify memory requirement in global variables, stack space, fixed constants,
and program object code. The global variables plus maximum stack size must fit into the
available RAM. Similarly, the fixed constants plus program size must fit into the available
ROM. We can judge our software system according to whether or not it satisfies given
constraints, like software development costs, memory available, and time table. Many of
the system specifications are quantitative, and hence are an appropriate measure of quality.

3.2.2. Qualitative Performance Measurements

Qualitative performance measurements include those parameters to which we cannot
assign a direct numerical value. Often in life the most important questions are the easiest
to ask, but the hardest to answer. Such is the case with software quality. So therefore we
ask the following qualitative questions. Can we prove our software works? Is our software
easy to understand? Is our software easy to change? Since there is no single approach to
writing quality software, I can only hope to present some techniques that you may wish to
integrate into your own software style. In fact, we will devote most this chapter to the
important issue of developing quality software. In particular, we will study self-
documented code, abstraction, modularity, and layered software. These parameters indeed
play a profound effect on the bottom-line financial success of our projects. Although quite
real, because there is often not an immediate and direct relationship between software
quality and profit, we may be tempted to dismiss its importance.

Observation: Most people get better with practice. So if you wish to become a better
programmer, I suggest you write great quantities of software.

To get a benchmark on how good a programmer you are, I challenge you to two tests. In
the first test, find a major piece of software that you have written over 12 months ago, and
then see if you can still understand it enough to make minor changes in its behavior. The
second test is to exchange with a peer a major piece of software that you have both
recently written (but not written together), then in the same manner, if you can make
minor changes to each other’s software.

Observation: You can tell if you are a good programmer if 1) you can understand your
own code 12 months later, and 2) others can make changes to your code.

3.3. Software Style Guidelines

One of the recurring themes of this software style section is consistency. Maintaining a
consistent style will help us locate and understand the different components of our
software, as well as prevent us from forgetting to include a component or worse including
it twice.

3.3.1. Organization of a code file

The following regions should occur in this order in every code file (e.g., file.c).

Opening comments. The first line of every file should contain the file name. This is
because some printers do not automatically print the name of the file. Remember that
these opening comments will be duplicated in the corresponding header file (e.g., file.h)
and are intended to be read by the client, the one who will use these programs. If major
portions of this software are copied from copyrighted sources, then we must satisfy the
copyright requirements of those sources. The rest of the opening comments should include

* The overall purpose of the software module

* The names of the programmers

* The creation (optional) and last update dates

 The hardware/software configuration required to use the module

 Copyright information

Including .h files. Next, we will place the #include statements that add the necessary
header files. Adding other code files, if necessary, will occur at the end of the file, but here
at the top of the file we include just the header files. Normally the order doesn’t matter, so
we will list the include files in a hierarchical fashion starting with the lowest level and
ending at the highest high. If the order of these statements is important, then write a
comment describing both what the proper order is and why the order is important. Putting
them together at the top will help us draw a call graph, which will show us how our
modules are connected. In particular, if we consider each code file to be a separate
module, then the list of #include statements specifies which other modules can be called
from this module. Of course one header file is allowed to include other header files.
However, we should avoid having one header file include other header files. This
restriction makes the organizational structure of the software system easier to observe. Be
careful to include only those files that are absolutely necessary. Adding unnecessary
include statements will make our system seem more complex than it actually is.

extern references. After including the header files, we can declare any external variables
or functions. External references will be resolved by the linker, when various modules are
linked together to create a single executable application. Placing them together at the top
of the file will help us see how this software system fits together (i.e., is linked to) other
systems.

#define statements. After external references, we should place the #define macros. These
macros can define operations or constants. Since these definitions are located in the code
file (e.g., file.c), they will be private. This means they are available within this file only. If
the client does not need to use or change the macro operation or constant, then it should be
made private by placing it here in the code file. Conversely, if we wish to create public
macros, then we place them in the header file for this module.

struct union enum statements. After the define statements, we should create the necessary
data structures using struct union and enum . Again, since these definitions are located
in the code file (e.g., file.c), they will be private.

Global variables and constants. After the structure definitions, we should include the
global variables and constants. There are two aspects of data that are important. First, we
can specify where the data is allocated. If it is a variable that needs to exist permanently,
we will place it in RAM as a global variable. If it is a constant that needs to exist
permanently, we will place it in ROMusing const . If the data is needed temporarily, we
can define it as a local. The compiler will allocate locals in registers or on the stack in
whichever way is most efficient.

int32_t PublicGlobal; // accessible by any module

static int32_t PrivateGlobal; // accessible in this file only

const int32_t Constant=1234567; //in ROM

void function(veid){
static int32_t veryPrivateGlobal; // accessible by this function only
int32_t privateLocal; // accessible by this function only

}

We define a global variable as one with permanent allocation. In the above

examples, PublicGlobal PrivateGlobal and veryPrivateGlobal are global. Constant
will be defined in ROM, and cannot be changed. We define a local variable as one with
temporary allocation. The variable privateLocal is local and may exist on the stack or in
a register.

The second aspect of the data is its scope. Scope specifies which software can access the
data. Public variables can be accessed by any software. Privatevariables have restricted
scope, which can be limited to the one file, the one function, or even to one {} program
block. In general, we wish to minimize the scope of our data. Minimizing scope reduces
complexity and simplifies testing. If we specify the global with static , then it will be
private and can only be accessed by programs in this file. If we do not specify the global
with static then it will be public, and can be accessed any program. For example,

the PublicGlobal variable can be defined in other modules using extern and the linker
will resolve the reference. However, the PrivateGlobal cannot be accessed from software
in another file. We put all the globals together before any function definitions to symbolize
the fact that any function in this file has access to these globals. If we have a permanent
variable that is only access by one function, then it should be defined inside the function
with static .For example, the variable veryPrivateGlobal is permanently allocated in
RAM, but can only be accessed by the function.

Maintenance Tip: Reduce complexity in our system by restricting direct access to our
data.

Prototypes of private functions. After the globals, we should add any necessary
prototypes. Just like global variables, we can restrict access to private functions by
defining them as static. Prototypes for the public functions will be included in the
corresponding header file. In general, we will arrange the code implementations in a top-
down fashion. Although not necessary, we will include the parameter names with the
prototypes. Descriptive parameter names will help document the usage of the function.
For example, which of the following prototypes is easier to understand?

static void plot(int16_t, int16_t);

static void plot(int16_t time, int16_t pressure);

Implementations of the functions. The heart of the implementation file will be, of course,
the implementations. Again, private functions should be defined as static. The functions
should be sequenced in a logical manner. The most typical sequence is top-down, meaning
we begin with the highest level and finish with the lowest level. Another appropriate
sequence mirrors the manner in which the functions will be used. For example, start with
the initialization functions, followed by the operations, and end with the shutdown
functions. For example:

e Open
e Input
e Qutput
* Close

Including .c files. 1f the compiler does not support projects, then we would end the file
with #include statements that add the necessary code files. Since most compilers support
projects, we should use its organizational features and avoid including code files. The
project simplifies the management of large software systems by providing organizational
structure to the software system. Again, if we use projects, then including code files will
be unnecessary, and hence should be avoided.

Employ run-time testing. If our compiler supports assert() functions, use them liberally. In
particular, place them at the beginning of functions to test the validity of the input
parameters. Place them after calculations to test the validity of the results. Place them
inside loops to verify indices and pointers are valid. There is a secondary benefit to

using assert() . The assert() statements provide inherent documentation of the
assumptions.

3.3.2. Organization of a header file

Once again, maintaining a consistent style facilitates understanding and helps to avoid
errors of omission. Definitions made in the header file will be public, i.e., accessible by all
modules. As stated earlier, it is better to make global variables private rather than placing
them in the header file. Similarly, we should avoid placing actual code in a header file.

There are two types of header files. The first type of header file has no corresponding code
file. In other words, there is a file.h, but no file.c. In this type of header, we can list global
constants and helper macros. Examples of global constants are I/O port addresses (see
Im3s1968.h), data types (see integer.h) and calibration coefficients. Debugging macros
could be grouped together and placed in a debug.h file. We will not consider software in
these types of header files as belonging to a particular module.

The second type of header file does have a corresponding code file. The two files, e.g.,
file.h, and file.c, form a software module. In this type of header, we define the prototypes
for the public functions of the module. The file.h contains the policies (behavior or what it
does) and the file.c file contains the mechanisms (functions or how it works.) The
following regions should occur in this order in every header file.

Opening comments. The first line of every file should contain the file name. This is
because some printers do not automatically print the name of the file. Remember that
these opening comments should be duplicated in the corresponding code file (e.g., file.c)
and are intended to be read by the client, the one who will use these programs. We should
repeat copyright information as appropriate. The rest of the opening comments should
include

 The overall purpose of the software module

» The names of the programmers

* The creation (optional) and last update dates

 The hardware/software configuration required to use the module

« Copyright information

Including .h files. Nested includes in the header file should be avoided. As stated earlier,
nested includes obscure the manner in which the modules are interconnected.

#define statements. Public constants and macros are next. Special care is required to
determine if a definition should be made private or public. One approach to this question
is to begin with everything defined as private, and then shift definitions into the public
category only when deemed necessary for the client to access in order to use the module.
If the parameter relates to what the module does or how to use the module, then it should
probably be public. On the other hand, if it relates to how it works or how it is
implemented, it should probably be private.

struct union enum statements. The definitions of public structures allow the client software
to create data structures specific for this module.

Global variables and constants. If at all possible, public global variables should be
avoided. Public constants follow the same rules as public definitions. If the client must
have access to a constant to use the module, then it could be placed in the header file.

Prototypes of public functions. The prototypes for the public functions are last. Just like
the implementation file, we will arrange the code implementations in a top-down fashion.
Comments should be directed to the client, and these comments should clarify what the
function does and how the function can be used. Examples of how to use the module could
be included in the comments.

Often we wish to place definitions in the header filethat must be included only once. If
multiple files include the same header file, the compiler will include the definitions
multiple times. Some definitions, such as function prototypes, can be defined then
redefined. However, a common approach to header files uses #ifndef conditional
compilation. If the object is not defined, then the compiler will include everything from
the #ifndef until the matching #endif . Inside of course, we define that object so that the
header file is skipped on subsequent attempts to include it. Each header file must have a
unique object. One way to guarantee uniqueness is to use the name of the header file itself
in the object name.

#ifndef _File H
#define _File H
struct Position{
int bvalid; // true if point is valid
intl6_tx; //incm
intl6_ty; //incm
5
typedef struct Position PositionType;
#endif

3.3.3. Formatting

The rules set out in this subsection are not necessary for the program to compile or to run.
Rather the intent of the rules are to make the software easier to understand, easier to
debug, and easier to change. Just like beginning an exercise program, these rules may be
hard to follow at first, but the discipline will pay dividends in the future.

Make the software easy to read. I strongly object to hardcopy printouts of computer
programs during the development phase of a project. At this time, there are frequent
updates made by multiple members of the software development team. Because a
hardcopy printout will be quickly obsolete, we should develop and debug software by
observing it on the computer screen. In order to eliminate horizontal scrolling, no line of
code should be wider than the size of the editor screen. If we do make hard copy printouts
of the software at the end of a project, this rule will result in a printout that is easy to read.

Indentation should be set at 2 spaces. When transporting code from one computer to
another, the tab settings may be different. So, what looks good on one computer may look
ugly on another. For this reason, we should avoid tabs and use just spaces. Local variable
definitions can go on the same line as the function definition, or in the first column on the
next line.

Be consistent about where we put spaces. Similar to English punctuation, there should be
no space before a comma or a semicolon, but there should be at least one space or a
carriage return after a comma or a semicolon. There should be no space before or after
open or close parentheses. Assignment and comparison operations should have a single
space before and after the operation. One exception to the single space rule is if there are
multiple assignment statements, we can line up the operators and values. For example

data =1;
pressure = 100;

voltage = 5;

Be consistent about where we put braces {} . Misplaced braces cause both syntax and
semantic errors, so it is critical to maintain a consistent style. Place the opening brace at
the end of the line that opens the scope of the multi-step statement. The only code that can
go on the same line after an opening brace is a local variable declaration or a comment.
Placing the open brace near the end of the line provides a visual clue that a new code
block has started. Place the closing brace on a separate line to give a vertical separation
showing the end of the multi-step statement. The horizontal placement of the close brace
gives a visual clue that the following code is in a different block. For example

void main(void){ int i, j, k;
=5
if(sub0(j)){

for(i = 0; i < 6; i++){

sub1(i);

}
k = sub2(i, j);
}
else{
k = sub3();
}
}

Use braces after all if , else , for , do , while , case , and switch commands, even if the
block is a single command. This forces us to consider the scope of the block making it
easier to read and easier to change. For example, assume we start with the following code.

if(flag)

n=_0;

Now, we add a second statement that we want to execute also if the flag is true. The
following error might occur if we just add the new statement.

if(flag)
n=_0;
c=0;

If all of our blocks are enclosed with braces, we would have started with the following.
if(flag){
n=_0;

}

Now, when we add a second statement, we get the correct software.

if(flag){
n=_0;
c=0;
}

3.3.4. Code Structure

Make the presentation easy to read. We define presentation as the look and feel of our
software as displayed on the screen. If at all possible, the size of our functions should be
small enough so the majority of a “single idea” fits on a single computer screen. We must
consider the presentation as a two-dimensional object. Consequently, we can reduce the 2-
D area of our functions by encapsulating components and defining them as private
functions, or by combining multiple statements on a single line. In the horizontal
dimension, we are allowed to group multiple statements on a single line only if the
collection makes sense. We should list multiple statements on a single line, if we can draw
a circle around the statements and assign a simple collective explanation to the code.

Observation: Most professional programmers do not create hard copy printouts of the
software. Rather, software is viewed on the computer screen, and developers use a code
repository like Git or SVN to store and share their software.

Another consideration related to listing multiple statements on the same line is debugging.
The compiler often places debugging information on each line of code. Breakpoints in
some systems can only be placed at the beginning of a line. Consider the following three
presentations. Since the compiler generates exactly the same code in each case, the
computer execution will be identical. Therefore, we will focus on the differences in style.
The first example has a horrific style.

void testFilter(int32_t start, int32_t stop, int32_t step){ int32_t x,y;
initFilter(); UART_OutString(“x(n) y(n)”); UART_OutChar(CR);
for(x=start;x<=stop; x=x+step){ y=filter(x); UART_OutUDec(x);
UART_OutChar(SP); UART_OutUDec(y); UART_OutChar(CR);} }

The second example places each statement on a separate line. Although written in an
adequate style, it is unnecessarily vertical.

void testFilter(int32_t start, int32_t stop, int32_t step){
int32_t x;
int32_ty;
initFilter();
UART_OutString(“x(n) y(n)”);
UART_OutChar(CR);
for(x = start; x <= stop; x = x+step){
y = filter(x);
UART_OutUDec(x);
UART_OutChar(SP);
UART_OutUDec(y);
UART_OutChar(CR);

}
}

The following implementationgroups the two variable definitions together because the
collection can be considered as a single object. The variables are related to each other.
Obviously, x and y are the same type (32-bit signed), but in a physical sense, they would
have the same units. For example, if x represents a signal in mV, then y is also a signal in
mV. Similarly, the UART output sequences cause simple well-defined operations.

void testFilter(int32_t start, int32_t stop, int32_t step){ int32_t x, y;
initFilter();
UART_OutString(“x(n) y(n)”); UART_OutChar(CR);
for(x = start; x <= stop; x = x+step){
y = filter(x);

UART_OutUDec(x); UART_OutChar(SP); UART_OutUDec(y);
UART_OutChar(CR);

}
}

The “make the presentation easy to read” guideline sometimes comes in conflict with the
“be consistent where we place braces” guideline. For example, the following example is
obviously easy to read, but violates the placement of brace rule.

for(i = 0; i < 6; i++) dataBuf[i] = 0;

When in doubt, we will always be consistent where we place the braces. The correct style
is also easy to read.

for(i=0;1i<6;i++){
dataBuf[i] = 0;
}

Employ modular programming techniques. Complex functions should be broken into
simple components, so that the details of the lower-level operations are hidden from the
overall algorithms at the higher levels. An interesting question arises: Should a
subfunction be defined if it will only be called from a single place? The answer to this
question, in fact the answer to all questions about software quality, is yes if it makes the
software easier to understand, easier to debug, and easier to change.

Minimize scope. In general, we hide the implementation of our software from its usage.
The scope of a variable should be consistent with how the variable is used. In a military
sense, we ask the question, “Which software has the need to know?” Global variables
should be used only when the lifetime of the data is permanent, or when data needs to be
passed from one thread to another. Otherwise, we should use local variables. When one
module calls another, we should pass data using the normal parameter-passing
mechanisms. As mentioned earlier, we consider I/O ports in a manner similar to global
variables. There is no syntactic mechanism to prevent a module from accessing an I/O
port, since the ports are at fixed and known absolute addresses. Processors used to build
general purpose computers have a complex hardware system to prevent unauthorized
software from accessing I/O ports, but the details are beyond the scope of this book. In
most embedded systems, however, we must rely on the does-access rather than the can-
access method when dealing with I/0O devices. In other words, we must have the discipline
to restrict I/O port access only in the module that is designed to access it. For similar
reasons, we should consider each interrupt vector address separately, grouping it with the
corresponding I/0 module.

Use types. Using a typedef will clarify the format of a variable. It is another example of
the separation of mechanism and policy. New data types and structures will begin with an
upper case letter. The typedef allows us to hide the representation of the object and use an
abstract concept instead. For example

typedef int16_t Temperature;

void main(void){ Temperature lowT, highT;

}

This allows us to change the representation of temperature without having to find all the
temperature variables in our software. Not every data type requires a typedef . We will
use types for those objects of fundamental importance to our software, and for those
objects for which a change in implementation is anticipated. As always, the goal is to
clarify. If it doesn’t make it easier to understand, easier to debug, or easier to change, don’t
do it.

Prototype all functions. Public functions obviously require a prototype in the header file.
In the implementation file, we will organize the software in a top-down hierarchical
fashion. Since the highest level functions go first, prototypes for the lower-level private
functions will be required. Grouping the low-level prototypes at the top provides a
summary overview of the software in this module. Include both the type and name of the
input parameters. Specify the function as void even if it has no parameters. These
prototypes are easy to understand:

void start(int32_t period, void(*functionPt)(void));
int16_t divide(int16_t dividend, int16_t divisor);

These prototypes are harder to understand:
start(int32_t, (*)();

int16_t divide(int16_t, int16_t);

Declare data and parameters as const whenever possible. Declaring an object as const has
two advantages. The compiler can produce more efficient code when dealing with
parameters that don’t change. The second advantage is to catch software bugs, i.e.,
situations where the program incorrectly attempts to modify data that it should not
modify.

goto statements are not allowed. Debugging is hard enough without adding the
complexity generated when using goto . A corollary to this rule is when developing
assembly language software, we should restrict the branching operations to the simple
structures allowed in C.

++ and — should not appear in complex statements. These operations should only appear
as commands by themselves. Again, the compiler will generate the same code, so the issue
is readability. The statement

*(—pt) = buffer[n++];
should have been written as

—Pt;

*(pt) = buffer[n];

n++;

b

If it makes sense to group, then put them on the same line. The following code is allowed

buffer[n] = 0; n++;

Be a parenthesis zealot. When mixing arithmetic, logical, and conditional operations,
explicitly specify the order of operations. Do not rely on the order of precedence. As
always, the major style issue is clarity. Even if the following code were actually to
perform the intended operation (which in fact it does not), it would be poor style.

if(x + 1 & 0x0F ==y | 0x04)

The programmer assigned to modify it in the future will have a better chance if we had
written

if(((x + 1) & 0x0F) == (y | 0x04))

Use enum instead of #define or const. The use of enum allows for consistency checking
during compilation, and provides for easy to read software. A good optimizing compiler
will create exactly the same object code for the following four implementations of the
same operation. So once again, we focus on style. In the first implementation we needed
comments to explain the operations. In the second implementation no comments are
needed because of the two #define statements.

// implementation 1 // implementation 2
int Mode; // 0 means error #define NOERROR 1
void function1(void){ #define ERROR 0
Mode = 1; // no error int Mode;
} void function1(void){
void function2(void){ Mode = NOERROR;
if(Mode == 0){ // error? }
UART_OutString(“error”); void function2(void){
} if(Mode == ERROR){
} UART_OutString(“error”);
}
}

In the third implementation, shown below on the left, the compiler performs a type-match,
making sure Mode , NOERROR , and ERROR are the same type. Consider a fourth
implementation that uses enumeration to provide a check of both type and value. We can
explicitly set the values of the enumerated types if needed.

// implementation 3 // implementation 4

const int NOERROR = 1; enum Mode_state{ ERROR,

const int ERROR = 0; NOERROR};

int Mode; enum Mode_state Mode;

void function1(void){ void function1(void){
Mode = NOERROR; Mode = NOERROR;

} }

void function2(void){ void function2(void){
if(Mode == ERROR){ if(Mode == ERROR){
UART_OutString(“error”); UART_OutString(“error”);
} }

} }

#define statements, if used properly, can clarify our software and make our software easy
to change. It is proper to use size in all places that refer to the size of the data array.

#define SIZE 10

int16_t Data[SIZE];
void initialize(void){ int16_t j;
for(j = 0; j <SIZE; j++)
Data[j] = 0;

Don't use bit-shift for arithmetic operations. Computer architectures and compilers used to
be so limited that it made sense to perform multiply/divide by 2 using a shift operation.
For example, when multiplying a number by 4, we might be tempted to write data<<2 .
This is wrong; if the operation is multiply, we should write data*4 . Compiler
optimization has developed to the point where the compiler can choose to

implement data*4 as either a shift or multiply depending on the instruction set of the
computer. When we write multiply when we mean multiply, and write shift when we mean
shift we create code that is easy to understand.

3.3.5. Naming convention

Choosing names for variables and functions involves creative thought, and it is intimately
connected to how we feel about ourselves as programmers. Of the policies presented in
this section, naming conventions may be the hardest habit for us to change. The difficulty
is that there are many conventions that satisfy the “easy to understand” objective. Good
names reduce the need for documentation. Poor names promote confusion, ambiguity, and
mistakes. Poor names can occur because code has been copied from a different situation
and inserted into our system without proper integration (i.e., changing the names to be
consistent with the new situation.) They can also occur in the cluttered mind of a second-
rate programmer, who hurries to deliver software before it is finished.

Names should have meaning. If we observe a name out of the context of the place at
which it was defined, the meaning of the object should be obvious. The object TxFifo is
clearly atransmit first in first out circular queue. The function UART_OutString will
output a string to the serial port.

Avoid ambiguities. Don’t use variable names in our system that are vague or have more
than one meaning. For example, it is vague to use temp , because there are many
possibilities for temporary data, in fact, it might even mean temperature. Don’t use two
names that look similar, but have different meanings.

Give hints about the type. We can further clarify the meaning of a variable by including
phrases in the variable name that specify its type. For example, dataPt , timePt ,

and putPt are pointers. Similarly, voltageBuf , timeBuf , and pressureBuf are data
buffers. Other good phrases include Flag Mode U16L Index Cnt , which refer to Boolean
flag, system state, unsigned 16-bit, signed 32-bit, index into an array, and a counter
respectively.

Use the same name to refer to the same type of object.For example, everywhere we need a
local variable to store an ASCII character we could use the name letter . Another
common example is to use the names i, j, and k for indices into arrays. The names V1
and R1 might refer to a voltage and a resistance. The exact correspondence is not part of
the policies presented in this section, just the fact that a correspondence should exist. Once
another programmer learns which names we use for which object types, understanding our
code becomes easier.

Use a prefix to identify public objects. In this style policy, an underline character will
separate the module name from the function name. As an exception to this rule, we can
use the underline to delimit words in all upper-case name (e.g., #define
MIN_PRESSURE 10). Functions that can be accessed outside the scope of a module will
begin with a prefix specifying the module to which it belongs. It is poor style to create
publicvariables, but if they need to exist, they too would begin with the module prefix.
The prefix matches the file name containing the object. For example, if we see a function
call, UART_OutString(“Hello world”); we know this public function belongs to the
UART module, where the policies are defined in UART.h and the implementation in
UART.c. Notice the similarity between this syntax (e.g., UART_Init()) and the
corresponding syntax we would use if programming the module as a class in object-
oriented language like C++ or Java(e.g., UART.Init()). Using this convention, we can
easily distinguish public and private objects.

Use upper and lower case to specify the allocation of an object. We will define I/O ports
and constants using no lower-case letters, like typing with caps-lock on. In other words,
names without lower-case letters refer to objects with fixed values. TRUE , FALSE ,
and NULL are good examples of fixed-valued objects. As mentioned earlier, constant
names formed from multiple words will use an underline character to delimit the
individual words. E.g., MAX_VOLTAGE , UPPER_BOUND, and FIFO_SIZE .
Permanently-allocated globals will begin with a capital letter, but include some lower-case
letters. Local variables will begin with a lower-case letter, and may or may not include
upper case letters. Since all functions are permanently allocated, we can start function
names with either an upper-case or lower-case letter. Using this convention, we can
distinguish constants, globals and locals. An object’s properties (public/private,
local/global, constant/variable) are always perfectly clear at the place where the object is
defined. The importance of the naming policy is to extend that clarity also to the places
where the object is used.

Use capitalization to delimit words. Names that contain multiple words should be defined
using a capital letter to signify the first letter of the word. Creating a single name output of
multiple words by capitalizing the middle words and squeezing out the spaces is called
CamelCase. Recall that the case of the first letter specifies whether is the local or global.
Some programmers use the underline as a word-delimiter, but except for constants, we
will reserve underline to separate the module name from the variable name. Table 3.1
presents examples of the naming convention used in this book.

Type Examples

Constants

CR SAFE_TO_RUN PORTA STACK_SIZE
START_OF_RAM

Local variables maxTemperature lastCharTyped errorCnt

Private global =~ MaxTemperature LastCharTyped ErrorCnt
variable

Public global DAC_MaxVoltage Key_LastCharTyped
variable Network_ErrorCnt

Private function ClearTime wrapPointer InChar

Public function Timer_ClearTime RxFifo_Put Key_InChar

Table 3.1. Examples of names. Use underline to define the module name. Use
uppercase for constants. Use CamelCase for variables and functions.

Checkpoint 3.2: How can you tell if a function is private or public?

Checkpoint 3.3: How can you tell if a variable is local or global?

3.3.6. Comments

Discussion about comments was left for last, because they are the least important aspect
involved in writing quality software. It is much better to write well-organized software
with simple interfaces having operations so easy to understand that comments are not
necessary. The goal of this section is to present ideas concerning software documentation
in general, and writing comments in particular. Because maintenance is the most important
phase of software development, documentation should assist software maintenance. In
many situations the software is not static, but continuously undergoing changes. Because
of this liquidity, I believe that flowchart and software manuals are not good mechanisms
for documenting programs because it is difficult to keep these types of documentation up
to date when modifications are made. Therefore, the term documentation in this book
refers almost exclusively to comments that are included in the software itself.

The beginning of every file should include the file name, purpose, hardware connections,
programmer, date, and copyright. For example, we could write:

// filename adtest.c

// Test of TM4C123 ADC

// 1 Hz sampling on PD3 and output to the serial port
// Last modified 6/21/14 by Jonathan W. Valvano

// Copyright 2014 by Jonathan W. Valvano

/" You may use, edit, run or distribute this file

// as long as the above copyright notice remains

The beginning of every function should include a line delimiting the start of the function,
purpose, input parameters, output parameters, and special conditions that apply. The
comments at the beginning of the function explain the policies (e.g., how to use the
function.) These comments, which are similar to the comments for the prototypes in the
header file, are intended to be read by the client. For example, we could explain a function
this way:

/[[——UART _InUDec————

// InUDec accepts ASCII input in unsigned decimal

// and converts to a 32-bit unsigned number

// valid range is 0 to 4294967295

// Input: none

// Output: 32-bit unsigned number

// 1f you enter a number above 2/32-1, it will truncate

// Backspace will remove last digit typed

Comments can be added to a variable or constant definition to clarify the usage. In
particular, comments can specify the units of the variable or constant. For complicated
situations, we can use additional lines and include examples. E.g.,

intl6_t V1; // voltage at node 1 in mV,
// range -5000 mV to +5000 mV

uintl6_t Fs; // sampling rate in Hz

int FoundFlag; /1 0 if keyword not yet found,
// 1 if found

uint16_t Mode; // determines system action,

// as one of the following three cases

#define IDLE 0

#define COLLECT 1

#define TRANSMIT 2

Comments can be used to describe complex algorithms. These types of comments are
intended to be read by our coworkers. The purpose of these comments is to assist in
changing the code in the future, or applying this code into a similar but slightly different
application. Comments that restate the function provide no additional information, and
actually make the code harder to read. Examples of bad comments include:

time++; // add one to time

mode = 0; // set mode to zero

Good comments explain why the operation is performed, and what it means:
time++; // maintain elapsed time in msec

mode = 0; // switch to idle mode because no data

We can add spaces so the comment fields line up. As stated earlier, we avoid tabs because
they often do not translate from one system to another. In this way, the software is on the
left and the comments can be read on the right.

Maintenance Tip: If it is not written down, it doesn’t exist.

As software developers, our goal is to produce code that not only solves our current
problem but can also serve as the basis of our future solutions. In order to reuse software
we must leave our code in a condition such that future programmers (including ourselves)
can easily understand its purpose, constraints, and implementation. Documentation is not
something tacked onto software after it is done, but rather it is a discipline built into it at
each stage of the development. Writing comments as we develop the software forces us to
think about what the software is doing and more importantly why we are doing it.
Therefore, we should carefully develop a programming style that provides appropriate
comments. I feel a comment that tells us why we perform certain functions is more
informative than comments that tell us what the functions are.

Common error: A comment that simply restates the operation does not add to the overall
understanding.

Common error: Putting a comment on every line of software often hides the important
information.

Good comments assist us now while we are debugging and will assist us later when we are
modifying the software, adding new features, or using the code in a different context.
When a variable is defined, we should add comments to explain how the variable is used.
If the variable has units then it is appropriate to include them in the comments. It may be
relevant to specify the minimum and maximum values. A typical value and what it means
often will clarify the usage of the variable. For example:

int16_t SetPoint;

// The desired temperature for the control system

// 16-bit signed temperature with resolution of 0.5C,
// The range is -55C to +125C

/I A value of 25 means 12.5C,

// A value of -25 means -12.5C

When a constant is used, we could add comments to explain what the constant means. If
the number has units then it is appropriate to include them in the comments. For example:

V =999; //999mYV is the maximum voltage

Err = 1; // error code of 1 means out of range

There are two types of readers of our comments. Our client is someone who will use our
software incorporating it into a larger system. Client comments focus on the policies of the
software. What are the possible valid inputs? What are the resulting outputs? What are the
error conditions? Just like a variable, it may be relevant to specify the minimum and
maximum values for the input/output parameters. Typical input/output values and what
they mean often will clarify the usage of the function. Often we give entire software
examples showing how the functions could be used.

The second type of comments is directed to the programmer responsible for debugging
and software maintenance (coworker). Coworker comments focus on the mechanisms of
the software. These comments explain how the function works.

Generally we separate these comments from the ones intended for the user of the function.
This separation is the first of many examples in this book of the concept “separation of
policies from mechanisms”. The policy is what the function does, and the mechanism is
how it works. Specifically, we place this second type of comments within the body of the
function. If we are developing in C, then these comments should be included in the *.c file
along with the function implementation.

Self-documenting code is software written in a simple and obvious way, such that its
purpose and function are self-apparent. Descriptive names for variables, constants, and
functions will go a long way to clarify their usage. To write wonderful code like this, we
first must formulate the problem by organizing it into clear well-defined subproblems.
How we break a complex problem into small parts goes a long way toward making the
software self-documenting. The concepts of abstraction, modularity, and layered software,
all presented later in this chapter, address this important issue of software organization.

Observation: The purpose of a comment is to assist in debugging and maintenance.

We should use careful indenting and descriptive names for variables, functions, labels,
andlI/O ports. Liberal use of #define provide explanation of software function without cost
of execution speed or memory requirements. A disciplined approach to programming is to
develop patterns of writing that you consistently follow. Software developers are unlike
short story writers. When writing software it is a good design practice to use the same
function outline over and over again.

Observation: It is better to write clear and simple software that is easy to understand
without comments than to write complex software that requires a lot of extra explanation
to understand.

3.4. Modular Software

In this section we introduce the concept of modular programming and demonstrate that it
is an effective way to organize our software projects. There are three reasons for forming
modules. First, functional abstraction allows us to reuse a software module from multiple
locations. Second, complexity abstraction allows us to divide a highly complex system
into smaller less complicated components. The third reason is portability. If we create
modules for the I/0O devices then we can isolate the rest of the system from the hardware
details. Portability will be enhanced when we create a device driver or board support
package.

3.4.1. Variables

Variables are an important component of software design, and there are many factors to
consider when creating variables. Some of the obvious considerations are the allocation,
size, and format of the data. However, an important factor involving modular software is
scope. The scope of a variable defines which software modules can access the data.
Variables with a restricted access are classified as private, and variables shared between
multiple modules are public. We can restrict the scope to a single file, a single function, or
even a single program block within a matching pair of braces, {} . In general, when we
limit the scope of our variables a system is easier to design (because the modules are
smaller and simpler), easier to change (because code can be reused), and easier to verify
(because interactions between modules are well-defined). However, since modules are not
completely independent we need a mechanism to transfer information from one to another.
The allocation of a variable specifies where or how it exists. Because their contents are
allowed to change, all variables must be allocated in registers or in RAM, but not in ROM.
Constants can and should be allocated in ROM. Global variables contain information that
is permanent and are usually assigned a fixed location in RAM. On the other hand, local
variables contain temporary information and are stored in a register or allocated on the
stack. In summary, there are three types of variables: public globals (shared permanent),
private globals (unshared permanent), and private locals (unshared temporary). We will
learn later in Section 3.7 how to create temporary variables on the heap, which can be
public or private as needed. Because there is no appropriate way to create a public local
variable, we usually refer to private local variables simply as local variables, and the fact
that they are private is understood.

A local variable has temporary allocation because we create local variables on the stack or
in registers. Because the stack and registers are unique to each function, this information
cannot be shared with other software modules. Therefore, under most situations, we can
further classify these variables as private. Local variables are allocated, used, and then
deallocated, in this specific order. For speed reasons, we wish to assign local variables to a
register. When we assign local variable to a register, we can do so in a formal manner.
There will be a certain line in the assembly software at which the register begins to
contain the variable (allocation), followed by lines where the register contains the
information (access or usage), and a certain line in the software after which the register no
longer contains the information (deallocation). In C, we define local variables after an
opening brace.

void MyFunction(void){ uintl6_ti; //iis alocal
for(i=0;i < 10; i++){ uint32_t j; // j is a local
j =1i+100;
UART_OutUDec(j);
}
}

The information stored in a local variable is not permanent. This means if we store a value
into a local variable during one execution of the module, the next time that module is
executed the previous value is not available. Examples include loop counters and
temporary sums. We use a local variable to store data that are temporary in nature. We can
implement a local variable using the stack or registers. Some reasons why we choose local
variables over global variables:

» Dynamic allocation/release allows for reuse of RAM

» Limited scope of access (making it private) provides for data protection
Only the program that created the local variable can access it

» Since an interrupt will save registers and create its own stack frame
Works correctly if called from multiple concurrent threads (reentrant)

« Since absolute addressing is not used, the code is relocatable

A global variable is allocated at a permanent and fixed location in RAM. A public global
variable contains information that is shared by more than one program module. We must
use global variables to pass data between the main program (i.e., foreground thread) and
an ISR (i.e., background thread). If a function called from the foreground belongs to the
same module as the ISR, then a global variable used to pass data between the function and
the ISR is classified as a private global (assuming software outside the module does not
directly access the data). Global variables are allocated at compile time and never
deallocated. Allocation of a global variable means the compiler assigns the variable a
fixed location in RAM. The information they store is permanent. Examples include time

of day, date, calibration tables, user name, temperature, FIFO queues, and message boards.
When dealing with complex data structures, pointers to the data structures are shared. In
general, it is a poor design practice to employ public global variables. On the other hand,
private global variables are necessary to store information that is permanent in nature. In
C, we define global variables outside of the function.

int32_t Count=0; // Count is a global variable
void MyFunction(veid){
Count++; // number of times function was called

}

Checkpoint 3.4: How do you create a local variable in C?

Sometimes we store temporary information in global variables out of laziness. This
practice is to be discouraged because it wastes memory and may cause the module to work
incorrectly if called from multiple concurrent threads (non-reentrant). Non-reentrant
programs can produce very sneaky bugs, since they might only crash in rare situations
when the same code called from different threads when the first thread is in a particular
critical section. Such a bug is difficult to reproduce and diagnose. In general, it is good
design to limit the scope of a variable as much as possible.

Checkpoint 3.5: How do you create a global variable in C?

In C, a static local has permanent allocation, which means it maintains its value from one
call to the next. It is still local in scope, meaning it is only accessible from within the
function. I.e., modifying a local variable with static changes its allocation (it is now
permanent), but doesn’t change its scope (it is still private). In the following

example, count contains the number of times MyFunction is called. The initialization of
a static local occurs just once, during startup.

void MyFunction(veid){ static int32_t count=0;

count++; // number of times function was called

}

In C, we create a private global variable using the static modifier. Modifying a global
variable with static does not change its allocation (it is still permanent), but does reduce
its scope. Regular globals can be accessed from any function in the system (public),
whereas a static global can only be accessed by functions within the same file. Static
globals are private to that particular file. Functions can be static also, meaning they can be
called only from other functions in the file. E.g.,

static int16_t myPrivateGlobalVariable; // this file only
void static MyPrivateFunction(void){

}

In C, a const global is read-only. It is allocated in the ROM. Constants, of course, must be
initialized at compile time. E.g.,

const int16_t Slope=21;

const uint8_t SinTable[8]={0,50,98,142,180,212,236,250};

Checkpoint 3.6:How does the static modifier affect locals, globals, and functions in C?
Checkpoint 3.7:How does the const modifier affect a global variable in C?

Common error:If you leave off the const modifier in the SinTable example, the table
will be allocated twice, once in ROM containing the initial values, and once in RAM
containing data to be used at run time. Upon startup, the system copies the ROM-version
into the RAM-version.

Maintenance Tip: It is good practice to specify the units of a variable (e.g., volts, cm
etc.).

Common error: In C, global variables are initialized to zero by default, but local
variables are not initialized.

3.4.2. Dividing tasks into subtasks

The key to completing any complex task is to break it down into manageable subtasks.
Modular programming is a style of software development that divides the software
problem into distinct and independent modules. The parts are as small as possible, yet
relatively independent. Complex systems designed in a modular fashion are easier to
debug because each module can be tested separately. Industry experts estimate that 50 to
90% of software development cost is spent in maintenance. All five aspects of software
maintenance are simplified by organizing the software system into modules.

* Correcting mistakes

» Adding new features

 Optimizing for execution speed or program size
* Porting to new computers or operating systems

* Reconfiguring the software to solve similar related programs

The approach is particularly useful when a task is large enough to require several
programmers.

A program module is a self-contained software task with clear entry and exit points. We
make the distinction between module and a C language function. A module can be a
collection of functions that in its entirety performs a well-defined set of tasks. The
collection of serial port I/0 functions presented later in section 3.4.4 can be considered
one module. A collection of 32-bit math operations is another example of a module. The
main program and other high-level functions may constitute a module, but usually a set of
functions that perform a well-defined task can also be written as modules. Modular
programming involves both the specification of the individual modules and the connection
scheme by which the modules are connected together to form the software system. While
the module may be called from many locations throughout the system, there should be
well-defined entry points.

The overall goal of modular programming is to enhance clarity. The smaller the task, the
easier it will be to understand. Coupling is defined as the influence one module’s
behavior has on another module. In order to make modules more independent we strive to
minimize coupling. Obvious and appropriate examples of coupling are the input/output
parameters explicitly passed from one module to another. On the other hand, information
stored in shared global variables can be quite difficult to track. In a similar way shared
accesses to I/0 ports can also introduce unnecessary complexity. Global variables cause
coupling between modules that complicate the debugging process because now the
modules may not be able to be separately tested. On the other hand, we must use global
variables to pass information into and out of an interrupt service routine, and from one call
to an interrupt service routine to the next call.

Another problem specific to embedded systems is the need for fast execution. For this
reason the ARM architecture has enough registers so that some can be used to store local
variables. Allocating local variables in registers produces shorter and faster code as
compared to globals and stack-based locals. When passing information through global
variables is required, it is better to use a well-defined abstract technique like a mailbox or
first-in-first-out (FIFO) queue.

Assign a logically complete task to each module. The module is logically complete when
it can be separated from the rest of the system and placed into another application. The
interfaces are extremely important. The interfaces determine the policies of our modules.
In other words, the interfaces define the operations of our software system. The interfaces
also represent the coupling between modules. In general we wish to minimize the amount
of information passing between the modules yet maximize the number of modules. Of the
following three objectives when dividing a software project into subtasks, it is really only
the first one that matters.

» Make the software project easier to understand
* Increase the number of modules

* Decrease the interdependency (minimize coupling)

We can develop and connect modules in a hierarchical manner. Construct new modules by
combining existing modules. In a hierarchical system the modules are organized into a
tree-structured call graph. In the call graph, an arrow points from the calling routine to the
module it calls. The I/O ports are organized into groups (e.g., all the serial port I/O
registers are in one group). The call graph allows us to see the organization of the project.
To make simpler call graphs on large projects we can combine multiple related functions
into a single module. The main program is at the top and the I/O ports are at the bottom. In
a hierarchical system the modules are organized both in a horizontal fashion (grouped
together by function) and in a vertical fashion (overall policies decisions at the top and
implementation details at the bottom). Since one of the advantages of breaking a large
software project into subtasks is concurrent development, it makes sense to consider
concurrency when dividing the tasks. In other words, the modules should be partitioned in
such a way that multiple programmers can develop the subtasks as independently as
possible. On the other hand careful and constant supervision is required as modules are
connected together and tested.

Observation: If module A calls module B, and module B calls module A, then you have
created a special situation that must account for these mutual calls.

There are two approaches to hierarchical programming. The top-down approach starts
with a general overview, like an outline of a paper, and builds refinement into subsequent
layers. A top-down programmer was once quoted as saying,

| “Write no software until every detail is specified”

It provides a better global approach to the problem. Managers like top-down because it
gives them tighter control over their workers. The top-down approach work well when an
existing operational system is being upgraded or rewritten. On the other hand the bottom-
up approach starts with the smallest detail, builds up the system “one brick at a time.” The
bottom-up approach provides a realistic appreciation of the problem because we often
cannot appreciate the difficulty or the simplicity of a problem until we have tried it. It
allows programmers to start immediately coding, and gives programmers more input into
the design. For example, a low-level programmer may be able to point out features that are
not possible and suggest other features that are even better. Some software projects are
flawed from their conception. With bottom-up design, the obvious flaws surface early in
the development cycle.

I believe bottom-up is better when designing a complex system and specifications are
open-ended. On the other hand, top-down is better when you have a very clear
understanding of the problem specifications and the constraints of your computer system.
The best software I have ever produced was actually written twice. The first pass was
programmed bottom up and served only to provide a clear understanding of the problem,
clarification of the features I wanted, and the limitations of my hardware. I literally threw
all the source code in the trash, and programmed the second pass in a top-down manner.

Arthur C. Clarke’s Third Law: Any sufficiently advanced technology is
indistinguishable from magic.

J. Porter Clark’s Law: Sufficiently advanced incompetence is indistinguishable from
malice.

One of the biggest mistakes beginning programmers make is the inappropriate usage of
I/O calls (e.g., screen output and keyboard input). An explanation for their foolish
behavior is that they haven’t had the experience yet of trying to reuse software they have
written for one project in another project. Software portability is diminished when it is
littered with user input/output. To reuse software with user I/O in another situation, you
will almost certainly have to remove the input/output statements. In general, we avoid
interactive I/O at the lowest levels of the hierarchy, rather return data and flags and let the
higher level program do the interactive I/0. Often we add keyboard input and screen
output calls when testing our software. It is important to remove the I/O that not directly
necessary as part of the module function. This allows you to reuse these functions in
situations where screen output is not available or appropriate. Obviously screen output is
allowed if that is the purpose of the routine.

Common Error: Performing unnecessary I/0 in a subroutine makes it harder to reuse at a
later time.

From a formal perspective, I/O devices are considered as global. This is because I/0
devices reside permanently at fixed addresses. From a syntactic viewpoint any module
has access to any I/O device. In order to reduce the complexity of the system we will
restrict the number of modules that actually do access the I/0 device. It will be important
to clarify which modules have access to I/0O devices and when they are allowed to access
it. When more than one module accesses an I/O device, then it is important to develop
ways to arbitrate (which module goes first if two or more want to access simultaneously)
or synchronize (make a second module wait until the first is finished.) These arbitration
issues will be presented in Chapters 4 and 5.

Information hiding is similar to minimizing coupling. It is better to separate the
mechanisms of software from its policies. We should separate what the function does (the
relationship between its inputs and outputs) from how it does it. It is good to hide certain
inner workings of a module, and simply interface with the other modules through the well-
defined input/output parameters. For example we could implement a FIFO by maintaining
the current number of elementsin a global variable, Count . A good module will hide

how Count is implemented from its users. If the user wants to know how many elements
are in the FIFO, it calls a TxFifo_Size() routine that returns the value of Count . A badly
written module will not hide Count from its users. The user simply accesses the global
variable Count . If we update the FIFO routines, making them faster or better, we might
have to update all the programs that access Count too. The object-oriented programming
environments provide well-defined mechanisms to support information hiding. This
separation of policies from mechanisms can be seen also in layered software.

The Keep It Simple Stupid approach tries to generalize the problem so that it fits an
abstract model. Unfortunately, the person who defines the software specifications may not
understand the implications and alternatives. Sometimes we can restate the problem to
allow for a simpler (and possibly more powerful) solution. As a software developer, we
always ask ourselves these questions:

“How important is this feature?”

“What alternative ways could this system be structured?”

“How can I redefine the problem to make it simpler?”

We can classify the coupling between modules as highly coupled, loosely coupled, or
uncoupled. A highly-coupled system is not desirable, because there is a great deal of
interdependence between modules. A loosely-coupled system is optimal, because there is
some dependence but interconnections are weak. An uncoupled system, one with no
interconnections at all, is typically inappropriate in an embedded system, because all
components should be acting towards a common objective. There are three ways in which
modules can be coupled. The natural way in which modules are coupled is where one
module calls or invokes a function in a second module. This type of coupling, called
invocation coupling, can be visualized with a call graph. A second way modules can be
coupled is by data transfer. If information flows from one module to another, we classify
this as bandwidth coupling. Bandwidth, which is the information transfer rate, is a
quantitative measure of coupling. Bandwidth coupling can be visualized with a data flow
graph. The third type of coupling, called control coupling, occurs when actions in one
module affect the control path within another module. For example, if Module A sets a
global flag and Module B uses the global flag to decide its execution path. Control
coupling is hard to visualize and hard to debug. Therefore, it is a poor design to employ
this type of coupling.

Another way to categorize coupling is to examine how information is passed or shared
between modules. We will list the mechanisms from poor to excellent. It is extremely poor
design to allow Module A directly modify data or flags within Module B. Similarly poor
design is to organize important data into a common shared global space and allow
modules to read and write these data. It is ok to allow Module A to call Module B and pass
it a control flag. This control flag will in turn affect the execution within Module B. It is
good design to have one module pass data to another module. A stamp is defined as
structured data passed from one module to another. Primitive data passed between
modules is unstructured.

Coupling is a way to describe how modules connect with each other, but it is also
important to analyze how various components within one module interact with each other.
Cohesion is the degree of interrelatedness of internal parts within the module. In general,
we wish to maximize cohesion. A cohesive module has all components of the module are
directed towards and essential for the same task. It is also important to analyze how
components are related as we design modules. Coincidental cohesion occurs when
components of the module are unrelated, resulting poor design. Examples of coincidental
cohesion would be a collection of frequently used routines, a collection of routines written
by a single programmer, or a collection of routines written during a certain time interval.

Logical cohesion is a grouping of components into a single module (because they perform
similar functions). An example of logical cohesion is a collection of serial output, LCD
output, and printer output routines into one module (because all routines perform output).
Organizing modules in this fashion is a poor design and results in modules that are hard to
reuse.

Temporal cohesion combines components if they are connected in time sequence. If we
are baking bread, we activate the yeast in warm water in one bowl, and then we combine
the flour, sugar, and spices in another bowl. These two steps are connected only in a sense
that we first do one, and then we do another when making bread. If we were making
cookies, we would need the flour, sugar, and spices but not the yeast. We want to mix and
match existing modules to create new designs, as such, we expect the sequence of module
execution to change.

Another poor design, called procedural cohesion, groups functions together in order to
ensure mandatory ordering. For example, an embedded system might have an input port,
an output port, and a timer module. In order to work properly, all three must be initialized.
It would be hard to reuse code if we placed all three initialization routines into one
module.

We next present appropriate reasons to group components into one module.
Communicational cohesion exists when components operate on the same data. An
example of communicational cohesion would be a collection of routines that filter and
extract features from the data.

Sequential cohesion occurs when components are grouped into one module, because the
output from one component is the input to another component. Sequential cohesion is a
natural consequence of minimizing bandwidth between modules. An example of
sequential cohesion is a fuzzy logic controller. This controller has five stages: crisp input,
fuzzification, rules, defuzzification, and crisp output. The output of each stage is the input
to the next stage. The input bandwidth to the controller and the output bandwidth from the
controller can be quite low, but the amount of information transferred between stages can
be thousands of times larger.

The best kind of cohesion is functional cohesion, where all components combine to
implement a single objective, and each component has a necessary contribution to the
objective. I/O device drivers, which are a collection of routines for a single I/O device,
exhibit functional cohesion.

Another way to classify good and bad modularity is to observe fan in and fan out behavior.
In a data flow graph, the tail of an arrow defines a data output, and the head of an arrow
defines a data input. The fan in of a module is the number of other modules that have
direct control on that particular module. Fan in can be visualized by counting the number
of arrowheads that terminate on the module in the data flow graph, shown previously in
Figure 1.9. The fan out of a module is number of other modules directly controlled by this
module. Fan out can be visualized by counting the number of tails of arrows that originate
on the module in the data flow graph. In general, a system with high fan out is poorly
designed, because that one module may constitute a bottleneck or a critical safety path. In
other words, the module with high fan out is probably doing too much, performing the
tasks that should be distributed to other modules. High fan in is not necessarily a poor
design, depending on the application.

3.4.3. Device Drivers and Board Support Package

As the size and complexity of our software systems increase, we learn to anticipate the
changes that our software must undergo in the future. In particular, we can expect to
redesign our system to run on new and more powerful hardware platforms. A similar
expectation is that better algorithms may become available. The objective of this section is
to use a layered software approach to facilitate these types of changes.

We can use the call graph like the one drawn in Figure 3.1 to visualize software layers.
The arrows point from the calling function to the function it calls. Figure 3.1 shows only
one module at each layer, but a complex system might have multiple modules at each
layer. A function in a layer can call a function within the same module, or it can call a
public function in a module of the same or lower layer. Some layered systems restrict the
calls only to modules in the most adjacent layer below it. If we place all the functions that
access the I/0 hardware in the bottom most layer, we can call this layer a hardware
abstraction layer (HAL). This bottom-most layer can also be called a board support
package (BSP) if I/O devices are referenced in an abstract manner. Each middle layer of
modules only calls lower level modules, but not modules at a higher level. Usually the top
layer consists of the main program. In a multi-threaded environment there can be multiple
main programs at the top-most level, but for now assume there is only one main program.

An example of a layered system is Transmission Control Protocol/Internet Protocol
(TCP/1IP), which consists of at least four distinct layers: application (http, telnet, SMTP,
FTP), transport (UDP, TCP), internet (IP, ICMP, IGMP), and network layers (Ethernet).

HigH eve rouires

Midd e-levd rold nes

Lowslevd roldnes
or Board Support Padkage

UART Harcdwere ‘

Figure 3.1. A layered approach to interfacing a printer. The bottom layer
is the BSP.

To develop a layered software system we begin with a modular system. The main
advantage of layered software is the ability to separate the modules into groups or layers
such that one layer may be replaced without affecting the other layers. For example, you
could change which microcontroller you are using, by modifying the low level without
any changes to the other levels. Figure 3.1 depicts a layered implementation of a printer
interface. In a similar way, you could replace the printer with a solid state disk by
replacing just the middle and lower layers. If we were to employ buffering and/or data
compression to enhance communication bandwidth, then these algorithms would be added
to the middle level. A layered system should allow you to change the implementation of
one layer without requiring redesign of the other layers.

A gate is used to connect one layer to the next. Another name for this gate is application
program interface or API. The gates provide a mechanism to link the layers. Because the
size of the software on an embedded system is small, it is possible and appropriate to
implement a layered system using standard function calls by simply compiling and linking
all software together. We will see in the next section that the gate can be implemented by
creating a header file with prototypes to public functions. The following rules apply to
layered software systems:

1. A module may make a simple call to other modules in the same layer.

2. A module may make a call to a lower level module only by using the gate.
3. A module may not directly access any function or variable in another layer
without going through the gate.

4. A module may not call a higher level routine.

5. A module may not modify the vector address of another level’s handler(s).
6. (optional) A module may not call farther down than the immediately
adjacent lower level.

7. (optional) All I/O hardware access is grouped in the lowest level.

8. (optional) All user interface I/O is grouped in the highest level

unless it is the purpose of the module itself to do such I/O.

The purpose of rule 6 is to allow modifications at the low layer to not affect operation at
the highest layer. On the other hand, for efficiency reasons you may wish to allow module
calls further down than the immediately adjacent lower layer. To get the full advantage of
layered software, it is critical to design functionally complete interfaces between the
layers. The interface should support all current functions as well as provide for future
expansions.

A device driver consists of the software routines that provide the functionality of an I/O
device. A device driver usually does not hide what type of I/O module it is. E.g., in the
next section, we consider a device driver for a serial port. A board support package is

similar to a device driver, except that there is more of an attempt to hide what the I/0
device actually is. A board support package provides a higher level of abstraction than a
regular device driver. The driver consists of the interface routines that the operating
system or software developer’s program calls to perform I/O operations as well as the low-
level routines that configure the I/0O device and perform the actual input/output. The issue
of the separation of policies from mechanisms is very important in device driver design.
The policies of a driver include the list of functions and the overall expected results. In
particular, the policies can be summarized by the interface routines that the OS or software
developer can call to access the device. The mechanisms of the device driver include the
specific hardware and low-level software that actually perform the I/0O. As an example,
consider the wide variety of mass storage devices that are available. Floppy disk, RAM
disks, integrated device electronics (IDE) hard drive, Serial Advanced Technology
Attachment (SATA) hard drive, flash EEPROM drive, and even a network can be used to
save and recall data files. A simple mass storage system might have the following C-level
interface functions, as explained in the following prototypes (in each case the functions
return O if successful and an error code if the operation fails:

int eFile_Init(void); // initialize file system

int eFile_Create(char name[]); // create new file, make it empty
int eFile_WOpen(char name[]); // open a file for writing

int eFile_Write(int8_t data); // stream data into open file

int eFile_WClose(void); /I close the file for writing

int eFile_ROpen(char name[]); // open a file for reading

int eFile_ReadNext(int8_t *pt); // stream data out of open file
int eFile_RClose(void); // close the file for reading

int eFile_Delete(char name[]); // remove this file

Building a hardware abstraction layer (HAL) is the same idea as separation of policies
from mechanisms. A diagram of this layered concept was shown in Figure 3.1. In the
above file example, a HAL or BSP would treat all the potential mass storage devices
through the same software interface. Another example of this abstraction is the way some
computers treat pictures on the video screen and pictures printed on the printer. With the
abstraction layer, the software developer’s program draws lines and colors by passing the
data in a standard format to the device driver, and the OS redirects the information to the
video graphics board or color LaserWriter as appropriate. This layered approach allows
one to mix and match hardware and software components but does suffer some overhead
and inefficiency.

Low-level device drivers normally exist in the Basic Input/Output System (BIOS) ROM
and have direct access to the hardware. They provide the interface between the hardware
and the rest of the software. Good low-level device drivers allow:

1. New hardware to be installed;

2. New algorithms to be implemented

a. Synchronization with busy wait, interrupts, or DMA

b. Error detection and recovery methods

c. Enhancements like automatic data compression

3. Higher level features to be built on top of the low level
a. OS features like blocking semaphores

b. Additional features like function keys

and still maintain the same software interface. In larger systems like the personal computer
(PC), the low-level 1/0 software is compiled and burned in ROM separate from the code
that will call it, it makes sense to implement the device drivers as software interrupts
(sometimes called traps) and specify the calling sequence language-independent. We
define the “client programmer” as the software developer that will use the device driver.

In embedded systems like we use, it is appropriate to provide device.h and device.c files
that the client programmer can compile with their application. In a commercial setting,
you may be able to deliver to the client only the device.h together with the object file.
Linking is the process of resolving addresses to code and programs that have been
complied separately. In this way, the routines can be called from any program without
requiring complicated linking. In other words, when the device driver is implemented with
a software interrupt, the linking occurs at run time through the vector address of the
software interrupt. In our embedded system however, the linking will be static occurring at
the time of compilation.

3.4.4. Serial Port Driver

The concept of a device driver can be illustrated with the following design of a serial port
device driver. In this section, the contents of the header file (UART.h) will be presented,
and the implementations will be developed in the next chapter. The device driver software
is grouped into four categories. Protected items can only be directly accessed by the
device driver itself, and public items can be accessed by other modules.

1. Data structures: global (private) The first component of a device driver includes private
global data structures. To be private global means only programs within the driver itself
may directly access these variables. If the user of the device driver (e.g., a client) needs to
read or write to these variables, then the driver will include public functions that allow
appropriate read/write functions. One example of a private global variable might be

an OpenFlag , which is true if the serial port has been properly initialized. The
implementation developed in Chapter 4 will have no private global variables, but the
UART implementation developed in Chapter 5 will include a private FIFO queue.

int OpenFlag = 0; // true if driver has been initialized

2. Initialization routines (public, called by the client once in the beginning) The second
component of a device driver includes the public functions used to initialize the device. To
be public means the user of this driver can call these functions directly. A prototype to
public functions will be included in the header file (UART.h). The names of public
functions will begin with UART_ . The purpose of this function is to initialize the UART
hardware.

//——UART _Init
// Initialize Serial port UART

// Input: none
// Output: none
void UART_Init(void);

3. Regular I/O calls (public, called by client to perform 1/0) The third component of a
device driver consists of the public functions used to perform input/output with the device.
Because these functions are public, prototypes will be included in the header file
(UART.h). The input functions are grouped, followed by the output functions.

/[——UART _InChar

// Wait for new serial port input

// Input: none

// Output: ASCII code for key typed
char UART_InChar(void);

//——UART_InString——

// Wait for a sequence of serial port input

// Input: maxSize is the maximum number of characters to look for
// Output: Null-terminated string in buffer

void UART_InString(char *buffer, uint16_t maxSize);

/[——UART_InUDec

// InUDec accepts ASCII input in unsigned decimal format
// and converts to a 32-bit unsigned number (0 to 4294967295)
// Input: none

// Output: 32-bit unsigned number

uint32_t UART_InUDec(void);

/[——UART_OutChar
// Output 8-bit to serial port

// Input: letter is an 8-bit ASCII character to be transferred

// Output: none

void UART_OutChar(char letter);
/[——UART_OutString——

// Output String (NULL termination)

// Input: pointer to a NULL-terminated string to be transferred
// Output: none

void UART_OutString(char *buffer);

/[——UART_OutUDec

// Output a 32-bit number in unsigned decimal format

// Input: 32-bit number to be transferred

// Output: none

// Variable format 1-10 digits with no space before or after
void UART_OutUDec(uint32_t number);

4. Support software (private) The last component of a device driver consists of private
functions. Because these functions are private, prototypes will not be included in the
header file (UART.h). We place helper functions and interrupt service routines in the
category.

Notice that this UART example implements a layered approach, similar to Figure 3.1. The
low-level functions provide the mechanisms and are protected (hidden) from the client
programmer. The high-level functions provide the policies and are accessible (public) to
the client. When the device driver software is separated into UART.h and UART.c files,
you need to pay careful attention as to how many details you place in the UART.h file. A
good device driver separates the policy (overall operation, how it is called, what it returns,
what it does, etc.) from the implementation (access to hardware, how it works, etc.) In
general, you place the policies in the UART.h file (to be read by the client) and the
implementations in the UART.c file (to be read by you and your coworkers). Think of it
this way: if you were to write commercial software that you wished to sell for profit and
you delivered the UART.h file and its compiled object file, how little information could
you place in the UART.h file and still have the software system be fully functional. In
summary, the policies will be public, and the implementations will be private.

Observation: A layered approach to I/O programming makes it easier for you to upgrade
to newer technology.

Observation: A layered approach to I/O programming allows you to do concurrent
development.

3.4.5. Abstract Output Device Driver

In the UART driver shown in the previous section, the routines clearly involve a UART.
Another approach to I/O is to provide a high-level abstraction in such a way that the I/O
device itself is hidden from the user. There are multiple projects on the book’s web site
that implement this abstraction. The overall purpose of these examplesis to provide an
output stream for the standard printf feature to which most C programmers are
accustomed. For the TM4C123 and TM4C1293 LaunchPad boards, we can send output to
the PC using UARTO, to a ST7735 color graphics LCD, or to a low-cost Nokia 5110
graphics LCD. The implementations for the LM3S Stellaris ® kits use the organic light
emitting diode (OLED) display. Even though all these displays are quite different, they all
behave in a similar fashion.

In C, we can specify the output stream used by printf by writing a fputc function.

The fputc function is a private and implemented inside the driver. It sends characters to
the display and manages the cursor, tab, line feed and carriage return functionalities. The
user controls the display by calling the following five public functions.

void Output_Init(void); // Initializes the display interface.
void Output_Clear(void); // Clears the display

void Output_Off(void); // Turns off the display

void Output_On(void); // Turns on the display

void Output_Color(uint32_t newColor); // Set color of future output

The user performs output by calling printf . This abstraction clearly separates what it does
(output information) from how it works (sends pixel data to the display over UART, SSI,
or I?C). In these examples all output is sent to the display; however, we could modify

the fputc function and redirect the output stream to other devices such as the USB,
Ethernet, or disk. For the LM3S boards, this example is called OLED_xxx.zip. For the
TMA4C boards, this example can be found as ST7735_xxx.zip,
Printf_Nokia5110_xxx.zip, and Printf_UART_xxx.zip.

3.5. Finite State Machines

Software abstraction is when we define a complex problem with a set of basic abstract
principles. If we can construct our software system using these building blocks, then we
have a better understanding of the problem. This is because we can separate what we are
doing from the details of how we are getting it done. This separation also makes it easier
to optimize. It provides for a proof of correct function and simplifies both extensions and
customization. A good example of abstraction is the Finite State Machine (FSM)
implementations. The abstract principles of FSM development are the inputs, outputs,
states, and state transitions. If we can take a complex problem and map it into a FSM
model, then we can solve it with a simple FSM software tools. Our FSM software
implementation will be easy to understand, debug, and modify. Other examples of
software abstraction include Proportional Integral Derivative digital controllers, fuzzy
logic digital controllers, neural networks, and linear systems of differential equations (e.g.,
PSPICE.) In each case, the problem is mapped into well-defined model with a set of
abstract yet powerful rules. Then, the software solution is a matter of implementing the
rules of the model.

Linked lists are lists or nodes where one or more of the entries is a (link) to other nodes of
similar structure. We can have statically-allocated fixed-size linked lists that are defined at
assemble or compile time and exist throughout the life of the software. On the other hand,
we implement dynamically-allocated variable-size linked lists that are constructed at run
time and can grow and shrink in size. We will use a data structure similar to a linked list
called a linked structure to build a finite state machine controller. Linked structures are
very flexible and provide a mechanism to implement abstractions.

A well-defined model or framework is used to solve our problem (implemented with a
linked structure). The three advantages of abstraction are 1) it can be faster to develop
because a lot of the building blocks preexist; 2) it is easier to debug (prove correct)
because it separates conceptual issues from implementation; and 3) it is easier to change.

An important factor when implementing finite state machines using linked structures is
that there should be a clear and one-to-one mapping between the finite state machine and
the linked structure. I.e., there should be one structure for each state.

We will present two types of finite state machines. The Moore FSM has an output that
depends only on the state, and the next state depends on both the input and current state.
We will use a Moore implementation if there is an association between a state and an
output. There can be multiple states with the same output, but the output defines in part
what it means to be in that state. For example, in a traffic light controller, the state of green
light on the North road (red light on the East road) is caused by outputting a specific
pattern to the traffic light.

On the other hand, the Mealy FSM has an output that depends on both the input and the
state, and the next state also depends on input and current state. We will use a Mealy
implementation if the output causes the state to change. In this situation, we do not need a
specific output to be in that state; rather the outputs are required to cause the state
transition. For example, to make a robot stand up, we perform a series of outputs causing
the state to change from sitting to standing. Although we can rewrite any Mealy machine
as a Moore machine and vice versa, it is better to implement the format that is more
natural for the particular problem. In this way the state graph will be easier to understand.

Checkpoint 3.8: What are the differences between a Mealy and Moore finite state
machine?

One of the common features in many finite state machines is a time delay. We will learn
very elaborate mechanisms to handle time in Chapters 5-6, but in this section we will use
the SysTick delay functions presented in Program 2.11.

Example 3.1. Design a line-tracking robot that has two drive wheels and two line sensors
using a FSM. The goal is to drive the robot along a line placed in the center of the road.
The robot has two drive wheels and a third free turning balance wheel. Figure 3.2 shows
that PF1 drives the left wheel and PF2 drives the right wheel. If both motors are on (PF2—
1 = 11), the robot goes straight. If just the left motor is on (PF2—1 = 01), the robot will turn
right. If just the right motor is on (PF2—1 = 10), the robot will turn left. The line sensors
are under the robot and can detect whether or not they see the line. The two sensors are
connected to Port F, such that:

PF4,PF0 equal to 0,0 means we are lost, way off to the right or way off to the
left.

PF4,PF0 equal to 0,1 means we are off just a little bit to the right.
PF4,PFO0 equal to 1,0 means we are off just a little bit to the left.

PF4,PF0 equal to 1,1 means we are on line.

PF1—>L eft whed

PFO-—L eft saraor

ING14 Right
7S
TMAC k
PFa | TIP120 o

lk =
PF2 +/
—4

PFO | Ik
PF1

Figure 3.2. Robot with two drive wheels and two line sensors (see sections
6.5 and 8.2 for circuit details).

Solution: The focus of this example is the FSM, but the QRB1134 sensor interface will be
described later in example 6.1, and the DC motor interface will be described in Section
6.5. The first step in designing a FSM is to create some states. The outputs of a Moore
FSM are only a function of the current state. A Moore implementation was chosen because
we define our states by what believe to be true and we will have one action (output) that
depends on the state. Each state is given a symbolic name where the state name either
describes “what we know” or “what we are doing”. We could have differentiated between
a little off to the left and way off to the left, but this solution creates a simple solution with
3 states.

Line

— "-"“-;
_eiaﬂ‘te\"ﬁ';- are i the center of the 1 s_u{/,f"L,
Left We off center to the lett,
Right We ott center to the nght. E Ta

The finite state machine implements this line-tracking algorithm . Each state has a 2-bit
output value, and four next state pointers. The strategy will be to:

Go straight if we are on the line.
Turn right if we are off to the left.
Turn left if we are off to the right.

Finally, we implement the heuristics by defining the state transitions, as illustrated in
Figure 3.3 and Table 3.2. If we used to be in the left state and completely loose the line
(input 00), then we know we are left of the line. Similarly if we used to be in the right
state and completely loose the line (input 00), then we know we are right of the line.
However, we used to be on the center of the line and then completely loose the line (input
00), we do not know we are right or left of the line. The machine will guess we went right
of the line. In this implementation we put a constant delay of 10ms in each state. We put
the time to wait into the machine as a parameter for each state to provide for clarity of
how it works and simplify possible changes in the future. If we are off to the right (input
10), then it will oscillate between Center and Right states, making a slow turn left. If we
are off to the left (input 01), then it will oscillate between Center and Left states, making
a slow turn right.

Figure 3.3. Graphical form of a Moore FSM that implements a line
tracking robot.

Input
State Motor | Delay | 00 ‘ 01 ‘ 10 ‘ 11
Center 1,1 1 Right Left Right Center
Left 1,0 1 Left Center Right Center
Right 0,1 1 Right Left Center Center

Table 3.2. Tabular form of a Moore FSM that implements a line tracking robot.

The first step in designing the software is to decide on the sequence of operations.

1) Initialize timer and directions registers

2) Specify initial state

3) Perform FSM controller

a) Output to DC motors, which depends on the state
b) Delay, which depends on the state

c) Input from line sensors

d) Change states, which depends on the state and the input

The second step is to define the FSM graph using a data structure. Program 3.1shows a
table implementation of the Moore FSM. This implementation uses a table data structure,
where each state is an entry in the table, and state transitions are defined as indices into
this table. The four Next parameters define the input-dependent state transitions. The wait
times are defined in the software as fixed-point decimal numbers with units of 0.01s. The
label Center is more descriptive than the state number 0.Notice the 1-1 correspondence
between the tabular form in Table 3.2 and the software specification of fsm[3] . This 1-1
correspondence makes it possible to prove the software exactly executes the FSM as
described in the table.

struct State {
uint32_t Out; // 2-bit output
uint32_t Delay; // time in 10ms
uint8_t Next[4];};
typedef const struct State STyp;
#define Center 0
#define Left 1
#define Right 2
StateType fsm[3]={
{0x03, 1, { Right, Left, Right, Center }}, // Center
{0x02, 1, { Left, Center, Right, Center }}, // Left
{0x01, 1, { Right, Left, Center, Center }} // Right
b
#define PF21 (*((volatile unsigned long *)0x40025018))
#define PF4 (*((volatile unsigned long *)0x40025040))
#define PF0 (*((volatile unsigned long *)0x40025004))
int main(void){ uint32_t S; // index to the current state
uint32_t input, output; // state I/O
Robot_Init(); // Initialize Port F, SysTick

S = Center; // initial state
while(1){
output = fsm[S].Out; // set output from FSM
PF21 = output<<1; // do output to two motors
SysTick_Waitl10ms(fsm[S].Delay); // wait
input = PF0+(PF4>>3); // read sensors
S = fsm[S].Next[input]; // next depends on input and state
}
}
void Robot_Init(void){
SYSCTL_RCGCGPIO_R |= 0x20; //1) activate clock for Port F
SysTick_Init(); // initialize SysTick (program 2.11)
GPIO_PORTF_LOCK_R = 0x4C4F434B; // 2) unlock GPIO Port F
GPIO_PORTF_CR_R = 0x1F; // allow changes to PF4-0
GPIO_PORTF_AMSEL_R =0x00; //3) disable analog on PF
GPIO_PORTF_PCTL_R = 0x00000000; // 4) PCTL GPIO on PF4-0
GPIO_PORTF_DIR_R = 0x0E; /I 5) PF4,PF0 in, PF3-1 out
GPIO_PORTF_AFSEL_R = 0x00; // 6) disable alt funct on PF7-0
GPIO_PORTF_DEN_R = 0x1F; // 7) enable digital I/O on PF4-0
}

Program 3.1. Table implementation of a Moore FSM
(LineTrackerTable_xxx.zip).

Program 3.2 uses a linked structure, where each state is a node, and state transitions are
defined as pointers to other nodes.Again, notice the 1-1 correspondence between Table 3.2
and the software specification of fsm[3] .

struct State {
uint32_t Out; // 2-bit output
uint32_t Delay; // time in 10ms
const struct State *Next[4];};
typedef const struct State STyp;
#define Center &fsm[0]
#define Left &fsm|1]

#define Right &fsm|[2]
StateType fsm[3]={
{0x03, 1, { Right, Left, Right, Center }}, // Center
{0x02, 1, { Left, Center, Right, Center }}, // Left
{0x01, 1, { Right, Left, Center, Center }} // Right
b
int main(void){ STyp *pt; // state pointer
uint32_t input, output; // state I/O
Robot_Init(); // Initialize Port F, SysTick
pt = Center; // initial state
while(1){
output = pt->Out; // set output from FSM
PF21 = output<<1; // do output to two motors
SysTick_Wait10ms(pt->Delay); // wait
input = PF0+(PF4>>3); // read sensors
pt = pt->Next[input]; // next depends on input and state
}
}

Program 3.2. Pointer implementation of a Moore FSM
(LineTrackerLinked_xxx.zip).

You can find a traffic light controller in Volume 1 and on the book web site as
TableTrafficLight_xxx.zip PointerTrafficLight_xxx.zip and
PortableTrafficLight_xxx.zip, where xxx refers to the specific microcontroller on which
the example was tested.

Observation: The table implementation requires less memory space for the FSM data
structure, but the pointer implementation will run faster.

Some microcontrollers have ROM that is one-time programmed at the factory. These
ROMs cannot be erased and rewritten. On microcontrollers that have both ROM and
EEPROM we can place the FSM data structure in EEPROM and the program in ROM.
This allows us to make minor modifications to the finite state machine (add/delete states,
change input/output values) by changing the linked structure in EEPROM without
modifying the program in ROM. In this way small modifications to the finite state
machine can be made by reprogramming the EEPROM without having to produce new
microcontroller chips.

The purpose of a board support package is to hide as much of the I/O details as possible.
We implement a BSP when we expect the high-level system will be deployed onto many
low-level platforms. The solution in Program 3.3 can be quickly adapted to any
LM3S/LM4F/TM4Cusing any port and any contiguous set of bits simply by changing
the #define statements.

#define BSP_InPort GPIO_PORTB_DATA_R
#define BSP_InPort_DIR GPIO_PORTB_DIR_R
#define BSP_InPort_DEN GPIO_PORTB_DEN_R
#define BSP_OutPort GPIO_PORTD_DATA_R
#define BSP_OutPort_DIR GPIO_PORTD_DIR_R
#define BSP_OutPort_DEN GPIO_PORTD_DEN_R
#define BSP_GPIO_EN SYSCTL_RCGCGPIO_R
#define BSP_InPort Mask 0x00000008 // bit mask for Port D
#define BSP_In M 0x00000003 // bit mask for pins 1,0
#define BSP_In_Shift 0x00000000 // shift value for Input pins
#define BSP_OutPort_Mask 0x00000002 // bit mask for Port B
#define BSP_Out_M 0x0000003F // bit mask for pins 5-0
#define BSP_Out_Shift 0x00000000 // shift value for Output pins
struct State {
uint32_t Out;
uint32_t Time;
const struct State *Next[4];};
typedef const struct State STyp;
#define goN &FSM]0]
#define waitN &FSM|[1]
#define goE &FSM]2]
#define waitE &FSM|[3]
STyp FSM[4]={
{0x21,3000,{goN,waitN,goN,waitN}},
{0x22, 500,{goE,goE,goE,goE}},
{0x0C,3000,{goE,goE,waitE,waitE}},
{0x14, 500,{goN,goN,goN,goN}}};
int main(void){ STyp *pt; // state pointer

uint32_t input; // activate clocks on input and output ports
BSP_GPIO_EN |= BSP_InPort_Mask|BSP_OutPort_Mask;
SysTick_Init(); // initialize SysTick timer, program 2.11
BSP_InPort_DIR &=~ BSP_In_M; // make InPort pins inputs
BSP_InPort_DEN |= BSP_In_M; // enable digital I/O on InPort
BSP_OutPort_DIR |= BSP_Out_M; // make OutPort pins out
BSP_OutPort_DEN |= BSP_Out_M; // enable digital I/O on OutPort
pt = goN;
while(1){
BSP_OutPort = (BSP_OutPort&(~BSP_Out_M))|((pt->Out)>>BSP_Out_Shift);
SysTick_Wait10ms(pt->Time);
input = (BSP_InPort&BSP_In_M)>>BSP_In_Shift; //00,01,10,11
pt = pt->Next[input];
}
}

Program 3.3. Enhanced C implementation of a Traffic Light FSM (input
on PB1-0, output PD5-0).

Checkpoint 3.9: Change Program 3.3 to place the input on PA5-4 and the output on PB6-
1.

The FSM approach makes it easy to change. To change the wait time for a state, we
simply change the value in the data structure. To add more states, we simply increase the
size of the fsm[] structure and define the Out , Time , and Next fields for these new
states.

To add more output signals, we simply increase the precision of the Out field. To add
more input lines, we increase the size of the next field. If there are n input bits, then the
size of the next field will be 2". For example, if there are four input lines, thenthere are 16
possible combinations, where each input possibility requires a Next value specifying
where to go if this combination occurs.

Example 3.2. The goal is to design a finite state machine robot controller, as illustrated in
Figure 3.4. Because the outputs cause the robot to change states, we will use a Mealy
implementation. The outputs of a Mealy FSM depend on both the input and the current
state. This robot has mood sensors that are interfaced to Port B. The robot has four
possible conditions:

00 OK, the robot is feeling fine

01 Tired , the robot energy levels are low
10 Curious , the robot senses activity around it

11 Anxious , the robot senses danger

There are four actions this robot can perform, which are triggered by pulsing (make high,
then make low) one of the four signals interfaced to Port D.

PD3 SitDown , assuming it is standing, it will perform moves to sit
down

PD2 StandUp , assuming it is sitting, it will perform moves to stand
up

PD1 LieDown , assuming it is sitting, it will perform moves to lie
down

PDO SitUp , assuming it is sleeping, it will perform moves to sit up

Solution: For this design we can list heuristics describing how the robot is to operate:
If the robot is OK, it will stay in its current state.

If the robot’s energy levels are low, it will go to sleep.

If the robot senses activity around it, it will awaken from sleep.

If the robot senses danger, it will stand up.

PB1
=

PD3
PD2
FD1
PDO

Figure 3.4. Robot interface.

These rules are converted into a finite state machine graph, as shown in Figure 3.5. Each
arrow specifies both an input and an output. For example, the “ Tired/SitDown ” arrow
from Stand to Sit states means if we are in the Stand state and the input is Tired , then
we will output the SitDown command and go to the Sit state. Mealy machines can have
time delays, but this example just didn’t have time delays.

TiregfStDon TiredLieDown

CutcusNore ' N
Arvd ougMore
Ok More

Figure 3.5. Mealy FSM for a robot controller.

The first step in designing the software is to decide on the sequence of operations.
1) Initialize directions registers

2) Specify initial state

3) Perform FSM controller

a) Input from sensors

b) Output to the robot, which depends on the state and the input

c) Change states, which depends on the state and the input

The second step is to define the FSM graph using a linked data structure. Two possible
implementations of the Mealy FSM are presented. The implementation in Program
3.4defines the outputs as simple numbers, where each pulse is defined as the bit mask
required to cause that action. The four Next parameters define the input-dependent state
transitions.

struct State{
uint32_t Out[4]; // outputs
const struct State *Next[4]; // next
b
typedef const struct State StateType;
#define Stand &FSM|[0]
#define Sit &FSM[1]
#define Sleep &FSM|[2]
#define None 0x00

#define SitDown 0x08 // pulse on PD3
#define StandUp 0x04 // pulse on PD2
#define LieDown 0x02 // pulse on PD1
#define SitUp 0x01 // pulse on PD0
StateType FSM[3]={
{{None,SitDown,None,None}, //Standing
{Stand,Sit,Stand,Stand}},
{{None,LieDown,None,StandUp},//Sitting
{Sit,Sleep,Sit,Stand }},
{{None,None,SitUp,SitUp}, //Sleeping
{Sleep,Sleep,Sit,Sit}}
b
int main(void){ StateType *pt; // current state
uint32_t input;
SYSCTL_RCGCGPIO_R |= 0x0000000A; // clock on Ports B and D
pt = Stand; // initial state
GPIO_PORTB_DIR_R &= ~0x03; // make PB1-0 input from mood sensor
GPIO_PORTB_AMSEL_R &=~0x03; // disable analog on PB
GPIO_PORTB_PCTL_R &= ~0x000000FF; / PCTL GPIO on PB1-0
GPIO_PORTB_DEN_R |= 0x03; // enable digital I/O on PB1-0
GPIO_PORTD_DIR_R |= 0x0F; // make PD3-0 output to robot
GPIO_PORTD_AMSEL _R &= ~0x0F; // disable analog on PD
GPIO_PORTD_PCTL_R &= ~0x0000FFFF; / PCTL GPIO on PD3-0
GPIO_PORTD_DEN_R |= 0x0F; // enable digital I/O on PD3-0
while(1){
input = GPIO_PORTB_DATA_R&0x03; // input=0-3
GPIO_PORTD_DATA_R |= pt->Out[Input]; // pulse
GPIO_PORTD_DATA_R &= ~0x0F;
pt = pt->Next[Input]; // next state
}
}

Program 3.4. Outputs defined as numbers for a Mealy Finite State

Machine (PointerRobot_xxx.zip).

Program 3.5 uses functions to affect the output. Although the functions in this solution
perform simple output, this implementation could be used when the output operations are
complex. Again proper memory allocation is required if we wish to implement a stand-
alone or embedded system. The const qualifier is used to place the FSM data structure in
EEPROM. Bit-specific outputs are implemented on Port D.

struct State{
void *CmdPt[4]; // outputs are function pointers
const struct State *Next[4]; // next

5

typedef const struct State StateType;

#define Stand &FSM[0]

#define Sit &FSM][1]

#define Sleep &FSM]|2]

void None(void){};

#define GPIO_PORTDO0 (*((volatile uint32_t *)0x40007004))
#define GPIO_PORTD1 (*((volatile uint32_t *)0x40007008))
#define GPIO_PORTD?2 (*((volatile uint32_t *)0x40007010))
#define GPIO_PORTD3 (*((volatile uint32_t *)0x40007020))

void SitDown(void){
GPIO_PORTD3 = 0x08;
GPIO_PORTD3 = 0x00; // pulse on PD3
}
void StandUp(void){
GPIO_PORTD2 = 0x04;
GPIO_PORTD2 = 0x00; // pulse on PD2
}
void LieDown(void){
GPIO_PORTD1 = 0x02;
GPIO_PORTD1 = 0x00; // pulse on PD1

}

void SitUp(void) {
GPIO_PORTDO = 0x01;
GPIO_PORTDO = 0x00; // pulse on PD0
}
StateType FSM[3]={
{{(void*)&None,(void*)&SitDown,(void*)&None,(void*)&None}, //Standing
{Stand,Sit,Stand,Stand}},
{{(void*)&None,(void*)LieDown,(void*)&None,(void*)&StandUp},//Sitting
{Sit,Sleep,Sit,Stand }},
{{(void*)&None,(void*) &None,(void*)&SitUp,(void*)&SitUp}, //Sleeping
{Sleep,Sleep,Sit,Sit}}
b
int main(void){ StateType *pt; // current state
uint32_t input;
SYSCTL_RCGCGPIO_R |= 0x0000000A; // clock on Ports B and D
pt = Stand; // initial state
GPIO_PORTB_DIR_R &= ~0x03; // make PB1-0 input from mood sensor
GPIO_PORTB_AMSEL_R &=~0x03; // disable analog on PB
GPIO_PORTB_PCTL_R &= ~0x000000FF; / PCTL GPIO on PB1-0
GPIO_PORTB_DEN_R |= 0x03; // enable digital I/0O on PB1-0
GPIO_PORTD_DIR_R |= 0x0F; // make PD3-0 output to robot
GPIO_PORTD_AMSEL_R &= ~0x0F; // disable analog on PD
GPIO_PORTD_PCTL_R &= ~0x0000FFFF; / PCTL GPIO on PD3-0
GPIO_PORTD_DEN_R |= 0x0F; // enable digital I/O on PD3-0
while(1){
input = GPIO_PORTB_DATA_R&0x03; // input=0-3
((veid(*)(void))pt->CmdPt[Input])(); // function
pt = pt->Next[input]; // next state
}
}

Program 3.5. Outputs defined as functions for a Mealy Finite State
Machine (FunctionRobot_xxx.zip).

Observation: In order to make the FSM respond quicker, we could implement a time
delay function that returns immediately if an alarm condition occurs. If no alarm exists, it

waits the specified delay.
Checkpoint 3.10: What happens if the robot is sleeping then becomes anxious?

3.6. Threads

Software (e.g., program, code, module, procedure, function, subroutine etc.) is a list of
instructions for the computer to execute. A thread on the other hand is defined as the path
of action of software as it executes. The expression “thread” comes from the analogy
shown in Figure 3.6. This simple program prints the 8-bit numbers 000 001 002 ... If we
connect the statements of our executing program with a continuous line (the thread) we
can visualize the dynamic behavior of our software.

Thread

voind UART QutDec{uint8 t n){
BT Cut Char (n/ 100+ 0');
E %d 00;
out Char(nf 104+ 0);

Figure 3.6. Illustration of the definition of a thread.

The execution of the main program is called the foreground thread. In most embedded
applications, the foreground thread executes a loop that never ends. We will learn later,
that this thread can be broken (execution suspended, then restarted) by interrupts and
direct memory access.

With interrupts we can create multiple threads. Some threads will be created statically,
meaning they exist throughout the life of the software, while others will be created and
destroyed dynamically. There will usually be one foreground thread running the main
program like the above example. In addition to this foreground thread, each interrupt
source has its own background thread, which is started whenever the interrupt is
requested. Figure 3.7 shows a software system with one foreground thread and two
background threads. The “Key” thread is invoked whenever a key is touched on the
keyboard and the “Time” thread is invoked every 1ms in a periodic fashion.

Bad<ground thread Bad<oround thread
Keyhender TII’IE hercler

-.Retun

Figure 3.7. Interrupts allow us to have multiple background threads.

Because there is but one processor, the currently running thread must be suspended in
order to execute another thread. In the above figure, the suspension of the main program
is illustrated by the two breaks in the foreground thread. When a key is touched, the main
program is suspended, and a Keyhandler thread is created with an “empty”stack and
uninitialized registers. When the Keyhandler is done it executes a return from interruptto
relinquish control back to the main program. The original stack and registers of the main
program will be restored to the state before the interrupt. In a similar way, when the 1 ms
timer occurs, the main program is suspended again, and a Timehandler thread is created
with its own “empty” stack and uninitialized registers. We can think of each thread as
having its own registers and its own stack area. In Chapter 5, we will discuss in detail this
approach to multithreaded programming. In a real-time operating system (RTOS) there is
a preemptive thread scheduler that allows our software to have multiple foreground
threads and multiple stacks. The focus of Volume 3 will be the design and analysis of real-
time operating systems.

Parallel programming allows the computer to execute multiple threads at the same time.
State-of-the-art multi-core processors can execute a separate program in each of its cores.
Fork and join are the fundamental building blocks of parallel programming. After a fork,
two or more software threads will be run in parallel, i.e., the threads will run
simultaneously on separate processors. Two or more simultaneous software threads can be
combined into one using a join. The flowchart symbols for fork and join are shown in
Figure 3.8.

Software execution after the join will wait until all threads above the join are complete. As
an analogy of parallel execution, when a farmer wants to build a barn, he invites his three
neighbors over and gives everyone a hammer. The fork operation changes the situation
from the farmer working alone to four people ready to build. The four people now work in
parallel to accomplish the single goal of building the barn. When the overall task is
complete, the join operation causes the neighbors to go home, and the farmer is working
alone again.

Parallel programming is a difficult concept for many software developers, because we
have been classically trained to think of computer execution as a single time-linear thread.
However, there are numerous real-world scenarios from which to learn the art of parallel
programming. A manager of a business, an Army general, and air traffic control are
obvious examples that employ parallel operations. From these illustrations we observe
hierarchical decision making, delegation of responsibilities, and having an elaborate
system of checks and balances. All of these concepts translate into complex software
systems involving parallel execution.

To implement parallel execution we need a computer that can execute more than one
instruction at a time. A multi-core processor has two or more independent central
processing units, called cores. The cores shared some memory but also have some private
storage. The cores can fetch and execute instructions at the same time, thus increasing
overall performance. The fork operation in Figure 3.8 will activate three cores launching
software to be executed on those three new cores. The join operation will wait until all
four branches have completed, and deactivate three of the cores.

. I S Trgger
Fer W fHferr —l—
w

gl
ks n s G
R

fan Heforn frarm
irferrgdt

Figure 3.8. Flowchart symbols to describe parallel and concurrent
programming.

Concurrent programming allows the computer to execute multiple threads, but only one
runs at a time. Interrupts are one mechanism to implement concurrency on real-time
systems. Interrupts have a hardware trigger and a software action. An interrupt is a
parameter-less subroutine call, triggered by a hardware event. The flowchart symbols for
interrupts are also shown in Figure 3.8. The trigger is a hardware event signaling it is time
to do something. Examples of interrupt triggers we will see in this book include new input
data has arrived, output device is idle, and periodic event. The second component of an
interrupt-driven system is the software action called an interrupt service routine (ISR).
The foreground thread is defined as the execution of the main program, and the
background threads are executions of the ISRs. Consider the analogy of sitting in a
comfy chair reading a book. Reading a book is like executing the main program in the
foreground. You start reading at the beginning of the book and basically read one page at
time in a sequential fashion. You might jump to the back and look something up in the
glossary, then jump back to where you where, which is analogous to a function call.
Similarly, you might read the same page a few times, which is analogous to a program
loop. Even though you skip around a little, the order of pages you read follows a logical
and well-defined sequence. Conversely, if the telephone rings, you place a bookmark in
the book and answer the phone. When you are finished with the phone conversation, you
hang up the phone and continue reading in the book where you left off. The ringing phone
is analogous to hardware trigger and the phone conversation is like executing the ISR.

A program segment is reentrant if it can be concurrently executed by two (or more)
threads. In Figure 3.7 we can conceive of the situation where the main program starts
executing a function, is interrupted, and the background thread calls that same function. In
order for two threads to share a function, the function must be reentrant. To implement
reentrant software, place local variables on the stack, and avoid storing into I/O devices
and global memory variables. The issue of reentrancy will be covered in detail later in
Chapter 5.

3.7. First In First Out Queue

3.7.1. Classical definition of a FIFO

The first in first out circular queue (FIFO) is quite useful for implementing a buffered 1/0
interface (Figure 3.9). It can be used for both buffered input and buffered output. The
order preserving data structure temporarily saves data created by the source (producer)
before it is processed by the sink (consumer). The class of FIFOs studied in this section
will be statically allocated global structures. Because they are global variables, it means
they will exist permanently and can be carefully shared by more than one program. The
advantage of using a FIFO structure for a data flow problem is that we can decouple the
producer and consumer threads. Without the FIFO we would have to produce 1 piece of
data, then process it, produce another piece of data, then process it. With the FIFO, the
producer thread can continue to produce data without having to wait for the consumer to
finish processing the previous data. This decoupling can significantly improve system
performance.

Fifo Put Fi fo Get

Source process Sirk process
Producer) Coraumer

Figure 3.9. The FIFO is used to buffer data between the producer and
consumer.

You have probably already experienced the convenience of FIFOs. For example, a FIFO is
used while streaming audio from the Internet. As sound data are received from the Internet
they are put (calls Fifo_Put) in a FIFO. When the sound board needs datait

calls Fifo_Get . As long as the FIFO never comes full or empty, the sound is played in a
continuous manner. A FIFO is also used when you ask the computer to print a file. Rather
than waiting for the actual printing to occur character by character, the print command will
put the data in a FIFO. Whenever the printer is free, it will get data from the FIFO. The
advantage of the FIFO is it allows you to continue to use your computer while the printing
occurs in the background. To implement this magic of background printing we will need
interrupts. There are many producer/consumer applications. In Table 3.3 the processes on
the left are producers that create or input data, while the processes on the right are
consumers which process or output data.

Source/Producer Sink/Consumer
Keyboard input Program that interprets
Program with data Printer output

Program sends message | Program receives message

Microphone and ADC | Program that saves sound
data

Program that has sound | DAC and speaker
data

Table 3.3. Producer consumer examples.

The producer puts data into the FIFO. The Fifo_Put operation does not discard
information already in the FIFO. If the FIFO is full and the user calls Fifo_Put ,

the Fifo_Put routine will return a full error signifying the last (newest) data was not
properly saved. The sink process removes data from the FIFO. The Fifo_Get routine will
modify the FIFO. After a get, the particular information returned from the get routine is no
longer saved on the FIFO. If the FIFO is empty and the user tries to get,

the Fifo_Get routine will return an empty error signifying no data could be retrieved. The
FIFO is order preserving, such that the information is returned by repeated calls

of Fifo_Get in the same order as the data was saved by repeated calls of Fifo_Put .

There are many ways to implement a statically-allocated FIFO. We can use either a
pointer or an index to access the data in the FIFO. We can use either two pointers (or two
indices) or two pointers (or two indices) and a counter. The counter specifies how many
entries are currently stored in the FIFO. There are even hardware implementations of
FIFO queues. We begin with the two-pointer implementation. It is a little harder to
implement, but it does have some advantages over the other implementations.

3.7.2. Two-pointer FIFO implementation

The two-pointer implementation has, of course, two pointers. If we were to have infinite
memory, a FIFO implementation is easy (Figure 3.10). GetPt points to the data that will
be removed by the next call to Fifo_Get , and PutPt points to the empty space where the
data will stored by the next call to Fifo_Put , see Program 3.6.

RRGGUUNS
Fifo
GetPt —vdid
da=a
PutPt —
RAGGUUN

Figure 3.10. The FIFO implementation with infinite memory.
int8_t static volatile *PutPt; // put next
int8_t static volatile *GetPt; // get next
int Fifo_Put(int8_t data){ // call by value
*PutPt = data; // Put
PutPt++; // next

return(1);} // true if success

int Fifo_Get(int8_t *datapt){
*datapt = *GetPt; // return by reference
GetPt++; // next

return(1);} // true if success

Program 3.6. Code fragments showing the basic idea of a FIFO.

There are fourmodifications that are required to the above subroutines. If the FIFO is full
when Fifo_Put is called then the function should return a full error. Similarly, if the FIFO
is empty when Fifo_Get is called, then the function should return an empty error. PutPt
must be wrapped back up to the top when it reaches the bottom (Figure 3.11).

Put Pt —p | renes
Put Pt = newes

Put Pt —f=

Put Pt nanes
Put Pt e newest

et Pt :E Get Pt —peddest| Get Pt —peoldet] Get Pt —pmoldest| Get Pt —peoldest

Figure 3.11. The FIFO Fifo_Put operation showing the pointer wrap.

The GetPt must also be wrapped back up to the top when it reaches the bottom (Figure

3.12).
Get Pt —f-oldet
nanest nawest rewest rewest] Get Pt —-
Put Pt —= Put Pt —= Put Pt —= Put Pt —= Put Pt —=

Get Pt —fwoldet

Get Pt —fwoldet

Get Pt —fwoldest

Figure 3.12. The FIFO Fifo_Get operation showing the pointer wrap.

There are two mechanisms to determine whether the FIFO is empty or full. A simple
method is to implement a counter containing the number of bytes currently stored in the
FIFO. Fifo_Get would decrement the counter and Fifo_Put would increment the counter.
We will not implement a counter because incrementing and decrementing a counter causes
a race condition, meaning the counter could become incorrect when shared in a
multithreaded environment. Race conditions and critical sections will be presented in
Chapter 5.

The second method is to prevent the FIFO from being completely full. The
implementation of this FIFO module is shown in Program 3.7. You can find all the FIFOs
of this section on the book web site as FIFO_xxx.zip, where xxx refers to the specific
microcontroller on which the example was tested.

#define FIFOSIZE 10 // can be any size
#define FIFOSUCCESS 1
#define FIFOFAIL 0
typedef int8_t DataType;
DataType volatile *PutPt; // put next
DataType volatile *GetPt; // get next
DataType static Fifo[FIFOSIZE];
// initialize FIFO
void Fifo_Init(void){
PutPt = GetPt = &Fifo[0]; / Empty
}
// add element to FIFO
int Fifo_Put(DataType data){
DataType volatile *nextPutPt;
nextPutPt = PutPt+1;
if(nextPutPt == &Fifo[FIFOSIZE]){
nextPutPt = &Fifo[0]; // wrap
}
if(nextPutPt == GetPt){
return(FIFOFAIL); // Failed, FIFO full
}
else{
*(PutPt) = data; // Put
PutPt = nextPutPt; // Success, update
return(FIFOSUCCESS);
}
}

// remove element from FIFO
int Fifo_Get(DataType *datapt){

if(PutPt == GetPt){
return(FIFOFAIL); // Empty if PutPt=GetPt
}
*datapt = *(GetPt++);
if(GetPt == &Fifo[FIFOSIZE]){
GetPt = &Fifo[0]; // wrap

}
return(FIFOSUCCESS);

}
Program 3.7. Two-pointer implementation of a FIFO (FIFO_xxx.zip).

For example, if the FIFO had 10 bytes allocated, then the Fifo_Put subroutine would
allow a maximum of 9 bytes to be stored. If there were already 9 bytes in the FIFO and
another Fifo_Put were called, then the FIFO would not be modified and a full error
would be returned. See Figure 3.13. In this way if PutPt equals GetPt at the beginning

of Fifo_Get , then the FIFO is empty. Similarly, if PutPt+1 equals GetPt at the beginning
of Fifo_Put , then the FIFO is full. Be careful to wrap the PutPt+1 before comparing it

to Fifo_Get . This method does not require the length to be stored or calculated.

terePt =PutPt
¥ , &Trﬂ_'!/l
Store deta & termpobt Rereive data & Gaft
tem P+ GePt++ reur{0)
w‘ thi n buffer Wim' N buffer
peyond buffer beyond buffer
Feset tampebt Fest Gabt
. GaPt i
oert
PuPt =termpPt il

T ¥
D> R

Figure 3.13. Flowcharts of the pointer implementation of the FIFO queue.

To check for FIFO full, the following Fifo_Put routine attempts to put using a
temporary PutPt . If putting makes the FIFO look empty, then the temporary PutPt is
discarded and the routine is exited without saving the data. This is why a FIFO with 10
allocated bytes can only hold 9 data points. If putting doesn’t make the FIFO look empty,
then the temporary PutPt is stored into the actual PutPt saving the data as desired.

To check for FIFO empty, the Fifo_Get routine in Program 3.7simply checks to see
if GetPt equals PutPt . If they match at the start of the routine, then Fifo_Get returns
with the “empty” condition signified.

Since Fifo_Put and Fifo_Get have read modify write accesses to global variables they are
themselves not reentrant. Similarly Fifo_Init has a multiple step write access to global
variables. Therefore Fifo_Init is not reentrant.

One advantage of this pointer implementation is that if you have a single thread that calls
the Fifo_Get (e.g., the main program) and a single thread that calls the Fifo_Put (e.g., the
serial port receive interrupt handler), then this Fifo_Put function can interrupt

this Fifo_Get function without loss of data. So in this particular situation, interrupts would
not have to be disabled. It would also operate properly if there were a single interrupt
thread calling Fifo_Get (e.g., the serial port transmit interrupt handler) and a single thread
calling Fifo_Put (e.g., the main program.) On the other hand, if the situation is more
general, and multiple threads could call Fifo_Put or multiple threads could call Fifo_Get ,
then the interrupts would have to be temporarily disabled.

3.7.3. Two index FIFO implementation

The other method to implement a FIFO is to use indices rather than pointers. This FIFO
has the restriction that the size must be a power of 2. In Program 3.8, FIFOSIZE is 16 and
the logic Putl&(FIFOSIZE-1) returns the bottom four bits of the put index. Similarly, the
logic GetI&(FIFOSIZE-1) returns the bottom four bits of the get index. Using the bottom
bits of the index removes the necessary to check for out of bounds and wrapping.

// Two-index implementation of the transmit FIFO
// can hold 0 to FIFOSIZE elements
#define FIFOSIZE 16 // must be a power of 2
#define FIFOSUCCESS 1
#define FIFOFAIL 0
typedef int8_t DataType;
uint32_t volatile Putl;// put next
uint32_t volatile Getl;// get next
DataType static Fifo[FIFOSIZE];
// initialize index FIFO
void Fifo_Init(void){
Putl = GetI = 0; // Empty
}
// add element to end of index FIFO
int Fifo_Put(DataType data){

if(Putl-Getl) & ~(FIFOSIZE-1)){
return(FIFOFAIL); // Failed, fifo full
}
Fifo[Putl&(FIFOSIZE-1)] = data; // put
Putl++; // Success, update
return(FIFOSUCCESS);
}
// remove element from front of index FIFO
int Fifo_Get(DataType *datapt){
if(Putl == GetI){
return(FIFOFAIL); // Empty if Putl=Getl
}
*datapt = Fifo[GetlI&(FIFOSIZE-1)];
Getl++; // Success, update

return(FIFOSUCCESS);

}

Program 3.8. Implementation of a two-index FIFO. The size must be a
power of two (FIFO_xxx.zip).

If the FIFO is full, then (Putl-GetI) will equal 16, meaning all elements of the buffer
have data. The expression ~(FIFOSIZE-1) yields the constant OxFFFFFFFOQ. For all sizes
that are a power of 2, the if statement in put will be nonzero if there are FIFOSIZE
elements in the FIFO. With this implementation a FIFO with 16 allocated bytes can
actually hold 16 data points.The FIFO is empty if Putl equals Getl . If empty, the
Fifo_Get function returns with the FIFOFAIL condition.

3.7.4. FIFO build macros

When we need multiple FIFOs in our system, we could switch over to C++ and define the
FIFO as a class, and then instantiate multiple objects to create the FIFOs. A second
approach would be to use a text editor, open the source code containing Program 3.7 or
3.8, copy/paste it, and then change names so the functions are unique. A third approach is
shown in Programs 3.9 and 3.10, which defines macros allowing us to create as many
FIFOs as we need.

// macro to create a pointer FIFO
#define AddPointerFifo(NAME,SIZE, TYPE,SUCCESS,FAIL) \
TYPE volatile *\NAME ## PutPt; \

TYPE volatile *NAME ## GetPt; \
TYPE static NAME ## Fifo [SIZE]; \
void NAME ## Fifo_Init(void){ \

NAME ## PutPt = NAME ## GetPt = &NAME ## Fifo[0]; \
} \
int NAME ## Fifo_Put (TYPE data){ \

TYPE volatile *nextPutPt; \

nextPutPt = NAME ## PutPt + 1; \

if(nextPutPt == &NAME ## Fifo[SIZE]){ \

nextPutPt = &NAME ## Fifo[0]; \

} \

if(nextPutPt == NAME ## GetPt){ \
return(FAIL); \

} \

else{ \

*(NAME ## PutPt) = data; \
NAME ## PutPt = nextPutPt; \
return(SUCCESS); \
} \
} \
int NAME ## Fifo_Get (TYPE *datapt){ \
if(NAME ## PutPt == NAME ## GetPt){ \
return(FAIL); \
} \
*datapt = *(NAME ## GetPt ## ++); \
if(NAME ## GetPt == &NAME ## Fifo[SIZE]){ \
NAME ## GetPt = &NAME ## Fifo[0]; \
} \
return(SUCCESS); \

}

Program 3.9. Two-pointer macro implementation of a FIFO
(FIFO_xxx.zip).

To create a 20-element FIFO storing unsigned 16-bit numbers that returns 1 on success
and 0 on failure we invoke

AddPointerFifo(Rx, 20, uintl6_t, 1, 0)

creating the three functions RxFifo_Init() , RxFifo_Get() ,and RxFifo_Put() .

Program 3.10 is a macro allowing us to create two-index FIFOs similar to Program 3.8.

// macro to create an index FIFO

#define AddIndexFifo(NAME,SIZE,TYPE,SUCCESS,FAIL) \
uint32_t volatile NAME ## Putl; \

uint32_t volatile NAME ## Getl; \

TYPE static NAME ## Fifo [SIZE]; \

void NAME ## Fifo_Init(void){ \
NAME ## Putl = NAME ## Getl =0; \
} \

int NAME ## Fifo_Put (TYPE data){ \
if((NAME ## Putl - NAME ## Getl) & ~(SIZE-1)){ \
return(FAIL); \
} \
NAME ## Fifo[l NAME ## Putl &(SIZE-1)] = data; \
NAME ## Putl ## ++; \
return(SUCCESS); \
} \
int NAME ## Fifo_Get (TYPE *datapt){ \
if(NAME ## Putl == NAME ## Getl){\
return(FAIL); \
} \
*datapt = NAME ## Fifol NAME ## Getl &(SIZE-1)]; \
NAME ## Getl ## ++; \
return(SUCCESS); \
} \
uint16_t NAME ## Fifo_Size (void){ \
return ((uint16_t)(NAME ## Putl - NAME ## Getl)); \

}

Program 3.10. Macro implementation of a two-index FIFO. The size must
be a power of two (FIFO_xxx.zip).

To create a 32-element FIFO storing signed 32-bit numbers that returns 0 on success and 1
on failure we invoke

AddIndexFifo(Tx, 32, int32_t, 0, 1)

creating the three functions TxFifo_Init() , TxFifo_Get() ,and TxFifo_Put() .

Checkpoint 3.11: Show C code to create three FIFOs called CAN1 CAN2 and CANS3.
Each FIFO stores 8-bit bytes and must be able to store up to 99 elements.

Checkpoint 3.12: Show C code to create two FIFOs called F1 and F2. Each FIFO stores
16-bit halfwords and must be able to store up to 256 elements.

3.8. Memory Management and the Heap

So far, we have seen two types of allocation: permanent allocation in global variables and
temporary allocation in local variables. When we allocate local variables in registers or on
the stack these variables must be private to the function and cannot be shared with other
functions. Furthermore, each time the function is invoked new local variables are created,
and data from previous instantiations are not available. This behavior is usually exactly
what we want to happen with local variables. However, we can use the heap (or memory
manager) to have temporary allocation in a way that is much more flexible. In particular,
we will be able to explicitly define when data are allocated and when they are deallocated
with the only restriction being we first allocate, next we use, and then we deallocate.
Furthermore, we can control the scope of the data in a flexible manner.

The use of the heap involves two system functions: malloc and free . When we wish to
allocate space we call malloc and specify how many bytes we need. malloc will return a
pointer to the new object, which we must store in a pointer variable. If the heap has no
more space, malloc will return a 0, which means null pointer. The heap implements
temporary allocation, so when we are done with the data, we return it to the heap by
calling free . Consider the following simple example with three functions.

int32_t *Pt;
void Begin(void){

Pt = (*int32_t)malloc(4*20); // allocate 20 words
}

void Use(void){ int i;
for(i=0;1i<20; it++)
Pt[i] = i; // put data into array
}
void End(void){
free(Pt);

}

The pointer Pt is permanently allocated. The left side of Figure 3.14 shows that initially,
even though the pointer exists, it does not point to anything. More specifically, the
compiler will initialize it to O; this O is defined as a nullpointer, meaning it is not valid.
When malloc is called the pointer is now valid and points to a 20-word array. The array is
inside the heap and Pt points to it. Any timeafter malloc is called and before free is called
the array exists and can be accessed via the pointer Pt . After you call free, the pointer has
the same value as before. However, the array itself does not exist. L.e., these 80 bytes do
not belong to your program anymore. In particular, after you call free the heap is allowed
to allocate these bytes to some other program. Weird and crazy errors will occur if you
attempt to dereference the pointer before the array is allocated, or after it is released.

Befcrermal | oc Affermal | oc Afferfree

Figure 3.14. The heap is used to dynamically allocate memory.

-

This array exists and the pointer is valid from when you call malloc up until the time you
call free . In C, the heap does not manage the pointers to allocated block; your program
must. If you call malloc ten times in a row, you must keep track of the ten pointers you
received. The scope of this array is determined by the scope of the pointer, Pt . If Pt is
public, then the array is public. If static were to be added to the definition of Pt , then the
scope of the array is restricted to software within this file. In the following example, the
scope of the array is restricted to the one function. Within one execution of the function,
the array is allocated, used, and then deallocated, just like a local variable.

void Function(void){ int i;
int32_t *pt;
pt = (*int32_t)malloc(4*20); // allocate 20 words
for(i=0;i < 20; i++)
ptli] = i; // put data into array
free(pt);
}

A memory leak occurs if software uses the heap to allocate space but forgets to deallocate
the space when it is finished. The following is an example of a memory leak. Each time
the function is called, a block of memory is allocated. The pointer to the block is stored in
a local variable. When the function returns, the pointer no longer exists. This means the
allocated block in the heap exists, but the program has no pointer to it. In other words,
each time this function returns 80 bytes from the heap are permanently lost.

void LeakyFunction(void){ int i;
int32_t *pt;
pt = (*int32_t)malloc(4*20); // allocate 20 words
for(i=0;1i<20; it++)
ptli] = i; // put data into array
}

In general, the heap manager allows the program to allocate a variable block size, but in
this section we will develop a simplified heap manager handles just fixed size blocks. In
this example, the block size is specified by the constant SIZE . The initialization will
create a linked list of all the free blocks (Figure 3.15).

FresPt— — 1 — 1 — 1 — = il

Figure 3.15. The initial state of the heap has all of the free blocks linked in
a list.

Program 3.11ashows the global structures for the heap. These entries are defined in
RAM. SIZE is the number of 8-bit bytes in each block. All blocks allocated and released
with this memory manager will be of this fixed size. NUM is the number of blocks to be
managed. FreePt points to the first free block.

#define SIZE 80

#define NUM 5

#define NULL 0 // empty pointer
int8_t *FreePt;

int8_t Heap[SIZE*NUM];

Program 3.11a. Private global structures for the fixed-block memory
manager.

Initialization must be performed before the heap can be used. Program 3.11bshows the
software that partitions the heap into blocks and links them together. FreePt points to a
linear linked list of free blocks. Initially these free blocks are contiguous and in order, but
as the manager is used the positions and order of the free blocks can vary. It will be the
pointers that will thread the free blocks together.

void Heap_Init(void){
int8_t *pt;
FreePt = &Heapl0];
for(pt=&Heap|[0];
pt!=&Heap[SIZE*(NUM-1)];
pt=pt+SIZE){
*(int32_t *)pt =(int32_t)(pt+SIZE);
}
(int32_t)pt = NULL;
}
Program 3.11b. Functions to ini