

EMBEDDED 	 SYSTEMS :
REAL-TIME	INTERFACING	TO	ARM®

CORTEXTM-M	MICROCONTROLLERS
	

Volume	2
Fourth	Edition,
July	2014
	

Jonathan	W.	Valvano
Fourth	edition
2nd	Printing
July	2014
	

ARM	and	uVision	are	registered	trademarks	of	ARM	Limited.

Cortex	and	Keil	are	trademarks	of	ARM	Limited.

Stellaris	and	Tiva	are	registered	trademarks	Texas	Instruments.

Code	Composer	Studio	is	a	trademark	of	Texas	Instruments.

All	other	product	or	service	names	mentioned	herein	are	the	trademarks	of	their	respective
owners.

	

In	order	to	reduce	costs,	this	college	textbook	has	been	self-published.	For
more	information	about	my	classes,	my	research,	and	my	books,	see
http://users.ece.utexas.edu/~valvano/

	

For	corrections	and	comments,	please	contact	me	at:
valvano@mail.utexas.edu.	Please	cite	this	book	as:	J.	W.	Valvano,	Embedded
Systems:	Real-Time	Interfacing	to	ARM ® 	CortexTM-M	Microcontrollers,
http://users.ece.utexas.edu/~valvano/,	ISBN:	978-1463590154,	2014.

	

Copyright	©	2014	Jonathan	W.	Valvano

All	rights	reserved.	No	part	of	this	work	covered	by	the	copyright	herein	may
be	reproduced,	transmitted,	stored,	or	used	in	any	form	or	by	any	means
graphic,	electronic,	or	mechanical,	including	but	not	limited	to	photocopying,
recording,	scanning,	digitizing,	taping,	web	distribution,	information
networks,	or	information	storage	and	retrieval,	except	as	permitted	under
Section	107	or	108	of	the	1976	United	States	Copyright	Act,	without	the	prior
written	permission	of	the	publisher.

ISBN-13:	978-1463590154

ISBN-10:	1463590156

	

Table	of	Contents

	

Preface	to	Third	Edition

Preface	to	Fourth	Edition

Preface

Acknowledgements

1.	Introduction	to	Embedded	Systems

1.1.	Computer	Architecture

1.2.	Embedded	Systems

1.3.	The	Design	Process

1.4.	Digital	Logic	and	Open	Collector

1.5.	Digital	Representation	of	Numbers

1.6.	Ethics

1.7.	Exercises

1.8.	Lab	Assignments

2.	ARM	Cortex-M	Processor

2.1.	CortexTM-M	Architecture

2.2.	Texas	Instruments	LM3S	and	TM4C	I/O	pins

2.3.	ARM � 	CortexTM-M	Assembly	Language

2.4.	Parallel	I/O	ports

2.5.	Phase-Lock-Loop

2.6.	SysTick	Timer

2.7.	Choosing	a	Microcontroller

2.8.	Exercises

2.9.	Lab	Assignments

3.	Software	Design

3.1.	Attitude

3.2.	Quality	Programming

3.3.	Software	Style	Guidelines

3.4.	Modular	Software

3.5.	Finite	State	Machines

3.6.	Threads

3.7.	First	In	First	Out	Queue

3.8.	Memory	Management	and	the	Heap

3.9.	Introduction	to	Debugging

3.10.	Exercises

3.11.	Lab	Assignments

4.	Hardware-Software	Synchronization

4.1.	Introduction

4.2.	Timing

4.3.	Petri	Nets

4.4.	Kahn	Process	Networks

4.5.	Edge-triggered	Interfacing

4.6.	Configuring	Digital	Output	Pins

4.7.	Blind-cycle	Interfacing

4.8.	Busy-Wait	Synchronization

4.9.	UART	Interface

4.10.	Keyboard	Interface

4.11.	Exercises

4.12.	Lab	Assignments

5.	Interrupt	Synchronization

5.1.	Multithreading

5.2.	Interthread	Communication	and	Synchronization

5.3.	Critical	Sections

5.4.	NVIC	on	the	ARM � 	Cortex-M	Processor

5.5.	Edge-triggered	Interrupts

5.6.	Interrupt-Driven	UART

5.7.	Periodic	Interrupts	using	SysTick

5.8.	Low-Power	Design

5.9.	Debugging	Profile

5.10.	Exercises

5.11.	Lab	Assignments

6.	Time	Interfacing

6.1.	Input	Capture	or	Input	Edge	Time	Mode

6.2.	Output	Compare	or	Periodic	Timer

6.3.	Pulse	Width	Modulation

6.4.	Frequency	Measurement

6.5.	Binary	Actuators

6.6.	Integral	Control	of	a	DC	Motor

6.7.	Exercises

6.8.	Lab	Assignments

7.	Serial	Interfacing

7.1.	Introduction	to	Serial	Communication

7.2.	RS232	Interfacing

7.3.	RS422/USB/RS423/RS485	Balanced	Differential	Lines

7.4.	Logic	Level	Conversion

7.5.	Synchronous	Transmission	and	Receiving	using	the	SSI

7.6.	Inter-Integrated	Circuit	(I2C)	Interface

7.7.	Introduction	to	Universal	Serial	Bus	(USB)

7.8.	Exercises

7.9.	Lab	Assignments

8.	Analog	Interfacing

8.1.	Resistors	and	Capacitors

8.2.	Op	Amps

8.3.	Analog	Filters

8.4.	Digital	to	Analog	Converters

8.5.	Analog	to	Digital	Converters

8.6.	Exercises

8.7.	Lab	Assignments

9.	System-Level	Design

9.1.	Design	for	Manufacturability

9.2.	Power

9.3	Tolerance

9.4.	Design	for	Testability

9.5.	Printed	Circuit	Board	Layout	and	Enclosures

9.6.	Exercises

9.7.	Lab	Assignments

10.	Data	Acquisition	Systems

10.1.	Introduction

10.2.	Transducers

10.3.	Discrete	Calculus

10.4.		Data	Acquisition	System	Design

10.5.	Analysis	of	Noise

10.6.	Data	Acquisition	Case	Studies

10.7.	Exercises

10.8.	Lab	Assignments

11.	Introduction	to	Communication	Systems

11.1.	Fundamentals

11.2.	Communication	Systems	Based	on	the	UARTs

11.3.	Wireless	Communication

11.4.	Internet	of	Things

11.5.	Exercises

11.6.	Lab	Assignments

Appendix	1.	Glossary

Appendix	2.	Solutions	to	Checkpoints

Index													
Reference	Material

Preface	to	Third	Edition
There	are	a	new	features	added	to	this	third	edition.	The	new	development	platform	based
on	the	TM4C123	is	called	Tiva	LaunchPad.	Material	in	this	book	on	the	TM4C	also
applies	to	the	LM4F	because	Texas	Instruments	rebranded	the	LM4F	series	as	TM4C
(same	chips	new	name),	and	rebranded	StellarisWare™	as	TivaWare™.	These	new
microcontrollers	run	at	80	MHz,	include	single-precision	floating	point,	have	two	12-bit
ADCs,	and	support	DMA	and	USB.	A	wonderful	feature	of	these	new	boards	is	their	low
cost.	As	of	December	2013,	the	boards	are	available	on	TI.com	as	part	number	EK-
TM4C123GXL	for	$12.99.	They	are	also	available	from	$13	to	$24	at	regular	electronics
retailers	like	arrow.com,	newark.com,	mouser.com,	and	digikey.com.	The	book	can	be
used	with	either	a	LM3S	or	TM4C	microcontroller.	Although	this	edition	now	focuses	on
the	M4,	the	concepts	still	apply	to	the	M3,	and	the	web	site	associated	with	this	book	has
example	projects	based	on	the	LM3S811,	LM3S1968,	and	LM3S8962.

Preface	to	Fourth	Edition
This	fourth	edition	includes	the	new	TM4C1294-based	LaunchPad.	Most	of	the	code	in
the	book	is	specific	for	the	TM4C123-based	LaunchPad.	However,	the	book	website
includes	corresponding	example	projects	for	the	LM3S811,	LM3S1968,	LM4F120,	and
TM4C1294,	which	are	ARM ® 	Cortex™-M	microcontrollers	from	Texas	Instruments.
There	are	now	two	lost-cost	development	platforms	called	Tiva	LaunchPad.	The	EK-
TM4C123GXL	LaunchPad	retails	for	$12.99,	and	the	EK-TM4C1294XL	Connected
LaunchPad	retails	for	$19.99.	The	various	LM3S,	LM4F	and	TM4C	microcontrollers	are
quite	similar,	so	this	book	along	with	the	example	code	on	the	web	can	be	used	for	any	of
these	microcontrollers.	Compared	to	the	TM4C123,	the	new	TM4C1294	microcontroller
runs	faster,	has	more	RAM,	has	more	ROM,	includes	Ethernet,	and	has	more	I/O	pins.
This	fourth	edition	switches	the	syntax	from	C	to	the	industry-standard	C99,	adds	a	line-
tracking	robot,	designs	an	integral	controller	for	a	DC	motor,	and	includes	an	expanded
section	on	wireless	communication	and	Internet	of	Things.

Preface
Embedded	systems	are	a	ubiquitous	component	of	our	everyday	lives.	We	interact	with
hundreds	of	tiny	computers	every	day	that	are	embedded	into	our	houses,	our	cars,	our
toys,	and	our	work.	As	our	world	has	become	more	complex,	so	have	the	capabilities	of
the	microcontrollers	embedded	into	our	devices.	The	ARM ® 	CortexTM-M	family
represents	a	new	class	of	microcontrollers	much	more	powerful	than	the	devices	available
ten	years	ago.	The	purpose	of	this	book	is	to	present	the	design	methodology	to	train
young	engineers	to	understand	the	basic	building	blocks	that	comprise	devices	like	a	cell
phone,	an	MP3	player,	a	pacemaker,	antilock	brakes,	and	an	engine	controller.

This	book	is	the	second	in	a	series	of	three	books	that	teach	the	fundamentals	of	embedded
systems	as	applied	to	the	ARM ® 	CortexTM-M	family	of	microcontrollers.	The	three
books	are	primarily	written	for	undergraduate	electrical	and	computer	engineering
students.	They	could	also	be	used	for	professionals	learning	the	ARM	platform.	The	first
book	Embedded	Systems:	Introduction	to	ARM	Cortex-M	Microcontrollers	is	an
introduction	to	computers	and	interfacing	focusing	on	assembly	language	and	C
programming.	This	second	book	focuses	on	interfacing	and	the	design	of	embedded
systems.	The	third	book	Embedded	Systems:	Real-Time	Operating	Systems	for	ARM
Cortex-M	Microcontrollers	is	an	advanced	book	focusing	on	operating	systems,	high-
speed	interfacing,	control	systems,	and	robotics.		

An	embedded	system	is	a	system	that	performs	a	specific	task	and	has	a	computer
embedded	inside.	A	system	is	comprised	of	components	and	interfaces	connected	together
for	a	common	purpose.	This	book	presents	components,	interfaces	and	methodologies	for
building	systems.	Specific	topics	include	the	architecture	of	microcontrollers,	design
methodology,	verification,	hardware/software	synchronization,	interfacing	devices	to	the
computer,	timing	diagrams,	real-time	operating	systems,	data	collection	and	processing,
motor	control,	analog	filters,	digital	filters,	real-time	signal	processing,	wireless
communication,	and	the	internet	of	things.

In	general,	the	area	of	embedded	systems	is	an	important	and	growing	discipline	within
electrical	and	computer	engineering.	The	educational	market	of	embedded	systems	has
been	dominated	by	simple	microcontrollers	like	the	PIC,	the	9S12,	and	the	8051.	This	is
because	of	their	market	share,	low	cost,	and	historical	dominance.	However,	as	problems
become	more	complex,	so	must	the	systems	that	solve	them.	A	number	of	embedded
system	paradigms	must	shift	in	order	to	accommodate	this	growth	in	complexity.	First,	the
number	of	calculations	per	second	will	increase	from	millions/sec	to	billions/sec.
Similarly,	the	number	of	lines	of	software	code	will	also	increase	from	thousands	to
millions.	Thirdly,	systems	will	involve	multiple	microcontrollers	supporting	many
simultaneous	operations.	Lastly,	the	need	for	system	verification	will	continue	to	grow	as
these	systems	are	deployed	into	safety	critical	applications.	These	changes	are	more	than	a
simple	growth	in	size	and	bandwidth.	These	systems	must	employ	parallel	programming,
high-speed	synchronization,	real-time	operating	systems,	fault	tolerant	design,	priority
interrupt	handling,	and	networking.	Consequently,	it	will	be	important	to	provide	our
students	with	these	types	of	design	experiences.	The	ARM	platform	is	both	low	cost	and
provides	the	high	performance	features	required	in	future	embedded	systems.	Although
the	ARM	market	share	is	currently	not	huge,	its	share	will	grow.	Furthermore,	students

trained	on	the	ARM	will	be	equipped	to	design	systems	across	the	complete	spectrum
from	simple	to	complex.	The	purpose	of	writing	these	three	books	at	this	time	is	to	bring
engineering	education	into	the	21st	century.

This	book	employs	many	approaches	to	learning.	It	will	not	include	an	exhaustive
recapitulation	of	the	information	in	data	sheets.	First,	it	begins	with	basic	fundamentals,
which	allows	the	reader	to	solve	new	problems	with	new	technology.	Second,	the	book
presents	many	detailed	design	examples.	These	examples	illustrate	the	process	of	design.
There	are	multiple	structural	components	that	assist	learning.	Checkpoints,	with	answers
in	the	back,	are	short	easy	to	answer	questions	providing	immediate	feedback	while
reading.	Simple	homework,	with	answers	to	the	odd	questions	on	the	web,	provides	more
detailed	learning	opportunities.	The	book	includes	an	index	and	a	glossary	so	that
information	can	be	searched.	The	most	important	learning	experiences	in	a	class	like	this
are	of	course	the	laboratories.	Each	chapter	has	suggested	lab	assignments.	More	detailed
lab	descriptions	are	available	on	the	web.	Specifically,	look	at	the	lab	assignments	for
EE445L	and	EE445M.

There	is	a	web	site	accompanying	this	book	http://users.ece.utexas.edu/~valvano/arm.
Posted	here	are	ARM	KeilTM	uVision®	projects	for	each	the	example	programs	in	the
book.	Code	Composer	StudioTM	versions	are	also	available	for	most	examples.	You	will
also	find	data	sheets	and	Excel	spreadsheets	relevant	to	the	material	in	this	book.

These	three	books	will	cover	embedded	systems	for	ARM ® 	CortexTM-M
microcontrollers	with	specific	details	on	the	LM3S811,	LM3S1968,	LM3S8962,
LM4F120,	TM4C123,	and	TM4C1294.	Most	of	the	topics	can	be	run	on	the	low-cost
TM4C123.	Ethernet	examples	can	be	run	on	the	LM3S8962	and	TM4C1294.	In	these
books	the	terms	LM3S	and	LM4F	and	TM4C	will	refer	to	any	of	the	Texas	Instruments
ARM ® 	CortexTM-M	based	microcontrollers.	Although	the	solutions	are	specific	for	the
LM3S	LM4F	and	TM4C	families,	it	will	be	possible	to	use	these	books	for	other	ARM
derivatives.

Acknowledgements
I	owe	a	wonderful	debt	of	gratitude	to	Daniel	Valvano.	He	wrote	and	tested	most	of	the
software	examples	found	in	this	book.	Secondly,	he	created	and	maintains	the	example
web	site,	http://users.ece.utexas.edu/~valvano/arm.	Lastly,	he	meticulously	proofread
this	manuscript.

Many	shared	experiences	contributed	to	the	development	of	this	book.	First	I	would	like	to
acknowledge	the	many	excellent	teaching	assistants	I	have	had	the	pleasure	of	working
with.	Some	of	these	hard-working,	underpaid	warriors	include	Pankaj	Bishnoi,	Rajeev
Sethia,	Adson	da	Rocha,	Bao	Hua,	Raj	Randeri,	Santosh	Jodh,	Naresh	Bhavaraju,
Ashutosh	Kulkarni,	Bryan	Stiles,	V.	Krishnamurthy,	Paul	Johnson,	Craig	Kochis,	Sean
Askew,	George	Panayi,	Jeehyun	Kim,	Vikram	Godbole,	Andres	Zambrano,	Ann	Meyer,
Hyunjin	Shin,	Anand	Rajan,	Anil	Kottam,	Chia-ling	Wei,	Jignesh	Shah,	Icaro	Santos,
David	Altman,	Nachiket	Kharalkar,	Robin	Tsang,	Byung	Geun	Jun,	John	Porterfield,	
Daniel	Fernandez,		Deepak	Panwar,	Jacob	Egner,	Sandy	Hermawan,	Usman	Tariq,
Sterling	Wei,	Seil	Oh,	Antonius	Keddis,	Lev	Shuhatovich,	Glen	Rhodes,	Geoffrey	Luke,
Karthik	Sankar,	Tim	Van	Ruitenbeek,	Raffaele	Cetrulo,	Harshad	Desai,	Justin	Capogna,
Arindam	Goswami,	Jungho	Jo,	Mehmet	Basoglu,	Kathryn	Loeffler,	Evgeni	Krimer,
Nachiappan	Valliappan,	Razik	Ahmed,	Sundeep	Korrapati,	Song	Zhang,		Zahidul	Haq,
Matthew	Halpern,	Cruz	Monrreal	II,	Pohan	Wu,	Saugata	Bhattacharyya,	Omar	Baca
Aditya	Saraf,	and	Mahesh	Srinivasan.	These	teaching	assistants	have	contributed	greatly
to	the	contents	of	this	book	and	particularly	to	its	laboratory	assignments.	Since	1981,	I
estimate	I	have	taught	embedded	systems	to	over	5000	students.	My	students	have
recharged	my	energy	each	semester	with	their	enthusiasm,	dedication,	and	quest	for
knowledge.	I	have	decided	not	to	acknowledge	them	all	individually.	However,	they	know
I	feel	privileged	to	have	had	this	opportunity.

Next,	I	appreciate	the	patience	and	expertise	of	my	fellow	faculty	members	here	at	the
University	of	Texas	at	Austin.	From	a	personal	perspective	Dr.	John	Pearce	provided
much	needed	encouragement	and	support	throughout	my	career.	In	addition,	Drs.	John
Cogdell,	John	Pearce,	and	Francis	Bostick	helped	me	with	analog	circuit	design.	The	book
and	accompanying	software	include	many	finite	state	machines	derived	from	the	digital
logic	examples	explained	to	me	by	Dr.	Charles	Roth.	Over	the	last	few	years,	I	have
enjoyed	teaching	embedded	systems	with	Drs.	Ramesh	Yerraballi,	Mattan	Erez,	Andreas
Gerstlauer,	Vijay	Janapa	Reddi,	Nina	Telang,	and	Bill	Bard.	Bill	has	contributed	to	both
the	excitement	and	substance	of	our	laboratory	based	on	this	book.	With	pushing	from	Bill
and	TAs	Robin,	Glen,	Lev,	and	John,	we	have	added	low	power,	PCB	layout,	systems
level	design,	surface	mount	soldering,	and	wireless	communication	to	our	lab	experience.
You	can	see	descriptions	and	photos	of	our	EE445L	design	competition	at
http://users.ece.utexas.edu/~valvano/.	Many	of	the	suggestions	and	corrections	from
Chris	Shore	and	Drew	Barbier	of	ARM	about	Volume	1	applied	equally	to	this	volume.
Austin	Blackstone	created	and	debugged	the	Code	Composer	StudioTM	versions	of	the
example	programs	posted	on	the	web.	Austin	also	taught	me	how	to	run	the	CC3000	and
CC3100	WiFi	examples	on	the	LaunchPad.

Sincerely,	I	appreciate	the	valuable	lessons	of	character	and	commitment	taught	to	me	by
my	parents	and	grandparents.	I	recall	how	hard	my	parents	and	grandparents	worked	to
make	the	world	a	better	place	for	the	next	generation.	Most	significantly,	I	acknowledge
the	love,	patience	and	support	of	my	wife,	Barbara,	and	my	children,	Ben	Daniel	and	Liz.
In	particular,	Dan	designed	and	tested	most	of	the	LM3S	and	LM4F/TM4C	software
presented	in	this	book.

By	the	grace	of	God,	I	am	truly	the	happiest	man	on	the	planet,	because	I	am	surrounded
by	these	fine	people.	Good	luck.

Jonathan	W.	Valvano

The	true	engineering	experience	occurs	not	with	your	eyes	and	ears,	but	rather	with
your	fingers	and	elbows.	In	other	words,	engineering	education	does	not	happen	by
listening	in	class	or	reading	a	book;	rather	it	happens	by	designing	under	the
watchful	eyes	of	a	patient	mentor.	So,	go	build	something	today,	then	show	it	to
someone	you	respect!

	

1.	Introduction	to	Embedded	Systems
Chapter	1	objectives	are	to:
•	Review	computer	architecture

•	Introduce	embedded	systems

•	Present	a	process	for	design

•	Discuss	practical	aspects	of	digital	logic,	including	open	collector

•	Review	how	numbers	are	represented	in	binary

•	Define	ethics
	

The	overall	objective	of	this	book	is	to	teach	the	design	of	embedded	systems.	It	is
effective	to	learn	new	techniques	by	doing	them.	But,	the	dilemma	in	teaching	a
laboratory-based	topic	like	embedded	systems	is	that	there	is	a	tremendous	volume	of
details	that	first	must	be	learned	before	hardware	and	software	systems	can	be	designed.	
The	approach	taken	in	this	book	is	to	learn	by	doing,	starting	with	very	simple	problems
and	building	up	to	more	complex	systems	later	in	the	book.

In	this	chapter	we	begin	by	introducing	some	terminology	and	basic	components	of	a
computer	system.		In	order	to	understand	the	context	of	our	designs,	we	will	overview	the
general	characteristics	of	embedded	systems.		It	is	in	these	discussions	that	we	develop	a
feel	for	the	range	of	possible	embedded	applications.		Next	we	will	present	a	template	to
guide	us	in	design.	We	begin	a	project	with	a	requirements	document.	Embedded	systems
interact	with	physical	devices.	Often,	we	can	describe	the	physical	world	with
mathematical	models.	If	a	model	is	available,	we	can	then	use	it	to	predict	how	the
embedded	system	will	interface	with	the	real	world.	When	we	write	software,	we
mistakenly	think	of	it	as	one	dimensional,	because	the	code	looks	sequential	on	the
computer	screen.	Data	flow	graphs,	call	graphs,	and	flow	charts	are	multidimensional
graphical	tools	to	understand	complex	behaviors.	Because	courses	taught	using	this	book
typically	have	a	lab	component,	we	will	review	some	practical	aspects	of	digital	logic.	

Next,	we	show	multiple	ways	to	represent	numbers	in	the	computer.	Choosing	the	correct
format	is	necessary	to	implement	efficient	and	correct	solutions.	Fixed-point	numbers	are
the	typical	way	embedded	systems	represent	non-integer	values.	Floating-point	numbers,
typically	used	to	represent	non-integer	values	on	a	general	purpose	computer,	will	also	be
presented.

Because	embedded	systems	can	be	employed	in	safety	critical	applications,	it	is	important
for	engineers	be	both	effective	and	ethical.	Throughout	the	book	we	will	present	ways	to
verify	the	system	is	operating	within	specifications.

	

1.1.	Computer	Architecture

1.1.1.	Computers,	microprocessors,	memory,	and
microcontrollers
A	computer	combines	a	processor,	random	access	memory	(RAM),	read	only	memory
(ROM),	and	input/output	(I/O)	ports.	The	common	bus	in	Figure	1.1	defines	the	von
Neumann	architecture,	where	instructions	are	fetched	from	ROM	on	the	same	bus	as	data
fetched	from	RAM.		Software	is	an	ordered	sequence	of	very	specific	instructions	that	are
stored	in	memory,	defining	exactly	what	and	when	certain	tasks	are	to	be	performed.	The
processor	executes	the	software	by	retrieving	and	interpreting	these	instructions	one	at	a
time.		A	microprocessor	is	a	small	processor,	where	small	refers	to	size	(i.e.,	it	fits	in	your
hand)	and	not	computational	ability.	For	example,	Intel	Xeon,	AMD	FX	and	Sun	SPARC
are	microprocessors.	An	ARM ® 	CortexTM-M	microcontroller	includes	a	processor
together	with	the	bus	and	some	peripherals.	A	microcomputer	is	a	small	computer,	where
again	small	refers	to	size	(i.e.,	you	can	carry	it)	and	not	computational	ability.	For
example,	a	desktop	PC	is	a	microcomputer.

Figure	1.1.	The	basic	components	of	a	computer	system	include	processor,
memory	and	I/O.
A	very	small	microcomputer,	called	a	microcontroller,	contains	all	the	components	of	a
computer	(processor,	memory,	I/O)	on	a	single	chip.		As	shown	in	Figure	1.2,	the	Atmel
ATtiny,	the	Texas	Instruments	MSP430,	and	the	Texas	Instruments	TM4C123	are
examples	of	microcontrollers.		Because	a	microcomputer	is	a	small	computer,	this	term
can	be	confusing	because	it	is	used	to	describe	a	wide	range	of	systems	from	a	6-pin
ATtiny4	running	at	1	MHz	with	512	bytes	of	program	memory	to	a	personal	computer
with	state-of-the-art	64-bit	multi-core	processor	running	at	multi-GHz	speeds	having
terabytes	of	storage.	

The	computer	can	store	information	in	RAM	by	writing	to	it,	or	it	can	retrieve	previously
stored	data	by	reading	from	it.		Most	RAMs	are	volatile;	meaning	if	power	is	interrupted
and	restored	the	information	in	the	RAM	is	lost.	Most	microcontrollers	have	static	RAM
(SRAM)	using	six	metal-oxide-semiconductor	field-effect	transistors	(MOSFET)	to	create
each	memory	bit.	Four	transistors	are	used	to	create	two	cross-coupled	inverters	that	store
the	binary	information,	and	the	other	two	are	used	to	read	and	write	the	bit.

Figure	1.2.	A	microcontroller	is	a	complete	computer	on	a	single	chip.
Information	is	programmed	into	ROM	using	techniques	more	complicated	than	writing	to
RAM.		From	a	programming	viewpoint,	retrieving	data	from	a	ROM	is	identical	to
retrieving	data	from	RAM.	ROMs	are	nonvolatile;	meaning	if	power	is	interrupted	and
restored	the	information	in	the	ROM	is	retained.	Some	ROMs	are	programmed	at	the
factory	and	can	never	be	changed.		A	Programmable	ROM	(PROM)	can	be	erased	and
reprogrammed	by	the	user,	but	the	erase/program	sequence	is	typically	10000	times
slower	than	the	time	to	write	data	into	a	RAM.		PROMs	used	to	need	ultraviolet	light	to
erase,	and	then	we	programmed	them	with	voltages.		Now,	most	PROMs	now	are
electrically	erasable	(EEPROM),	which	means	they	can	be	both	erased	and	programmed
with	voltages.	We	cannot	program	ones	into	the	ROM.	We	first	erase	the	ROM,	which
puts	ones	into	its	storage	memory,	and	then	we	program	the	zeros	as	needed.	Flash	ROM
is	a	popular	type	of	EEPROM.	Each	flash	bit	requires	only	two	MOSFET	transistors.	The
input	(gate)	of	one	transistor	is	electrically	isolated,	so	if	we	trap	charge	on	this	input,	it
will	remain	there	for	years.	The	other	transistor	is	used	to	read	the	bit	by	sensing	whether
or	not	the	other	transistor	has	trapped	charge.		In	regular	EEPROM,	you	can	erase	and
program	individual	bytes.	Flash	ROM	must	be	erased	in	large	blocks.	On	many	of
LM3S/LM4F/TM4C	microcontrollers,	we	can	erase	the	entire	ROM	or	just	a	1024-byte
block.	Because	flash	is	smaller	than	regular	EEPROM,	most	microcontrollers	have	a	large
flash	into	which	we	store	the	software.	For	all	the	systems	in	this	book,	we	will	store
instructions	and	constants	in	flash	ROM	and	place	variables	and	temporary	data	in	static
RAM.	

Checkpoint	1.1:	What	are	the	differences	between	a	microcomputer,	a	microprocessor
and	a	microcontroller?	

Checkpoint	1.2:	Which	has	a	higher	information	density	on	the	chip	in	bits	per	mm2:
static	RAM	or	flash	ROM?		Assume	all	MOSFETs	are	approximately	the	same	size	in
mm2.

Observation:	Memory	is	an	object	that	can	transport	information	across	time.

The	external	devices	attached	to	the	microcontroller	provide	functionality	for	the	system.
An	input	port	is	hardware	on	the	microcontroller	that	allows	information	about	the
external	world	to	be	entered	into	the	computer.	The	microcontroller	also	has	hardware
called	an	output	port	to	send	information	out	to	the	external	world.	Most	of	the	pins
shown	in	Figure	1.2	are	input/output	ports.	

An	interface	is	defined	as	the	collection	of	the	I/O	port,	external	electronics,	physical
devices,	and	the	software,	which	combine	to	allow	the	computer	to	communicate	with	the
external	world.	An	example	of	an	input	interface	is	a	switch,	where	the	operator	toggles
the	switch,	and	the	software	can	recognize	the	switch	position.	An	example	of	an	output
interface	is	a	light-emitting	diode	(LED),	where	the	software	can	turn	the	light	on	and	off,
and	the	operator	can	see	whether	or	not	the	light	is	shining.		There	is	a	wide	range	of
possible	inputs	and	outputs,	which	can	exist	in	either	digital	or	analog	form.	In	general,	we
can	classify	I/O	interfaces	into	four	categories

Parallel	-	binary	data	are	available	simultaneously	on	a	group	of	lines

Serial	-	binary	data	are	available	one	bit	at	a	time	on	a	single	line

Analog	-	data	are	encoded	as	an	electrical	voltage,	current,	or	power

Time	-	data	are	encoded	as	a	period,	frequency,	pulse	width,	or	phase	shift

	

Checkpoint	1.3:	What	are	the	differences	between	an	input	port	and	an	input	interface?	

Checkpoint	1.4:	List	three	input	interfaces	available	on	a	personal	computer.

Checkpoint	1.5:	List	three	output	interfaces	available	on	a	personal	computer.

In	this	book,	numbers	that	start	with	0x	(e.g.,	0x64)	are	specified	in	hexadecimal,	which
is	base	16	(0x64	=	6*161+4*160	=	100).	Some	assemblers	start	hexadecimal	numbers	with
$	(e.g.,	$64).	Other	assembly	languages	add	an	“H”	at	the	end	to	specify	hexadecimal
(e.g.,	64H	or	64h).	Yale	Patt’s	LC3	assembler	uses	just	the	“x”	(e.g.,	x64).

In	a	system	with	memory	mapped	I/O,	as	shown	in	Figure	1.1,	the	I/O	ports	are
connected	to	the	processor	in	a	manner	similar	to	memory.	I/O	ports	are	assigned
addresses,	and	the	software	accesses	I/O	using	reads	and	writes	to	the	specific	I/O
addresses.		The	software	inputs	from	an	input	port	using	the	same	instructions	as	it	would
if	it	were	reading	from	memory.	Similarly,	the	software	outputs	from	an	output	port	using
the	same	instructions	as	it	would	if	it	were	writing	to	memory.	A	bus	is	defined	as	a
collection	of	signals,	which	are	grouped	for	a	common	purpose.	The	bus	has	three	types	of
signals:	address	signals,	data	signals,	and	control	signals.		Together,	the	bus	directs	the
data	transfer	between	the	various	modules	in	the	computer.	There	are	five	buses	on
ARM ® 	CortexTM-M	processor,	as	illustrated	in	Figure	1.3.	The	address	specifies	which
module	is	being	accessed,	and	the	data	contains	the	information	being	transferred.	The
control	signals	specify	the	direction	of	transfer,	the	size	of	the	data,	and	timing
information.	The	ICode	bus	is	used	to	fetch	instructions	from	flash	ROM.	All	ICode	bus
fetches	contain	32	bits	of	data,	which	may	be	one	or	two	instructions.	The	DCode	bus	can
fetch	data	or	debug	information	from	flash	ROM.	The	system	bus	can	read/write	data
from	RAM	or	I/O	ports.	The	private	peripheral	bus	(PPB)	can	access	some	of	the

common	peripherals	like	the	interrupt	controller.	The	multiple-bus	architecture	allows
simultaneous	bus	activity,	greatly	improving	performance	over	single-bus	architectures.
For	example,	the	processor	can	simultaneously	fetch	an	instruction	out	of	flash	ROM
using	the	ICode	bus	while	it	writes	data	into	RAM	using	the	system	bus.	From	a	software
development	perspective,	the	fact	that	there	are	multiple	buses	is	transparent.	This	means
we	write	code	like	we	would	on	any	computer,	and	the	parallel	operations	occur
automatically.	The	TM4C123	has	256	kibibytes	(218	bytes)	of	flash	ROM	and	32768	bytes
of	RAM.	The	TM4C1294	has	1024	kibibytes	(220	bytes)	of	flash	ROM	and	256	kibibytes
of	RAM.	The	RAM	begins	at	0x2000.0000,	and	the	flash	ROM	begins	at	0x0000.0000.

	 TM4C123 	 	 TM4C1294

0x0000.0000 256k 	 0x0000.0000 1024k

∙∙∙ Flash 	 ∙∙∙ Flash

0x0003.FFFF ROM 	 0x000F.FFFF ROM

	 	 	 	 	

0x2000.0000 32k 	 0x2000.0000 256k

∙∙∙ Static 	 ∙∙∙ Static

0x2000.7FFF RAM 	 0x2003.FFFF RAM

	

Figure	1.3.	Harvard	architecture	of	an	ARM®Cortex� -M-based
microcontroller.
The	CortexTM-M4	series	includes	an	additional	bus	called	the	Advanced	High-
Performance	Bus	(AHB	or	AHPB).	This	bus	improves	performance	when	communicating
with	high-speed	I/O	devices	like	USB.		In	general,	the	more	operations	that	can	be
performed	in	parallel,	the	faster	the	processor	will	execute.	In	summary:

ICode	bus														Fetch	opcodes	from	ROM

DCode	bus														Read	constant	data	from	ROM

System	bus														Read/write	data	from	RAM	or	I/O,	fetch	opcode	from	RAM

PPB																												Read/write	data	from	internal	peripherals	like	the	NVIC

AHB																												Read/write	data	from	high-speed		I/O	and	parallel	ports	(M4	only)

	

Instructions	and	data	are	accessed	the	same	way	on	a	von	Neumann	machine.	The
CortexTM-M	processor	is	a	Harvard	architecture	because	instructions	are	fetched	on	the
ICode	bus	and	data	accessed	on	the	system	bus.	The	address	signals	on	the	ARM ®
CortexTM-M	processor	include	32	lines,	which	together	specify	the	memory	address
(0x0000.0000	to	0xFFFF.FFFF)	that	is	currently	being	accessed.	The	address	specifies
both	which	module	(input,	output,	RAM,	or	ROM)	as	well	as	which	cell	within	the
module	will	communicate	with	the	processor.	The	data	signals	contain	the	information	that
is	being	transferred	and	also	include	32	bits.	However,	on	the	system	bus	it	can	also
transfer	8-bit	or	16-bit	data.	The	control	signals	specify	the	timing,	the	size,	and	the
direction	of	the	transfer.	We	call	a	complete	data	transfer	a	bus	cycle.	Two	types	of
transfers	are	allowed,	as	shown	in	Table	1.1.	In	most	systems,	the	processor	always
controls	the	address	(where	to	access),	the	direction	(read	or	write),	and	the	control	(when
to	access.)	

Type Address	Driven
by

Data	Driven	by Transfer

Read	Cycle Processor RAM,	ROM	or
Input

Data	copied	to
processor

Write	Cycle Processor Processor Data	copied	to	output
or	RAM

Table	1.1.	Simple	computers	generate	two	types	of	bus	cycles.

	

A	read	cycle	is	used	to	transfer	data	into	the	processor.	During	a	read	cycle	the	processor
first	places	the	address	on	the	address	signals,	and	then	the	processor	issues	a	read
command	on	the	control	signals.	The	slave	module	(RAM,	ROM,	or	I/O)	will	respond	by
placing	the	contents	at	that	address	on	the	data	signals,	and	lastly	the	processor	will	accept
the	data	and	disable	the	read	command.

The	processor	uses	a	write	cycle	to	store	data	into	memory	or	I/O.	During	a	write	cycle
the	processor	also	begins	by	placing	the	address	on	the	address	signals.		Next,	the
processor	places	the	information	it	wishes	to	store	on	the	data	signals,	and	then	the
processor	issues	a	write	command	on	the	control	signals.	The	memory	or	I/O	will	respond
by	storing	the	information	into	the	proper	place,	and	after	the	processor	is	sure	the	data	has
been	captured,	it	will	disable	the	write	command.

The	bandwidth	of	an	I/O	interface	is	the	number	of	bytes/sec	that	can	be	transferred.	If
we	wish	to	transfer	data	from	an	input	device	into	RAM,	the	software	must	first	transfer
the	data	from	input	to	the	processor,	then	from	the	processor	into	RAM.	On	the	ARM,	it
will	take	multiple	instructions	to	perform	this	transfer.	The	bandwidth	depends	both	on	the
speed	of	the	I/O	hardware	and	the	software	performing	the	transfer.	In	some
microcontrollers	like	the	TM4C123	and	TM4C1294,	we	will	be	able	to	transfer	data
directly	from	input	to	RAM	or	RAM	to	output	using	direct	memory	access	(DMA).	When
using	DMA	the	software	time	is	removed,	so	the	bandwidth	only	depends	on	the	speed	of
the	I/O	hardware.	Because	DMA	is	faster,	we	will	use	this	method	to	interface	high
bandwidth	devices	like	disks	and	networks.		During	a	DMA	read	cycle	data	flows	directly
from	the	memory	to	the	output	device.	General	purpose	computers	also	support	DMA
allowing	data	to	be	transferred	from	memory	to	memory.	During	a	DMA	write	cycle	data
flows	directly	from	the	input	device	to	memory.

Input/output	devices	are	important	in	all	computers,	but	they	are	especially	significant	in
an	embedded	system.	In	a	computer	system	with	I/O-mapped	I/O,	the	control	bus	signals
that	activate	the	I/O	are	separate	from	those	that	activate	the	memory	devices.	These
systems	have	a	separate	address	space	and	separate	instructions	to	access	the	I/O	devices.
The	original	Intel	8086	had	four	control	bus	signals	MEMR,	MEMW,	IOR,	and	IOW.
MEMR	and	MEMW	were	used	to	read	and	write	memory,	while	IOR	and	IOW	were	used
to	read	and	write	I/O.	The	Intel	x86	refers	to	any	of	the	processors	that	Intel	has	developed
based	on	this	original	architecture.	Even	though	we	do	not	consider	the	personal	computer
(PC)	an	embedded	system,	there	are	embedded	systems	developed	on	this	architecture.
One	such	platform	is	called	the	PC/104	Embedded-PC.	The	Intel	x86	processors	continue
to	implement	this	separation	betweenmemory	and	I/O.	Rather	than	use	the	regular
memory	access	instructions,	the	Intel	x86	processor	uses	special in and out 	instructions	to
access	the	I/O	devices.	The	advantages	of	I/O-mapped	I/O	are	that	software	can	not
inadvertently	access	I/O	when	it	thinks	it	is	accessing	memory.	In	other	words,	it	protects
I/O	devices	from	common	software	bugs,	such	as	bad	pointers,	stack	overflow,	and	buffer
overflows.	In	contrast,	systems	with	memory-mapped	I/O	are	easier	to	design,	and	the
software	is	easier	to	write.

1.1.2.	CortexTM-M	processor
The	ARM ® 	CortexTM-M	processor	has	four	major	components,	as	illustrated	in	Figure
1.4.	There	are	four	bus	interface	units	(BIU)	that	read	data	from	the	bus	during	a	read
cycle	and	write	data	onto	the	bus	during	a	write	cycle.	Both	the	TM4C123	and	TM4C1294
microcontrollers	support	DMA.	The	BIU	always	drives	the	address	bus	and	the	control
signals	of	the	bus.	The	effective	address	register	(EAR)	contains	the	memory	address
used	to	fetch	the	data	needed	for	the	current	instruction.	CortexTM-M	microcontrollers
executeThumb ® 	instructions	extended	with	Thumb-2	technology.	An	overview	of	these
instructions	will	be	presented	in	Chapter	2.	The	CortexTM-M4F	microcontrollers	include	a
floating-point	processor.	However,	in	this	book	we	will	focus	on	integer	and	fixed-point
arithmetic.

Figure	1.4.	The	four	basic	components	of	a	processor.
The	control	unit	(CU)	orchestrates	the	sequence	of	operations	in	the	processor.	The	CU
issues	commands	to	the	other	three	components.	The	instruction	register	(IR)	contains
the	operation	code	(or	op	code)	for	the	current	instruction.	When	extended	with	Thumb-2
technology,	op	codes	are	either	16	or	32	bits	wide.		In	an	embedded	system	the	software	is
converted	to	machine	code,	which	is	a	list	of	instructions,	and	stored	in	nonvolatile	flash
ROM.	As	instructions	are	fetched,	they	are	placed	in	a	pipeline.	This	allows	instruction
fetching	to	run	ahead	of	execution.	Instructions	are	fetched	in	order	and	executed	in	order.
However,	it	can	execute	one	instruction	while	fetching	the	next.

The	registers	are	high-speed	storage	devices	located	in	the	processor	(e.g.,	R0	to	R15).
Registers	do	not	have	addresses	like	regular	memory,	but	rather	they	have	specific
functions	explicitly	defined	by	the	instruction.	Registers	can	contain	data	or	addresses.
The	program	counter	(PC)	points	to	the	memory	containing	the	instruction	to	execute
next.	On	the	ARM ® 	CortexTM-M	processor,	the	PC	is	register	15	(R15).	In	an	embedded
system,	the	PC	usually	points	into	nonvolatile	memory	like	flash	ROM.	The	information
stored	in	nonvolatile	memory	(e.g.,	the	instructions)	is	not	lost	when	power	is	removed.
The	stack	pointer	(SP)	points	to	the	RAM,	and	defines	the	top	of	the	stack.	The	stack
implements	last	in	first	out	(LIFO)	storage.	On	the	ARM ® 	CortexTM-M	processor,	the	SP
is	register	13	(R13).	The	stack	is	an	extremely	important	component	of	software
development,	which	can	be	used	to	pass	parameters,	save	temporary	information,	and
implement	local	variables.	The	program	status	register	(PSR)	contains	the	status	of	the
previous	operation,	as	well	as	some	operating	mode	flags	such	as	the	interrupt	enable	bit.
This	register	is	called	the	flag	register	on	the	Intel	computers.

The	arithmetic	logic	unit	(ALU)	performs	arithmetic	and	logic	operations.	Addition,
subtraction,	multiplication	and	division	are	examples	of	arithmetic	operations.	And,	or,
exclusive	or,	and	shift	are	examples	of	logical	operations.

		Checkpoint	1.6:	For	what	do	the	acronyms	CU	DMA	BIU	ALU	stand?

In	general,	the	execution	of	an	instruction	goes	through	four	phases.	First,	the	computer
fetches	the	machine	code	for	the	instruction	by	reading	the	value	in	memory	pointed	to	by
the	program	counter	(PC).	Some	instructions	are	16	bits,	while	others	are	32	bits.	After
each	instruction	is	fetched,	the	PC	is	incremented	to	the	next	instruction.	At	this	time,	the
instruction	is	decoded,	and	the	effective	address	is	determined	(EAR).	Many	instructions
require	additional	data,	and	during	phase	2	the	data	is	retrieved	from	memory	at	the
effective	address.	Next,	the	actual	function	for	this	instruction	is	performed.	During	the
last	phase,	the	results	are	written	back	to	memory.	All	instructions	have	a	phase	1,	but	the
other	three	phases	may	or	may	not	occur	for	any	specific	instruction.

On	the	ARM ® 	CortexTM-M	processor,	an	instruction	may	read	memory	or	write	memory,
but	it	does	not	both	read	and	write	memory	in	the	same	instruction.	Each	of	the	phases
may	require	one	or	more	bus	cycles	to	complete.	Each	bus	cycle	reads	or	writes	one	piece
of	data.	Because	of	the	multiple	bus	architecture,	most	instructions	execute	in	one	or	two
cycles.	For	more	information	on	the	time	to	execute	instructions,	see	Table	3.1	in	the
CortexTM-M	Technical	Reference	Manual.	ARM	is	a	reduced	instruction	set	computer
(RISC),	which	achieves	high	performance	by	implementing	very	simple	instructions	that
run	extremely	fast.

Phase Function Bus Address Comment

		1 Instruction
fetch

Read PC++ Put	into	IR

		2 Data	read Read EAR Data	passes	through
ALU

		3 Operation - - ALU	operations,	set
PSR

		4 Data	store Write EAR Results	stored	in
memory

Table	1.2.	Four	phases	of	execution.

An	instruction	on	a	RISC	processor	does	not	have	both	a	phase	2	data	read	cycle	and	a
phase	4	data	write	cycle.	In	general,	a	RISC	processor	has	a	small	number	of	instructions,
instructions	have	fixed	lengths,	instructions	execute	in	1	or	2	bus	cycles,	there	are	only	a
few	instructions	(e.g.,	load	and	store)	that	can	access	memory,	no	one	instruction	can	both
read	and	write	memory	in	the	same	instruction,	there	are	many	identical	general	purpose
registers,	and	there	are	a	limited	number	of	addressing	modes.

Conversely,	processors	are	classified	as	complex	instruction	set	computers	(CISC),
because	one	instruction	is	capable	of	performing	multiple	memory	operations.	For
example,	CISC	processors	have	instructions	that	can	both	read	and	write	memory	in	the
same	instruction.	Assume Data 	is	an	8-bit	memory	variable.	The	following	Intel	8080
instruction	will	increment	the	8-bit	variable,	requiring	a	read	memory	cycle,	ALU
operation,	and	then	a	write	memory	cycle.

		INR	Data					;	Intel	8080
	

Other	CISC	processors	like	the	6800,	9S12,	8051,	and	Pentium	also	have	memory
increment	instructions	requiring	both	a	phase	2	data	read	cycle	and	a	phase	4	data	write
cycle.	In	general,	a	CISC	processor	has	a	large	number	of	instructions,	instructions	have
varying	lengths,	instructions	execute	in	varying	times,	there	are	many	instructions	that	can
access	memory,	the	processor	can	both	read	and	write	memory	in	one	instruction,	the
processor	has	fewer	and	more	specialized	registers,	and	the	processor	has	many	addressing
modes.

1.1.3.	History
In	1968,	two	unhappy	engineers	named	Bob	Noyce	and	Gordon	Moore	left	the	Fairchild
Semiconductor	Company	and	created	their	own	company,	which	they	called	Integrated
Electronics	(Intel).	Working	for	Intel	in	1971,	Federico	Faggin,	Ted	Hoff,	and	Stan	Mazor
invented	the	first	single	chip	microprocessor,	the	Intel	4004.	It	was	a	four-bit	processor
designed	to	solve	a	very	specific	application	for	a	Japanese	company	called	Busicon.
Busicon	backed	out	of	the	purchase,	so	Intel	decided	to	market	it	as	a	“general	purpose”
microprocessing	system.		The	product	was	a	success,	which	lead	to	a	series	of	more
powerful	microprocessors:	the	Intel	8008	in	1974,	the	Intel	8080	also	in	1974.		Both	the
Intel	8008	and	the	Intel	8080	were	8-bit	microprocessors	that	operated	from	a	single	+5V
power	supply	using	N-channel	metal-oxide	semiconductor	(NMOS)	technology.

Seeing	the	long	term	potential	for	this	technology,	Motorola	released	its	MC6800	in	1974,
which	was	also	an	8-bit	processor	with	about	the	same	capabilities	of	the	8080.		Although
similar	in	computing	power,	the	8080	and	6800	had	very	different	architectures.		The	8080
used	isolated	I/O	and	handled	addresses	in	a	fundamentally	different	way	than	data.
Isolated	I/O	defines	special	hardware	signals	and	special	instructions	for	input/output.		On
the	8080,	certain	registers	had	capabilities	designed	for	addressing,	while	other	registers
had	capabilities	for	specific	for	data	manipulation.	In	contrast,	the	6800	used	memory-
mapped	I/O	and	handled	addresses	and	data	in	a	similar	way.		As	we	defined	earlier,
input/output	on	a	system	with	memory-mapped	I/O	is	performed	in	a	manner	similar	to
accessing	memory.															

During	the	1980s	and	1990s,	Motorola	and	Intel	traveled	down	similar	paths.	The
microprocessor	families	from	both	companies	developed	bigger	and	faster	products:	Intel
8085,	8088,	80x86,	…	and	the	Motorola	6809,	68000,	680x0…	During	the	early	1980’s
another	technology	emerged,	the	microcontroller.		In	sharp	contrast	to	the	microprocessor
family,	which	optimized	computational	speed	and	memory	size	at	the	expense	of	power
and	physical	size,	the	microcontroller	devices	minimized	power	consumption	and	physical
size,	striving	for	only	modest	increases	in	computational	speed	and	memory	size.	Out	of
the	Intel	architecture	came	the	8051	family	(www.semiconductors.philips.com),	and	out	of
the	Motorola	architecture	came	the	6805,	6811,	and	6812	microcontroller	family
(www.freescale.com).	Many	of	the	same	fundamental	differences	that	existed	between	the
original	8-bit	Intel	8080	and	Motorola	6800	have	persisted	over	forty	years	of
microprocessor	and	microcontroller	developments.		In	1999,	Motorola	shipped	its	2
billionth	MC68HC05	microcontroller.	In	2004,	Motorola	spun	off	its	microcontroller
products	as	Freescale	Semiconductor.	Microchip	is	a	leading	supplier	of	8-bit
microcontrollers.

The	first	ARM	processor	was	conceived	in	the	1983	by	Acorn	Computers,	which	at	the
time	was	one	of	the	leaders	of	business	computers	in	the	United	Kingdom.	The	first	chips
were	delivered	in	1985.	At	that	time	ARM	referred	to	Acorn	RISC	Machine.	In	1990,	a
new	company	ARM	Ltd	was	formed	with	Acorn,	Apple,	and	VLSI	Technology	as
founding	partners,	changing	the	ARM	acronym	to	Advanced	RISC	Machine.	As	a
company,	the	ARM	business	model	involves	the	designing	and	licensing	of	intellectual
property	(IP)	rather	than	the	manufacturing	and	selling	of	actual	semiconductor	chips.
ARM	has	sold	600	processor	licenses	to	more	than	200	companies.	Virtually	every
company	that	manufacturers	integrated	circuits	in	the	computer	field	produces	a	variant	of
the	ARM	processor.	ARM	currently	dominates	the	high-performance	low-power
embedded	system	market.	ARM	processors	account	for	approximately	90%	of	all
embedded	32-bit	RISC	processors	and	are	used	in	consumer	electronics,	including	PDAs,
cell	phones,	music	players,	hand-held	game	consoles,	and	calculators.	The	ARM	Cortex-A
is	used	in	applications	processors,	such	as	smartphones.	The	ARM	Cortex-R	is	appropriate
for	real-time	applications,	and	ARM	Cortex-M	targets	microcontrollers.	Examples	of
microcontrollers	built	using	the	ARM ® 	CortexTM-M	core	are	LM3S/TM4C	by	Texas
Instruments,	STM32	by	STMicroelectronics,	LPC17xx	by	NXP	Semiconductors,
TMPM330	by	Toshiba,	EM3xx	by	Ember,	AT91SAM3	by	Atmel,	and	EFM32	by	Energy
Micro.	As	of	June	2014	over	50	billion	ARM	processors	have	shipped	from	over	950
companies.

What	will	the	future	unfold?	One	way	to	predict	the	future	is	to	study	the	past.	How
embedded	systems	interact	with	humans	has	been	and	will	continue	to	be	critical.
Improving	the	human	experience	has	been	the	goal	of	many	systems.	Many	predict	the
number	of	microcontrollers	will	soon	reach	into	the	trillions.	As	this	happens,
communication,	security,	energy,	politics,	resources,	and	economics	will	be	become
increasingly	important.	When	there	are	this	many	computers,	it	will	be	possible	to	make
guesses	about	how	to	change,	then	let	a	process	like	evolution	select	which	changes	are
beneficial.	In	fact,	a	network	of	embedded	systems	with	tight	coupling	to	the	real	world,
linked	together	for	a	common	objective,	is	now	being	called	a	cyber-physical	system
(CPS).

One	constant	describing	the	history	of	computers	is	continuous	change	coupled	with
periodic	monumental	changes.	Therefore,	engineers	must	focus	their	education	on
fundamental	principles	rather	than	the	voluminous	details.	They	must	embrace	the	concept
of	lifelong	learning.	Most	humans	are	fundamentally	good,	but	some	are	not.	Therefore,
engineers	acting	in	an	ethical	manner	can	guarantee	future	prosperity	of	the	entire	planet.		

1.2.	Embedded	Systems
An	embedded	system	is	an	electronic	system	that	includes	a	one	or	more	microcontrollers
that	is	configured	to	perform	a	specific	dedicated	application,	drawn	previously	as	Figure
1.1.	To	better	understand	the	expression	“embedded	system,”	consider	each	word
separately.	In	this	context,	the	word	embedded	means	“a	computer	is	hidden	inside	so	one
can’t	see	it.”	The	word	“system”	refers	to	the	fact	that	there	are	many	components	which
act	in	concert	achieving	the	common	goal.		As	mentioned	earlier,	input/output	devices
characterize	the	embedded	system,	allowing	it	to	interact	with	the	real	world.

The	software	that	controls	the	system	is	programmed	or	fixed	into	flash	ROM	and	is	not
accessible	to	the	user	of	the	device.		Even	so,	software	maintenance	is	still	extremely
important.		Software	maintenance	is	verification	of	proper	operation,	updates,	fixing	bugs,
adding	features,	and	extending	to	new	applications	and	end	user	configurations.
Embedded	systems	have	these	four	characteristics.

First,	embedded	systems	typically	perform	a	single	function.	Consequently,	they	solve	a
limited	range	of	problems.	For	example,	the	embedded	system	in	a	microwave	oven	may
be	reconfigured	to	control	different	versions	of	the	oven	within	a	similar	product	line.	But,
a	microwave	oven	will	always	be	a	microwave	oven,	and	you	can’t	reprogram	it	to	be	a
dishwasher.	Embedded	systems	are	unique	because	of	the	microcontroller’s	I/O	ports	to
which	the	external	devices	are	interfaced.	This	allows	the	system	to	interact	with	the	real
world.

Second,	embedded	systems	are	tightly	constrained.	Typically,	system	must	operate	within
very	specific	performance	parameters.	If	an	embedded	system	cannot	operate	with
specifications,	it	is	considered	a	failure	and	will	not	be	sold.	For	example,	a	cell-phone
carrier	typically	gets	832	radio	frequencies	to	use	in	a	city,	a	hand-held	video	game	must
cost	less	than	$50,	an	automotive	cruise	control	system	must	operate	the	vehicle	within	3
mph	of	the	set-point	speed,	and	a	portable	MP3	player	must	operate	for	12	hours	on	one
battery	charge.

Third,	many	embedded	systems	must	operate	in	real-time.		In	a	real-time	system,	we	can
put	an	upper	bound	on	the	time	required	to	perform	the	input-calculation-output	sequence.
A	real-time	system	can	guarantee	a	worst	case	upper	bound	on	the	response	time	between
when	the	new	input	information	becomes	available	and	when	that	information	is
processed.	Another	real-time	requirement	that	exists	in	many	embedded	systems	is	the
execution	of	periodic	tasks.	A	periodic	task	is	one	that	must	be	performed	at	equal	time
intervals.	A	real-time	system	can	put	a	small	and	bounded	limit	on	the	time	error	between
when	a	task	should	be	run	and	when	it	is	actually	run.	Because	of	the	real-time	nature	of
these	systems,	microcontrollers	in	the	TM4C	family	have	a	rich	set	of	features	to	handle
all	aspects	of	time.

The	fourth	characteristic	of	embedded	systems	is	their	small	memory	requirements	as
compared	to	general	purpose	computers.	There	are	exceptions	to	this	rule,	such	as	those
which	process	video	or	audio,	but	most	have	memory	requirements	measured	in	thousands
of	bytes.	Over	the	years,	the	memory	in	embedded	systems	as	increased,	but	the	gap
memory	size	between	embedded	systems	and	general	purpose	computers	remains.	The
original	microcontrollers	had	thousands	of	bytes	of	memory	and	the	PC	had	millions.
Now,	microcontrollers	can	have	millions	of	bytes,	but	the	PC	has	billions.

There	have	been	two	trends	in	the	microcontroller	field.	The	first	trend	is	to	make
microcontrollers	smaller,	cheaper,	and	lower	power.	The	Atmel	ATtiny,	Microchip	PIC,
and	Texas	Instruments	MSP430	families	are	good	examples	of	this	trend.	Size,	cost,	and
power	are	critical	factors	for	high-volume	products,	where	the	products	are	often
disposable.	On	the	other	end	of	the	spectrum	is	the	trend	of	larger	RAM	and	ROM,	faster
processing,	and	increasing	integration	of	complex	I/O	devices,	such	as	Ethernet,	radio,
graphics,	and	audio.	It	is	common	for	one	device	to	have	multiple	microcontrollers,	where
the	operational	tasks	are	distributed	and	the	microcontrollers	are	connected	in	a	local	area
network	(LAN).	These	high-end	features	are	critical	for	consumer	electronics,	medical
devices,	automotive	controllers,	and	military	hardware,	where	performance	and	reliability
are	more	important	than	cost.	However,	small	size	and	low	power	continue	as	important
features	for	all	embedded	systems.

The	RAM	is	volatile	memory,	meaning	its	information	is	lost	when	power	is	removed.	On
some	embedded	systems	a	battery	powers	the	microcontroller.	When	in	the	off	mode,	the
microcontroller	goes	into	low-power	sleep	mode,	which	means	the	information	in	RAM	is
maintained,	but	the	processor	is	not	executing.	The	MSP430	and	ATtiny	require	less	than
a � A	of	current	in	sleep	mode.

Checkpoint	1.7:	What	is	an	embedded	system?													

Checkpoint	1.8:	What	goes	in	the	RAM	on	a	smartphone?													

Checkpoint	1.9:	Why	does	your	smartphone	need	so	much	flash	ROM?													

The	computer	engineer	has	many	design	choices	to	make	when	building	a	real-time
embedded	system.	Often,	defining	the	problem,	specifying	the	objectives,	and	identifying
the	constraints	are	harder	than	actual	implementations.	In	this	book,	we	will	develop
computer	engineering	design	processes	by	introducing	fundamental	methodologies	for
problem	specification,	prototyping,	testing,	and	performance	evaluation.

A	typical	automobile	now	contains	an	average	of	ten	microcontrollers.	In	fact,	upscale
homes	may	contain	as	many	as	150	microcontrollers	and	the	average	consumer	now
interacts	with	microcontrollers	up	to	300	times	a	day.	The	general	areas	that	employ
embedded	systems	encompass	every	field	of	engineering:

•	Consumer	Electronics																																										•	Home

•	Communications																																										•	Automotive

•	Military																																																								•	Industrial

•	Business																																																								•	Shipping

•	Medical																																																								•	Computer	components

	
In	general,	embedded	systems	have	inputs,	perform	calculations,	make	decisions,	and	then
produce	outputs.	The	microcontrollers	often	must	communicate	with	each	other.	How	the
system	interacts	with	humans	is	often	called	the	human-computer	interface	(HCI)	or
man-machine	interface	(MMI).	To	get	a	sense	of	what	“embedded	system”	means	we
will	present	brief	descriptions	of	four	example	systems.

	
Example	1.1:	The	goal	of	a	pacemaker	is	to	regulate	and	improve	heart	function.	To	be
successful	the	engineer	must	understand	how	the	heart	works	and	how	disease	states	cause
the	heart	to	fail.	Its	inputs	are	sensors	on	the	heart	to	detect	electrical	activity,	and	its
outputs	can	deliver	electrical	pulses	to	stimulate	the	heart.	Consider	a	simple	pacemaker
with	two	sensors,	one	in	the	right	atrium	and	the	other	in	the	right	ventricle.	The	sensor
allows	the	pacemaker	to	know	if	the	normal	heart	contraction	is	occurring.	This
pacemaker	has	one	right	ventricular	stimulation	output.	The	embedded	system	analyzes
the	status	of	the	heart	deciding	where	and	when	to	send	simulation	pulses.	If	the
pacemaker	recognizes	the	normal	behavior	of	atrial	contraction	followed	shortly	by
ventricular	contraction,	then	it	will	not	stimulate.	If	the	pacemaker	recognizes	atrial
contraction	without	a	following	ventricular	contraction,	then	is	will	pace	the	ventricle
shortly	after	each	atrial	contraction.	If	the	pacemaker	senses	no	contractions	or	if	the
contractions	are	too	slow,	then	it	can	pace	the	ventricle	at	a	regular	rate.	A	pacemaker	can
also	communicate	via	radio	with	the	doctor	to	download	past	performance	and	optimize
parameters	for	future	operation.	Some	pacemakers	can	call	the	doctor	on	the	phone	when
it	senses	a	critical	problem.	Pacemakers	are	real-time	systems	because	the	time	delay
between	atrial	sensing	and	ventricular	triggering	is	critical.	Low	power	and	reliability	are
important.

	

	
Example	1.2:	The	goal	of	a	smoke	detector	is	to	warn	people	in	the	event	of	a	fire.	It	has
two	inputs.	One	is	a	chemical	sensor	that	detects	the	presence	of	smoke,	and	the	other	is	a
button	that	the	operator	can	push	to	test	the	battery.	There	are	also	two	outputs:	an	LED
and	the	alarm.	Most	of	the	time,	the	detector	is	in	a	low-power	sleep	mode.	If	the	test
button	is	pushed,	the	detector	performs	a	self-diagnostic	and	issues	a	short	sound	if	the
sensor	and	battery	are	ok.	Once	every	30	seconds,	it	wakes	up	and	checks	to	see	if	it
senses	smoke.	If	it	senses	smoke,	it	will	alarm.	Otherwise	it	goes	back	to	sleep.

Advanced	smoke	detectors	should	be	able	to	communicate	with	other	devices	in	the	home.
If	one	sensor	detects	smoke,	all	alarms	should	sound.	If	multiple	detectors	in	the	house
collectively	agree	there	is	really	a	fire,	they	could	communicate	with	the	fire	department
and	with	the	neighboring	houses.	To	design	and	deploy	a	collection	of	detectors,	the
engineer	must	understand	how	fires	start	and	how	they	spread.	Smoke	detectors	are	not
real-time	systems.	However,	reliability	and	low	power	are	important.

	

	
Example	1.3:	The	goal	of	a	motor	controller	is	to	cause	a	motor	to	spin	in	a	desired
manner.	Sometimes	we	control	speed,	as	in	the	cruise	control	on	an	automobile.
Sometimes	we	control	position	as	in	moving	paper	through	a	printer.	In	a	complex
robotics	system,	we	may	need	to	simultaneously	control	multiple	motors	and	multiple
parameters	such	as	position,	speed,	and	torque.	Torque	control	is	important	for	building	a
robot	that	walks.	The	engineer	must	understand	the	mechanics	of	how	the	motor	interacts
with	its	world	and	the	behavior	of	the	interface	electronics.	The	motor	controller	uses
sensors	to	measure	the	current	state	of	the	motor,	such	as	position,	speed,	and	torque.	The
controller	accepts	input	commands	defining	the	desired	operation.	The	system	uses
actuators,	which	are	outputs	that	affect	the	motor.	A	typical	actuator	allows	the	system	to
set	the	electrical	power	delivered	to	the	motor.		Periodically,	the	microcontroller	senses	the
inputs	and	calculates	the	power	needed	to	minimize	the	difference	between	measured	and
desired	parameters.	This	needed	power	is	output	to	the	actuator.	Motor	controllers	are	real-
time	systems,	because	performance	depends	greatly	on	when	and	how	fast	the	controller
software	runs.	Accuracy,	stability,	and	time	are	important.

	

	
Example	1.4:	The	goal	of	a	traffic	controller	is	to	minimize	waiting	time	and	to	save
energy.	The	engineer	must	understand	the	civil	engineering	of	how	city	streets	are	laid	out
and	the	behavior	of	human	drivers	as	they	interact	with	traffic	lights	and	other	drivers.	The
controller	uses	sensors	to	know	the	number	of	cars	traveling	on	each	segment	of	road.
Pedestrians	can	also	push	walk	buttons.	The	controller	will	accept	input	commands	from
the	fire	or	police	department	to	handle	emergencies.	The	outputs	are	the	traffic	lights	at
each	intersection.		The	controller	collects	sensor	inputs	and	calculates	the	traffic	pattern
needed	to	minimize	waiting	time,	while	maintaining	safety.	Traffic	controllers	are	not	real-
time	systems,	because	human	safety	is	not	sacrificed	if	a	request	is	delayed.	In	contrast,	an
air	traffic	controller	must	run	in	real	time,	because	safety	is	compromised	if	a	response	to
a	request	is	delayed.	The	system	must	be	able	to	operate	under	extreme	conditions	such	as
rain,	snow,	freezing	temperature,	and	power	outages.	Computational	speed	and
sensor/light	reliability	are	important.

	
Checkpoint	1.10:	There	is	a	microcontroller	embedded	in	an	alarm	clock.	List	three
operations	the	software	must	perform.

When	designing	embedded	systems	we	need	to	know	how	to	interface	a	wide	range	of
signals	that	can	exist	in	digital,	analog,	or	time	formats.

Table	1.3	lists	example	products	and	the	functions	performed	by	their	embedded	systems.
The	microcontroller	accepts	inputs,	performs	calculations,	and	generates	outputs.

	

														Functions	performed	by	the	microcontroller

Consumer/Home:																												
		Washing	machine														Controls	the	water	and	spin	cycles,	saving	water
and	energy

		Exercise	equipment														Measures	speed,	distance,	calories,	heart	rate

		Remote	controls														Accepts	key	touches,	sends	infrared	pulses,	learns
how	to	interact	with	user

		Clocks	and	watches														Maintains	the	time,	alarm,	and	display

		Games	and	toys														Entertains	the	user,	joystick	input,	video	output

		Audio/video																												Interacts	with	the	operator,	enhances
performance	with	sounds	and	pictures

		Set-back	thermostats														Adjusts	day/night	thresholds	saving	energy

Communication:														
		Answering	machines														Plays	outgoing	messages	and	saves	incoming
messages

		Telephone	system														Switches	signals	and	retrieves	information

		Cellular	phones																												Interacts	with	key	pad,	microphone,	and
speaker

		Satellites																												Sends	and	receives	messages

Automotive:														
		Automatic	braking														Optimizes	stopping	on	slippery	surfaces

		Noise	cancellation														Improves	sound	quality,	removing	noise

		Theft	deterrent	devices														Allows	keyless	entry,	controls	alarm

		Electronic	ignition														Controls	sparks	and	fuel	injectors

		Windows	and	seats														Remembers	preferred	settings	for	each	driver

		Instrumentation														Collects	and	provides	necessary	information

Military:														
		Smart	weapons																												Recognizes	friendly	targets

		Missile	guidance														Directs	ordnance	at	the	desired	target

		Global	positioning														Determines	where	you	are	on	the	planet,	suggests

paths,	coordinates	troops

		Surveillance																												Collects	information	about	enemy	activities

Industrial/Business/Shipping:														
		Point-of-sale	systems														Accepts	inputs	and	manages	money,	keeps
credit	information	secure

		Temperature	control														Adjusts	heating	and	cooling	to	maintain
temperature

		Robot	systems																												Inputs	from	sensors,	controls	the	motors
improving	productivity

		Inventory	systems														Reads	and	prints	labels,	maximizing	profit,
minimizing	shipping	delay

		Automatic	sprinklers														Controls	the	wetness	of	the	soil	maximizing
plant	growth

Medical:														
		Infant	apnea	monitors														Detects	breathing,	alarms	if	stopped

		Cardiac	monitors														Measures	heart	function,	alarms	if	problem

		Cancer	treatments														Controls	doses	of	radiation,	drugs,	or	heat

		Prosthetic	devices														Increases	mobility	for	the	handicapped

		Medical	records														Collect,	organize,	and	present	medical	information

Computer	Components:														
		Mouse																																										Translates	hand	movements	into	commands
for	the	main	computer

		USB	flash	drive														Facilitates	the	storage	and	retrieval	of	information

		Keyboard																												Accepts	key	strokes,	decodes	them,	and	transmits
to	the	main	computer
Table	1.3.	Products	involving	embedded	systems.

In	contrast,	a	general-purpose	computer	system	typically	has	a	keyboard,	disk,	and
graphics	display	and	can	be	programmed	for	a	wide	variety	of	purposes.	Typical	general-
purpose	applications	include	word	processing,	electronic	mail,	business	accounting,
scientific	computing,	cloud	computing,	and	web	servers.	General-purpose	computers	have
the	opposite	of	the	four	characteristics	listed	above.	First,	they	can	perform	a	wide	and
dynamic	range	of	functions.	Because	the	general-purpose	computer	has	a	removable	disk
or	network	interface,	new	programs	can	easily	be	added	to	the	system.		The	user	of	a
general-purpose	computer	does	have	access	to	the	software	that	controls	the	machine.	In
other	words,	the	user	decides	which	operating	system	to	run	and	which	applications	to
launch.	Second,	they	are	loosely	constrained.	For	example,	the	Java	machine	used	by	a
web	browser	will	operate	on	an	extremely	wide	range	of	computer	platforms.	Third,
general-purpose	machines	do	not	run	in	real-time.	Yes,	we	would	like	the	time	to	print	a
page	on	the	printer	to	be	fast,	and	we	would	like	a	web	page	to	load	quickly,	but	there	are
no	guaranteed	response	times	for	these	types	of	activities.	In	fact,	the	real-time	tasks	that
do	exist	(such	as	sound	recording,	burning	CD,	and	graphics)	are	actually	performed	by
embedded	systems	built	into	the	system.	Fourth,	general	purpose	computers	employ
billions,	if	not	trillions	of	memory	cells.

The	most	common	type	of	general-purpose	computer	is	the	personal	computer,	which	is
based	on	the	x86	architecture	(below	$3,000).	Computers	more	powerful	than	the	personal
computer	can	be	grouped	in	the	workstation	($3,000	to	$50,000	range)	or	the
supercomputer	categories	(above	$50,000).	See	the	web	site	www.top500.org	for	a	list	of
the	fastest	computers	on	the	planet.	These	computers	often	employ	multiple	processors
and	have	much	more	memory	than	the	typical	personal	computer.	The	workstations	and
supercomputers	are	used	for	handling	large	amounts	of	information	(business
applications),	running	large	simulations	(weather	forecasting),	searching
(www.google.com),	or	performing	large	calculations	(scientific	research).	This	book	will
not	cover	the	general-purpose	computer,	although	many	of	the	basic	principles	of
embedded	systems	do	apply	to	all	types	of	systems.

The	I/O	interfaces	are	a	crucial	part	of	an	embedded	system	because	they	provide
necessary	functionality.	Most	personal	computers	have	the	same	basic	I/O	devices	(e.g.,
mouse,	keyboard,	video	display,	CD,	USB,	and	hard	drive.)	In	contrast,	there	is	no
common	set	of	I/O	that	all	embedded	system	have.	The	software	together	with	the	I/O
ports	and	associated	interface	circuits	give	an	embedded	computer	system	its	distinctive
characteristics.	A	device	driver	is	a	set	of	software	functions	that	facilitate	the	use	of	an
I/O	port.		Another	name	for	device	driver	is	application	programmer	interface	(API).	In
this	book	we	will	study	a	wide	range	of	I/O	ports	supported	by	the	LM3S/TM4C
microcontrollers.	Parallel	ports	provide	for	digital	input	and	outputs.	Serial	ports	employ	a
wide	range	of	formats	and	synchronization	protocols.		The	serial	ports	can	communicate
with	devices	such	as:

•	Sensors

•	Liquid	Crystal	Display	(LCD)	and	light	emitting	diode	(LED)	displays

•	Analog	to	digital	converters	(ADC)	and	digital	to	analog	converters
(DAC)

	
Analog	to	digital	converters	convert	analog	voltages	to	digital	numbers.	Digital	to	analog
converters	convert	digital	numbers	to	analog	voltages.	The	timer	features	include:

•	Fixed	rate	periodic	execution

•	Pulse	Width	Modulated	outputs	(PWM)

•	Input	capture	used	for	period	and	pulse	width	measurement

•	Output	compare	used	for	generating	signals	and	frequency	measurement.

1.3.	The	Design	Process

1.3.1.	Requirements	document
Before	beginning	any	project,	it	is	a	good	idea	to	have	a	plan.	The	following	is	one
possible	outline	of	a	requirements	document.	Although	originally	proposed	for	software
projects,	it	is	appropriate	to	use	when	planning	an	embedded	system,	which	includes
software,	electronics,	and	mechanical	components.	IEEE	publishes	a	number	of	templates
that	can	be	used	to	define	a	project	(IEEE	STD	830-1998).	A	requirements	document
states	what	the	system	will	do.	It	does	not	state	how	the	system	will	do	it.	The	main
purpose	of	a	requirements	document	is	to	serve	as	an	agreement	between	you	and	your
clients	describing	what	the	system	will	do.	This	agreement	can	become	a	legally	binding
contract.	Write	the	document	so	that	it	is	easy	to	read	and	understand	by	others.	It	should
be	unambiguous,	complete,	verifiable,	and	modifiable.

The	requirements	document	should	not	include	how	the	system	will	be	designed.	This
allows	the	engineer	to	make	choices	during	the	design	to	minimize	cost	and	maximize
performance.	Rather	it	should	describe	the	problem	being	solved	and	what	the	system
actually	does.	It	can	include	some	constraints	placed	on	the	development	process.	Ideally,
it	is	co-written	by	both	the	engineers	and	the	non-technical	clients.	However,	it	is
imperative	that	both	the	engineers	and	the	clients	understand	and	agree	on	the	specifics	in
the	document.

	

1.	Overview

		1.1.	Objectives:	Why	are	we	doing	this	project?	What	is	the	purpose?

		1.2.	Process:	How	will	the	project	be	developed?

		1.3.	Roles	and	Responsibilities:	Who	will	do	what?		Who	are	the	clients?

		1.4.	Interactions	with	Existing	Systems:	How	will	it	fit	in?

		1.5.	Terminology:	Define	terms	used	in	the	document.

		1.6.	Security:	How	will	intellectual	property	be	managed?

2.	Function	Description

		2.1.	Functionality:	What	will	the	system	do	precisely?

		2.2.	Scope:	List	the	phases	and	what	will	be	delivered	in	each	phase.

		2.3.	Prototypes:	How	will	intermediate	progress	be	demonstrated?

		2.4.	Performance:	Define	the	measures	and	describe	how	they	will	be
determined.

		2.5.	Usability:	Describe	the	interfaces.	Be	quantitative	if	possible.

		2.6.	Safety:	Explain	any	safety	requirements	and	how	they	will	be	measured.

3.	Deliverables

		3.1.	Reports:	How	will	the	system	be	described?

		3.2.	Audits:	How	will	the	clients	evaluate	progress?

		3.3.	Outcomes:	What	are	the	deliverables?	How	do	we	know	when	it	is	done?

	
Observation:	To	build	a	system	without	a	requirements	document	means	you	are	never
wrong,	but	never	done.

1.3.2.	Modeling
One	of	the	common	threads	in	the	example	embedded	systems	presented	in	Section	1.2	is
the	need	to	understand	the	behavior	of	the	physical	system	with	which	the	embedded
system	interacts.	Sometimes	this	understanding	is	only	human	intuition.	However,	the
design	process	will	be	much	more	successful	if	this	understanding	can	be	represented	in
mathematical	form.	Scientists	strive	to	describe	physical	processes	with	closed-form
mathematical	equations.	For	example,	Newton’s	second	law	for	damped	harmonic
oscillators	is

where	x	is	the	one-dimensional	position	of	the	object	(m),	t	is	time	(s),	F	is	the	applied
force	(N),	m	is	the	mass	of	the	object	(kg),	c	is	called	the	viscous	damping	coefficient
(kg/s),	and	k	is	the	spring	constant	(N/m).	Another	example	is	Maxwell–Faraday	equation
(or	Faraday’s	law	of	induction)

																													or														

where	E	is	the	electric	field	(V/m),	B	is	the	magnetic	field	(Wb/m2),	C	is	the	closed	curve
along	the	boundary	of	surface	S,	dl	is	differential	vector	element	of	path	length	tangential
to	the	path/curve	(m),	and B,S	magnetic	flux	through	any	surface	S	(Wb).	A	third	example	is
heat	conduction

															or															

where	k	is	thermal	conductivity	(W/m/oC),	T	is	temperature	(oC),	x	is	one-dimensional
distance(m),	q	is	internal	heat	generations	(W/m3), 	is	density	(kg/m3),	c	is	specific	heat	at
constant	pressure	(W-s/kg/oC)	and	t	is	time	(s).	The	system	is	causal	if	its	output	depends
only	on	current	and	past	inputs.	Let	S(x)	define	the	output	of	a	model	for	an	input	x.	A
system	is	linear	if	S(ax1+bx2)	=	aS(x1)+bS(x2).	A	linear	time-invariant	system	(LTI)	is	a
system	that	is	both	linear	and	time	invariant.

Some	of	the	difficulties	in	solving	closed	form	equations	such	as	these	include
multidimensional	space,	irregular	boundaries,	and	non-constant	properties.	These
difficulties	can	be	overcome	using	computational	methods	such	as	the	finite	element
method	(FEM).	Still	many	problems	remain.	Inaccuracies	in	property	values	cause	errors
in	the	computational	method.	The	biggest	problem	however	is	in	the	equations
themselves.	Many	important	real	life	problems	exhibit	nonlinear	behavior	not	described
by	scientific	equations.

Consequentially,	engineers	tend	to	use	empirical	models	of	the	world	with	which	the
embedded	system	interacts.	The	parameters	of	an	empirical	model	are	determined	by
experimental	measurement	under	conditions	similar	to	how	the	system	will	be	deployed.
Typically	the	models	are	discrete	in	time,	because	the	measurements	are	discrete	in	time.
The	models	can	be	linear	or	nonlinear	as	needed.	These	models	often	have	memory,
meaning	the	outputs	are	a	function	of	both	the	current	inputs	and	previous	inputs/outputs.
One	of	the	simplest	measures	of	stability	is	called	bounded-input	bounded-output,	which
means	if	all	input	signals	are	bounded	then	all	output	signals	will	also	be	bounded.	For
example,	performance	maps	are	used	in	engine	control	to	optimize	performance.	They
are	empirical	equations	relating	control	parameters	(such	as	applied	power)	and	measured
parameters	(such	as	shaft	rotational	speed)	to	desired	output	parameters	(such	as	generated
torque).	Even	if	difficult,	it	is	appropriate	to	develop	an	abstract	model	describing	the
interaction	between	embedded	system	and	the	real	world.	We	will	present	some	models
when	designing	more	complex	systems	later	in	the	book.

1.3.3.	Top-down	design
In	this	section,	we	will	present	the	top-down	design	process.	The	process	is	called	top-
down,	because	we	start	with	the	high-level	designs	and	work	down	to	low-level
implementations.	The	basic	approach	is	introduced	here,	and	the	details	of	these	concepts
will	be	presented	throughout	the	remaining	chapters	of	the	book.	As	we	learn
software/hardware	development	tools	and	techniques,	we	can	place	them	into	the
framework	presented	in	this	section.	As	illustrated	in	Figure	1.5,	the	development	of	a
product	follows	an	analysis-design-implementation-testing	cycle.	For	complex	systems
with	long	life-spans,	we	traverse	multiple	times	around	the	development	cycle.	For	simple
systems,	a	one-time	pass	may	suffice.	Even	after	a	system	is	deployed,	it	can	reenter	the
life	cycle	to	add	features	or	correct	mistakes.

	

Figure	1.5.	System	development	cycle	or	life-cycle.	After	the	system	is
done	it	can	be	deployed.
During	the	analysis	phase,	we	discover	the	requirements	and	constraints	for	our	proposed
system.	We	can	hire	consultants	and	interview	potential	customers	in	order	to	gather	this
critical	information.	A	requirement	is	a	specific	parameter	that	the	system	must	satisfy,
describing	what	the	system	should	do.	We	begin	by	rewriting	the	system	requirements,
which	are	usually	written	as	a	requirements	document.	In	general,	specifications	are
detailed	parameters	describing	how	the	system	should	work.	For	example,	a	requirement
may	state	that	the	system	should	fit	into	a	pocket,	whereas	a	specification	would	give	the
exact	size	and	weight	of	the	device.	For	example,	suppose	we	wish	to	build	a	motor
controller.	During	the	analysis	phase,	we	would	determine	obvious	specifications	such	as
range,	stability,	accuracy,	and	response	time.	The	following	measures	are	often	considered
during	the	analysis	phase:

Safety:	The	risk	to	humans	or	the	environment.

Accuracy:	The	difference	between	the	expected	truth	and	the	actual	parameter

Precision:	The	number	of	distinguishable	measurements

Resolution:	The	smallest	change	that	can	be	reliably	detected

Response	time:	The	time	between	a	triggering	event	and	the	resulting	action

Bandwidth:	The	amount	of	information	processed	per	time

Signal	to	noise	ratio:	The	quotient	of	the	signal	amplitude	divided	by	the	noise

Maintainability:	The	flexibility	with	which	the	device	can	be	modified

Testability:	The	ease	with	which	proper	operation	of	the	device	can	be	verified

Compatibility:	The	conformance	of	the	device	to	existing	standards

Mean	time	between	failure:	The	reliability	of	the	device	defining	the	life	if	a
product

Size	and	weight:	The	physical	space	required	by	the	system	and	its	mass

Power:	The	amount	of	energy	it	takes	to	operate	the	system

Nonrecurring	engineering	cost	(NRE	cost):	The	one-time	cost	to	design	and
test

Unit	cost:	The	cost	required	to	manufacture	one	additional	product

Time-to-prototype:	The	time	required	to	design	build	and	test	an	example
system

Time-to-market:	The	time	required	to	deliver	the	product	to	the	customer

Human	factors:	The	degree	to	which	our	customers	enjoy/like/appreciate	the
product

	
There	are	many	parameters	to	consider	and	their	relative	importance	may	be	difficult	to
ascertain.	For	example,	in	consumer	electronics	the	human	interface	can	be	more
important	than	bandwidth	or	signal	to	noise	ratio.	Often,	improving	the	performance	on
one	parameter	can	be	achieved	only	by	decreasing	the	performance	of	another.	This	art	of
compromise	defines	the	tradeoffs	an	engineer	must	make	when	designing	a	product.	A
constraint	is	a	limitation,	within	which	the	system	must	operate.	The	system	may	be
constrained	to	such	factors	as	cost,	safety,	compatibility	with	other	products,	use	of
specific	electronic	and	mechanical	parts	as	other	devices,	interfaces	with	other	instruments
and	test	equipment,	and	development	schedule.

Checkpoint	1.11:	What’s	the	difference	between	a	requirement	and	a	specification?

When	you	write	a	paper,	you	first	decide	on	a	theme,	and	next	you	write	an	outline.	In	the
same	manner,	if	you	design	an	embedded	system,	you	define	its	specification	(what	it
does),	and	begin	with	an	organizational	plan.	In	this	section,	we	will	present	three
graphical	tools	to	describe	the	organization	of	an	embedded	system:	data	flow	graphs,	call
graphs,	and	flowcharts.	You	should	draw	all	three	for	every	system	you	design.

During	the	high-level	design	phase,	we	build	a	conceptual	model	of	the
hardware/software	system.	It	is	in	this	model	that	we	exploit	as	much	abstraction	as
appropriate.	The	project	is	broken	in	modules	or	subcomponents.		Modular	design	will	be
presented	in	Chapter	3.	During	this	phase,	we	estimate	the	cost,	schedule,	and	expected
performance	of	the	system.	At	this	point	we	can	decide	if	the	project	has	a	high	enough
potential	for	profit.	A	data	flow	graph	is	a	block	diagram	of	the	system,	showing	the	flow
of	information.	Arrows	point	from	source	to	destination.	It	is	good	practice	to	label	the
arrows	with	the	information	type	and	bandwidth.	The	rectangles	represent	hardware
components	and	the	ovals	are	software	modules.	We	use	data	flow	graphs	in	the	high-level
design,	because	they	describe	the	overall	operation	of	the	system	while	hiding	the	details
of	how	it	works.	Issues	such	as	safety	(e.g.,	Isaac	Asimov’s	first	Law	of	Robotics	“A	robot
may	not	harm	a	human	being,	or,	through	inaction,	allow	a	human	being	to	come	to
harm”)	and	testing	(e.g.,	we	need	to	verify	our	system	is	operational)	should	be	addressed
during	the	high-level	design.

An	example	data	flow	graph	for	a	motor	controller	is	shown	in	Figure	1.6.	Notice	that	the
arrows	are	labeled	with	data	type	and	bandwidth.	The	requirement	of	the	system	is	to
deliver	power	to	a	motor	so	that	the	speed	of	the	motor	equals	the	desired	value	set	by	the
operator	using	a	keypad.	In	order	to	make	the	system	easier	to	use	and	to	assist	in	testing,
a	liquid	crystal	display	(LCD)	is	added.	The	sensor	converts	motor	speed	an	electrical
voltage.	The	amplifier	converts	this	signal	into	the	0	to	+3.3	V	voltage	range	required	by
the	ADC.	The	ADC	converts	analog	voltage	into	a	digital	sample.	The	ADC	routines,
using	the	ADC	and	timer	hardware,	collect	samples	and	calculate	voltages.	Next,	this
software	uses	a	table	data	structure	to	convert	voltage	to	measured	speed.		The	user	will	be
able	to	select	the	desired	speed	using	the	keypad	interface.	The	desired	and	measured
speed	data	are	passed	to	the	controller	software,	which	will	adjust	the	power	output	in
such	a	manner	as	to	minimize	the	difference	between	the	measured	speed	and	the	desired
speed.	Finally,	the	power	commands	are	output	to	the	actuator	module.	The	actuator
interface	converts	the	digital	control	signals	to	power	delivered	to	the	motor.	The
measured	speed	and	speed	error	will	be	sent	to	the	LCD	module.

	

Figure	1.6.	A	data	flow	graph	showing	how	signals	pass	through	a	motor
controller.

The	next	phase	is	engineering	design.	We	begin	by	constructing	a	preliminary	design.
This	system	includes	the	overall	top-down	hierarchical	structure,	the	basic	I/O	signals,
shared	data	structures	and	overall	software	scheme.	At	this	stage	there	should	be	a	simple
and	direct	correlation	between	the	hardware/software	systems	and	the	conceptual	model
developed	in	the	high-level	design.	Next,	we	finish	the	top-down	hierarchical	structure,
and	build	mock-ups	of	the	mechanical	parts	(connectors,	chassis,	cables	etc.)	and	user
software	interface.	Sophisticated	3-D	CAD	systems	can	create	realistic	images	of	our
system.	Detailed	hardware	designs	must	include	mechanical	drawings.	It	is	a	good	idea	to
have	a	second	source,	which	is	an	alternative	supplier	that	can	sell	our	parts	if	the	first
source	can’t	deliver	on	time.	A	call	graph	is	a	directed	graph	showing	the	calling
relationships	between	software	and	hardware	modules.	If	a	function	in	module	A	calls	a
function	in	module	B,	then	we	draw	an	arrow	from	A	to	B.	If	a	function	in	module	A
input/outputs	data	from	hardware	module	C,	then	we	draw	an	arrow	from	A	to	C.	If
hardware	module	C	can	cause	an	interrupt,	resulting	in	software	running	in	module	A,	then
we	draw	an	arrow	from	C	to	A.	A	hierarchical	system	will	have	a	tree-structured	call
graph.

A	call	graph	for	this	motor	controller	is	shown	in	Figure	1.7.	Again,	rectangles	represent
hardware	components	and	ovals	show	software	modules.	An	arrow	points	from	the	calling
routine	to	the	module	it	calls.	The	I/O	ports	are	organized	into	groups	and	placed	at	the
bottom	of	the	graph.	A	high-level	call	graph,	like	the	one	shown	in	Figure	1.7,	shows	only
the	high-level	hardware/software	modules.	A	detailed	call	graph	would	include	each
software	function	and	I/O	port.	Normally,	hardware	is	passive	and	the	software	initiates
hardware/software	communication,	but	as	we	will	learn	in	Chapter	5,	it	is	possible	for	the
hardware	to	interrupt	the	software	and	cause	certain	software	modules	to	be	run.	In	this
system,	the	timer	hardware	will	cause	the	ADC	software	to	collect	a	sample	at	a	regular
rate.	The	controller	software	calls	the	keypad	routines	to	get	the	desired	speed,	calls	the
ADC	software	to	get	the	motor	speed	at	that	point,	determines	what	power	to	deliver	to	the
motor	and	updates	the	actuator	by	sending	the	power	value	to	the	actuator	interface.	The
controller	software	calls	the	LCD	routines	to	display	the	status	of	the	system.	Acquiring
data,	calculating	parameters,	outputting	results	at	a	regular	rate	is	strategic	when
performing	digital	signal	processing	in	embedded	systems.

	

Figure	1.7.	A	call	graph	for	a	motor	controller.
	

Checkpoint	1.12:	What	confusion	could	arise	if	two	software	modules	were	allowed	to
access	the	same	I/O	port?	This	situation	would	be	evident	on	a	call	graph	if	the	two
software	modules	had	arrows	pointing	to	the	same	I/O	port.

Observation:	If	module	A	calls	module	B,	and	B	returns	data,	then	a	data	flow	graph	will
show	an	arrow	from	B	to	A,	but	a	call	graph	will	show	an	arrow	from	A	to	B.

Data	structures	include	both	the	organization	of	information	and	mechanisms	to	access
the	data.	Again	safety	and	testing	should	be	addressed	during	this	low-level	design.

The	next	phase	is	implementation.	An	advantage	of	a	top-down	design	is	that
implementation	of	subcomponents	can	occur	concurrently.	The	most	common	approach	to
developing	software	for	an	embedded	system	is	to	use	a	cross-assembler	or	cross-
compiler	to	convert	source	code	into	the	machine	code	for	the	target	system.	The	machine
code	can	then	be	loaded	into	the	target	machine.	Debugging	embedded	systems	with	this
simple	approach	is	very	difficult	for	two	reasons.	First,	the	embedded	system	lacks	the
usual	keyboard	and	display	that	assist	us	when	we	debug	regular	software.	Second,	the
nature	of	embedded	systems	involves	the	complex	and	real-time	interaction	between	the
hardware	and	software.	These	real-time	interactions	make	it	impossible	to	test	software
with	the	usual	single-stepping	and	print	statements.

The	next	technological	advancement	that	has	greatly	affected	the	manner	in	which
embedded	systems	are	developed	is	simulation.	Because	of	the	high	cost	and	long	times
required	to	create	hardware	prototypes,	many	preliminary	feasibility	designs	are	now
performed	using	hardware/software	simulations.	A	simulator	is	a	software	application	that
models	the	behavior	of	the	hardware/software	system.	If	both	the	external	hardware	and
software	program	are	simulated	together,	even	although	the	simulated	time	is	slower	than
the	clock	on	the	wall,	the	real-time	hardware/software	interactions	can	be	studied.

During	the	initial	iterations	of	the	development	cycle,	it	is	quite	efficient	to	implement	the
hardware/software	using	simulation.	One	major	advantage	of	simulation	is	that	it	is
usually	quicker	to	implement	an	initial	product	on	a	simulator	versus	constructing	a
physical	device	out	of	actual	components.	Rapid	prototyping	is	important	in	the	early
stages	of	product	development.	This	allows	for	more	loops	around	the	analysis-design-
implementation-testing	cycle,	which	in	turn	leads	to	a	more	sophisticated	product.

During	the	testing	phase,	we	evaluate	the	performance	of	our	system.	First,	we	debug	the
system	and	validate	basic	functions.	Next,	we	use	careful	measurements	to	optimize
performance	such	as	static	efficiency	(memory	requirements),	dynamic	efficiency
(execution	speed),	accuracy	(difference	between	expected	truth	and	measured),	and
stability	(consistent	operation.)		Debugging	techniques	will	be	presented	throughout	the
book.	Testing	is	not	performed	at	the	end	of	project	when	we	think	we	are	done.	Rather
testing	must	be	integrated	into	all	phases	of	the	design	cycle.	Once	tested	the	system	can
be	deployed.

Maintenance	is	the	process	of	correcting	mistakes,	adding	new	features,	optimizing	for
execution	speed	or	program	size,	porting	to	new	computers	or	operating	systems,	and
reconfiguring	the	system	to	solve	a	similar	problem.	No	system	is	static.	Customers	may
change	or	add	requirements	or	constraints.	To	be	profitable,	we	probably	will	wish	to
tailor	each	system	to	the	individual	needs	of	each	customer.	Maintenance	is	not	really	a
separate	phase,	but	rather	involves	additional	loops	around	the	development	cycle.

1.3.4.	Flowcharts
In	this	section,	we	introduce	the	flowchart	syntax	that	will	be	used	throughout	the	book.
Programs	themselves	are	written	in	a	linear	or	one-dimensional	fashion.	In	other	words,
we	type	one	line	of	software	after	another	in	a	sequential	fashion.	Writing	programs	this
way	is	a	natural	process,	because	the	computer	itself	usually	executes	the	program	in	a
top-to-bottom	sequential	fashion.	This	one-dimensional	format	is	fine	for	simple
programs,	but	conditional	branching	and	function	calls	may	create	complex	behaviors	that
are	not	easily	observed	in	a	linear	fashion.	Even	the	simple	systems	have	multiple
software	tasks.	Furthermore,	a	complex	application	will	require	multiple	microcontrollers.
Therefore,	we	need	a	multi-dimensional	way	to	visualize	software	behavior.	Flowcharts
are	one	way	to	describe	software	in	a	two-dimensional	format,	specifically	providing
convenient	mechanisms	to	visualize	multi-tasking,	branching,	and	function	calls.
Flowcharts	are	very	useful	in	the	initial	design	stage	of	a	software	system	to	define
complex	algorithms.	Furthermore,	flowcharts	can	be	used	in	the	final	documentation	stage
of	a	project	in	order	to	assist	in	its	use	or	modification.

Figures	throughout	this	section	illustrate	the	syntax	used	to	draw	flowcharts.	The	oval
shapes	define	entry	and	exit	points.	The	main	entry	point	is	the	starting	point	of	the
software.	Each	function,	or	subroutine,	also	has	an	entry	point,	which	is	the	place	the
function	starts.	If	the	function	has	input	parameters	they	are	passed	in	at	the	entry	point.
The	exit	point	returns	the	flow	of	control	back	to	the	place	from	which	the	function	was
called.	If	the	function	has	return	parameters	they	are	returned	at	the	exit	point.	When	the
software	runs	continuously,	as	is	typically	the	case	in	an	embedded	system,	there	will	be
no	main	exit	point.

We	use	rectangles	to	specify	process	blocks.	In	a	high-level	flowchart,	a	process	block
might	involve	many	operations,	but	in	a	low-level	flowchart,	the	exact	operation	is	defined
in	the	rectangle.	The	parallelogram	will	be	used	to	define	an	input/output	operation.
Some	flowchart	artists	use	rectangles	for	both	processes	and	input/output.	Since
input/output	operations	are	an	important	part	of	embedded	systems,	we	will	use	the
parallelogram	format,	which	will	make	it	easier	to	identify	input/output	in	our	flowcharts.
The	diamond-shaped	objects	define	a	branch	point	or	decision	block.	The	rectangle	with
double	lines	on	the	side	specifies	a	call	to	a	predefined	function.	In	this	book,	functions,
subroutines	and	procedures	are	terms	that	all	refer	to	a	well-defined	section	of	code	that
performs	a	specific	operation.	Functions	usually	return	a	result	parameter,	while
procedures	usually	do	not.	Functions	and	procedures	are	terms	used	when	describing	a
high-level	language,	while	subroutines	often	used	when	describing	assembly	language.
When	a	function	(or	subroutine	or	procedure)	is	called,	the	software	execution	path	jumps
to	the	function,	the	specific	operation	is	performed,	and	the	execution	path	returns	to	the
point	immediately	after	the	function	call.		Circles	are	used	as	connectors.

Common	error:	In	general,	it	is	bad	programming	style	to	develop	software	that	requires
a	lot	of	connectors	when	drawing	its	flowchart.

There	are	a	seemingly	unlimited	number	of	tasks	one	can	perform	on	a	computer,	and	the
key	to	developing	great	products	is	to	select	the	correct	ones.	Just	like	hiking	through	the
woods,	we	need	to	develop	guidelines	(like	maps	and	trails)	to	keep	us	from	getting	lost.
One	of	the	fundamental	issues	when	developing	software,	regardless	whether	it	is	a
microcontroller	with	1000	lines	of	assembly	code	or	a	large	computer	system	with	billions
of	lines	is	to	maintain	a	consistent	structure.	One	such	framework	is	called	structured
programming.	A	good	high-level	language	will	force	the	programmer	to	write	structured
programs.	Structured	programs	are	built	from	three	basic	building	blocks:	the	sequence,
the	conditional,	and	the	while-loop.	At	the	lowest	level,	the	process	block	contains	simple
and	well-defined	commands.	I/O	functions	are	also	low-level	building	blocks.	Structured
programming	involves	combining	existing	blocks	into	more	complex	structures,	as	shown
in	Figure	1.8.

	

Figure	1.8.	Flowchart	showing	the	basic	building	blocks	of	structured
programming.
Maintenance	Tip:	Remember	to	update	the	flowcharts	as	modifications	are	made	to	the
software

Next,	we	will	revisit	the	pacemaker	example	in	order	to	illustrate	the	flowchart	syntax.	A
thread	is	the	sequence	of	actions	caused	by	executing	software.	The	flowchart	in	Figure
1.9	defines	a	single-threaded	execution	because	there	is	one	sequence.

	
Example	1.1	(continued):	Use	a	flowchart	to	describe	an	algorithm	that	a	pacemaker
might	use	to	regulate	and	improve	heart	function.

	

Solution:	This	example	illustrates	a	common	trait	of	an	embedded	system,	that	is,	they
perform	the	same	set	of	tasks	over	and	over	forever.	The	program	starts	at	main	when
power	is	applied,	and	the	system	behaves	like	a	pacemaker	until	the	battery	runs	out.
Figure	1.9	shows	a	flowchart	for	a	very	simple	algorithm.	If	the	heart	is	beating	normally
with	a	rate	greater	than	or	equal	to	1	beat/sec	(60	BPM),	then	the	atrial	sensor	will	detect
activity	and	the	first	decision	will	go	right.	Since	this	is	normal	beating,	the	ventricular
activity	will	occur	within	the	next	200	ms,	and	the	ventricular	sensor	will	also	detect
activity.	In	this	situation,	no	output	pulses	will	be	issued.	If	the	delay	between	atrial
contraction	and	ventricular	contract	were	longer	than	the	normal	200	ms,	then	the
pacemaker	will	activate	the	ventricles	200	ms	after	each	atrial	contraction.	If	the	ventricle
is	beating	faster	than	60	BPM	without	any	atrial	contractions,	then	no	ventricular
stimulations	will	be	issued.	If	there	is	no	activity	from	either	atrium	or	the	ventricle	(or	if
that	rate	is	slower	than	60	BPM),	then	the	ventricles	are	paced	at	60	BPM.

	

Figure	1.9.	Flowchart	illustrating	a	simple	pacemaker	algorithm.

	

Checkpoint	1.13:	Assume	you	are	given	a	simple	watch	that	just	tells	you	the	time	in
hours,	minutes,	and	seconds.	Let	t	be	an	input	parameter.	Explain	how	you	could	use	the
watch	to	wait	t	seconds.

1.3.5.	Parallel,	distributed,	and	concurrent	programming
Many	problems	cannot	be	implemented	using	the	single-threaded	execution	pattern
described	in	the	previous	section.	Parallel	programming	allows	the	computer	to	execute
multiple	threads	at	the	same	time.	State-of-the	art	multi-core	processors	can	execute	a
separate	program	in	each	of	its	cores.	Fork	and	join	are	the	fundamental	building	blocks
of	parallel	programming.	After	a	fork,	two	or	more	software	threads	will	be	run	in	parallel.
I.e.,	the	threads	will	run	simultaneously	on	separate	processors.

Two	or	more	simultaneous	software	threads	can	be	combined	into	one	using	a	join.	The
flowchart	symbols	for	fork	and	join	are	shown	in	Figure	1.10.	Software	execution	after	the
join	will	wait	until	all	threads	above	the	join	are	complete.	As	an	analogy,	if	I	want	to	dig
a	big	hole	in	my	back	yard,	I	will	invite	three	friends	over	and	give	everyone	a	shovel.	The
fork	operation	changes	the	situation	from	me	working	alone	to	four	of	us	ready	to	dig.	The
four	digging	tasks	are	run	in	parallel.	When	the	overall	task	is	complete,	the	join	operation
causes	the	friends	to	go	away,	and	I	am	working	alone	again.	A	complex	system	may
employ	multiple	microcontrollers,	each	running	its	own	software.	We	classify	this
configuration	as	parallel	or	distributed	programming.

	

Figure	1.10.	Flowchart	symbols	to	describe	parallel,	distributed,	and
concurrent	programming.
Concurrent	programming	allows	the	computer	to	execute	multiple	threads,	but	only	one
at	a	time.	Interrupts	are	one	mechanism	to	implement	concurrency	on	real-time	systems.
Interrupts	have	a	hardware	trigger	and	a	software	action.	An	interrupt	is	a	parameter-less
subroutine	call,	triggered	by	a	hardware	event.	The	flowchart	symbols	for	interrupts	are
also	shown	in	Figure	1.10.	The	trigger	is	a	hardware	event	signaling	it	is	time	to	do
something.	Examples	of	interrupt	triggers	we	will	see	in	this	book	include	new	input	data
has	arrived,	output	device	is	idle,	and	periodic	event.	The	second	component	of	an
interrupt-driven	system	is	the	software	action	called	an	interrupt	service	routine	(ISR).	The
foreground	thread	is	defined	as	the	execution	of	the	main	program,	and	the	background
threads	are	executions	of	the	ISRs.

Consider	the	analogy	of	sitting	in	a	comfy	chair	reading	a	book.	Reading	a	book	is	like
executing	the	main	program	in	the	foreground.	Because	there	is	only	one	of	you,	this
scenario	is	analogous	to	a	computer	with	one	processor.	You	start	reading	at	the	beginning
of	the	book	and	basically	read	one	page	at	a	time	in	a	sequential	fashion.	You	might	jump
to	the	back	and	look	something	up	in	the	glossary,	then	jump	back	to	where	you	were,
which	is	analogous	to	a	function	call.	Similarly,	if	you	might	read	the	same	page	a	few
times,	which	is	analogous	to	a	program	loop.	Even	though	you	skip	around	a	little,	the
order	of	pages	you	read	follows	a	logical	and	well-defined	sequence.	Conversely,	if	the
telephone	rings,	you	place	a	bookmark	in	the	book,	and	answer	the	phone.	When	you	are
finished	with	the	phone	conversation,	you	hang	up	the	phone	and	continue	reading	in	the
book	where	you	left	off.	The	ringing	phone	is	analogous	to	hardware	trigger	and	the	phone
conversation	is	like	executing	the	ISR.

	

	

	

	
Example	1.2	(continued):	Use	a	flowchart	to	describe	an	algorithm	that	a	stand-alone
smoke	detector	might	use	to	warn	people	in	the	event	of	a	fire.
	

Solution:	This	example	illustrates	a	common	trait	of	a	low-power	embedded	system.	The
system	begins	with	a	power	on	reset,	causing	it	to	start	at	main.	The	initialization	enables
the	timer	interrupts,	and	then	it	shuts	off	the	alarm.	In	a	low-power	system	the
microcontroller	goes	to	sleep	when	there	are	no	tasks	to	perform.	Every	30	seconds	the
timer	interrupt	wakens	the	microcontroller	and	executes	the	interrupt	service	routine.	The
first	task	is	to	read	the	smoke	sensor.	If	there	is	no	fire,	it	will	flash	the	LED	and	return
from	interrupt.	At	this	point,	the	main	program	will	put	the	microcontroller	back	to	sleep.
The	letters	(A-K)	in	Figure	1.11	specify	the	software	activities	in	this	multithreaded
example.	Initially	it	executes	A-B-C	and	goes	to	sleep.	Every	30	seconds,	assuming	there
is	no	fire,	it	executes	<-D-E-F-G-J-K-J-K-···-J-K-H->C	This	sequence	will	execute	in
about	1	ms,	dominated	by	the	time	it	takes	to	flash	the	LED.	This	is	a	low-power	solution
because	the	microcontroller	is	powered	for	about	0.003%	of	the	time,	or	1	ms	every	30
seconds.

Figure	1.11.	Flowchart	illustrating	a	simple	smoke	detector	algorithm.

	
To	illustrate	the	concept	of	parallel	programming,	assume	we	have	a	multi-core	computer
with	four	processors.	Consider	the	problem	of	finding	the	maximum	value	in	a	large
buffer.	First,	we	divide	the	buffer	into	four	equal	parts.	Next,	we	execute	a	fork,	as	shown
in	the	left-most	flowchart	in	Figure	1.10,	launching	four	parallel	threads.	The	four
processors	run	in	parallel	each	finding	the	maximum	of	its	subset.	When	all	four	threads
are	complete,	they	perform	a	join	and	combine	the	four	results	to	find	the	overall
maximum.	It	is	important	to	distinguish	parallel	programming	like	this	from
multithreading	implementing	concurrent	processing	with	interrupts.	Because	most
microcontrollers	have	a	single	processor,	this	book	with	focus	on	concurrent	processing
with	interrupts	and	distributed	processing	with	a	network	involving	multiple
microcontrollers.

	

1.3.6.	Creative	discovery	using	bottom-up	design
Figure	1.5	describes	top-down	design	as	a	cyclic	process,	beginning	with	a	problem
statement	and	ending	up	with	a	solution.		With	a	bottom-up	design	we	begin	with
solutions	and	build	up	to	a	problem	statement.	Many	innovations	begin	with	an	idea,
“what	if…?”	In	a	bottom-up	design,	one	begins	with	designing,	building,	and	testing	low-
level	components.		Figure	1.12	illustrates	a	two-level	process,	combining	three
subcomponents	to	create	the	overall	product.	This	hierarchical	process	could	have	more
levels	and/or	more	components	at	each	level.	The	low-level	designs	can	occur	in	parallel.
The	design	of	each	component	is	cyclic,	iterating	through	the	design-build-test	cycle	until
the	performance	is	acceptable.

Figure	1.12.	System	development	process	illustrating	bottom-up	design.
Bottom-up	design	is	inefficient	because	some	subsystems	are	designed,	built,	and	tested,
but	never	used.	Furthermore,	in	a	truly	creative	environment	most	ideas	cannot	be
successfully	converted	to	operational	subsystems.	Creative	laboratories	are	filled	with
finished,	half-finished,	and	failed	subcomponents.	As	the	design	progresses	the
components	are	fit	together	to	make	the	system	more	and	more	complex.	Only	after	the
system	is	completely	built	and	tested	does	one	define	its	overall	specifications.

The	bottom-up	design	process	allows	creative	ideas	to	drive	the	products	a	company
develops.	It	also	allows	one	to	quickly	test	the	feasibility	of	an	idea.	If	one	fully
understands	a	problem	area	and	the	scope	of	potential	solutions,	then	a	top-down	design
will	arrive	at	an	effective	solution	most	quickly.		On	the	other	hand,	if	one	doesn’t	really
understand	the	problem	or	the	scope	of	its	solutions,	a	bottom-up	approach	allows	one	to
start	off	by	learning	about	the	problem.

Observation:	A	good	engineer	knows	both	bottom-up	and	top-down	design	methods,
choosing	the	approach	most	appropriate	for	the	situation	at	hand.

1.4.	Digital	Logic	and	Open	Collector
Digital	logic	has	two	states,	with	many	enumerations	such	as	high	and	low,	1	and	0,	true
and	false,	on	and	off.	There	are	four	currents	of	interest,	as	shown	in	Figure	1.13,	when
analyzing	if	the	inputs	of	the	next	stage	are	loading	the	output.	IIH	and	IIL	are	the	currents
required	of	an	input	when	high	and	low	respectively.	Furthermore,	IOH	and	IOL	are	the
maximum	currents	available	at	the	output	when	high	and	low.	In	order	for	the	output	to
properly	drive	all	the	inputs	of	the	next	stage,	the	maximum	available	output	current	must
be	larger	than	the	sum	of	all	the	required	input	currents	for	both	the	high	and	low
conditions.

														 																												and														 													

Absolute	value	operators	are	put	in	the	above	relations	because	data	sheets	are	inconsistent
about	specifying	positive	and	negative	currents.	The	arrows	in	Figure	1.13	define	the
direction	of	current	regardless	of	whether	the	data	sheet	defines	it	as	a	positive	or	negative
current.	It	is	your	responsibility	to	choose	parts	such	that	the	above	inequalities	hold.

Figure	1.13.	Sometimes	one	output	must	drive	multiple	inputs.
Kirchhoff’s	Current	Law	(KCL)	states	the	sum	of	all	the	currents	into	one	node	must	be
zero.	The	above	inequalities	are	not	a	violation	of	KCL,	because	the	output	currents	are
the	available	currents	and	the	input	currents	are	the	required	currents.	Once	the	system	is
built	and	running,	the	actual	output	current	will	of	course	exactly	equal	the	sum	of	the
actual	input	currents.		As	a	matter	of	completeness,	we	include	Kirchhoff’s	Voltage	Law
(KVL),	which	states	the	sum	of	all	the	voltages	in	a	closed	loop	must	be	zero.	Table	1.4
shows	typical	current	values	for	the	various	digital	logic	families.	The	LM3S/TM4C
microcontrollers	give	you	three	choices	of	output	current	for	the	digital	output	pins.	The
TM4C1294	adds	a	12-mA	mode.

Family Example IOH IOL IIH IIL

Standard	TTL 7404 0.4	mA 16	mA 40	µA 1.6
mA

Schottky	TTL 74S04 1	mA 20	mA 50	µA 2	mA

Low	Power
Schottky

74LS04 0.4	mA 4	mA 20	µA 0.4
mA

74HC04 4	mA 4	mA 1	µA 1	µA

High	Speed
CMOS

Adv	High
Speed	CMOS

74AHC04 4	mA 4	mA 1	µA 1	µA

TM4C	2mA-
drive

TM4C123 2	mA 2	mA 2	µA 2	µA

TM4C	4mA-
drive

TM4C123 4	mA 4	mA 2	µA 2	µA

TM4C	8mA-
drive

TM4C123 8	mA 8	mA 2	µA 2	µA

TM4C	12mA-
drive

TM4C1294 12	mA 12	mA 2	µA 2	µA

Table	1.4.	The	input	and	output	currents	of	various	digital	logic	families	and
microcontrollers.

	

Observation:	For	TTL	devices	the	logic	low	currents	are	much	larger	than	the	logic	high
currents.		

When	we	design	circuits	using	devices	all	from	a	single	logic	family,	we	can	define	fan
out	as	the	maximum	number	of	inputs,	one	output	can	drive.		For	transistor-transistor
logic	(TTL)	logic	we	can	calculate	fan	out	from	the	input	and	output	currents:

Fan	out	=	minimum((IOH/IIH)	,	(IOL/IIL))

Conversely,	the	fan	out	of	high-speed	complementary	metal-oxide	semiconductor
(CMOS)	devices,	which	includes	most	microcontrollers,	is	determined	by	capacitive
loading	and	not	by	the	currents.		Figure	1.14	shows	a	simple	circuit	model	of	a	CMOS
interface.	The	ideal	voltage	of	the	output	device	is	labeled	V1.	For	interfaces	in	close
proximity,	the	resistance	R	results	from	the	output	impedance	of	the	output	device,	and	the
capacitance	C	results	from	the	input	capacitance	of	the	input	device.	However,	if	the
interface	requires	a	cable	to	connect	the	two	devices,	both	the	resistance	and	capacitance
will	be	increased	by	the	cable.	The	voltage	labeled	V2	is	the	effective	voltage	as	seen	by
the	input.	If	V2	is	below	1.3	V,	the	LM3S/LM4F/TM4C	microcontrollers	will	interpret	the
signal	as	low.	Conversely,	the	voltage	is	above	2.0	V,	these	microcontrollers	will	consider
it	high.	The	slew	rate	of	a	signal	is	the	slope	of	the	voltage	versus	time	during	the	time
when	the	logic	level	switches	between	low	and	high.	A	similar	parameter	is	the	transition
time,	which	is	the	time	it	takes	for	an	output	to	switch	from	one	logic	level	to	another.	In
Figure	1.14,	the	transition	time	is	defined	as	the	time	it	takes	V2	to	go	from	1.3	to	2.0	V.
There	is	a	capacitive	load	for	the	output	and	each	input.	As	this	capacitance	increases	the
slew	rate	decreases,	which	will	increase	the	transition	time.	Signals	with	a	high	slew	rate
can	radiate	a	lot	of	noise.	So,	to	reduce	noise	emissions	we	sometimes	limit	the	slew	rate
of	the	signals.

There	are	two	ways	to	determine	the	fan	out	of	CMOS	circuits.	First,	some	circuits	have	a
minimum	time	its	input	can	exist	in	the	transition	range.	For	example,	it	might	specify	the
signal	cannot	be	above	1.3	and	below	2.0	V	for	more	than	20	ns.	Clock	inputs	are	often
specified	this	way.	A	second	way	is	to	calculate	the	time	constant	,	which	is	R*C	for	this
circuit.	Let	T	be	the	pulse	width	of	the	digital	signal.	If	T	is	large	compared	to ,	then	the
CMOS	interface	functions	properly.	For	circuits	that	mix	devices	from	one	family	with
another,	we	must	look	individually	at	the	input	and	output	currents,	voltages	and
capacitive	loads.	There	is	no	simple	formula.

Figure	1.14.	Capacitance	loading	is	an	important	factor	when	interfacing
CMOS	devices.

Figure	1.15	compares	the	input	and	output	voltages	for	many	of	the	digital	logic	families.
VIL	is	the	voltage	below	which	an	input	is	considered	a	logic	low.	Similarly,	VIH	is	the
voltage	above	which	an	input	is	considered	a	logic	high.	The	output	voltage	depends
strongly	on	current	required	to	drive	the	inputs	of	the	next	stage.	VOH	is	the	output	voltage
when	the	signal	is	high.	In	particular,	if	the	output	is	a	logic	high,	and	the	current	is	less
than	IOH,	then	the	voltage	will	be	greater	than	VOH.	Similarly,	VOL	is	the	output	voltage
when	the	signal	is	low.	In	particular,	if	the	output	is	a	logic	low,	and	the	current	is	less	than
IOL,	then	the	voltage	will	be	less	than	VOL.	The	digital	input	pins	on	the
LM3S/LM4F/TM4C	microcontrollers	are	5V-tolerant,	meaning	an	input	high	signal	can
be	any	voltage	from	2.0	to	5.0	V.

Figure	1.15.	Voltage	thresholds	for	various	digital	logic	families.
	

For	the	output	of	one	circuit	to	properly	drive	the	inputs	of	the	next	circuit,	the	output	low
voltage	needs	to	be	low	enough,	and	the	output	high	voltage	needs	to	be	high	enough.

	for	all	inputs					and														 	for	all	inputs																		

The	maximum	output	current	specification	on	the	LM3S/LM4F/TM4C	family	is	25	mA,
which	is	the	current	above	which	will	cause	damage.	However,	we	can	select	IOH	and	IOL	to
be	2,	4,	or	8	mA.	Normally,	we	design	the	system	so	the	output	currents	are	less	than	IOH
and	IOL.	Vt	is	the	typical	threshold	voltage,	which	is	the	voltage	at	which	the	input	usually
switches	between	logic	low	and	high.	Formally	however,	an	input	is	considered	in	the
transition	region	(value	indeterminate)	for	voltages	between	VIL	and	VIH.	The	five
parameters	that	affect	our	choice	of	logic	families	are

•	Power	supply	voltage	(e.g.,	+5V,	3.3V	etc.)

•	Power	supply	current	(e.g.,	will	the	system	need	to	run	on	batteries?)

•	Speed	(e.g.,	clock	frequency	and	propagation	delays)

•	Output	drive,	IOL,	IOH	(e.g.,	does	it	need	to	drive	motors	or	lights?)

•	Noise	immunity	(e.g.,	electromagnetic	field	interference)

•	Temperature	(e.g.,	electromagnetic	field	interference)

	
Checkpoint	1.14:	How	will	the	TM4C123	interpret	an	input	pin	as	the	input	voltage
changes	from	0,	1,	2,	3,	4,	to	5V?		I.e.,	for	each	voltage,	will	it	be	considered	as	a	logic
low,	as	a	logic	high	or	as	indeterminate?

Checkpoint	1.15:	Considering	both	voltage	and	current,	can	the	output	of	a	74HC04	drive
the	input	of	a	74LS04?	Assume	both	are	running	at	5V.

Checkpoint	1.16:	Considering	both	voltage	and	current,	can	the	output	of	a	74LS04	drive
the	input	of	a	74HC04?	Assume	both	are	running	at	5V.

A	very	important	concept	used	in	computer	technology	is	tristate	logic,	which	has	three
output	states:	high,	low,	and	off.	Other	names	for	the	off	state	are	HiZ,	floating,	and
tristate.	Tristate	logic	is	drawn	as	a	triangle	shape	with	a	signal	on	the	top	of	the	triangle.
In	this	Figure	1.16,	A	is	the	data	input,	G	is	the	gate	input,	and	B	is	the	data	output.	When
there	is	no	circle	on	the	gate,	it	operates	in	positive	logic,	meaning	if	the	gate	is	high,	then
the	output	data	equals	the	input	data.	If	the	positive-logic	gate	is	low,	then	the	output	will
float.	When	there	is	a	circle	on	the	gate,	it	operates	in	negative	logic,	meaning	if	the	gate	is
low,	then	the	output	data	equals	the	input	data.	If	the	negative-logic	gate	is	high,	then	the
output	will	float.

Figure	1.16.	Digital	logic	drawing	of	tristate	drivers.
There	are	a	wide	range	of	technologies	available	for	digital	logic	design.	To	study	these
differences	consider	the	74LVT245,	the	74ALVC245,	the	74LVC245,	the	74ALB245,	the
74AC245,	the	74AHC245,	and	the	74LV245.

Each	of	these	chips	is	an	8-input	8-output	bidirectional	tristate	driver.	Table	1.5	lists	some
of	the	interfacing	parameters	for	each	technology.	ICC	is	the	total	supply	current	required	to
drive	the	chip.		tpd	is	the	propagation	delay	from	input	to	output.	VCC	is	the	supply	voltage.

Family	Technology VIL	VIH VOL	VOH IOL IOH ICC tpd

LVT	-	Low-Voltage	BiCMOS LVTTL LVTTL 64 -32 190 3.5

ALVC	-	Advanced	Low-
Voltage	CMOS

LVTTL LVTTL 24 -24 40 3.0

LVC	-	Low-Voltage	CMOS LVTTL LVTTL 24 -24 10 4.0

ALB	-	Advanced	Low-Voltage
BiCMOS

LVTTL LVTTL 25 -25 800 2.0

AC	-	Advanced	CMOS CMOS CMOS 12 -12 20 8.5

AHC	-	Advanced	High	Speed
CMOS

CMOS CMOS 4 -4 20 11.9

LV	-	Low-Voltage	CMOS LVTTL LVTTL 8 -8 20 14

units 	 	 mA mA µA ns

Table	1.5.	Comparison	of	the	output	drive,	supply	current	and	speed	of	various	3.3V
logic	‘245	gates.

	

Observation:	There	is	an	inverse	relationship	between	supply	current	ICC	and	propagation
delay	tpd.		

The	74LS04	is	a	low-power	Schottky	NOT	gate,	as	shown	on	the	left	in	Figure	1.17.	It	is
called	Schottky	logic	because	the	devices	are	made	from	Schottky	transistors.	The	output
is	high	when	the	transistor	Q4	is	active,	driving	the	output	to	Vcc.	The	output	is	low	when
the	transistor	Q5	is	active,	driving	the	output	to	0.	

		

Figure	1.17.	Two	transistor-level	implementations	of	a	NOT	gate.
It	is	obviously	necessary	to	read	the	data	sheet	for	your	microcontroller.	However,	it	is
also	good	practice	to	review	the	errata	published	by	the	manufacturer	about	your
microcontroller.	The	errata	define	situations	where	the	actual	chip	does	not	follow
specifications	in	the	data	sheet.	For	example,	the	regular	TM4C123	data	sheet	states	the
I/O	pins	are	+5V	tolerant.	However,	reading	the	errata	for	the	LM3S811	version	C2
announces	that	“PB6,	PC5,	and	PC6	are	not	5-V	tolerant.”

The	74HC04	is	a	high-speed	CMOS	NOT	gate,	shown	on	the	right	in	Figure	1.17.	The
output	is	high	when	the	transistor	Q1	is	active,	driving	the	output	to	3.3V.	The	output	is
low	when	the	transistor	Q2	is	active,	driving	the	output	to	0.	Since	most	microcontrollers
are	made	with	high-speed	CMOS	logic,	its	outputs	behave	like	the	Q1/Q2	“push/pull”
transistor	pair.	Output	ports	are	not	inverting.	I.e.,	when	you	write	a	“1”	to	an	output	port,
then	the	output	voltage	goes	high.	Similarly,	when	you	write	a	“0”	to	an	output	port,	then
the	output	voltage	goes	low.		Analyses	of	the	circuit	in	Figure	1.17	reveal	some	of	the
basic	properties	of	high-speed	CMOS	logic.	First,	because	of	the	complementary	nature	of
the	P-channel	(the	one	on	the	top)	and	N-channel	(the	one	on	the	bottom)	transistors,	when
the	input	is	constant	(continuously	high	or	continuously	low),	the	supply	current,	Icc,	is
very	low.	Second,	the	gate	will	require	supply	current	only	when	the	output	switches	from
low	to	high	or	from	high	to	low.	This	observation	leads	to	the	design	rule	that	the	power
required	to	run	a	high-speed	CMOS	system	is	linearly	related	to	the	frequency	of	its	clock,
because	the	frequency	of	the	clock	determines	the	number	of	transitions	per	second.	Along
the	same	lines,	we	see	that	if	the	voltage	on	input	A	exists	between	VIL	and	VIH	for
extended	periods	of	time,	then	both	Q1	and	Q2	are	partially	active,	causing	a	short	from
power	to	ground.	This	condition	can	cause	permanent	damage	to	the	transistors.		Third,
since	the	input	A	is	connected	to	the	gate	of	the	two	MOS	transistors,	the	input	currents
will	be	very	small	(≈1 � A).		In	other	words,	the	input	impedance	(input	voltage	divide	by
input	current)	of	the	gate	is	very	high.		Normally,	a	high	input	impedance	is	a	good	thing,
except	if	the	input	is	not	connected.	If	the	input	is	not	connected	then	it	takes	very	little
input	currents	to	cause	the	logic	level	to	switch.

Common	error:	If	unused	input	pins	on	a	CMOS	microcontroller	are	left	unconnected,
then	the	input	signal	may	oscillate	at	high	frequencies	depending	on	the	EM	fields	in	the
environment,	wasting	power	unnecessarily.

Observation:	It	is	a	good	design	practice	to	connect	unused	CMOS	inputs	to	ground	or
connect	them	to	+3.3V.	

Now	that	we	understand	that	CMOS	digital	logic	is	built	with	PNP	and	NPN	transistors,
we	can	revisit	the	interface	requirements	for	connecting	a	digital	output	from	one	module
to	a	digital	input	of	another	module.	Figure	1.18	shows	the	model	when	the	output	is	high.
To	make	the	output	high,	a	PNP	transistor	in	the	output	module	is	conducting	(Q1)	driving
+3.3	V	to	the	output.	The	high	voltage	will	activate	the	gate	of	NPN	transistors	in	the
input	module	(Q4).	The	IIH	is	the	current	into	the	input	module	needed	to	activate	all	gates
connected	to	the	input.	The	actual	current	I	will	be	between	0	and	IIH.	For	a	high	signal,
current	flows	from	+3.3V,	across	the	source-drain	of	Q1,	into	the	gate	of	Q4,	and	then	to
ground.	As	the	actual	current	I	increases,	the	actual	output	voltage	V	will	drop.	IOH	is	the
maximum	output	current	that	guarantees	the	output	voltage	will	be	above	VOH.	Assuming
the	actual	I	is	less	than	IOH,	the	actual	voltage	V	will	be	between	VOH	and	+3.3V.	If	the
input	voltage	is	between	VIH	and	+3.3V,	the	input	signal	is	considered	high	by	the	input.
For	the	high	signal	to	be	transferred	properly,	VOH	must	be	larger	than	VIH	and	IOH	must	be
larger	than	IIH.

Figure	1.19	shows	the	model	when	the	output	is	low.	To	make	the	output	low,	an	NPN

transistor	in	the	output	module	is	conducting	(Q2)	driving	the	output	to	0V.	The	low
voltage	will	activate	the	gate	of	PNP	transistors	in	the	input	module	(Q3).	The	IIL	is	the
current	out	of	the	input	module	needed	to	activate	all	gates	connected	to	the	input.	The
actual	current	I	will	be	between	0	and	IIL.	For	a	low	signal,	current	flows	from	+3.3V	in
the	input	module,	across	the	source-gate	of	Q3,	across	the	source-drain	gate	of	Q2,	and
then	to	ground.	As	the	actual	current	I	increases,	the	actual	output	voltage	V	will	increase.
IOL	is	the	maximum	output	current	that	guarantees	the	output	voltage	will	be	less	than	VOL.
Assuming	the	actual	I	is	less	than	IOL,	the	actual	voltage	V	will	be	between	0	and	VOL.	If
the	input	voltage	is	between	0	and	VIL,	the	input	signal	is	considered	low	by	the	input.	For
the	low	signal	to	be	transferred	properly,	VOL	must	be	less	than	VIL	and	IOL	must	be	larger
than	IIL.

Figure	1.18.	Model	for	the	input/output	characteristics	when	the	output	is
high.

Figure	1.19.	Model	for	the	input/output	characteristics	when	the	output	is
low.
Open	collector	logic	has	outputs	with	two	states:	low	and	off.	The	74LS05	is	a	low-power
Schottky	open	collector	NOT	gate,	as	shown	in	Figure	1.20.	When	drawing	logic
diagrams,	we	add	the	‘x’	on	the	output	to	specify	open	collector	logic.

The	74HC05	is	a	high-speed	CMOS	open	collector	NOT	gate	is	also	shown	in	Figure
1.20.	It	is	called	open	collector	because	the	collector	pin	of	Q2	is	not	connected,	or	left
open.		The	output	is	off	when	there	is	no	active	transistor	driving	the	output.	In	other
words,	when	the	input	is	low,	the	output	floats.	This	“not	driven”	condition	is	called	the
open	collector	state.		When	the	input	is	high,	the	output	will	be	low,	caused	by	making	the
transistor	Q2	is	active	driving	the	output	to	0.	Technically,	the	74HC05	implements	open
drain	rather	than	open	collector,	because	it	is	the	drain	pin	of	Q2	that	is	left	open.	In	this
book,	we	will	use	the	terms	open	collector	and	open	drain	interchangeably	to	refer	to
digital	logic	with	two	output	states	(low	and	off).	Because	of	the	multiple	uses	of	open
collector,	many	microcontrollers	can	implement	open	collector	logic.	On	LM3S/TM4C
microcontrollers,	we	can	affect	this	mode	by	defining	an	output	as	open	drain.

	

Figure	1.20.	Two	transistor	implementations	of	an	open	collector	NOT
gate.
We	can	use	a	bipolar	junction	transistor	(BJT)	to	source	or	sink	current.	For	most	of	the
circuits	in	this	book	the	transistors	are	used	in	saturated	mode.	In	general,	we	will	use
NPN	transistors	to	sink	current	to	ground.	We	turn	on	an	NPN	transistor	by	applying	a
positive	Vbe.	This	means	when	the	NPN	transistor	is	on,	current	flows	from	the	collector	to
the	emitter.	When	the	NPN	transistor	is	off,	no	current	flows	from	the	collector	to	the
emitter.	Each	transistor	has	an	input	and	output	impedance,	hie	and	hoe	respectively.	The
current	gain	is	hfeor � .	The	hybrid-pi	small	signal	model	for	the	bipolar	NPN	transistor	is
shown	in	Figure	1.21.

Figure	1.21.	NPN	transistor	model.
There	are	five	basic	design	rules	when	using	individual	bipolar	NPN	transistors	in
saturated	mode:

1)	Normally	Vc	>		Ve

2)	Current	can	only	flow	in	the	following	directions

from	base	to	emitter	(input	current)

from	collector	to	emitter	(output	current)

from	base	to	collector	(doesn’t	usually	happen,	but	could	if	Vb	>	Vc)

3)	Each	transistor	has	maximum	values	for	the	following	terms	that	should	not	be
exceeded

Ib		Ic		Vce		and		Ic	•	Vce
4)	The	transistor	acts	like	a	current	amplifier

Ic	=	hfe	•	Ib
5)	The	transistor	will	activate	if	Vb	>	Ve	+	Vbe(SAT)
where	Vbe(SAT)	is	typically	above	0.6V

In	general,	we	will	use	PNP	transistors	to	source	current	from	a	positive	voltage	supply.
We	turn	on	a	PNP	transistor	by	applying	a	positive	Veb.	This	means	when	the	PNP
transistor	is	on,	current	flows	from	the	emitter	to	the	collector.	When	the	PNP	transistor	is
off,	no	current	flows	from	the	emitter	to	the	collector.	Each	transistor	has	an	input	and
output	impedance,	hie	and	hoe	respectively.	The	current	gain	is	hfeor � .	The	hybrid-pi	small
signal	model	for	the	bipolar	PNP	transistor	is	shown	in	Figure	1.22.

Figure	1.22.	PNP	transistor	model.
	

There	are	five	basic	design	rules	when	using	individual	bipolar	PNP	transistors	in
saturated	mode:

1)	Normally	Ve	>	Vc
2)	Current	can	only	flow	in	the	following	directions

from	emitter	to	base		(input	current)

from	emitter	to	collector	(output	current)

from	collector	to	base	(doesn’t	usually	happen,	but	could	if	Vc	>	Vb)

3)	Each	transistor	has	maximum	values	for	the	following	terms	that	should	not	be
exceeded

Ib		Ic		Vce		and		Ic	•	Vce

4)	The	transistor	acts	like	a	current	amplifier

Ic	=	hfe	•	Ib
5)	The	transistor	will	activate	if	Vb	<	Ve	-	Vbe(SAT)
where	Vbe(SAT)	is	typically	above	0.6V

	

Performance	Tip:	A	good	transistor	design	is	one	that	the	input/output	response	is
independent	of	hfe.	We	can	design	a	saturated	mode	circuit	so	that	Ib	is	2	to	5	times	as	large
as	needed	to	supply	the	necessary	Ic.

The	Table	1.6	illustrates	the	wide	range	of	bipolar	transistors	that	we	can	use.

Type NPN PNP package Vbe(SAT) Vce(SAT) hfe
min/max

Ic

general
purpose

2N3904 2N3906 TO-92 0.85	V 0.2	V 100 10mA

general
purpose

PN2222 PN2907 TO-92 1.2	V 0.3	V 100 150mA

general
purpose

2N2222 2N2907 TO-18 1.2	V 0.3	V 100/300 500mA

power
transistor

TIP29A TIP30A TO-220 1.3	V 0.7	V 15/75 1A

power
transistor

TIP31A TIP32A TO-220 1.8	V 1.2	V 25/50 3A

power
transistor

TIP41A TIP42A TO-220 2.0	V 1.5	V 15/75 3A

power
darlington

TIP120 TIP125 TO-220 2.5	V 2.0	V 1000
min

3A

Table	1.6.	Parameters	of	typical	transistors	used	to	source	or	sink	current.

Under	most	conditions	we	place	a	resistor	in	series	with	the	base	of	a	BJT	when	using	it	as
a	current	switch.	The	value	of	this	resistor	is	typically	100 � to	10k � .	The	purpose	of
this	base	resistor	is	to	limit	the	current	into	the	base.	The	hieis	typically	around	60 � .	It
you	connect	a	microcontroller	output	port	directly	to	the	base	of	a	BJT	(without	the
resistor),	then	when	the	output	is	high	it	will	try	and	generate	a	current	of	3.3V/60 � 	=	50
mA,	potentially	damaging	the	microcontroller.	If	there	is	a	1k � 	resistor	between	the
microcontroller	and	base	of	the	NPN,	then	the	Vbe	voltage	goes	to	VbeSAT	(0.7)	and	(3.3-
0.7)/1000 � 	or	2.6	mA.

In	general,	we	can	use	an	open	collector	NOT	gate	to	control	the	current	to	a	device,	such
as	a	relay,	a	light	emitting	diode	(LED),	a	solenoid,	a	small	motor,	and	a	small	light.	The
74HC05	can	handle	up	to	4	mA.	The	7405	and	7406	can	handle	up	to	16	and	40	mA
respectively,	but	they	must	be	powered	at	+5V.	For	currents	up	to	150	mA	we	can	use	a
PN2222	transistor,	as	shown	in	Figure	1.23,	to	create	a	low-cost	but	effective	solution.
When	output	of	the	microcontroller	is	high,	the	transistor	is	on,	making	its	output	low	(VOL
or	VCE).	In	this	state,	a	10	mA	current	is	applied	to	the	diode,	and	it	lights	up.	But	when
output	of	the	microcontroller	is	low,	the	transistor	is	off,	making	its	output	float,	which	is
neither	high	nor	low.	This	floating	output	state	causes	the	LED	current	to	be	zero,	and	the
diode	is	dark.	The	resistor	is	selected	to	set	the	LED	current.	Assume	the	VCE	is	0.3V,	and
the	desired	LED	operating	point	is	1.9V	10mA.	In	this	case,	the	correct	resistor	value	is
(3.3-1.9-0.3V)/10mA	=	110 � .

Figure	1.23.	Open	collector	used	to	interface	a	light	emitting	diode.
Checkpoint	1.17:	What	resistor	value	would	you	choose	to	operate	the	LED	at	2V	20mA?

When	needed	for	digital	logic,	we	can	convert	an	open	collector	output	to	a	digital	signal
using	a	pull-up	resistor	from	the	output	to	VCC.		In	this	way,	when	the	open	collector
output	floats,	the	signal	will	be	a	digital	high.	How	do	we	select	the	value	of	the	pull-up
resistor?	In	general	the	smaller	the	resistor,	the	larger	the	IOH	it	will	be	able	to	supply
when	the	output	is	high.	On	the	other	hand,	a	larger	resistor	does	not	waste	as	much	IOL
current	when	the	output	is	low.	One	way	to	calculate	the	value	of	this	pull-up	resistor	is	to
first	determine	the	required	output	high	voltage,	Vout,	and	output	high	current,	Iout.		To
supply	a	current	of	at	least	Iout	at	a	voltage	above	Vout,	the	resistor	must	be	less	than:

R	≤	(VCC	-	Vout)/Iout	

As	an	example	we	will	calculate	the	resistor	value	for	the	situation	where	the	circuit	needs
to	drive	five	regular	TTL	loads,	with	VCC	equal	to	5V.	We	see	from	Figure	1.15	that	Vout
must	be	above	VIH	(2V)	in	order	for	the	TTL	inputs	to	sense	a	high	logic	level.	We	can	add
a	safety	factor	and	set	Vout	at	3V.	In	order	for	the	high	output	to	drive	all	five	TTL	inputs,
Iout	must	be	more	than	five	IIH.	From	Table	1.4,	we	see	that	IIH	is	40	µA,	so	Iout	should	be
larger	than	5	times	40	µA	or	0.2mA.	For	this	situation,	the	resistor	must	be	less	than	(5-
3V)/0.2mA	=	10	kΩ.

Another	example	of	open	collector	logic	occurs	when	interfacing	switches	to	the
microcontroller.		The	circuit	on	the	left	of	Figure	1.24	shows	a	mechanical	switch	with	one
terminal	connected	to	ground.	In	this	circuit,	when	the	switch	is	pressed,	the	voltage	r	is
zero.	When	the	switch	is	not	processed,	the	signal	r	floats.

The	circuit	on	the	middle	of	Figure	1.24	shows	the	mechanical	switch	with	a	10	k � 	pull-
up	resistor	attached	the	other	side.	When	the	switch	is	pressed	the	voltage	at	sstill	goes	to
zero,	because	the	resistance	of	the	switch	(less	than	0.1 �)	is	much	less	than	the	pull-up
resistor.	But	now	when	the	switch	is	not	pressed	the	pull-up	resistor	creates	a	+3.3V	at	s.
This	circuit	is	shown	connected	to	an	input	pin	of	the	microcontroller.	The	software,	by
reading	the	input	port,	can	determine	whether	or	not	the	switch	is	pressed.	If	the	switch	is
pressed	the	software	will	read	zero,	and	if	the	switch	is	not	pressed	the	software	will	read
one.		This	middle	circuit	is	called	negative	logic	because	the	active	state,	switch	is	being
pressed,	has	a	lower	voltage	than	the	inactive	state.

The	circuit	on	the	right	of	Figure	1.24	also	interfaces	a	mechanical	switch	to	the
microcontroller,	but	it	implements	positive	logic	using	a	pull-down	resistor.	The	signal	t
will	be	high	if	the	switch	is	pressed	and	low	if	it	is	released.	This	right	circuit	is	called
positive	logic	because	the	active	state,	switch	is	being	pressed,	has	a	higher	voltage	than
the	inactive	state.

Figure	1.24.	Single	Pole	Single	Throw	(SPST)	Switch	interface.
Observation:	We	can	activate	pull-up	or	pull-down	resistors	on	the	ports	on	most
microcontrollers,	so	the	interfaces	in	Figure	1.24	can	be	made	without	the	external
resistor.

Earlier	we	used	a	voltage	and	current	argument	to	determine	the	value	of	the	pull-up
resistor.	In	this	section	we	present	another	method	one	could	use	to	select	this	resistor.	The
LM3S/TM4C	microcontrollers	havean	input	current	of	2 � A.	At	3.3	V,	this	is	the
equivalent	of	an	input	impedance	of	about	1	M � .	A	switch	has	an	on-resistance	of	less
than	1 � .	We	want	the	resistor	to	be	small	when	compared	to	1M � ,	but	large	compared
to	1 � .	The	10	k � 	pull-up	resistor	is	100	times	smaller	than	the	input	impedance	and
10,000	times	larger	than	the	switch	resistance.	The	internal	pull-up	mode	on	LM3S
microcontrollers	ranges	from	an	equivalent	of	50	to	110	k � .	The	internal	pull-downmode

ranges	from	an	equivalent	of	55	to	180	k � .	For	the	TM4C,	the	internal	pull-up	resistor
ranges	from	13	to	30	k � ,	and	the	internal	pull-down	resistor	ranges	from	13	to	35	k � .

1.5.	Digital	Representation	of	Numbers

1.5.1.	Fundamentals
Information	is	stored	on	the	computer	in	binary	form.	A	binary	bit	can	exist	in	one	of	two
possible	states.	In	positive	logic,	the	presence	of	a	voltage	is	called	the	‘1’,	true,	asserted,
or	high	state.	The	absence	of	a	voltage	is	called	the	‘0’,	false,	not	asserted,	or	low	state.
Conversely	in	negative	logic,	the	true	state	has	a	lower	voltage	than	the	false	state.	Figure
1.25	shows	the	output	of	a	typical	complementary	metal	oxide	semiconductor	(CMOS)
circuit.	The	left	side	shows	the	condition	with	a	true	bit,	and	the	right	side	shows	a	false.
The	output	of	each	digital	circuit	consists	of	a	p-type	transistor	“on	top	of”	an	n-type
transistor.	In	digital	circuits,	each	transistor	is	essentially	on	or	off.	If	the	transistor	is	on,	it
is	equivalent	to	a	short	circuit	between	its	two	output	pins.	Conversely,	if	the	transistor	is
off,	it	is	equivalent	to	an	open	circuit	between	its	outputs	pins.	On	LM3S/TM4C
microcontrollers	powered	with	3.3	V	supply,	a	voltage	between	2	and	5	V	is	considered
high,	and	a	voltage	between	0	and	1.3	V	is	considered	low.	Separating	the	two	regions	by
0.7	V	allows	digital	logic	to	operate	reliably	at	very	high	speeds.		The	design	of	transistor-
level	digital	circuits	is	beyond	the	scope	of	this	book.	However,	it	is	important	to	know
that	digital	data	exist	as	binary	bits	and	encoded	as	high	and	low	voltages.

Figure	1.25.	A	binary	bit	is	true	if	a	voltage	is	present	and	false	if	the
voltage	is	0.
	

Numbers	are	stored	on	the	computer	in	binary	form.	In	other	words,	information	is
encoded	as	a	sequence	of	1’s	and	0’s.	On	most	computers,	the	memory	is	organized	into	8-
bit	bytes.	This	means	each	8-bit	byte	stored	in	memory	will	have	a	separate	address.	
Precision	is	the	number	of	distinct	or	different	values.	We	express	precision	in
alternatives,	decimal	digits,	bytes,	or	binary	bits.		Alternatives	are	defined	as	the	total
number	of	possibilities	as	listed	in	Table	1.7.	Let	the	operation	[[x]]	be	the	greatest	integer
of	x.	E.g.,	[[2.1]]	is	rounded	up	to	3.	For	example,	an	8-bit	number	scheme	can	represent
256	different	numbers,	which	means	256	alternatives.	An	8-bit	digital	to	analog	converter
(DAC)	can	generate	256	different	analog	outputs.	An	8-bit	analog	to	digital	converter
(ADC)	can	measure	256	different	analog	inputs.	

	

Binary	bits Bytes Alternatives

8 1 256

10 	 1024

12 	 4096

16 2 65,536

20 	 1,048,576

24 3 16,777,216

30 	 1,073,741,824

32 4 4,294,967,296

n [[n/8]] 2n

Table	1.7.	Relationship	between	bits,	bytes	and	alternatives	as	units	of	precision.

	

Observation:	A	good	rule	of	thumb	to	remember	is	210•n	is	approximately	103•n.	

Decimal	digits	are	used	to	specify	precision	of	measurement	systems	that	display	results
as	numerical	values,	as	defined	in	Table	1.8.	A	full	decimal	digit	can	be	any	value	0,	1,	2,
3,	4,	5,	6,	7,	8,	or	9.		A	digit	that	can	be	either	0	or	1	is	defined	as	a	½	decimal	digit.	The
terminology	of	a	½	decimal	digit	did	not	arise	from	a	mathematical	perspective	of
precision,	but	rather	it	arose	from	the	physical	width	of	the	LED/LCD	module	used	to
display	a	blank	or	’1’	as	compared	to	the	width	of	a	full	digit.	Similarly,	we	define	a	digit
that	can	be	+	or	-	also	as	a	half	decimal	digit,	because	it	has	two	choices.	A	digit	that	can
be	0,1,2,3	is	defined	as	a	¾	decimal	digit,	because	it	is	wider	than	a	½	digit	but	narrower
than	a	full	digit.	We	also	define	a	digit	that	can	be	-1,	-0,	+0,	or	+1	as	a	¾	decimal	digit,
because	it	also	has	four	choices.	We	use	the	expression	4½	decimal	digits	to	mean	20,000
alternatives	and	the	expression	4¾	decimal	digits	to	mean	40,000	alternatives.	The	use	of
a	½	decimal	digit	to	mean	twice	the	number	of	alternatives	or	one	additional	binary	bit	is
widely	accepted.	On	the	other	hand,	the	use	of	¾	decimal	digit	to	mean	four	times	the
number	of	alternatives	or	two	additional	binary	bits	is	not	as	commonly	accepted.		For
example,	consider	the	two	ohmmeters.	Assume	bothare	set	to	the	0	to	200	k � 	range.
A3½	digit	ohmmeter	has	a	resolution	of	0.1	k � with	measurements	ranging	from	0.0	to
199.9	k � .	On	the	other	hand,	a4½	digit	ohmmeter	has	a	resolution	of	0.01	k � with
measurements	ranging	from	0.00	to	199.99	k � .	Table	1.8	illustrates	decimal-digit
representation	of	precision.

	

Decimal	digits Alternatives

3 1000

3½ 2000

3¾ 4000

4 10,000

4½ 20,000

4¾ 40,000

5 100,000

n 10n

Table	1.8.	Definition	of	decimal	digits	as	a	unit	of	precision.

	

Checkpoint	1.18:	How	many	binary	bits	correspond	to	2½	decimal	digits?

Checkpoint	1.19:	How	many	decimal	digits	correspond	to	10	binary	bits?

Checkpoint	1.20:	How	many	binary	bits	correspond	to	6½	decimal	digits?

Checkpoint	1.21:	About	how	many	decimal	digits	can	be	presented	in	a	64-bit	8-byte
number?	You	can	answer	this	without	a	calculator,	just	using	the	“rule	of	thumb”.

The	hexadecimal	number	system	uses	base	16	as	opposed	to	our	regular	decimal	number
system	that	uses	base	10.	Hexadecimal	is	a	convenient	mechanism	for	humans	to	represent
binary	information,	because	it	is	extremely	simple	for	us	to	convert	back	and	forth
between	binary	and	hexadecimal.	Hexadecimal	number	system	is	often	abbreviated	as
“hex”.	A	nibble	is	defined	as	four	binary	bits,	which	will	be	one	hexadecimal	digit.	In
mathematics,	a	subscript	of	2	means	binary,	but	in	this	book	we	will	define	binary
numbers	beginning	with	%.	In	assembly	language	however,	we	will	use	hexadecimal
format	when	we	need	to	define	binary	numbers.	The	hexadecimal	digits	are	0,	1,	2,	3,	4,	5,
6,	7,	8,	9,	A,	B,	C,	D,	E,	and	F.	Some	assembly	languages	use	the	prefix	$	to	signify
hexadecimal,	and	in	C	we	use	the	prefix	0x.	To	convert	from	binary	to	hexadecimal,	you
simply	separate	the	binary	number	into	groups	of	four	binary	bits	(starting	on	the	right),
then	convert	each	group	of	four	bits	into	one	hexadecimal	digit.	For	example,	if	you
wished	to	convert	101001112,	first	you	would	group	it	into	nibbles	1010		0111,	then	you
would	convert	each	group	1010=A	and		0111=7,	yielding	the	result	of	0xA7.		To	convert
hexadecimal	to	binary,	you	simply	substitute	the	4-bit	binary	for	each	hexadecimal	digit.
For	example,	if	you	wished	to	convert	0xB5D1,	you	substitute	B=1011,	5=0101,	D=1101,
and	1=0001,	yielding	the	result	of	10110101110100012.

Checkpoint	1.22:	Convert	the	binary	number	1110111010112	to	hexadecimal.

Checkpoint	1.23:	Convert	the	hex	number	0x3800	to	binary.

Checkpoint	1.24:	How	many	binary	bits	does	it	take	to	represent	0x12345?

A	great	deal	of	confusion	exists	over	the	abbreviations	we	use	for	large	numbers.	In	1998
the	International	Electrotechnical	Commission	(IEC)	defined	a	new	set	of	abbreviations
for	the	powers	of	2,	as	shown	in	Table	1.9.	These	new	terms	are	endorsed	by	the	Institute
of	Electrical	and	Electronics	Engineers	(IEEE)	and	International	Committee	for	Weights
and	Measures	(CIPM)	in	situations	where	the	use	of	a	binary	prefix	is	appropriate.	The
confusion	arises	over	the	fact	that	the	mainstream	computer	industry,	such	as	Microsoft,
Apple,	and	Dell,	continues	to	use	the	old	terminology.	According	to	the	companies	that
market	to	consumers,	a	1	GHz	is	1,000,000,000	Hz	but	1	Gbyte	of	memory	is
1,073,741,824	bytes.		The	correct	terminology	is	to	use	the	SI-decimal	abbreviations	to
represent	powers	of	10,	and	the	IEC-binary	abbreviations	to	represent	powers	of	2.	The
scientific	meaning	of	2	kilovolts	is	2000	volts,	but	2	kibibytes	is	the	proper	way	to	specify
2048	bytes.	The	term	kibibyte	is	a	contraction	of	kilo	binary	byte	and	is	a	unit	of
information	or	computer	storage,	abbreviated	KiB.

1	KiB	=	210	bytes	=	1024	bytes

1	MiB	=	220	bytes	=	1,048,576	bytes

1	GiB	=	230	bytes	=	1,073,741,824	bytes

	
These	abbreviations	can	also	be	used	to	specify	the	number	of	binary	bits.	The	term
kibibit	is	a	contraction	of	kilo	binary	bit,	and	is	a	unit	of	information	or	computer	storage,
abbreviated	Kibit.

1	Kibit	=	210	bits	=	1024	bits

1	Mibit	=	220	bits	=	1,048,576	bits

1	Gibit	=	230	bits	=	1,073,741,824	bits
	

A	mebibyte	(1	MiB	is	1,048,576	bytes)	is	approximately	equal	to	a	megabyte	(1	MB	is
1,000,000	bytes),	but	mistaking	the	two	has	nonetheless	led	to	confusion	and	even	legal
disputes.	In	the	engineering	community,	it	is	appropriate	to	use	terms	that	have	a	clear	and
unambiguous	meaning.

Value SI									
Decimal

SI									
Decimal

	 Value IEC									
Binary

IEC									
Binary

10001 k kilo- 	 10241 Ki kibi-

10002 M mega- 	 10242 Mi mebi-

10003 G giga- 	 10243 Gi gibi-

10004 T tera- 	 10244 Ti tebi-

10005 P peta- 	 10245 Pi pebi-

10006 E exa- 	 10246 Ei exbi-

10007 Z zetta- 	 10247 Zi zebi-

10008 Y yotta- 	 10248 Yi yobi-

Table	1.9.	Common	abbreviations	for	large	numbers.

	

1.5.2.	8-bit	numbers
A	byte	contains	8	bits	as	shown	in	Figure	1.26,	where	each	bit	b7,…,b0	is	binary	and	has
the	value	1	or	0.	We	specify	b7	as	the	most	significant	bit	or	MSB,	and	b0	as	the	least
significant	bit	or	LSB.	In	C,	the	unsigned	char	or	uint8_t	data	type	creates	an	unsigned
8-bit	number.

Figure	1.26.	8-bit	binary	format,	created	using	either	char	or	unsigned
char	(in	C99	int8_t	or	uint8_t).
If	a	byte	is	used	to	represent	an	unsigned	number,	then	the	value	of	the	number	is

N	=	128•b7	+	64•b6	+	32•b5	+	16•b4	+	8•b3	+	4•b2	+	2•b1	+	b0
Notice	that	the	significance	of	bit	n	is	2n.	There	are	256	different	unsigned	8-bit	numbers.
The	smallest	unsigned	8-bit	number	is	0	and	the	largest	is	255.	For	example,	100001002	is
128+4	or	132.

Checkpoint	1.25:	Convert	the	binary	number	011010012	to	unsigned	decimal.

Checkpoint	1.26:	Convert	the	hex	number	0x23	to	unsigned	decimal.

	

The	basis	of	a	number	system	is	a	subset	from	which	linear	combinations	of	the	basis
elements	can	be	used	to	construct	the	entire	set.	The	basis	represents	the	“places”	in	a
“place-value”	system.	For	positive	integers,	the	basis	is	the	infinite	set	{1,	10,	100…}	and
the	“values”	can	range	from	0	to	9.	Each	positive	integer	has	a	unique	set	of	values	such
that	the	dot-product	of	the	value-vector	times	the	basis-vector	yields	that	number.	For
example,	2345	is	(…,	2,3,4,5)•(…,	1000,100,10,1),	which	is	2*1000+3*100+4*10+5.	For
the	unsigned	8-bit	number	system,	the	basis	is

{1,	2,	4,	8,	16,	32,	64,	128}

The	values	of	a	binary	number	system	can	only	be	0	or	1.		Even	so,	each	8-bit	unsigned
integer	has	a	unique	set	of	values	such	that	the	dot-product	of	the	values	times	the	basis
yields	that	number.	For	example,	69	is	(0,1,0,0,0,1,0,1)•(128,64,32,16,8,4,2,1),	which
equals	0*128+1*64+0*32+0*16+0*8+1*4+0*2+1*1.

Checkpoint	1.27:	Give	the	representations	of	decimal	37	in	8-bit	binary	and	hexadecimal.

Checkpoint	1.28:	Give	the	representations	of	decimal	202	in	8-bit	binary	and
hexadecimal.

One	of	the	first	schemes	to	represent	signed	numbers	was	called	one’s	complement.	It	was
called	one’s	complement	because	to	negate	a	number,	you	complement	(logical	not)	each
bit.	For	example,	if	25	equals	00011001	in	binary,	then	–25	is	11100110.	An	8-bit	one’s
complement	number	can	vary	from	127	to	+127.		The	most	significant	bit	is	a	sign	bit,
which	is	1	if	and	only	if	the	number	is	negative.	The	difficulty	with	this	format	is	that
there	are	two	zeros	+0	is	00000000,	and	–0	is	11111111.	Another	problem	is	that	ones
complement	numbers	do	not	have	basis	elements.	These	limitations	led	to	the	use	of	two’s
complement.

In	C,	the	char	or	int8_t	data	type	creates	a	signed	8-bit	number.	The	two’s	complement
number	system	is	the	most	common	approach	used	to	define	signed	numbers.	It	was	called
two’s	complement	because	to	negate	a	number,	you	complement	each	bit	(like	one’s
complement),	and	then	add	1.	For	example,	if	25	equals	00011001	in	binary,	then	‑25	is
11100111.	If	a	byte	is	used	to	represent	a	signed	two’s	complement	number,	then	the	value
is

N	=	-128•b7	+	64•b6	+	32•b5	+	16•b4	+	8•b3	+	4•b2	+	2•b1	+	b0
There	are	256	different	signed	8-bit	numbers.	The	smallest	signed	8-bit	number	is	-128
and	the	largest	is	127.	For	example,	100000102	equals	-128+2	or	-126.

Checkpoint	1.29:	Are	the	signed	and	unsigned	decimal	representations	of	the	8-bit	hex
number	0x35	the	same	or	different?

For	the	signed	8-bit	number	system	the	basis	is

{1,	2,	4,	8,	16,	32,	64,	-128}

The	most	significant	bit	in	a	two’s	complement	signed	number	will	specify	the	sign.	An
error	will	occur	if	you	use	signed	operations	on	unsigned	numbers,	or	use	unsigned
operations	on	signed	numbers.	To	improve	the	clarity	of	our	software,	always	specify	the
format	of	your	data	(signed	versus	unsigned)	when	defining	or	accessing	the	data.

Checkpoint	1.30:	Give	the	representations	of	-31	in	8-bit	binary	and	hexadecimal.

Observation:	To	take	the	negative	of	a	two’s	complement	signed	number,	we	first
complement	(flip)	all	the	bits,	then	add	1.	

Many	beginning	students	confuse	a	signed	number	with	a	negative	number.	A	signed
number	is	one	that	can	be	either	positive	or	negative.	A	negative	number	is	one	less	than
zero.	Notice	that	the	same	binary	pattern	of	111111112	could	represent	either	255	or	-1.	It
is	very	important	for	the	software	developer	to	keep	track	of	the	number	format.	The
computer	can	not	determine	whether	the	8-bit	number	is	signed	or	unsigned.	You,	as	the
programmer,	will	determine	whether	the	number	is	signed	or	unsigned	by	the	specific
assembly	instructions	you	select	to	operate	on	the	number.	Some	operations	like	addition,
subtraction,	and	shift	left	(multiply	by	2)	use	the	same	hardware	(instructions)	for	both
unsigned	and	signed	operations.	On	the	other	hand,	multiply,	divide,	and	shift	right	(divide
by	2)	require	separate	hardware	(instruction)	for	unsigned	and	signed	operations.

1.5.3.	Character	information
We	can	use	bytes	to	represent	characters	with	the	American	Standard	Code	for
Information	Interchange	(ASCII)	code.	Standard	ASCII	is	actually	only	7	bits,	but	is
stored	using	8-bit	bytes	with	the	most	significant	byte	equal	to	0.	Some	computer	systems
use	the	8th	bit	of	the	ASCII	code	to	define	additional	characters	such	as	graphics	and
letters	in	other	alphabets.	The	7-bit	ASCII	code	definitions	are	given	in	the	Table	1.10.	For
example,	the	letter	‘V’	is	in	the	0x50	row	and	the	6	column.	Putting	the	two	together
yields	hexadecimal	0x56.	The	NUL	character	has	the	value	0	and	is	used	to	terminate
strings.	The	‘0’	character	has	value	0x30	and	represents	the	zero	digit.	In	C,	we	use	the
char	data	type	for	characters.

					 						BITS	4	to	6

	 	 0 1 2 3 4 5 6 7

	 0 NUL DLE SP 0 @ P ` p

B 1 SOH XON ! 1 A Q a q

I 2 STX DC2 “ 2 B R b r

T 3 ETX XOFF # 3 C S c s

S 4 EOT DC4 $ 4 D T d t

	 5 ENQNAK % 5 E U e u

0 6 ACKSYN & 6 F V f v

	 7 BEL ETB ‘ 7 G W g w

T 8 BS CAN (8 H X h x

O 9 HT EM) 9 I Y i y

	 A LF SUB * : J Z j z

3 B VT ESC + ; K [k {

	 C FF FS , < L \ l |

	 D CR GS - = M] m }

	 E SO RS . > N ^ n ~

	 F SI US / ? O _ o DEL 	

Table	1.10.	Standard	7-bit	ASCII.

	

Checkpoint	1.31:	How	is	the	character	‘0’	represented	in	ASCII?

One	way	to	encode	a	character	string	is	to	use	null-termination.	In	this	way,	the	characters
of	the	string	are	stored	one	right	after	the	other,	and	the	end	of	the	string	is	signified	by	the
NUL	character	(0).	For	example,	the	string	“Valvano”	is	encoded	as	the	following	eight
bytes	0x56,	0x61,	0x6C,	0x76,	0x61,	0x6E,	0x6F,	and	0x00.

Checkpoint	1.32:	How	is	“Hello	World”	encoded	as	a	null-terminated	ASCII	string?

1.5.4.	16-bit	numbers
A	halfword	or	short	contains	16	bits,	where	each	bit	b15,…,b0	is	binary	and	has	the	value
1	or	0,	as	shown	in	Figure	1.27.	When	we	store	16-bit	data	into	memory	it	requires	two
bytes.	The	memory	systems	on	most	computers	are	byte	addressable,	which	means	there	is
a	unique	address	for	each	byte.	Therefore,	there	are	two	possible	ways	to	store	in	memory
the	two	bytes	that	constitute	the	16-bit	data.	Data	could	be	stored	in	either	little-endian	or
big-endian	format.	Little	endian	means	the	least	significant	byte	is	at	the	lower	address
and	the	most	significant	byte	is	at	the	higher	address.	Big	endian	means	the	most
significant	byte	is	at	the	lower	address	and	the	least	significant	byte	is	at	the	higher
address.		Freescale	microcontrollers	implement	the	big-endian	format.	Intel	computers
implement	the	little-endian	format.		Some	processors,	like	the	ARM	and	the	PowerPC	are
biendian,	because	they	can	be	configured	to	efficiently	handle	both	big	and	little	endian.
Bit	15	of	the	Application	Interrupt	and	Reset	Control	(APINT)	register	on	the	ARM ®
CortexTM-M	specifies	little-endian	(0)	or	big-endian	(1)	data	access.	The	Stellaris ® 	and
Tiva ® 	microcontrollers	(LM3S/TM4C),	however,	only	use	little-endian	mode.	When
communicating	data	between	computers	one	must	know	the	format	used.

Figure	1.27.	A	halfword	is	a	16-bit	binary	number.	In	C99	int16_t	or
uint16_t.
If	a	halfword	is	used	to	represent	an	unsigned	number,	defined	as	an	unsigned	short	or
uint16_t,	then	the	value	of	the	number	is

N	=	32768•b15	+	16384•b14	+	8192•b13	+	4096•b12	+	2048•b11	+	1024•b10	+	512•b9	+	256•b8
+	128•b7	+	64•b6	+	32•b5	+	16•b4	+	8•b3	+	4•b2	+	2•b1	+	b0
	

There	are	65536	different	unsigned	16-bit	numbers.	The	smallest	unsigned	16-bit	number
is	0	and	the	largest	is	65535.	For	example,	00100001100001002	or	0x2184	is
8192+256+128+4	or	8580.	For	the	unsigned	16-bit	number	system	the	basis	is

{1,	2,	4,	8,	16,	32,	64,	128,	256,	512,	1024,	2048,	4096,	8192,	16384,	32768}

There	are	also	65536	different	signed	16-bit	numbers,	defined	either	as	short,	signed
short,	or	int16_t.	The	smallest	two’s	complement	signed	16-bit	number	is	-32768	and	the
largest	is	32767.		For	example,	11010000000001002	or	0xD004	is	32768+16384+4096+4
or	12284.	If	a	halfword	is	used	to	represent	a	signed	two’s	complement	number,	then	the
value	is

N	=	-32768•b15	+	16384•b14	+	8192•b13	+	4096•b12	+	2048•b11	+	1024•b10	+	512•b9
+	256•b8	+	128•b7	+	64•b6	+	32•b5	+	16•b4	+	8•b3	+	4•b2	+	2•b1	+	b0
	

An	error	will	occur	if	you	use	16-bit	operations	on	8-bit	numbers,	or	use	8-bit	operations
on	16-bit	numbers.	To	improve	the	clarity	of	your	software,	always	specify	the	precision
of	your	data	when	defining	or	accessing	the	data.	For	the	signed	16-bit	number	system	the
basis	is

{1,	2,	4,	8,	16,	32,	64,	128,	256,	512,	1024,	2048,	4096,	8192,	16384,	-32768}

1.5.5.	32-bit	numbers
The	native	number	on	the	ARM	is	a	32-bit	word,	where	each	bit	b31,…,b0	is	binary	and
has	the	value	1	or	0,	as	shown	in	Figure	1.28,	which	is	stored	in	little-endian	format.

Figure	1.28.	A	word	is	32-bit	number.	In	C99	int32_t	or	uint32_t.
We	define	unsigned	long	or	uint32_t	to	be	an	unsigned	32-bit	number.	The	value	is

N	=	231•b31	+	230•b30	+	…	+	22•b2	+	21•b1	+	20b0
	

There	are	4,294,967,296	(232)	different	unsigned	32-bit	numbers.	The	smallest	unsigned
32-bit	number	is	0	and	the	largest	is	4,294,967,295	(232).		For	the	unsigned	32-bit	number
system	the	basis	is

{20,	21,	22,	…,	230,	231}

We	define	long,	signed	long,	or	int32_t	to	be	a	signed	32-bit	number.	The	value	is

N	=	-231•b31	+	230•b30	+	…	+	4•b2	+	2•b1	+	b0
	

There	are	4,294,967,296	(232)	different	signed	32-bit	numbers.	The	smallest	unsigned	32-
bit	number	is	-2,147,483,648	(-231)	and	the	largest	is	+2,147,483,647	(231-1).		For	the
signed	32-bit	number	system	the	basis	is

{20,	21,	22,	…,	230,	-231}

When	dealing	with	16	or	32-bit	numbers	we	normally	would	not	pick	out	individual	bytes,
but	rather	capture	the	entire	multiple-byte	data	as	one	non-divisible	piece	of	information.
On	the	other	hand,	if	each	byte	in	a	multiple-byte	data	structure	is	individually
addressable,	then	both	the	big-	and	little-endian	schemes	store	the	data	in	first	to	last
sequence.	For	example,	assume	we	wish	to	store	the	four	ASCII	characters	“LM3S”	as	a
string.	These	five	bytes,	which	are	0x4C4D335300,	would	exist	at	five	locations	in
memory.	The	first	letter,	the	ASCII	‘L’=0x4C	would	be	stored	in	first	location,	regardless
of	which	endian	format	the	computer	uses.

The	terms	“big	and	little	endian”	comes	from	Jonathan	Swift’s	satire	Gulliver’s	Travels.	
In	Swift’s	book,	the	little	people	of	Blefuscu	believed	the	correct	way	to	crack	an	egg	is	on
the	big	end;	hence	they	were	called	Big-Endians.	In	the	rival	kingdom,	the	little	people	of
Lilliput	were	called	Little-Endians	because	they	insisted	that	the	only	proper	way	is	to
break	an	egg	on	the	little	end.	The	Lilliputians	considered	the	people	of	Blefuscu	as
inferiors.	The	Big-	and	Little-Endians	fought	a	long	and	senseless	war	over	which	end	is
best	to	crack	an	egg.	Lilliput	and	Blefuscu	were	satirical	references	to	18th	century	Great
Britain	and	France.	However,	one	might	argue	they	also	refer	to	Intel	and	Motorola	during
the	1980’s.

1.5.6.	Fixed-point	numbers
We	will	use	fixed-point	numbers	when	we	wish	to	express	values	in	our	computer	that
have	noninteger	values.	A	fixed-point	number	contains	two	parts.	The	first	part	is	a
variable	integer,	called	I.	The	second	part	of	a	fixed-point	number	is	a	fixed	constant,
called	the	resolution	.	The	integer	may	be	signed	or	unsigned.	An	unsigned	fixed-point
number	is	one	that	has	an	unsigned	variable	integer.	A	signed	fixed-point	number	is	one
that	has	a	signed	variable	integer.	The	precision	of	a	number	system	is	the	total	number	of
distinguishable	values	that	can	be	represented.	The	precision	of	a	fixed-point	number	is
determined	by	the	number	of	bits	used	to	store	the	variable	integer.	On	the	ARM,	we	can
use	8,	16	or	32	bits	for	the	integer.	Extended	precision	with	more	the	32	bits	can	be
implemented,	but	the	execution	speed	will	be	slower	because	the	calculations	will	have	to
be	performed	using	software	algorithms	rather	than	with	hardware	instructions.	This
integer	part	is	saved	in	memory	and	is	manipulated	by	software.	These	manipulations
include	but	are	not	limited	to	add,	subtract,	multiply,	divide,	and	square	root.	The
resolution	is	fixed,	and	cannot	be	changed	during	execution	of	the	program.	The	resolution
is	not	stored	in	memory.	Usually	we	specify	the	value	of	the	resolution	using	software
comments	to	explain	our	fixed-point	algorithm.	The	value	of	the	fixed-point	number	is
defined	as	the	product	of	the	variable	integer	and	the	fixed	constant:

Fixed-point	value	≡		I	•	Δ

Observation:	If	the	range	of	numbers	is	known	and	small,	then	the	numbers	can	be
represented	in	a	fixed-point	format.

We	specify	the	range	of	a	fixed-point	number	system	by	giving	the	smallest	and	largest
possible	value.	The	range	depends	on	both	the	variable	integer	and	the	fixed	constant.	For
example,	if	the	system	used	a	16-bit	unsigned	variable,	then	the	integer	part	can	vary	from
0	to	65535.	Therefore,	the	range	of	an	unsigned	16-bit	fixed-point	system	is	0	to
65535• � .	In	general,	the	range	of	the	fixed-point	system	is

Smallest	fixed-point	value	=	Imin	•	,															where	Imin	is	the	smallest	integer	value

Largest	fixed-point	value	=	Imax	•	,															where	Imax	is	the	largest	integer	value

Checkpoint	1.33:	What	is	the	range	of	a	16-bit	signed	fixed-point	number	with � =
0.001?

When	interacting	with	a	human	operator,	it	is	usually	convenient	to	use	decimal	fixed-
point.			With	decimal	fixed-point	the	fixed	constant	is	a	power	of	10.

Decimal	fixed-point	value		I	•	10m	for	some	constant	integer	m

	

Again,	the	m	is	fixed	and	is	not	stored	in	memory.	Decimal	fixed-point	will	be	easy	to
display,	while	binary	fixed-point	will	be	easier	to	use	when	performing	mathematical
calculations.	The	ARM	processor	is	very	efficient	performing	left	and	right	shifts.	With
binary	fixed-point	the	fixed	constant	is	a	power	of	2.	An	example	is	shown	in	Figure
1.29.

Binary	fixed-point	value		I	•	2n			for	some	constant	integer	n

	

Figure	1.29.	16-bit	binary	fixed-point	format	with�=2-6.
It	is	good	practice	to	express	the	fixed-point	resolution	with	units.	For	example,	a	decimal
fixed-point	number	with	a	resolution	of	0.001	V	is	really	the	same	thing	as	an	integer	with
units	of	mV.	Consider	an	analog	to	digital	converter	(ADC)	that	converts	an	analog
voltage	in	the	range	of	0	to	+5	V	into	a	digital	number	between	0	and	255.	This	ADC	has	a
precision	of	8	bits	because	it	has	256	distinct	alternatives.	ADC	resolution	is	defined	as
the	smallest	difference	in	input	voltage	that	can	be	reliably	distinguished.	Because	the	256
alternatives	are	spread	evenly	across	the	0	to	+5V	range,	we	expect	the	ADC	resolution	to
be	about	5V/256	or	0.02V.	When	we	choose	a	fixed-point	number	system	to	represent	the
voltages	we	must	satisfy	two	constraints.		First,	we	want	the	resolution	of	the	number
format	to	be	better	than	the	ADC	resolution	(<	0.02).	Second,	we	want	the	range	of	the
number	system	to	encompass	all	of	the	voltages	in	the	range	of	the	ADC	(65535• 	>	5).	It
would	be	appropriate	to	store	voltages	as	16-bit	unsigned	decimal	fixed-point	numbers
with	a	resolution	of	0.01V,	0.001V,	or	0.0001V.

Using =0.01V,	we	store	4.23	V	by	making	the	integer	part	equal	to	423.	If	we	wished	to
use	binary	fixed-point,	then	we	could	choose	a	resolution	anywhere	in	the	range	of	2-6	to	2-
13	V.	In	general,	we	want	to	choose	the	largest	resolution	that	satisfies	both	constraints,	so
the	integer	parts	have	smaller	values.	Smaller	numbers	are	less	likely	to	cause	overflow
during	calculations.	More	discussion	of	overflow	will	be	presented	in	the	next	chapter.

Checkpoint	1.34:Give	an	approximation	of � 	using	the	decimal	fixed-point	with � =
0.001.

Checkpoint	1.35:Give	an	approximation	of � 	using	the	binary	fixed-point	with � =	2-8.

	

Microcontrollers	in	the	LM3S	family	have	a	10-bit	ADC	and	a	range	of	0	to	+3	V.
Microcontrollers	in	the	TM4C	family	provide	a	12-bit	ADC	and	a	range	of	0	to	+3.3	V.
With	a	12-bit	ADC,	the	resolution	is	3.3V/4096	or	about	0.001V.	It	would	be	appropriate
to	store	voltages	as	16-bit	unsigned	fixed-point	numbers	with	a	resolution	of	either	10-3	or
2-10	V.	Let	Vin	be	the	analog	voltage	in	volts	and	N	be	the	integer	ADC	output,	then	the
analog	to	digital	conversion	is	approximately

N	=	4096	*	Vin	/	3.3

Assume	we	use	a	fixed-point	resolution	of	10-3	V.	We	use	this	equation	to	calculate	the
integer	part	of	a	fixed-point	number	given	the	ADC	result	N.	The	definition	of	the	fixed-
point	is

Vin	=	I	•	10-3

Combining	the	above	two	equations	yields

I	=	(3300	*	N)/	4096

It	is	very	important	to	carefully	consider	the	order	of	operations	when	performing	multiple
integer	calculations.		There	are	two	mistakes	that	can	happen	when	we	calculate
3300*N/1024.		The	first	error	is	overflow,	and	it	is	easy	to	detect.	Overflow	occurs	when
the	result	of	a	calculation	exceeds	the	range	of	the	number	system.	In	this	example,	if	the
multiply	is	implemented	as	16-bit	operation,	then	3000*N	can	overflow	the	0	to	65535
range.	One	solution	of	the	overflow	problem	is	promotion.	Promotion	is	the	action	of
increasing	the	inputs	to	a	higher	precision,	performing	the	calculation	at	the	higher
precision,	checking	for	overflow,	then	demoting	the	result	back	to	the	lower	precision.	In
this	example,	the	3300,	N,	and	4096	are	all	converted	to	32-bit	unsigned	numbers.
(3300*N)/4096	is	calculated	in	32-bit	precision.	Because	we	know	the	range	of	N	is	0	to
4095,	we	know	the	calculation	of	I	will	yield	numbers	between	0	and	3300,	and	therefore
it	will	fit	back	in	a	16-bit	variable	during	demotion.	The	other	error	is	called	drop-out.
Drop-out	occurs	during	a	right	shift	or	a	divide,	and	the	consequence	is	that	an
intermediate	result	looses	its	ability	to	represent	all	of	the	values.	To	avoid	drop-out,	it	is
very	important	to	divide	last	when	performing	multiple	integer	calculations.	If	we	divided
first,	e.g.,	I=3300*(N/4096),	then	the	values	of	I	would	always	be	0.	We	could	have
calculated	I=(3300*N+2048)/4096	to	implement	rounding	to	the	closest	integer.	The	value
2048	is	selected	because	it	is	about	one	half	of	the	denominator.	Sometimes	we	can
simplify	the	numbers	in	an	attempt	to	prevent	overflow.	In	this	cause	we	could	have
calculated	I=(825*N+256)/1024.	However,	this	formulation	could	still	overflow	and
requires	promotion	to	32	bits	to	operate	correctly.

When	adding	or	subtracting	two	fixed-point	numbers	with	the	same � ,	we	simply	add	or
subtract	their	integer	parts.	First,	let	x,	y,	and	zbe	three	fixed-point	numbers	with	the
same .	Let	x=I• ,	y=J• ,	and	z=K• .	To	perform	z=x+y,	we	simply	calculate	K=I+J.
Similarly,	to	perform	z=x-y,	we	simply	calculate	K=I-J.

When	adding	or	subtracting	fixed-point	numbers	with	different	fixed	parts,	then	we	must
first	convert	the	two	inputs	to	the	format	of	the	result	before	adding	or	subtracting.	This	is
where	binary	fixed-point	is	more	efficient,	because	the	conversion	process	involves
shifting	rather	than	multiplication/division.	Many	instructions	on	the	ARM	allow	a	data
shift	operation	to	be	performed	at	no	added	execution	time.

For	multiplication,	we	have	z=x•y.	Again,	we	substitute	the	definitions	of	each	fixed-point
parameter,	and	solve	for	the	integer	part	of	the	result.	If	all	three	variables	have	the	same
resolution,	then	z=x•y	becomes	K• =	I• •	J• 	yielding	K	=	I•J• .	If	the	three	variables	have
different	resolutions,	such	as	x=I•2n,	y=J•2m,	and	z=K•2p,	then	z=x•y	becomes	K•2p	=	I•2n	•
J•2m	yielding	K	=	I•J•2n+m-p.

For	division,	we	have	z=x/y.	Again,	we	substitute	the	definitions	of	each	fixed-point
parameter,	and	solve	for	the	integer	part	of	the	result.	If	all	three	variables	have	the	same
resolution,	then	z=x/y	becomes	K• =	(I•)/(J•)	yielding	K	=	I/J/ .	If	the	three	variables	have
different	resolutions,	such	as	x=I•2n,	y=J•2m,	and	z=K•2p,	then	z=x/y	becomes	K•2p	=
(I•2n)/(J•2m)	yielding	K	=	(I/J)•2n-m-p.	Again,	it	is	very	important	to	carefully	consider	the
order	of	operations	when	performing	multiple	integer	calculations.	We	must	worry	about
overflow	and	drop-out.	If	(n-m-p)	is	positive	then	the	left	shift	(I•2n-m-p)	should	be
performed	before	the	divide	(/J).	Conversely,	if	(n-m-p)	is	negative	then	the	right	shift
should	be	performed	after	the	divide	(/J).

We	can	approximate	a	non-integer	constant	as	the	quotient	of	two	integers.	For	example,
the	difference	between	41/29	and	√2	is	0.00042.	If	we	need	a	more	accurate
representation,	we	can	increase	the	size	of	the	integers;	the	difference	between	239/169
and	√2	is	only	1.2E-05.		Using	a	binary	fixed-point	approximation	will	be	faster	on	the
ARM	because	of	the	efficiency	of	the	shift	operation.	For	example,	approximating	√2	as
181/128	yields	an	error	of	0.0002.	Furthermore,	approximating	√2	as	11585/8192	yields
an	error	of	only	2.9E-05.

Observation:	For	most	real	numbers	in	the	range	of	0.5	to	2,	we	can	find	two	3-digit
integers	I	and	J	such	that	the	difference	between	the	approximation	I/J	and	truth	is	less
than	1E-5.

Checkpoint	1.36:	What	is	the	error	in	approximating	√5	by	161/72?	By	682/305?

We	can	use	fixed-point	numbers	to	perform	complex	operations	using	the	integer
functions	of	our	microcontroller.	For	example,	consider	the	following	digital	filter
calculation.

y	=	x	-0.0532672•x1	+	x2	+	0.0506038•y1-0.9025•y2

In	this	case,	the	variables	y,	y1,	y2,	x,	x1,	and	x2	are	all	integers,	but	the	constants	will	be
expressed	in	binary	fixed-point	format.	The	value	-0.0532672	will	be	approximated	by
-14•2-8.	The	value	0.0506038	will	be	approximated	by	13•2-8.	Lastly,	the	value	-0.9025
will	be	approximated	by	-231•2-8.	The	fixed-point	implementation	of	this	digital	filter	is

y	=	x	+	x2	+	(-14•x1	+	13•y1	-	231•y2)>>8

Common	Error:	Lazy	or	incompetent	programmers	use	floating-point	in	many	situations
where	fixed-point	would	be	preferable.	

Observation:	As	the	fixed	constant	is	made	smaller,	the	accuracy	of	the	fixed-point
representation	is	improved,	but	the	variable	integer	part	also	increases.	Unfortunately,
larger	integers	will	require	more	bits	for	storage	and	calculations.

Checkpoint	1.37:	Using	a	fixed	constant	of	10-3,	rewrite	the	digital	filter	y	=
x+0.0532672•x1+x2+0.0506038•y1-0.9025•y2	in	decimal	fixed-point	format.

	
Example	1.5:	Implement	a	function	to	calculate	the	surface	area	of	a	cylinder	using	fixed-
point	calculations.	r	is	radius	of	the	cylinder,	which	can	vary	from	0	to	1	cm.	The	radius	is
stored	as	a	fixed-pointnumber	with	resolution	0.001	cm.	The	software	variable	containing
the	integer	part	of	the	radius	is n ,	which	can	vary	from	0	to	1000.	The	height	of	the
cylinder	is	1	cm.		The	surface	area	is	approximated	by

s=	2 � 	*	(r2	+	r)

Solution:	The	surface	area	can	range	from	0	to	12.566	cm2	(2 � *(12	+	1)).	The	surface
area	is	stored	as	a	fixed-point	number	with	resolution	0.001	cm2.		The	software	variable
containing	the	integer	part	of	the	surface	area	is m ,	which	can	vary	from	0	to	12566.	In
order	to	better	understand	the	problem,	we	make	a	table	of	expected	results.
	

r n s m

0.000 0 0.000 0

0.001 1 0.006 6

0.010 10 0.063 63

0.100 100 0.691 691

1.000 1000 12.566 12566

	

To	solve	this	problem	we	use	the	definition	of	a	fixed-point	number.	In	this	case,	ris	equal
to n /1000	and	s	is	equal	to	m/1000.	We	substitution	these	definitions	into	the	desired
equation.
	

s	=	(6.283)*(r2	+	r)

m /1000=	6.283*((n /1000)2+	(n 	/1000))

m =	6.283*(n 2/1000+ n)

m =	6283*(n 2+	1000* n)/1000000

m =	(6283*(n +1000)* n)/1000000
	

If	we	wish	to	round	the	result	to	the	closest	integer	we	can	add	½	the	divisor	before
dividing.
	

m =	(6283*(n +1000)* n +500000)/1000000
	

One	of	the	problems	with	this	equation	is	the	intermediate	result	can	overflow	a	32-bit
calculation.	One	way	to	remove	the	overflow	is	to	approximate	2 � by	6.28.	However,
this	introduces	error.	A	better	way	to	eliminate	overflow	is	to	approximate	2 � 	by	289/46.
	

m 	=	(289*(n +1000)* n +23000)/46000

If	we	set n to	its	largest	value, n 	=1000,	we	calculate	the	largest	value	the	numerator	can
be	as	(289*(1000	+1000)*	1000	+23000)	=	578023000,	which	fits	in	a	30-bit	number.

	
	

1.5.7.	Floating-point	numbers
We	can	use	fixed-point	when	the	range	of	values	is	small	and	known.	Therefore,	we	will
not	need	floating-point	operations	for	most	embedded	system	applications	because	fixed-
point	is	sufficient.	Furthermore,	if	the	processor	does	not	have	floating-point	instructions
then	a	floating-point	implementation	will	run	much	slower	than	the	corresponding	fixed-
point	implementation.	However,	it	is	appropriate	to	know	the	definition	of	floating-point.
NASA	believes	that	there	are	on	the	order	of	1021	stars	in	our	Universe.	Manipulating	large
numbers	like	these	is	not	possible	using	integer	or	fixed-point	formats.	Other	limitation
with	integer	or	fixed-point	numbers	is	there	are	some	situations	where	the	range	of	values
is	not	known	at	the	time	the	software	is	being	designed.	In	a	Physics	research	project,	you
might	be	asked	to	count	the	rate	at	which	particles	strike	a	sensor.	Since	the	experiment
has	never	been	performed	before,	you	do	not	know	in	advance	whether	there	will	be	1	per
second	or	1	trillion	per	second.	The	applications	with	numbers	of	large	or	unknown	range
can	be	solved	with	floating-point	numbers.	Floating-point	is	similar	in	format	to	binary
fixed-point,	except	the	exponent	is	allowed	to	change	at	run	time.	Consequently,	both	the
exponent	and	the	mantissa	will	be	stored.	Just	like	with	fixed-point	numbers	we	will	use
binary	exponents	for	internal	calculations,	and	decimal	exponents	when	interfacing	with
humans.	This	number	system	is	called	floating-point	because	as	the	exponent	varies	the
binary	point	or	decimal	point	moves.

Observation:	If	the	range	of	numbers	is	unknown	or	large,	then	the	numbers	must	be
represented	in	a	floating-point	format.

Observation:	Floating-point	implementations	on	computers	like	the	CortexTM-M3	that	do
not	have	hardware	support	are	extremely	long	and	very	slow.	So,	if	you	really	need
floating	point,	an	LM4F/TM4C	with	floating	point	hardware	support	is	highly	desirable.

The	IEEE	Standard	for	Binary	Floating-Point	Arithmetic	or	ANSI/IEEE	Std	754-1985	is
the	most	widely-used	format	for	floating-point	numbers.	The	single	precision	floating
point	operations	on	the	LM4F/TM4C	microcontrollers	are	compatible	with	this	standard.
There	are	three	common	IEEE	formats:	single-precision	(32-bit),	double-precision	(64-
bit),	and	double-extended	precision	(80-bits).	Only	the	32-bit	short	real	format	is
presented	here.	The	floating-point	format,	f,	for	the	single-precision	data	type	is	shown	in
Figure	1.30.	Computers	use	binary	floating-point	because	it	is	faster	to	shift	than	it	is	to
multiply/divide	by	10.

Bit	31																												Mantissa	sign,	s=0	for	positive,	s=1	for	negative

Bits	30:23														8-bit	biased	binary	exponent	0	≤	e	≤	255

Bits	22:0														24-bit	mantissa,	m,	expressed	as	a	binary	fraction,

A	binary	1	as	the	most	significant	bit	is	implied.

m	=	1.m1m2m3…m23

	

Figure	1.30.	32-bit	single-precision	floating-point	format.
The	value	of	a	single-precision	floating-point	number	is

f	=	(-1)s	•	2e-127•	m

The	range	of	values	that	can	be	represented	in	the	single-precision	format	is	about	±10-38
to	±10+38.	The	24-bit	mantissa	yields	a	precision	of	about	7	decimal	digits.	The	floating-
point	value	is	zero	if	both	e	and	m	are	zero.	Because	of	the	sign	bit,	there	are	two	zeros,
positive	and	negative,	which	behave	the	same	during	calculations.	To	illustrate	floating-
point,	we	will	calculate	the	single-precision	representation	of	the	number	10.	To	find	the
binary	representation	of	a	floating-point	number,	first	extract	the	sign.

10	=	(-1)0	•10

Step	2,	multiply	or	divide	by	two	until	the	mantissa	is	greater	than	or	equal	to	1,	but	less
than	2.

10	=	(-1)0	•23•	1.25

Step	3,	the	exponent	e	is	equal	to	the	number	of	divide	by	twos	plus	127.

10	=	(-1)0	•2130-127•	1.25

Step	4,	separate	the	1	from	the	mantissa.	Recall	that	the	1	will	not	be	stored.	

10	=	(-1)0	•2130-127•	(1+0.25)

Step	5,	express	the	mantissa	as	a	binary	fixed-point	number	with	a	fixed	constant	of	2-23.	

10	=	(-1)0	•2130-127•	(1+2097152•2-23)

Step	6,	convert	the	exponent	and	mantissa	components	to	hexadecimal.	

10	=	(-1)0	•2$82-127•	(1+$200000•2-23)

Step	7,	extract	s,	e,	m	terms,	convert	hexadecimal	to	binary

10	=	(0,$82,$200000)	=	(0,10000010,01000000000000000000000)

	

Sometimes	this	conversion	does	not	yield	an	exact	representation,	as	in	the	case	of	0.1.	In
particular,	the	fixed-point	representation	of	0.6	is	only	an	approximation.

Step	1														0.1	=	(-1)0	•0.1

Step	2															0.1	=	(-1)0	•2-4•	1.6

Step	3														0.1	=	(-1)0	•2123-127	•	1.6

Step	4														0.1	=	(-1)0	•2123-127	•	(1+0.6)

Step	5														0.1 � 	(-1)0	•2123-127•	(1+5033165•2-23)

Step	6														0.1 � 	(-1)0	•2$7B-127•	(1+$4CCCCD•2-23)

Step	7														0.1 � 	(0,$7B,$4CCCCD)	=	(0,01111011,10011001100110011001101)

	

The	following	example	shows	the	steps	in	finding	the	floating-pointapproximation	for � .

Step	1													� 	=	(-1)0• �

Step	2														� 		(-1)0	•21•	1.570796327

Step	3													� 		(-1)0	•2128-127•	1.570796327

Step	4													� 		(-1)0	•2128-127•	(1+0.570796327)

Step	5													� 		(-1)0	•2128-127•	(1+4788187•2-23)

Step	6													� 		(-1)0	•2$80-127•	(1+$490FDB•2-23)

Step	7													� 		(0,$80,$490FDB)	=	(0,10000000,10010010000111111011011)

	

There	are	some	special	cases	for	floating-point	numbers.	When	e	is	255,	the	number	is
considered	as	plus	or	minus	infinity,	which	probably	resulted	from	an	overflow	during
calculation.	When	e	is	0,	the	number	is	considered	as	denormalized.	The	value	of	the
mantissa	of	a	denormalized	number	is	less	than	1.	A	denormalized	short	result	number	has
the	value,

f	=	(-1)s	•	2-126•	m																												where	m	=	0.m1m2m3…m23

	

Observation:	The	floating-point	zero	is	stored	in	denormalized	format.

When	two	floating-point	numbers	are	added	or	subtracted,	the	smaller	one	is	first
unnormalized.	The	mantissa	of	the	smaller	number	is	shifted	right	and	its	exponent	is
incremented	until	the	two	numbers	have	the	same	exponent.	Then,	the	mantissas	are	added
or	subtracted.	Lastly,	the	result	is	normalized.		To	illustrate	the	floating-point	addition,
consider	the	case	of	10+0.1.	First,	we	show	the	original	numbers	in	floating-point	format.
The	mantissa	is	shown	in	binary	format.

10.0	=	(-1)0	•23	•	1.01000000000000000000000

+	0.1	=	(-1)0	•2-4•	1.10011001100110011001101

	

Every	time	the	exponent	is	incremented	the	mantissa	is	shifted	to	the	right.	Notice	that	7
binary	digits	are	lost.	The	0.1	number	is	unnormalized,	but	now	the	two	numbers	have	the
same	exponent.	Often	the	result	of	the	addition	or	subtraction	will	need	to	be	normalized.
In	this	case	the	sum	did	not	need	normalization.

10.0	=	(-1)0	•23	•	1.01000000000000000000000

+	0.1	=	(-1)0	•23	•	0.00000011001100110011001	1001101

10.1	=	(-1)0	•23	•	1.01000011001100110011001

	

When	two	floating-point	numbers	are	multiplied,	their	mantissas	are	multiplied	and	their
exponents	are	added.	When	dividing	two	floating-point	numbers,	their	mantissas	are
divided	and	their	exponents	are	subtracted.	After	multiplication	and	division,	the	result
must	be	normalized.	To	illustrate	the	floating-point	multiplication,	consider	the	case	of
10*0.1.	Let	m1,	m2	be	the	values	of	the	two	mantissas.	Since	the	range	is	1	≤	m1,	m2	<	2,
the	product	m1*m2	will	vary	from	1	≤	m1*m2	<	4.

10.0	=	(-1)0	•23	•	1.01000000000000000000000

*	0.1	=	(-1)0	•2-4	•	1.10011001100110011001101

1.0	=	(-1)0	•2-1	•10.00000000000000000000000

	

The	result	needs	to	be	normalized.

1.0	=	(-1)0	•20	•	1.00000000000000000000000

	

Roundoff	is	the	error	that	occurs	as	a	result	of	an	arithmetic	operation.	For	example,	the
multiplication	of	two	32-bit	mantissas	yields	a	64-bit	product.	The	final	result	is
normalized	into	a	normalized	floating-point	number	with	a	32-bit	mantissa.	Roundoff	is
the	error	caused	by	discarding	the	least	significant	bits	of	the	product.	Roundoff	during
addition	and	subtraction	can	occur	in	two	places.	First,	an	error	can	result	when	the
smaller	number	is	shifted	right.	Second,	when	two	n-bit	numbers	are	added	the	result	is
n+1	bits,	so	an	error	can	occur	as	the	n+1	sum	is	squeezed	back	into	an	n-bit	result.

Truncation	is	the	error	that	occurs	when	a	number	is	converted	from	one	format	to
another.	For	example,	when	an	80-bit	floating-point	number	is	converted	to	32-bit
floating-point	format,	40	bits	are	lost	as	the	64-bit	mantissa	is	truncated	to	fit	into	the	24-
bit	mantissa.	Recall,	the	number	0.1	could	not	be	exactly	represented	as	a	short	real
floating-point	number.	This	is	an	example	of	truncation	as	the	true	fraction	was	truncated
to	fit	into	the	finite	number	of	bits	available.

If	the	range	is	known	and	small	and	a	fixed-point	system	can	be	used,	then	a	32-bit	fixed-
point	number	system	will	have	better	resolution	than	a	32-bit	floating-point	system.	For	a
fixed	range	of	values	(i.e.,	one	with	a	constant	exponent),	a	32-bit	floating-point	system
has	only	23	bits	of	precision,	while	a	32-bit	fixed-point	system	has	9	more	bits	of
precision.

Performance	Tip:	The	single	precision	floating-point	programs	written	in	assembly	on
the	TM4C	run	much	faster	than	equivalent	C	code	because	you	can	write	assembly	to
perform	operations	in	the	native	floating	point	assembly	instructions.

1.6.	Ethics
Because	embedded	systems	are	employed	in	many	safety-critical	devices,	injury	or	death
may	result	if	there	are	hardware	and/or	software	faults.	Table	1.11	lists	dictionary
definitions	of	the	related	terms	morals	and	ethics.	A	moral	person	is	one	who	knows	right
from	wrong,	but	an	ethical	person	does	the	right	thing.

Morals

1.	of,	pertaining	to,	or	concerned
with	the	principles	or	rules	of	right
conduct	or	the	distinction	between
right	and	wrong;	ethical:	moral
attitudes.

2.	expressing	or	conveying	truths	or
counsel	as	to	right	conduct,	as	a
speaker	or	a	literary	work;
moralizing:	a	moral	novel.

3.	founded	on	the	fundamental
principles	of	right	conduct	rather
than	on	legalities,	enactment,	or
custom:	moral	obligations.

4.	capable	of	conforming	to	the	rules
of	right	conduct:	a	moral	being.

5.	conforming	to	the	rules	of	right
conduct	(opposed	to	immoral):	a
moral	man.

6.	virtuous	in	sexual	matters;	chaste.

7.	of,	pertaining	to,	or	acting	on	the
mind,	feelings,	will,	or	character:
moral	support.

8.	resting	upon	convincing	grounds
of	probability;	virtual:	a	moral
certainty.

Ethics

1.		(used	with	a	singular	or	plural
verb)	a	system	of	moral	principles:
the	ethics	of	a	culture.

2.	the	rules	of	conduct	recognized	in
respect	to	a	particular	class	of	human
actions	or	a	particular	group,	culture,
etc.:	medical	ethics;	Christian	ethics.

3.	moral	principles,	as	of	an
individual:	His	ethics	forbade
betrayal	of	a	confidence.

4.	(usually	used	with	a	singular	verb)
that	branch	of	philosophy	dealing
with	values	relating	to	human
conduct,	with	respect	to	the	rightness
and	wrongness	of	certain	actions	and
to	the	goodness	and	badness	of	the
motives	and	ends	of	such	actions.

Table	1.11.	Dictionary	definitions	of	morals	and	ethics
http://dictionary.reference.com

	

Most	companies	have	a	specific	and	detailed	code	of	ethics,	similar	to	the	IEEE	Code	of
Ethics	presented	below.	Furthermore,	patent	and	copyright	laws	provide	a	legal
perspective	to	what	is	right	and	wrong.	Nevertheless,	many	situations	present	themselves
in	the	grey	area.	In	these	cases,	you	should	seek	advice	from	people	whose	ethics	you
trust.	However,	you	are	ultimately	responsible	for	your	own	actions.

IEEE	Code	of	Ethics

We,	the	members	of	the	IEEE,	in	recognition	of	the	importance	of	our
technologies	in	affecting	the	quality	of	life	throughout	the	world,	and	in
accepting	a	personal	obligation	to	our	profession,	its	members	and	the
communities	we	serve,	do	hereby	commit	ourselves	to	the	highest	ethical	and
professional	conduct	and	agree:

1.	to	accept	responsibility	in	making	decisions	consistent	with	the	safety,
health,	and	welfare	of	the	public,	and	to	disclose	promptly	factors	that	might
endanger	the	public	or	the	environment;

2.	to	avoid	real	or	perceived	conflicts	of	interest	whenever	possible,	and	to
disclose	them	to	affected	parties	when	they	do	exist;

3.	to	be	honest	and	realistic	in	stating	claims	or	estimates	based	on	available
data;	

4.	to	reject	bribery	in	all	its	forms;	

5.	to	improve	the	understanding	of	technology;	its	appropriate	application,
and	potential	consequences;	

6.	to	maintain	and	improve	our	technical	competence	and	to	undertake
technological	tasks	for	others	only	if	qualified	by	training	or	experience,	or
after	full	disclosure	of	pertinent	limitations;	

7.	to	seek,	accept,	and	offer	honest	criticism	of	technical	work,	to
acknowledge	and	correct	errors,	and	to	credit	properly	the	contributions	of
others;	

8.	to	treat	fairly	all	persons	regardless	of	such	factors	as	race,	religion,
gender,	disability,	age,	or	national	origin;	

9.	to	avoid	injuring	others,	their	property,	reputation,	or	employment	by	false
or	malicious	action;	

10.	to	assist	colleagues	and	co-workers	in	their	professional	development	and
to	support	them	in	following	this	code	of	ethics.

	

A	great	volume	of	software	exists	in	books	and	on	the	Internet.	How	you	use	this
information	in	your	classes	is	up	to	your	professor.	When	you	become	a	practicing
engineer	making	products	for	profit,	you	will	wish	to	use	software	written	by	others.
Examples	of	software	in	books	and	on	the	internet	are	comprised	of	two	components.	The
first	component	is	the	software	code	itself,	and	the	second	component	is	the	algorithm
used	to	solve	the	problem.	To	use	the	algorithm,	you	should	search	to	see	if	it	has	patent
protection.	If	it	is	protected,	you	could	purchase	or	license	the	technology.	If	the	algorithm
is	not	protected	and	you	wish	to	use	the	software	code,	you	should	ask	permission	from
the	author	and	give	citation	to	source.	If	the	algorithm	is	not	protected	and	the	author	does
not	grant	permission,	you	can	still	implement	the	algorithm	by	writing	your	own
software.		In	all	cases,	you	are	responsible	for	testing.

A	very	difficult	situation	results	when	you	leave	one	company	and	begin	work	for	another.
Technical	expertise	(things	you	know)	and	procedures	(things	you	know	how	to	do)	that
you	have	learned	while	working	for	a	company	belong	to	you,	not	your	employer.	This	is
such	a	huge	problem	that	many	employers	have	a	detailed	and	legal	contract	employees
must	sign	to	be	hired.	A	non-compete	clause	(NCC),	also	called	a	covenant	not	to
compete	(CNC),	certifies	the	employee	agrees	not	to	pursue	a	similar	job	with	any
company	in	competition	with	the	employer.	Companies	use	these	agreements	to	prevent
present	and	former	employees	from	working	with	their	competitors.	An	example
agreement	follows:

	

EMPLOYEE	NON-COMPETE	AGREEMENT

For	good	consideration	and	as	an	inducement	for	________________	(Company)	to
employ	_________________		(Employee),	the	undersigned	Employee	hereby	agrees	not
to	directly	or	indirectly	compete	with	the	business	of	the	Company	and	its	successors	and
assigns	during	the	period	of	employment	and	for	a	period	of	_____	years	following
termination	of	employment	and	notwithstanding	the	cause	or	reason	for	termination.	The
term	“not	compete”	as	used	herein	shall	mean	that	the	Employee	shall	not	own,	manage,
operate,	consult	or	to	be	employee	in	a	business	substantially	similar	to	or	competitive
with	the	present	business	of	the	Company	or	such	other	business	activity	in	which	the
Company	may	substantially	engage	during	the	term	of	employment.	The	Employee
acknowledges	that	the	Company	shall	or	may	in	reliance	of	this	agreement	provide
Employee	access	to	trade	secrets,	customers	and	other	confidential	data	and	good	will.
Employee	agrees	to	retain	said	information	as	confidential	and	not	to	use	said	information
on	his	or	her	behalf	or	disclose	same	to	any	third	party.	This	agreement	shall	be	binding
upon	and	inure	to	the	benefit	of	the	parties,	their	successors,	assigns,	and	personal
representatives.

Signed	this	_____	day	of	________________________
_______________________________________Company

_______________________________________Employee														 																																																																																																																																																			

1.7.	Exercises
1.1	Is	RAM	volatile	or	nonvolatile?

1.2	Is	flash	ROM	volatile	or	nonvolatile?

1.3	For	each	term	give	a	definition	in	16	words	or	less:	microprocessor,	microcomputer,
and	microcontroller.

1.4	For	each	term	give	a	definition	in	16	words	or	less:	bandwidth,	real-time,	latency.

1.5	For	each	term	give	a	definition	in	16	words	or	less:	volatile,	nonvolatile.

1.6	List	the	four	components	of	a	processor	and	define	each	in	16	words	or	less

1.7	For	each	parameter	give	a	definition	in	16	words	or	less:	precision,	range,	resolution

1.8	What	are	the	differences	between	CISC	and	RISC	processors?

1.9	Describe	structured	programming	in	16	words	or	less.

1.10	What	are	the	differences	between	parallel	programming	and	concurrent
programming?

1.11	Define	distributed	programming	in	16	words	or	less.

1.12	What	are	the	differences	between	tristate	and	open	collector	logic?

1.13	Define	open	drain	logic	in	16	words	or	less?

1.14	Define	5-V	tolerant	in	16	words	or	less?

1.15	Considering	just	current,	how	many	74S	Schottky	inputs	can	one	microcontroller
output	drive	running	in	8	mA	output	mode?

1.16	Considering	just	current,	how	many	74LS	low-power	Schottky	inputs	can	one
microcontroller	output	drive	running	in	2	mA	output	mode?

1.17	What	is	the	qualitative	difference	in	supply	current	between	the	CMOS	devices	and
the	non-CMOS	devices?	What	is	the	explanation	for	the	difference?	

1.18	Using	the	circuit	in	Figure	1.23,	what	resistor	value	operates	an	LED	at	1.8	V	and	15
mA?

1.19	Using	the	circuit	in	Figure	1.23,	what	resistor	value	operates	an	LED	at	1.6	V	and	12
mA?

1.20	In	16	words	or	less	describe	the	differences	between	positive	logic	and	negative
logic.

1.21	For	each	ADC	parameter	give	a	definition	in	20	words	or	less:	precision,	range,
resolution

1.22	How	many	alternatives	does	a	12-bit	ADC	have?

1.23	If	a	system	uses	an	11-bit	ADC,	about	how	many	decimal	digits	will	it	have?

1.24	What	is	the	difference	between	the	terms	kilobit	and	kibibit?

1.25	How	many	alternatives	does	a	13-bit	ADC	have?

1.26	If	a	system	uses	an	14-bit	ADC,	about	how	many	decimal	digits	will	it	have?

1.27	If	a	system	requires	3½	decimal	digits	of	precision,	what	is	the	smallest	number	of
bits	the	ADC	needs	to	have?

1.28	If	a	system	requires	5	decimal	digits	of	precision,	what	is	the	smallest	number	of	bits
the	ADC	needs	to	have?

1.29	Convert	the	following	decimal	numbers	to	8-bit	unsigned	binary:	26,	65,	124,	and
202.

1.30	Convert	the	following	decimal	numbers	to	8-bit	signed	binary:	23,	61,	-122,	and	-5.

1.31	Convert	the	following	hex	numbers	to	unsigned	decimal:	0x2A,	0x69,	0xB3,	and
0xDE.

1.32	Convert	the	16-bit	binary	number	00100010011010102	to	unsigned	decimal.

1.33	Convert	the	16-bit	hex	number	0x5678	to	unsigned	decimal.

1.34	Convert	the	unsigned	decimal	number	12345	to	16-bit	hexadecimal.

1.35	Convert	the	unsigned	decimal	number	20000	to	16-bit	binary.

1.36	Convert	the	16-bit	hex	number	0x7654	to	signed	decimal.

1.37	Convert	the	16-bit	hex	number	0xBCDE	to	signed	decimal.

1.38	Convert	the	signed	decimal	number	23456	to	16-bit	hexadecimal.

1.39	Convert	the	signed	decimal	number	–20000	to	16-bit	binary.

1.40	Give	an	approximation	of	√7using	the	decimal	fixed-point	(� =	0.001)	format.

1.41	Give	an	approximation	of	√7using	the	binary	fixed-point	(� =	2-8)	format.

1.42	Give	an	approximation	of	√103using	the	decimal	fixed-point	(� =	0.01)	format.

1.43	Give	an	approximation	of	√93	using	the	binary	fixed-point	(� =	2-4)	format.

1.44	A	signed	16-bit	binary	fixed-point	number	system	has	a � 	resolution	of	1/256.		What
is	the	corresponding	value	of	the	number	if	the	integer	part	stored	in	memory	is	385?

1.45	An	unsigned	16-bit	decimal	fixed-point	number	system	has	a � 	resolution	of	1/100.	
What	is	the	corresponding	value	of	the	number	if	the	integer	part	stored	in	memory	is
385?

1.46	Give	the	short	real	floating-point	representation	of	√ 2.

1.47	Give	the	short	real	floating-point	representation	of	–134.4.

1.48	Give	the	short	real	floating-point	representation	of	–0.0123.

D1.49	Draw	a	flow	chart	for	the	embedded	system	described	in	Example	1.3.

D1.50	Draw	a	flow	chart	for	the	embedded	system	in	a	simple	watch	that	just	tells	time.

D1.51	Search	the	internet	for	a	design	of	a	flash	ROM	cell	that	uses	2	transistors.	Label	on
the	circuit	the	voltages	occurring	when	the	bit	is	zero,	and	when	the	bit	is	high.

D1.52	Search	the	internet	for	a	design	of	a	RAM	cell	that	uses	6	transistors.	Label	on	the
circuit	the	voltages	occurring	when	the	bit	is	zero,	and	the	voltages	occurring	when	the	bit
is	high.

D1.53	Design	the	circuit	that	interfaces	a	1.5V	5mA	LED	to	the	microcontroller.

D1.53	Design	the	circuit	that	interfaces	a	2.5V	1mA	LED	to	the	microcontroller.

D1.55	Assume	M	and	N	are	two	integers,	each	less	than	1000.	Find	the	best	set	of	M	and
N,	such	that	M/N	is	approximately	√6.	(Like	27/11,	but	much	more	accurate).

D1.56	Assume	M	and	N	are	two	integers,	each	less	than	1000.	Find	the	best	set	of	M	and
N,	such	that	M/N	is	approximately	√7.	(Like	8/3,	but	much	more	accurate).

D1.57	Assume	M	and	N	are	two	integers,	each	less	than	1000.	Find	the	best	set	of	M	and
N,	such	that	M/N	is	approximately	e.	(Like	19/7,	but	much	more	accurate).

D1.58	Assume	M	and	N	are	two	integers,	each	less	than	1000.	Find	the	best	set	of	M	and
N,	such	that	M/N	is	approximately	ln(2).	(Like	9/13,	but	much	more	accurate).

D1.59	First,	rewrite	the	following	digital	filter	using	decimal	fixed-point	math.	Assume
the	inputs	are	unsigned	8-bit	values	(0	to	255).		Then,	rewrite	it	so	that	it	can	be	calculated
with	integer	math	using	the	fact	that	0.22222	is	about	2/9	and	0.088889	is	about	4/45	and
0.8	is	4/5.	In	both	cases,	the	calculations	are	to	be	performed	in	16-bit	unsigned	integer
form	without	overflow.	y	=	0.22222•x	+0.08889•x1		+	0.80000•y1

D1.60	Perform	the	operation	2+ � 	in	short	real	floating-point	format.	Determine	the
difference	between	what	you	got	and	what	you	should	have	gotten	(2+ �).	This	error	has
two	components:	truncation	error	that	results	in	the	approximation � 	itself	and	roundoff
error	that	occurs	during	the	addition.

D1.61	Perform	the	operation	0.2*0.2	in	short	real	floating-point	format.	Determine	the
difference	between	what	you	got	and	what	you	should	have	gotten	(0.04).	This	error	has
two	components:	truncation	error	that	results	in	the	approximation	of	0.2	itself	and
roundoff	error	that	occurs	during	the	multiplication.

D1.62Perform	the	operation 1	+	1E9	in	short	real	floating-point	format.	Determine	the
difference	between	what	you	got	and	what	you	should	have	gotten.

D1.63	Consider	the	following	situation:	Suppose	that	you	are	a	development	engineer	with
responsibility	for	an	embedded	system	employed	in	one	of	your	company’s	major
products.		You	seek	to	improve	the	efficiency	of	the	embedded	system	and,	following
some	research,	you	discover	an	algorithm	posted	on	the	Web	that	would	provide	a	vast
improvement	for	your	system.		The	algorithm	is	written	in	the	same	language	as	that	used
by	your	system.

a)		Would	it	ever	be	ethical	to	copy	the	code	that	implements	the	algorithm	and
incorporate	it	in	your	embedded	system?

b)	Would	it	ever	be	good	engineering	practice	to	incorporate	the	code	that	implements	the
algorithm	and	in	your	embedded	system?	

D1.64	Suppose	that	the	Web	article	containing	the	code	states	that	it	may	be	copied	and
used	in	any	manner	providing	that	it	is	not	used	in	a	product	for	sale.		Are	there	any
circumstances	that	would	permit	the	ethical	use	of	the	algorithm?

D1.65	You	are	a	development	engineer	that	has	recently	left	a	position	with	a	large
corporation	to	work	for	a	small	embedded	system	company.		Your	team	at	the	new
company	is	working	on	a	project	that	would	be	vastly	improved	through	the	use	of	a	new
procedure	that	was	developed	by	your	previous	company.		While	you	did	not	participate	in
the	procedure’s	development,	you	are	aware	of	all	the	technical	details	necessary	to
effectively	employ	it.		Please	answer	and	explain	your	response	to	each	of	the	following
questions:

a)	Would	it	ever	be	ethical	to	disclose	the	procedure	to	your	team	at	the	new	company?

b)	Would	it	ever	be	good	engineering	practice	to	incorporate	the	procedure	in	your	new
team’s	embedded	system?

c)	Assuming	that	you	feel	it	could	be	ethical	to	disclose	the	procedure,	what
considerations	or	circumstances	would	influence	your	decision?

d)	Suppose	that	the	considerations/circumstances	in	(c)	above	lead	you	to	the	conclusion
that	it	would	not	be	ethical	to	disclose	the	procedure.		What	changes	to	the	considerations
and	circumstances	would	be	necessary	to	permit	you	to	ethically	disclose	the	procedure	to
your	new	team?

1.8.	Lab	Assignments
Lab	1.1	Your	microcontroller	development	board	comes	with	starter	code.	Find	the
example	that	flashes	an	LED.	Use	this	example	to	discover	how	to	perform	the	following
tasks.	1)	How	do	you	open	a	software	project?	2)	How	do	you	compile	the	software
project?	3)	Can	the	software	be	run	in	a	simulator?	If	so,	how	do	you	run	on	the	simulator?
4)	How	do	you	download	object	code	onto	the	real	board?	5)	Within	the	debugger	how	do
you	perform	these	operations:	see	the	registers,	observe	RAM,	start/stop	execution,	and	set
breakpoints?	Change	the	software	so	the	LED	blinks	twice	as	slow.

Lab	1.2	Your	microcontroller	development	board	comes	with	starter	code.	Find	the
example	that	outputs	to	either	a	serial	port	or	an	LCD.	Use	this	example	to	discover	how
to	perform	the	following	tasks.	1)	How	do	you	open	a	software	project?	2)	How	do	you
compile	the	software	project?	3)	Can	the	software	be	run	in	a	simulator?	If	so,	how	do	you
run	on	the	simulator?	4)	How	do	you	download	object	code	onto	the	real	board?	5)	Within
the	debugger	how	do	you	perform	these	operations:	see	the	registers,	observe	RAM,
start/stop	execution,	and	set	breakpoints?	Change	the	software	so	the	system	outputs	your
name.

Lab	1.3	The	system	has	one	LED,	two	switches,	and	resistors.	In	this	lab	you	will	not	use
a	microcontroller.		Design,	implement,	and	test	a	circuit	that	turns	on	an	LED	if	both
switches	are	pressed.	Using	different	resistors	measure	five	different	voltage	and	current
points	on	the	LED	operating	curve	like	Figure	1.23.	Compare	measured	data	to	parameters
from	the	LED	data	sheet.

Lab	1.4	The	system	has	one	LED,	two	switches,	and	resistors.	In	this	lab	you	will	not	use
a	microcontroller.	Design,	implement,	and	test	a	circuit	that	turns	on	an	LED	if	either
switch	is	pressed.	Using	different	resistors	measure	five	different	voltage	and	current
points	on	the	LED	operating	curve	like	Figure	1.23.	Compare	measured	data	to	parameters
from	the	LED	data	sheet.

	

2.	ARM	Cortex-M	Processor
Chapter	2	objectives	are	to:
•	Introduce	CortexTM-M	processor	architecture

•	Present	an	overview	of	the	CortexTM-M	core	assembly	language

•	Define	the	memory-mapped	I/O	structure	of	the	LM3S/TM4C	family

•	Describe	the	parallel	ports	on	the	LM3S/TM4C	family

•	Present	the	SysTick	timer

•	Describe	the	system	clocks

•	Present	general	thoughts	about	how	to	choose	a	microcontroller

	
In	this	chapter	we	present	a	general	description	of	the	ARM	CortexTM-M	processor.	Rather
than	reproducing	the	voluminous	details	that	can	be	found	in	the	data	sheets,	we	will
present	general	concepts	and	give	specific	examples	illustrating	these	concepts.	After
reading	this	chapter,	you	should	be	able	to	look	up	and	understand	detailed	specifics	in	the
ARM 	CortexTM-M	Technical	Reference	Manual.	Data	sheets	can	be	found	on	the	web
sites	of	either	ARM	or	the	companies	that	make	the	microcontrollers,	like	Texas
Instruments.	Some	of	these	data	sheets	are	also	posted	on	the	web	site	accompanying	this
book.	This	web	site	can	be	found	at	http://users.ece.utexas.edu/~valvano/arm.

There	are	two	reasons	we	must	learn	the	assembly	language	of	the	computer	which	we	are
using.	Sometimes,	but	not	often,	we	wish	to	optimize	our	application	for	maximum
execution	speed	or	minimum	memory	size,	and	writing	pieces	of	our	code	in	assembly
language	is	one	approach	to	such	optimizations.	The	most	important	reason,	however,	is
that	by	observing	the	assembly	code	generated	by	the	compiler	for	our	C	code	we	can
truly	understand	what	our	software	is	doing.	Based	on	this	understanding,	we	can
evaluate,	debug,	and	optimize	our	system.

Our	first	input/output	interfaces	will	use	the	parallel	ports,	allowing	us	to	exchange	digital
information	with	the	external	world.	Specifically,	we	will	learn	how	to	connect	switches
and	LEDs	to	the	microcontroller.	The	second	technique	we	will	learn	is	to	control	time.
We	can	select	the	execution	speed	of	the	microcontroller	using	the	phase-lock-loop,	and
we	can	perform	time	delays	using	the	SysTick	timer.

Even	though	we	will	design	systems	based	specifically	on	the	LM3S/TM4C	family,	these
solutions	can,	with	little	effort,	be	implemented	on	other	versions	of	the	CortexTM-M
family.	We	will	discuss	prototyping	methods	to	build	embedded	systems	and	present	a
simple	example	with	binary	inputs	and	outputs.

	

2.1.	CortexTM-M	Architecture
Figure	2.1	shows	a	simplified	block	diagram	of	a	microcontroller	based	on	the	ARM ®
CortexTM-M	processor.	It	is	a	Harvard	architecture	because	it	has	separate	data	and
instruction	buses.	The	CortexTM-M	instruction	set	combines	the	high	performance	typical
of	a	32-bit	processor	with	high	code	density	typical	of	8-bit	and	16-bit	microcontrollers.
Instructions	are	fetched	from	flash	ROM	using	the	ICode	bus.	Data	are	exchanged	with
memory	and	I/O	via	the	system	bus	interface.	On	the	CortexTM-M4	there	is	a	second	I/O
bus	for	high-speed	devices	like	USB.	There	are	many	sophisticated	debugging	features
utilizing	the	DCode	bus.	The	nested	vectored	interrupt	controller	(NVIC)	manages
interrupts,	which	are	hardware-triggered	software	functions.	Some	internal	peripherals,
like	the	NVIC	communicate	directly	with	the	processor	via	the	private	peripheral	bus
(PPB).	The	tight	integration	of	the	processor	and	interrupt	controller	provides	fast
execution	of	interrupt	service	routines	(ISRs),	dramatically	reducing	the	interrupt	latency.

Figure	2.1.	Harvard	architecture	of	an	ARM® 	CortexTM-M-based
microcontroller.

2.1.1.	Registers
The	registers	are	depicted	in	Figure	2.2.	R0	to	R12	are	general	purpose	registers	and
contain	either	data	or	addresses.	Register	R13	(also	called	the	stack	pointer,	SP)	points	to
the	top	element	of	the	stack.	Actually,	there	are	two	stack	pointers:	the	main	stack	pointer
(MSP)	and	the	process	stack	pointer	(PSP).	Only	one	stack	pointer	is	active	at	a	time.	In	a
high-reliability	operating	system,	we	could	activate	the	PSP	for	user	software	and	the	MSP
for	operating	system	software.	This	way	the	user	program	could	crash	without	disturbing
the	operating	system.	Because	of	the	simple	and	dedicated	nature	of	the	embedded
systems	developed	in	this	book,	we	will	exclusively	use	the	main	stack	pointer.	Register
R14	(also	called	the	link	register,	LR)	is	used	to	store	the	return	location	for	functions.	The
LR	is	also	used	in	a	special	way	during	exceptions,	such	as	interrupts.	Interrupts	are
covered	in	Chapter	5.	Register	R15	(also	called	the	program	counter,	PC)	points	to	the
next	instruction	to	be	fetched	from	memory.	The	processor	fetches	an	instruction	using	the
PC	and	then	increments	the	PC	by	2	or	4.

Figure	2.2.	Registers	on	the	ARM® 	CortexTM-M	processor.
The	ARM	Architecture	Procedure	Call	Standard,	AAPCS,	part	of	the	ARM
Application	Binary	Interface	(ABI),	uses	registers	R0,	R1,	R2,	and	R3	to	pass	input
parameters	into	a	C	function.	Also	according	to	AAPCS	we	place	the	return	parameter	in
Register	R0.

There	are	three	status	registers	named	Application	Program	Status	Register	(APSR),	the
Interrupt	Program	Status	Register	(IPSR),	and	the	Execution	Program	Status	Register
(EPSR)	as	shown	in	Figure	2.3.	These	registers	can	be	accessed	individually	or	in
combination	as	the	Program	Status	Register	(PSR).	The	N,	Z,	V,	C,	and	Q	bits	give
information	about	the	result	of	a	previous	ALU	operation.	In	general,	the	N	bit	is	set	after
an	arithmetical	or	logical	operation	signifying	whether	or	not	the	result	is	negative.
Similarly,	the	Z	bit	is	set	if	the	result	is	zero.	The	C	bit	means	carry	and	is	set	on	an
unsigned	overflow,	and	the	V	bit	signifies	signed	overflow.	The	Q	bit	is	the	sticky
saturation	flag,	indicating	that	“saturation”	has	occurred,and	is	set	by
the SSAT and USAT 	instructions.			

Figure	2.3.	The	program	status	register	of	the	ARM® 	CortexTM-M
processor.

The	T	bit	will	always	be	1,	indicating	the	ARM ® 	CortexTM-M	is	executing	Thumb
instructions.	The	ICI/IT	bits	are	used	by	interrupts	and	by	the	IF-THEN	instructions.	The
ISR_NUMBER	indicates	which	interrupt	if	any	the	processor	is	handling.	Bit	0	of	the
special	register	PRIMASK	is	the	interrupt	mask	bit.	If	this	bit	is	1	most	interrupts	and
exceptions	are	not	allowed.	If	the	bit	is	0,	then	interrupts	are	allowed.	Bit	0	of	the	special
register	FAULTMASK	is	the	fault	mask	bit.	If	this	bit	is	1	all	interrupts	and	faults	are	not
allowed.	If	the	bit	is	0,	then	interrupts	and	faults	are	allowed.	The	nonmaskable	interrupt
(NMI)	is	not	affected	by	these	mask	bits.	The	BASEPRI	register	defines	the	priority	of
the	executing	software.	It	prevents	interrupts	with	lower	or	equal	priority	but	allows
higher	priority	interrupts.	For	example	if	BASEPRI	equals	3,	then	requests	with	level	0,
1,	and	2	can	interrupt,	while	requests	at	levels	3	and	higher	will	be	postponed.	The	details
of	interrupt	processing	will	be	presented	in	Chapter	5.

2.1.2.	Memory
Microcontrollers	within	the	same	family	differ	by	the	amount	of	memory	and	by	the	types
of	I/O	modules.	All	LM3S	and	LM4F/TM4C	microcontrollers	have	a	CortexTM-M
processor.	There	are	hundreds	of	members	in	this	family;	some	of	them	are	listed	in	Table
2.1.

Part	number RAM Flash I/O I/O	modules

LM3S811 8 64 32 PWM

LM3S1968 64 256 52 PWM

LM3S2110 16 64 40 PWM,	CAN

LM3S3748 64 128 61 PWM,	DMA,	USB

LM3S8962 64 256 42 PWM,	CAN,	Ethernet,
IEEE1588

LM4F120H5QR 32 256 43 floating	point,	CAN,
DMA,	USB

TM4C123GH6PGE 32 256 105 floating	point,	CAN,
DMA,	USB,	PWM

TM4C123GH6PM 32 256 43 floating	point,	CAN,
DMA,	USB,	PWM

TM4C123GH6ZRB 32 256 120 floating	point,	CAN,
DMA,	USB,	PWM

TM4C1294NCPDT 256 1024 90

floating	point,	CAN,
DMA,	USB,	PWM,
Ethernet

	 KiB KiB pins 	

Table	2.1.	Memory	and	I/O	modules	(all	have	SysTick,	RTC,	timers,	UART,	I2C,	SSI,
and	ADC).

	

The	memory	map	of	TM4C123	is	illustrated	in	Figure	2.4.	Although	specific	for	the
TM4C123,	all	ARM ® 	CortexTM-M	microcontrollers	have	similar	memory	maps.	In
general,	Flash	ROM	begins	at	address	0x0000.0000,	RAM	begins	at	0x2000.0000,	the
peripheral	I/O	space	is	from	0x4000.0000	to	0x5FFFF.FFFF,	and	I/O	modules	on	the
private	peripheral	bus	exist	from	0xE000.0000	to	0xE00F.FFFF.	In	particular,	the	only
differences	in	the	memory	map	for	the	various	members	of	the	LM3S	and	LM4F/TM4C
families	are	the	ending	addresses	of	the	flash	and	RAM.	Having	multiple	buses	means	the
processor	can	perform	multiple	tasks	in	parallel.	The	following	is	some	of	the	tasks	that
can	occur	in	parallel

	

ICode	bus														Fetch	opcode	from	ROM

DCode	bus														Read	constant	data	from	ROM

System	bus														Read/write	data	from	RAM	or	I/O,	fetch	opcode	from	RAM

PPB																												Read/write	data	from	internal	peripherals	like	the	NVIC

AHB																												Read/write	data	from	high-speed	I/O	and	parallel	ports	(M4	only)

The	ARM ® 	CortexTM-M	uses	bit-banding	to	allow	read/write	access	to	individual	bits	in
RAM	and	some	bits	in	the	I/O	space.	There	are	two	parameters	that	define	bit-banding:
the	address	and	the	bit	you	wish	to	access.	Assume	you	wish	to	access	bit	b	of	RAM
address	0x2000.0000+n,	where	b	is	a	number	0	to	7.	The	aliased	address	for	this	bit	will
be

0x2200.0000	+	32*n	+	4*b

Reading	this	address	will	return	a	0	or	a	1.	Writing	a	0	or	1	to	this	address	will	perform	an
atomic	read-modify-write	modification	to	the	bit.

	

Figure	2.4.	Memory	map	of	the	TM4C123.	The	TM4C1294	is	similar	but
with	1024k	ROM,	256k	RAM.
If	we	consider	32-bit	word-aligned	data	in	RAM,	the	same	bit-banding	formula	still
applies.	Let	the	word	address	be	0x2000.0000+n.	n	starts	at	0	and	increments	by	4.	In	this
case,	we	define	b	as	the	bit	from	0	to	31.	In	little-endian	format,	bit	1	of	the	byte	at
0x2000.0001	is	the	same	as	bit	9	of	the	word	at	0x2000.0000.The	aliased	address	for	this
bit	will	still	be

0x2200.0000	+	32*n	+	4*b

Examples	of	bit-banded	addressing	are	listed	in	Table	2.2.	Writing	a	1	to	location
0x2200.0018	will	set	bit	6	of	RAM	location	0x2000.0000.	Reading	location	0x2200.0024
will	return	a	0	or	1	depending	on	the	value	of	bit	1	of	RAM	location	0x2000.0001.

Checkpoint	2.1:	What	address	do	you	use	to	access	bit	5	of	the	byte	at	0x2000.1003?

Checkpoint	2.2:	What	address	do	you	use	to	access	bit	20	of	the	word	at	0x2000.1000?

The	other	bit-banding	region	is	the	I/O	space	from	0x4000.0000	through	0x400F.FFFF.	In
this	region,	let	the	I/O	address	be	0x4000.0000+n,	and	let	b	represent	the	bit	0	to	7.	The
aliased	address	for	this	bit	will	be

0x4200.0000	+	32*n	+	4*b

RAM
address

Offset
n

Bit
b

Bit-banded
alias

0x2000.0000 0 0 0x2200.0000

0x2000.0000 0 1 0x2200.0004

0x2000.0000 0 2 0x2200.0008

0x2000.0000 0 3 0x2200.000C

0x2000.0000 0 4 0x2200.0010

0x2000.0000 0 5 0x2200.0014

0x2000.0000 0 6 0x2200.0018

0x2000.0000 0 7 0x2200.001C

0x2000.0001 1 0 0x2200.0020

0x2000.0001 1 1 0x2200.0024

Table	2.2.	Examples	of	bit-banded	addressing.

	

Checkpoint	2.3:	What	address	do	you	use	to	access	bit	2	of	the	byte	at	0x4000.0003?

2.1.3.	Stack
The	stack	is	a	last-in-first-out	temporary	storage.	To	create	a	stack,	a	block	of	RAM	is
allocated	for	this	temporary	storage.	On	the	ARM ® 	CortexTM-M,	the	stack	always
operates	on	32-bit	data.	The	stack	pointer	(SP)	points	to	the	32-bit	data	on	the	top	of	the
stack.	The	stack	grows	downwards	in	memory	as	we	push	data	on	to	it	so,	although	we
refer	to	the	most	recent	item	as	the	“top	of	the	stack”	it	is	actually	the	item	stored	at	the
lowest	address!	To	push	data	on	the	stack,	the	stack	pointer	is	first	decremented	by	4,	and
then	the	32-bit	information	is	stored	at	the	address	specified	by	SP.	To	pop	data	from	the
stack,	the	32-bit	information	pointed	to	by	SP	is	first	retrieved,	and	then	the	stack	pointer
is	incremented	by	4.		SP	points	to	the	last	item	pushed,	which	will	also	be	the	next	item	to
be	popped.	The	processor	allows	for	two	stacks,	the	main	stack	and	the	process	stack,	with
two	independent	copies	of	the	stack	pointer.		The	boxes	in	Figure	2.5	represent	32-bit
storage	elements	in	RAM.	The	grey	boxes	in	the	figure	refer	to	actual	data	stored	on	the
stack,	and	the	white	boxes	refer	to	locations	in	memory	that	do	not	contain	stack	data.
This	figure	illustrates	how	the	stack	is	used	to	push	the	contents	of	Registers	R0,	R1,	and
R2	in	that	order.	Assume	Register	R0	initially	contains	the	value	1,	R1	contains	2	and	R2
contains	3.	The	drawing	on	the	left	shows	the	initial	stack.	The	software	executes	these	six
instructions

PUSH	{R0}

PUSH	{R1}

PUSH	{R2}

POP	{R3}

POP	{R4}

POP	{R5}

	

The	instruction PUSH	{R0} 	saves	the	value	of	R0	on	the	stack.	It	first	decrements	SP	by
4,	and	then	it	stores	the	32-bit	contents	of	R0	into	the	memory	location	pointed	to	by	SP.
The	four	bytes	are	stored	little	endian.	The	right-most	drawing	shows	the	stack	after	the
push	occurs	three	times.	The	stack	contains	the	numbers	1	2	and	3,	with	3	on	top.

Figure	2.5.	Stack	picture	showing	three	numbers	first	being	pushed,	then
three	numbers	being	popped.
The	instruction POP{R3} 	retrieves	data	from	the	stack.	It	first	moves	the	value	from
memory	pointed	to	by	SP	into	R3,	and	then	it	increments	SP	by	4.	After	the	pop	occurs
three	times	the	stack	reverts	to	its	original	state	and	registers	R3,	R4	and	R5	contain	3	2	1
respectively.	We	define	the	32-bit	word	pointed	to	by	SP	as	the	top	entry	of	the	stack.	If	it
exists,	we	define	the	32-bit	data	immediately	below	the	top,	at	SP+4,	as	next	to	top.
Proper	use	of	the	stack	requires	following	these	important	rules

1.	Functions	should	have	an	equal	number	of	pushes	and	pops

2.	Stack	accesses	(push	or	pop)	should	not	be	performed	outside	the	allocated
area

3.	Stack	reads	and	writes	should	not	be	performed	within	the	free	area

4.	Stack	push	should	first	decrement	SP,	then	store	the	data

5.	Stack	pop	should	first	read	the	data,	and	then	increment	SP

	
Functions	that	violate	rule	number	1	will	probably	crash	when	incorrect	data	are	popped
off	at	a	later	time.	Violations	of	rule	number	2	can	be	caused	by	a	stack	underflow	or
overflow.	Overflow	occurs	when	the	number	of	elements	became	larger	than	the	allocated
space.	Stack	underflow	is	caused	when	there	are	more	pops	than	pushes,	and	is	always	the
result	of	a	software	bug.	A	stack	overflow	can	be	caused	by	two	reasons.	If	the	software
mistakenly	pushes	more	than	it	pops,	then	the	stack	pointer	will	eventually	overflow	its
bounds.	Even	when	there	is	exactly	one	pop	for	each	push,	a	stack	overflow	can	occur	if
the	stack	is	not	allocated	large	enough.	The	processor	will	generate	a	bus	fault	when	the
software	tries	read	from	or	write	to	an	address	that	doesn’t	exist.	If	valid	RAM	exists
below	the	stack	then	pushing	to	an	overflowed	stack	will	corrupt	data	in	this	memory.

First,	we	will	consider	the	situation	where	the	allocated	stack	area	is	placed	at	the
beginning	of	RAM.	For	example,	assume	we	allocate	4096	bytes	for	the	stack	from
0x2000.0000	to	0x2000.0FFF,	see	the	left	side	of	Figure	2.6.	The	SP	is	initialized	to
0x2000.1000,	and	the	stack	is	considered	empty.	If	the	SP	becomes	less	than	0x2000.0000
a	stack	overflow	has	occurred.	The	stack	overflow	will	cause	a	bus	fault	because	there	is
nothing	at	address	0x1FFF.FFFC.	If	the	software	tries	to	read	from	or	write	to	any	location
greater	than	or	equal	to	0x2000.1000	then	a	stack	underflow	has	occurred.	At	this	point
the	stack	and	global	variables	may	exist	at	overlapping	addresses.	Stack	underflow	is	a
very	difficult	bug	to	recognize,	because	the	first	consequence	will	be	unexplained	changes
to	data	stored	in	global	variables.

Figure	2.6.	Drawings	showing	two	possible	ways	to	allocate	the	stack	area
in	RAM.
Next,	we	will	consider	the	situation	where	the	allocated	stack	area	is	placed	at	the	end	of
RAM.	The	TM4C123	has	32	KiB	of	RAM	from	0x2000.0000	to	0x2000.7FFF.	So	in	this
case	we	allocate	the	4096	bytes	for	the	stack	from	0x2000.7000	to	0x2000.7FFF,	shown
on	the	right	side	of	Figure	2.6.	The	SP	is	initialized	to	0x2000.8000,	and	the	stack	is
considered	empty.	If	the	SP	becomes	less	than	0x2000.7000	a	stack	overflow	has
occurred.	The	stack	overflow	will	not	cause	a	bus	fault	because	there	is	memory	at	address
0x2000.6FFC.	Stack	overflow	in	this	case	is	a	very	difficult	bug	to	recognize,	because	the
first	consequence	will	be	unexplained	changes	to	data	stored	below	the	stack	region.	If	the
software	tries	to	read	from	or	write	to	any	location	greater	than	or	equal	to	0x2000.8000
then	a	stack	underflow	has	occurred.	In	this	case,	stack	underflow	will	cause	a	bus	fault.

Executing	an	interrupt	service	routine	will	automatically	push	information	on	the	stack.
Since	interrupts	are	triggered	by	hardware	events,	exactly	when	they	occur	is	not	under
software	control.	Therefore,	violations	of	rules	3,	4,	and	5	will	cause	erratic	behavior
when	operating	with	interrupts.	Rules	4	and	5	are	followed	automatically	by
the PUSH and POP 	instructions.

2.1.4.	Operating	modes

The	ARM ® 	CortexTM-M	has	two	privilege	levels	called	privileged	and	unprivileged.	Bit
0	of	the	CONTROL	register	is	the	thread	mode	privilege	level	(TPL).	If	TPL	is	1	the
processor	level	is	privileged.	If	the	bit	is	0,	then	processor	level	is	unprivileged.	Running
at	the	unprivileged	level	prevents	access	to	various	features,	including	the	system	timer
and	the	interrupt	controller.	Bit	1	of	the	CONTROL	register	is	the	active	stack	pointer
selection	(ASPSEL).	If	ASPSEL	is	1,	the	processor	uses	the	PSP	for	its	stack	pointer.	If
ASPSEL	is	0,	the	MSP	is	used.	When	designing	a	high-reliability	operating	system,	we
will	run	the	user	code	at	an	unprivileged	level	using	the	PSP	and	the	OS	code	at	the
privileged	level	using	the	MSP.

The	processor	knows	whether	it	is	running	in	the	foreground	(i.e.,	the	main	program)	or	in
the	background	(i.e.,	an	interrupt	service	routine).	ARM	defines	the	foreground	as	thread
mode,	and	the	background	as	handler	mode.	Switching	from	thread	mode	to	handler
mode	occurs	when	an	interrupt	is	triggered.	The	processor	begins	in	thread	mode,
signified	by	ISR_NUMBER=0.	Whenever	it	is	servicing	an	interrupt	it	switches	to	handler
mode,	signified	by	setting	ISR_NUMBER	to	specify	which	interrupt	is	being	processed.
All	interrupt	service	routines	run	using	the	MSP.	At	the	end	of	the	interrupt	service	routine
the	processor	is	switched	back	to	thread	mode,	and	the	main	program	continues	from
where	it	left	off.

2.1.5.	Reset
A	reset	occurs	immediately	after	power	is	applied	and	can	also	occur	by	pushing	the	reset
button	available	on	most	boards.	After	a	reset,	the	processor	is	in	thread	mode,	running	at
a	privileged	level,	and	using	the	MSP	stack	pointer.	The	32-bit	value	at	flash	ROM
location	0	is	loaded	into	the	SP.	All	stack	accesses	are	word	aligned.	Thus,	the	least
significant	two	bits	of	SP	must	be	0.	A	reset	also	loads	the	32-bit	value	at	location	4	into
the	PC.	This	value	is	called	the	reset	vector.	All	instructions	are	halfword	aligned.	Thus,
the	least	significant	bit	of	PC	must	be	0.	However,	the	assembler	will	set	the	least
significant	bit	in	the	reset	vector,	so	the	processor	will	properly	initialize	the	thumb	bit	(T)
in	the	PSR.	On	the	ARM ® 	CortexTM-M,	the	T	bit	should	always	be	set	to	1.	On	reset,	the
processor	initializes	the	LR	to	0xFFFFFFFF.

2.2.	Texas	Instruments	LM3S	and	TM4C	I/O	pins
Table	2.1	listed	the	memory	configuration	for	some	of	the	Texas	Instruments
microcontrollers.	In	this	section,	we	present	the	I/O	pin	configurations	for	the	LM3S811,
LM3S1968,	TM4C123	and	TM4C1294	microcontrollers.	The	regular	function	of	a	pin	is
to	perform	parallel	I/O,	described	later	in	Section	2.4.	Most	pins,	however,	have	an
alternative	function.	For	example,	port	pins	PA1	and	PA0	can	be	either	regular	parallel
port	pins,	or	an	asynchronous	serial	port	called	universal	asynchronous
receiver/transmitter	(UART).

Joint	Test	Action	Group	(JTAG),	standardized	as	the	IEEE	1149.1,	is	a	standard	test
access	port	used	to	program	and	debug	the	microcontroller	board.	Each	microcontroller
uses	four	or	five	port	pins	for	the	JTAG	interface.

Common	error:	Even	though	it	is	possible	to	use	the	four/five	JTAG	pins	as	general	I/O,
debugging	most	microcontroller	boards	will	be	more	stable	if	these	pins	are	left	dedicated
to	the	JTAG	debugger.

I/O	pins	on	Stellaris ® and	Tiva ® 	microcontrollers	have	a	wide	range	of	alternative
functions:

•		UART																												Universal	asynchronous	receiver/transmitter
•		SSI																																											Synchronous	serial	interface
•		I2C																																											Inter-integrated	circuit
•		I2S																																										Inter-IC	Sound,	Integrated	Interchip	Sound
•		Timer																												Periodic	interrupts,	input	capture,	and	output
compare
•		PWM																												Pulse	width	modulation
•		ADC																																											Analog	to	digital	converter,	measurement
analog	signals
•		Analog	Comparator														Comparing	two	analog	signals
•		QEI																																										Quadrature	encoder	interface
•		USB																																										Universal	serial	bus
•		Ethernet																												High	speed	network
•		CAN																																										Controller	area	network
	

	

The	UART	can	be	used	for	serial	communication	between	computers.	It	is	asynchronous
and	allows	for	simultaneous	communication	in	both	directions.	The	SSI	is	alternately
called	serial	peripheral	interface	(SPI).	It	is	used	to	interface	medium-speed	I/O	devices.
In	this	book,	we	will	use	it	to	interface	a	graphics	display,	a	secure	digital	card	(SDC),	and
a	digital	to	analog	converter	(DAC).	I2C	is	a	simple	I/O	bus	that	we	will	use	to	interface
low	speed	peripheral	devices.	The	I2S	protocol	is	used	to	communicate	sound	information.
Input	capture	and	output	compare	will	be	used	to	create	periodic	interrupts,	and	take
measurements	period,	pulse	width,	phase	and	frequency.	PWM	outputs	will	be	used	to
apply	variable	power	to	motor	interfaces.	In	a	typical	motor	controller,	input	capture
measures	rotational	speed	and	PWM	controls	power.	A	PWM	output	can	also	be	used	to
create	a	DAC.	The	ADC	will	be	used	to	measure	the	amplitude	of	analog	signals,	and	will
be	important	in	data	acquisition	systems.	The	analog	comparator	takes	two	analog	inputs
and	produces	a	digital	output	depending	on	which	analog	input	is	greater.	The	QEI	can	be
used	to	interface	a	brushless	DC	motor.	USB	is	a	high-speed	serial	communication
channel.	The	Ethernet	port	can	be	used	to	bridge	the	microcontroller	to	the	Internet	or	a
local	area	network.	The	CAN	creates	a	high-speed	communication	channel	between
microcontrollers	and	is	commonly	found	in	automotive	and	other	distributed	control
applications.

2.2.1.	Texas	Instruments	LM3S811	I/O	pins
Figure	2.7	draws	the	I/O	port	structure	for	the	LM3S811	microcontroller.	Most	pins	have
two	names:	the	port	pin	(PA0)	and	the	alternate	function	name	(U0Rx).	Because	the	I/O
ports	are	connected	to	the	system	bus	interface,	the	microcontroller	can	perform	I/O	bus
cycles	simultaneous	with	instruction	fetches	from	flash	ROM.	There	are	32	digital	I/O
lines	and	4	ADC	inputs.	The	ADC	has	10	bits	of	precision	and	can	sample	up	to	500k
times	per	second.	Table	2.3	lists	the	regular	and	alternate	names	of	the	port	pins.	PC4	has
no	alternate	function.

	

Regular Alternate	Pin	Name Alternate	Function

PA0	–	PA1 U0RX,	U0TX Universal	Asynchronous
Receiver/Transmitter,	UART0

PA2	–	PA5 SCLK,	SFSS,	SRX,
STX

Synchronous	Serial	Interface,	SSI0

PB0,	PB1 PWM2,	PWM3 Pulse	Width	Modulator	1

PB2	–	PB3 SCL,	SDA Inter-Integrated	Circuit,	I2C0

PB4,	PB6,
PD7

C0-,	C0+,	C0o Analog	Comparator	0

PB5 CCP5 Timer2B	Capture/Compare

PB7,	PC0	–
PC3

TRST,	TCLK,	TMS,
TDI,	TDO

JTAG	Debugger

PC5 CCP1 Timer	0B	Capture/Compare

PC6 CCP3 Timer	1B	Capture/Compare

PC7 CCP4 Timer	2A	Capture/Compare

PD0,	PD1 PWM0,	PWM1 Pulse	Width	Modulator	0

PD2	–	PD3 U1RX,	U1TX Universal	Asynchronous
Receiver/Transmitter,	UART1

PD4 CCP0 Timer	0A	Capture/Compare

PD5 CCP2 Timer	1A	Capture/Compare

PD6 Fault Hold	all	PWM	outputs	in	safe	state

PE0,	PE1 PWM4,	PWM5 Pulse	Width	Modulator	2

Table	2.3.	LM3S811	I/O	pins	that	have	alternate	functions.

	

Figure	2.7.	I/O	port	pins	for	the	LM3S811	microcontroller.
SysTick	and	the	timers	can	generate	periodic	interrupts,	which	will	be	useful	for	executing
periodic	software	tasks	like	data	acquisition	and	control.	Each	timer	module	has	two	pins,
which	can	be	input	capture	or	output	compare.	Therefore,	the	three	timer	modules	provide
six	timer	pins.	Each	UART	has	two	pins,	one	transmitter	and	one	receiver.	The	I2C	port
has	two	bidirectional	pins.	The	SSI	module	uses	four	pins.	There	are	six	possible	PWM
output	pins.	The	one	fault	input	can	be	configured	to	affect	all	six	PWM	signals.	Port	pin
PC4	has	no	alternate	function.

Texas	Instruments	sells	an	evaluation	kit	for	the	LM3S811.	There	is	one	switch	and	one
LED	on	the	board,	see	Figure	2.8.	The	part	numbers	for	the	kit	are	EKK-LM3S811,	EKI-
LM3S811,	EKC-LM3S811,	EKT-LM3S811,	and	EKS-LM3S811.	The	different	versions
specify	which	compiler	is	included	on	the	CD	in	the	kit.	Table	2.4	lists	the	physical
devices	attached	to	pins	on	the	kit.	These	connections	can	be	broken	by	removing	a
jumper	on	the	board.	This	way	the	pin	is	available	for	your	circuits.

	

Pin Function To	Isolate,
Remove…

ADC0 ADC	Input	from	Thumbwheel
Potentiometer

JP5

PA0/U0RX Virtual	COM	Port	Receive JP3

PA1/U0TX Virtual	COM	Port	Transmit JP4

PB2/I2CSCL I2C	SCL0	to	OLED	Display JP1

PB3/I2CSDA I2C	SDA0	to	OLED	Display JP2

PB7/TRST JTAG	Debugger	Test	Reset Do	Not	Use

PC0/TCK/SWCLK JTAG	Debugger	Clock Do	Not	Use

PC1/TMS/SWDIO JTAG	Debugger	Mode	Select Do	Not	Use

PC2/TDI JTAG	Debugger	Data	In Do	Not	Use

PC3/TDO/SWO JTAG	Debugger	Data	Out Do	Not	Use

PC4 User	Momentary	Negative	Logic
Push	Button

JP6

PC5/CCP1 User	LED JP7

PD7/C0O OLED	Display	Power	Enable JP8

Table	2.4.	Port	pins	connected	to	physical	devices	on	the	LM3S811	evaluation	kit.

Figure	2.8.	Switch	and	LED	interfaces	on	the	LM3S811	evaluation	board.

2.2.2.	Texas	Instruments	LM3S1968	I/O	pins
Figure	2.9	draws	the	I/O	port	structure	for	the	LM3S1968	microcontroller.	Most	pins	have
two	names:	the	port	pin	(PA0)	and	the	alternate	function	name	(U0Rx).	However,	pins
PF5,	PF7,	PG3,	PG5,	and	PH2	have	no	alternate	function.	Because	the	I/O	ports	are
connected	to	the	system	bus	interface,	the	microcontroller	can	perform	I/O	bus	cycles
simultaneous	with	instruction	fetches	from	flash	ROM.	It	has	3	UART	ports,	2	SSI	ports,	2
I2C	ports,	a	10-bit	ADC,	6	PWM	outputs,	4	timer	input	capture/output	compare	pins,	2
quadrature	encoder	interfaces,	and	three	analog	comparators.	The	ADC	can	sample	up	to
1000k	per	second.	There	are	52	digital	I/O	lines	and	8	ADC	inputs.	Table	2.5	lists	the
regular	and	alternate	names	of	the	port	pins.

Figure	2.10	shows	a	Texas	Instruments	evaluation	kit	for	the	LM3S1968.	There	are	five
switches	and	one	LED	on	the	board,	see	Figure	2.11.		The	part	numbers	for	these	kits	are
EKK-LM3S1968,	EKI-LM3S1968,	EKC-LM3S1968,	EKT-LM3S1968,	and	EKS-
LM3S1968.	The	different	versions	specify	which	compiler	is	included	on	the	CD	in	the
kit.	Table	2.6	lists	the	physical	devices	attached	to	pins	on	the	kit.	These	connections	can
be	broken	by	removing	a	jumper	on	the	board.	By	removing	the	jumper	the	pin	is
available	for	your	circuits.	You	must	enable	internal	pull-ups	to	use	the	switches	on	the
board.

	

Figure	2.9.	I/O	port	pins	for	the	LM3S1968	microcontroller.
Observation:To	use	the	switches	on	the	LM3S1968	board	you	need	to	activate	the
internal	pull-up	resistors	for	the	port,	set	bits	3 – 7	in	GPIO_PORTG_PUR_R.

Observation:	The	switches	on	the	LM3S1968	board	are	negative	logic.

Observation:	The	LED	(PG2)	on	the	LM3S1968	board	is	positive	logic.

Observation:	The	debugger	functionality	will	be	lost	if	you	configure	PB7,	PC3	–	0	as
regular	digital	I/O.

Regular Alternate	Pin	Name Alternate	Function

PA0	–	PA1 U0RX,	U0TX Universal	Asynchronous
Receiver/Transmitter,	UART0

PA2	–	PA5 S0CLK,	S0FS,
S0RX,	S0TX

Synchronous	Serial	Interface,	SSI0

PA6	–	PA7 SCL1,	SDA1 Inter-Integrated	Circuit,	I2C1

PB0 CCP0 Timer	0A	Capture/Compare

PB1 CCP2 Timer	1A	Capture/Compare

PB2	–	PB3 SCL0,	SDA0 Inter-Integrated	Circuit,	I2C0

PB4,	PB6,
PF4

C0-,	C0+,	C0o Analog	Comparator	0

PB5,	PC5 C1-,	C1+ Analog	Comparator	1

PB7,	PC0	–
PC3

TRST,	TCLK,	TMS,
TDI,	TDO

JTAG	Debugger

PC4,	PF0,
PD0

PHA0,	PHB0,	IDX0 Quadrature	Encoder	Interface,	QEI0

PC6,	PC7 C2+,	C2- Analog	Comparator	2

PD2	–	PD3 U1RX,	U1TX Universal	Asynchronous
Receiver/Transmitter,	UART1

PE0	–	PE3 S1CLK,	S1FS,
S1RX,	S1TX

Synchronous	Serial	Interface,	SSI1

PF2,	PF3 PWM4,	PWM5 Pulse	Width	Modulator	2

PF6 CCP1 Timer	0B	Capture/Compare

PG0	–	PG1 U2RX,	U2TX Universal	Asynchronous
Receiver/Transmitter,	UART2

PG2,	PD1 PWM0,	PWM1 Pulse	Width	Modulator	0

PG4 CCP3 Timer	1B	Capture/Compare

PG6,	PG7,
PF1

PHA1,	PHB1,	IDX1 Quadrature	Encoder	Interface,	QEI1

PH0,	PH1 PWM2,	PWM3 Pulse	Width	Modulator	1

PH3 Fault Hold	all	PWM	outputs	in	safe	state

Table	2.5.	LM3S1968	I/O	pins	that	have	alternate	functions.

	

Pin Function

To	Isolate,
Remove…

PA0/U0RX Virtual	COM	Port	Receive JP4

PA1/U0TX Virtual	COM	Port	Transmit JP13

PA2/S0CLK OLED	Display	Clock JP11

PA3/S0FS OLED	Display	Chip	Select JP5

PA5/S0TX OLED	Display	Data	In JP10

PB7/TRST JTAG	Debugger	Test	Reset Do	Not	Use

PC0/TCK/SWCLK JTAG	Debugger	Clock Do	Not	Use

PC1/TMS/SWDIO JTAG	Debugger	Mode	Select Do	Not	Use

PC2/TDI JTAG	Debugger	Data	In Do	Not	Use

PC3/TDO/SWO JTAG	Debugger	Data	Out Do	Not	Use

PG2/PWM0 User	LED JP2

PG3 SW3	Up	Momentary	Negative	Logic
Push	Button

JP1

PG4 SW4	Down	Momentary	Negative
Logic	Push	Button

JP9

PG5 SW5	Left	Momentary	Negative	Logic
Push	Button

JP8

PG6/PHA1 SW6	Right	Momentary	Negative
Logic	Push	Button

JP6

PG7/PHB1 Select	Momentary	Negative	Logic
Push	Button

JP7

PH0/PWM2 Sound	+ JP14

PH1/PWM3 Sound	- JP15

PH2 OLED	Display	Data/Control	Select JP12

PH3/Fault OLED	Display	Power	Enable JP3

Table	2.6.	Port	pins	connected	to	physical	devices	on	the	LM3S1968	evaluation	kit.

	

	

Figure	2.10.	Evaluation	kit	for	the	LM3S1968	microcontroller.
There	are	a	number	of	possibilities	for	designing	prototype	systems	using	evaluation	kits.
One	option	is	to	solder	individual	wires	to	pins	as	needed.	This	approach	is	simple	and
reliable.	It	is	appropriate	if	the	kit	is	being	used	for	one	application	and	the	choice	of	pins
is	unlikely	to	change.	The	disadvantage	is	changing	pins	requires	unsoldering	and
resoldering.

	

Figure	2.11.	Switch	and	LED	interfaces	on	the	LM3S1968	evaluation
board.
A	second	approach	is	to	solder	a	female	socket	onto	the	evaluation	kit.	To	connect	a	pin	to
your	external	circuit,	you	place	a	solid	wire	into	the	socket.	This	method	is	convenient	if
you	plan	to	move	wires	as	the	design	changes.	After	a	long	period,	the	female	socket	can
wear	out	or	the	ends	of	wires	may	break	off	inside	the	socket.	Changing	the	socket	is	very
difficult.

A	third	approach	is	illustrated	in	Figure	2.10.	The	breadboard	interface	was	built	using
Samtec	TSW-133-09-L-S-RE	and	TSW-133-08-L-S-RA	connectors.	Right-angle	male-
male	headers	are	soldered	to	the	board	in	such	a	way	that	the	male	pins	can	be	inserted
into	a	standard	solderless	breadboard.	This	approach	is	convenient	if	you	are	prototyping
on	a	solderless	breadboard.	This	configuration	is	extremely	robust	and	can	withstand
multiple	insertions	and	extractions.	Push	straight	down	to	insert	the	board	into	the
breadboard.	To	remove	the	board,	use	two	small	screwdrivers	and	wedge	between	the
board	and	the	breadboard	on	each	side	a	little	at	a	time.	To	assemble	this	interface,	it	may
be	helpful	to	separately	insert	each	unsoldered	header	into	the	breadboard	to	hold	it	in
place	while	it	is	being	soldered.	If	the	spacing	between	the	headers	and	the	development
board	is	not	correct,	then	it	will	not	fit	into	the	breadboard.	Notice	how	the	development
board	fits	into	the	slit	in	the	middle	of	the	breadboard.

2.2.3.	Texas	Instruments	TM4C123	LaunchPad	I/O	pins
Figure	2.12	draws	the	I/O	port	structure	for	the	LM4F120H5QR	and	TM4C123GH6PM.
These	microcontrollers	are	used	on	the	EK-LM4F120XL	and	EK-TM4C123GXL
LaunchPads.	Pins	on	the	LM3S	family	have	two	possibilities:	digital	I/O	or	an	alternative
function.	However,	pins	on	the	LM4F/TM4C	family	can	be	assigned	to	as	many	as	eight
different	I/O	functions.	Pins	can	be	configured	for	digital	I/O,	analog	input,	timer	I/O,	or
serial	I/O.	For	example	PA0	can	be	digital	I/O	or	serial	input.	There	are	two	buses	used	for
I/O.	The	digital	I/O	ports	are	connected	to	both	the	advanced	peripheral	bus	(like	the
LM3S	family)	and	the	advanced	high-performance	bus	(runs	faster).	Because	of	the
multiple	buses,	the	microcontroller	can	simultaneously	perform	I/O	bus	cycles	with
instruction	fetches	from	flash	ROM.	The	LM4F120H5QR	has	eight	UART	ports,	four	SSI
ports,	four	I2C	ports,	two	12-bit	ADCs,	twelve	timers,	a	CAN	port,	and	a	USB	interface.
The	TM4C123GH6PM	adds	up	to	16	PWM	outputs.	There	are	43	I/O	lines.	There	are
twelve	ADC	inputs;	each	ADC	can	convert	up	to	1	million	samples	per	second.	Table	2.7
lists	the	regular	and	alternate	names	of	the	port	pins.

Each	pin	has	one	configuration	bit	in	the	AMSEL	register.	We	set	this	bit	to	connect	the
port	pin	to	the	ADC	or	analog	comparator.	For	digital	functions,	each	pin	also	has	four	bits
in	the	PCTL	register,	which	we	set	to	specify	the	alternative	function	for	that	pin	(0
means	regular	I/O	port).	Table	2.7	shows	the	4-bit	PCTL	configuration	used	to	connect
each	pin	to	its	alternate	function.	For	example,	column	“7”	means	set	4-bit	field	in	PCTL
to	01112.

Pins	PC3	–	PC0	were	left	off	Table	2.7	because	these	four	pins	are	reserved	for	the	JTAG
debugger	and	should	not	be	used	for	regular	I/O.	Notice,	most	alternate	function	modules
(e.g.,	U0Rx)	only	exist	on	one	pin	(PA0).	While	other	functions	could	be	mapped	to	two
or	three	pins	(e.g.,	CAN0Rx	could	be	mapped	to	one	of	the	following:	PB4,	PE4,	or	PF0.)

For	example,	if	we	wished	to	use	SSI2	on	pins	PB7–4,	we	would	set	bits	7–4	in	the	DEN
register	(enable	digital),	clear	bits	7–4	in	the	AMSEL	register	(disable	analog),	write	a
0010,0010,0010,0010	to	bits	31–16	in	the	PCTL	register	(enable	SSI2	functionality),	and
set	bits	7–4	in	the	AFSEL	register	(enable	alternate	function).	If	we	wished	to	sample	an
analog	signal	on	PD3,	we	would	set	bit	3	in	the	alternate	function	select	register	AFSEL,

clear	bit	3	in	the	digital	enable	register	DEN	(disable	digital),	set	bit	3	in	the	analog	mode
select	register	AMSEL	(enable	analog),	and	activate	one	of	the	ADCs	to	sample	channel
4.	Additional	examples	will	be	presented	throughout	the	book.

The	Texas	Instruments	LaunchPad	evaluation	board	(Figure	2.13)	is	a	low-cost
development	board	available	as	part	number	EK-TM4C123GXL	from	www.ti.com	and
from	regular	electronic	distributors	like	Digikey,	Mouser,	Newark,	Arrow,	and	Avnet.	The
kit	provides	an	integrated	In-Circuit	Debug	Interface	(ICDI),	which	allows	programming
and	debugging	of	the	onboard	LM4F	microcontroller.	One	USB	cable	is	used	by	the
debugger	(ICDI),	and	the	other	USB	allows	the	user	to	develop	USB	applications	(device).
The	user	can	select	board	power	to	come	from	either	the	debugger	(ICDI)	or	the	USB
device	(device)	by	setting	the	Power	selection	switch.

Figure	2.12.	I/O	port	pins	for	the	LM4F120H5QR	/	TM4C123GH6PM
microcontrollers.	There	are	no	PWM	modules	on	the	LM4F120.	Also,	the
USB	on	the	LM4F120	supports	device	mode,	while	the	TM4C123	adds
host	and	on-the-go	(OTG)	modes.
Pins	PA1	–	PA0	create	a	serial	port,	which	is	linked	through	the	debugger	cable	to	the	PC.
The	serial	link	is	a	physical	UART	as	seen	by	the	LM4F/TM4C	and	mapped	to	a	virtual
COM	port	on	the	PC.	The	USB	device	interface	uses	PD4	and	PD5.	The	JTAG	debugger
requires	pins	PC3	–	PC0.	The	LaunchPad	connects	PB6	to	PD0,	and	PB7	to	PD1.	If	you
wish	to	use	both	PB6	and	PD0	you	will	need	to	remove	the	R9	resistor.	Similarly,	to	use
both	PB7	and	PD1	remove	the	R10	resistor.		The	USB	connector	on	the	side	of	the
LM4F120	LaunchPad		has	four	wires	because	it	supports	only	device	mode.	However,	the
USB	connector	on	the	side	of	the	TM4C123	LaunchPad	has	five	wires	because	it	supports
device,	host,	and	OTG	modes.

	

IO Ain 0 1 2 3 4 5 6 7 8 9 14

PA0 	 Port U0Rx 	 	 	 	 	 	 CAN1Rx 	 	

PA1 	 Port U0Tx 	 	 	 	 	 	 CAN1Tx 	 	

PA2 	 Port 	 SSI0Clk 	 	 	 	 	 	 	 	

PA3 	 Port 	 SSI0Fss 	 	 	 	 	 	 	 	

PA4 	 Port 	 SSI0Rx 	 	 	 	 	 	 	 	

PA5 	 Port 	 SSI0Tx 	 	 	 	 	 	 	 	

PA6 	 Port 	 	 I2C1SCL 	 M1PWM2 	 	 	 	 	

PA7 	 Port 	 	 I2C1SDA 	 M1PWM3 	 	 	 	 	

PB0 USB0ID Port U1Rx 	 	 	 	 	 T2CCP0 	 	 	

PB1 USB0VBUS Port U1Tx 	 	 	 	 	 T2CCP1 	 	 	

PB2 	 Port 	 	 I2C0SCL 	 	 	 T3CCP0 	 	 	

PB3 	 Port 	 	 I2C0SDA 	 	 	 T3CCP1 	 	 	

PB4 Ain10 Port 	 SSI2Clk 	 M0PWM2 	 	 T1CCP0 CAN0Rx 	 	

PB5 Ain11 Port 	 SSI2Fss 	 M0PWM3 	 	 T1CCP1 CAN0Tx 	 	

PB6 	 Port 	 SSI2Rx 	 M0PWM0 	 	 T0CCP0 	 	 	

PB7 	 Port 	 SSI2Tx 	 M0PWM1 	 	 T0CCP1 	 	 	

PC4 C1- Port U4Rx U1Rx 	 M0PWM6 	 IDX1 WT0CCP0 U1RTS 	 	

PC5 C1+ Port U4Tx U1Tx 	 M0PWM7 	 PhA1 WT0CCP1 U1CTS 	 	

PC6 C0+ Port U3Rx 	 	 	 	 PhB1 WT1CCP0 USB0epen 	 	

PC7 C0- Port U3Tx 	 	 	 	 	 WT1CCP1 USB0pflt 	 	

PD0 Ain7 Port SSI3Clk SSI1Clk I2C3SCL M0PWM6 M1PWM0 	 WT2CCP0 	 	 	

PD1 Ain6 Port SSI3Fss SSI1Fss I2C3SDAM0PWM7 M1PWM1 	 WT2CCP1 	 	 	

PD2 Ain5 Port SSI3Rx SSI1Rx 	 M0Fault0 	 	 WT3CCP0 USB0epen 	 	

PD3 Ain4 Port SSI3Tx SSI1Tx 	 	 	 IDX0 WT3CCP1 USB0pflt 	 	

PD4 USB0DM Port U6Rx 	 	 	 	 	 WT4CCP0 	 	 	

PD5 USB0DP Port U6Tx 	 	 	 	 	 WT4CCP1 	 	 	

PD6 	 Port U2Rx 	 	 M0Fault0 	 PhA0 WT5CCP0 	 	 	

PD7 	 Port U2Tx 	 	 	 	 PhB0 WT5CCP1 NMI 	 	

PE0 Ain3 Port U7Rx 	 	 	 	 	 	 	 	 	

PE1 Ain2 Port U7Tx 	 	 	 	 	 	 	 	 	

PE2 Ain1 Port 	 	 	 	 	 	 	 	 	 	

PE3 Ain0 Port 	 	 	 	 	 	 	 	 	 	

PE4 Ain9 Port U5Rx 	 I2C2SCL M0PWM4 M1PWM2 	 	 CAN0Rx 	 	

PE5 Ain8 Port U5Tx 	 I2C2SDAM0PWM5 M1PWM3 	 	 CAN0Tx 	 	

PF0 	 Port U1RTS SSI1Rx CAN0Rx 	 M1PWM4 PhA0 T0CCP0 NMI C0o 	

PF1 	 Port U1CTS SSI1Tx 	 	 M1PWM5 PhB0 T0CCP1 	 C1o TRD1

PF2 	 Port 	 SSI1Clk 	 M0Fault0 M1PWM6 	 T1CCP0 	 	 TRD0

PF3 	 Port 	 SSI1Fss CAN0Tx 	 M1PWM7 	 T1CCP1 	 	 TRCLK

PF4 	 Port 	 	 	 	 M1Fault0 IDX0 T2CCP0 USB0epen 	 	

Table	2.7.	PMCx	bits	in	the	GPIO_PORTx_PCTL_R	register	on	the	LM4F/TM4C
specify	alternate	functions.	PB1,	PB0,	PD4	and	PD5	are	hardwired	to	the	USB
device.	PA0	and	PA1	are	hardwired	to	the	serial	port.	PWM	is	not	available	on
LM4F120.

	

Each	32-bit	GPIO_PORTx_PCTL_R 	register	defines	the	alternate	function	for	the	eight
pins	of	that	port,	4	bits	for	each	pin.	For	example,	if	we	wished	to	specify	PA5-2	as	SSI0,
we	would	set	Port	A	PCTL	bits	23-16	to	0x2222	like	this:

GPIO_PORTA_PCTL_R	=	(GPIO_PORTA_PCTL_R&0xFF0000FF)+0x00222200;

Figure	2.13.	Texas	Instruments	LaunchPad	based	on	the	LM4F120H5QR
or	TM4C123GH6PM.
The	Texas	Instruments	LaunchPad	evaluation	board	has	two	switches	and	one	3-color
LED,	as	shown	in	Figure	2.14.	The	switches	are	negative	logic	and	will	require	activation
of	the	internal	pull-up	resistors.	In	particular,	you	will	set	bits	0	and
4in GPIO_PORTF_PUR_R 	register.	The	LED	interfaces	on	PF3	–	PF1	are	positive
logic.	To	use	the	LED,	make	the	PF3	–	PF1	pins	an	output.	To	activate	the	red	color,
output	a	one	to	PF1.	The	blue	color	is	on	PF2,	and	the	green	color	is	controlled	by	PF3.
The	0- �	resistors	(R1,	R2,	R11,	R12,	R13,	R25,	and	R29)	can	be	removed	to	disconnect
the	corresponding	pin	from	the	external	hardware.

Figure	2.14.	Switch	and	LED	interfaces	on	the	Texas	Instruments
LaunchPad	Evaluation	Board.	The	zero	ohm	resistors	can	be	removed	so
the	corresponding	pin	can	be	used	for	its	regular	purpose.

The	LaunchPad	has	four	10-pin	connectors,	labeled	as	J1	J2	J3	J4	in	Figures	2.13	and
2.15,	to	which	you	can	attach	your	external	signals.	The	top	side	of	these	connectors	has
male	pins	and	the	bottom	side	has	female	sockets.	The	intent	is	to	stack	boards	together	to
make	a	layered	system,	see	Figure	2.15.	Texas	Instruments	also	supplies	Booster	Packs,
which	are	pre-made	external	devices	that	will	plug	into	this	40-pin	connector.	The	Booster
Packs	for	the	MSP430	LaunchPad	are	compatible	(one	simply	plugs	these	20-pin
connectors	into	the	outer	two	rows)	with	this	board.	The	inner	10-pin	headers	(connectors
J3	and	J4)	are	not	intended	to	be	compatible	with	other	TI	LaunchPads.	J3	and	J4	apply
only	to	Cortex-M4	Booster	Packs.

There	are	two	methods	to	connect	external	circuits	to	the	LaunchPad.	One	method	is	to
purchase	a	male	to	female	jumper	cable	(e.g.,	item	number	826	at	www.adafruit.com).	You
could	create	low-cost	male	to	female	jumper	wires	by	soldering	a	solid	wire	into	a	female
sockets	(e.g.,	Hirose	DF11-2428SCA).	A	second	method	is	to	use	solid	22-gauge	or	24-
gauge	wire	and	connect	one	end	of	the	solid	wire	into	the	bottom	or	female	side	of	the
LaunchPad.

Figure	2.15.	Interface	connectors	on	the	Texas	Instruments
LM4F120/TM4C123	LaunchPad	Evaluation	Board.

2.2.4.	Texas	Instruments	TM4C1294	Connected	LaunchPad
I/O	pins
Figure	2.16	shows	the	90	I/O	pins	available	on	the	TM4C1294NCPDT,	which	is	the
microcontroller	used	on	the	Connected	LaunchPad.	Pins	on	the	TM4C	family	can	be
assigned	to	as	many	as	seven	different	I/O	functions,	see	Table	2.8.	Pins	can	be	configured
for	digital	I/O,	analog	input,	timer	I/O,	or	serial	I/O.	For	example	PA0	can	be	digital	I/O,
serial	input,	I2C	clock,	Timer	I/O,	or	CAN	receiver.	There	are	two	buses	used	for	I/O.
Unlike	the	TM4C123,	the	digital	I/O	ports	are	only	connected	to	the	advanced	high-
performance	bus.	The	microcontroller	can	perform	I/O	bus	cycles	simultaneous	with
instruction	fetches	from	flash	ROM.	The	TM4C1294NCPDT	has	eight	UART	ports,	four
SSI	ports,	ten	I2C	ports,	two	12-bit	ADCs,	eight	timers,	two	CAN	ports,	a	USB	interface,
8	PWM	outputs,	and	an	Ethernet	port.	Of	the	90	I/O	lines,	twenty	pins	can	be	used	for
analog	inputs	to	the	ADC.	The	ADC	can	convert	up	to	1M	samples	per	second.	Table	2.8
lists	the	regular	and	alternate	functions	of	the	port	pins.

Each	32-bit GPIO_PORTx_PCTL_R 	register	defines	the	alternate	function	for	the	eight
pins	of	that	port,	4	bits	for	each	pin.	For	example,	if	we	wished	to	specify	PD5–PD4	as
UART2,	we	would	set	Port	D	PCTL	bits	23-16	to	0x11	like	this:

GPIO_PORTD_PCTL_R	=	(GPIO_PORTD_PCTL_R&0xFF00FFFF)+0x00110000;

Figure	2.16.	I/O	port	pins	for	the	TM4C1294NCPDT	microcontroller.
Figure	2.17	shows	the	pin	locations	of	the	two	Booster	Pack	connectors.	There	are	three
methods	to	connect	external	circuits	to	the	Connected	LaunchPad.	One	method	uses	male
to	female	jumper	cable	(e.g.,	item	number	826	at	www.adafruit.com)	or	solder	a	solid	wire
into	a	female	socket	(e.g.,	Hirose	DF11-2428SCA)	creating	a	male-to-female	jumper	wire.
In	this	method,	you	connect	the	female	socket	to	the	top	of	the	LaunchPad	and	the	male
pin	into	a	solderless	breadboard.	The	second	method	uses	male-to-male	wires	interfacing
to	the	bottom	of	the	LaunchPad.	The	third	method	uses	two	49-pin	right-angle	headers	so
the	entire	LaunchPad	can	be	plugged	into	a	breadboard.	You	will	need	one	each	of	Samtec
parts	TSW-149-09-L-S-RE	and	TSW-149-08-L-S-RA.	This	configuration	is	shown	in
Figure	2.18,	and	directions	can	be	found	at
http://users.ece.utexas.edu/~valvano/arm/TM4C1294soldering.pdf

The	Connected	LaunchPad	has	two	switches	and	four	LEDs.	Switch	SW1	is	connected	to
pin	PJ0,	and	SW2	is	connected	to	PJ1.	These	two	switches	are	negative	logic	and	require
enabling	the	internal	pull	up	(PUR).	A	reset	switch	will	reset	the	microcontroller	and	your
software	will	start	when	you	release	the	switch.	Positive	logic	LEDs	D1,	D2,	D3,	and	D4
are	connected	to	PN1,	PN0,	PF4,	and	PF0	respectively.	A	power	LED	indicates	that	3.3
volt	power	is	present	on	the	board.	R19	is	a	0	Ω	resistor	connecting	PA3	and	PQ2.
Similarly,	R20	is	a	0	Ω	resistor	connecting	PA2	and	PQ3.	You	need	to	remove	R19	if	you
plan	to	use	both	PA3	and	PQ2.	You	need	to	remove	R20	if	you	plan	to	use	both	PA2	and
PQ3.	See	Figures	2.18	and	2.19.

Figure	2.17.	Interface	connectors	on	the	EK-TM4C1294-XL	LaunchPad
Evaluation	Board.
Jumper	JP1	has	six	pins	creating	three	rows	of	two.	Exactly	one	jumper	should	be
connected	in	the	JP1	block,	which	selects	the	power	source.	The	top	position	is	for
BoosterPack	power.	The	middle	position	draws	power	from	the	USB	connector,	labeled
OTG,	on	the	left	side	of	the	board	near	the	Ethernet	jack.	We	recommend	placing	the	JP1
jump	in	the	bottom	position	so	power	is	drawn	from	the	ICDI	(Debug)	USB	connection.
Under	normal	conditions,	you	should	place	jumpers	in	both	J2	and	J3.	Jumpers	J2	and	J3
facilitate	measuring	current	to	the	microcontroller.	We	recommend	you	place	JP4	and	JP5
in	the	“UART”	position	so	PA1	and	PA0	are	connected	to	the	PC	as	a	virtual	COM	port.
Your	code	runs	on	the	128-pin	TM4C1294	microcontroller.	There	is	a	second	TM4C
microcontroller	on	the	board,	which	acts	as	the	JTAG	debugger	for	your	TM4C1294.	You
connect	the	Debug	USB	to	a	PC	in	order	to	download	and	debug	software	on	the	board.
The	other	USB	is	for	user	applications.

Figure	2.18.	EK-TM4C1294-XL	Connected	LaunchPad.

Pin Analog 1 2 3 5 6 7 11 13 14

PA0 - U0Rx I2C9SCL T0CCP0 - - CAN0Rx - - -

PA1 - U0Tx I2C9SDA T0CCP1 - - CAN0Tx - - -

PA2 - U4Rx I2C8SCL T1CCP0 - - - - - -

PA3 - U4Tx I2C8SDA T1CCP1 - - - - - -

PA4 - U3Rx I2C7SCL T2CCP0 - - - - - -

PA5 - U3Tx I2C7SDA T2CCP1 - - - - - -

PA6 - U2Rx I2C6SCL T3CCP0 USB0EPEN - - - SSI0XDAT2 -

PA7 - U2Tx I2C6SDA T3CCP1 USB0PFLT - - USB0EPEN SSI0XDAT3 -

PB0 USB0ID U1Rx I2C5SCL T4CCP0 - - CAN1Rx - - -

PB1 USB0VBUS U1Tx I2C5SDA T4CCP1 - - CAN1Tx - - -

PB2 - - I2C0SCL T5CCP0 - - - - - USB0STP

PB3 - - I2C0SDA T5CCP1 - - - - - USB0CLK

PB4 AIN10 U0CTS I2C5SCL - - - - - - -

PB5 AIN11 U0RTS I2C5SDA - - - - - - -

PC4 C1- U7Rx - - - - - - - -

PC5 C1+ U7Tx - - - - RTCCLK - - -

PC6 C0+ U5Rx - - - - - - - -

PC7 C0- U5Tx - - - - - - - -

PD0 AIN15 - I2C7SCL T0CCP0 C0o - - - - -

PD1 AIN14 - I2C7SDA T0CCP1 C1o - - - - -

PD2 AIN13 - I2C8SCL T1CCP0 C2o - - - - -

PD3 AIN12 - I2C8SDA T1CCP1 - - - - - -

PD4 AIN7 U2Rx - T3CCP0 - - - - - -

PD5 AIN6 U2Tx - T3CCP1 - - - - - -

PD6 AIN5 U2RTS - T4CCP0 USB0EPEN - - - - -

PD7 AIN4 U2CTS - T4CCP1 USB0PFLT - - - - -

PE0 AIN3 U1RTS - - - - - - - -

PE1 AIN2 U1DSR - - - - - - - -

PE2 AIN1 U1DCD - - - - - - - -

PE3 AIN0 U1DTR - - - - - - - -

PE4 AIN9 U1RI - - - - - - - -

PE5 AIN8 - - - - - - - - -

PF0 - - - - EN0LED0 M0PWM0 - - - SSI3XDAT1

PF1 - - - - EN0LED2 M0PWM1 - - - SSI3XDAT0

PF2 - - - - - M0PWM2 - - - SSI3Fss

PF3 - - - - - M0PWM3 - - - SSI3Clk

PF4 - - - - EN0LED1 M0FAULT0 - - - SSI3XDAT2

PG0 - - I2C1SCL - EN0PPS M0PWM4 - - - -

PG1 - - I2C1SDA - - M0PWM5 - - - -

PH0 - U0RTS - - - - - - - -

PH1 - U0CTS - - - - - - - -

PH2 - U0DCD - - - - - - - -

PH3 - U0DSR - - - - - - - -

PJ0 - U3Rx - - EN0PPS - - - - -

PJ1 - U3Tx - - - - - - - -

PK0 AIN16 U4Rx - - - - - - - -

PK1 AIN17 U4Tx - - - - - - - -

PK2 AIN18 U4RTS - - - - - - - -

PK3 AIN19 U4CTS - - - - - - - -

PK4 - - I2C3SCL - EN0LED0 M0PWM6 - - - -

PK5 - - I2C3SDA - EN0LED2 M0PWM7 - - - -

PK6 - - I2C4SCL - EN0LED1 M0FAULT1 - - - -

PK7 - U0RI I2C4SDA - RTCCLK M0FAULT2 - - - -

PL0 - - I2C2SDA - - M0FAULT3 - - - USB0D0

PL1 - - I2C2SCL - - PhA0 - - - USB0D1

PL2 - - - - C0o PhB0 - - - USB0D2

PL3 - - - - C1o IDX0 - - - USB0D3

PL4 - - - T0CCP0 - - - - - USB0D4

Pin Analog 1 2 3 5 6 7 11 13 14

PL5 - - - T0CCP1 - - - - - USB0D5

PL6 USB0DP - - T1CCP0 - - - - - -

PL7 USB0DM - - T1CCP1 - - - - - -

PM0 - - - T2CCP0 - - - - - -

PM1 - - - T2CCP1 - - - - - -

PM2 - - - T3CCP0 - - - - - -

PM3 - - - T3CCP1 - - - - - -

PM4 TMPR3 U0CTS - T4CCP0 - - - - - -

PM5 TMPR2 U0DCD - T4CCP1 - - - - - -

PM6 TMPR1 U0DSR - T5CCP0 - - - - - -

PM7 TMPR0 U0RI - T5CCP1 - - - - - -

PN0 - U1RTS - - - - - - - -

PN1 - U1CTS - - - - - - - -

PN2 - U1DCDU2RTS - - - - - - -

PN3 - U1DSR U2CTS - - - - - - -

PN4 - U1DTR U3RTS I2C2SDA - - - - - -

PN5 - U1RI U3CTS I2C2SCL - - - - - -

PP0 C2+ U6Rx - - - - - - - -

PP1 C2- U6Tx - - - - - - - -

PP2 - U0DTR - - - - - - - USB0NXT

PP3 - U1CTS U0DCD - - - RTCCLK - - USB0DIR

PP4 - U3RTS U0DSR - - - - - - USB0D7

PP5 - U3CTS I2C2SCL - - - - - - USB0D6

PQ0 - - - - - - - - - SSI3Clk

PQ1 - - - - - - - - - SSI3Fss

PQ2 - - - - - - - - - SSI3XDAT0

PQ3 - - - - - - - - - SSI3XDAT1

PQ4 - U1Rx - - - - DIVSCLK - - -

Table	2.8.	PMCx	bits	in	the	GPIO_PORTx_PCTL_R	register	on	the	TM4C1294
specify	alternate	functions.	PD7	can	be	NMI	by	setting	PCTL	bits	31-28	to	8.	PL6
and	PL7	are	hardwired	to	the	USB.

	

Figure	2.19.	Switch	and	LED	interfaces	on	the	Connected	LaunchPad
Evaluation	Board.	The	zero	ohm	resistors	can	be	removed	so	all	the	pins
can	be	used.
Each	pin	has	one	configuration	bit	in	the	AMSEL	register.	We	set	this	bit	to	connect	the
port	pin	to	the	ADC	or	analog	comparator.	For	digital	functions,	each	pin	also	has	four	bits
in	the	PCTL	register,	which	we	set	to	specify	the	alternative	function	for	that	pin	(0
means	regular	I/O	port).	Table	2.8	shows	the	4-bit	PCTL	configuration	used	to	connect
each	pin	to	its	alternate	function.	For	example,	column	“3”	means	set	4-bit	field	in	PCTL
to	0011.

Pins	PC3	–	PC0	were	left	off	Table	2.8	because	these	four	pins	are	reserved	for	the	JTAG
debugger	and	should	not	be	used	for	regular	I/O.	Notice,	some	alternate	function	modules
(e.g.,	U0Rx)	only	exist	on	one	pin	(PA0).	While	other	functions	could	be	mapped	to	two
or	three	pins.	For	example,		T0CCP0	could	be	mapped	to	one	of	the	following:	PA0,	PD0,
or	PL4.

The	PCTL	bits	in	Table	2.8	can	be	tricky	to	understand.	For	example,	if	we	wished	to	use
UART6	on	pins	PP0	and	PP1,	we	would	set	bits	1,0	in	the	DEN	register	(enable	digital),
clear	bits	1,0	in	the	AMSEL	register	(disable	analog),	write	a	0001,0001	to	bits	7–0	in	the
PCTL	register	(enable	UART6	functionality),	and	set	bits	1,0	in	the	AFSEL	register
(enable	alternate	function).	If	we	wished	to	sample	an	analog	signal	on	PD0,	we	would	set
bit	0	in	the	alternate	function	select	register	AFSEL,	clear	bit	0	in	the	digital	enable
register	DEN	(disable	digital),	set	bit	0	in	the	analog	mode	select	register	AMSEL	(enable
analog),	and	activate	one	of	the	ADCs	to	sample	channel	15.	Additional	examples	will	be
presented	throughout	the	book.

Jumpers	JP4	and	JP5	select	whether	the	serial	port	on	UART0	(PA1	–	PA0)	or	on	UART2
(PD5	–	4)	is	linked	through	the	debugger	cable	to	the	PC.	The	serial	link	is	a	physical
UART	as	seen	by	the	TM4C1294	and	is	mapped	to	a	virtual	COM	port	on	the	PC.	The
USB	device	interface	uses	PL6	and	PL7.	The	JTAG	debugger	requires	pins	PC3	–	PC0.

To	use	the	negative	logic	switches,	make	the	pins	digital	inputs,	and	activate	the	internal
pull-up	resistors.	In	particular,	you	will	activate	the	Port	J	clock,	clear	bits	0	and
1in GPIO_PORTJ_DIR_R 	register,	set	bits	0	and	1in GPIO_PORTJ_DEN_R 	register,
and	set	bits	0	and	1in GPIO_PORTJ_PUR_R 	register.	The	LED	interfaces	are	positive
logic.	To	use	the	LEDs,	make	the	PN1,	PN0,	PF4,	and	PF0	pins	an	output.	You	will
activate	the	Port	N	clock,	set	bits	0	and	1in GPIO_PORTN_DIR_R 	register,	and	set	bits
0	and	1in GPIO_PORTN_DEN_R 	register.	You	will	activate	the	Port	F	clock,	set	bits	0
and	4in GPIO_PORTF_DIR_R 	register,	and	set	bits	0	and	4in GPIO_PORTF_DEN_R
register.

	

2.3.	ARM � 	CortexTM-M	Assembly	Language
This	section	focuses	on	the	ARM ® 	CortexTM-M	assembly	language.	There	are	many
ARM®	processors,	and	this	book	focuses	on	CortexTM-M	microcontrollers,	which
executes	Thumb ® 	instructions	extended	with	Thumb-2	technology.	This	section	does	not
present	all	the	Thumb	instructions.	Rather,	we	present	a	few	basic	instructions	in	order	to
understand	how	the	processor	works.	For	further	details,	please	refer	to	Volume	1
(Embedded	Systems:	Introduction	to	ARM ® 	CortexTM-M	Microcontrollers),	and	to	the
ARM ® 	CortexTM-M	Technical	Reference	Manual.

2.3.1.	Syntax
Assembly	language	instructions	have	four	fields	separated	by	spaces	or	tabs.	The	label
field	is	optional	and	starts	in	the	first	column	and	is	used	to	identify	the	position	in
memory	of	the	current	instruction.	You	must	choose	a	unique	name	for	each	label.	The
opcode	field	specifies	the	processor	command	to	execute.	The	operand	field	specifies
where	to	find	the	data	to	execute	the	instruction.	Thumb	instructions	have	0,	1,	2,	3,	or	4
operands,	separated	by	commas.	The	comment	field	is	also	optional	and	is	ignored	by	the
assembler,	but	allows	you	to	describe	the	software	making	it	easier	to	understand.	You	can
add	optional	spaces	between	operands	in	the	operand	field.	However,	a	semicolon	must
separate	the	operand	and	comment	fields.	Good	programmers	add	comments	to	explain
the	software.

Label														Opcode														Operands														Comment

Func														MOV														R0,	#100														;	this	sets	R0	to	100

BX		LR														;	this	is	a	function	return

	

When	describing	assembly	instructions	we	will	use	the	following	list	of	symbols

Ra 	Rd 	Rm 	Rn 	Rt 	and	Rt2 	represent	registers

#imm12 	represents	a	12-bit	constant,	0	to	4095

#imm16 	represents	a	16-bit	constant,	0	to	65535

operand2 	represents	the	flexible	second	operand	as	described	in	Section	2.2.2

{cond} 	represents	an	optional	logical	condition	as	listed	in	Table	2.9

{type} 	encloses	an	optional	data	type	as	listed	in	Table	2.10

{S} 	is	an	optional	specification	that	this	instruction	sets	the	condition	code	bits

Rm	{,	shift} 	specifies	an	optional	shift	on Rm 	as	described	in	Section	2.2.2

Rn	{,	#offset} 	specifies	an	optional	offset	to Rn 	as	described	in	Section	2.2.2

	

Suffix Flags Meaning

EQ Z	=	1 Equal

NE Z	=	0 Not	equal

CS or 	HS C	=	1 Higher	or	same,	unsigned	≥

CC or 	LO C	=	0 Lower,	unsigned	<

MI N	=	1 Negative

PL N	=	0 Positive	or	zero

VS V	=	1 Overflow

VC V	=	0 No	overflow

HI C	=	1	and	Z	=	0 Higher,	unsigned	>

LS C	=	0	or	Z	=	1 Lower	or	same,	unsigned	≤

GE N	=	V Greater	than	or	equal,	signed	≥

LT N	≠	V Less	than,	signed	<

GT Z	=	0	and	N	=	V Greater	than,	signed	>

LE Z	=	1	and	N	≠	V Less	than	or	equal,	signed	≤

AL	 Can	have	any
value

Always.	This	is	the	default	when	no
suffix	is	specified.

Table	2.9.	Condition	code	suffixes	used	to	optionally	execution	instruction.

	

For	example,	the	general	description	of	the	addition	instruction

ADD{cond}	{Rd,}	Rn,	#imm12

could	refer	to	any	of	the	following	examples

ADD			R0,	#1							;	R0=R0+1

ADD	R0,R1,#10			;	R0=R1+10

ADDGE	R5,#100						;	if	N==V,	then	R5=R5+100

ADDEQ	R12,R1,#100	;	if	Z=1,	then	R12=R1+100

	

All	object	code	is	halfword-aligned.	This	means	instructions	can	be	16	or	32	bits	wide,
and	the	program	counter	bit	0	will	always	be	0.		The	stack	must	remain	word	aligned,
meaning	the	bottom	two	bits	of	the	SP	will	always	remain	0.

2.3.2.	Addressing	modes	and	operands
A	fundamental	issue	in	program	development	is	the	differentiation	between	data	and
address.	It	is	in	assembly	language	programming	in	general	and	addressing	modes	in
specific	that	this	differentiation	becomes	clear.	When	we	put	the	number	1000	into	register
R0,	whether	this	is	data	or	address	depends	on	how	the	1000	is	used.	To	run	efficiently	we
try	to	keep	frequently	accessed	data	in	registers.	However,	we	need	to	access	memory	to
fetch	parameters	or	save	results.	The	addressing	modeis	the	format	the	instruction	uses	to
specify	the	memory	location	to	read	or	write	data.	All	instructions	begin	by	fetching	the
machine	instruction	(op	code	and	operand)	pointed	to	by	the	PC.	Some	instructions
operate	completely	within	the	processor	and	require	no	memory	data	fetches.	For
example,	the ADD 	R1,R2 	instruction	performs	R1+R2	and	stores	the	sum	back	into	R1.	
If	the	data	is	found	in	the	instruction	itself,	likeMOV	R0,#1 ,	the	instruction	uses
immediate	addressing	mode.	A	register	that	contains	the	address	or	location	of	data	is
called	a	pointer	or	index	register.	Indexed	addressing	mode	uses	a	register	pointer	to
access	memory.	The	addressing	mode	that	uses	the	PC	as	the	pointer	is	called	PC-relative
addressing	mode.	It	is	used	for	branching,	for	calling	functions,	and	accessing	constant
data	stored	in	ROM.	The	addressing	mode	is	called	PC-relative	because	the	machine	code
contains	the	address	difference	between	where	the	program	is	now	and	the	address	to
which	the	program	will	access.	There	are	many	more	addressing	modes,	but	for	now,	these
few	addressing	modes,	as	illustrated	below,	are	enough	to	get	us	started.The LDR
instruction	will	read	a	32-bit	word	from	memory	and	place	the	data	in	a	register.	With	PC-
relative	addressing,	the	assembler	automatically	calculates	the	correct	PC	offset.

Func		PUSH		{R1,R2,LR}			;	save	registers	and	return	address

MOV			R2,#100						;	R2=100,	immediate	addressing

LDR			R1,=Count				;	R1	points	to	variable	Count,	using	PC-relative

LDR			R0,[R1]						;	R0=	value	of	variable	Count

LDR			R0,[R1,#4]			;	R0=	word	pointed	to	by	R1+4

LDR			R0,[R1,#4]!		;	first	R1=R1+4,	then	R0=	word	pointed	to	by	R1

LDR			R0,[R1],#4			;	R0=	word	pointed	to	by	R1,	then	R1=R1+4

LDR			R0,[R1,R2]			;	R0=	word	pointed	to	by	R1+R2

LDR			R0,[R1,R2,	LSL	#2]	;	R0=	word	pointed	to	by	R1+4*R2

BL				Subroutine			;	call	Subroutine,	using	PC-relative	addressing

POP			{R1,R2,PC}			;	restore	registers	and	return

	

Checkpoint	2.4:	What	is	the	addressing	mode	used	for?

Checkpoint	2.5:	Assume	R3	equals	0x2000.0000	at	the	time LDR	R2,[R3,#8]	is
executed.	What	address	will	be	accessed?	If	R3	is	changed,	to	what	value	will	R3
become?

Checkpoint	2.6:	Assume	R3	equals	0x2000.0000	at	the	time LDR	R2,[R3],#8 is
executed.	What	address	will	be	accessed?	If	R3	is	changed,	to	what	value	will	R3
become?

The	operations	caused	by	the	first	two LDR 	instructions	are	illustrated	in	Figure	2.20.
Assume	a32-bit	variable Count 	is	located	in	data	space	at	RAM	address	0x2000.0000.
First,	LDR	R1,=Count 	makes	R1	equal	to	0x2000.0000.I.e.,	R1	points	to Count .	The
assembler	places	a	constant	0x2000.0000	in	code	space	and	translates	the =Count 	into
the	correct	PC-relative	access	to	the	constant(e.g., LDR	R1,[PC,#28]).	Second,	the	LDR
R0,[R1] 	instruction	will	dereference	this	pointer,	bringing	the	contents	at	location
0x2000.0000	into	R0.	Since Count 	is	located	at	0x2000.0000,	this	instruction	will	read
the	value	of	the	variable	into	R0.

	

Figure	2.20.	Indexed	addressing	using	R1	as	a	register	pointer	to	access
memory.	Data	is	moved	into	R0.	Code	space	is	where	we	place	programs
and	data	space	is	where	we	place	variables.
Many	general	data	processing	instructions	have	a	flexible	second	operand.	This	is	shown
as Operand2 in	the	descriptions	of	the	syntax	of	each	instruction. Operand2 	can	be	a
constant	or	a	register	with	optional	shift.We	specify	an Operand2 constant	in	the
form #constant :

ADD	Rd,	Rn,	#constant			;Rd	=	Rn+constant

where constant can	be	(X and Y 	are	hexadecimal	digits):

	

																	Constant	produced	by	shifting	an	8-bit	value	left	by	any	number	of	bits
																	Constant	of	the	form 0x00XY00XY
																	Constant	of	the	form 0xXY00XY00
																	Constant	of	the	form 0xXYXYXYXY

We	can	also	specify	an Operand2 register	in	the	form Rm	{,shift} .	For	example:

ADD	Rd,	Rn,	Rm	{,shift}		;Rd	=	Rn+Rm

where Rm is	the	register	holding	the	data	for	the	second	operand,	and shift is	an	optional
shift	to	be	applied	to Rm . shift 	can	be	one	of:

	

ASR	#n 															Arithmetic	shift	right n bits,	1	≤ n 	≤	32.

LSL	#n 															Logical	shift	left n 	bits,	1	≤	n 	≤	31.

LSR	#n 															Logical	shift	right n bits,	1	≤ n 	≤	32.

ROR	#n 															Rotate	right n bits,	1	≤ n 	≤	31.

RRX 															Rotate	right	one	bit,	with	extend.

	

If	weomit	the	shift,	or	specify LSL	#0 ,	the	instruction	uses	the	value	in Rm .	If	we
specify	a	shift,	the	shift	is	applied	to	the	value	in Rm ,	and	the	resulting	32-bit	value	is
used	by	the	instruction.	However,	the	contents	in	the	register Rm 	remain	unchanged.	For
example,

ADD	R0,R1,LSL	#4			;	R0	=	R0	+	R1*16	(R1	unchanged)

ADD	R0,R1,ASR	#4			;	signed	R0	=	R0	+	R1/16	(R1	unchanged)

	

An	aligned	access	is	an	operation	where	a	word-aligned	address	is	used	for	a	word,	dual
word,	or	multiple	word	access,	or	where	a	halfword-aligned	address	is	used	for	a	halfword
access.	Byte	accesses	are	always	aligned.	The T 	specifies	the	instruction	is	unprivileged.
The	CortexTM-M	processor	supports	unaligned	access	only	for	the	following	instructions:

																	LDR , LDRT 																												Load	32-bit	word
																	LDRH , LDRHT 															Load	16-bit	unsigned	halfword
																	LDRSH , LDRSHT 															Load	16-bit	signed	halfword
																	STR , STRT 																												Store	32-bit	word
																	STRH , STRHT 														Store	16-bit	halfword

	

All	other	read	and	write	memory	operations	generate	a	usage	fault	exception	if	they
perform	an	unaligned	access,	and	therefore	their	accesses	must	be	address	aligned.

Common	Error:	Since	not	every	instruction	supports	every	addressing	mode,	it	would	be
a	mistake	to	use	an	addressing	mode	not	available	for	that	instruction.	

2.3.3.	Memory	access	instructions
This	section	presents	mechanisms	to	read	from	and	write	to	memory.	As	illustrated	in
Figure	2.20,	to	access	memory	we	first	establish	a	pointer	to	the	object,	then	use	indexed
addressing.	Usually	code	space	is	in	ROM,	but	it	is	possible	to	assign	code	space	to	RAM.
Data	space	is	where	we	place	variables.	There	are	four	types	of	memory	objects,	and
typically	we	use	a	specific	register	to	access	it.

Memory	object	type																												Register																												Example
operand

Constants	in	code	space																												PC																											 =Constant
Local	variables	on	the	stack														SP																											 [SP,#0x04]
Global	variables	in	RAM																												R0 – R12																											 [R0]
I/O	ports																																										R0 – R12																											 [R0]
	
The ADR 	uses	PC-relative	addressing	and	can	be	used	to	establish	a	pointer	to	a	constant
in	ROM	or	to	an	address	within	the	program.The	general	form	for ADR 	is

ADR{cond}	Rd,	label

where {cond} is	an	optional	condition, Rd is	the	destination	register,	and label 	is	a	label
within	the	code	space	within	the	range	of	-4095	to	+4095	from	the	address	in	the	PC.In
reality,	the	assembler	will	generate	an ADD or SUB instruction	to	calculate	the	desired
address	using	an	offset	to	the	PC.	 DCD 	is	an	assembler	directive	that	defines	a	32-bit
constant.	We	use	it	to	create	constants	in	code	space	(ROM).	In	the	following	example,
after	executing	the ADR instruction,	R5	points	to Pi ,	and	after	executing	the LDR
instruction,	R6	contains	the	data.

Access			ADR	R5,Pi				;R5	=	&Pi

LDR	R6,[R5]		;R6	=		314159

…

BX		LR										

Pi						DCD	314159

	

We	use	the LDR instruction	to	load	data	from	memory	into	a	register.	There	is	a	special
form	of LDR which	instructs	the	assembler	to	load	a	constant	or	address	into	a	register.
This	is	a	“pseudo-instruction”	and	the	assembler	will	output	suitable	instructions	to
generate	the	specified	value	in	the	register.	This	form	for LDR 	is

LDR{cond}	Rd,	=number

LDR{cond}	Rd,	=label

where {cond} 	is	an	optional	condition	(see	Table	2.9), Rd is	the	destination	register,
and label 	is	a	label	anywhere	in	memory.	Figure	2.20	illustrates	how	to	create	a	pointer	to
a	variable	in	RAM.	A	similar	approach	can	be	used	to	access	I/O	ports.	On	the	TM4C123,
Port	A	exists	at	address	0x4000.43FC.	After	executing	the	first LDR instruction,	R5
equals	0x4000.43FC,	which	is	a	pointer	to	Port	A,	and	after	executing	the	second LDR
instruction,	R6	contains	the	value	at	Port	A.

Input	LDR	R5,=0x400043FC	;R5=0x400043FC,	R5		=	&PortA

LDR	R6,[R5]								;Input	from	PortA	into	R6

;						…

BX		LR

The	assembler	translated	the	above	assembly	into	this	equivalent

Input		LDR	R5,[PC,#16]				;PC+16	is	the	address	of	the	DCD

LDR	R6,[R5]							

;						…

BX		LR

DCD	0x400043FC

	

We	use	the LDR instruction	to	load	data	from	RAM	to	a	register	and	the STR 	instruction
to	store	data	from	a	register	to	RAM.	In	real	life,	when	we	move	a	box	to	the	basement,
push	a	broom	across	the	floor,	load	bullets	into	a	gun,	store	spoons	in	a	drawer,	pop	a
candy	into	your	mouth,	or	transfer	employees	to	a	new	location,	there	is	a	physical	object
and	the	action	changes	the	location	of	that	object.	Assembly	language	uses	these	same
verbs,	but	the	action	will	be	different.		In	most	cases,	it	creates	a	copy	of	the	data	and
places	the	copy	at	the	new	location.	In	other	words,	since	the	original	data	still	exists	in
the	previous	location,	there	are	now	two	copies	of	the	information.	The	exception	to	this
memory-access-creates-two-copies-rule	is	a	stack	pop.	When	we	pop	data	from	the	stack,
it	no	longer	exists	on	the	stack	leaving	us	just	one	copy.	For	example	in	Figure	2.20,	the
instruction LDR	R0,[R1] 		loads	the	contents	of	the	variable Count 	into	R0.	At	this	point,
there	are	two	copies	of	the	data,	the	original	in	RAM	and	the	copy	in	R0.	If	we	next	add	1
to	R0,	the	two	copies	have	different	values.	When	we	learn	about	interrupts	in	Chapter	5,
we	will	take	special	care	to	handle	shared	information	stored	in	global	RAM,	making	sure
we	access	the	proper	copy.

When	accessing	memory	data,	the	type	of	data	can	be	8,	16,	32,	or	64	bits	wide.	For	8-bit
and	16-bit	accesses	the	type	can	also	be	signed	or	unsigned.	To	specify	the	data	type	we
add	an	optional	modifier,	as	listed	in	Table	2.10.	When	we	load	an	8-bit	or	16-bit	unsigned
value	into	a	register,	the	most	significant	bits	are	filled	with	0,	called	zero	pad.	

When	we	load	an	8-bit	or	16-bit	signed	value	into	a	register,	the	sign	bit	of	the	value	is
filled	into	the	most	significant	bits,	called	sign	extension.	This	way,	if	we	load	an	8-bit
-10	(0xF6)	into	a	32-bit	register,	we	get	the	32-bit	-10	(0xFFFF.FFF6).	When	we	store	an
8-bit	or	16-bit	value,	only	the	least	significant	bits	are	used.

{type} Data	type Meaning

	 32-bit	word 0	to	4,294,967,295		or	-2,147,483,648
to	+2,147,483,647

B Unsigned	8-bit	byte 0	to	255,																							Zero	pad	to	32
bits	on	load

SB Signed	8-bit	byte -128	to	+127,															Sign	extend	to
32	bits	on	load

H Unsigned	16-bit
halfword

0	to	65535,																				Zero	pad	to	32
bits	on	load

SH Signed	16-bit
halfword

-32768	to	+32768,							Sign	extend	to
32	bits	on	load

D 64-bit	data Uses	two	registers

Table	2.10.	Optional	modifier	to	specify	data	type	when	accessing	memory.

Most	of	the	addressing	modes	listed	in	the	previous	section	can	be	used	with	load	and
store.	The	following	lists	the	general	form	for	some	of	the	load	and	store	instructions

LDR{type}{cond}	Rd,	[Rn]						;	load	memory	at	[Rn]	to	Rd

STR{type}{cond}	Rt,	[Rn]						;	store	Rt	to	memory	at	[Rn]

LDR{type}{cond}	Rd,	[Rn,	#n]	;	load	memory	at	[Rn+n]	to	Rd

STR{type}{cond}	Rt,	[Rn,	#n]	;	store	Rt	to	memory	[Rn+n]

LDR{type}{cond}	Rd,	[Rn,Rm,LSL	#n]	;	load	memory	at	[Rn+Rm*2n]	to	Rd

STR{type}{cond}	Rt,	[Rn,Rm,LSL	#n]	;	store	Rt	to	memory	[Rn+Rm*2n]

Program	2.1	sets	each	element	of	an	array	to	the	index.The AREA	DATA 	directive
specifies	the	following	lines	are	placed	in	data	space	(typically	RAM).	The Data	SPACE
40 	allocates	ten	uninitialized	words.	The AREA	CODE 	directive	specifies	the	following
lines	are	placed	in	code	space	(typically	ROM).	The |.text| connects	this	program	to	the	C
code	generated	by	the	compiler. ALIGN=2 	will	force	the	machine	code	to	be	halfword-
aligned	as	required.The	local	variable i 	contains	the	array	index.	In	assembly,	the	index
i is	kept	in	register	R0.	The LDR 	instruction	establishes	R1	as	a	pointer	to	the	beginning
of	the	array,	or	the	base	address.	Since	each	array	element	is	32	bits,	the	address	of	the	ith
element	of	the	array	is	base+4*i.	The	logical	shift	left	by	2	implements	the	multiply	by	4.
In	particular,	the	addressing	mode	[R1,R0,LSL	#2] 	creates	an	effective	address	of
R1+4*R0,	with	neither	R1	nor	R0	being	changed	by	the	instruction.

	

AREA		DATA

Data	SPACE	40		;	32-bit	data,	length=10

AREA		|.text|,	CODE,	READONLY,
ALIGN=2

Set	MOVS		R0,#0x00		;	index	i=0

LDR			R1,=Data		;	R1	=	&Data

//	C	language
implementation

uint32_t	Data[10];

	

void	Set(void){

int	i;

loop	STR			R0,[R1,R0,LSL	#2]

ADDS		R0,R0,#1	;	i=i+1

CMP			R0,#10

BLT			loop						;	repeat	if	i<10

BX				LR

		for(i=0;	i<10;	i++){

Data[i]	=	i;

		}

}

Program	2.1.	Assembly	and	C	versions	that	initialize	a	global	array	of	ten
elements.
Checkpoint	2.7:	Explain	how	to	change	Program	2.1	if	the	array	were	ten	16-bit
numbers?

2.3.4.	Logical	operations
Software	uses	logical	and	shift	operations	to	combine	information,	to	extract	information
and	to	test	information.		A	unary	operation	produces	its	result	given	a	single	input
parameter.	Examples	of	unary	operations	include	negate,	complement,	increment,	and
decrement.	In	discrete	digital	logic,	the	complement	operation	is	called	a	NOT	gate,
previously	shown	in	Figure	1.17,	see	also	Table	2.11.	CMOS	circuits	are	built	with	p-type
and	n-type	transistors.	There	are	just	a	few	rules	one	needs	to	know	for	understanding	how
CMOS	transistor-level	circuits	work.	Each	transistor	acts	like	a	switch	between	its	source
and	drain	pins.	In	general,	current	can	flow	from	source	to	drain	across	an	active	p-type
transistor,	and	no	current	will	flow	if	the	switch	is	open.	From	a	first	approximation,	we
can	assume	no	current	flows	into	or	out	of	the	gate.	For	a	p-type	transistor,	the	switch	will
be	closed	(transistor	active)	if	its	gate	is	low.	A	p-type	transistor	will	be	off	(its	switch	is
open)	if	its	gate	is	high.	The	gate	on	the	n-type	works	in	a	complementary	fashion,	hence
the	name	complementary	metal	oxide	semiconductor.	For	an	n-type	transistor,	the	switch
will	be	closed	(transistor	active)	if	its	gate	is	high.	An	n-type	transistor	will	be	off	(its
switch	is	open)	if	its	gate	is	low.	Therefore,	consider	the	two	possibilities	for	the	circuit	in
Figure	1.17.	If	the	input	A	is	high	(+3.3V),	then	the	p-type	is	off	and	the	n-type	is	active.
The	closed	switch	across	the	source-drain	of	the	n-type	will	make	the	output	low	(0V).
Conversely,	if	A	is	low	(0V),	then	p-type	is	active	and	the	n-type	is	off.	The	closed	switch
across	the	source-drain	of	the	p-type	will	make	the	output	high	(+3.3V).

A ~A

0 1

1 0

Table	2.11.	Logical	complement.

	
A	binary	operation	produces	a	single	result	given	two	inputs.	The	logical	and	(&)

operation	yields	a	true	result	if	both	input	parameters	are	true.	The	logical	or	(|)	operation
yields	a	true	result	if	either	input	parameter	is	true.	The	exclusive	or	(^)	operation	yields	a
true	result	if	exactly	one	input	parameter	is	true.	The	logical	operators	are	summarized	in
Table	2.12	and	shown	as	digital	gates	in	Figure	2.21.	The	logical	instructions	on	the
ARM ® 	CortexTM-M	take	two	inputs,	one	from	a	register	and	the	other	from	the	flexible
second	operand.	These	operations	are	performed	in	a	bit-wise	fashion	on	two	32-bit
parameters	yielding	a	32-bit	result.	The	result	is	stored	into	the	destination	register.	For
example,	the	calculation	r=m&n	means	each	bit	is	calculated	separately,	r31=m31&n31,
r30=m30&n30,	…,	r0=m0&n0.	

In	C,	when	we	write r=m&n; 	r=m|n; 	r=m^n; 	the	logical	operation	occurs	in	a	bit-wise
fashion	as	described	by	Table	2.12.		However,	when	we	write r=m&&n; 	r=m||n; ,	the
logical	operation	occurs	in	a	word-wise	fashion.	For	example, r=m&&n; 	means	r 	will
becomezero	if	either m is	zero	or n 	is	zero.Conversely, r will	become	1	if	both m is
nonzero	and n 	is	nonzero.

A

Rn

B

Operand2

A&B

AND

A|B

ORR

A^B

EOR

A&(~B)

BIC

A|(~B)

ORN

0 0 0 0 0 0 1

0 1 0 1 1 0 0

1 0 0 1 1 1 1

1 1 1 1 0 0 1

Table	2.12.	Logical	operations	performed	by	the	Cortex-M.

We	can	understand	the	operation	of	the	AND	gate	by	observing	the	behavior	of	its	six
transistors.	If	both	inputs	A	and	B	are	high,	both	T3	and	T4	will	be	active.	Furthermore,	if
A	and	B	are	both	high,	T1	and	T2	will	be	off.	In	this	case,	the	signal	labeled	~(A&B)	will
be	low	because	the	T3–T4	switch	combination	will	short	this	signal	to	ground.	If	A	is	low,
T1	will	be	active	and	T3	off.	Similarly,	if	B	is	low,	T2	will	be	active	and	T4	off.	Therefore
if	either	A	is	low	or	if	B	is	low,	the	signal	labeled	~(A&B)	will	be	high	because	one	or
both	of	the	T1,	T2	switches	will	short	this	signal	to	+3.3V.	Transistors	T5	and	T6	create	a
logical	complement,	converting	the	signal	~(A&B)	into	the	desired	result	of	A&B.	We	can
use	the	and	operation	to	extract,	or	mask,	individual	bits	from	a	value.

Figure	2.21.	Logical	operations	can	be	implemented	with	discrete
transistors	or	digital	gates.
We	can	understand	the	operation	of	the	OR	gate	by	observing	the	behavior	of	its	six
transistors.	If	both	inputs	A	and	B	are	low,	both	T1	and	T2	will	be	active.	Furthermore,	if
A	and	B	are	both	low,	T3	and	T4	will	be	off.	In	this	case,	the	signal	labeled	~(A|B)	will	be
high	because	the	T1–T2	switch	combination	will	short	this	signal	to	+3.3V.	If	A	is	high,
T3	will	be	active	and	T1	off.	Similarly,	if	B	is	high,	T4	will	be	active	and	T2	off.
Therefore	if	either	A	is	high	or	if	B	is	high,	the	signal	labeled	~(A|B)	will	be	low	because
one	or	both	of	the	T3,	T4	switches	will	short	this	signal	to	ground.	Transistors	T5	and	T6
create	a	logical	complement,	converting	the	signal	~(A|B)	into	the	desired	result	of	A|B.
We	use	the	or	operation	to	set	individual	bits.

	
All	instructions	place	the	result	into	the	destination	register Rd .	If Rd 	is	omitted,	the
result	is	placed	into Rn ,	which	is	the	register	holding	the	first	operand.	If	the	optional	S
suffix	is	specified,	the	N	and	Z	condition	code	bits	are	updated	on	the	result	of	the
operation.	Let B be	the	32-bit	value	generated	by	the	flexible	second	operand, Operand2 .
Some	flexible	second	operands	may	affect	the	C	bit.	These	logical	instructions	will	leave
the	V	bit	unchanged.

AND{S}{cond}	{Rd,}	Rn,	Operand2														; Rd=Rn&B																																

ORR{S}{cond}	{Rd,}	Rn,	Operand2														; Rd=Rn|B

EOR{S}{cond}	{Rd,}	Rn,	Operand2														; Rd=Rn^B																																

BIC{S}{cond}	{Rd,}	Rn,	Operand2														; Rd=Rn&(~B)

ORN{S}{cond}	{Rd,}	Rn,	Operand2														; Rd=Rn|(~B)																																

	

Other	convenient	logical	operators	are	summarized	in	Table	2.13	and	shown	as	digital
gates	in	Figure	2.22.	The	NAND	operation	is	defined	by	an	AND	followed	by	a	NOT.	If
you	compare	the	transistor-level	circuits	in	Figures	2.21	and	2.22,	it	would	be	more
precise	to	say	AND	is	defined	as	a	NAND	followed	by	a	NOT.	Similarly,	the	OR
operation	is	a	NOR	followed	by	a	NOT.	The	exclusive	NOR	operation	implements	the
bit-wise	equals	operation.

A B NAND NOR exclusive
NOR

0 0 1 1 1

0 1 1 0 0

1 0 1 0 0

1 1 0 0 1

Table	2.13.	Convenient	logical	operations.

The	output	of	an	open	collector	gate,	drawn	with	the	‘x’,	has	two	states	low	(0V)	and	HiZ
(floating.)	Consider	the	operation	of	the	transistor-level	circuit	for	the	74HC05.	If	A	is
high	(+3.3V),	the	transistor	is	active,	and	the	output	is	low	(0V).	If	A	is	low	(0V),	the
transistor	is	off,	and	the	output	is	neither	high	nor	low.		In	general,	we	can	use	an	open
collector	NOT	gate	to	control	the	current	to	a	device,	such	as	a	relay,	an	LED,	a	solenoid,
or	a	small	motor.	The	74HC05,	the	7405,	and	the	7406	are	all	open	collector	NOT	gates.
74HC04	is	high	speed	CMOS	and	can	only	sink	up	to	4	mA	when	its	output	is	low.	Since
the	7405	and	7406	are	transistor-transistor-logic	(TTL)	they	can	sink	more	current.	In
particular,	the	7405	has	a	maximum	output	low	current	(IOL)	of	16	mA,	whereas	the	7406
has	a	maximum	IOL	of	40	mA.

Checkpoint	2.8:	Using	just	the	74HC	gates	shown	in	Figures	1.17,	2.21,	and	2.22,	design
one-bit	BIC	and	ORN	circuits	as	defined	in	Table	2.12.

	

Figure	2.22.	Other	logical	operations	can	also	be	implemented	with
discrete	logic.

Digital	storage	devices	are	essential	components	used	to	make	registers	and	memory.	The
simplest	storage	device	is	the	set-reset	flip	flop.	One	way	to	build	one	is	shown	on	the	left
side	of	Figure	2.23.	If	the	inputs	are	S*=0	and	R*=1,	then	the	Q	output	will	be	1.
Conversely,	if	the	inputs	are	S*=1	and	R*=0,	then	the	Q	output	will	be	0.	Normally,	we
leave	both	the	S*	and	R*	inputs	high.	We	make	the	signal	S*	go	low,	then	back	high	to	set
the	flip-flip,	making	Q=1.	Conversely,	we	make	the	signal	R*	go	low,	then	back	high	to
reset	the	flip-flip,	making	Q=0.	If	both	S*	and	R*	are	1,	the	value	on	Q	will	be
remembered	or	stored.	This	flip	flop	enters	an	unpredictable	mode	with	S*	and	R*	are
simultaneously	low.

The	gated	D	flip	flop	is	also	shown	in	Figure	2.23.	The	front-end	circuits	take	a	data	input,
D,	and	a	control	signal,	W,	and	produce	the	S*	and	R*	commands	for	the	set-reset	flip
flop.	For	example,	if	W=0,	then	the	flip	flop	is	in	its	quiescent	state,	remembering	the
value	on	Q	that	was	previously	written.	However,	if	W=1,	then	the	data	input	is	stored	into
the	flip	flop.	In	particular,	if	D=1	and	W=1,	then	S*=0	and	R*=1,	making	Q=1.
Furthermore,	if	D=0	and	W=1,	then	S*=1	and	R*=0,	making	Q=0.	So,	to	use	the	gated	flip
flop,	we	first	put	the	data	on	the	D	input,	next	we	make	W	go	high,	then	we	make	W	go
low.	This	causes	the	data	value	to	be	stored	at	Q.		After	W	goes	low,	the	data	does	not
need	to	exist	at	the	D	input	anymore.	If	the	D	input	changes	while	W	is	high,	then	the	Q
output	will	change	correspondingly.	However,	the	last	value	on	the	D	input	is	remembered
or	latched	when	the	W	falls,	as	shown	in	Table	2.14.

The	D	flip-flop,	shown	on	the	right	of	Figure	2.23,	can	also	be	used	to	store	information.
D	flip-flips	are	the	basic	building	block	of	RAM	and	registers	on	the	computer.	To	save
information,	we	first	place	the	digital	value	we	wish	to	remember	on	the	D	input,	and	then
give	a	rising	edge	to	the	clock	input.	After	the	rising	edge	of	the	clock,	the	value	is
available	at	the	Q	output,	and	the	D	input	is	free	to	change.	The	operation	of	the	clocked	D
flip	flop	is	defined	on	the	right	side	of	Table	2.14.	The	74HC374	is	an	8-bit	D	flip-flop,
such	that	all	8	bits	are	stored	on	the	rising	edge	of	a	single	clock.	The	74HC374	is	similar
in	structure	and	operation	to	a	register,	which	is	high	speed	memory	inside	the	processor.
If	the	gate	(G)	input	on	the	74HC374	is	high,	its	outputs	will	be	HiZ	(floating),	and	if	the
gate	is	low,	the	outputs	will	be	high	or	low	depending	on	the	stored	values	on	the	flip	flop.

Figure	2.23.	Digital	storage	elements.

D W Q 	 D clock Q

0 0 Qold 	 0 0 Qold

1 0 Qold 	 0 1 Qold

0 1 0 	 1 0 Qold

1 1 1 	 1 1 Qold

0 ↓ 0 	 0 ↑ 0

1 ↓ 1 	 1 ↑ 1

Table	2.14.	D	flip-flop	operation.	Qold	is	the	value	of	the	D	input	at	the	time	of	the
active	edge	of	on	W	or	clock.

Second,	the	tristate	driver,	shown	in	Figure	2.24,	can	be	used	dynamically	control	signals
within	the	computer.		The	tristate	driver	is	an	essential	component	from	which	computers
are	built.	To	active	the	driver,	we	make	its	gate	(G*)	low.	When	the	driver	is	active,	its
output	(Y)	equals	its	input	(A).	To	deactivate	the	driver,	we	make	its	G*	high.	When	the
driver	is	not	active,	its	output	Y	floats	independent	of	A.	We	saw	this	floating	state	with	the
open	collector	logic,	and	it	is	also	called	HiZ	or	high	impedance.	The	HiZ	output	means
the	output	is	neither	driven	high	nor	low.	The	operation	of	a	tristate	driver	is	defined	in
Table	2.15.	The	74HC244	is	an	8-bit	tristate	driver,	such	that	all	8	bits	are	active	or	not
active	controlled	by	a	single	gate.	The	74HC374	8-bit	D	flip-flop	includes	tristate	drivers
on	its	outputs.	Normally,	we	can’t	connect	to	digital	outputs	together.	The	tristate	driver
provides	a	way	to	connect	multiple	outputs	to	the	same	signal,	as	long	as	at	most	one	of
the	gates	is	active	at	a	time.

Figure	2.24.	A	1-bit	and	an	8-bit	tristate	driver	(G*	is	in	negative	logic).
Table	2.15	describes	how	a	tristate	driver	in	Figure	2.24	works.	Transistors	T1	and	T2
create	the	logical	complement	of	G*.	Similarly,	transistors	T3	and	T4	create	the
complement	of	A.	An	input	of	G*=0	causes	the	driver	to	be	active.	In	this	case,	both	T5
and	T8	will	be	on.	With	T5	and	T8	on,	the	circuit	behaves	like	a	cascade	of	two	NOT
gates,	so	the	output	Y	equals	the	input	A.	However,	if	the	input	G*=1,	both	T5	and	T8	will
be	off.	Since	T5	is	in	series	with	the	+3.3V,	and	T8	in	series	with	the	ground,	the	output	Y
will	be	neither	high	nor	low.	I.e.,	it	will	float.

A G* T1 T2 T3 T4 T5 T6 T7 T8 Y

0 0 on off on off on off on on 0

1 0 on off off on on on off on 1

0 1 off on on off off off on off HiZ

1 1 off on off on off on off off HiZ

Table	2.15.	Tristate	driver	operation.	HiZ	is	the	floating	state,	such	that	the	output	is
not	high	or	low.

2.3.5.	Shift	operations
Like	programming	in	C,	the	assembly	shift	is	a	binary	operation.	In	C,	the	<<	and	>>
operators	take	two	inputs	and	yield	one	output,	e.g.,	the	right	shift	is	R	=	M>>N.	The
logical	shift	right	(LSR)	is	similar	to	an	unsigned	divide	by	2n,	where	n	is	the	number	of
bits	shifted,	as	shown	in	Figure	2.25.	A	zero	is	shifted	into	the	most	significant	position,
and	the	carry	flag	will	hold	the	bit	shifted	out.	The	right	shift	operations	do	not	round.	In
general,	the	LSR	discards	bits	shifted	out,	and	the	UDIV	truncates	towards	0.	Thus,	when
using	UDIV	to	divide	unsigned	numbers	by	a	power	of	2,	UDIV	and	LSR	yield	identical
results.	The	arithmetic	shift	right	(ASR)	is	similar	to	a	signed	divide	by	2n.	Notice	that
the	sign	bit	is	preserved,	and	the	carry	flag	will	hold	the	bit	shifted	out.	This	right	shift
operation	also	does	not	round.	In	general,	the	ASR	discards	bits	shifted	out,	and	the	SDIV
truncates	towards	0.	The	logical	shift	left	(LSL)	operation	works	for	both	unsigned	and
signed	multiply	by	2n.	A	zero	is	shifted	into	the	least	significant	position,	and	the	carry	bit
will	contain	the	bit	that	was	shifted	out.	The	two	rotate	operations	can	be	used	to	create
multiple-word	shift	functions.	There	is	no	rotate	left	instruction,	because	a	rotate	left	10
bits	is	the	same	as	rotate	right	22	bits.

All	instructions	place	the	result	into	the	destination	register Rd . Rm 	is	the	register
holding	the	value	to	be	shifted.The	number	of	bits	to	shift	is	either	in	register Rs ,	or
specified	as	a	constant n .If	the	optional S 	suffix	is	specified,	the	N	and	Z	condition	code
bits	are	updated	on	the	result	of	the	operation.	The	C	bit	is	the	carry	out	after	the	shift	as
shown	in	Figure	2.25.	These	shift	instructions	will	leave	the	V	bit	unchanged.

LSR{S}{cond}	Rd,	Rm,	Rs																												; 	logical	shift	right	Rd=Rm>>Rs
(unsigned)

LSR{S}{cond}	Rd,	Rm,	#n																												; 	logical	shift	right	Rd=Rm>>n			
(unsigned)

ASR{S}{cond}	Rd,	Rm,	Rs																												; 	arithmetic	shift	right	Rd=Rm>>Rs
(signed)

ASR{S}{cond}	Rd,	Rm,	#n																												; 	arithmetic	shift	right	Rd=Rm>>n
(signed)

LSL{S}{cond}	Rd,	Rm,	Rs																												; 	shift	left	Rd=Rm<<Rs	(signed	and
unsigned)

LSL{S}{cond}	Rd,	Rm,	#n																												; 	shift	left	Rd=Rm<<n		(signed	and
unsigned)

ROR{S}{cond}	Rd,	Rm,	Rs																												; 	rotate	right

ROR{S}{cond}	Rd,	Rm,	#n																												; 	rotate	right

RXX{S}{cond}	Rd,	Rm																													; 	rotate	right	with	extension

	

Observation:	Use	logic	shift	operations	on	unsigned	numbers	and	use	arithmetic	shift
operations	on	signed	numbers.

	

Figure	2.25.	Shift	operations.

2.3.6.	Arithmetic	operations
When	software	executes	arithmetic	instructions,	the	operations	are	performed	by	digital
hardware	inside	the	processor.	Even	though	the	design	of	such	logic	is	complex,	we	will
present	a	brief	introduction,	in	order	to	provide	a	little	insight	as	to	how	the	computer
performs	arithmetic.	It	is	important	to	remember	that	arithmetic	operations	(addition,
subtraction,	multiplication,	and	division)	have	constraints	when	performed	with	finite
precision	on	a	processor.	An	overflow	error	occurs	when	the	result	of	an	arithmetic
operation	cannot	fit	into	the	finite	precision	of	the	register	into	which	the	result	is	to	be
stored.

For	example,	consider	an	8-bit	unsigned	number	system,	where	the	numbers	can	range
from	0	to	255.	If	we	add	two	numbers	together	the	result	can	range	from	0	to	510,	which	is
a	9-bit	unsigned	number.	These	numbers	are	similar	to	the	numbers	1–12	on	a	clock,	as
drawn	in	Figure	2.26.	If	it	is	11	o’clock	and	we	wait	3	hours,	it	becomes	2	o’clock.	Shown
in	the	middle	of	Figure	2.26,	if	we	add	64	to	224,	the	result	becomes	32.	In	most	cases,	we
would	consider	this	an	error.	An	unsigned	overflow	occurs	during	addition	when	we	cross
the	255–0	barrier	(carry	set	on	overflow).	If	we	subtract	two	8-bit	unsigned	numbers	the
result	can	range	from	‑255	to	+255,	which	is	a	9-bit	signed	number.	Subtraction	moves	in
a	counter-clockwise	direction	on	the	number	wheel.	As	shown	on	the	right	side	of	Figure
2.26,	if	we	subtract	64	from	32	(32-64),	we	get	the	incorrect	result	of	224.	An	unsigned

overflow	occurs	during	subtraction	if	we	cross	the	255–0	barrier	in	the	other	direction
(carry	clear	on	overflow).	After	a	subtraction	on	the	Cortex-M	the	carry	is	clear	if	an	error
occurred,	and	the	carry	is	set	if	no	error	occurred	and	the	answer	is	correct.

Figure	2.26.	The	carry	bit	is	set	on	addition	when	crossing	the	255–0
boundary.	The	carry	bit	is	cleared	on	subtraction	when	crossing	the	255–0
boundary.
Similarly,	when	two	32-bit	numbers	are	added	or	subtracted,	the	result	may	not	fit	back
into	a	32-bit	register.	The	same	addition	and	subtraction	hardware	(instructions)	can	be
used	to	operate	on	either	unsigned	or	signed	numbers.	Although	we	use	the	same
instructions,	we	must	use	separate	overflow	detection	for	signed	and	unsigned	operations.

Checkpoint	2.9:	How	many	bits	does	it	take	to	store	the	result	of	two	unsigned	32-bit
numbers	added	together?

Checkpoint	2.10:	How	many	bits	does	it	take	to	store	the	result	of	two	signed	32-bit
numbers	added	together?

Checkpoint	2.11:	Where	is	the	barrier	(discontinuity)	on	a	signed	8-bit	number	wheel?

Let	Mbe	the	32-bit	value	specified	by	the #imm12 constant	or	generated	by	the	flexible
second	operand, Operand2 .	When Rd 	is	absent,	the	result	is	placed	back	in Rn .	The
compare	instructions CMP and CMN 	do	not	save	the	result	of	the	subtraction,	but	always
set	the	condition	code.	The	compare	instructions	are	used	to	create	conditional	execution,
such	as	if-then,	for	loops,	and	while	loops.	The	compiler	mayuse RSB or CMN 	to
optimize	execution	speed.

ADD{S}{cond}	{Rd,}	Rn,	Operand2														; Rd	=	Rn	+	M																																

ADD{S}{cond}	{Rd,}	Rn,	#imm12																												; Rd	=	Rn	+	M

SUB{S}{cond}	{Rd,}	Rn,	Operand2														; Rd	=	Rn	-	M																																

SUB{S}{cond}	{Rd,}	Rn,	#imm12																												; Rd	=	Rn	-	M

RSB{S}{cond}	{Rd,}	Rn,	Operand2														; Rd	=	M	-	Rn																																

RSB{S}{cond}	{Rd,}	Rn,	#imm12																												; Rd	=	M	-	Rn

CMP{cond}	Rn,	Operand2																																										; Rn	-	M																															

CMN{cond}	Rn,	Operand2																																										; Rn	-	(-M)

	

If	the	optional S 	suffix	is	present,	addition	and	subtraction	set	the	condition	code	bits	as
shown	in	Table	2.16.	The	addition	and	subtraction	instructions	work	for	both	signed	and
unsigned	values.	As	designers,	we	must	know	in	advance	whether	we	have	signed	or
unsigned	numbers.	The	computer	cannot	tell	from	the	binary	which	type	it	is,	so	it	sets
both	C	and	V.	Our	job	as	programmers	is	to	look	at	the	C	bit	if	the	values	are	unsigned	and
look	at	the	V	bit	if	the	values	are	signed.

Bit Name Meaning	after	addition	or
subtraction

N negative Result	is	negative

Z zero Result	is	zero

V overflow Signed	overflow

C carry Unsigned	overflow

Table	2.16.	Condition	code	bits	contain	the	status	of	the	previous	arithmetic
operation.

	

If	the	two	inputs	to	an	addition	operation	are	considered	as	unsigned,	then	the	C	bit	(carry)
will	be	set	if	the	result	does	not	fit.	In	other	words,	after	an	unsigned	addition,	the	C	bit	is
set	if	the	answer	is	wrong.	If	the	two	inputs	to	a	subtraction	operation	are	considered	as
unsigned,	then	the	C	bit	(carry)	will	be	clear	if	the	result	does	not	fit.	If	the	two	inputs	to
an	addition	or	subtraction	operation	are	considered	as	signed,	then	the	V	bit	(overflow)
will	be	set	if	the	result	does	not	fit.	In	other	words,	after	a	signed	addition,	the	V	bit	is	set
if	the	answer	is	wrong.	If	the	result	is	unsigned,	the	N=1	means	the	result	is	greater	than	or
equal	to	231.	Conversely,	if	the	result	is	signed,	the	N=1	means	the	result	is	negative.
Assumingthe	optional S 	suffix	is	present,	condition	code	bits	are	set	after	the	addition
R=X+M,	where	X	is	initial	register	value	and	R	is	the	final	register	value.

N:	result	is	negative															N	=	R31

Z:	result	is	zero																														

V:	signed	overflow															

C:	unsigned	overflow																

If	the	optional S 	suffix	is	present,	condition	code	bits	are	set	after	the	subtraction	R=X-M,
where	X	is	initial	register	value	and	R	is	the	final	register	value.	If	the	C	bit	is	clear	after
an	unsigned	subtraction	(R=X-M),	then	the	result	is	incorrect	because	an	unsigned
overflow	occurred.

N:	result	is	negative															N	=	R31

Z:	result	is	zero																														

V:	signed	overflow															

C:	unsigned	overflow																

We	begin	the	design	of	an	adder	circuit	with	a	simple	subcircuit	called	a	binary	full	adder,
as	shown	in	Figure	2.27.	There	are	two	binary	data	inputs	A,	B	and	a	carry	input,	Cin.
There	is	one	data	output	Sout,	and	one	carry	output,	Cout.	As	shown	in	Table	2.17,	Cin	A,
and	B	are	three	independent	binary	inputs	each	of	which	could	be	0	or	1.	These	three
inputs	are	added	together	(the	sum	could	be	0,	1,	2,	or	3)	and	the	result	is	encoded	in	the
two-bit	binary	result	with	Cout	as	the	most	significant	bit	and	Sout	as	the	least	significant	bit.
Cout	is	true	if	the	sum	is	2	or	3,	and	Sout	is	true	if	the	sum	is	1	or	3.

Figure	2.27.	A	binary	full	adder.

A B Cin A+B+Cin Cout Sout

0 0 0 0 0 0

0 0 1 1 0 1

0 1 0 1 0 1

0 1 1 2 1 0

1 0 0 1 0 1

1 0 1 2 1 0

1 1 0 2 1 0

1 1 1 3 1 1

Table	2.17.	Input/output	response	of	a	binary	full	adder.

	
We	build	32-bit	adder	by	concatenating	32	binary	full	adders	together.	The	carry	into	the
32-bit	adder	is	zero,	and	the	carry	out	will	be	saved	in	the	carry	bit.

Checkpoint	2.12:	How	many	bits	does	it	take	to	store	the	result	of	two	unsigned	32-bit
numbers	multiplied	together?

Checkpoint	2.13:	How	many	bits	does	it	take	to	store	the	result	of	two	signed	32-bit
numbers	multiplied	together?

Multiply(MUL),	multiply	with	accumulate(MLA),	and	multiply	with	subtract(MLS)
use	32-bit	operands,	and	producing	a	32-bit	result.	These	three	multiply	instructions	only
save	the	bottom	32	bits	of	the	result.	They	can	be	used	for	either	signed	or	unsigned
numbers,	but	no	overflow	flags	are	generated.	If	the Rd register	is	omitted,	the Rn
register	is	the	destination.	If	the S suffix	is	added	toMUL ,	then	the	Z	and	N	bits	are	set
according	to	the	result.	The	division	instructions	do	not	set	condition	code	flags,	and	will
round	towards	zero	if	the	division	does	not	evenly	divide	into	an	integer	quotient.

MUL{S}{cond}	{Rd,}	Rn,	Rm																												; Rd	=	Rn	*	Rm																																

MLA{cond}	Rd,	Rn,	Rm,	Ra																												; Rd	=	Ra	+	Rn*Rm

MLS{cond}	Rd,	Rn,	Rm,	Ra																												; Rd	=	Ra	-	Rn*Rm																																

UDIV{cond}	{Rd,}	Rn,	Rm																																										; Rd	=	Rn/Rm																												
unsigned

SDIV{cond}	{Rd,}	Rn,	Rm																																										; Rd	=	Rn/Rm																														
signed

The	following	four	multiply	instructions	use	32-bit	operands	and	produce	a	64-bit
result.The	two	registers RdLo and RdHi contain	the	least	significant	and	most	significant
parts	respectively	of	the	64-bit	result,	signified	as Rd .	These	multiply	instructions	do	not
set	condition	code	flags

UMULL{cond}	RdLo,	RdHi,	Rn,	Rm														; Rd	=	Rn	*	Rm																																

SMULL{cond}	RdLo,	RdHi,	Rn,	Rm														; Rd	=	Rn*Rm

UMLAL{cond}	RdLo,	RdHi,	Rn,	Rm														; Rd	=	Rd	+	Rn	*	Rm																		
													

SMLAL{cond}	RdLo,	RdHi,	Rn,	Rm														; Rd	=	Rd	+	Rn*Rm
	

Checkpoint	2.14:	Can	the	32	by	32	bit	multiply	instructions	UMULL	or	SMULL
overflow?

2.3.7.	Functions	and	control	flow
Normally	the	computer	executes	one	instruction	after	another	in	a	linear	fashion.	In
particular,	the	next	instruction	to	execute	is	found	immediately	following	the	current
instruction.	We	use	branch	instructions	to	deviate	from	this	straight	line	path.	Table	2.9
lists	the	conditional	execution	available	on	the	ARM ® 	CortexTM-M.	In	this	section,	we
will	use	the	conditional	branch	instruction	to	implement	if-then,	while-loop	and	for-loop
control	structures.

B{cond}	label																												; branch		to	label																														

BX{cond}		Rm																												; branch	indirect	to	location	specified	by	Rm

BL{cond}		label																												; branch	to	subroutine	at	label																															

BLX{cond}	Rm																												; branch	to	subroutine	indirect	specified	by	Rm

	

Subroutines,	procedures,	and	functions	are	programs	that	can	be	called	to	perform
specific	tasks.	They	are	important	conceptual	tools	because	they	allow	us	to	develop
modular	software.		The	programming	languages	Pascal,	Fortran,	and	Ada	distinguish
between	functions,	which	return	values,	and	procedures,	which	do	not.	On	the	other	hand,
the	programming	languages	C,	C++,	Java,	and	Lisp	do	not	make	this	distinction	and	treat
functions	and	procedures	as	synonymous.	Object-oriented	programming	languages	use	the
term	method	to	describe	programs	that	are	part	of	objects;	it	is	also	used	in	conjunction
with	type	classes.	In	assembly	language,	we	use	the	term	subroutine	for	all	subprograms
whether	or	not	they	return	a	value.	Modular	programming	allows	us	to	build	complex
systems	using	simple	components.	In	this	section	we	present	a	short	introduction	on	the
syntax	for	defining	subroutines.	We	define	a	subroutine	by	giving	it	a	name	in	the	label
field,	followed	by	instructions,	which	when	executed,	perform	the	desired	effect.	The	last
instruction	in	a	subroutine	will	be BX	LR ,	which	we	use	to	return	from	the	subroutine.	In
Program	2.2,	we	define	the	subroutine	named Change ,	which	adds25	to	the
variable Num .	The	flowchart	for	this	example	is	drawn	in	Figure	2.28.In	assembly
language,	we	will	use	the BL instruction	to	call	this	subroutine.	At	run	time,	the BL
instruction	will	save	the	return	address	in	the	LR	register.	The	return	address	is	the
location	of	the	instruction	immediately	after	the BL instruction.	At	the	end	of	the
subroutine,	the BX	LR 	instruction	will	get	the	return	address	from	the	LR	register,
returning	the	program	to	the	place	from	which	the	subroutine	was	called.	More	precisely,
it	returns	to	the	instruction	immediately	after	the	instruction	that	performed	the	subroutine
call.	The	comments	specify	the	order	of	execution.	The	while-loop	causes	instructions	4–
10	to	be	repeated	over	and	over.

Figure	2.28.	A	flowchart	of	a	simple	function	that	adds	25	to	a	global
variable.

Change	LDR			R1,=Num		;	5)	R1	=
&Num

LDR			R0,[R1]			;	6)	R0	=	Num

			ADD			R0,R0,#25	;	7)	R0	=	Num+25

uint32_t	Num;

void	Change(void){

		Num	=	Num+25;

}

		STR			R0,[R1]			;	8)	Num	=	Num+25

		BX				LR								;	9)	return

main			LDR			R1,=Num			;	1)	R1	=	&Num

MOV			R0,#0					;	2)	R0	=	0

STR			R0,[R1]			;	3)	Num	=	0

loop			BL				Change				;	4)	function	call

B					loop						;	10)	repeat

void	main(void){

		Num	=	0;

		while(1){

Change();

		}

}

Program	2.2.	Assembly	and	C	versions	that	define	a	simple	function.
In	C,	input	parameters,	if	any,	are	passed	in	R0–R3.	The	output	parameter,	if	needed,	is
returned	in	R0.

Recall	that	all	object	code	is	halfword	aligned,	meaning	bit	0	of	the	PC	is	always	clear.
When	the BL 	instruction	is	executed,	bits	31–1	of	register	LR	are	loaded	withthe	address
of	the	instruction	after	the BL ,	and	bit	0	is	set	to	one.	When	the BX	LR 	instruction	is
executed,	bits	31–1	of	register	LR	are	put	back	into	the	PC,	and	bit	0	of	LR	goes	into	the	T
bit.	On	the	ARM ® 	CortexTM-M,	the	T	bit	should	always	be	1,	meaning	the	processor	is
always	in	the	Thumb	state.	Normally,	the	proper	value	of	bit	0	is	assigned	automatically.

Decision	making	is	an	important	aspect	of	software	programming.	Two	values	are
compared	and	certain	blocks	of	program	are	executed	or	skipped	depending	on	the	results
of	the	comparison.	In	assembly	language	it	is	important	to	know	the	precision	(e.g.,	16-bit,
32-bit)	and	the	format	of	the	two	values	(e.g.,	unsigned,	signed).	It	takes	three	steps	to
perform	a	comparison.	We	begin	by	reading	the	first	value	into	a	register.	The	second	step
is	to	compare	the	first	value	with	the	second	value.	Wecan	use	either	a	subtract	instruction
(subs)	or	a	compare	instruction	(cmp).	These	instructions	set	the	condition	code	bits.
The	last	step	is	a	conditional	branch.	The	available	conditions	are	listed	in	Table	2.9.	The
branch	will	occur	if	the	condition	is	true.

Program	2.3	illustrates	an	if-then	structure	involving	testing	for	unsigned	greater	than	or
equal	to.	It	will	increment Num 	if	it	is	less	than	25600.	Since	the	variable	is	unsigned,	we
use	an	unsigned	conditional.	Furthermore,	we	want	to	execute	the	incrementif Num 	is
less	than	25600,	so	we	perform	the	opposite	conditional	branch	(greater	than	or	equal	to)
to	skip	over.

Change	LDR			R1,=Num			;	R1	=	&Num

LDR			R0,[R1]			;	R0	=	Num

CMP			R0,#25600

BHS			skip

ADD			R0,R0,#1		;	R0	=	Num+1

STR			R0,[R1]			;	Num	=	Num+1

skip			BX				LR								;	return

uint32_t	Num;

void	Change(void){

		if(Num	<	25600){

Num	=	Num+1;

		}

}

	

Program	2.3.	Assembly	and	C	software	showing	an	if-then	control
structure.
Program	2.4	illustrates	an	if-then-else	structure	involving	signed	numbers.	It	will
increment Num if	it	is	less	than	100,	otherwise	it	will	set	it	to	-100.	Since	the	variable	is
signed,	we	use	an	signed	conditional.	Again,	we	want	to	execute	the	increment	if Num 	is
less	than	100,	so	we	perform	the	opposite	conditional	branch	(greater	than	or	equal	to)	to
skip	over.

Change	LDR			R1,=Num			;	R1	=	&Num

LDR			R0,[R1]			;	R0	=	Num

CMP			R0,#100

BGE			else

ADD			R0,R0,#1		;	R0	=	Num+1

B					skip

else			MOV			R0,#-100	;	-100

skip			STR			R0,[R1]			;	update	Num

BX				LR								;	return

int32_t	Num;

void	Change(void){

		if(Num	<	100){

Num	=	Num+1;

		}

		else{

Num	=	-100;

		}

}

Program	2.4.	Assembly	and	C	software	showing	an	if-then-else	control
structure.
Checkpoint	2.15:Why	does	Program	2.3	use BHS and	Program	2.4	use BGE ?

If-then-else	control	structures	are	commonly	found	in	computer	software.	If	the BHS in
Program	2.3	or	the BGE 	in	Program	2.4	were	to	branch,	the	instruction	pipeline	would
have	to	be	flushed	and	refilled.	In	order	to	optimize	execution	speed	for	short	if-then	and
if-then-else	control	structures,	the	ARM ® 	CortexTM-M	employs	conditional
execution.The	conditional	execution	begins	with	the IT 	instruction,	which	specifies	the
number	of	instructions	in	the	control	structure	(1	to	4)	and	the	conditional	for	the	first
instruction.	The	syntax	is

IT{x{y{z}}}	cond													 													

	

where x 	y and z 	specify	the	existence	of	the	optional	second,	third,	or	fourth	conditional
instruction	respectively.	We	can	specify	x 	y and z as T for	execute	if	true	or E for	else.
The cond 	field	choices	are	listed	in	Table	2.9.	The	conditional	suffixes	for	the	1	to	4
following	instruction	must	match	the	conditional	field	of	the IT 	instruction.In	particular,
the	conditional	for	the	true	instructions	exactly	match	the	conditional	for	the IT
instruction.	Furthermore,	the	else	instructions	must	have	the	logical	complement
conditional.	If	the	condition	is	true	the	instruction	is	executed.	If	the	condition	is	false,	the
instruction	is	fetched,	but	not	executed.	For	example,	Program	2.3	could	have	been	written
as	follows.	The	two	T’s	in ITT 	means	there	are	two	true	instructions.

Change	LDR			R1,=Num			;	R1	=	&Num

LDR			R0,[R1]			;	R0	=	Num

CMP			R0,#25600

ITT			LO

ADDLO	R0,R0,#1		;	if(R0<25600)	R0	=	Num+1

		STRLO	R0,[R1]			;	if(R0<25600)	Num	=	Num+1

		BX				LR								;	return

Program	2.4	could	have	been	written	as	follows.	The	one	T	and	one	Ein ITE 	means	there
is	one	true	and	one	else	instruction.

Change	LDR			R1,=Num		;	R1	=	&Num

LDR			R0,[R1]			;	R0	=	Num

CMP			R0,#100

ITE			LT

ADDLT	R0,R0,#1		;	if(R0<	100)	R0	=	Num+1

MOVGE	R0,#-100		;	if(R0>=100)	R0	=	-100

STR			R0,[R1]			;	update	Num

BX				LR								;	return

The	following	assembly	converts	one	hex	digit	(0–15)	in	R0	to	ASCII	in	R1.	The	one	T
and	one	E	in ITE 	means	there	is	one	true	and	one	else	instruction.

CMP			R0,#9					;	Convert	R0	(0	to	15)	into	ASCII	

ITE			GT								;	Next	2	are	conditional

ADDGT	R1,R0,#55	;	Convert	0xA	->	‘A’

ADDLE	R1,R0,#48	;	Convert	0x0	->	‘0’

	

By	themselves,	the	conditional	branch	instructions	do	not	require	a	preceding IT
instruction.However,	a	conditional	branch	can	be	used	as	the	last	instruction	of	an IT
block.	There	are	a	lot	of	restrictions	on	IT.	For	more	details,	refer	to	the	programming
reference	manual.

2.3.8.	Stack	usage

Figure	2.5	shows	the push and pop 	instructions	can	be	used	to	store	temporary
information	on	the	stack.	If	a	subroutine	modifies	a	register,	it	is	a	matter	of	programmer
style	as	to	whether	or	not	it	should	save	and	restore	the	register.	According	to	AAPCS	a
subroutine	can	freely	change	R0–R3	and	R12,	but	save	and	restore	any	other	register	it
changes.	In	particular,	if	one	subroutine	calls	another	subroutine,	then	it	must	save	and
restore	the	LR.	AAPCS	also	requires	pushing	and	popping	multiples	of	8	bytes,	which
means	an	even	number	of	registers.	In	the	following	example,	assume	the	function
modifies	register	R0,	R4,	R7,	R8	and	calls	another	function.	The	programming	style
dictates	registers	R4	R7	R8	and	LR	be	saved.	Notice	the	return	address	is	pushed	on	the
stack	as	LR,	but	popped	off	into	PC.	When	multiple	registers	are	pushed	or	popped,	the
data	exist	in	memory	with	the	lowest	numbered	register	using	the	lowest	memory	address.
In	other	words,	the	registers	in	the	{	}	can	be	specified	in	any	order.	Of	course	remember
to	balance	the	stack	by	having	the	same	number	of	pops	as	pushes.

Func			PUSH	{R4,R7,R8,LR}	;	save	registers	as	needed

;	body	of	the	function

POP		{R4,R7,R8,PC}		;	restore	registers	and	return

The	ARM	processor	has	a	lot	of	registers,	and	we	appropriately	should	use	them	for
temporary	information	such	as	function	parameters	and	local	variables.	However,	when
there	are	a	lot	of	parameters	or	local	variables	we	can	place	them	on	the	stack.		Program
2.5	is	similar	to	Program	2.1,	except	the data 	buffer	is	now	local,	and	placed	on	the
stack.The SUB 	instruction	allocates	10	words	on	the	stack.	Figure	2.29	shows	the	stack
before	and	after	the	allocation.	The	SP	points	to	the	first	location	of data .	The	local
variable i 	is	held	in	R0.The	flexible	second	operand	for	the	STR	instruction	uses	SP	as	the
base	pointer,	and	R0*4	as	the	offset.	The ADD 	instruction	deallocates	the	local	variable,
balancing	the	stack.

Set		SUB			sp,sp,#0x28		;allocate

MOVS		r0,#0x00					;i=0

B					test

loop		STR			r0,[sp,r0,LSL	#2]

ADDS		r0,r0,#1					;i++

test		CMP			r0,#0x0A

BLT			loop

ADD			sp,sp,#0x28		;deallocate

BX				LR

//	C	language
implementation

	

void	Set(void){

uint32_t	data[10];

int	i;

		for(i=0;	i<10;	i++){

data[i]	=	i;

		}

}

Program	2.5.	Assembly	and	C	versions	that	initialize	a	local	array	of	ten
elements.
	

Figure	2.29.	A	stack	picture	showing	a	local	array	of	ten	elements	(40
bytes).

2.3.9.	Assembler	directives
We	use	assembler	directives	to	assist	and	control	the	assembly	process.	The	following
directives	change	the	way	the	code	is	assembled.

AREA	CODE																												; places	code	in	code	space	(flash	ROM)																
													

AREA	DATA																												; places	objects	in	data	space	(RAM)

THUMB																																										; uses	Thumb	instructions																															

ALIGN																																										; skips	0	to	3	bytes	to	make	next	word	aligned

END																																										; end	of	file																	

	

The	following	directives	can	add	variables	and	constants.

DCB	expr{,expr}														; places	8-bit	byte(s)	into	memory																														

DCW	expr{,expr}														; places	16-bit	halfword(s)	into	memory		

DCD	expr{,expr}														; places	32-bit	word(s)	into	memory																															

SPACE	size																												; reserves	size	bytes,	unitialized

	

The EQU directive	gives	a	symbolic	name	to	a	numeric	constant,	a	register-relative	value
or	a	program-relative	value.	*	is	a	synonym	for EQU .	We	will	use	it	to	define	I/O	port
addresses.	For	example,	these	four	definitions	will	be	used	to	initialize	and	operate	Port	D.

GPIO_PORTD_DATA_R	equ	0x400073FC

GPIO_PORTD_DIR_R	equ	0x40007400

GPIO_PORTD_DEN_R	equ	0x4000751C

SYSCTL_RCGCGPIO_R	equ	0x400FE608

2.4.	Parallel	I/O	ports

2.4.1.	Basic	concepts	of	input	and	output	ports
The	simplest	I/O	port	on	a	microcontroller	is	the	parallel	port.	A	parallel	I/O	port	is	a
simple	mechanism	that	allows	the	software	to	interact	with	external	devices.	It	is	called
parallel	because	multiple	signals	can	be	accessed	all	at	once.	An	input	port,	which	allows
the	software	to	read	external	digital	signals,	is	read	only.	That	means	a	read	cycle	access
from	the	port	address	returns	the	values	existing	on	the	inputs	at	that	time.	In	particular,
the	tristate	driver	(triangle	shaped	circuit	in	Figure	2.30)	will	drive	the	input	signals	onto
the	data	bus	during	a	read	cycle	from	the	port	address.		A	write	cycle	access	to	an	input
port	usually	produces	no	effect.	The	digital	values	existing	on	the	input	pins	are	copied
into	the	microcontroller	when	the	software	executes	a	read	from	the	port	address.	There
are	no	input-only	ports	on	LM3S/TM4C	microcontrollers.	LM3S/TM4C	microcontrollers
have	5V-tolerant	digital	inputs,	meaning	an	input	high	signal	can	be	any	voltage	from	2.0
to	5.0	V.	On	the	STMicroelectronics	STM32F10xx	family,	some	inputs	are	5-V	tolerant
and	others	are	not.

Figure	2.30.	A	read	only	input	port	allows	the	software	to	sense	external
digital	signals.
Checkpoint	2.16:	What	happens	if	the	software	writes	from	an	input	port	like	Figure
2.30?

Common	Error:	Many	program	errors	can	be	traced	to	confusion	between	I/O	ports	and
regular	memory.	For	example,	you	can	not	write	to	an	input	port.

While	an	input	device	usually	just	involves	the	software	reading	the	port,	an	output	port
can	participate	in	both	the	read	and	write	cycles	very	much	like	a	regular	memory.	Figure
2.31	describes	a	readable	output	port.	A	write	cycle	to	the	port	address	will	affect	the
values	on	the	output	pins.	In	particular,	the	microcontroller	places	information	on	the	data
bus	and	that	information	is	clocked	into	the	D	flip	flops.	Since	it	is	a	readable	output,	a
read	cycle	access	from	the	port	address	returns	the	current	values	existing	on	the	port	pins.
There	are	no	output-only	ports	on	LM3S/TM4C	microcontrollers.

Figure	2.31.	A	readable	output	port	allows	the	software	to	generate
external	digital	signals.
Checkpoint	2.17:	What	happens	if	the	software	reads	from	an	output	port	like	Figure
2.31?

To	make	the	microcontroller	more	marketable,	most	ports	can	be	software-specified	to	be
either	inputs	or	outputs.	Microcontrollers	use	the	concept	of	a	direction	register	to
determine	whether	a	pin	is	an	input	(direction	register	bit	is	0)	or	an	output	(direction
register	bit	is	1),	as	shown	in	Figure	2.32.	We	define	an	initialization	ritual	as	a	program
executed	during	start	up	that	initializes	hardware	and	software.	If	the	ritual	software
makes	direction	bit	zero,	the	port	behaves	like	a	simple	input,	and	if	it	makes	the	direction
bit	one,	it	becomes	a	readable	output	port.	Each	digital	port	pin	has	a	direction	bit.	This
means	some	pins	on	a	port	may	be	inputs	while	others	are	outputs.	The	digital	port	pins	on
most	microcontrollers	are	bidirectional,	operating	similar	to	Figure	2.32.

Figure	2.32.	A	bidirectional	port	can	be	configured	as	a	read-only	input
port	or	a	readable	output	port.

2.4.2.	I/O	Programming	and	the	direction	register

On	most	embedded	microcontrollers,	the	I/O	ports	are	memory	mapped.	This	means	the
software	accesses	an	input/output	port	simply	by	reading	from	or	writing	to	the
appropriate	address.	To	make	our	software	more	readable	we	include	symbolic	definitions
for	the	I/O	ports.	We	set	the	direction	register(e.g., GPIO_PORTD_DIR_R)	to	specify
which	pins	are	input	and	which	are	output.	By	default,	the	alternate	function	register	is
zero,	specifying	the	corresponding	bits	are	regular	port	pins
(e.g., GPIO_PORTD_AFSEL_R).	We	will	set	bits	in	the	alternative	function	register
when	we	wish	to	activate	the	functions	listed	in	Tables	2.3,	2.5	2.7,	and	2.8.	Typically,	we
write	to	the	direction	and	alternate	function	registers	once	during	the	initialization	phase.
We	use	the	data	register(e.g., GPIO_PORTD_DATA_R)	to	perform	input/output	on	the
port.	Conversely,	we	read	and	write	the	data	register	multiple	times	to	perform	input	and
output	respectively	during	the	running	phase.	Table	2.18	shows	the	parallel	port	registers
for	the	TM4C123.	The	other	Texas	Instruments	microcontrollers	are	similar.	The	CR,
AMSEL,	PCTL,	and	LOCK	registers	exist	only	on	LM4F/TM4C.	For	the	LM3S	software,
simply	remove	accesses	to	these	four	registers.	The	only	differences	among	various
members	of	the	Texas	Instruments	microcontroller	familay	are	the	number	of	ports	and
available	pins	in	each	port.

For	example,	the	TM4C1294	has	fifteen	digital	I/O	ports	A	(8	bits),	B	(6	bits),	C	(8	bits),
D	(8	bits),	E	(6	bits),	F	(5	bits),	G	(2	bits),	H	(4	bits),	J	(2	bits),	K	(8	bits),	L	(8	bits),	M	(8
bits),	N(6	bits),	P	(6	bits),	and	Q	(5	bits).	Furthermore,	the	TM4C1294	has	different
addresses	for	ports.	Refer	to	the	file	tm4c1294ncpdt.h	or	to	the	data	sheet	for	more	the
specific	addresses	of	its	I/O	ports

To	initialize	an	LM3S	I/O	port	for	general	use	we	perform	four	steps.	First,	we	activate	the
clock	for	the	port.	Second,	we	set	its	direction	register.	Third,	we	clear	bits	in	the	alternate
function	register,	and	lastly,	we	enable	the	digital	port.	We	need	to	add	a	short	delay
between	activating	the	clock	and	accessing	the	port	registers.	The	direction	register
specifies	bit	for	bit	whether	the	corresponding	pins	are	input	(0)	or	output	(1).	

We	use	the	PUR	register	to	activate	an	internal	pull-up	resistor,	and	we	use	the	PDR
register	to	activate	an	internal	pull-down	resistor.

Common	Error:	You	will	get	a	bus	fault	if	you	access	a	port	without	enabling	its	clock.
Also,	you	have	to	wait	about	5	bus	cycles	after	enabling	the	clock,	before	you	access	the
registers.

	

In	this	first	example	we	will	make	PD7-4	input,	and	we	will	make	PD3-0	output,	as	shown
in	Program	2.6.	To	use	a	port	we	first	must	activate	its	clock	in
the SYSCTL_RCGCGPIO_R 	register.	The	second	step	is	to	unlock	the	port
(LM4F/TM4C	only),	by	writing	a	special	value	to	the	LOCK	register,	followed	by	setting
bits	in	the	CR	register.	PC3-0	are	locked	to	the	debugger.	Only	PD7	and	PF0	on	the
TM4C123	need	to	be	unlocked.	On	the	TM4C1294	only	PD7	needs	to	be	unlocked.	All
the	other	bits	on	the	two	microcontrollers	are	always	unlocked.	The	third	step	is	to	disable
the	analog	functionality	(TM4C	only),	by	clearing	bits	in	the	AMSEL	register.	The	fourth
step	is	to	select	GPIO	functionality	(LM4F/TM4C	only),	by	clearing	bits	in	the	PCTL
register,	as	described	in	Tables	2.7	and	2.8.	The	fifth	step	is	to	specify	whether	the	pin	is
an	input	or	an	output	by	clearing	or	setting	bits	in	the	DIR	register.	Because	we	are	using
the	pins	as	regular	digital	I/O,	the	sixth	step	is	to	clear	the	corresponding	bits	in	the
AFSEL	register.

Address 7 6 5 4 3 2 1 0 Name

0x400FE608 - - GPIOF GPIOE GPIOD GPIOC GPIOB GPIOA SYSCTL_RCGCGPIO_R

0x400FEA08 - - GPIOF GPIOE GPIOD GPIOC GPIOB GPIOA SYSCTL_PRGPIO_R

0x400043FC DATA DATA DATA DATA DATA DATA DATA DATA GPIO_PORTA_DATA_R

0x40004400 DIR DIR DIR DIR DIR DIR DIR DIR GPIO_PORTA_DIR_R

0x40004420 SEL SEL SEL SEL SEL SEL SEL SEL GPIO_PORTA_AFSEL_R

0x40004510 PUE PUE PUE PUE PUE PUE PUE PUE GPIO_PORTA_PUR_R

0x4000451C DEN DEN DEN DEN DEN DEN DEN DEN GPIO_PORTA_DEN_R

0x40004524 1 1 1 1 1 1 1 1 GPIO_PORTA_CR_R

0x40004528 0 0 0 0 0 0 0 0 GPIO_PORTA_AMSEL_R

0x400053FC DATA DATA DATA DATA DATA DATA DATA DATA GPIO_PORTB_DATA_R

0x40005400 DIR DIR DIR DIR DIR DIR DIR DIR GPIO_PORTB_DIR_R

0x40005420 SEL SEL SEL SEL SEL SEL SEL SEL GPIO_PORTB_AFSEL_R

0x40005510 PUE PUE PUE PUE PUE PUE PUE PUE GPIO_PORTB_PUR_R

0x4000551C DEN DEN DEN DEN DEN DEN DEN DEN GPIO_PORTB_DEN_R

0x40005524 1 1 1 1 1 1 1 1 GPIO_PORTB_CR_R

0x40005528 0 0 AMSEL AMSEL 0 0 0 0 GPIO_PORTB_AMSEL_R

0x400063FC DATA DATA DATA DATA JTAG JTAG JTAG JTAG GPIO_PORTC_DATA_R

0x40006400 DIR DIR DIR DIR JTAG JTAG JTAG JTAG GPIO_PORTC_DIR_R

0x40006420 SEL SEL SEL SEL JTAG JTAG JTAG JTAG GPIO_PORTC_AFSEL_R

0x40006510 PUE PUE PUE PUE JTAG JTAG JTAG JTAG GPIO_PORTC_PUR_R

0x4000651C DEN DEN DEN DEN JTAG JTAG JTAG JTAG GPIO_PORTC_DEN_R

0x40006524 1 1 1 1 JTAG JTAG JTAG JTAG GPIO_PORTC_CR_R

0x40006528 AMSEL AMSEL AMSEL AMSEL JTAG JTAG JTAG JTAG GPIO_PORTC_AMSEL_R

0x400073FC DATA DATA DATA DATA DATA DATA DATA DATA GPIO_PORTD_DATA_R

0x40007400 DIR DIR DIR DIR DIR DIR DIR DIR GPIO_PORTD_DIR_R

0x40007420 SEL SEL SEL SEL SEL SEL SEL SEL GPIO_PORTD_AFSEL_R

0x40007510 PUE PUE PUE PUE PUE PUE PUE PUE GPIO_PORTD_PUR_R

0x4000751C DEN DEN DEN DEN DEN DEN DEN DEN GPIO_PORTD_DEN_R

0x40007524 CR 1 1 1 1 1 1 1 GPIO_PORTD_CR_R

0x40007528 0 0 AMSEL AMSEL AMSEL AMSEL AMSEL AMSEL GPIO_PORTD_AMSEL_R

0x400243FC - - DATA DATA DATA DATA DATA DATA GPIO_PORTE_DATA_R

0x40024400 - - DIR DIR DIR DIR DIR DIR GPIO_PORTE_DIR_R

0x40024420 - - SEL SEL SEL SEL SEL SEL GPIO_PORTE_AFSEL_R

0x40024510 - - PUE PUE PUE PUE PUE PUE GPIO_PORTE_PUR_R

0x4002451C - - DEN DEN DEN DEN DEN DEN GPIO_PORTE_DEN_R

0x40024524 - - 1 1 1 1 1 1 GPIO_PORTE_CR_R

0x40024528 - - AMSEL AMSEL AMSEL AMSEL AMSEL AMSEL GPIO_PORTE_AMSEL_R

0x400253FC - - - DATA DATA DATA DATA DATA GPIO_PORTF_DATA_R

0x40025400 - - - DIR DIR DIR DIR DIR GPIO_PORTF_DIR_R

0x40025420 - - - SEL SEL SEL SEL SEL GPIO_PORTF_AFSEL_R

0x40025510 - - - PUE PUE PUE PUE PUE GPIO_PORTF_PUR_R

0x4002551C - - - DEN DEN DEN DEN DEN GPIO_PORTF_DEN_R

0x40025524 - - - 1 1 1 1 CR GPIO_PORTF_CR_R

0x40025528 - - - 0 0 0 0 0 GPIO_PORTF_AMSEL_R

	 	 	 	 	 	 	 	 	 	

	 31-28 27-24 23-20 19-16 15-12 11-8 7-4 3-0 	

0x4000452C PMC7 PMC6 PMC5 PMC4 PMC3 PMC2 PMC1 PMC0 GPIO_PORTA_PCTL_R

0x4000552C PMC7 PMC6 PMC5 PMC4 PMC3 PMC2 PMC1 PMC0 GPIO_PORTB_PCTL_R

0x4000652C PMC7 PMC6 PMC5 PMC4 0x1 0x1 0x1 0x1 GPIO_PORTC_PCTL_R

0x4000752C PMC7 PMC6 PMC5 PMC4 PMC3 PMC2 PMC1 PMC0 GPIO_PORTD_PCTL_R

0x4002452C -	-	-	- -	-	-	- PMC5 PMC4 PMC3 PMC2 PMC1 PMC0 GPIO_PORTE_PCTL_R

0x4002552C -	-	-	- -	-	-	- -	-	-	- PMC4 PMC3 PMC2 PMC1 PMC0 GPIO_PORTF_PCTL_R

0x40006520 LOCK	(write	0x4C4F434B	to	unlock,	other	locks)	(reads	1	if	locked,	0	if	unlocked) GPIO_PORTC_LOCK_R

0x40007520 LOCK	(write	0x4C4F434B	to	unlock,	other	locks)	(reads	1	if	locked,	0	if	unlocked) GPIO_PORTD_LOCK_R

0x40025520 LOCK	(write	0x4C4F434B	to	unlock,	other	locks)	(reads	1	if	locked,	0	if	unlocked) GPIO_PORTF_LOCK_R

Table	2.18.	Some	TM4C123	parallel	ports.	Each	register	is	32	bits	wide.	For	PCTL
bits,	see	Tables	2.7	and	2.8.	JTAG	means	do	not	use	these	pins	and	do	not	change
any	of	these	bits.

The	last	step	is	to	enable	the	corresponding	I/O	pins	by	writing	ones	to	the	DEN	register.
To	run	this	example	on	the	Texas	Instruments	LaunchPad,	we	also	set	bits	in	the	PUR
register	for	the	two	switch	inputs	(Figure	2.14)	to	have	an	internal	pull-up	resistor.

When	the	software	reads	from	location	0x400073FC	the	bottom	8	bits	are	returned	with
the	current	values	on	Port	D.	The	top	24	bits	are	returned	zero.	As	shown	in	Figure	2.32,
the	input	pins	show	the	current	digital	state,	and	the	output	pins	show	the	value	last	written
to	the	port.	The	function PortD_Input 	will	read	from	the	four	input	pins	and	return	a
value,	0x00	to	0x0F,	depending	on	the	current	status	of	the	inputs.	The
function PortD_Output 	will	write	new	values	to	the	four	output	pins.

#define	GPIO_PORTD_DATA_R			(*((volatile	uint32_t	*)0x400073FC))

#define	GPIO_PORTD_DIR_R				(*((volatile	uint32_t	*)0x40007400))

#define	GPIO_PORTD_AFSEL_R		(*((volatile	uint32_t	*)0x40007420))

#define	GPIO_PORTD_DEN_R				(*((volatile	uint32_t	*)0x4000751C))

#define	GPIO_PORTD_LOCK_R			(*((volatile	uint32_t	*)0x40007520))

#define	GPIO_PORTD_AMSEL_R		(*((volatile	uint32_t	*)0x40007528))

#define	GPIO_PORTD_PCTL_R			(*((volatile	uint32_t	*)0x4000752C))

#define	SYSCTL_RCGCGPIO_R			(*((volatile	uint32_t	*)0x400FE608))

void	PortD_Init(void){

		SYSCTL_RCGCGPIO_R	|=	0x08;							//	1)	activate	clock	for	Port	D

		while((SYSCTL_PRGPIO_R&0x08)	==	0){};//	ready?

		GPIO_PORTD_LOCK_R	=	0x4C4F434B;			//	2)	unlock	GPIO	Port	D

		GPIO_PORTD_CR_R	=	0xFF;											//	allow	changes	to	PD7-0

		GPIO_PORTD_AMSEL_R	=	0x00;								//	3)	disable	analog	on	PD

		GPIO_PORTD_PCTL_R	=	0x00000000;			//	4)	PCTL	GPIO	on	PD7-0

		GPIO_PORTD_DIR_R	=	0x0F;										//	5)	PD7-4	in,	PD3-0	out

		GPIO_PORTD_AFSEL_R	=	0x00;							//	6)	disable	alt	funct	on	PD7-0

		GPIO_PORTD_DEN_R	=	0xFF;										//	7)	enable	digital	I/O	on	PD7-0

}

uint32_t	PortD_Input(void){

		return	(GPIO_PORTD_DATA_R>>4);	//	read	PD7-PD4	inputs

}

void	PortD_Output(uint32_t	data){

		GPIO_PORTD_DATA_R	=	data;						//	write	PD3-PD0	outputs

}

Program	2.6.	A	set	of	functions	usingPD7 –PD4	as	inputs	and	PD3 –PD0
as	outputs.
Checkpoint	2.18:	Does	the	entire	port	need	to	be	defined	as	input	or	output,	or	can	some
pins	be	input	while	others	are	output?

In	Program	2.6	the	assumption	was	the	software	module	had	access	to	all	of	Port	D.	In
other	words,	this	software	owned	all	eight	pins	of	Port	D.	In	most	cases,	a	software
module	needs	access	to	only	some	of	the	port	pins.	If	two	or	more	software	modules
access	the	same	port,	a	conflict	will	occur	if	one	module	changes	modes	or	output	values
set	by	another	module.	It	is	good	software	design	to	write	friendly	software,	which	only
affects	the	individual	pins	as	needed.	Friendly	software	does	not	change	the	other	bits	in	a
shared	register.	Conversely,	unfriendly	software	modifies	more	bits	of	a	register	than	it
needs	to.	The	difficulty	of	unfriendly	code	is	each	module	will	run	properly	when	tested
by	itself,	but	weird	bugs	result	when	two	or	more	modules	are	combined.

Consider	the	problem	that	a	software	module	need	to	output	to	just	Port	D	bit	1.	After
enabling	the	clock	for	Port	D,	we	use	read-modify-write	software	to	initialize	just	pin	1.
Remember	only	PD7	and	PF0	require	unlocking	on	the	TM4C123,	and	only	PD7	requires
unlocking	on	the	TM4C1294,	so	this	code	does	not	need	to	unlock.

		SYSCTL_RCGCGPIO_R	|=	0x08;								//	1)	activate	clock	for	Port	D

		while((SYSCTL_PRGPIO_R&0x08)	==	0){};//	ready?

GPIO_PORTD_DIR_R	|=	0x02;									//	PD1	is	an	output

		GPIO_PORTD_AFSEL_R	&=	~0x02;						//	regular	port	function

		GPIO_PORTD_AMSEL_R	&=	~0x02;						//	disable	analog	on	PD1

		GPIO_PORTD_PCTL_R	&=	~0x000000F0;	//	PCTL	GPIO	on	PD1

		GPIO_PORTD_DEN_R	|=	0x02;									//	PD1	is	enabled	as	a	digital	port

	

There	is	no	conflict	if	two	or	more	modules	enable	the	clock	for	Port	D.	There	are	two
ways	on	the	CortexTM-M	to	access	individual	port	bits.	The	first	method	is	to	use	read-
modify-write	software	to	change	just	pin	1.		A	read-or-write	sequence	can	be	used	to	set
one	or	more	bits.

		GPIO_PORTD_DATA_R	|=	0x02;							//	make	PD1	high

	

A	read-and-write	sequence	can	be	used	to	clear	one	or	more	bits.

		GPIO_PORTD_DATA_R	&=	~0x02;						//	make	PD1	low

	

The	second	method	uses	the	bit-specific	addressing.	The	LM3S/LM4F/TM4C	family
implements	a	more	flexible	way	to	access	port	pins	than	the	bit-banding	described	earlier
in	the	chapter.	This	bit-specific	addressing	doesn’t	work	for	all	the	I/O	registers,	just	the
parallel	port	data	registers.	The	LM3S/LM4F/TM4C	mechanism	allows	collective	access
to	1	to	8	bits	in	a	data	port.	We	define	eight	address	offset	constants	in	Table	2.19.
Basically,	if	we	are	interested	in	bit	b,	the	constant	is	4*2b.	There	are	256	possible	bit
combinations	we	might	be	interested	in	accessing,	from	all	of	them	to	none	of	them.	Each
possible	bit	combination	has	a	separate	address	for	accessing	that	combination.	For	each
bit	we	are	interested	in,	we	add	up	the	corresponding	constants	from	Table	2.19	and	then
add	that	sum	to	the	base	address	for	the	port.	The	base	addresses	for	the	data	ports	can	be
found	in	GPIO	chapter	of	the	microcontroller	data	sheet.	For	example,	assume	we	are
interested	in	Port	A	bits	1,	2,	and	3.	The	base	address	for	Port	A	is	0x4000.4000,	and	the
constants	are	0x0020,	0x0010	and	0x008.	The	sum	of
0x4000.4000+0x0020+0x0010+0x008	is	the	address	0x4000.4038.	If	we	read	from
0x4000.4038	only	bits	1,	2,	and	3	will	be	returned.	If	we	write	to	this	address	only	bits	1,
2,	and	3	will	be	modified.

If	we	wish	to	access	bit Constant

7 0x0200

6 0x0100

5 0x0080

4 0x0040

3 0x0020

2 0x0010

1 0x0008

0 0x0004

Table	2.19.	Address	offsets	used	to	specify	individual	data	port	bits.

The	base	address	for	Port	D	is	0x4000.7000.	If	we	want	to	read	and	write	all	8	bits	of	this
port,	the	constants	will	add	up	to	0x03FC.	Notice	that	the	sum	of	the	base	address	and	the
constants	yields	the	0x4000.73FC	address	used	in	Program	2.6.	In	other	words,	read	and
write	operations	to GPIO_PORTD_DATA_R 	will	access	all	8	bits	of	Port	D.	If	we	are
interested	in	just	bit	1	of	Port	D,	we	add	0x0008	to	0x4000.7000,	and	we	can	define	this	in
C	as

#define	PD1			(*((volatile	uint32_t	*)0x40007008))

	

Now,	a	simple	write	operation	can	be	used	to	set	PD1.	The	following	code	is	friendly
because	it	does	not	modify	the	other	7	bits	of	Port	D.

		PD1	=	0x02;							//	make	PD1	high

	

A	simple	write	sequence	will	clear	PD1.	The	following	code	is	also	friendly.

		PD1	=	0x00;							//	make	PD1	low

	

A	read	from	PD1 	will	return	0x01	or	0x00	depending	on	whether	the	pin	is	high	or	low,
respectively.	The	following	code	is	also	friendly.

		PD1	=	PD1^0x01;			//	toggle	PD1

	

Checkpoint	2.19:	According	to	Table	2.3,	what	happens	to	Port	D	bit	5	if	we	set	bit	5	in
its	alternative	function	register?	E.g., GPIO_PORTD_AFSEL_R	|=	0x20;

Checkpoint	2.20:	What	happens	if	we	write	to	location	0x4000.7000?

Checkpoint	2.21:	Specify	a	#define	that	allows	us	to	access	bits	7	and	2	of	Port	D.	Use
this	#define	to	make	both	bits	7	and	2	of	Port	D	high.

Checkpoint	2.22:	Specify	a	#define	that	allows	us	to	access	bits	6,	5,	0	of	Port	B.	Use	this
#define	to	make	bits	6,	5	and	0	of	Port	B	high.

You	can	find	the	code	for	the	next	three	examples	on	the	book	web	site	as	SSR_xxx.zip,
GPIO_xxx.zip,	and	Switch_xxx.zip,	where	xxx	refers	to	the	specific	microcontroller	on
which	the	example	was	tested.
	

Example	2.1:	The	goal	is	develop	a	means	for	the	microcontroller	to	turn	on	and	turn	off
an	AC-powered	appliance.	The	interface	will	use	a	solid	state	relay	(SSR)	having	a	control
portion	equivalent	to	an	LED	with	parameters	of	2V	and	10	mA.	Include	appropriate
functions.

Solution:	Since	we	need	to	interface	an	LED,	we	use	an	open	collector	NOT	gate	just	like
Figure	1.23.	We	choose	an	electronic	circuit	that	has	an	output	current	larger	than	the	10
mA	needed	by	the	SSR.	Since	the	maximum	ICE	of	the	PN2222	is	150	mA,	it	can	sink	the
10	mA	required	by	the	SSR.	A	7405	or	7406	could	also	have	been	used,	but	they	require	a
+5V	supply.	The	resistor	is	selected	to	control	the	current	to	the	diode.	Using	the	LED
design	equation,	R	=	(3.3-Vd-VCE)/Id	=(3.3-2-0.3V)/0.01A	=	100 � .	There	is	a	standard
value	5%	resistor	at	100	.	The	specification	VCE=0.3V	is	a	maximum.	If	VCE	is	actually
between	0.1	and	0.3V,	then	10	to	12	mA	will	flow,	and	the	relay	will	still	activate	properly.
When	the	input	to	the	PN2222	is	high	(p=3.3V),	the	output	is	low	(q=0.3V),	see	Figure
2.33.	In	this	state,	a	10	mA	current	is	applied	to	the	diode,	and	relay	switch	activates.	This
causes	120	VAC	power	to	be	delivered	to	the	appliance.	But,	when	the	input	is	low	(p=0),
the	output	floats	(q=HiZ,	which	is	neither	high	nor	low).		This	floating	output	state	causes
the	LED	current	to	be	zero,	and	the	relay	switch	opens.	In	this	case,	no	AC	power	is
delivered	to	the	appliance.

Figure	2.33.	Solid	state	relay	interface	using	a	PN2222	NPN	transistor.
	

The	initialization	will	set	bit	1	of	the	direction	register	to	make	PD1	an	output,	see
Program	2.7.	This	function	should	be	called	once	at	the	start	of	the	system.	After
initialization,	the	on	and	off	functions	can	be	called	to	control	the	appliance.
	

#define	PD1	(*((volatile	uint32_t	*)0x40007008))

void	SSR_Init(void){

		SYSCTL_RCGCGPIO_R	|=	0x08;								//	1)	activate	clock	for	Port	D

		while((SYSCTL_PRGPIO_R&0x08)	==	0){};//	ready?

		GPIO_PORTD_DIR_R	|=	0x02;									//	PD1	is	an	output

		GPIO_PORTD_AFSEL_R	&=	~0x02;						//	regular	port	function

		GPIO_PORTD_AMSEL_R	&=	~0x02;						//	disable	analog	on	PD1

		GPIO_PORTD_PCTL_R	&=	~0x000000F0;	//	PCTL	GPIO	on	PD1

		GPIO_PORTD_DEN_R	|=	0x02;									//	PD1	is	enabled	as	a	digital	port

}

void	SSR_Off(void){

		PD1	=	0x00;						//	turn	off	the	appliance

}

void	SSR_On(void){

		PD1	=	0x01;						//	turn	on	the	appliance

}

Program	2.7.		A	set	of	functions	using	PD7 –PD4	as	inputs	and	PD3 –PD0
as	outputs	(SSR_xxx.zip).

	
Some	problems	are	so	unique	that	they	require	the	engineer	to	invent	completely	original
solutions.	Most	of	the	time,	however,	the	engineer	can	solve	even	complex	problems	by
building	the	system	from	components	that	already	exist.		Creativity	will	still	be	required	in
selecting	the	proper	components,	making	small	changes	in	their	behavior	(tweaking),
arranging	them	in	an	effective	and	efficient	manner,	and	then	verifying	the	system	satisfies
both	the	requirements	and	constraints.	When	young	engineers	begin	their	first	job,	they	are
sometimes	surprised	to	see	that	education	does	not	stop	with	college	graduation,	but	rather
is	a	life-long	activity.	In	fact,	it	is	the	educational	goal	of	all	engineers	to	continue	to	learn
both	processes	(rules	about	how	to	solve	problems)	and	products	(hardware	and	software
components).		As	the	engineer	becomes	more	experienced,	he	or	she	has	a	larger	toolbox
from	which	processes	and	components	can	be	selected.

The	hardest	step	for	most	new	engineers	is	the	first	one:	where	to	begin?		We	begin	by
analyzing	the	problem	to	create	a	set	of	specifications	and	constraints	in	the	form	of	a
requirements	document.	Next,	we	look	for	components,	in	the	form	of	previously
debugged	solutions,	which	are	similar	to	our	needs.	Often	during	the	design	process,
additional	questions	or	concerns	arise.	We	at	that	point	consult	with	our	clients	to	clarify
the	problem.	Next	we	rewrite	the	requirements	document	and	get	it	reapproved	by	the
clients.

It	is	often	difficult	to	distinguish	whether	a	parameter	is	a	specification	or	a	constraint.	In
actuality,	when	designing	a	system	it	often	doesn’t	matter	into	which	category	a	parameter
falls,	because	the	system	must	satisfy	all	specifications	and	constraints.	Nevertheless,
when	documenting	the	device	it	is	better	to	categorize	parameters	properly.	Specifications
generally	define	in	a	quantitative	manner	the	overall	system	objectives	as	given	to	us	by
our	customers.

Constraints,	on	the	other	hand,	generally	define	the	boundary	space	within	which	we	must
search	for	a	solution	to	the	problem.		If	we	must	use	a	particular	component,	it	is	often
considered	a	constraint.	In	this	book,	we	constrain	most	designs	to	include	an
LM3S/TM4C	microcontroller.	Constraints	also	are	often	defined	as	an	inequality,	such	as
the	cost	must	be	less	than	$50,	or	the	battery	must	last	for	at	least	one	week.	
Specifications	on	the	other	hand	are	often	defined	as	a	quantitative	number,	and	the
system	satisfies	the	requirement	if	the	system	operates	within	a	specified	tolerance	of	that
parameter.	Tolerance	can	be	defined	as	a	percentage	error	or	as	a	range	with	minimum	and
maximum	values.

The	high-level	design	uses	data	flow	graphs.	We	then	combine	the	pieces	and	debug	the
system.	As	the	pieces	are	combined	we	can	draw	a	call	graph	to	organize	the	parts.	If	new
components	are	designed,	we	can	use	flowcharts	to	develop	new	algorithms.	The	more	we
can	simulate	the	system,	the	more	design	possibilities	we	can	evaluate,	and	the	quicker	we
can	make	changes.	Debugging	involves	both	making	sure	it	works,	together	with
satisfying	all	requirements	and	constraints.

Observation:	Defining	realistic	tolerances	on	our	specifications	will	have	a	profound
effect	on	system	cost.		

Checkpoint	2.23:	What	are	the	effects	of	specifying	a	tighter	tolerance	(e.g.,	1%	when	the
problem	asked	for	5%)?

Checkpoint	2.24:	What	are	the	effects	of	specifying	a	looser	tolerance	(e.g.,	10%	when
the	problem	asked	for	5%)?		

	
Example	2.2:	Design	an	embedded	system	that	flashes	LEDs	in	a	0101,	0110,	1010,	1001
binary	repeating	pattern.
	

Solution:	This	system	will	need	four	LEDs,	and	the	computer	must	be	able	to
activate/deactivate	them.	Since	the	problem	didn’t	specify	power	source,	speed,	color,	or
brightness,	we	could	either	put	off	these	decisions	until	the	engineering	design	stage	in
order	to	simplify	the	design	or	minimize	cost,	or	we	could	go	back	to	the	clients	and	ask
for	additional	requirements.	In	this	case,	the	clients	didn’t	care	about	power,	speed,	color
or	brightness,	but	did	think	minimizing	cost	was	a	good	idea.	Due	to	the	nature	of	this
book,	we	will	constrain	all	designs	to	include	a	LM3S/TM4C	microcontroller.	Because	we
have	+3.3	V	microcontroller	systems,	we	will	specify	the	system	to	run	on	+3.3	V	power.
We	have	in	stock	HLMP-4740	green	LEDs	that	operate	at	1.9	V	and	2	mA,	so	we	will	use
them.	Table	2.20	summarizes	the	specifications	and	constraints.	We	will	use	standard	5%
resistors	to	minimize	cost.
	

Specifications 	 Constraints

Repeating	pattern	of	5,
6,	10,	9

	 TM4C123-based

Four	1.9	V,	2	mA
green	LEDs

	 Minimize	cost

+3.3V	power	supply 	 Standard	5%
resistors

Table	2.20.	Specifications	and	constraints	of	the	LED	output	system.
	

Tolerance	for	this	LED	output	system	says	it	is	acceptable	if	it	has	four	LEDs,	but
unacceptable	if	it	has	three	or	five	of	them.	Similarly,	it	will	be	acceptable	as	long	as	the
LED	current	is	between	1.5	and	2.5	mA.	If	the	current	drops	below	1.5	mA,	we	won’t	be
able	to	see	the	LED,	and	if	it	goes	above	2.5	mA,	it	might	damage	the	LED.	The	data	flow
graph	in	Figure	2.34	shows	information	as	it	flows	from	the	controller	software	to	the	four
LEDs.	The	data	flow	graph	will	be	important	during	the	subsequent	design	phases	because
the	hardware	blocks	can	be	considered	as	a	preliminary	hardware	block	diagram	of	the
system.	The	call	graph,	also	shown	in	Figure	2.34,	illustrates	this	is	master/slave
configuration	where	the	controller	software	will	manipulate	the	four	LEDs.

	

Figure	2.34.	Data	flow	graph	and	call	graph	of	the	LED	output	system.
	

The	hardware	design	of	this	system	could	have	used	four	copies	of	the	LED	interface
presented	earlier	in	Figure	1.23.	However,	from	Table	1.4	we	see	LM3S/TM4C
microcontrollers	can	source	or	sink	up	to	8	mA.	We	can	save	money	by	using	low-current
LEDs,	which	can	be	connected	directly	to	the	microcontroller	without	a	driver.	Figure
2.35	shows	four	simple	negative	logic	LED	interfaces.	A	low	output	will	turn	on	the	LED
and	a	high	output	will	turn	it	off.	Notice	the	similarity	of	the	data	flow	graph	in	Figure
2.34	with	the	hardware	circuit	in	Figure	2.35.	If	the	VOL	of	the	microcontroller	is	0.4V,	and
the	voltage	across	the	LED	is	1.9V,	then	the	voltage	across	the	resistor	should	be	3.3-1.9-
0.4V	or	1V.	We	calculate	the	resistor	value	using	Ohm’s	Law,	R	is	1V/2mA	or	500Ω.
Using	standard	resistor	values	with	a	5%	tolerance	will	be	cheaper	to	build	(see	Section
9.1).		In	particular,	470	Ω	and	510	Ω	are	two	standard	resistor	values	near	500	Ω.	If	we
were	to	use	470	Ω,	then	the	LED	current	would	be	(3.3-1.9-0.4V)/470Ω	or	2.1mA.
Similarly,	if	we	were	to	use	510	Ω,	then	the	LED	current	would	be	(3.3-1.9-0.4V)/510Ω	or
1.96mA.	Both	would	have	been	acceptable,	but	we	will	use	the	510	Ω	resistor	because	it	is
acceptable	for	a	wide	range	of	microcontroller	output	voltages.	More	specifically,	if	VOL
ranges	from	0.13	to	0.63V,	then	the	LED	current	remains	within	the	1.5	to	2.5	mA

specification.	It	would	have	been	more	expensive	to	use	500	Ω	resistors.
	

Pseudo-code	is	similar	to	high-level	languages,	but	without	a	rigid	syntax.	This	means	we
utilize	whatever	syntax	we	like.	Flowcharts	are	good	when	the	software	involves	complex
algorithms	with	many	decisions	points	causing	control	paths.	On	the	other	hand,	pseudo-
code	may	be	better	when	the	software	is	more	sequential	and	involves	complex
mathematical	calculations.

Figure	2.35.	Hardware	circuit	for	the	LED	output	system.
	

The	software	design	of	this	system	also	involves	using	examples	presented	earlier	with
some	minor	tweaking.	The	only	data	required	in	this	problem	is	the	5–6–10–9	sequence.
Later	in	Chapter	3,	we	will	consider	solutions	to	this	type	of	problem	using	data	structures,
but	in	this	first	example,	we	will	take	a	simple	approach,	not	using	a	data	structure.	Figure
2.36	illustrates	a	software	design	process	using	flowcharts.	We	start	with	general	approach
on	the	left.	Flowchart	1	shows	the	software	will	initialize	the	output	port,	and	perform	the
output	sequence.	As	we	design	the	software	system,	we	fill	in	the	details.	This	design
process	is	called	successive	refinement.	It	is	also	classified	as	top-down,	because	we	begin
with	high-level	issues,	and	end	at	the	low-level.	In	Flowchart	2,	we	set	the	direction
register,	and	then	output	the	sequence	5–6–10–9.	It	is	at	this	stage	we	figured	out	how	to
create	the	repeating	sequence.		Flowchart	3	fills	in	the	remaining	details.	To	output	the
negative	logic	pattern	1010	to	the	LEDs,	we	will	output	a	5	to	the	bottom	4	bits	of	Port	E
on	the	microcontroller.
	

Many	software	developers	use	pseudo-code	rather	than	flowcharts,	because	the	pseudo-
code	itself	can	be	embedded	into	the	software	as	comments.	Program	2.8	shows	the	C
implementation	for	this	system.	Notice	the	similarity	in	structure	between	Flowchart	3	and
this	code.	The LEDS 	definition	implements	friendly	access	to	pins	PE3	–	PE0.

In	order	to	test	the	system	we	need	to	build	a	prototype.	One	option	is	simulation.	A
second	option	is	to	use	a	development	system	like	the	ones	shown	in	Figures	2.10,	2.13
and	2.18.	In	this	approach,	you	build	the	external	circuits	on	a	protoboard	and	use	the
debugger	to	download	and	test	the	software.	A	third	approach	is	typically	used	after	a
successful	evaluation	with	one	of	the	previous	methods.	In	this	approach,	we	design	a
printed	circuit	board	(PCB)	including	both	the	external	circuits	and	the	microcontroller
itself.

During	the	testing	phase	of	the	project	we	observe	that	all	four	of	the	LEDs	are

continuously	on.	We	use	the	software	debugger	to	single	step	our	program,	which
correctly	outputs	the	1010,	1001,	0101,	0110	binary	repeating	pattern.	During	this	single
stepping	the	LEDs	do	come	on	and	off	in	the	proper	pattern.	Using	a	voltmeter	on	the
circuit	we	observe	a	0.25V	signal	on	the	output	of	the	microcontroller	and	a	1.9V	voltage
drop	across	the	diode	whenever	the	software	wishes	to	turn	the	LED	on.	Because	the
LEDs	are	flashing	faster	than	our	eyes	can	see,	we	test	the	system	at	full	speed	and
observe	the	four	outputs	on	a	logic	analyzer,	collecting	data	presented	as	Figure	2.37.	If
we	wished	to	be	able	to	see	the	LEDs	flash	with	our	eyes,	we	could	add	a	0.1	second	delay
after	each	output.

Portability	is	a	measure	of	how	easy	it	is	to	convert	software	that	runs	on	one	machine	to
run	on	another	machine.	In	general	C	code	is	more	portable	than	assembly	language.

	

Figure	2.36.	Software	design	for	the	LED	output	system	using	flowcharts.
	

	

#define	LEDS	(*((volatile	uint32_t	*)0x4002403C))

int	main(void){

		SYSCTL_RCGCGPIO_R	|=	0x10;								//	1)	activate	clock	for	Port	E

		while((SYSCTL_PRGPIO_R&0x10)	==	0){};//	ready?

		GPIO_PORTE_DIR_R	|=	0x0F;									//	PE3-0	is	an	output

		GPIO_PORTE_AFSEL_R	&=	~0x0F;						//	regular	port	function

		GPIO_PORTE_AMSEL_R	&=	~0x0F;						//	disable	analog	on	PE3-0

		GPIO_PORTE_PCTL_R	&=	~0x0000FFFF;	//	PCTL	GPIO	on	PE3-0

		GPIO_PORTE_DEN_R	|=	0x0F;									//	PE3-0	enabled	as	a	digital	port

		while(1){

LEDS	=	10;	//	1010,	LED	is	0101

LEDS	=	9;		//	1001,	LED	is	0110

LEDS	=	5;		//	0101,	LED	is	1010

LEDS	=	6;		//	0110,	LED	is	1001

		}

}

Program	2.8.		C	software	for	the	LED	output	system	(GPIO_xxx.zip).
	

Figure	2.37.	Logic	analyzer	waveforms	collected	during	the	testing	the
LED	output	system.

	

	
Example	2.3:	Interface	a	push	button	switch	to	the	microcontroller	and	write	software
functions	that	initialize	and	read	the	switch.	

Solution:	The	first	step	is	to	draw	a	hardware	circuit	connecting	the	switch	to	an	input
port	of	the	microcontroller.	We	will	use	positive	logic	interface	because	we	want	the
digital	signal	to	be	high	if	and	only	if	the	switch	is	pressed,	as	shown	in	Figure	2.38.
Similar	to	Figure	1.24, PB1 	contains	a	signal	that	is	high	or	low	depending	on	the
position	of	the	switch.	If	the	switch	is	not	pressed,	the	10	k � 	resistor	creates	a	0	V	signal
on	the	port	pin,	and	virtually	no	current	flows	through	the	resistor	(IILis	2 � A).	If	the
switch	is	pressed,	a	3.3	V	signal	is	on	the	port	pin	and	0.33	mA	flows	through	the	10	k �
resistor.	Some	switches	bounce,	which	means	there	will	be	multiple	open/closed	cycles
when	the	switch	is	changed.	This	simple	solution	can	be	used	if	the	switch	doesn’t	bounce
or	if	the	bouncing	doesn’t	matter.	The	software	solution	requires	two	functions.	The
initialization	function	is	called	once	when	the	system	starts.	Whenever	the	software	wishes
to	know	the	switch	status,	it	calls	the	input	function.	When	the	computer	reads	Port	B	it
gets	all	8	bits	of	the	input	port.	The	following	C	code	will	set	a	variable	to	true	(nonzero)
if	and	only	if	the	switch	is	pressed.
	

		Pressed	=	GPIO_PORTB_DATA_R&0x02;		//	true	if	the	switch	is	pressed

Figure	2.38.	Positive	logic	interface	of	a	switch	to	a	microcontroller	input.

The	initialization	in	Program	2.9	activates	the	clock,	clears	the	direction	register	bit	for
PB1,	and	enables	Port	B	bit	1as	a	digital	port.	The	definition	of PB1 	in	Program	2.9	uses
bit-specific	addressing	so	the	software	just	sees	bit	1.
	

#define	PB1	(*((volatile	uint32_t	*)0x40005008))

void	Switch_Init(void){

		SYSCTL_RCGCGPIO_R	|=	0x02;								//	1)	activate	clock	for	Port	B

		while((SYSCTL_PRGPIO_R&0x02)	==	0){};//	ready?

		GPIO_PORTB_DIR_R	&=	~0x02;								//	PB1	is	an	input

		GPIO_PORTB_AFSEL_R	&=	~0x02;						//	regular	port	function

		GPIO_PORTB_AMSEL_R	&=	~0x02;						//	disable	analog	on	PB1

		GPIO_PORTB_PCTL_R	&=	~0x000000F0;	//	PCTL	GPIO	on	PB1

		GPIO_PORTB_DEN_R	|=	0x02;									//	PB3-0	enabled	as	a	digital	port

}

uint32_t	Switch_Input(void){

		return	PB1;						//	0x02	if	pressed,	0x00	if	not	pressed

}

Program	2.9.		A	set	of	functions	that	interface	an	input	switch	to	PB1
(Switch_xxx.zip).

	

2.5.	Phase-Lock-Loop
Normally,	the	execution	speed	of	a	microcontroller	is	determined	by	an	external	crystal.
Both	LaunchPad	boards	have	a	16	MHz	crystal.	Most	microcontrollers	have	a	phase-lock-
loop	(PLL)	that	allows	the	software	to	adjust	the	execution	speed	of	the	computer.
Typically,	the	choice	of	frequency	involves	the	tradeoff	between	software	execution	speed
and	electrical	power.	In	other	words,	slowing	down	the	bus	clock	will	require	less	power
to	operate	and	generate	less	heat.	Speeding	up	the	bus	clock	obviously	allows	for	more
calculations	per	second	at	the	cost	of	requiring	more	power	to	operate	and	generating
more	heat.

The	default	bus	speed	of	an	LM3S811	microcontroller	is	that	of	the	crystal	attached	to	the
OSC1	and	OSC0	pins,	meaning	the	PLL	is	initially	not	active	The	default	bus	speed	of	an
LM3S1968	and	TM4C	microcontrollers	is	that	of	the	internal	oscillator,	also	meaning	that
the	PLL	is	not	initially	active.	The	default	bus	speed	for	the	TM4C	internal	oscillator	is	16
MHz	±1%.	The	internal	oscillator	is	significantly	less	precise	than	the	crystal,	but	it
requires	less	power	and	does	not	need	an	external	crystal.	This	means	for	most
applications	we	will	activate	the	main	oscillator	and	the	PLL	so	we	can	have	a	stable	bus
clock.

There	are	two	ways	to	activate	the	PLL.	We	could	call	a	library	function,	or	we	could
access	the	clock	registers	directly.	In	general,	using	library	functions	creates	a	better
design	because	the	solution	will	be	more	stable	(less	bugs)	and	will	be	more	portable
(easier	to	switch	microcontrollers).	However,	the	objective	of	the	book	is	to	present
microcontroller	fundamentals.	Showing	the	direct	access	does	illustrate	some	concepts	of
the	PLL.	First,	we	can	include	the	Stellaris/Tivalibrary	and	call	the SysCtlClockSet
function	to	change	the	speed.	This	function	is	defined	in	the	sysctl.cfile.	The	library
function	activates	the	PLL	because	of	the SYSCTL_USE_PLL 	parameter.	The	main
oscillator	is	the	one	with	the	external	crystal	attached.	The	last	parameter	specifies	the
frequency	of	the	attached	crystal.	Assume	we	wish	to	run	an	TM4C	with	a	16	MHz	crystal
at	80	MHz.	The	divide	by	2.5	creates	a	bus	frequency	of	80	MHz,	implemented	as	400
MHz	divided	by	5.

SysCtlClockSet(SYSCTL_SYSDIV_2_5	|	SYSCTL_USE_PLL	|

SYSCTL_OSC_MAIN	|	SYSCTL_XTAL_16MHZ);

	

To	make	our	code	more	portable,	it	is	a	good	idea	to	use	library	functions	whenever
possible.	However,	we	will	present	an	explicit	example	illustrating	how	the	PLL	works.
An	external	crystal	is	attached	to	the	TM4C	microcontroller,	as	shown	in	Figure	2.39.	The
PLLs	on	the	other	Texas	Instruments	microcontrollers	operate	in	the	same	basic	manner.
Table	2.21	shows	the	clock	registers	used	to	define	what	speed	the	processor	operates.	The
output	of	the	main	oscillator	(Main	Osc)	is	a	clock	at	the	same	frequency	as	the	crystal.	By
setting	the	OSCSRC	bits	to	0,	the	multiplexer	control	will	select	the	main	oscillator	as	the
clock	source.

For	example,	the	main	oscillator	for	the	TM4C	on	the	evaluation	board	will	be	16	MHz.
This	means	the	reference	clock	(Ref	Clk)	input	to	the	phase/frequency	detector	will	be	16

MHz.	For	a	16	MHz	crystal,	we	set	the	XTAL	bits	to	10101	(see	Table	2.21).	In	this	way,	a
400	MHz	output	of	the	voltage	controlled	oscillator	(VCO)	will	yield	a	16	MHz	clock	at
the	other	input	of	the	phase/frequency	detector.	If	the	400	MHz	clock	is	too	slow,	the	up
signal	will	add	charge,	increasing	the	input	to	the	VCO,	leading	to	an	increase	in	the	400
MHz	frequency.	If	the	400	MHz	clock	is	too	fast,	down	signal	to	the	charge	pump	will
subtract	charge,	decreasing	the	input	to	the	VCO,	leading	to	a	decrease	in	the	400	MHz
frequency.	The	feedback	loop	in	the	PLL	will	drive	the	output	to	a	stable	400	MHz
frequency.

Figure	2.39.	Block	diagram	of	the	main	clock	tree	on	the	TM4C	including
the	PLL	(others	are	similar).
Program	2.10	shows	a	program	to	activate	a	microcontroller	with	a	16	MHz	main
oscillator	to	run	at	80	MHz.	0)	Use	RCC2	because	it	provides	for	more	options.	1)	The
first	step	is	set	BYPASS2	(bit	11).	At	this	point	the	PLL	is	bypassed	and	there	is	no	system
clock	divider.	2)	The	second	step	is	to	specify	the	crystal	frequency	in	the	four	XTAL	bits
using	the	code	in	Table	2.21.	The	OSCSRC2	bits	are	cleared	to	select	the	main	oscillator
as	the	oscillator	clock	source.	3)	The	third	step	is	to	clear	PWRDN2	(bit	13)	to	activate	the
PLL.	4)	The	fourth	step	is	to	configure	and	enable	the	clock	divider	using	the	7-bit
SYSDIV2	field.	If	the	7-bit	SYSDIV2	is	n,	then	the	clock	will	be	divided	by	n+1.	To	get
the	desired	80	MHz	from	the	400	MHz	PLL,	we	need	to	divide	by	5.	So,	we	place	a	4	into
the	SYSDIV2	field.	5)	The	fifth	step	is	to	wait	for	the	PLL	to	stabilize	by	waiting	for
PLLRIS	(bit	6)	in	the SYSCTL_RIS_R 	to	become	high.	6)	The	last	step	is	to	connect	the
PLL	by	clearing	the	BYPASS2	bit.	To	modify	this	program	to	operate	on	other
microcontrollers,	you	will	need	to	change	XTAL	and	the	SYSDIV2.

XTAL Crystal	Freq
(MHz)

	 XTAL Crystal	Freq
(MHz)

0x4 3.579545	MHz 	 0x10 10.0	MHz

0x5 3.6864	MHz 	 0x11 12.0	MHz

0x6 4	MHz 	 0x12 12.288	MHz

0x7 4.096	MHz 	 0x13 13.56	MHz

0x8 4.9152	MHz 	 0x14 14.31818	MHz

0x9 5	MHz 	 0x15 16.0	MHz

0xA 5.12	MHz 	 0x16 16.384	MHz

0xB 6	MHz	(reset
value)

	 0x17 18.0	MHz

0xC 6.144	MHz 	 0x18 20.0	MHz

0xD 7.3728	MHz 	 0x19 24.0	MHz

0xE 8	MHz 	 0x1A 25.0	MHz

0xF 8.192	MHz 	 others reserved

	

Address 26-23 22 13 11 10-6 5-4 Name

$400FE060 SYSDIV USESYSDIV PWRDN BYPASS XTAL OSCSRC SYSCTL_RCC_R

$400FE050 	 	 	 	 PLLRIS 	 SYSCTL_RIS_R

	 	 	 	 	 	 	 	

	 31 30 28-22 13 11 6-4 	

$400FE070 USERCC2 DIV400 SYSDIV2 PWRDN2 BYPASS2 OSCSRC2 SYSCTL_RCC2_R

Table	2.21.	Main	clock	registers	(RCC2	in	LM4F/TM4C	only)	(other	values	of	XTAL
are	reserved).

void	PLL_Init(void){

		SYSCTL_RCC2_R	|=		0x80000000;		//	0)	Use	RCC2

		SYSCTL_RCC2_R	|=		0x00000800;	//	1)	bypass	PLL	while	initializing

		SYSCTL_RCC_R	=	(SYSCTL_RCC_R	&~0x000007C0)+0x00000540;			//2)	16	MHz

		SYSCTL_RCC2_R	&=	~0x00000070;	//	configure	for	main	oscillator	source

		SYSCTL_RCC2_R	&=	~0x00002000;	//	3)	activate	PLL	by	clearing	PWRDN

		SYSCTL_RCC2_R	|=	0x40000000;			//	4)	use	400	MHz	PLL

		SYSCTL_RCC2_R	=	(SYSCTL_RCC2_R&~ 	0x1FC00000)+(4<<22);	//	80	MHz

		while((SYSCTL_RIS_R&0x00000040)==0){};		//	5)	wait	for	the	PLL	to	lock

		SYSCTL_RCC2_R	&=	~0x00000800;	//	6)	enable	PLL	by	clearing	BYPASS

}

Program	2.10.	Activate	the	LM4F/TM4C	with	a	16	MHz	crystal	to	run	at
80	MHz	(PLL_xxx.zip).
Checkpoint	2.25:	How	would	you	change	Program	2.10	if	your	LM4F/TM4C
microcontroller	had	an	8	MHz	crystal	and	you	wish	to	run	at	50	MHz?

We	can	make	a	first	order	estimate	of	the	relationship	between	work	done	in	the	software
and	electrical	power	required	to	run	the	system.	There	are	two	factors	involved	in	the
performance	of	software.	We	define	software	work	as	the	desired	actions	performed	by
executing	software:

Software	work	=	algorithm	*	speed	(in	instructions/sec)

In	other	words,	if	we	want	to	improve	software	performance	we	can	write	better	software
or	increase	the	rate	at	which	the	computer	executes	instructions.	Recall	that	the	compiler
converts	our	C	software	into	Cortex	M	machine	code,	so	the	efficiency	of	the	compiler
will	also	affect	this	relationship.	Furthermore,	most	compilers	have	optimization	settings
that	allow	you	to	make	your	software	run	faster	at	the	expense	of	using	more	memory.	On
the	Cortex	M,	most	instructions	execute	in	1	or	2	bus	cycles.	See	section	3.3	in
CortexM4_TRM_r0p1.pdf	for	more	details.	In	CMOS	logic,	most	of	the	electrical	power
required	to	run	the	system	occurs	in	making	signals	change,	that	is,	when	a	digital	signal
rises	from	0	to	1,	or	falls	from	1	to	0.	Therefore	we	see	a	linear	relationship	between	bus
frequency	and	electrical	power.	Let	m	be	the	slope	of	this	linear	relationship

Power	=	m	*	fBus
Some	of	the	factors	that	affect	the	slope	m	are	operating	voltage	and	fundamental	behavior
of	how	the	CMOS	transistors	are	designed.	If	we	approximate	the	Cortex	M	processor	as
being	able	to	execute	one	instruction	every	two	bus	cycles,	we	can	combine	the	above	two
equations	to	see	the	speed-power	tradeoff.

Software	work	=	algorithm	*	½	fBus	=	algorithm	*	½	Power/m

Observation:	To	save	power,	we	slow	down	the	bus	frequency	removing	as	much	of	the
wasted	bus	cycles	while	still	performing	all	of	the	required	tasks.

2.6.	SysTick	Timer
SysTick	is	a	simple	counter	that	we	can	use	to	create	time	delays	and	generate	periodic
interrupts.	It	exists	on	all	CortexTM-M	microcontrollers,	so	using	SysTick	means	the
system	will	be	easy	to	port	to	other	microcontrollers.	Table	2.22	shows	some	of	the
register	definitions	for	SysTick.	CURRENT	is	a	24-bit	down	counter	that	runs	at	the	bus
clock	frequency.

Address 31-
24

23-
17

16 15-3 2 1 0 Name

$E000E010 0 0 COUNT 0 CLK_SRC INTEN ENABLE NVIC_ST_CTRL_R

$E000E014 0 24-bit	RELOAD	value NVIC_ST_RELOAD_R

$E000E018 0 24-bit	CURRENT	value	of	SysTick	counter NVIC_ST_CURRENT_R

Table	2.22.	SysTick	registers.

There	are	four	steps	to	initialize	the	SysTick	timer.	First,	we	clear	the	ENABLE	bit	to	turn
off	SysTick	during	initialization.	Second,	we	set	the	RELOADregister.	Third,	we	write	to
the NVIC_ST_CURRENT_R 	value	to	clear	the	counter.	Lastly,	we	write	the	desired
mode	to	the	control	register,	NVIC_ST_CTRL_R .		We	set	the	CLK_SRC	bit	specifying
the	core	clock	will	be	used.	We	must	set	CLK_SRC=1,	because	CLK_SRC=0	mode	is
not	implemented	on	the	LM3S	family.	LM4F/TM4C	microcontrollers	do	support
CLK_SRC=0	internal	oscillator	mode.	In	Chapter	5,	we	will	set	INTEN	to	enable
interrupts,	but	in	this	first	example	we	clear	INTEN	so	interrupts	will	not	be	requested.
We	need	to	set	the	ENABLE	bit	so	the	counter	will	run.	When	the	CURRENT	value
counts	down	from	1	to	0,	the	COUNT	flag	is	set.	On	the	next	clock,	the	CURRENT	is
loaded	with	the	RELOAD	value.	In	this	way,	the	SysTick	counter	(CURRENT)	is
continuously	decrementing.		If	the	RELOAD	value	is	n,	then	the	SysTick	counter
operates	at	modulo	n+1	(…n,	n-1,	n-2	…	1,	0,	n,	n-1,	…).	In	other	words,	it	rolls	over
every	n+1	counts.	The	COUNT	flag	could	be	configured	to	trigger	an	interrupt.	However,
in	this	first	example	interrupts	will	not	be	generated.	We	set	RELOAD	to	0x00FFFFFF
for	a	general	counter.	For	a	delay	timer	or	a	periodic	interrupt	the	value														
(RELOAD+1)*busperiod	will	determine	the	delay	time	or	interrupt	period.		If	we
activate	the	PLL	to	run	the	microcontroller	at	80	MHz,	then	the	SysTick	counter
decrements	every	12.5	ns.		In	general,	if	the	period	of	the	core	bus	clock	is	t,	then	the
COUNT	flag	will	be	set	every	(n+1)t.	Readingthe 	NVIC_ST_CTRL_R 	control	register
will	return	the	COUNT	flag	in	bit	16,	and	then	clear	the	flag.	Also,	writing	any	value	to
the NVIC_ST_CURRENT_R 	register	will	reset	the	counter	to	zero	and	clear	the
COUNT	flag.

Program	2.11	uses	the	SysTicktimer	to	implement	a	time	delay.	For	example,	the	user
calls SysTick_Wait10ms(123); 	and	the	function	returns	1.23	secondslater.	In	the
function SysTick_Wait() ,	the NVIC_ST_RELOAD_R 	value	is	set	to	specify	the	delay.
Writing	to	CURRENT	clears	the	COUNT	flag	and	reloads	the	counter.	When	the	counter
goes	from	1	to	0,	the	flag	COUNT	is	set.

The	accuracy	of	SysTick	depends	on	the	accuracy	of	the	clock.	We	use	the	PLL	to	derive	a
bus	clock	based	on	the	16	MHz	crystal,	the	time	measured	or	generated	using	SysTick	will
be	very	accurate.	More	specifically,	the	accuracy	of	the	NX5032GA	crystal	on	the
LaunchPad	board	is	±50	parts	per	million	(PPM),	which	translates	to	0.005%,	which	is
about	±5	seconds	per	day.	One	could	spend	more	money	on	the	crystal	and	improve	the
accuracy	by	a	factor	of	10.	Not	only	are	crystals	accurate,	they	are	stable.	The	NX5032GA
crystal	will	vary	only	±150	PPM	as	temperature	varies	from	-40	to	+150	ºC.	Crystals	are
more	stable	than	they	are	accurate,	typically	varying	by	less	than	5	PPM	per	year.

#define	NVIC_ST_CTRL_R										(*((volatile	uint32_t	*)0xE000E010))

#define	NVIC_ST_RELOAD_R								(*((volatile	uint32_t	*)0xE000E014))

#define	NVIC_ST_CURRENT_R							(*((volatile	uint32_t	*)0xE000E018))

void	SysTick_Init(void){

		NVIC_ST_CTRL_R	=	0;															//	1)	disable	SysTick	during	setup

		NVIC_ST_RELOAD_R	=	0x00FFFFFF;				//	2)	maximum	reload	value

		NVIC_ST_CURRENT_R	=	0;												//	3)	any	write	to	current	clears	it

		NVIC_ST_CTRL_R	=	0x00000005;						//	4)	enable	SysTick	with	core	clock

}

void	SysTick_Wait(uint32_t	delay){	//	delay	is	in	12.5ns	units

		NVIC_ST_RELOAD_R	=	delay-1;		//	number	of	counts	to	wait

		NVIC_ST_CURRENT_R	=	0;							//	any	value	written	to	CURRENT	clears

		while((NVIC_ST_CTRL_R&0x00010000)==0){	//	wait	for	COUNT	flag

		}

}

void	SysTick_Wait10ms(uint32_t	delay){	//	delay	is	in	10ms	units

		uint32_t	i;

		for(i=0;	i<delay;	i++){

SysTick_Wait(800000);		//	800000*12.5ns	equals	10ms

		}

}

Program	2.11.	Timer	functions	that	implement	a	time	delay
(SysTick_xxx.zip).
Checkpoint	2.26:	How	would	you	change SysTick_Wait10ms 	in	Program	2.11	if	your
microcontroller	were	running	at	50	MHz?

2.7.	Choosing	a	Microcontroller
I	chose	to	focus	this	book	on	the	LM3S/TM4C	family	of	microcontrollers,	because	it	has	a
rich	set	of	features	needed	to	teach	the	fundamentals	required	for	both	today’s	and
tomorrow’s	embedded	systems.	Sometimes,	the	computer	engineer	is	faced	with	the	task
of	selecting	the	microcontroller	for	the	project.	When	faced	with	this	decision	some
engineers	will	only	consider	those	devices	for	which	they	have	hardware	and	software
experience.	Fortunately,	this	blind	approach	often	still	yields	an	effective	and	efficient
product,	because	many	microcontrollers	overlap	in	their	cost	and	performance.	In	other
words,	if	a	familiar	microcontroller	can	implement	the	desired	functions	for	the	project,
then	it	is	often	efficient	to	bypass	that	more	perfect	piece	of	hardware	in	favor	of	a	faster
development	time.	On	the	other	hand,	sometimes	we	wish	to	evaluate	all	potential
candidates.	It	may	be	cost-effective	to	hire	or	train	the	engineering	personnel	so	that	they
are	proficient	in	a	wide	spectrum	of	potential	microcontroller	devices.	There	are	many
factors	to	consider	when	selecting	a	microcontroller.

A	first	group	of	factors	deals	with	cost,	maintenance	and	production:

•														Labor	costs	includes	training,	development,	and	testing

•														Material	costs	includes	parts	and	supplies

•														Manufacturing	costs	depend	on	the	number	and	complexity	of	the	components

•														Maintenance	costs	involve	revisions	to	fix	bugs	and	perform	upgrades

•														Second	source	availability

	

A	second	group	of	factors	deals	with	memory	and	the	processor:

•														ROM	size	must	be	big	enough	to	hold	instructions	and	fixed	data	for	the
software

•														RAM	size	must	be	big	enough	to	hold	locals,	parameters,	and	global	variables

•														EEPROM	to	hold	nonvolatile	fixed	constants	that	are	field-configurable

•														Processor	must	be	capable	of	performing	all	calculations	in	real	time

•														8-,	16-,	or	32-bit	data	size	should	match	most	of	the	data	to	be	processed

•														Numerical	operations	like	multiply,	divide,	saturation,	floating	point

•														Special	functions	like	multiply/accumulate,	fuzzy	logic,	complex	numbers

•														Availability	of	high-level	language	cross-compilers,	simulators,	and	debuggers

	

A	third	group	of	factors	deals	with	input	and	output:

•														I/O	bandwidth	determines	the	input/output	rate

•														Parallel	ports	for	the	input/output	digital	signals

•														Serial	ports	to	interface	with	other	computers	or	I/O	devices

•														Timer	functions	to	generate	signals,	measure	frequency,	and	measure	period

•														Pulse	width	modulation	for	the	output	signals	in	many	control	applications

•														ADC	that	is	used	to	convert	analog	inputs	to	digital	numbers

•														DAC	that	is	used	to	convert	digital	numbers	to	analog	outputs

•														Special	I/O	functions	such	as	CAN,	Ethernet	and	USB

	

A	fourth	group	of	factors	deals	with	system	level	design:

•														Package	size	and	environmental	issues	affect	many	embedded	systems

•														Power	requirements	because	many	systems	will	be	battery	operated

When	considering	speed	it	is	best	to	compare	time	to	execute	a	benchmark	program
similar	to	your	specific	application,	rather	than	just	comparing	bus	frequency.	One	of	the
difficulties	is	that	the	microcontroller	selection	depends	on	the	speed	and	size	of	the
software,	but	the	software	cannot	be	written	without	the	computer.	Given	this	uncertainty,
it	is	best	to	select	a	family	of	devices	with	a	range	of	execution	speeds	and	memory
configurations.	In	this	way	a	prototype	system	with	large	amounts	of	memory	and
peripherals	can	be	purchased	for	software	and	hardware	development,	and	once	the	design
is	in	its	final	stages,	the	specific	version	of	the	computer	can	be	selected	now	knowing	the
memory	and	speed	requirements	for	the	project.	In	conclusion,	while	this	book	focuses	on
the	ARM ® 	CortexTM-M	microcontrollers,	it	is	expected	that	once	the	study	of	this	book
is	completed,	the	reader	will	be	equipped	with	the	knowledge	to	select	the	proper
microcontroller	and	complete	the	software	design.

2.8.	Exercises
2.1	What	is	special	about	Register	13?	Register	14?	Register	15?

2.2		In	20	words	or	less	describe	the	differences	between	von	Neumann	and	Harvard
architectures.

2.3		What	happens	when	you	load	a	value	into	Register	15	with	bit	0	set?

2.4		Write	C	code	that	sets	bit	31	of	memory	location	0x2000.1234	using	bit-banding.

2.5		Write	C	code	that	clears	bit	16	of	memory	location	0x2000.8000	using	bit-banding.

2.6		Write	C	code	that	sets	bit	1	of	memory	location	0x4000.5400	using	bit-banding.	What
effect	does	this	operation	have?

2.7		Write	C	code	that	clears	bit	2	of	memory	location	0x4000.7400	using	bit-banding.
What	effect	does	this	operation	have?

2.8		How	much	RAM	and	ROM	are	in	TM4C123?	What	are	the	specific	address	ranges	of
these	memory	components?

2.9		How	much	RAM	and	ROM	are	in	LM3S1968?	What	are	the	specific	address	ranges
of	these	memory	components?

2.10		How	much	RAM	and	ROM	are	in	LM3S8962?	What	are	the	specific	address	ranges
of	these	memory	components?

2.11		What	are	the	bits	in	the	Program	Status	Register	(PSR)	of	ARM ® 	CortexTM-M?

2.12	What	happens	if	you	execute	these	four	assembly	instructions?

PUSH	{R1}

PUSH	{R2}

POP	{R1}

POP	{R2}

	

2.13		Write	assembly	code	that	pushes	registers	R1	R3	and	R5	onto	the	stack.

2.14		How	do	you	initialize	the	stack?

2.15		How	do	you	specify	where	to	begin	execution	after	a	reset?

2.16		What	does	word-aligned	mean?

2.17		When	does	the	LR	have	to	be	pushed	on	the	stack?

2.18Does	the	associative	principle	hold	for	signed	integer	multiply	and	divide?
Assume Out1	Out2	A	B	C are	all	the	same	precision	(e.g.,	32	bits).	In	particular	do	these
two	C	calculations	always	achieve	identical	outputs?	If	not,	give	an	example.

Out1	=	(A*B)/C;

Out2	=	A*(B/C);

	

2.19Does	the	associative	principle	hold	for	signed	integer	addition	and	subtraction?
Assume Out3	Out4	A	B	C 	are	all	the	same	precision	(e.g.,	32	bits).	In	particular	do	these
two	C	calculations	always	achieve	identical	outputs?	If	not,	give	an	example.

Out3	=	(A+B)-C;

Out4	=	A+(B-C);

	

2.20	What	are	parallel	ports	are	available	on	the	TM4C123?

2.21	What	are	parallel	ports	are	available	on	the	LM3S1968?

2.22	What	are	parallel	ports	are	available	on	the	LM3S8962?

2.23	What	is	a	direction	register?	Why	does	the	microcontroller	have	direction	registers?

2.24	What	is	the	alternative	function	register?

D2.25	Write	software	that	initializes	LM3S/LM4F/TM4C	Port	A,	so	pins	7,5,3,1	are
output	and	the	rest	are	input.

D2.26	Write	software	that	initializes	LM3S/LM4F/TM4C	Port	A,	so	pins	5,4	are	output
and	the	rest	are	input.

D2.27	Write	software	that	initializes	LM3S/LM4F/TM4C	Port	A,	so	pins	5,	4,	and	3	are
output.	Make	the	initialization	friendly.	Design	an	output	function	that	takes	a	3-bit
parameter	(0	to	7)	and	writes	the	value	to	these	three	pins.	Use	bit-specific	addressing	for
the	output.

D2.28	Write	software	that	initializes	LM3S/LM4F/TM4C	Port	E,	so	pin	1	is	an	output.
Make	the	initialization	friendly.	Design	an	output	function	that	takes	a	1-bit	parameter	(0
or	1)	and	writes	the	value	to	this	pin.	Use	bit-specific	addressing	for	the	output.

D2.29	Redesign	the	SSR	interface	shown	in	Figure	2.33	using	a	+5V	source.	In	particular,
recalculate	the	required	resistor	value	if	we	were	to	change	the	+3.3V	to	+5V.

D2.30	Redesign	the	LED	interface	shown	in	Figure	2.35	if	the	four	LEDs	operated	at	1.9
V	and	1	mA.	In	particular,	recalculate	the	required	resistor	values	if	we	were	to	change	to
these	LEDs.

D2.31	Rewrite	the	software	in	Program	2.8	so	the	LED	pattern	changes	every	0.1	sec.

D2.32	Design	a	switch	interface	that	it	is	negative	logic.	I.e.,	the	input	is	low	if	the	switch
is	pressed	and	high	if	the	switch	is	not	pressed.

2.9.	Lab	Assignments
The	labs	in	this	book	involve	the	following	steps:

Part	a)	During	the	analysis	phase	of	the	project	determine	additional	specifications	and
constraints.	In	particular,	discover	which	microcontroller	you	are	to	use,	whether	you	are
to	develop	in	assembly	language	or	in	C,	and	whether	the	project	is	to	be	simulated	then
built,	just	built	or	just	simulated.	For	example,	inputs	can	be	created	with	switches	and
outputs	can	be	generated	with	LEDs.	The	UART	can	be	interfaced	to	a	PC,	and	a
communication	program	like	PuTTY	can	be	used	to	interact	with	the	system.

Part	b)	Design,	build,	and	test	the	hardware	interfaces.	Use	a	computer-aided-drawing
(CAD)	program	to	draw	the	hardware	circuits.	Label	all	pins,	chips,	and	resistor	values.	In
this	chapter,	there	will	be	one	switch	for	each	input	and	one	LED	for	each	output.	Connect
the	switch	interfaces	to	microcontroller	input	pins,	and	connect	the	LED	interfaces	to
microcontroller	output	pins.	Pressing	the	switch	will	signify	a	high	input	logic	value.	You
should	activate	the	LED	to	signify	a	high	output	logic	value.

Part	c)	Design,	implement	and	test	the	software	that	initializes	the	I/O	ports	and	performs
the	specified	function.	Often	a	main	program	is	used	to	demonstrate	the	system.

Lab	2.1	The	overall	objective	is	to	create	a	NOT	gate.	The	system	has	one	digital	input
and	one	digital	output,	such	that	the	output	is	the	logical	complement	of	the	input.
Implement	the	design	such	that	the	complement	function	occurs	in	the	software	of	the
microcontroller.

Lab	2.2	The	overall	objective	is	to	create	a	3-input	AND	gate.	The	system	has	three
digital	inputs	and	one	digital	output,	such	that	the	output	is	the	logical	and	of	the	three
inputs.	Implement	the	design	such	that	the	AND	function	occurs	in	the	software	of	the
microcontroller.

Lab	2.3	The	overall	objective	is	to	create	a	2-input	EXCLUSIVE	OR	gate.	The	system
has	two	digital	inputs	and	one	digital	output,	such	that	the	output	is	the	logical	exclusive
or	of	the	two	inputs.	Implement	the	design	such	that	the	EXCLUSIVE	OR	function	occurs
in	the	software.

Lab	2.4	The	overall	objective	is	to	create	a	3-input	voting	logic.	The	system	has	three
digital	inputs	and	one	digital	output,	such	that	the	output	is	high	if	and	only	if	two	or	more
inputs	are	high.	This	means	the	output	will	be	low	if	two	for	more	inputs	are	low.
Implement	the	design	such	that	the	voting	function	occurs	in	the	software	of	the
microcontroller.

Lab	2.5	The	overall	objective	is	to	a	variable	frequency	oscillator.	The	system	has	two
digital	inputs	and	two	digital	outputs.	If	input1	is	true	the	digital	output1	oscillates	at	262
Hz.	If	the	input1	is	false	the	output1	remains	low.	If	input2	is	true	the	digital	output2
oscillates	at	392	Hz.	If	the	input2	is	false	the	output2	remains	low.	If	you	connect	each
output	to	a	10	k � 	resistor	as	shown	in	the	figure,	then	you	can	hear	the	tones	as	middle	C
and	middle	G.

	

3.	Software	Design
Chapter	3	objectives	are	to:
•	Present	the	software	design	process

•	Describe	a	software	coding	style

•	Define	modules,	board	support	package,	and	device	drivers

•	Present	a	design	method	using	finite	state	machines

•	Define	the	concept	of	threads

•	Implement	FIFO	queues

•	Present	a	simple	memory	manager	as	an	introduction	to	the	heap

•	Introduce	the	art	of	debugging

	
The	ultimate	success	of	an	embedded	system	project	depends	both	on	its	software	and
hardware.	Computer	scientists	pride	themselves	in	their	ability	to	develop	quality
software.	Similarly	electrical	engineers	are	well-trained	in	the	processes	to	design	both
digital	and	analog	electronics.	Manufacturers,	in	an	attempt	to	get	designers	to	use	their
products,	provide	application	notes	for	their	hardware	devices.		The	main	objective	of	this
book	is	to	combine	effective	design	processes	together	with	practical	software	techniques
in	order	to	develop	quality	embedded	systems.	As	the	size	and	complexity	of	the	software
increase,	software	development	changes	from	simple	“coding”	to	“software	engineering”.
Naturally,	as	the	system	complexity	increases	so	do	the	engineering	skills	required	to
design	such	systems.	These	software	skills	presented	in	this	chapter	include	modular
design,	layered	architecture,	abstraction,	and	verification.	Even	if	real-time	embedded
systems	are	on	the	small	end	of	the	size	scale,	never	the	less,	these	systems	can	be	quite
complex.	Therefore,	the	above	mentioned	skills	are	essential	for	developing	embedded
systems.	This	chapter	on	software	development	is	placed	early	in	the	book	because	writing
good	software	is	an	art	that	must	be	developed	and	cannot	be	added	on	at	the	end	of	a
project.	Good	software	combined	with	average	hardware	will	always	outperform	average
software	on	good	hardware.	In	this	chapter	we	will	outline	various	techniques	for
developing	quality	software	and	then	apply	these	techniques	throughout	the	remainder	of
the	book.

3.1.	Attitude
Good	engineers	employ	well-defined	design	processes	when	developing	complex	systems.
When	we	work	within	a	structured	framework,	it	is	easier	to	prove	our	system	works
(verification)	and	to	modify	our	system	in	the	future	(maintenance).	As	our	software
systems	become	more	complex,	it	becomes	increasingly	important	to	employ	well-defined
software	design	processes.	Throughout	this	book,	a	very	detailed	set	of	software
development	rules	will	be	presented.	This	book	focuses	on	real-time	embedded	systems
written	in	C.	At	first,	it	may	seem	radical	to	force	such	a	rigid	structure	to	software.	We
might	wonder	if	creativity	will	be	sacrificed	in	the	process.	True	creativity	is	more	about
effective	solutions	to	important	problems	and	not	about	being	sloppy	and	inconsistent.
Because	software	maintenance	is	a	critical	task,	the	time	spent	organizing,	documenting,
and	testing	during	the	initial	development	stages	will	reap	huge	dividends	throughout	the
life	of	the	software	project.

Observation:	The	easiest	way	to	debug	is	to	write	software	without	any	bugs.

We	define	clients	as	people	who	will	use	our	software.	Sometimes,	the	client	is	the	end-
user	who	uses	the	embedded	system.	Other	times,	we	develop	hardware/software
components	that	plug	into	a	larger	system.	In	this	case,	the	client	develops	software	that
will	call	our	functions.	We	define	coworkers	as	engineers	who	will	maintain	our	software.
We	must	make	it	easy	for	a	coworker	to	debug,	use,	and	extend	our	software.

Writing	quality	software	has	a	lot	to	do	with	attitude.	We	should	be	embarrassed	to	ask	our
coworkers	to	make	changes	to	our	poorly	written	software.	Since	so	much	software
development	effort	involves	maintenance,	we	should	create	software	modules	that	are	easy
to	change.	In	other	words,	we	should	expect	each	piece	of	our	code	will	be	read	by	another
engineer	in	the	future,	whose	job	it	will	be	to	make	changes	to	our	code.	We	might	be
tempted	to	quit	a	software	project	once	the	system	is	running,	but	this	short	time	we	might
save	by	not	organizing,	documenting,	and	testing	will	be	lost	many	times	over	in	the
future	when	it	is	time	to	update	the	code.

As	project	managers,	we	must	reward	good	behavior	and	punish	bad	behavior.	A
company,	in	an	effort	to	improve	the	quality	of	their	software	products,	implemented	the
following	policies.	“The	employees	in	the	customer	relations	department	receive	a	bonus
for	every	software	bug	that	they	can	identify.	These	bugs	are	reported	to	the	software
developers,	who	in	turn	receive	a	bonus	for	every	bug	they	fix.”

Checkpoint	3.1:	Why	did	the	above	policy	fail	horribly?	

We	should	demand	of	ourselves	that	we	deliver	bug-free	software	to	our	clients.		Again,
we	should	be	embarrassed	when	our	clients	report	bugs	in	our	code.	We	should	be
ashamed	when	other	programmers	find	bugs	in	our	code.	There	are	four	steps	we	can	take
to	facilitate	this	important	aspect	of	software	design.

Test	it	now.	When	we	find	a	bug,	fix	it	immediately.	The	longer	we	put	off	fixing	a	mistake
the	more	complicated	the	system	becomes,	making	it	harder	to	find.	Remember	that	bugs
do	not	go	away	automatically,	but	we	can	make	the	system	so	complex	that	the	bugs	will
manifest	themselves	in	a	mysterious	and	obscure	fashion.	For	the	same	reason,	we	should
completely	test	each	module	individually,	before	combining	them	into	a	larger	system.	We
should	not	add	new	features	before	we	are	convinced	the	existing	features	are	bug-free.	In
this	way,	we	start	with	a	working	system,	add	features,	and	then	debug	this	system	until	it
is	working	again.

This	incremental	approach	makes	it	easier	to	track	progress.	It	allows	us	to	undo	bad
decisions,	because	we	can	always	revert	back	to	a	previous	working	system.	Adding	new
features	before	the	old	ones	are	debugged	is	very	risky.	With	this	sloppy	approach,	we
could	easily	reach	the	project	deadline	with	100%	of	the	features	implemented,	but	have	a
system	that	doesn’t	run.	In	addition,	once	a	bug	is	introduced,	the	longer	we	wait	to
remove	it,	the	harder	it	will	be	to	correct.	This	is	particularly	true	when	the	bugs	interact
with	each	other.	Conversely,	with	the	incremental	approach,	when	the	project	schedule
slips,	we	can	deliver	a	working	system	at	the	deadline	that	supports	some	of	the	features.			

Maintenance	Tip:	Go	from	working	system	to	working	system.

Plan	for	testing.	How	to	test	should	be	considered	at	the	beginning,	middle,	and	end	of	a
project.	In	particular,	testing	should	be	included	as	part	of	the	initial	design.	Our	testing
and	the	client’s	usage	go	hand	in	hand.	In	particular,	how	we	test	the	software	module	will
help	the	client	understand	the	context	and	limitations	of	how	our	software	is	to	be	used.	It
often	makes	sense	to	explain	the	testing	procedures	to	the	client	as	an	effort	to
communicate	the	features	and	limitations	of	the	module.	Furthermore,	a	clear
understanding	of	how	the	client	wishes	to	use	our	software	is	critical	for	both	the	software
design	and	its	testing.	For	example,	after	seeing	how	you	tested	the	module,	the	client	may
respond,	“That’s	nice,	but	what	I	really	want	it	to	do	is	…”.	If	this	happens,	it	makes	sense
to	rewrite	the	requirements	document	to	reflect	this	new	understanding	of	the	client’s
expectation.

Maintenance	Tip:	It	is	better	to	have	some	parts	of	the	system	that	run	with	100%
reliability	than	to	have	the	entire	system	with	bugs.

Get	help.	Use	whatever	features	are	available	for	organization	and	debugging.	Pay
attention	to	warnings,	because	they	often	point	to	misunderstandings	about	data	or
functions.		Misunderstanding	of	assumptions	can	cause	bugs	when	the	software	is
upgraded,	or	reused	in	a	different	context	than	originally	conceived.	Remember	that
computer	time	is	a	lot	cheaper	than	programmer	time.	It	is	a	mistake	to	debug	an
embedded	system	simply	by	observing	its	inputs	and	outputs.	We	need	to	use	both
software	and	hardware	debugging	tools	to	visualize	internal	parameters	within	the	system.

Maintenance	Tip:	It	is	better	to	have	a	system	that	runs	slowly	than	to	have	one	that
doesn’t	run	at	all.

Divide	and	conquer.	In	the	early	days	of	microcomputer	systems,	software	size	could	be
measured	in	hundreds	of	lines	of	source	code	or	thousands	of	bytes	of	object	code.	These
early	systems,	due	to	their	small	size,	were	inherently	simple.	The	explosion	of	hardware
technology	(both	in	speed	and	size)	has	led	to	a	similar	increase	in	the	size	of	software
systems.	The	only	hope	for	success	in	a	large	software	system	will	be	to	break	it	into
simple	modules.	In	most	cases,	the	complexity	of	the	problem	itself	cannot	be	avoided.
E.g.,	there	is	just	no	simple	way	to	get	to	the	moon.	Nevertheless,	a	complex	system	can
be	created	out	of	simple	components.	A	real	creative	effort	is	required	to	orchestrate
simple	building	blocks	into	larger	modules,	which	themselves	are	grouped.		We	use	our
creativity	to	break	a	complex	problem	into	simple	components,	rather	than	developing
complex	solutions	to	simple	problems.

Observation:	There	are	two	ways	of	constructing	a	software	design:	one	way	is	to	make	it
so	simple	that	there	are	obviously	no	deficiencies	and	the	other	way	is	make	it	so
complicated	that	there	are	no	obvious	deficiencies.	C.A.R.	Hoare,	“The	Emperor’s	Old
Clothes,”	CACM	Feb.	1981.

3.2.	Quality	Programming
Software	development	is	similar	to	other	engineering	tasks.	We	can	choose	to	follow	well-
defined	procedures	during	the	development	and	evaluation	phases,	or	we	can	meander	in	a
haphazard	way	and	produce	code	that	is	hard	to	test	and	harder	to	change.	The	ultimate
goal	of	the	system	is	to	satisfy	the	stated	objectives	such	as	accuracy,	stability,	and
input/output	relationships.	Nevertheless	it	is	appropriate	to	separately	evaluate	the
individual	components	of	the	system.	Therefore	in	this	section,	we	will	evaluate	the
quality	of	our	software.	There	are	two	categories	of	performance	criteria	with	which	we
evaluate	the	“goodness”	of	our	software.	Quantitative	criteria	include	dynamic	efficiency
(speed	of	execution),	static	efficiency	(ROM	and	RAM	program	size),	and	accuracy	of	the
results.	Qualitative	criteria	center	on	ease	of	software	maintenance.	Another	qualitative
way	to	evaluate	software	is	ease	of	understanding.	If	your	software	is	easy	to	understand
then	it	will	be:

				Easy	to	debug,	including	both	finding	and	fixing	mistakes
				Easy	to	verify,	meaning	we	can	prove	it	is	correct
				Easy	to	maintain,	meaning	we	can	add	new	features

	

Common	error:	Programmers	who	sacrifice	clarity	in	favor	of	execution	speed	often
develop	software	that	runs	fast	but	is	error-prone	and	difficult	to	change.	

Golden	Rule	of	Software	Development:	Write	software	for	others	as	you	wish	they
would	write	for	you.

3.2.1.	Quantitative	Performance	Measurements
In	order	to	evaluate	our	software	quality,	we	need	performance	measures.	The	simplest
approaches	to	this	issue	are	quantitative	measurements.	Dynamic	efficiency	is	a	measure
of	how	fast	the	program	executes.	It	is	measured	in	seconds	or	processor	bus	cycles.
Because	of	the	complexity	of	the	CortexTM-M,	it	will	be	hard	to	estimate	execution	speed
by	observing	the	assembly	language	generated	by	the	compiler.	Rather,	we	will	employ
methods	to	experimentally	measure	execution	speed.	Static	efficiency	is	the	number	of
memory	bytes	required.	Since	most	embedded	computer	systems	have	both	RAM	and
ROM,	we	specify	memory	requirement	in	global	variables,	stack	space,	fixed	constants,
and	program	object	code.	The	global	variables	plus	maximum	stack	size	must	fit	into	the
available	RAM.	Similarly,	the	fixed	constants	plus	program	size	must	fit	into	the	available
ROM.	We	can	judge	our	software	system	according	to	whether	or	not	it	satisfies	given
constraints,	like	software	development	costs,	memory	available,	and	time	table.	Many	of
the	system	specifications	are	quantitative,	and	hence	are	an	appropriate	measure	of	quality.

3.2.2.	Qualitative	Performance	Measurements

Qualitative	performance	measurements	include	those	parameters	to	which	we	cannot
assign	a	direct	numerical	value.	Often	in	life	the	most	important	questions	are	the	easiest
to	ask,	but	the	hardest	to	answer.	Such	is	the	case	with	software	quality.	So	therefore	we
ask	the	following	qualitative	questions.	Can	we	prove	our	software	works?	Is	our	software
easy	to	understand?	Is	our	software	easy	to	change?	Since	there	is	no	single	approach	to
writing	quality	software,	I	can	only	hope	to	present	some	techniques	that	you	may	wish	to
integrate	into	your	own	software	style.		In	fact,	we	will	devote	most	this	chapter	to	the
important	issue	of	developing	quality	software.	In	particular,	we	will	study	self-
documented	code,	abstraction,	modularity,	and	layered	software.	These	parameters	indeed
play	a	profound	effect	on	the	bottom-line	financial	success	of	our	projects.	Although	quite
real,	because	there	is	often	not	an	immediate	and	direct	relationship	between	software
quality	and	profit,	we	may	be	tempted	to	dismiss	its	importance.

Observation:	Most	people	get	better	with	practice.	So	if	you	wish	to	become	a	better
programmer,	I	suggest	you	write	great	quantities	of	software.

To	get	a	benchmark	on	how	good	a	programmer	you	are,	I	challenge	you	to	two	tests.	In
the	first	test,	find	a	major	piece	of	software	that	you	have	written	over	12	months	ago,	and
then	see	if	you	can	still	understand	it	enough	to	make	minor	changes	in	its	behavior.	The
second	test	is	to	exchange	with	a	peer	a	major	piece	of	software	that	you	have	both
recently	written	(but	not	written	together),	then	in	the	same	manner,	if	you	can	make
minor	changes	to	each	other’s	software.

Observation:	You	can	tell	if	you	are	a	good	programmer	if	1)	you	can	understand	your
own	code	12	months	later,	and	2)	others	can	make	changes	to	your	code.

3.3.	Software	Style	Guidelines
One	of	the	recurring	themes	of	this	software	style	section	is	consistency.	Maintaining	a
consistent	style	will	help	us	locate	and	understand	the	different	components	of	our
software,	as	well	as	prevent	us	from	forgetting	to	include	a	component	or	worse	including
it	twice.

3.3.1.	Organization	of	a	code	file
The	following	regions	should	occur	in	this	order	in	every	code	file	(e.g.,	file.c).

Opening	comments.	The	first	line	of	every	file	should	contain	the	file	name.	This	is
because	some	printers	do	not	automatically	print	the	name	of	the	file.	Remember	that
these	opening	comments	will	be	duplicated	in	the	corresponding	header	file	(e.g.,	file.h)
and	are	intended	to	be	read	by	the	client,	the	one	who	will	use	these	programs.	If	major
portions	of	this	software	are	copied	from	copyrighted	sources,	then	we	must	satisfy	the
copyright	requirements	of	those	sources.	The	rest	of	the	opening	comments	should	include

•	The	overall	purpose	of	the	software	module

•	The	names	of	the	programmers

•	The	creation	(optional)	and	last	update	dates

•	The	hardware/software	configuration	required	to	use	the	module

•	Copyright	information

	
Including	.h	files.	Next,	we	will	place	the #include 	statements	that	add	the	necessary
header	files.	Adding	other	code	files,	if	necessary,	will	occur	at	the	end	of	the	file,	but	here
at	the	top	of	the	file	we	include	just	the	header	files.	Normally	the	order	doesn’t	matter,	so
we	will	list	the	include	files	in	a	hierarchical	fashion	starting	with	the	lowest	level	and
ending	at	the	highest	high.	If	the	order	of	these	statements	is	important,	then	write	a
comment	describing	both	what	the	proper	order	is	and	why	the	order	is	important.	Putting
them	together	at	the	top	will	help	us	draw	a	call	graph,	which	will	show	us	how	our
modules	are	connected.		In	particular,	if	we	consider	each	code	file	to	be	a	separate
module,	then	the	list	of	#include 	statements	specifies	which	other	modules	can	be	called
from	this	module.	Of	course	one	header	file	is	allowed	to	include	other	header	files.
However,	we	should	avoid	having	one	header	file	include	other	header	files.	This
restriction	makes	the	organizational	structure	of	the	software	system	easier	to	observe.	Be
careful	to	include	only	those	files	that	are	absolutely	necessary.	Adding	unnecessary
include	statements	will	make	our	system	seem	more	complex	than	it	actually	is.

extern	references.	After	including	the	header	files,	we	can	declare	any	external	variables
or	functions.	External	references	will	be	resolved	by	the	linker,	when	various	modules	are
linked	together	to	create	a	single	executable	application.	Placing	them	together	at	the	top
of	the	file	will	help	us	see	how	this	software	system	fits	together	(i.e.,	is	linked	to)	other
systems.

#define	statements.	After	external	references,	we	should	place	the #define 	macros.	These
macros	can	define	operations	or	constants.	Since	these	definitions	are	located	in	the	code
file	(e.g.,	file.c),	they	will	be	private.	This	means	they	are	available	within	this	file	only.	If
the	client	does	not	need	to	use	or	change	the	macro	operation	or	constant,	then	it	should	be
made	private	by	placing	it	here	in	the	code	file.	Conversely,	if	we	wish	to	create	public
macros,	then	we	place	them	in	the	header	file	for	this	module.

struct	union	enum	statements.	After	the	define	statements,	we	should	create	the	necessary
data	structures	using struct 	union and enum .	Again,	since	these	definitions	are	located
in	the	code	file	(e.g.,	file.c),	they	will	be	private.

Global	variables	and	constants.	After	the	structure	definitions,	we	should	include	the
global	variables	and	constants.	There	are	two	aspects	of	data	that	are	important.	First,	we
can	specify	where	the	data	is	allocated.	If	it	is	a	variable	that	needs	to	exist	permanently,
we	will	place	it	in	RAM	as	a	global	variable.	If	it	is	a	constant	that	needs	to	exist
permanently,	we	will	place	it	in	ROMusing const .	If	the	data	is	needed	temporarily,	we
can	define	it	as	a	local.	The	compiler	will	allocate	locals	in	registers	or	on	the	stack	in
whichever	way	is	most	efficient.

int32_t	PublicGlobal;															//	accessible	by	any	module

static	int32_t	PrivateGlobal;							//	accessible	in	this	file	only

const	int32_t	Constant=1234567;					//	in	ROM

void	function(void){

		static	int32_t	veryPrivateGlobal;	//	accessible	by	this	function	only

		int32_t	privateLocal;													//	accessible	by	this	function	only

}

We	define	a	global	variable	as	one	with	permanent	allocation.	In	the	above
examples, PublicGlobal 	PrivateGlobal and veryPrivateGlobal 	are	global. Constant
will	be	defined	in	ROM,	and	cannot	be	changed.	We	define	a	local	variable	as	one	with
temporary	allocation.	The	variable	privateLocal 	is	local	and	may	exist	on	the	stack	or	in
a	register.

The	second	aspect	of	the	data	is	its	scope.	Scope	specifies	which	software	can	access	the
data.	Public	variables	can	be	accessed	by	any	software.	Privatevariables	have	restricted
scope,	which	can	be	limited	to	the	one	file,	the	one	function,	or	even	to	one {} 	program
block.	In	general,	we	wish	to	minimize	the	scope	of	our	data.	Minimizing	scope	reduces
complexity	and	simplifies	testing.	If	we	specify	the	global	with	static ,	then	it	will	be
private	and	can	only	be	accessed	by	programs	in	this	file.	If	we	do	not	specify	the	global
with	static 	then	it	will	be	public,	and	can	be	accessed	any	program.	For	example,
the PublicGlobal 	variable	can	be	defined	in	other	modules	using	extern 	and	the	linker
will	resolve	the	reference.	However,	the PrivateGlobal 	cannot	be	accessed	from	software
in	another	file.	We	put	all	the	globals	together	before	any	function	definitions	to	symbolize
the	fact	that	any	function	in	this	file	has	access	to	these	globals.	If	we	have	a	permanent
variable	that	is	only	access	by	one	function,	then	it	should	be	defined	inside	the	function
with static .For	example,	the	variable veryPrivateGlobal 	is	permanently	allocated	in
RAM,	but	can	only	be	accessed	by	the	function.

Maintenance	Tip:	Reduce	complexity	in	our	system	by	restricting	direct	access	to	our
data.

Prototypes	of	private	functions.	After	the	globals,	we	should	add	any	necessary
prototypes.	Just	like	global	variables,	we	can	restrict	access	to	private	functions	by
defining	them	as	static.	Prototypes	for	the	public	functions	will	be	included	in	the
corresponding	header	file.	In	general,	we	will	arrange	the	code	implementations	in	a	top-
down	fashion.	Although	not	necessary,	we	will	include	the	parameter	names	with	the
prototypes.	Descriptive	parameter	names	will	help	document	the	usage	of	the	function.
For	example,	which	of	the	following	prototypes	is	easier	to	understand?

static	void	plot(int16_t,	int16_t);

static	void	plot(int16_t	time,	int16_t	pressure);

	

Implementations	of	the	functions.	The	heart	of	the	implementation	file	will	be,	of	course,
the	implementations.	Again,	private	functions	should	be	defined	as	static.	The	functions
should	be	sequenced	in	a	logical	manner.	The	most	typical	sequence	is	top-down,	meaning
we	begin	with	the	highest	level	and	finish	with	the	lowest	level.	Another	appropriate
sequence	mirrors	the	manner	in	which	the	functions	will	be	used.	For	example,	start	with
the	initialization	functions,	followed	by	the	operations,	and	end	with	the	shutdown
functions.	For	example:

	Open
	Input
	Output
	Close

	

Including	.c	files.	If	the	compiler	does	not	support	projects,	then	we	would	end	the	file
with	#include 	statements	that	add	the	necessary	code	files.	Since	most	compilers	support
projects,	we	should	use	its	organizational	features	and	avoid	including	code	files.	The
project	simplifies	the	management	of	large	software	systems	by	providing	organizational
structure	to	the	software	system.	Again,	if	we	use	projects,	then	including	code	files	will
be	unnecessary,	and	hence	should	be	avoided.

Employ	run-time	testing.	If	our	compiler	supports assert() functions,	use	them	liberally.	In
particular,	place	them	at	the	beginning	of	functions	to	test	the	validity	of	the	input
parameters.	Place	them	after	calculations	to	test	the	validity	of	the	results.	Place	them
inside	loops	to	verify	indices	and	pointers	are	valid.		There	is	a	secondary	benefit	to
using assert() .	The assert() 	statements	provide	inherent	documentation	of	the
assumptions.

3.3.2.	Organization	of	a	header	file
Once	again,	maintaining	a	consistent	style	facilitates	understanding	and	helps	to	avoid
errors	of	omission.	Definitions	made	in	the	header	file	will	be	public,	i.e.,	accessible	by	all
modules.	As	stated	earlier,	it	is	better	to	make	global	variables	private	rather	than	placing
them	in	the	header	file.		Similarly,	we	should	avoid	placing	actual	code	in	a	header	file.

There	are	two	types	of	header	files.	The	first	type	of	header	file	has	no	corresponding	code
file.	In	other	words,	there	is	a	file.h,	but	no	file.c.	In	this	type	of	header,	we	can	list	global
constants	and	helper	macros.		Examples	of	global	constants	are	I/O	port	addresses	(see
lm3s1968.h),	data	types	(see	integer.h)	and	calibration	coefficients.	Debugging	macros
could	be	grouped	together	and	placed	in	a	debug.h	file.	We	will	not	consider	software	in
these	types	of	header	files	as	belonging	to	a	particular	module.

The	second	type	of	header	file	does	have	a	corresponding	code	file.	The	two	files,	e.g.,
file.h,	and	file.c,	form	a	software	module.	In	this	type	of	header,	we	define	the	prototypes
for	the	public	functions	of	the	module.	The	file.h	contains	the	policies	(behavior	or	what	it
does)	and	the	file.c	file	contains	the	mechanisms	(functions	or	how	it	works.)	The
following	regions	should	occur	in	this	order	in	every	header	file.

Opening	comments.	The	first	line	of	every	file	should	contain	the	file	name.	This	is
because	some	printers	do	not	automatically	print	the	name	of	the	file.	Remember	that
these	opening	comments	should	be	duplicated	in	the	corresponding	code	file	(e.g.,	file.c)
and	are	intended	to	be	read	by	the	client,	the	one	who	will	use	these	programs.	We	should
repeat	copyright	information	as	appropriate.	The	rest	of	the	opening	comments	should
include

•	The	overall	purpose	of	the	software	module

•	The	names	of	the	programmers

•	The	creation	(optional)	and	last	update	dates

•	The	hardware/software	configuration	required	to	use	the	module

•	Copyright	information

	

Including	.h	files.	Nested	includes	in	the	header	file	should	be	avoided.	As	stated	earlier,
nested	includes	obscure	the	manner	in	which	the	modules	are	interconnected.

#define	statements.	Public	constants	and	macros	are	next.	Special	care	is	required	to
determine	if	a	definition	should	be	made	private	or	public.	One	approach	to	this	question
is	to	begin	with	everything	defined	as	private,	and	then	shift	definitions	into	the	public
category	only	when	deemed	necessary	for	the	client	to	access	in	order	to	use	the	module.
If	the	parameter	relates	to	what	the	module	does	or	how	to	use	the	module,	then	it	should
probably	be	public.	On	the	other	hand,	if	it	relates	to	how	it	works	or	how	it	is
implemented,	it	should	probably	be	private.

struct	union	enum	statements.	The	definitions	of	public	structures	allow	the	client	software
to	create	data	structures	specific	for	this	module.

Global	variables	and	constants.	If	at	all	possible,	public	global	variables	should	be
avoided.	Public	constants	follow	the	same	rules	as	public	definitions.	If	the	client	must
have	access	to	a	constant	to	use	the	module,	then	it	could	be	placed	in	the	header	file.

Prototypes	of	public	functions.	The	prototypes	for	the	public	functions	are	last.	Just	like
the	implementation	file,	we	will	arrange	the	code	implementations	in	a	top-down	fashion.
Comments	should	be	directed	to	the	client,	and	these	comments	should	clarify	what	the
function	does	and	how	the	function	can	be	used.	Examples	of	how	to	use	the	module	could
be	included	in	the	comments.

Often	we	wish	to	place	definitions	in	the	header	filethat	must	be	included	only	once.	If
multiple	files	include	the	same	header	file,	the	compiler	will	include	the	definitions
multiple	times.	Some	definitions,	such	as	function	prototypes,	can	be	defined	then
redefined.	However,	a	common	approach	to	header	files	uses #ifndef conditional
compilation.	If	the	object	is	not	defined,	then	the	compiler	will	include	everything	from
the #ifndef until	the	matching #endif .	Inside	of	course,	we	define	that	object	so	that	the
header	file	is	skipped	on	subsequent	attempts	to	include	it.	Each	header	file	must	have	a
unique	object.	One	way	to	guarantee	uniqueness	is	to	use	the	name	of	the	header	file	itself
in	the	object	name.

#ifndef	__File_H__

#define	__File_H__

struct	Position{

		int	bValid;			//	true	if	point	is	valid

		int16_t	x;					//	in	cm

		int16_t	y;					//	in	cm

};

typedef	struct	Position	PositionType;

#endif

3.3.3.	Formatting
The	rules	set	out	in	this	subsection	are	not	necessary	for	the	program	to	compile	or	to	run.
Rather	the	intent	of	the	rules	are	to	make	the	software	easier	to	understand,	easier	to
debug,	and	easier	to	change.	Just	like	beginning	an	exercise	program,	these	rules	may	be
hard	to	follow	at	first,	but	the	discipline	will	pay	dividends	in	the	future.

Make	the	software	easy	to	read.	I	strongly	object	to	hardcopy	printouts	of	computer
programs	during	the	development	phase	of	a	project.	At	this	time,	there	are	frequent
updates	made	by	multiple	members	of	the	software	development	team.	Because	a
hardcopy	printout	will	be	quickly	obsolete,	we	should	develop	and	debug	software	by
observing	it	on	the	computer	screen.	In	order	to	eliminate	horizontal	scrolling,	no	line	of
code	should	be	wider	than	the	size	of	the	editor	screen.	If	we	do	make	hard	copy	printouts
of	the	software	at	the	end	of	a	project,	this	rule	will	result	in	a	printout	that	is	easy	to	read.

Indentation	should	be	set	at	2	spaces.	When	transporting	code	from	one	computer	to
another,	the	tab	settings	may	be	different.	So,	what	looks	good	on	one	computer	may	look
ugly	on	another.	For	this	reason,	we	should	avoid	tabs	and	use	just	spaces.	Local	variable
definitions	can	go	on	the	same	line	as	the	function	definition,	or	in	the	first	column	on	the
next	line.

Be	consistent	about	where	we	put	spaces.	Similar	to	English	punctuation,	there	should	be
no	space	before	a	comma	or	a	semicolon,	but	there	should	be	at	least	one	space	or	a
carriage	return	after	a	comma	or	a	semicolon.	There	should	be	no	space	before	or	after
open	or	close	parentheses.	Assignment	and	comparison	operations	should	have	a	single
space	before	and	after	the	operation.	One	exception	to	the	single	space	rule	is	if	there	are
multiple	assignment	statements,	we	can	line	up	the	operators	and	values.		For	example

		data					=	1;

		pressure	=	100;

		voltage		=	5;

	

Be	consistent	about	where	we	put	braces {} .	Misplaced	braces	cause	both	syntax	and
semantic	errors,	so	it	is	critical	to	maintain	a	consistent	style.	Place	the	opening	brace	at
the	end	of	the	line	that	opens	the	scope	of	the	multi-step	statement.	The	only	code	that	can
go	on	the	same	line	after	an	opening	brace	is	a	local	variable	declaration	or	a	comment.
Placing	the	open	brace	near	the	end	of	the	line	provides	a	visual	clue	that	a	new	code
block	has	started.		Place	the	closing	brace	on	a	separate	line	to	give	a	vertical	separation
showing	the	end	of	the	multi-step	statement.	The	horizontal	placement	of	the	close	brace
gives	a	visual	clue	that	the	following	code	is	in	a	different	block.			For	example

void	main(void){	int	i,	j,	k;

		j	=	1;

		if(sub0(j)){

for(i	=	0;	i	<	6;	i++){

sub1(i);

}

k	=	sub2(i,	j);

		}

		else{

k	=	sub3();

		}

}

	

Use	braces	after	all if , else , for , do , while , case ,	and switch 	commands,	even	if	the
block	is	a	single	command.	This	forces	us	to	consider	the	scope	of	the	block	making	it
easier	to	read	and	easier	to	change.	For	example,	assume	we	start	with	the	following	code.

		if(flag)

n	=	0;

	

Now,	we	add	a	second	statement	that	we	want	to	execute	also	if	the	flag	is	true.	The
following	error	might	occur	if	we	just	add	the	new	statement.

		if(flag)

n	=	0;

c	=	0;
	

If	all	of	our	blocks	are	enclosed	with	braces,	we	would	have	started	with	the	following.

		if(flag){

n	=	0;

		}
	

Now,	when	we	add	a	second	statement,	we	get	the	correct	software.

		if(flag){

n	=	0;

c	=	0;

		}

3.3.4.	Code	Structure

Make	the	presentation	easy	to	read.	We	define	presentation	as	the	look	and	feel	of	our
software	as	displayed	on	the	screen.	If	at	all	possible,	the	size	of	our	functions	should	be
small	enough	so	the	majority	of	a	“single	idea”	fits	on	a	single	computer	screen.	We	must
consider	the	presentation	as	a	two-dimensional	object.	Consequently,	we	can	reduce	the	2-
D	area	of	our	functions	by	encapsulating	components	and	defining	them	as	private
functions,	or	by	combining	multiple	statements	on	a	single	line.	In	the	horizontal
dimension,	we	are	allowed	to	group	multiple	statements	on	a	single	line	only	if	the
collection	makes	sense.	We	should	list	multiple	statements	on	a	single	line,	if	we	can	draw
a	circle	around	the	statements	and	assign	a	simple	collective	explanation	to	the	code.

Observation:	Most	professional	programmers	do	not	create	hard	copy	printouts	of	the
software.	Rather,	software	is	viewed	on	the	computer	screen,	and	developers	use	a	code
repository	like	Git	or	SVN	to	store	and	share	their	software.

Another	consideration	related	to	listing	multiple	statements	on	the	same	line	is	debugging.
The	compiler	often	places	debugging	information	on	each	line	of	code.	Breakpoints	in
some	systems	can	only	be	placed	at	the	beginning	of	a	line.	Consider	the	following	three
presentations.	Since	the	compiler	generates	exactly	the	same	code	in	each	case,	the
computer	execution	will	be	identical.	Therefore,	we	will	focus	on	the	differences	in	style.
The	first	example	has	a	horrific	style.

void	testFilter(int32_t	start,	int32_t	stop,	int32_t	step){	int32_t	x,y;

		initFilter();UART_OutString(“x(n)	y(n)”);	UART_OutChar(CR);

		for(x=start;x<=stop;	x=x+step){	y=filter(x);	UART_OutUDec(x);

		UART_OutChar(SP);	UART_OutUDec(y);	UART_OutChar(CR);}	}

	

The	second	example	places	each	statement	on	a	separate	line.	Although	written	in	an
adequate	style,	it	is	unnecessarily	vertical.

void	testFilter(int32_t	start,	int32_t	stop,	int32_t	step){

int32_t	x;

int32_t	y;

		initFilter();	

		UART_OutString(“x(n)	y(n)”);

		UART_OutChar(CR);

		for(x	=	start;	x	<=	stop;	x	=	x+step){

y	=	filter(x);			

UART_OutUDec(x);

UART_OutChar(SP);

UART_OutUDec(y);

UART_OutChar(CR);

		}

}

The	following	implementationgroups	the	two	variable	definitions	together	because	the
collection	can	be	considered	as	a	single	object.	The	variables	are	related	to	each	other.
Obviously, x and y 	are	the	same	type	(32-bit	signed),	but	in	a	physical	sense,	they	would
have	the	same	units.	For	example,	if x represents	a	signal	in	mV,	then y 	is	also	a	signal	in
mV.	Similarly,	the	UART	output	sequences	cause	simple	well-defined	operations.

void	testFilter(int32_t	start,	int32_t	stop,	int32_t	step){	int32_t	x,	y;

		initFilter();	

		UART_OutString(“x(n)	y(n)”);	UART_OutChar(CR);

		for(x	=	start;	x	<=	stop;	x	=	x+step){

y	=	filter(x);			

UART_OutUDec(x);	UART_OutChar(SP);	UART_OutUDec(y);
UART_OutChar(CR);

		}

}

The	“make	the	presentation	easy	to	read”	guideline	sometimes	comes	in	conflict	with	the
“be	consistent	where	we	place	braces”	guideline.	For	example,	the	following	example	is
obviously	easy	to	read,	but	violates	the	placement	of	brace	rule.

		for(i	=	0;	i	<	6;	i++)	dataBuf[i]	=	0;
	

When	in	doubt,	we	will	always	be	consistent	where	we	place	the	braces.	The	correct	style
is	also	easy	to	read.

		for(i	=	0;	i	<	6;	i++){

dataBuf[i]	=	0;

		}

	

Employ	modular	programming	techniques.	Complex	functions	should	be	broken	into
simple	components,	so	that	the	details	of	the	lower-level	operations	are	hidden	from	the
overall	algorithms	at	the	higher	levels.	An	interesting	question	arises:	Should	a
subfunction	be	defined	if	it	will	only	be	called	from	a	single	place?	The	answer	to	this
question,	in	fact	the	answer	to	all	questions	about	software	quality,	is	yes	if	it	makes	the
software	easier	to	understand,	easier	to	debug,	and	easier	to	change.

Minimize	scope.	In	general,	we	hide	the	implementation	of	our	software	from	its	usage.
The	scope	of	a	variable	should	be	consistent	with	how	the	variable	is	used.	In	a	military
sense,	we	ask	the	question,	“Which	software	has	the	need	to	know?”		Global	variables
should	be	used	only	when	the	lifetime	of	the	data	is	permanent,	or	when	data	needs	to	be
passed	from	one	thread	to	another.	Otherwise,	we	should	use	local	variables.	When	one
module	calls	another,	we	should	pass	data	using	the	normal	parameter-passing
mechanisms.	As	mentioned	earlier,	we	consider	I/O	ports	in	a	manner	similar	to	global
variables.	There	is	no	syntactic	mechanism	to	prevent	a	module	from	accessing	an	I/O
port,	since	the	ports	are	at	fixed	and	known	absolute	addresses.	Processors	used	to	build
general	purpose	computers	have	a	complex	hardware	system	to	prevent	unauthorized
software	from	accessing	I/O	ports,	but	the	details	are	beyond	the	scope	of	this	book.	In
most	embedded	systems,	however,	we	must	rely	on	the	does-access	rather	than	the	can-
access	method	when	dealing	with	I/O	devices.	In	other	words,	we	must	have	the	discipline
to	restrict	I/O	port	access	only	in	the	module	that	is	designed	to	access	it.	For	similar
reasons,	we	should	consider	each	interrupt	vector	address	separately,	grouping	it	with	the
corresponding	I/O	module.

Use	types.	Using	a typedef will	clarify	the	format	of	a	variable.	It	is	another	example	of
the	separation	of	mechanism	and	policy.	New	data	types	and	structures	will	begin	with	an
upper	case	letter.	The typedef 	allows	us	to	hide	the	representation	of	the	object	and	use	an
abstract	concept	instead.	For	example

typedef	int16_t	Temperature;	

void	main(void){	Temperature	lowT,	highT;

}

This	allows	us	to	change	the	representation	of	temperature	without	having	to	find	all	the
temperature	variables	in	our	software.		Not	every	data	type	requires	a typedef .	We	will
use	types	for	those	objects	of	fundamental	importance	to	our	software,	and	for	those
objects	for	which	a	change	in	implementation	is	anticipated.	As	always,	the	goal	is	to
clarify.	If	it	doesn’t	make	it	easier	to	understand,	easier	to	debug,	or	easier	to	change,	don’t
do	it.

Prototype	all	functions.	Public	functions	obviously	require	a	prototype	in	the	header	file.
In	the	implementation	file,	we	will	organize	the	software	in	a	top-down	hierarchical
fashion.	Since	the	highest	level	functions	go	first,	prototypes	for	the	lower-level	private
functions	will	be	required.	Grouping	the	low-level	prototypes	at	the	top	provides	a
summary	overview	of	the	software	in	this	module.	Include	both	the	type	and	name	of	the
input	parameters.	Specify	the	function	as	void	even	if	it	has	no	parameters.	These
prototypes	are	easy	to	understand:

void	start(int32_t	period,	void(*functionPt)(void));

int16_t	divide(int16_t	dividend,	int16_t	divisor);
	

These	prototypes	are	harder	to	understand:

start(int32_t,	(*)());

int16_t	divide(int16_t,	int16_t);
	

Declare	data	and	parameters	as	const	whenever	possible.	Declaring	an	object	as	const	has
two	advantages.	The	compiler	can	produce	more	efficient	code	when	dealing	with
parameters	that	don’t	change.	The	second	advantage	is	to	catch	software	bugs,	i.e.,
situations	where	the	program	incorrectly	attempts	to	modify	data	that	it	should	not
modify.	

goto	statements	are	not	allowed.		Debugging	is	hard	enough	without	adding	the
complexity	generated	when	using goto .		A	corollary	to	this	rule	is	when	developing
assembly	language	software,	we	should	restrict	the	branching	operations	to	the	simple
structures	allowed	in	C.

++	and	—	should	not	appear	in	complex	statements.	These	operations	should	only	appear
as	commands	by	themselves.	Again,	the	compiler	will	generate	the	same	code,	so	the	issue
is	readability.	The	statement

		*(—pt)	=	buffer[n++];

should	have	been	written	as

		—pt;

		*(pt)	=	buffer[n];

		n++;

	

If	it	makes	sense	to	group,	then	put	them	on	the	same	line.		The	following	code	is	allowed

		buffer[n]	=	0;	n++;

	

Be	a	parenthesis	zealot.	When	mixing	arithmetic,	logical,	and	conditional	operations,
explicitly	specify	the	order	of	operations.	Do	not	rely	on	the	order	of	precedence.	As
always,	the	major	style	issue	is	clarity.	Even	if	the	following	code	were	actually	to
perform	the	intended	operation	(which	in	fact	it	does	not),	it	would	be	poor	style.

		if(x	+	1	&	0x0F	==	y	|	0x04)
	

The	programmer	assigned	to	modify	it	in	the	future	will	have	a	better	chance	if	we	had
written

		if(((x	+	1)	&	0x0F)	==	(y	|	0x04))
	

Use	enum	instead	of	#define	or	const.	The	use	of	enum	allows	for	consistency	checking
during	compilation,	and	provides	for	easy	to	read	software.	A	good	optimizing	compiler
will	create	exactly	the	same	object	code	for	the	following	four	implementations	of	the
same	operation.	So	once	again,	we	focus	on	style.	In	the	first	implementation	we	needed
comments	to	explain	the	operations.	In	the	second	implementation	no	comments	are
needed	because	of	the	two	#define	statements.

//	implementation	1

int	Mode;		//	0	means	error

void	function1(void){

		Mode	=	1;	//	no	error

}

void	function2(void){

		if(Mode	==	0){	//	error?

UART_OutString(“error”);

		}

}

//	implementation	2

#define	NOERROR	1

#define	ERROR	0

int	Mode;

void	function1(void){

		Mode	=	NOERROR;

}

void	function2(void){

		if(Mode	==	ERROR){

UART_OutString(“error”);

		}

}

	

In	the	third	implementation,	shown	below	on	the	left,	the	compiler	performs	a	type-match,
making	sureMode , NOERROR ,	and ERROR 	are	the	same	type.	Consider	a	fourth
implementation	that	uses	enumeration	to	provide	a	check	of	both	type	and	value.		We	can
explicitly	set	the	values	of	the	enumerated	types	if	needed.

//	implementation	3

const	int	NOERROR	=	1;

const	int	ERROR	=	0;

int	Mode;

void	function1(void){

		Mode	=	NOERROR;

}

void	function2(void){

		if(Mode	==	ERROR){

UART_OutString(“error”);

		}

}

//	implementation	4

enum	Mode_state{	ERROR,

NOERROR};

enum	Mode_state	Mode;

void	function1(void){

		Mode	=	NOERROR;

}

void	function2(void){

		if(Mode	==	ERROR){

UART_OutString(“error”);

		}

}

	

#define 	statements,	if	used	properly,	can	clarify	our	software	and	make	our	software	easy
to	change.	It	is	proper	to	use	size	in	all	places	that	refer	to	the	size	of	the	data	array.

#define	SIZE	10

int16_t	Data[SIZE];

void	initialize(void){	int16_t	j;

		for(j	=	0;	j	<	SIZE;	j++)

Data[j]	=	0;

}

	

Don’t	use	bit-shift	for	arithmetic	operations.	Computer	architectures	and	compilers	used	to
be	so	limited	that	it	made	sense	to	perform	multiply/divide	by	2	using	a	shift	operation.
For	example,	when	multiplying	a	number	by	4,	we	might	be	tempted	to	write data<<2 .
This	is	wrong;	if	the	operation	is	multiply,	we	should	write data*4 .	Compiler
optimization	has	developed	to	the	point	where	the	compiler	can	choose	to
implement data*4 	as	either	a	shift	or	multiply	depending	on	the	instruction	set	of	the
computer.	When	we	write	multiply	when	we	mean	multiply,	and	write	shift	when	we	mean
shift	we	create	code	that	is	easy	to	understand.

3.3.5.	Naming	convention
Choosing	names	for	variables	and	functions	involves	creative	thought,	and	it	is	intimately
connected	to	how	we	feel	about	ourselves	as	programmers.	Of	the	policies	presented	in
this	section,	naming	conventions	may	be	the	hardest	habit	for	us	to	change.	The	difficulty
is	that	there	are	many	conventions	that	satisfy	the	“easy	to	understand”	objective.	Good
names	reduce	the	need	for	documentation.	Poor	names	promote	confusion,	ambiguity,	and
mistakes.	Poor	names	can	occur	because	code	has	been	copied	from	a	different	situation
and	inserted	into	our	system	without	proper	integration	(i.e.,	changing	the	names	to	be
consistent	with	the	new	situation.)	They	can	also	occur	in	the	cluttered	mind	of	a	second-
rate	programmer,	who	hurries	to	deliver	software	before	it	is	finished.	

Names	should	have	meaning.	If	we	observe	a	name	out	of	the	context	of	the	place	at
which	it	was	defined,	the	meaning	of	the	object	should	be	obvious.	The	object TxFifo 	is
clearly	atransmit	first	in	first	out	circular	queue.	The	function UART_OutString 	will
output	a	string	to	the	serial	port.

Avoid	ambiguities.	Don’t	use	variable	names	in	our	system	that	are	vague	or	have	more
than	one	meaning.	For	example,	it	is	vague	to	use temp ,	because	there	are	many
possibilities	for	temporary	data,	in	fact,	it	might	even	mean	temperature.	Don’t	use	two
names	that	look	similar,	but	have	different	meanings.	

Give	hints	about	the	type.	We	can	further	clarify	the	meaning	of	a	variable	by	including
phrases	in	the	variable	name	that	specify	its	type.	For	example, dataPt , timePt ,
and putPt are	pointers.	Similarly, voltageBuf , timeBuf ,	and pressureBuf are	data
buffers.	Other	good	phrases	include Flag	Mode	U16L	Index	Cnt ,	which	refer	to	Boolean
flag,	system	state,	unsigned	16-bit,	signed	32-bit,	index	into	an	array,	and	a	counter
respectively.

Use	the	same	name	to	refer	to	the	same	type	of	object.For	example,	everywhere	we	need	a
local	variable	to	store	an	ASCII	character	we	could	use	the	name letter .		Another
common	example	is	to	use	the	names i , j ,	and k for	indices	into	arrays.	The	names V1
and R1 	might	refer	to	a	voltage	and	a	resistance.	The	exact	correspondence	is	not	part	of
the	policies	presented	in	this	section,	just	the	fact	that	a	correspondence	should	exist.	Once
another	programmer	learns	which	names	we	use	for	which	object	types,	understanding	our
code	becomes	easier.

Use	a	prefix	to	identify	public	objects.	In	this	style	policy,	an	underline	character	will
separate	the	module	name	from	the	function	name.	As	an	exception	to	this	rule,	we	can
use	the	underline	to	delimit	words	in	all	upper-case	name	(e.g., #define
MIN_PRESSURE	10).	Functions	that	can	be	accessed	outside	the	scope	of	a	module	will
begin	with	a	prefix	specifying	the	module	to	which	it	belongs.		It	is	poor	style	to	create
publicvariables,	but	if	they	need	to	exist,	they	too	would	begin	with	the	module	prefix.
The	prefix	matches	the	file	name	containing	the	object.	For	example,	if	we	see	a	function
call, UART_OutString(“Hello	world”); 		we	know	this	public	function	belongs	to	the
UART	module,	where	the	policies	are	defined	in	UART.h	and	the	implementation	in
UART.c.	Notice	the	similarity	between	this	syntax	(e.g., UART_Init())	and	the
corresponding	syntax	we	would	use	if	programming	the	module	as	a	class	in	object-
oriented	language	like	C++	or	Java(e.g., UART.Init()).	Using	this	convention,	we	can
easily	distinguish	public	and	private	objects.

Use	upper	and	lower	case	to	specify	the	allocation	of	an	object.	We	will	define	I/O	ports
and	constants	using	no	lower-case	letters,	like	typing	with	caps-lock	on.	In	other	words,
names	without	lower-case	letters	refer	to	objects	with	fixed	values. TRUE , FALSE ,
and NULL are	good	examples	of	fixed-valued	objects.	As	mentioned	earlier,	constant
names	formed	from	multiple	words	will	use	an	underline	character	to	delimit	the
individual	words.	E.g.,MAX_VOLTAGE , UPPER_BOUND ,	and FIFO_SIZE .
Permanently-allocated	globals	will	begin	with	a	capital	letter,	but	include	some	lower-case
letters.	Local	variables	will	begin	with	a	lower-case	letter,	and	may	or	may	not	include
upper	case	letters.	Since	all	functions	are	permanently	allocated,	we	can	start	function
names	with	either	an	upper-case	or	lower-case	letter.	Using	this	convention,	we	can
distinguish	constants,	globals	and	locals.	An	object’s	properties	(public/private,
local/global,	constant/variable)	are	always	perfectly	clear	at	the	place	where	the	object	is
defined.	The	importance	of	the	naming	policy	is	to	extend	that	clarity	also	to	the	places
where	the	object	is	used.

Use	capitalization	to	delimit	words.	Names	that	contain	multiple	words	should	be	defined
using	a	capital	letter	to	signify	the	first	letter	of	the	word.	Creating	a	single	name	output	of
multiple	words	by	capitalizing	the	middle	words	and	squeezing	out	the	spaces	is	called
CamelCase.	Recall	that	the	case	of	the	first	letter	specifies	whether	is	the	local	or	global.
Some	programmers	use	the	underline	as	a	word-delimiter,	but	except	for	constants,	we
will	reserve	underline	to	separate	the	module	name	from	the	variable	name.	Table	3.1
presents	examples	of	the	naming	convention	used	in	this	book.

Type Examples

Constants

CR	SAFE_TO_RUN	PORTA	STACK_SIZE
START_OF_RAM

Local	variables maxTemperature	lastCharTyped	errorCnt

Private	global
variable

MaxTemperature	LastCharTyped	ErrorCnt

Public	global
variable

DAC_MaxVoltage	Key_LastCharTyped
Network_ErrorCnt

Private	function ClearTime	wrapPointer	InChar

Public	function Timer_ClearTime	RxFifo_Put	Key_InChar

Table	3.1.	Examples	of	names.	Use	underline	to	define	the	module	name.	Use
uppercase	for	constants.	Use	CamelCase	for	variables	and	functions.

	

Checkpoint	3.2:	How	can	you	tell	if	a	function	is	private	or	public?	

Checkpoint	3.3:	How	can	you	tell	if	a	variable	is	local	or	global?	

3.3.6.	Comments
Discussion	about	comments	was	left	for	last,	because	they	are	the	least	important	aspect
involved	in	writing	quality	software.	It	is	much	better	to	write	well-organized	software
with	simple	interfaces	having	operations	so	easy	to	understand	that	comments	are	not
necessary.	The	goal	of	this	section	is	to	present	ideas	concerning	software	documentation
in	general,	and	writing	comments	in	particular.	Because	maintenance	is	the	most	important
phase	of	software	development,	documentation	should	assist	software	maintenance.	In
many	situations	the	software	is	not	static,	but	continuously	undergoing	changes.	Because
of	this	liquidity,	I	believe	that	flowchart	and	software	manuals	are	not	good	mechanisms
for	documenting	programs	because	it	is	difficult	to	keep	these	types	of	documentation	up
to	date	when	modifications	are	made.	Therefore,	the	term	documentation	in	this	book
refers	almost	exclusively	to	comments	that	are	included	in	the	software	itself.

The	beginning	of	every	file	should	include	the	file	name,	purpose,	hardware	connections,
programmer,	date,	and	copyright.	For	example,	we	could	write:

//	filename		adtest.c	

//	Test	of	TM4C123	ADC

//	1	Hz	sampling	on	PD3	and	output	to	the	serial	port

//	Last	modified	6/21/14	by	Jonathan	W.	Valvano

//	Copyright	2014	by	Jonathan	W.	Valvano

//				You	may	use,	edit,	run	or	distribute	this	file

//				as	long	as	the	above	copyright	notice	remains

	

The	beginning	of	every	function	should	include	a	line	delimiting	the	start	of	the	function,
purpose,	input	parameters,	output	parameters,	and	special	conditions	that	apply.	The
comments	at	the	beginning	of	the	function	explain	the	policies	(e.g.,	how	to	use	the
function.)	These	comments,	which	are	similar	to	the	comments	for	the	prototypes	in	the
header	file,	are	intended	to	be	read	by	the	client.	For	example,	we	could	explain	a	function
this	way:

//––-––––UART_InUDec–––––––-

//	InUDec	accepts	ASCII	input	in	unsigned	decimal

//					and	converts	to	a	32-bit	unsigned	number

//					valid	range	is	0	to	4294967295

//	Input:	none

//	Output:	32-bit	unsigned	number

//	If	you	enter	a	number	above	2^32-1,	it	will	truncate

//	Backspace	will	remove	last	digit	typed

	

Comments	can	be	added	to	a	variable	or	constant	definition	to	clarify	the	usage.	In
particular,	comments	can	specify	the	units	of	the	variable	or	constant.	For	complicated
situations,	we	can	use	additional	lines	and	include	examples.	E.g.,

int16_t	V1;													//	voltage	at	node	1	in	mV,

//	range	-5000	mV	to	+5000	mV

uint16_t	Fs;				//	sampling	rate	in	Hz

int	FoundFlag;								//	0	if	keyword	not	yet	found,

//	1	if	found

uint16_t	Mode;		//	determines	system	action,

//	as	one	of	the	following	three	cases

#define	IDLE	0

#define	COLLECT	1

#define	TRANSMIT	2

	

Comments	can	be	used	to	describe	complex	algorithms.	These	types	of	comments	are
intended	to	be	read	by	our	coworkers.	The	purpose	of	these	comments	is	to	assist	in
changing	the	code	in	the	future,	or	applying	this	code	into	a	similar	but	slightly	different
application.	Comments	that	restate	the	function	provide	no	additional	information,	and
actually	make	the	code	harder	to	read.	Examples	of	bad	comments	include:

		time++;				//	add	one	to	time

		mode	=	0;		//	set	mode	to	zero

	

Good	comments	explain	why	the	operation	is	performed,	and	what	it	means:

		time++;				//	maintain	elapsed	time	in	msec

		mode	=	0;		//	switch	to	idle	mode	because	no	data

	

We	can	add	spaces	so	the	comment	fields	line	up.	As	stated	earlier,	we	avoid	tabs	because
they	often	do	not	translate	from	one	system	to	another.	In	this	way,	the	software	is	on	the
left	and	the	comments	can	be	read	on	the	right.

Maintenance	Tip:	If	it	is	not	written	down,	it	doesn’t	exist.

As	software	developers,	our	goal	is	to	produce	code	that	not	only	solves	our	current
problem	but	can	also	serve	as	the	basis	of	our	future	solutions.	In	order	to	reuse	software
we	must	leave	our	code	in	a	condition	such	that	future	programmers	(including	ourselves)
can	easily	understand	its	purpose,	constraints,	and	implementation.	Documentation	is	not
something	tacked	onto	software	after	it	is	done,	but	rather	it	is	a	discipline	built	into	it	at
each	stage	of	the	development.	Writing	comments	as	we	develop	the	software	forces	us	to
think	about	what	the	software	is	doing	and	more	importantly	why	we	are	doing	it.	
Therefore,	we	should	carefully	develop	a	programming	style	that	provides	appropriate
comments.	I	feel	a	comment	that	tells	us	why	we	perform	certain	functions	is	more
informative	than	comments	that	tell	us	what	the	functions	are.

Common	error:	A	comment	that	simply	restates	the	operation	does	not	add	to	the	overall
understanding.	

Common	error:	Putting	a	comment	on	every	line	of	software	often	hides	the	important
information.	

Good	comments	assist	us	now	while	we	are	debugging	and	will	assist	us	later	when	we	are
modifying	the	software,	adding	new	features,	or	using	the	code	in	a	different	context.
When	a	variable	is	defined,	we	should	add	comments	to	explain	how	the	variable	is	used.
If	the	variable	has	units	then	it	is	appropriate	to	include	them	in	the	comments.	It	may	be
relevant	to	specify	the	minimum	and	maximum	values.	A	typical	value	and	what	it	means
often	will	clarify	the	usage	of	the	variable.	For	example:

int16_t	SetPoint;

//	The	desired	temperature	for	the	control	system

//	16-bit	signed	temperature	with	resolution	of	0.5C,

//	The	range	is	-55C	to	+125C

//	A	value	of	25	means	12.5C,

//	A	value	of	-25	means	-12.5C

	

When	a	constant	is	used,	we	could	add	comments	to	explain	what	the	constant	means.	If
the	number	has	units	then	it	is	appropriate	to	include	them	in	the	comments.	For	example:

		V	=	999;		//	999mV	is	the	maximum	voltage

		Err	=	1;		//	error	code	of	1	means	out	of	range

	

There	are	two	types	of	readers	of	our	comments.	Our	client	is	someone	who	will	use	our
software	incorporating	it	into	a	larger	system.	Client	comments	focus	on	the	policies	of	the
software.	What	are	the	possible	valid	inputs?	What	are	the	resulting	outputs?	What	are	the
error	conditions?	Just	like	a	variable,	it	may	be	relevant	to	specify	the	minimum	and
maximum	values	for	the	input/output	parameters.	Typical	input/output	values	and	what
they	mean	often	will	clarify	the	usage	of	the	function.	Often	we	give	entire	software
examples	showing	how	the	functions	could	be	used.

The	second	type	of	comments	is	directed	to	the	programmer	responsible	for	debugging
and	software	maintenance	(coworker).	Coworker	comments	focus	on	the	mechanisms	of
the	software.	These	comments	explain	how	the	function	works.	

Generally	we	separate	these	comments	from	the	ones	intended	for	the	user	of	the	function.
This	separation	is	the	first	of	many	examples	in	this	book	of	the	concept	“separation	of
policies	from	mechanisms”.	The	policy	is	what	the	function	does,	and	the	mechanism	is
how	it	works.	Specifically,	we	place	this	second	type	of	comments	within	the	body	of	the
function.	If	we	are	developing	in	C,	then	these	comments	should	be	included	in	the	*.c	file
along	with	the	function	implementation.

Self-documenting	code	is	software	written	in	a	simple	and	obvious	way,	such	that	its
purpose	and	function	are	self-apparent.	Descriptive	names	for	variables,	constants,	and
functions	will	go	a	long	way	to	clarify	their	usage.	To	write	wonderful	code	like	this,	we
first	must	formulate	the	problem	by	organizing	it	into	clear	well-defined	subproblems.
How	we	break	a	complex	problem	into	small	parts	goes	a	long	way	toward	making	the
software	self-documenting.	The	concepts	of	abstraction,	modularity,	and	layered	software,
all	presented	later	in	this	chapter,	address	this	important	issue	of	software	organization.

Observation:	The	purpose	of	a	comment	is	to	assist	in	debugging	and	maintenance.

We	should	use	careful	indenting	and	descriptive	names	for	variables,	functions,	labels,
andI/O	ports.	Liberal	use	of #define provide	explanation	of	software	function	without	cost
of	execution	speed	or	memory	requirements.	A	disciplined	approach	to	programming	is	to
develop	patterns	of	writing	that	you	consistently	follow.	Software	developers	are	unlike
short	story	writers.	When	writing	software	it	is	a	good	design	practice	to	use	the	same
function	outline	over	and	over	again.

Observation:	It	is	better	to	write	clear	and	simple	software	that	is	easy	to	understand
without	comments	than	to	write	complex	software	that	requires	a	lot	of	extra	explanation
to	understand.	

3.4.	Modular	Software
In	this	section	we	introduce	the	concept	of	modular	programming	and	demonstrate	that	it
is	an	effective	way	to	organize	our	software	projects.	There	are	three	reasons	for	forming
modules.	First,	functional	abstraction	allows	us	to	reuse	a	software	module	from	multiple
locations.	Second,	complexity	abstraction	allows	us	to	divide	a	highly	complex	system
into	smaller	less	complicated	components.	The	third	reason	is	portability.	If	we	create
modules	for	the	I/O	devices	then	we	can	isolate	the	rest	of	the	system	from	the	hardware
details.	Portability	will	be	enhanced	when	we	create	a	device	driver	or	board	support
package.

3.4.1.	Variables
Variables	are	an	important	component	of	software	design,	and	there	are	many	factors	to
consider	when	creating	variables.	Some	of	the	obvious	considerations	are	the	allocation,
size,	and	format	of	the	data.	However,	an	important	factor	involving	modular	software	is
scope.	The	scope	of	a	variable	defines	which	software	modules	can	access	the	data.
Variables	with	a	restricted	access	are	classified	as	private,	and	variables	shared	between
multiple	modules	are	public.	We	can	restrict	the	scope	to	a	single	file,	a	single	function,	or
even	a	single	program	block	within	a	matching	pair	of	braces, {} .	In	general,	when	we
limit	the	scope	of	our	variables	a	system	is	easier	to	design	(because	the	modules	are
smaller	and	simpler),	easier	to	change	(because	code	can	be	reused),	and	easier	to	verify
(because	interactions	between	modules	are	well-defined).	However,	since	modules	are	not
completely	independent	we	need	a	mechanism	to	transfer	information	from	one	to	another.
The	allocation	of	a	variable	specifies	where	or	how	it	exists.	Because	their	contents	are
allowed	to	change,	all	variables	must	be	allocated	in	registers	or	in	RAM,	but	not	in	ROM.
Constants	can	and	should	be	allocated	in	ROM.	Global	variables	contain	information	that
is	permanent	and	are	usually	assigned	a	fixed	location	in	RAM.	On	the	other	hand,	local
variables	contain	temporary	information	and	are	stored	in	a	register	or	allocated	on	the
stack.	In	summary,	there	are	three	types	of	variables:	public	globals	(shared	permanent),
private	globals	(unshared	permanent),	and	private	locals	(unshared	temporary).	We	will
learn	later	in	Section	3.7	how	to	create	temporary	variables	on	the	heap,	which	can	be
public	or	private	as	needed.	Because	there	is	no	appropriate	way	to	create	a	public	local
variable,	we	usually	refer	to	private	local	variables	simply	as	local	variables,	and	the	fact
that	they	are	private	is	understood.

A	local	variable	has	temporary	allocation	because	we	create	local	variables	on	the	stack	or
in	registers.	Because	the	stack	and	registers	are	unique	to	each	function,	this	information
cannot	be	shared	with	other	software	modules.	Therefore,	under	most	situations,	we	can
further	classify	these	variables	as	private.	Local	variables	are	allocated,	used,	and	then
deallocated,	in	this	specific	order.	For	speed	reasons,	we	wish	to	assign	local	variables	to	a
register.	When	we	assign	local	variable	to	a	register,	we	can	do	so	in	a	formal	manner.
There	will	be	a	certain	line	in	the	assembly	software	at	which	the	register	begins	to
contain	the	variable	(allocation),	followed	by	lines	where	the	register	contains	the
information	(access	or	usage),	and	a	certain	line	in	the	software	after	which	the	register	no
longer	contains	the	information	(deallocation).	In	C,	we	define	local	variables	after	an
opening	brace.

void	MyFunction(void){	uint16_t	i;				//	i	is	a	local

		for(i	=	0;	i	<	10;	i++){	uint32_t	j;	//	j	is	a	local

j	=	i+100;

UART_OutUDec(j);

		}

}

The	information	stored	in	a	local	variable	is	not	permanent.	This	means	if	we	store	a	value
into	a	local	variable	during	one	execution	of	the	module,	the	next	time	that	module	is
executed	the	previous	value	is	not	available.	Examples	include	loop	counters	and
temporary	sums.	We	use	a	local	variable	to	store	data	that	are	temporary	in	nature.	We	can
implement	a	local	variable	using	the	stack	or	registers.	Some	reasons	why	we	choose	local
variables	over	global	variables:

•	Dynamic	allocation/release	allows	for	reuse	of	RAM

•	Limited	scope	of	access	(making	it	private)	provides	for	data	protection

Only	the	program	that	created	the	local	variable	can	access	it

•	Since	an	interrupt	will	save	registers	and	create	its	own	stack	frame

Works	correctly	if	called	from	multiple	concurrent	threads	(reentrant)

•	Since	absolute	addressing	is	not	used,	the	code	is	relocatable
	

A	global	variable	is	allocated	at	a	permanent	and	fixed	location	in	RAM.	A	public	global
variable	contains	information	that	is	shared	by	more	than	one	program	module.	We	must
use	global	variables	to	pass	data	between	the	main	program	(i.e.,	foreground	thread)	and
an	ISR	(i.e.,	background	thread).	If	a	function	called	from	the	foreground	belongs	to	the
same	module	as	the	ISR,	then	a	global	variable	used	to	pass	data	between	the	function	and
the	ISR	is	classified	as	a	private	global	(assuming	software	outside	the	module	does	not
directly	access	the	data).	Global	variables	are	allocated	at	compile	time	and	never
deallocated.	Allocation	of	a	global	variable	means	the	compiler	assigns	the	variable	a
fixed	location	in	RAM.	The	information	they	store	is	permanent.	Examples	include	time

of	day,	date,	calibration	tables,	user	name,	temperature,	FIFO	queues,	and	message	boards.
When	dealing	with	complex	data	structures,	pointers	to	the	data	structures	are	shared.	In
general,	it	is	a	poor	design	practice	to	employ	public	global	variables.	On	the	other	hand,
private	global	variables	are	necessary	to	store	information	that	is	permanent	in	nature.	In
C,	we	define	global	variables	outside	of	the	function.

int32_t	Count=0;		//	Count	is	a	global	variable

void	MyFunction(void){

		Count++;					//	number	of	times	function	was	called

}

Checkpoint	3.4:	How	do	you	create	a	local	variable	in	C?	

Sometimes	we	store	temporary	information	in	global	variables	out	of	laziness.	This
practice	is	to	be	discouraged	because	it	wastes	memory	and	may	cause	the	module	to	work
incorrectly	if	called	from	multiple	concurrent	threads	(non-reentrant).	Non-reentrant
programs	can	produce	very	sneaky	bugs,	since	they	might	only	crash	in	rare	situations
when	the	same	code	called	from	different	threads	when	the	first	thread	is	in	a	particular
critical	section.	Such	a	bug	is	difficult	to	reproduce	and	diagnose.	In	general,	it	is	good
design	to	limit	the	scope	of	a	variable	as	much	as	possible.

Checkpoint	3.5:	How	do	you	create	a	global	variable	in	C?	

In	C,	a static local	has	permanent	allocation,	which	means	it	maintains	its	value	from	one
call	to	the	next.	It	is	still	local	in	scope,	meaning	it	is	only	accessible	from	within	the
function.	I.e.,	modifying	a	local	variable	with static changes	its	allocation	(it	is	now
permanent),	but	doesn’t	change	its	scope	(it	is	still	private).	In	the	following
example, count contains	the	number	of	timesMyFunction 	is	called.	The	initialization	of
a	static	local	occurs	just	once,	during	startup.

void	MyFunction(void){	static	int32_t	count=0;

		count++;					//	number	of	times	function	was	called

}

In	C,	we	create	a	private	global	variable	using	the static modifier.	Modifying	a	global
variable	with static does	not	change	its	allocation	(it	is	still	permanent),	but	does	reduce
its	scope.	Regular	globals	can	be	accessed	from	any	function	in	the	system	(public),
whereas	a static global	can	only	be	accessed	by	functions	within	the	same	file. Static
globals	are	private	to	that	particular	file.	Functions	can	be	static	also,	meaning	they	can	be
called	only	from	other	functions	in	the	file.	E.g.,

static	int16_t	myPrivateGlobalVariable;	//	this	file	only

void	static	MyPrivateFunction(void){

}

In	C,	a const 	global	is	read-only.	It	is	allocated	in	the	ROM.	Constants,	of	course,	must	be
initialized	at	compile	time.	E.g.,

const	int16_t	Slope=21;	

const	uint8_t	SinTable[8]={0,50,98,142,180,212,236,250};

	

Checkpoint	3.6:How	does	the static 	modifier	affect	locals,	globals,	and	functions	in	C?	

Checkpoint	3.7:How	does	the const 	modifier	affect	a	global	variable	in	C?

Common	error:If	you	leave	off	the const modifier	in	the SinTable 	example,	the	table
will	be	allocated	twice,	once	in	ROM	containing	the	initial	values,	and	once	in	RAM
containing	data	to	be	used	at	run	time.	Upon	startup,	the	system	copies	the	ROM-version
into	the	RAM-version.

Maintenance	Tip:	It	is	good	practice	to	specify	the	units	of	a	variable	(e.g.,	volts,	cm
etc.).	

Common	error:	In	C,	global	variables	are	initialized	to	zero	by	default,	but	local
variables	are	not	initialized.

3.4.2.	Dividing	tasks	into	subtasks
The	key	to	completing	any	complex	task	is	to	break	it	down	into	manageable	subtasks.
Modular	programming	is	a	style	of	software	development	that	divides	the	software
problem	into	distinct	and	independent	modules.	The	parts	are	as	small	as	possible,	yet
relatively	independent.	Complex	systems	designed	in	a	modular	fashion	are	easier	to
debug	because	each	module	can	be	tested	separately.	Industry	experts	estimate	that	50	to
90%	of	software	development	cost	is	spent	in	maintenance.	All	five	aspects	of	software
maintenance	are	simplified	by	organizing	the	software	system	into	modules.

•	Correcting	mistakes

•	Adding	new	features

•	Optimizing	for	execution	speed	or	program	size

•	Porting	to	new	computers	or	operating	systems

•	Reconfiguring	the	software	to	solve	similar	related	programs

	
The	approach	is	particularly	useful	when	a	task	is	large	enough	to	require	several
programmers.

A	program	module	is	a	self-contained	software	task	with	clear	entry	and	exit	points.	We
make	the	distinction	between	module	and	a	C	language	function.	A	module	can	be	a
collection	of	functions	that	in	its	entirety	performs	a	well-defined	set	of	tasks.	The
collection	of	serial	port	I/O	functions	presented	later	in	section	3.4.4	can	be	considered
one	module.	A	collection	of	32‑bit	math	operations	is	another	example	of	a	module.	The
main	program	and	other	high-level	functions	may	constitute	a	module,	but	usually	a	set	of
functions	that	perform	a	well-defined	task	can	also	be	written	as	modules.	Modular
programming	involves	both	the	specification	of	the	individual	modules	and	the	connection
scheme	by	which	the	modules	are	connected	together	to	form	the	software	system.	While
the	module	may	be	called	from	many	locations	throughout	the	system,	there	should	be
well-defined	entry	points.

The	overall	goal	of	modular	programming	is	to	enhance	clarity.	The	smaller	the	task,	the
easier	it	will	be	to	understand.		Coupling	is	defined	as	the	influence	one	module’s
behavior	has	on	another	module.	In	order	to	make	modules	more	independent	we	strive	to
minimize	coupling.	Obvious	and	appropriate	examples	of	coupling	are	the	input/output
parameters	explicitly	passed	from	one	module	to	another.	On	the	other	hand,	information
stored	in	shared	global	variables	can	be	quite	difficult	to	track.	In	a	similar	way	shared
accesses	to	I/O	ports	can	also	introduce	unnecessary	complexity.	Global	variables	cause
coupling	between	modules	that	complicate	the	debugging	process	because	now	the
modules	may	not	be	able	to	be	separately	tested.	On	the	other	hand,	we	must	use	global
variables	to	pass	information	into	and	out	of	an	interrupt	service	routine,	and	from	one	call
to	an	interrupt	service	routine	to	the	next	call.

Another	problem	specific	to	embedded	systems	is	the	need	for	fast	execution.	For	this
reason	the	ARM	architecture	has	enough	registers	so	that	some	can	be	used	to	store	local
variables.	Allocating	local	variables	in	registers	produces	shorter	and	faster	code	as
compared	to	globals	and	stack-based	locals.	When	passing	information	through	global
variables	is	required,	it	is	better	to	use	a	well-defined	abstract	technique	like	a	mailbox	or
first-in-first-out	(FIFO)	queue.

Assign	a	logically	complete	task	to	each	module.	The	module	is	logically	complete	when
it	can	be	separated	from	the	rest	of	the	system	and	placed	into	another	application.	The
interfaces	are	extremely	important.	The	interfaces	determine	the	policies	of	our	modules.
In	other	words,	the	interfaces	define	the	operations	of	our	software	system.	The	interfaces
also	represent	the	coupling	between	modules.	In	general	we	wish	to	minimize	the	amount
of	information	passing	between	the	modules	yet	maximize	the	number	of	modules.	Of	the
following	three	objectives	when	dividing	a	software	project	into	subtasks,	it	is	really	only
the	first	one	that	matters.

•	Make	the	software	project	easier	to	understand

•	Increase	the	number	of	modules

•	Decrease	the	interdependency	(minimize	coupling)
	

We	can	develop	and	connect	modules	in	a	hierarchical	manner.	Construct	new	modules	by
combining	existing	modules.	In	a	hierarchical	system	the	modules	are	organized	into	a
tree-structured	call	graph.	In	the	call	graph,	an	arrow	points	from	the	calling	routine	to	the
module	it	calls.	The	I/O	ports	are	organized	into	groups	(e.g.,	all	the	serial	port	I/O
registers	are	in	one	group).	The	call	graph	allows	us	to	see	the	organization	of	the	project.
To	make	simpler	call	graphs	on	large	projects	we	can	combine	multiple	related	functions
into	a	single	module.	The	main	program	is	at	the	top	and	the	I/O	ports	are	at	the	bottom.	In
a	hierarchical	system	the	modules	are	organized	both	in	a	horizontal	fashion	(grouped
together	by	function)	and	in	a	vertical	fashion	(overall	policies	decisions	at	the	top	and
implementation	details	at	the	bottom).	Since	one	of	the	advantages	of	breaking	a	large
software	project	into	subtasks	is	concurrent	development,	it	makes	sense	to	consider
concurrency	when	dividing	the	tasks.	In	other	words,	the	modules	should	be	partitioned	in
such	a	way	that	multiple	programmers	can	develop	the	subtasks	as	independently	as
possible.	On	the	other	hand	careful	and	constant	supervision	is	required	as	modules	are
connected	together	and	tested.

Observation:	If	module	A	calls	module	B,	and	module	B	calls	module	A,	then	you	have
created	a	special	situation	that	must	account	for	these	mutual	calls.	

There	are	two	approaches	to	hierarchical	programming.		The	top-down	approach	starts
with	a	general	overview,	like	an	outline	of	a	paper,	and	builds	refinement	into	subsequent
layers.	A	top-down	programmer	was	once	quoted	as	saying,

“Write	no	software	until	every	detail	is	specified”

It	provides	a	better	global	approach	to	the	problem.	Managers	like	top-down	because	it
gives	them	tighter	control	over	their	workers.	The	top-down	approach	work	well	when	an
existing	operational	system	is	being	upgraded	or	rewritten.	On	the	other	hand	the	bottom-
up	approach	starts	with	the	smallest	detail,	builds	up	the	system	“one	brick	at	a	time.”	The
bottom-up	approach	provides	a	realistic	appreciation	of	the	problem	because	we	often
cannot	appreciate	the	difficulty	or	the	simplicity	of	a	problem	until	we	have	tried	it.	It
allows	programmers	to	start	immediately	coding,	and	gives	programmers	more	input	into
the	design.	For	example,	a	low-level	programmer	may	be	able	to	point	out	features	that	are
not	possible	and	suggest	other	features	that	are	even	better.	Some	software	projects	are
flawed	from	their	conception.	With	bottom-up	design,	the	obvious	flaws	surface	early	in
the	development	cycle.

I	believe	bottom-up	is	better	when	designing	a	complex	system	and	specifications	are
open-ended.	On	the	other	hand,	top-down	is	better	when	you	have	a	very	clear
understanding	of	the	problem	specifications	and	the	constraints	of	your	computer	system.
The	best	software	I	have	ever	produced	was	actually	written	twice.	The	first	pass	was
programmed	bottom	up	and	served	only	to	provide	a	clear	understanding	of	the	problem,
clarification	of	the	features	I	wanted,	and	the	limitations	of	my	hardware.	I	literally	threw
all	the	source	code	in	the	trash,	and	programmed	the	second	pass	in	a	top-down	manner. 		

Arthur	C.	Clarke’s	Third	Law:	Any	sufficiently	advanced	technology	is
indistinguishable	from	magic.

J.	Porter	Clark’s	Law:	Sufficiently	advanced	incompetence	is	indistinguishable	from
malice.

One	of	the	biggest	mistakes	beginning	programmers	make	is	the	inappropriate	usage	of
I/O	calls	(e.g.,	screen	output	and	keyboard	input).	An	explanation	for	their	foolish
behavior	is	that	they	haven’t	had	the	experience	yet	of	trying	to	reuse	software	they	have
written	for	one	project	in	another	project.	Software	portability	is	diminished	when	it	is
littered	with	user	input/output.	To	reuse	software	with	user	I/O	in	another	situation,	you
will	almost	certainly	have	to	remove	the	input/output	statements.	In	general,	we	avoid
interactive	I/O	at	the	lowest	levels	of	the	hierarchy,	rather	return	data	and	flags	and	let	the
higher	level	program	do	the	interactive	I/O.	Often	we	add	keyboard	input	and	screen
output	calls	when	testing	our	software.	It	is	important	to	remove	the	I/O	that	not	directly
necessary	as	part	of	the	module	function.	This	allows	you	to	reuse	these	functions	in
situations	where	screen	output	is	not	available	or	appropriate.	Obviously	screen	output	is
allowed	if	that	is	the	purpose	of	the	routine.

Common	Error:	Performing	unnecessary	I/O	in	a	subroutine	makes	it	harder	to	reuse	at	a
later	time.	

From	a	formal	perspective,	I/O	devices	are	considered	as	global.	This	is	because	I/O
devices	reside	permanently	at	fixed	addresses.		From	a	syntactic	viewpoint	any	module
has	access	to	any	I/O	device.	In	order	to	reduce	the	complexity	of	the	system	we	will
restrict	the	number	of	modules	that	actually	do	access	the	I/O	device.	It	will	be	important
to	clarify	which	modules	have	access	to	I/O	devices	and	when	they	are	allowed	to	access
it.	When	more	than	one	module	accesses	an	I/O	device,	then	it	is	important	to	develop
ways	to	arbitrate	(which	module	goes	first	if	two	or	more	want	to	access	simultaneously)
or	synchronize	(make	a	second	module	wait	until	the	first	is	finished.)	These	arbitration
issues	will	be	presented	in	Chapters	4	and	5.

Information	hiding	is	similar	to	minimizing	coupling.	It	is	better	to	separate	the
mechanisms	of	software	from	its	policies.	We	should	separate	what	the	function	does	(the
relationship	between	its	inputs	and	outputs)	from	how	it	does	it.	It	is	good	to	hide	certain
inner	workings	of	a	module,	and	simply	interface	with	the	other	modules	through	the	well-
defined	input/output	parameters.	For	example	we	could	implement	a	FIFO	by	maintaining
the	current	number	of	elementsin	a	global	variable, Count .	A	good	module	will	hide
how Count 	is	implemented	from	its	users.	If	the	user	wants	to	know	how	many	elements
are	in	the	FIFO,	it	calls	a TxFifo_Size() 	routine	that	returns	the	value	of Count .	A	badly
written	module	will	not	hide Count 	from	its	users.	The	user	simply	accesses	the	global
variable Count .	If	we	update	the	FIFO	routines,	making	them	faster	or	better,	we	might
have	to	update	all	the	programs	that	access Count 	too.		The	object-oriented	programming
environments	provide	well-defined	mechanisms	to	support	information	hiding.	This
separation	of	policies	from	mechanisms	can	be	seen	also	in	layered	software.

The	Keep	It	Simple	Stupid	approach	tries	to	generalize	the	problem	so	that	it	fits	an
abstract	model.	Unfortunately,	the	person	who	defines	the	software	specifications	may	not
understand	the	implications	and	alternatives.	Sometimes	we	can	restate	the	problem	to
allow	for	a	simpler	(and	possibly	more	powerful)	solution.	As	a	software	developer,	we
always	ask	ourselves	these	questions:

“How	important	is	this	feature?”

“What	alternative	ways	could	this	system	be	structured?”

“How	can	I	redefine	the	problem	to	make	it	simpler?”

	
We	can	classify	the	coupling	between	modules	as	highly	coupled,	loosely	coupled,	or
uncoupled.	A	highly-coupled	system	is	not	desirable,	because	there	is	a	great	deal	of
interdependence	between	modules.	A	loosely-coupled	system	is	optimal,	because	there	is
some	dependence	but	interconnections	are	weak.	An	uncoupled	system,	one	with	no
interconnections	at	all,	is	typically	inappropriate	in	an	embedded	system,	because	all
components	should	be	acting	towards	a	common	objective.	There	are	three	ways	in	which
modules	can	be	coupled.	The	natural	way	in	which	modules	are	coupled	is	where	one
module	calls	or	invokes	a	function	in	a	second	module.	This	type	of	coupling,	called
invocation	coupling,	can	be	visualized	with	a	call	graph.	A	second	way	modules	can	be
coupled	is	by	data	transfer.	If	information	flows	from	one	module	to	another,	we	classify
this	as	bandwidth	coupling.	Bandwidth,	which	is	the	information	transfer	rate,	is	a
quantitative	measure	of	coupling.	Bandwidth	coupling	can	be	visualized	with	a	data	flow
graph.	The	third	type	of	coupling,	called	control	coupling,	occurs	when	actions	in	one
module	affect	the	control	path	within	another	module.	For	example,	if	Module	A	sets	a
global	flag	and	Module	B	uses	the	global	flag	to	decide	its	execution	path.	Control
coupling	is	hard	to	visualize	and	hard	to	debug.	Therefore,	it	is	a	poor	design	to	employ
this	type	of	coupling.

Another	way	to	categorize	coupling	is	to	examine	how	information	is	passed	or	shared
between	modules.	We	will	list	the	mechanisms	from	poor	to	excellent.	It	is	extremely	poor
design	to	allow	Module	A	directly	modify	data	or	flags	within	Module	B.	Similarly	poor
design	is	to	organize	important	data	into	a	common	shared	global	space	and	allow
modules	to	read	and	write	these	data.	It	is	ok	to	allow	Module	A	to	call	Module	B	and	pass
it	a	control	flag.	This	control	flag	will	in	turn	affect	the	execution	within	Module	B.	It	is
good	design	to	have	one	module	pass	data	to	another	module.	A	stamp	is	defined	as
structured	data	passed	from	one	module	to	another.	Primitive	data	passed	between
modules	is	unstructured.

Coupling	is	a	way	to	describe	how	modules	connect	with	each	other,	but	it	is	also
important	to	analyze	how	various	components	within	one	module	interact	with	each	other.
Cohesion	is	the	degree	of	interrelatedness	of	internal	parts	within	the	module.	In	general,
we	wish	to	maximize	cohesion.	A	cohesive	module	has	all	components	of	the	module	are
directed	towards	and	essential	for	the	same	task.	It	is	also	important	to	analyze	how
components	are	related	as	we	design	modules.	Coincidental	cohesion	occurs	when
components	of	the	module	are	unrelated,	resulting	poor	design.	Examples	of	coincidental
cohesion	would	be	a	collection	of	frequently	used	routines,	a	collection	of	routines	written
by	a	single	programmer,	or	a	collection	of	routines	written	during	a	certain	time	interval.

Logical	cohesion	is	a	grouping	of	components	into	a	single	module	(because	they	perform
similar	functions).	An	example	of	logical	cohesion	is	a	collection	of	serial	output,	LCD
output,	and	printer	output	routines	into	one	module	(because	all	routines	perform	output).
Organizing	modules	in	this	fashion	is	a	poor	design	and	results	in	modules	that	are	hard	to
reuse.	

Temporal	cohesion	combines	components	if	they	are	connected	in	time	sequence.	If	we
are	baking	bread,	we	activate	the	yeast	in	warm	water	in	one	bowl,	and	then	we	combine
the	flour,	sugar,	and	spices	in	another	bowl.	These	two	steps	are	connected	only	in	a	sense
that	we	first	do	one,	and	then	we	do	another	when	making	bread.	If	we	were	making
cookies,	we	would	need	the	flour,	sugar,	and	spices	but	not	the	yeast.	We	want	to	mix	and
match	existing	modules	to	create	new	designs,	as	such,	we	expect	the	sequence	of	module
execution	to	change.

Another	poor	design,	called	procedural	cohesion,	groups	functions	together	in	order	to
ensure	mandatory	ordering.	For	example,	an	embedded	system	might	have	an	input	port,
an	output	port,	and	a	timer	module.	In	order	to	work	properly,	all	three	must	be	initialized.
It	would	be	hard	to	reuse	code	if	we	placed	all	three	initialization	routines	into	one
module.

We	next	present	appropriate	reasons	to	group	components	into	one	module.
Communicational	cohesion	exists	when	components	operate	on	the	same	data.	An
example	of	communicational	cohesion	would	be	a	collection	of	routines	that	filter	and
extract	features	from	the	data.

Sequential	cohesion	occurs	when	components	are	grouped	into	one	module,	because	the
output	from	one	component	is	the	input	to	another	component.	Sequential	cohesion	is	a
natural	consequence	of	minimizing	bandwidth	between	modules.	An	example	of
sequential	cohesion	is	a	fuzzy	logic	controller.	This	controller	has	five	stages:	crisp	input,
fuzzification,	rules,	defuzzification,	and	crisp	output.	The	output	of	each	stage	is	the	input
to	the	next	stage.	The	input	bandwidth	to	the	controller	and	the	output	bandwidth	from	the
controller	can	be	quite	low,	but	the	amount	of	information	transferred	between	stages	can
be	thousands	of	times	larger.

The	best	kind	of	cohesion	is	functional	cohesion,	where	all	components	combine	to
implement	a	single	objective,	and	each	component	has	a	necessary	contribution	to	the
objective.	I/O	device	drivers,	which	are	a	collection	of	routines	for	a	single	I/O	device,
exhibit	functional	cohesion.

Another	way	to	classify	good	and	bad	modularity	is	to	observe	fan	in	and	fan	out	behavior.
In	a	data	flow	graph,	the	tail	of	an	arrow	defines	a	data	output,	and	the	head	of	an	arrow
defines	a	data	input.	The	fan	in	of	a	module	is	the	number	of	other	modules	that	have
direct	control	on	that	particular	module.	Fan	in	can	be	visualized	by	counting	the	number
of	arrowheads	that	terminate	on	the	module	in	the	data	flow	graph,	shown	previously	in
Figure	1.9.	The	fan	out	of	a	module	is	number	of	other	modules	directly	controlled	by	this
module.	Fan	out	can	be	visualized	by	counting	the	number	of	tails	of	arrows	that	originate
on	the	module	in	the	data	flow	graph.	In	general,	a	system	with	high	fan	out	is	poorly
designed,	because	that	one	module	may	constitute	a	bottleneck	or	a	critical	safety	path.	In
other	words,	the	module	with	high	fan	out	is	probably	doing	too	much,	performing	the
tasks	that	should	be	distributed	to	other	modules.	High	fan	in	is	not	necessarily	a	poor
design,	depending	on	the	application.

3.4.3.	Device	Drivers	and	Board	Support	Package

As	the	size	and	complexity	of	our	software	systems	increase,	we	learn	to	anticipate	the
changes	that	our	software	must	undergo	in	the	future.	In	particular,	we	can	expect	to
redesign	our	system	to	run	on	new	and	more	powerful	hardware	platforms.	A	similar
expectation	is	that	better	algorithms	may	become	available.	The	objective	of	this	section	is
to	use	a	layered	software	approach	to	facilitate	these	types	of	changes.

We	can	use	the	call	graph	like	the	one	drawn	in	Figure	3.1	to	visualize	software	layers.	
The	arrows	point	from	the	calling	function	to	the	function	it	calls.	Figure	3.1	shows	only
one	module	at	each	layer,	but	a	complex	system	might	have	multiple	modules	at	each
layer.	A	function	in	a	layer	can	call	a	function	within	the	same	module,	or	it	can	call	a
public	function	in	a	module	of	the	same	or	lower	layer.	Some	layered	systems	restrict	the
calls	only	to	modules	in	the	most	adjacent	layer	below	it.	If	we	place	all	the	functions	that
access	the	I/O	hardware	in	the	bottom	most	layer,	we	can	call	this	layer	a	hardware
abstraction	layer	(HAL).	This	bottom-most	layer	can	also	be	called	a	board	support
package	(BSP)	if	I/O	devices	are	referenced	in	an	abstract	manner.	Each	middle	layer	of
modules	only	calls	lower	level	modules,	but	not	modules	at	a	higher	level.	Usually	the	top
layer	consists	of	the	main	program.	In	a	multi-threaded	environment	there	can	be	multiple
main	programs	at	the	top-most	level,	but	for	now	assume	there	is	only	one	main	program.

An	example	of	a	layered	system	is	Transmission	Control	Protocol/Internet	Protocol
(TCP/IP),	which	consists	of	at	least	four	distinct	layers:	application	(http,	telnet,	SMTP,
FTP),	transport	(UDP,	TCP),	internet	(IP,	ICMP,	IGMP),	and	network	layers	(Ethernet).

Figure	3.1.	A	layered	approach	to	interfacing	a	printer.	The	bottom	layer
is	the	BSP.

To	develop	a	layered	software	system	we	begin	with	a	modular	system.	The	main
advantage	of	layered	software	is	the	ability	to	separate	the	modules	into	groups	or	layers
such	that	one	layer	may	be	replaced	without	affecting	the	other	layers.	For	example,	you
could	change	which	microcontroller	you	are	using,	by	modifying	the	low	level	without
any	changes	to	the	other	levels.	Figure	3.1	depicts	a	layered	implementation	of	a	printer
interface.	In	a	similar	way,	you	could	replace	the	printer	with	a	solid	state	disk	by
replacing	just	the	middle	and	lower	layers.	If	we	were	to	employ	buffering	and/or	data
compression	to	enhance	communication	bandwidth,	then	these	algorithms	would	be	added
to	the	middle	level.	A	layered	system	should	allow	you	to	change	the	implementation	of
one	layer	without	requiring	redesign	of	the	other	layers.

A	gate	is	used	to	connect	one	layer	to	the	next.	Another	name	for	this	gate	is	application
program	interface	or	API.	The	gates	provide	a	mechanism	to	link	the	layers.	Because	the
size	of	the	software	on	an	embedded	system	is	small,	it	is	possible	and	appropriate	to
implement	a	layered	system	using	standard	function	calls	by	simply	compiling	and	linking
all	software	together.	We	will	see	in	the	next	section	that	the	gate	can	be	implemented	by
creating	a	header	file	with	prototypes	to	public	functions.	The	following	rules	apply	to
layered	software	systems:

1.	A	module	may	make	a	simple	call	to	other	modules	in	the	same	layer.

2.	A	module	may	make	a	call	to	a	lower	level	module	only	by	using	the	gate.

3.	A	module	may	not	directly	access	any	function	or	variable	in	another	layer

without	going	through	the	gate.

4.	A	module	may	not	call	a	higher	level	routine.

5.	A	module	may	not	modify	the	vector	address	of	another	level’s	handler(s).

6.	(optional)	A	module	may	not	call	farther	down	than	the	immediately

adjacent	lower	level.

7.	(optional)	All	I/O	hardware	access	is	grouped	in	the	lowest	level.

8.	(optional)	All	user	interface	I/O	is	grouped	in	the	highest	level

unless	it	is	the	purpose	of	the	module	itself	to	do	such	I/O.
	

The	purpose	of	rule	6	is	to	allow	modifications	at	the	low	layer	to	not	affect	operation	at
the	highest	layer.	On	the	other	hand,	for	efficiency	reasons	you	may	wish	to	allow	module
calls	further	down	than	the	immediately	adjacent	lower	layer.	To	get	the	full	advantage	of
layered	software,	it	is	critical	to	design	functionally	complete	interfaces	between	the
layers.	The	interface	should	support	all	current	functions	as	well	as	provide	for	future
expansions.

A	device	driver	consists	of	the	software	routines	that	provide	the	functionality	of	an	I/O
device.	A	device	driver	usually	does	not	hide	what	type	of	I/O	module	it	is.	E.g.,	in	the
next	section,	we	consider	a	device	driver	for	a	serial	port.	A	board	support	package	is

similar	to	a	device	driver,	except	that	there	is	more	of	an	attempt	to	hide	what	the	I/O
device	actually	is.	A	board	support	package	provides	a	higher	level	of	abstraction	than	a
regular	device	driver.	The	driver	consists	of	the	interface	routines	that	the	operating
system	or	software	developer’s	program	calls	to	perform	I/O	operations	as	well	as	the	low-
level	routines	that	configure	the	I/O	device	and	perform	the	actual	input/output.	The	issue
of	the	separation	of	policies	from	mechanisms	is	very	important	in	device	driver	design.
The	policies	of	a	driver	include	the	list	of	functions	and	the	overall	expected	results.	In
particular,	the	policies	can	be	summarized	by	the	interface	routines	that	the	OS	or	software
developer	can	call	to	access	the	device.	The	mechanisms	of	the	device	driver	include	the
specific	hardware	and	low-level	software	that	actually	perform	the	I/O.	As	an	example,
consider	the	wide	variety	of	mass	storage	devices	that	are	available.	Floppy	disk,	RAM
disks,	integrated	device	electronics	(IDE)	hard	drive,	Serial	Advanced	Technology
Attachment	(SATA)	hard	drive,	flash	EEPROM	drive,	and	even	a	network	can	be	used	to
save	and	recall	data	files.	A	simple	mass	storage	system	might	have	the	following	C-level
interface	functions,	as	explained	in	the	following	prototypes	(in	each	case	the	functions
return	0	if	successful	and	an	error	code	if	the	operation	fails:

int	eFile_Init(void);												//	initialize	file	system

int	eFile_Create(char	name[]);	//	create	new	file,	make	it	empty

int	eFile_WOpen(char	name[]);			//	open	a	file	for	writing

int	eFile_Write(int8_t	data);				//	stream	data	into	open	file

int	eFile_WClose(void);									//	close	the	file	for	writing

int	eFile_ROpen(char	name[]);		//	open	a	file	for	reading

int	eFile_ReadNext(int8_t	*pt);		//	stream	data	out	of	open	file

int	eFile_RClose(void);									//	close	the	file	for	reading

int	eFile_Delete(char	name[]);	//	remove	this	file

Building	a	hardware	abstraction	layer	(HAL)	is	the	same	idea	as	separation	of	policies
from	mechanisms.	A	diagram	of	this	layered	concept	was	shown	in	Figure	3.1.	In	the
above	file	example,	a	HAL	or	BSP	would	treat	all	the	potential	mass	storage	devices
through	the	same	software	interface.	Another	example	of	this	abstraction	is	the	way	some
computers	treat	pictures	on	the	video	screen	and	pictures	printed	on	the	printer.	With	the
abstraction	layer,	the	software	developer’s	program	draws	lines	and	colors	by	passing	the
data	in	a	standard	format	to	the	device	driver,	and	the	OS	redirects	the	information	to	the
video	graphics	board	or	color	LaserWriter	as	appropriate.	This	layered	approach	allows
one	to	mix	and	match	hardware	and	software	components	but	does	suffer	some	overhead
and	inefficiency.

Low-level	device	drivers	normally	exist	in	the	Basic	Input/Output	System	(BIOS)	ROM
and	have	direct	access	to	the	hardware.	They	provide	the	interface	between	the	hardware
and	the	rest	of	the	software.	Good	low-level	device	drivers	allow:

1.	New	hardware	to	be	installed;

2.	New	algorithms	to	be	implemented

a.	Synchronization	with	busy	wait,	interrupts,	or	DMA

b.	Error	detection	and	recovery	methods

c.	Enhancements	like	automatic	data	compression

3.	Higher	level	features	to	be	built	on	top	of	the	low	level

a.	OS	features	like	blocking	semaphores

b.	Additional	features	like	function	keys

	
and	still	maintain	the	same	software	interface.	In	larger	systems	like	the	personal	computer
(PC),	the	low-level	I/O	software	is	compiled	and	burned	in	ROM	separate	from	the	code
that	will	call	it,	it	makes	sense	to	implement	the	device	drivers	as	software	interrupts
(sometimes	called	traps)	and	specify	the	calling	sequence	language-independent.	We
define	the	“client	programmer”	as	the	software	developer	that	will	use	the	device	driver.	
In	embedded	systems	like	we	use,	it	is	appropriate	to	provide	device.h	and	device.c	files
that	the	client	programmer	can	compile	with	their	application.	In	a	commercial	setting,
you	may	be	able	to	deliver	to	the	client	only	the	device.h	together	with	the	object	file.
Linking	is	the	process	of	resolving	addresses	to	code	and	programs	that	have	been
complied	separately.	In	this	way,	the	routines	can	be	called	from	any	program	without
requiring	complicated	linking.	In	other	words,	when	the	device	driver	is	implemented	with
a	software	interrupt,	the	linking	occurs	at	run	time	through	the	vector	address	of	the
software	interrupt.	In	our	embedded	system	however,	the	linking	will	be	static	occurring	at
the	time	of	compilation.	

3.4.4.	Serial	Port	Driver
The	concept	of	a	device	driver	can	be	illustrated	with	the	following	design	of	a	serial	port
device	driver.	In	this	section,	the	contents	of	the	header	file	(UART.h)	will	be	presented,
and	the	implementations	will	be	developed	in	the	next	chapter.	The	device	driver	software
is	grouped	into	four	categories.	Protected	items	can	only	be	directly	accessed	by	the
device	driver	itself,	and	public	items	can	be	accessed	by	other	modules.

1.	Data	structures:	global	(private)	The	first	component	of	a	device	driver	includes	private
global	data	structures.	To	be	private	global	means	only	programs	within	the	driver	itself
may	directly	access	these	variables.	If	the	user	of	the	device	driver	(e.g.,	a	client)	needs	to
read	or	write	to	these	variables,	then	the	driver	will	include	public	functions	that	allow
appropriate	read/write	functions.	One	example	of	a	private	global	variable	might	be
an OpenFlag ,	which	is	true	if	the	serial	port	has	been	properly	initialized.	The
implementation	developed	in	Chapter	4	will	have	no	private	global	variables,	but	the
UART	implementation	developed	in	Chapter	5	will	include	a	private	FIFO	queue.

int	OpenFlag	=	0;		//	true	if	driver	has	been	initialized

	

2.	Initialization	routines	(public,	called	by	the	client	once	in	the	beginning)	The	second
component	of	a	device	driver	includes	the	public	functions	used	to	initialize	the	device.	To
be	public	means	the	user	of	this	driver	can	call	these	functions	directly.	A	prototype	to
public	functions	will	be	included	in	the	header	file	(UART.h).	The	names	of	public
functions	will	begin	with UART_ .	The	purpose	of	this	function	is	to	initialize	the	UART
hardware.

//––––UART_Init––––

//	Initialize	Serial	port	UART

//	Input:	none

//	Output:	none

void	UART_Init(void);

	

3.	Regular	I/O	calls	(public,	called	by	client	to	perform	I/O)	The	third	component	of	a
device	driver	consists	of	the	public	functions	used	to	perform	input/output	with	the	device.
Because	these	functions	are	public,	prototypes	will	be	included	in	the	header	file
(UART.h).	The	input	functions	are	grouped,	followed	by	the	output	functions.

//––––UART_InChar––––

//	Wait	for	new	serial	port	input

//	Input:	none

//	Output:	ASCII	code	for	key	typed

char	UART_InChar(void);

	

//––––UART_InString––––

//	Wait	for	a	sequence	of	serial	port	input

//	Input:	maxSize	is	the	maximum	number	of	characters	to	look	for

//	Output:	Null-terminated	string	in	buffer

void	UART_InString(char	*buffer,	uint16_t	maxSize);

	

	

	

//––––UART_InUDec––––

//	InUDec	accepts	ASCII	input	in	unsigned	decimal	format

//	and	converts	to	a	32-bit	unsigned	number	(0	to	4294967295)

//	Input:	none

//	Output:	32-bit	unsigned	number

uint32_t	UART_InUDec(void);

	

//––––UART_OutChar––––

//	Output	8-bit	to	serial	port

//	Input:	letter	is	an	8-bit	ASCII	character	to	be	transferred

//	Output:	none

void	UART_OutChar(char	letter);

//––––UART_OutString––––

//	Output	String	(NULL	termination)

//	Input:	pointer	to	a	NULL-terminated	string	to	be	transferred

//	Output:	none

void	UART_OutString(char	*buffer);

	

//––––UART_OutUDec––––

//	Output	a	32-bit	number	in	unsigned	decimal	format

//	Input:	32-bit	number	to	be	transferred

//	Output:	none

//	Variable	format	1-10	digits	with	no	space	before	or	after

void	UART_OutUDec(uint32_t	number);
	

4.	Support	software	(private)	The	last	component	of	a	device	driver	consists	of	private
functions.	Because	these	functions	are	private,	prototypes	will	not	be	included	in	the
header	file	(UART.h).	We	place	helper	functions	and	interrupt	service	routines	in	the
category.

Notice	that	this	UART	example	implements	a	layered	approach,	similar	to	Figure	3.1.	The
low-level	functions	provide	the	mechanisms	and	are	protected	(hidden)	from	the	client
programmer.	The	high-level	functions	provide	the	policies	and	are	accessible	(public)	to
the	client.	When	the	device	driver	software	is	separated	into	UART.h	and	UART.c	files,
you	need	to	pay	careful	attention	as	to	how	many	details	you	place	in	the	UART.h	file.	A
good	device	driver	separates	the	policy	(overall	operation,	how	it	is	called,	what	it	returns,
what	it	does,	etc.)	from	the	implementation	(access	to	hardware,	how	it	works,	etc.)	In
general,	you	place	the	policies	in	the	UART.h	file	(to	be	read	by	the	client)	and	the
implementations	in	the	UART.c	file	(to	be	read	by	you	and	your	coworkers).	Think	of	it
this	way:	if	you	were	to	write	commercial	software	that	you	wished	to	sell	for	profit	and
you	delivered	the	UART.h	file	and	its	compiled	object	file,	how	little	information	could
you	place	in	the	UART.h	file	and	still	have	the	software	system	be	fully	functional.	In
summary,	the	policies	will	be	public,	and	the	implementations	will	be	private.

Observation:	A	layered	approach	to	I/O	programming	makes	it	easier	for	you	to	upgrade
to	newer	technology.		

Observation:	A	layered	approach	to	I/O	programming	allows	you	to	do	concurrent
development.			

3.4.5.	Abstract	Output	Device	Driver
In	the	UART	driver	shown	in	the	previous	section,	the	routines	clearly	involve	a	UART.
Another	approach	to	I/O	is	to	provide	a	high-level	abstraction	in	such	a	way	that	the	I/O
device	itself	is	hidden	from	the	user.	There	are	multiple	projects	on	the	book’s	web	site
that	implement	this	abstraction.	The	overall	purpose	of	these	examplesis	to	provide	an
output	stream	for	the	standard printf 	feature	to	which	most	C	programmers	are
accustomed.	For	the	TM4C123	and	TM4C1293	LaunchPad	boards,	we	can	send	output	to
the	PC	using	UART0,	to	a	ST7735	color	graphics	LCD,	or	to	a	low-cost	Nokia	5110
graphics	LCD.	The	implementations	for	the	LM3S	Stellaris ® 	kits	use	the	organic	light
emitting	diode	(OLED)	display.	Even	though	all	these	displays	are	quite	different,	they	all
behave	in	a	similar	fashion.

In	C,	we	can	specify	the	output	stream	used	by printf by	writing	a fputc function.
The fputc 	function	is	a	private	and	implemented	inside	the	driver.	It	sends	characters	to
the	display	and	manages	the	cursor,	tab,	line	feed	and	carriage	return	functionalities.	The
user	controls	the	display	by	calling	the	following	five	public	functions.

void	Output_Init(void);	//	Initializes	the	display	interface.

void	Output_Clear(void);	//	Clears	the	display

void	Output_Off(void);			//	Turns	off	the	display

void	Output_On(void);				//	Turns	on	the	display

void	Output_Color(uint32_t	newColor);	//	Set	color	of	future	output

	
The	user	performs	output	by	calling printf .	This	abstraction	clearly	separates	what	it	does
(output	information)	from	how	it	works	(sends	pixel	data	to	the	display	over	UART,	SSI,
or	I2C).	In	these	examples	all	output	is	sent	to	the	display;	however,	we	could	modify
the fputc 	function	and	redirect	the	output	stream	to	other	devices	such	as	the	USB,
Ethernet,	or	disk.	For	the	LM3S	boards,	this	example	is	called	OLED_xxx.zip.	For	the
TM4C	boards,	this	example	can	be	found	as	ST7735_xxx.zip,
Printf_Nokia5110_xxx.zip,	and	Printf_UART_xxx.zip.

3.5.	Finite	State	Machines
Software	abstraction	is	when	we	define	a	complex	problem	with	a	set	of	basic	abstract
principles.	If	we	can	construct	our	software	system	using	these	building	blocks,	then	we
have	a	better	understanding	of	the	problem.	This	is	because	we	can	separate	what	we	are
doing	from	the	details	of	how	we	are	getting	it	done.	This	separation	also	makes	it	easier
to	optimize.	It	provides	for	a	proof	of	correct	function	and	simplifies	both	extensions	and
customization.	A	good	example	of	abstraction	is	the	Finite	State	Machine	(FSM)
implementations.	The	abstract	principles	of	FSM	development	are	the	inputs,	outputs,
states,	and	state	transitions.	If	we	can	take	a	complex	problem	and	map	it	into	a	FSM
model,	then	we	can	solve	it	with	a	simple	FSM	software	tools.	Our	FSM	software
implementation	will	be	easy	to	understand,	debug,	and	modify.	Other	examples	of
software	abstraction	include	Proportional	Integral	Derivative	digital	controllers,	fuzzy
logic	digital	controllers,	neural	networks,	and	linear	systems	of	differential	equations	(e.g.,
PSPICE.)		In	each	case,	the	problem	is	mapped	into	well-defined	model	with	a	set	of
abstract	yet	powerful	rules.	Then,	the	software	solution	is	a	matter	of	implementing	the
rules	of	the	model.

Linked	lists	are	lists	or	nodes	where	one	or	more	of	the	entries	is	a	(link)	to	other	nodes	of
similar	structure.	We	can	have	statically-allocated	fixed-size	linked	lists	that	are	defined	at
assemble	or	compile	time	and	exist	throughout	the	life	of	the	software.	On	the	other	hand,
we	implement	dynamically-allocated	variable-size	linked	lists	that	are	constructed	at	run
time	and	can	grow	and	shrink	in	size.	We	will	use	a	data	structure	similar	to	a	linked	list
called	a	linked	structure	to	build	a	finite	state	machine	controller.	Linked	structures	are
very	flexible	and	provide	a	mechanism	to	implement	abstractions.

A	well-defined	model	or	framework	is	used	to	solve	our	problem	(implemented	with	a
linked	structure).	The	three	advantages	of	abstraction	are	1)	it	can	be	faster	to	develop
because	a	lot	of	the	building	blocks	preexist;	2)	it	is	easier	to	debug	(prove	correct)
because	it	separates	conceptual	issues	from	implementation;	and	3)	it	is	easier	to	change.	

An	important	factor	when	implementing	finite	state	machines	using	linked	structures	is
that	there	should	be	a	clear	and	one-to-one	mapping	between	the	finite	state	machine	and
the	linked	structure.	I.e.,	there	should	be	one	structure	for	each	state.

We	will	present	two	types	of	finite	state	machines.	The	Moore	FSM	has	an	output	that
depends	only	on	the	state,	and	the	next	state	depends	on	both	the	input	and	current	state.
We	will	use	a	Moore	implementation	if	there	is	an	association	between	a	state	and	an
output.	There	can	be	multiple	states	with	the	same	output,	but	the	output	defines	in	part
what	it	means	to	be	in	that	state.	For	example,	in	a	traffic	light	controller,	the	state	of	green
light	on	the	North	road	(red	light	on	the	East	road)	is	caused	by	outputting	a	specific
pattern	to	the	traffic	light.

On	the	other	hand,	the	Mealy	FSM	has	an	output	that	depends	on	both	the	input	and	the
state,	and	the	next	state	also	depends	on	input	and	current	state.	We	will	use	a	Mealy
implementation	if	the	output	causes	the	state	to	change.	In	this	situation,	we	do	not	need	a
specific	output	to	be	in	that	state;	rather	the	outputs	are	required	to	cause	the	state
transition.	For	example,	to	make	a	robot	stand	up,	we	perform	a	series	of	outputs	causing
the	state	to	change	from	sitting	to	standing.	Although	we	can	rewrite	any	Mealy	machine
as	a	Moore	machine	and	vice	versa,	it	is	better	to	implement	the	format	that	is	more
natural	for	the	particular	problem.	In	this	way	the	state	graph	will	be	easier	to	understand.

Checkpoint	3.8:	What	are	the	differences	between	a	Mealy	and	Moore	finite	state
machine?	

One	of	the	common	features	in	many	finite	state	machines	is	a	time	delay.	We	will	learn
very	elaborate	mechanisms	to	handle	time	in	Chapters	5-6,	but	in	this	section	we	will	use
the	SysTick	delay	functions	presented	in	Program	2.11.

	
Example	3.1.	Design	a	line-tracking	robot	that	has	two	drive	wheels	and	two	line	sensors
using	a	FSM.	The	goal	is	to	drive	the	robot	along	a	line	placed	in	the	center	of	the	road.
The	robot	has	two	drive	wheels	and	a	third	free	turning	balance	wheel.	Figure	3.2	shows
that	PF1	drives	the	left	wheel	and	PF2	drives	the	right	wheel.	If	both	motors	are	on	(PF2–
1	=	11),	the	robot	goes	straight.	If	just	the	left	motor	is	on	(PF2–1	=	01),	the	robot	will	turn
right.	If	just	the	right	motor	is	on	(PF2–1	=	10),	the	robot	will	turn	left.	The	line	sensors
are	under	the	robot	and	can	detect	whether	or	not	they	see	the	line.	The	two	sensors	are
connected	to	Port	F,	such	that:
	

PF4,PF0	equal	to	0,0	means	we	are	lost,	way	off	to	the	right	or	way	off	to	the
left.

PF4,PF0	equal	to	0,1	means	we	are	off	just	a	little	bit	to	the	right.

PF4,PF0	equal	to	1,0	means	we	are	off	just	a	little	bit	to	the	left.

PF4,PF0	equal	to	1,1	means	we	are	on	line.

Figure	3.2.	Robot	with	two	drive	wheels	and	two	line	sensors	(see	sections
6.5	and	8.2	for	circuit	details).
Solution:	The	focus	of	this	example	is	the	FSM,	but	the	QRB1134	sensor	interface	will	be
described	later	in	example	6.1,	and	the	DC	motor	interface	will	be	described	in	Section
6.5.	The	first	step	in	designing	a	FSM	is	to	create	some	states.	The	outputs	of	a	Moore
FSM	are	only	a	function	of	the	current	state.	A	Moore	implementation	was	chosen	because
we	define	our	states	by	what	believe	to	be	true	and	we	will	have	one	action	(output)	that
depends	on	the	state.	Each	state	is	given	a	symbolic	name	where	the	state	name	either
describes	“what	we	know”	or	“what	we	are	doing”.	We	could	have	differentiated	between
a	little	off	to	the	left	and	way	off	to	the	left,	but	this	solution	creates	a	simple	solution	with
3	states.

The	finite	state	machine	implements	this	line-tracking	algorithm 	.		Each	state	has	a	2-bit
output	value,	and	four	next	state	pointers.	The	strategy	will	be	to:
	

Go	straight	if	we	are	on	the	line.

Turn	right	if	we	are	off	to	the	left.

Turn	left	if	we	are	off	to	the	right.
	

Finally,	we	implement	the	heuristics	by	defining	the	state	transitions,	as	illustrated	in
Figure	3.3	and	Table	3.2.	If	we	used	to	be	in	the	left	state	and	completely	loose	the	line
(input	00),	then	we	know	we	are	left	of	the	line.	Similarly	if	we	used	to	be	in	the	right
state	and	completely	loose	the	line	(input	00),	then	we	know	we	are	right	of	the	line.
However,	we	used	to	be	on	the	center	of	the	line	and	then	completely	loose	the	line	(input
00),	we	do	not	know	we	are	right	or	left	of	the	line.	The	machine	will	guess	we	went	right
of	the	line.	In	this	implementation	we	put	a	constant	delay	of	10ms	in	each	state.	We	put
the	time	to	wait	into	the	machine	as	a	parameter	for	each	state	to	provide	for	clarity	of
how	it	works	and	simplify	possible	changes	in	the	future.	If	we	are	off	to	the	right	(input
10),	then	it	will	oscillate	between	Center	and	Right	states,	making	a	slow	turn	left.	If	we
are	off	to	the	left	(input	01),	then	it	will	oscillate	between	Center	and	Left	states,	making
a	slow	turn	right.
	

Figure	3.3.	Graphical	form	of	a	Moore	FSM	that	implements	a	line
tracking	robot.
	

	 	 	 Input

State Motor Delay 00 01 10 11

Center 1,1 1 Right Left Right Center

Left 1,0 1 Left Center Right Center

Right 0,1 1 Right Left Center Center

Table	3.2.	Tabular	form	of	a	Moore	FSM	that	implements	a	line	tracking	robot.

The	first	step	in	designing	the	software	is	to	decide	on	the	sequence	of	operations.
	

1)	Initialize	timer	and	directions	registers

2)	Specify	initial	state

3)	Perform	FSM	controller

a)	Output	to	DC	motors,	which	depends	on	the	state

b)	Delay,	which	depends	on	the	state

c)	Input	from	line	sensors

d)	Change	states,	which	depends	on	the	state	and	the	input
	

The	second	step	is	to	define	the	FSM	graph	using	a	data	structure.	Program	3.1shows	a
table	implementation	of	the	Moore	FSM.	This	implementation	uses	a	table	data	structure,
where	each	state	is	an	entry	in	the	table,	and	state	transitions	are	defined	as	indices	into
this	table.	The	four Next 	parameters	define	the	input-dependent	state	transitions.	The	wait
times	are	defined	in	the	software	as	fixed-point	decimal	numbers	with	units	of	0.01s.	The
label	Center 	is	more	descriptive	than	the	state	number	0.Notice	the	1-1	correspondence
between	the	tabular	form	in	Table	3.2	and	the	software	specification	of fsm[3] .	This	1-1
correspondence	makes	it	possible	to	prove	the	software	exactly	executes	the	FSM	as
described	in	the	table.
	

struct	State	{

		uint32_t	Out;						//	2-bit	output

		uint32_t	Delay;				//	time	in	10ms

		uint8_t	Next[4];};

typedef	const	struct	State	STyp;

#define	Center	0

#define	Left	1

#define	Right	2

StateType	fsm[3]={

		{0x03,	1,	{	Right,	Left,			Right,		Center	}},		//	Center

		{0x02,	1,	{	Left,		Center,	Right,		Center	}},		//	Left

		{0x01,	1,	{	Right,	Left,			Center,	Center	}}			//	Right

};

#define	PF21	(*((volatile	unsigned	long	*)0x40025018))

#define	PF4	(*((volatile	unsigned	long	*)0x40025040))

#define	PF0	(*((volatile	unsigned	long	*)0x40025004))

int	main(void){	uint32_t	S;	//	index	to	the	current	state

uint32_t	input,	output;						//	state	I/O

		Robot_Init();														//	Initialize	Port	F,	SysTick

		S	=	Center;																//	initial	state				

		while(1){

output	=	fsm[S].Out;						//	set	output	from	FSM

PF21	=	output<<1;									//	do	output	to	two	motors

SysTick_Wait10ms(fsm[S].Delay);	//	wait

input	=	PF0+(PF4>>3);					//	read	sensors

S	=	fsm[S].Next[input];			//	next	depends	on	input	and	state

		}

}

void	Robot_Init(void){

		SYSCTL_RCGCGPIO_R	|=	0x20;						//	1)	activate	clock	for	Port	F

		SysTick_Init();																//	initialize	SysTick	(program	2.11)

		GPIO_PORTF_LOCK_R	=	0x4C4F434B;	//	2)	unlock	GPIO	Port	F

		GPIO_PORTF_CR_R	=	0x1F;									//	allow	changes	to	PF4-0

		GPIO_PORTF_AMSEL_R	=	0x00;						//	3)	disable	analog	on	PF

		GPIO_PORTF_PCTL_R	=	0x00000000;	//	4)	PCTL	GPIO	on	PF4-0

		GPIO_PORTF_DIR_R	=	0x0E;								//	5)	PF4,PF0	in,	PF3-1	out

		GPIO_PORTF_AFSEL_R	=	0x00;					//	6)	disable	alt	funct	on	PF7-0

		GPIO_PORTF_DEN_R	=	0x1F;							//	7)	enable	digital	I/O	on	PF4-0

}

Program	3.1.	Table	implementation	of	a	Moore	FSM
(LineTrackerTable_xxx.zip).
Program	3.2	uses	a	linked	structure,	where	each	state	is	a	node,	and	state	transitions	are
defined	as	pointers	to	other	nodes.Again,	notice	the	1-1	correspondence	between	Table	3.2
and	the	software	specification	of fsm[3] .	
	

struct	State	{

		uint32_t	Out;						//	2-bit	output

		uint32_t	Delay;				//	time	in	10ms

		const	struct	State	*Next[4];};

typedef	const	struct	State	STyp;

#define	Center	&fsm[0]

#define	Left			&fsm[1]

#define	Right	&fsm[2]

StateType	fsm[3]={

		{0x03,	1,	{	Right,	Left,			Right,		Center	}},		//	Center

		{0x02,	1,	{	Left,		Center,	Right,		Center	}},		//	Left

		{0x01,	1,	{	Right,	Left,			Center,	Center	}}			//	Right

};

int	main(void){	STyp	*pt;		//	state	pointer

uint32_t	input,	output;					//	state	I/O

		Robot_Init();												//	Initialize	Port	F,	SysTick

		pt	=	Center;														//	initial	state

		while(1){

output	=	pt->Out;												//	set	output	from	FSM

PF21	=	output<<1;										//	do	output	to	two	motors

SysTick_Wait10ms(pt->Delay);	//	wait

input	=	PF0+(PF4>>3);								//	read	sensors

pt	=	pt->Next[input];								//	next	depends	on	input	and	state

		}

}

Program	3.2.	Pointer	implementation	of	a	Moore	FSM
(LineTrackerLinked_xxx.zip).

	
You	can	find	a	traffic	light	controller	in	Volume	1	and	on	the	book	web	site	as
TableTrafficLight_xxx.zip	PointerTrafficLight_xxx.zip	and
PortableTrafficLight_xxx.zip,	where	xxx	refers	to	the	specific	microcontroller	on	which
the	example	was	tested.

Observation:	The	table	implementation	requires	less	memory	space	for	the	FSM	data
structure,	but	the	pointer	implementation	will	run	faster.

Some	microcontrollers	have	ROM	that	is	one-time	programmed	at	the	factory.	These
ROMs	cannot	be	erased	and	rewritten.	On	microcontrollers	that	have	both	ROM	and
EEPROM	we	can	place	the	FSM	data	structure	in	EEPROM	and	the	program	in	ROM.
This	allows	us	to	make	minor	modifications	to	the	finite	state	machine	(add/delete	states,
change	input/output	values)	by	changing	the	linked	structure	in	EEPROM	without
modifying	the	program	in	ROM.	In	this	way	small	modifications	to	the	finite	state
machine	can	be	made	by	reprogramming	the	EEPROM	without	having	to	produce	new
microcontroller	chips.

The	purpose	of	a	board	support	package	is	to	hide	as	much	of	the	I/O	details	as	possible.
We	implement	a	BSP	when	we	expect	the	high-level	system	will	be	deployed	onto	many
low-level	platforms.		The	solution	in	Program	3.3	can	be	quickly	adapted	to	any
LM3S/LM4F/TM4Cusing	any	port	and	any	contiguous	set	of	bits	simply	by	changing
the #define 	statements.

#define	BSP_InPort											GPIO_PORTB_DATA_R

#define	BSP_InPort_DIR							GPIO_PORTB_DIR_R

#define	BSP_InPort_DEN							GPIO_PORTB_DEN_R

#define	BSP_OutPort										GPIO_PORTD_DATA_R

#define	BSP_OutPort_DIR						GPIO_PORTD_DIR_R

#define	BSP_OutPort_DEN						GPIO_PORTD_DEN_R

#define	BSP_GPIO_EN										SYSCTL_RCGCGPIO_R

#define	BSP_InPort_Mask						0x00000008		//	bit	mask	for	Port	D

#define	BSP_In_M												0x00000003		//	bit	mask	for	pins	1,0

#define	BSP_In_Shift								0x00000000		//	shift	value	for	Input	pins

#define	BSP_OutPort_Mask					0x00000002		//	bit	mask	for	Port	B

#define	BSP_Out_M											0x0000003F		//	bit	mask	for	pins	5-0

#define	BSP_Out_Shift							0x00000000		//	shift	value	for	Output	pins

struct	State	{

		uint32_t	Out;

		uint32_t	Time;

		const	struct	State	*Next[4];};

typedef	const	struct	State	STyp;

#define	goN			&FSM[0]

#define	waitN	&FSM[1]

#define	goE			&FSM[2]

#define	waitE	&FSM[3]

STyp	FSM[4]={

{0x21,3000,{goN,waitN,goN,waitN}},

{0x22,	500,{goE,goE,goE,goE}},

{0x0C,3000,{goE,goE,waitE,waitE}},

{0x14,	500,{goN,goN,goN,goN}}};

int	main(void){	STyp	*pt;		//	state	pointer

		uint32_t	input;				//	activate	clocks	on	input	and	output	ports

		BSP_GPIO_EN	|=	BSP_InPort_Mask|BSP_OutPort_Mask;

		SysTick_Init();										//	initialize	SysTick	timer,	program	2.11

		BSP_InPort_DIR	&=	~	BSP_In_M;	//	make	InPort	pins	inputs

		BSP_InPort_DEN	|=	BSP_In_M;	//	enable	digital	I/O	on	InPort

		BSP_OutPort_DIR	|=	BSP_Out_M;	//	make	OutPort	pins	out

		BSP_OutPort_DEN	|=	BSP_Out_M;	//	enable	digital	I/O	on	OutPort

		pt	=	goN;

		while(1){

BSP_OutPort	=	(BSP_OutPort&(~BSP_Out_M))|((pt->Out)>>BSP_Out_Shift);

SysTick_Wait10ms(pt->Time);

input	=	(BSP_InPort&BSP_In_M)>>BSP_In_Shift;	//00,01,10,11

pt	=	pt->Next[input];

		}

}

Program	3.3.	Enhanced	C	implementation	of	a	Traffic	Light	FSM	(input
on	PB1-0,	output	PD5-0).
Checkpoint	3.9:	Change	Program	3.3	to	place	the	input	on	PA5-4	and	the	output	on	PB6-
1.	

The	FSM	approach	makes	it	easy	to	change.	To	change	the	wait	time	for	a	state,	we
simply	change	the	value	in	the	data	structure.	To	add	more	states,	we	simply	increase	the
size	of	the fsm[] structure	and	define	the Out , Time ,	and Next 	fields	for	these	new
states.

To	add	more	output	signals,	we	simply	increase	the	precision	of	the Out 	field.	To	add
more	input	lines,	we	increase	the	size	of	the	next	field.	If	there	are	n	input	bits,	then	the
size	of	the	next	field	will	be	2n.	For	example,	if	there	are	four	input	lines,	thenthere	are	16
possible	combinations,	where	each	input	possibility	requires	a Next 	value	specifying
where	to	go	if	this	combination	occurs.

	
Example	3.2.	The	goal	is	to	design	a	finite	state	machine	robot	controller,	as	illustrated	in
Figure	3.4.		Because	the	outputs	cause	the	robot	to	change	states,	we	will	use	a	Mealy
implementation.	The	outputs	of	a	Mealy	FSM	depend	on	both	the	input	and	the	current
state.	This	robot	has	mood	sensors	that	are	interfaced	to	Port	B.	The	robot	has	four
possible	conditions:
	

00													 OK ,	the	robot	is	feeling	fine

01													 Tired ,	the	robot	energy	levels	are	low
10													 Curious ,	the	robot	senses	activity	around	it
11													 Anxious ,	the	robot	senses	danger
	
There	are	four	actions	this	robot	can	perform,	which	are	triggered	by	pulsing	(make	high,
then	make	low)	one	of	the	four	signals	interfaced	to	Port	D.
	

PD3													 SitDown ,	assuming	it	is	standing,	it	will	perform	moves	to	sit
down

PD2													 StandUp ,	assuming	it	is	sitting,	it	will	perform	moves	to	stand
up

PD1													 LieDown ,	assuming	it	is	sitting,	it	will	perform	moves	to	lie
down

PD0													 SitUp ,	assuming	it	is	sleeping,	it	will	perform	moves	to	sit	up
	
Solution:	For	this	design	we	can	list	heuristics	describing	how	the	robot	is	to	operate:

If	the	robot	is	OK,	it	will	stay	in	its	current	state.

If	the	robot’s	energy	levels	are	low,	it	will	go	to	sleep.

If	the	robot	senses	activity	around	it,	it	will	awaken	from	sleep.

If	the	robot	senses	danger,	it	will	stand	up.

Figure	3.4.	Robot	interface.
	

These	rules	are	converted	into	a	finite	state	machine	graph,	as	shown	in	Figure	3.5.	Each
arrow	specifies	both	an	input	and	an	output.	For	example,	the	“ Tired/SitDown ”	arrow
from Stand to Sit states	means	if	we	are	in	the Stand state	and	the	input	is Tired ,	then
we	will	output	the SitDown command	and	go	to	the Sit 	state.	Mealy	machines	can	have
time	delays,	but	this	example	just	didn’t	have	time	delays.

	
	

Figure	3.5.	Mealy	FSM	for	a	robot	controller.
	
	

The	first	step	in	designing	the	software	is	to	decide	on	the	sequence	of	operations.

1)	Initialize	directions	registers

2)	Specify	initial	state

3)	Perform	FSM	controller

a)	Input	from	sensors

b)	Output	to	the	robot,	which	depends	on	the	state	and	the	input

c)	Change	states,	which	depends	on	the	state	and	the	input

	
The	second	step	is	to	define	the	FSM	graph	using	a	linked	data	structure.	Two	possible
implementations	of	the	Mealy	FSM	are	presented.	The	implementation	in	Program
3.4defines	the	outputs	as	simple	numbers,	where	each	pulse	is	defined	as	the	bit	mask
required	to	cause	that	action.	The	four Next 	parameters	define	the	input-dependent	state
transitions.
	

struct	State{

		uint32_t	Out[4];													//	outputs

		const	struct	State	*Next[4];	//	next

};

typedef	const	struct	State	StateType;

#define	Stand	&FSM[0]

#define	Sit			&FSM[1]

#define	Sleep	&FSM[2]

#define	None				0x00

#define	SitDown	0x08		//	pulse	on	PD3

#define	StandUp	0x04		//	pulse	on	PD2

#define	LieDown	0x02		//	pulse	on	PD1

#define	SitUp			0x01		//	pulse	on	PD0

StateType	FSM[3]={

{{None,SitDown,None,None},			//Standing

		{Stand,Sit,Stand,Stand}},

{{None,LieDown,None,StandUp},//Sitting

		{Sit,Sleep,Sit,Stand	}},

{{None,None,SitUp,SitUp},				//Sleeping

		{Sleep,Sleep,Sit,Sit}}

};

int	main(void){	StateType	*pt;			//	current	state

		uint32_t	input;

		SYSCTL_RCGCGPIO_R	|=	0x0000000A;		//	clock	on	Ports	B	and	D

		pt	=	Stand;															//	initial	state

		GPIO_PORTB_DIR_R	&=	~0x03;	//	make	PB1-0	input	from	mood	sensor

		GPIO_PORTB_AMSEL_R	&=	~0x03;						//	disable	analog	on	PB

		GPIO_PORTB_PCTL_R	&=	~0x000000FF;	//	PCTL	GPIO	on	PB1-0

		GPIO_PORTB_DEN_R	|=	0x03;								//	enable	digital	I/O	on	PB1-0

		GPIO_PORTD_DIR_R	|=	0x0F;									//	make	PD3-0	output	to	robot

		GPIO_PORTD_AMSEL_R	&=	~0x0F;						//	disable	analog	on	PD

		GPIO_PORTD_PCTL_R	&=	~0x0000FFFF;	//	PCTL	GPIO	on	PD3-0

		GPIO_PORTD_DEN_R	|=	0x0F;									//	enable	digital	I/O	on	PD3-0

		while(1){

input	=	GPIO_PORTB_DATA_R&0x03;						//	input=0-3

GPIO_PORTD_DATA_R	|=	pt->Out[Input];	//	pulse

GPIO_PORTD_DATA_R	&=	~0x0F;

pt	=	pt->Next[Input];		//	next	state

		}

}

Program	3.4.	Outputs	defined	as	numbers	for	a	Mealy	Finite	State

Machine	(PointerRobot_xxx.zip).
	
	

Program	3.5	uses	functions	to	affect	the	output.	Although	the	functions	in	this	solution
perform	simple	output,	this	implementation	could	be	used	when	the	output	operations	are
complex.	Again	proper	memory	allocation	is	required	if	we	wish	to	implement	a	stand-
alone	or	embedded	system.	The const 	qualifier	is	used	to	place	the	FSM	data	structure	in
EEPROM.	Bit-specific	outputs	are	implemented	on	Port	D.
	

struct	State{

		void	*CmdPt[4];														//	outputs	are	function	pointers

		const	struct	State	*Next[4];	//	next

};

typedef	const	struct	State	StateType;

#define	Stand	&FSM[0]

#define	Sit			&FSM[1]

#define	Sleep	&FSM[2]

void	None(void){};

#define	GPIO_PORTD0													(*((volatile	uint32_t	*)0x40007004))

#define	GPIO_PORTD1													(*((volatile	uint32_t	*)0x40007008))

#define	GPIO_PORTD2													(*((volatile	uint32_t	*)0x40007010))

#define	GPIO_PORTD3													(*((volatile	uint32_t	*)0x40007020))

void	SitDown(void){

		GPIO_PORTD3	=	0x08;

		GPIO_PORTD3	=	0x00;	//	pulse	on	PD3

}

void	StandUp(void){

		GPIO_PORTD2	=	0x04;

		GPIO_PORTD2	=	0x00;	//	pulse	on	PD2

}

void	LieDown(void){

		GPIO_PORTD1	=	0x02;

		GPIO_PORTD1	=	0x00;	//	pulse	on	PD1

}

void	SitUp(void)	{

		GPIO_PORTD0	=	0x01;

		GPIO_PORTD0	=	0x00;	//	pulse	on	PD0

}

StateType	FSM[3]={

{{(void*)&None,(void*)&SitDown,(void*)&None,(void*)&None},		//Standing

		{Stand,Sit,Stand,Stand}},

{{(void*)&None,(void*)LieDown,(void*)&None,(void*)&StandUp},//Sitting

		{Sit,Sleep,Sit,Stand	}},

{{(void*)&None,(void*)&None,(void*)&SitUp,(void*)&SitUp},			//Sleeping

		{Sleep,Sleep,Sit,Sit}}

};

int	main(void){	StateType	*pt;		//	current	state

		uint32_t	input;

		SYSCTL_RCGCGPIO_R	|=	0x0000000A;		//	clock	on	Ports	B	and	D

		pt	=	Stand;															//	initial	state

		GPIO_PORTB_DIR_R	&=	~0x03;	//	make	PB1-0	input	from	mood	sensor

		GPIO_PORTB_AMSEL_R	&=	~0x03;						//	disable	analog	on	PB

		GPIO_PORTB_PCTL_R	&=	~0x000000FF;	//	PCTL	GPIO	on	PB1-0

		GPIO_PORTB_DEN_R	|=	0x03;									//	enable	digital	I/O	on	PB1-0

		GPIO_PORTD_DIR_R	|=	0x0F;									//	make	PD3-0	output	to	robot

		GPIO_PORTD_AMSEL_R	&=	~0x0F;						//	disable	analog	on	PD

		GPIO_PORTD_PCTL_R	&=	~0x0000FFFF;	//	PCTL	GPIO	on	PD3-0

		GPIO_PORTD_DEN_R	|=	0x0F;									//	enable	digital	I/O	on	PD3-0

		while(1){

input	=	GPIO_PORTB_DATA_R&0x03;								//	input=0-3

((void(*)(void))pt->CmdPt[Input])();			//	function

pt	=	pt->Next[input];																	//	next	state

		}

}

Program	3.5.	Outputs	defined	as	functions	for	a	Mealy	Finite	State
Machine	(FunctionRobot_xxx.zip).

	
Observation:	In	order	to	make	the	FSM	respond	quicker,	we	could	implement	a	time
delay	function	that	returns	immediately	if	an	alarm	condition	occurs.	If	no	alarm	exists,	it
waits	the	specified	delay.

Checkpoint	3.10:	What	happens	if	the	robot	is	sleeping	then	becomes	anxious?	

3.6.	Threads
Software	(e.g.,	program,	code,	module,	procedure,	function,	subroutine	etc.)	is	a	list	of
instructions	for	the	computer	to	execute.	A	thread	on	the	other	hand	is	defined	as	the	path
of	action	of	software	as	it	executes.	The	expression	“thread”	comes	from	the	analogy
shown	in	Figure	3.6.	This	simple	program	prints	the	8-bit	numbers	000	001	002	…	If	we
connect	the	statements	of	our	executing	program	with	a	continuous	line	(the	thread)	we
can	visualize	the	dynamic	behavior	of	our	software.

Figure	3.6.	Illustration	of	the	definition	of	a	thread.
The	execution	of	the	main	program	is	called	the	foreground	thread.	In	most	embedded
applications,	the	foreground	thread	executes	a	loop	that	never	ends.	We	will	learn	later,
that	this	thread	can	be	broken	(execution	suspended,	then	restarted)	by	interrupts	and
direct	memory	access.

With	interrupts	we	can	create	multiple	threads.	Some	threads	will	be	created	statically,
meaning	they	exist	throughout	the	life	of	the	software,	while	others	will	be	created	and
destroyed	dynamically.	There	will	usually	be	one	foreground	thread	running	the	main
program	like	the	above	example.	In	addition	to	this	foreground	thread,	each	interrupt
source	has	its	own	background	thread,	which	is	started	whenever	the	interrupt	is
requested.	Figure	3.7	shows	a	software	system	with	one	foreground	thread	and	two
background	threads.	The	“Key”	thread	is	invoked	whenever	a	key	is	touched	on	the
keyboard	and	the	“Time”	thread	is	invoked	every	1ms	in	a	periodic	fashion.

Figure	3.7.	Interrupts	allow	us	to	have	multiple	background	threads.
Because	there	is	but	one	processor,	the	currently	running	thread	must	be	suspended	in
order	to	execute	another	thread.		In	the	above	figure,	the	suspension	of	the	main	program
is	illustrated	by	the	two	breaks	in	the	foreground	thread.	When	a	key	is	touched,	the	main
program	is	suspended,	and	a Keyhandler 	thread	is	created	with	an	“empty”stack	and
uninitialized	registers.	When	the Keyhandler 	is	done	it	executes	a	return	from	interruptto
relinquish	control	back	to	the	main	program.	The	original	stack	and	registers	of	the	main
program	will	be	restored	to	the	state	before	the	interrupt.	In	a	similar	way,	when	the	1	ms
timer	occurs,	the	main	program	is	suspended	again,	and	a Timehandler 	thread	is	created
with	its	own	“empty”	stack	and	uninitialized	registers.	We	can	think	of	each	thread	as
having	its	own	registers	and	its	own	stack	area.	In	Chapter	5,	we	will	discuss	in	detail	this
approach	to	multithreaded	programming.	In	a	real-time	operating	system	(RTOS)	there	is
a	preemptive	thread	scheduler	that	allows	our	software	to	have	multiple	foreground
threads	and	multiple	stacks.	The	focus	of	Volume	3	will	be	the	design	and	analysis	of	real-
time	operating	systems.

Parallel	programming	allows	the	computer	to	execute	multiple	threads	at	the	same	time.
State-of-the-art	multi-core	processors	can	execute	a	separate	program	in	each	of	its	cores.
Fork	and	join	are	the	fundamental	building	blocks	of	parallel	programming.	After	a	fork,
two	or	more	software	threads	will	be	run	in	parallel,	i.e.,	the	threads	will	run
simultaneously	on	separate	processors.	Two	or	more	simultaneous	software	threads	can	be
combined	into	one	using	a	join.	The	flowchart	symbols	for	fork	and	join	are	shown	in
Figure	3.8.

Software	execution	after	the	join	will	wait	until	all	threads	above	the	join	are	complete.	As
an	analogy	of	parallel	execution,	when	a	farmer	wants	to	build	a	barn,	he	invites	his	three
neighbors	over	and	gives	everyone	a	hammer.	The	fork	operation	changes	the	situation
from	the	farmer	working	alone	to	four	people	ready	to	build.	The	four	people	now	work	in
parallel	to	accomplish	the	single	goal	of	building	the	barn.	When	the	overall	task	is
complete,	the	join	operation	causes	the	neighbors	to	go	home,	and	the	farmer	is	working
alone	again.

Parallel	programming	is	a	difficult	concept	for	many	software	developers,	because	we
have	been	classically	trained	to	think	of	computer	execution	as	a	single	time-linear	thread.
However,	there	are	numerous	real-world	scenarios	from	which	to	learn	the	art	of	parallel
programming.	A	manager	of	a	business,	an	Army	general,	and	air	traffic	control	are
obvious	examples	that	employ	parallel	operations.	From	these	illustrations	we	observe
hierarchical	decision	making,	delegation	of	responsibilities,	and	having	an	elaborate
system	of	checks	and	balances.	All	of	these	concepts	translate	into	complex	software
systems	involving	parallel	execution.

To	implement	parallel	execution	we	need	a	computer	that	can	execute	more	than	one
instruction	at	a	time.	A	multi-core	processor	has	two	or	more	independent	central
processing	units,	called	cores.	The	cores	shared	some	memory	but	also	have	some	private
storage.	The	cores	can	fetch	and	execute	instructions	at	the	same	time,	thus	increasing
overall	performance.	The	fork	operation	in	Figure	3.8	will	activate	three	cores	launching
software	to	be	executed	on	those	three	new	cores.	The	join	operation	will	wait	until	all
four	branches	have	completed,	and	deactivate	three	of	the	cores.

Figure	3.8.	Flowchart	symbols	to	describe	parallel	and	concurrent
programming.
Concurrent	programming	allows	the	computer	to	execute	multiple	threads,	but	only	one
runs	at	a	time.	Interrupts	are	one	mechanism	to	implement	concurrency	on	real-time
systems.	Interrupts	have	a	hardware	trigger	and	a	software	action.	An	interrupt	is	a
parameter-less	subroutine	call,	triggered	by	a	hardware	event.	The	flowchart	symbols	for
interrupts	are	also	shown	in	Figure	3.8.	The	trigger	is	a	hardware	event	signaling	it	is	time
to	do	something.	Examples	of	interrupt	triggers	we	will	see	in	this	book	include	new	input
data	has	arrived,	output	device	is	idle,	and	periodic	event.	The	second	component	of	an
interrupt-driven	system	is	the	software	action	called	an	interrupt	service	routine	(ISR).
The	foreground	thread	is	defined	as	the	execution	of	the	main	program,	and	the
background	threads	are	executions	of	the	ISRs.	Consider	the	analogy	of	sitting	in	a
comfy	chair	reading	a	book.	Reading	a	book	is	like	executing	the	main	program	in	the
foreground.	You	start	reading	at	the	beginning	of	the	book	and	basically	read	one	page	at
time	in	a	sequential	fashion.	You	might	jump	to	the	back	and	look	something	up	in	the
glossary,	then	jump	back	to	where	you	where,	which	is	analogous	to	a	function	call.
Similarly,	you	might	read	the	same	page	a	few	times,	which	is	analogous	to	a	program
loop.	Even	though	you	skip	around	a	little,	the	order	of	pages	you	read	follows	a	logical
and	well-defined	sequence.	Conversely,	if	the	telephone	rings,	you	place	a	bookmark	in
the	book	and	answer	the	phone.	When	you	are	finished	with	the	phone	conversation,	you
hang	up	the	phone	and	continue	reading	in	the	book	where	you	left	off.	The	ringing	phone
is	analogous	to	hardware	trigger	and	the	phone	conversation	is	like	executing	the	ISR.

A	program	segment	is	reentrant	if	it	can	be	concurrently	executed	by	two	(or	more)
threads.	In	Figure	3.7	we	can	conceive	of	the	situation	where	the	main	program	starts
executing	a	function,	is	interrupted,	and	the	background	thread	calls	that	same	function.	In
order	for	two	threads	to	share	a	function,	the	function	must	be	reentrant.	To	implement
reentrant	software,	place	local	variables	on	the	stack,	and	avoid	storing	into	I/O	devices
and	global	memory	variables.	The	issue	of	reentrancy	will	be	covered	in	detail	later	in
Chapter	5.

3.7.	First	In	First	Out	Queue

3.7.1.	Classical	definition	of	a	FIFO
The	first	in	first	out	circular	queue	(FIFO)	is	quite	useful	for	implementing	a	buffered	I/O
interface	(Figure	3.9).	It	can	be	used	for	both	buffered	input	and	buffered	output.	The
order	preserving	data	structure	temporarily	saves	data	created	by	the	source	(producer)
before	it	is	processed	by	the	sink	(consumer).	The	class	of	FIFOs	studied	in	this	section
will	be	statically	allocated	global	structures.	Because	they	are	global	variables,	it	means
they	will	exist	permanently	and	can	be	carefully	shared	by	more	than	one	program.	The
advantage	of	using	a	FIFO	structure	for	a	data	flow	problem	is	that	we	can	decouple	the
producer	and	consumer	threads.	Without	the	FIFO	we	would	have	to	produce	1	piece	of
data,	then	process	it,	produce	another	piece	of	data,	then	process	it.	With	the	FIFO,	the
producer	thread	can	continue	to	produce	data	without	having	to	wait	for	the	consumer	to
finish	processing	the	previous	data.	This	decoupling	can	significantly	improve	system
performance.

Figure	3.9.	The	FIFO	is	used	to	buffer	data	between	the	producer	and
consumer.
You	have	probably	already	experienced	the	convenience	of	FIFOs.	For	example,	a	FIFO	is
used	while	streaming	audio	from	the	Internet.	As	sound	data	are	received	from	the	Internet
they	are	put	(calls Fifo_Put)	in	a	FIFO.	When	the	sound	board	needs	datait
calls Fifo_Get .	As	long	as	the	FIFO	never	comes	full	or	empty,	the	sound	is	played	in	a
continuous	manner.	A	FIFO	is	also	used	when	you	ask	the	computer	to	print	a	file.	Rather
than	waiting	for	the	actual	printing	to	occur	character	by	character,	the	print	command	will
put	the	data	in	a	FIFO.	Whenever	the	printer	is	free,	it	will	get	data	from	the	FIFO.	The
advantage	of	the	FIFO	is	it	allows	you	to	continue	to	use	your	computer	while	the	printing
occurs	in	the	background.	To	implement	this	magic	of	background	printing	we	will	need
interrupts.	There	are	many	producer/consumer	applications.	In	Table	3.3	the	processes	on
the	left	are	producers	that	create	or	input	data,	while	the	processes	on	the	right	are
consumers	which	process	or	output	data.

Source/Producer Sink/Consumer

Keyboard	input Program	that	interprets

Program	with	data Printer	output

Program	sends	message Program	receives	message

Microphone	and	ADC Program	that	saves	sound
data

Program	that	has	sound
data

DAC	and	speaker

Table	3.3.	Producer	consumer	examples.

The	producer	puts	data	into	the	FIFO.	The Fifo_Put operation	does	not	discard
information	already	in	the	FIFO.	If	the	FIFO	is	full	and	the	user	calls Fifo_Put ,
the Fifo_Put 	routine	will	return	a	full	error	signifying	the	last	(newest)	data	was	not
properly	saved.	The	sink	process	removes	data	from	the	FIFO.	The Fifo_Get 	routine	will
modify	the	FIFO.	After	a	get,	the	particular	information	returned	from	the	get	routine	is	no
longer	saved	on	the	FIFO.	If	the	FIFO	is	empty	and	the	user	tries	to	get,
the Fifo_Get routine	will	return	an	empty	error	signifying	no	data	could	be	retrieved.	The
FIFO	is	order	preserving,	such	that	the	information	is	returned	by	repeated	calls
of Fifo_Get 	in	the	same	order	as	the	data	was	saved	by	repeated	calls	of Fifo_Put .

There	are	many	ways	to	implement	a	statically-allocated	FIFO.	We	can	use	either	a
pointer	or	an	index	to	access	the	data	in	the	FIFO.	We	can	use	either	two	pointers	(or	two
indices)	or	two	pointers	(or	two	indices)	and	a	counter.	The	counter	specifies	how	many
entries	are	currently	stored	in	the	FIFO.	There	are	even	hardware	implementations	of
FIFO	queues.	We	begin	with	the	two-pointer	implementation.	It	is	a	little	harder	to
implement,	but	it	does	have	some	advantages	over	the	other	implementations.

3.7.2.	Two-pointer	FIFO	implementation
The	two-pointer	implementation	has,	of	course,	two	pointers.	If	we	were	to	have	infinite
memory,	a	FIFO	implementation	is	easy	(Figure	3.10). GetPt points	to	the	data	that	will
be	removed	by	the	next	call	to Fifo_Get ,	and PutPt	points	to	the	empty	space	where	the
data	will	stored	by	the	next	call	to Fifo_Put ,	see	Program	3.6.

Figure	3.10.	The	FIFO	implementation	with	infinite	memory.
int8_t	static	volatile	*PutPt;		//	put	next

int8_t	static	volatile	*GetPt;		//	get	next

int	Fifo_Put(int8_t	data){						//	call	by	value

		*PutPt	=	data;			//	Put

		PutPt++;									//	next

		return(1);}						//	true	if	success

int	Fifo_Get(int8_t	*datapt){

		*datapt	=	*GetPt;	//	return	by	reference

		GetPt++;										//	next

		return(1);}							//	true	if	success

Program	3.6.	Code	fragments	showing	the	basic	idea	of	a	FIFO.
There	are	fourmodifications	that	are	required	to	the	above	subroutines.	If	the	FIFO	is	full
when Fifo_Put 	is	called	then	the	function	should	return	a	full	error.	Similarly,	if	the	FIFO
is	empty	when Fifo_Get is	called,	then	the	function	should	return	an	empty	error. PutPt
must	be	wrapped	back	up	to	the	top	when	it	reaches	the	bottom	(Figure	3.11).

Figure	3.11.	The	FIFOFifo_Put 	operation	showing	the	pointer	wrap.
The GetPt 	must	also	be	wrapped	back	up	to	the	top	when	it	reaches	the	bottom	(Figure
3.12).

Figure	3.12.	The	FIFOFifo_Get 	operation	showing	the	pointer	wrap.
There	are	two	mechanisms	to	determine	whether	the	FIFO	is	empty	or	full.	A	simple
method	is	to	implement	a	counter	containing	the	number	of	bytes	currently	stored	in	the
FIFO. Fifo_Get would	decrement	the	counter	and Fifo_Put 	would	increment	the	counter.
We	will	not	implement	a	counter	because	incrementing	and	decrementing	a	counter	causes
a	race	condition,	meaning	the	counter	could	become	incorrect	when	shared	in	a
multithreaded	environment.	Race	conditions	and	critical	sections	will	be	presented	in
Chapter	5.

The	second	method	is	to	prevent	the	FIFO	from	being	completely	full.	The
implementation	of	this	FIFO	module	is	shown	in	Program	3.7.	You	can	find	all	the	FIFOs
of	this	section	on	the	book	web	site	as	FIFO_xxx.zip,	where	xxx	refers	to	the	specific
microcontroller	on	which	the	example	was	tested.

#define	FIFOSIZE	10				//	can	be	any	size

#define	FIFOSUCCESS	1

#define	FIFOFAIL				0

typedef	int8_t	DataType;

DataType	volatile	*PutPt;	//	put	next

DataType	volatile	*GetPt;	//	get	next

DataType	static	Fifo[FIFOSIZE];

//	initialize	FIFO

void	Fifo_Init(void){

		PutPt	=	GetPt	=	&Fifo[0];	//	Empty

}

//	add	element	to	FIFO

int	Fifo_Put(DataType	data){

		DataType	volatile	*nextPutPt;

		nextPutPt	=	PutPt+1;

		if(nextPutPt	==	&Fifo[FIFOSIZE]){

nextPutPt	=	&Fifo[0];		//	wrap

		}

		if(nextPutPt	==	GetPt){

return(FIFOFAIL);						//	Failed,	FIFO	full

		}

		else{

*(PutPt)	=	data;							//	Put

PutPt	=	nextPutPt;					//	Success,	update

return(FIFOSUCCESS);

		}

}

//	remove	element	from	FIFO

int	Fifo_Get(DataType	*datapt){

		if(PutPt	==	GetPt){

return(FIFOFAIL);						//	Empty	if	PutPt=GetPt

		}

		*datapt	=	*(GetPt++);

		if(GetPt	==	&Fifo[FIFOSIZE]){

GetPt	=	&Fifo[0];			//	wrap

		}

		return(FIFOSUCCESS);

}

Program	3.7.	Two-pointer	implementation	of	a	FIFO	(FIFO_xxx.zip).
For	example,	if	the	FIFO	had	10	bytes	allocated,	then	the Fifo_Put subroutine	would
allow	a	maximum	of	9	bytes	to	be	stored.	If	there	were	already	9	bytes	in	the	FIFO	and
another Fifo_Put 	were	called,	then	the	FIFO	would	not	be	modified	and	a	full	error
would	be	returned.	See	Figure	3.13.	In	this	way	if PutPt equals GetPt at	the	beginning
of Fifo_Get ,	then	the	FIFO	is	empty.	Similarly,	if PutPt+1 equals GetPt at	the	beginning
of Fifo_Put ,	then	the	FIFO	is	full.	Be	careful	to	wrap	the PutPt+1 before	comparing	it
to Fifo_Get .	This	method	does	not	require	the	length	to	be	stored	or	calculated.

Figure	3.13.	Flowcharts	of	the	pointer	implementation	of	the	FIFO	queue.
To	check	for	FIFO	full,	the	following Fifo_Put routine	attempts	to	put	using	a
temporary PutPt .	If	putting	makes	the	FIFO	look	empty,	then	the	temporary PutPt is
discarded	and	the	routine	is	exited	without	saving	the	data.	This	is	why	a	FIFO	with	10
allocated	bytes	can	only	hold	9	data	points.	If	putting	doesn’t	make	the	FIFO	look	empty,
then	the	temporary PutPt is	stored	into	the	actual PutPt 	saving	the	data	as	desired.

To	check	for	FIFO	empty,	the Fifo_Get 	routine	in	Program	3.7simply	checks	to	see
if GetPt equals PutPt .	If	they	match	at	the	start	of	the	routine, then	Fifo_Get 	returns
with	the	“empty”	condition	signified.

Since Fifo_Put and Fifo_Get have	read	modify	write	accesses	to	global	variables	they	are
themselves	not	reentrant.	Similarly Fifo_Init has	a	multiple	step	write	access	to	global
variables.	Therefore Fifo_Init 	is	not	reentrant.

One	advantage	of	this	pointer	implementation	is	that	if	you	have	a	single	thread	that	calls
the Fifo_Get (e.g.,	the	main	program)	and	a	single	thread	that	calls	the Fifo_Put (e.g.,	the
serial	port	receive	interrupt	handler),	then	this Fifo_Put function	can	interrupt
this Fifo_Get function	without	loss	of	data.	So	in	this	particular	situation,	interrupts	would
not	have	to	be	disabled.	It	would	also	operate	properly	if	there	were	a	single	interrupt
thread	calling Fifo_Get (e.g.,	the	serial	port	transmit	interrupt	handler)	and	a	single	thread
calling Fifo_Put (e.g.,	the	main	program.)	On	the	other	hand,	if	the	situation	is	more
general,	and	multiple	threads	could	call Fifo_Put or	multiple	threads	could	call Fifo_Get ,
then	the	interrupts	would	have	to	be	temporarily	disabled.

3.7.3.	Two	index	FIFO	implementation
The	other	method	to	implement	a	FIFO	is	to	use	indices	rather	than	pointers.	This	FIFO
has	the	restriction	that	the	size	must	be	a	power	of	2.	In	Program	3.8, FIFOSIZE is	16	and
the	logic PutI&(FIFOSIZE-1) returns	the	bottom	four	bits	of	the	put	index.	Similarly,	the
logic GetI&(FIFOSIZE-1) returns	the	bottom	four	bits	of	the	get	index.	Using	the	bottom
bits	of	the	index	removes	the	necessary	to	check	for	out	of	bounds	and	wrapping.

//	Two-index	implementation	of	the	transmit	FIFO

//	can	hold	0	to	FIFOSIZE	elements

#define	FIFOSIZE	16	//	must	be	a	power	of	2

#define	FIFOSUCCESS	1

#define	FIFOFAIL				0

typedef	int8_t	DataType;

uint32_t	volatile	PutI;//	put	next

uint32_t	volatile	GetI;//	get	next

DataType	static	Fifo[FIFOSIZE];

//	initialize	index	FIFO

void	Fifo_Init(void){

		PutI	=	GetI	=	0;		//	Empty

}

//	add	element	to	end	of	index	FIFO

int	Fifo_Put(DataType	data){

		if((PutI-GetI)	&	~(FIFOSIZE-1)){

return(FIFOFAIL);	//	Failed,	fifo	full

		}

		Fifo[PutI&(FIFOSIZE-1)]	=	data;	//	put

		PutI++;		//	Success,	update

		return(FIFOSUCCESS);

}

//	remove	element	from	front	of	index	FIFO

int	Fifo_Get(DataType	*datapt){

		if(PutI	==	GetI){

return(FIFOFAIL);	//	Empty	if	PutI=GetI

		}

		*datapt	=	Fifo[GetI&(FIFOSIZE-1)];

		GetI++;		//	Success,	update

		return(FIFOSUCCESS);

}

Program	3.8.	Implementation	of	a	two-index	FIFO.	The	size	must	be	a
power	of	two	(FIFO_xxx.zip).
If	the	FIFO	is	full,	then (PutI-GetI) 	will	equal	16,	meaning	all	elements	of	the	buffer
have	data.	The	expression ~(FIFOSIZE-1) 	yields	the	constant	0xFFFFFFF0.	For	all	sizes
that	are	a	power	of	2,	the	if	statement	in	put	will	be	nonzero	if	there	are FIFOSIZE
elements	in	the	FIFO.	With	this	implementation	a	FIFO	with	16	allocated	bytes	can
actually	hold	16	data	points.The	FIFO	is	empty	if PutI equals GetI .	If	empty,	the
Fifo_Get 	function	returns	with	the FIFOFAIL 	condition.

3.7.4.	FIFO	build	macros
When	we	need	multiple	FIFOs	in	our	system,	we	could	switch	over	to	C++	and	define	the
FIFO	as	a	class,	and	then	instantiate	multiple	objects	to	create	the	FIFOs.	A	second
approach	would	be	to	use	a	text	editor,	open	the	source	code	containing	Program	3.7	or
3.8,	copy/paste	it,	and	then	change	names	so	the	functions	are	unique.	A	third	approach	is
shown	in	Programs	3.9	and	3.10,	which	defines	macros	allowing	us	to	create	as	many
FIFOs	as	we	need.

//	macro	to	create	a	pointer	FIFO

#define	AddPointerFifo(NAME,SIZE,TYPE,SUCCESS,FAIL)	\

TYPE	volatile	*NAME	##	PutPt;				\

TYPE	volatile	*NAME	##	GetPt;				\

TYPE	static	NAME	##	Fifo	[SIZE];								\

void	NAME	##	Fifo_Init(void){											\

		NAME	##	PutPt	=	NAME	##	GetPt	=	&NAME	##	Fifo[0];	\

}																																							\

int	NAME	##	Fifo_Put	(TYPE	data){							\

		TYPE	volatile	*nextPutPt;													\

		nextPutPt	=	NAME	##	PutPt	+	1;								\

		if(nextPutPt	==	&NAME	##	Fifo[SIZE]){	\

nextPutPt	=	&NAME	##	Fifo[0];							\

		}																																					\

		if(nextPutPt	==	NAME	##	GetPt){						\

return(FAIL);																							\

		}																																					\

		else{																																	\

*(NAME	##	PutPt)	=	data;										\

NAME	##	PutPt	=	nextPutPt;										\

return(SUCCESS);																				\

		}																																					\

}																																							\

int	NAME	##	Fifo_Get	(TYPE	*datapt){				\

		if(NAME	##	PutPt	==	NAME	##	GetPt){	\

return(FAIL);																							\

		}																																					\

		*datapt	=	*(NAME	##	GetPt	##	++);				\

		if(NAME	##	GetPt	==	&NAME	##	Fifo[SIZE]){	\

NAME	##	GetPt	=	&NAME	##	Fifo[0];			\

		}																																					\

		return(SUCCESS);																						\

}

Program	3.9.	Two-pointer	macro	implementation	of	a	FIFO
(FIFO_xxx.zip).

To	create	a	20-element	FIFO	storing	unsigned	16-bit	numbers	that	returns	1	on	success
and	0	on	failure	we	invoke

AddPointerFifo(Rx,	20,	uint16_t,	1,	0)

	

creating	the	three	functions	RxFifo_Init() , RxFifo_Get() ,and RxFifo_Put() .

Program	3.10	is	a	macro	allowing	us	to	create	two-index	FIFOs	similar	to	Program	3.8.

	

//	macro	to	create	an	index	FIFO

#define	AddIndexFifo(NAME,SIZE,TYPE,SUCCESS,FAIL)	\

uint32_t	volatile	NAME	##	PutI;				\

uint32_t	volatile	NAME	##	GetI;				\

TYPE	static	NAME	##	Fifo	[SIZE];								\

void	NAME	##	Fifo_Init(void){											\

		NAME	##	PutI	=	NAME	##	GetI	=	0;						\

}																																							\

int	NAME	##	Fifo_Put	(TYPE	data){							\

		if((NAME	##	PutI	-	NAME	##	GetI)	&	~(SIZE-1)){		\

return(FAIL);						\

		}																				\

		NAME	##	Fifo[NAME	##	PutI	&(SIZE-1)]	=	data;	\

		NAME	##	PutI	##	++;		\

		return(SUCCESS);					\

}																						\

int	NAME	##	Fifo_Get	(TYPE	*datapt){		\

		if(NAME	##	PutI	==	NAME	##	GetI){	\

return(FAIL);						\

		}																				\

		*datapt	=	NAME	##	Fifo[NAME	##	GetI	&(SIZE-1)];		\

		NAME	##	GetI	##	++;		\

		return(SUCCESS);					\

}																						\

uint16_t	NAME	##	Fifo_Size	(void){		\

return	((uint16_t)(NAME	##	PutI	-	NAME	##	GetI));		\

}

Program	3.10.	Macro	implementation	of	a	two-index	FIFO.	The	size	must
be	a	power	of	two	(FIFO_xxx.zip).
To	create	a	32-element	FIFO	storing	signed	32-bit	numbers	that	returns	0	on	success	and	1
on	failure	we	invoke

AddIndexFifo(Tx,	32,	int32_t,	0,	1)

	

creating	the	three	functions	TxFifo_Init() , 	TxFifo_Get() ,and TxFifo_Put() .

	

Checkpoint	3.11:	Show	C	code	to	create	three	FIFOs	called	CAN1	CAN2	and	CAN3.
Each	FIFO	stores	8-bit	bytes	and	must	be	able	to	store	up	to	99	elements.	

Checkpoint	3.12:	Show	C	code	to	create	two	FIFOs	called	F1	and	F2.	Each	FIFO	stores
16-bit	halfwords	and	must	be	able	to	store	up	to	256	elements.	

	

3.8.	Memory	Management	and	the	Heap
So	far,	we	have	seen	two	types	of	allocation:	permanent	allocation	in	global	variables	and
temporary	allocation	in	local	variables.	When	we	allocate	local	variables	in	registers	or	on
the	stack	these	variables	must	be	private	to	the	function	and	cannot	be	shared	with	other
functions.	Furthermore,	each	time	the	function	is	invoked	new	local	variables	are	created,
and	data	from	previous	instantiations	are	not	available.	This	behavior	is	usually	exactly
what	we	want	to	happen	with	local	variables.	However,	we	can	use	the	heap	(or	memory
manager)	to	have	temporary	allocation	in	a	way	that	is	much	more	flexible.	In	particular,
we	will	be	able	to	explicitly	define	when	data	are	allocated	and	when	they	are	deallocated
with	the	only	restriction	being	we	first	allocate,	next	we	use,	and	then	we	deallocate.
Furthermore,	we	can	control	the	scope	of	the	data	in	a	flexible	manner.

The	use	of	the	heap	involves	two	system	functions: malloc and free .	When	we	wish	to
allocate	space	we	callmalloc and	specify	how	many	bytes	we	need. malloc will	return	a
pointer	to	the	new	object,	which	we	must	store	in	a	pointer	variable.	If	the	heap	has	no
more	space,malloc will	return	a	0,	which	means	null	pointer.	The	heap	implements
temporary	allocation,	so	when	we	are	done	with	the	data,	we	return	it	to	the	heap	by
calling free .	Consider	the	following	simple	example	with	three	functions.

int32_t	*Pt;

void	Begin(void){

		Pt	=	(*int32_t)malloc(4*20);	//	allocate	20	words

}

void	Use(void){	int	i;

		for(i	=	0;	i	<	20;	i++)

Pt[i]	=	i;	//	put	data	into	array

}

void	End(void){

		free(Pt);

}

	

The	pointer Pt 	is	permanently	allocated.	The	left	side	of	Figure	3.14	shows	that	initially,
even	though	the	pointer	exists,	it	does	not	point	to	anything.	More	specifically,	the
compiler	will	initialize	it	to	0;	this	0	is	defined	as	a	nullpointer,	meaning	it	is	not	valid.
Whenmalloc is	called	the	pointer	is	now	valid	and	points	to	a	20-word	array.	The	array	is
inside	the	heap	and Pt 	points	to	it.	Any	timeaftermalloc is	called	and	before free is	called
the	array	exists	and	can	be	accessed	via	the	pointer Pt .	After	you	call	free,	the	pointer	has
the	same	value	as	before.	However,	the	array	itself	does	not	exist.	I.e.,	these	80	bytes	do
not	belong	to	your	program	anymore.	In	particular,	after	you	call	free	the	heap	is	allowed
to	allocate	these	bytes	to	some	other	program.	Weird	and	crazy	errors	will	occur	if	you
attempt	to	dereference	the	pointer	before	the	array	is	allocated,	or	after	it	is	released.

Figure	3.14.	The	heap	is	used	to	dynamically	allocate	memory.
This	array	exists	and	the	pointer	is	valid	from	when	you	call malloc up	until	the	time	you
call free .	In	C,	the	heap	does	not	manage	the	pointers	to	allocated	block;	your	program
must.	If	you	callmalloc 	ten	times	in	a	row,	you	must	keep	track	of	the	ten	pointers	you
received.	The	scope	of	this	array	is	determined	by	the	scope	of	the	pointer, Pt .	If Pt 	is
public,	then	the	array	is	public.	If	static	were	to	be	added	to	the	definition	of Pt ,	then	the
scope	of	the	array	is	restricted	to	software	within	this	file.	In	the	following	example,	the
scope	of	the	array	is	restricted	to	the	one	function.	Within	one	execution	of	the	function,
the	array	is	allocated,	used,	and	then	deallocated,	just	like	a	local	variable.

void	Function(void){	int	i;

int32_t	*pt;

		pt	=	(*int32_t)malloc(4*20);	//	allocate	20	words

		for(i	=	0;	i	<	20;	i++)

pt[i]	=	i;	//	put	data	into	array

		free(pt);

}

A	memory	leak	occurs	if	software	uses	the	heap	to	allocate	space	but	forgets	to	deallocate
the	space	when	it	is	finished.	The	following	is	an	example	of	a	memory	leak.	Each	time
the	function	is	called,	a	block	of	memory	is	allocated.	The	pointer	to	the	block	is	stored	in
a	local	variable.	When	the	function	returns,	the	pointer	no	longer	exists.	This	means	the
allocated	block	in	the	heap	exists,	but	the	program	has	no	pointer	to	it.	In	other	words,
each	time	this	function	returns	80	bytes	from	the	heap	are	permanently	lost.

void	LeakyFunction(void){	int	i;

int32_t	*pt;

		pt	=	(*int32_t)malloc(4*20);	//	allocate	20	words

		for(i	=	0;	i	<	20;	i++)

pt[i]	=	i;	//	put	data	into	array

}

In	general,	the	heap	manager	allows	the	program	to	allocate	a	variable	block	size,	but	in
this	section	we	will	develop	a	simplified	heap	manager	handles	just	fixed	size	blocks.	In
this	example,	the	block	size	is	specified	by	the	constant	SIZE .	The	initialization	will
create	a	linked	list	of	all	the	free	blocks	(Figure	3.15).

Figure	3.15.	The	initial	state	of	the	heap	has	all	of	the	free	blocks	linked	in
a	list.
Program	3.11ashows	the	global	structures	for	the	heap.	These	entries	are	defined	in
RAM.	 SIZE is	the	number	of	8-bit	bytes	in	each	block.	All	blocks	allocated	and	released
with	this	memory	manager	will	be	of	this	fixed	size. NUM is	the	number	of	blocks	to	be
managed. FreePt 	points	to	the	first	free	block.

#define	SIZE	80					

#define	NUM	5					

#define	NULL	0		//	empty	pointer

int8_t	*FreePt;

int8_t	Heap[SIZE*NUM];

Program	3.11a.	Private	global	structures	for	the	fixed-block	memory
manager.
Initialization	must	be	performed	before	the	heap	can	be	used.	Program	3.11bshows	the
software	that	partitions	the	heap	into	blocks	and	links	them	together. FreePt 	points	to	a
linear	linked	list	of	free	blocks.	Initially	these	free	blocks	are	contiguous	and	in	order,	but
as	the	manager	is	used	the	positions	and	order	of	the	free	blocks	can	vary.	It	will	be	the
pointers	that	will	thread	the	free	blocks	together.

void	Heap_Init(void){

int8_t	*pt;

		FreePt	=	&Heap[0];

		for(pt=&Heap[0];

pt!=&Heap[SIZE*(NUM-1)];

pt=pt+SIZE){

*(int32_t	*)pt	=(int32_t)(pt+SIZE);

		}

		(int32_t)pt	=	NULL;

}

Program	3.11b.	Functions	to	initialize	the	heap.
To	allocate	a	block	to	manager	just	removes	one	block	from	the	free	list.	Program
3.11cshows	the	allocate	and	release	functions.	The Heap_Allocate function	will	fail	and
return	a	null	pointer	when	the	heap	becomes	empty.	The Heap_Release 	returns	a	block	to
the	free	list.	This	system	does	not	check	to	verify	a	released	block	actually	was	previously
allocated.

void	*Heap_Allocate(void){

int8_t	*pt;

		pt	=	FreePt;

		if	(pt	!=	NULL){

FreePt	=	(char*)	*(char**)pt;

		}

		return(pt);

}

void	Heap_Release(void	*pt){

int8_t	*oldFreePt;

		oldFreePt	=	FreePt;

		FreePt	=	(char*)pt;

		*(int32_t	*)pt	=	(int32_t)oldFreePt;

}

Program	3.11c.	Functions	to	allocate	and	release	memory	blocks
(HeapFixedBlock_xxx.zip).
Checkpoint	3.13:	There	are	5	blocks	in	this	simple	heap.	How	could	the	memory
manager	determine	if	block	I	(where	0	≤	I	≤	4)	is	allocated	or	free?	

Checkpoint	3.14:	Using	this	memory	manager,	write	a	malloc	and	free	functions	such
that	the	size	is	restricted	to	a	maximum	of	100	bytes.	I.e.,	you	may	assume	the	user	never
asks	for	more	than	100	bytes	at	a	time.

3.9.	Introduction	to	Debugging
Every	programmer	is	faced	with	the	need	to	debug	and	verify	the	correctness	of	their
software.	In	this	section	we	will	study	hardware	level	probes	like	the	oscilloscope,	logic
analyzer,	JTAG,	and	in-circuit-emulator	(ICE);	software	level	tools	like	simulators,
monitors,	and	profilers;	and	manual	tools	like	inspection	and	print	statements.

3.9.1.	Debugging	Tools
Microcontroller-related	problems	often	require	the	use	of	specialized	equipment	to	debug
the	system	hardware	and	software.	Useful	hardware	tools	include	a	logic	probe,	an
oscilloscope,	a	logic	analyzer,	and	a	JTAG	debugger.	A	logic	probe	is	a	handheld	device
with	an	LED	or	buzzer.	You	place	the	probe	on	your	digital	circuit	and	LED/buzzer	will
indicate	whether	the	signal	is	high	or	low.	An	oscilloscope,	or	scope,	graphically	displays
information	about	an	electronic	circuit,	where	the	voltage	amplitude	versus	time	is
displayed.	A	scope	has	one	or	two	channels,	with	many	ways	to	trigger	or	capture	data.	A
scope	is	particularly	useful	when	interfacing	analog	signals	using	an	ADC	or	DAC.	The
PicoScope	2104	(from	http://www.picotech.com/)	is	a	low-cost	but	effective	tool	for
debugging	microcontroller	circuits.	A	logic	analyzer	is	essentially	a	multiple	channel
digital	storage	scope	with	many	ways	to	trigger.	As	shown	in	Figure	3.16,	we	can	connect
the	logic	analyzer	to	digital	signals	that	are	part	of	the	system,	or	we	can	connect	the	logic
analyzer	channels	to	unused	microcontroller	pins	and	add	software	to	toggle	those	pins	at
strategic	times/places.	As	a	troubleshooting	aid,	it	allows	the	experimenter	to	observe
numerous	digital	signals	at	various	points	in	time	and	thus	make	decisions	based	upon
such	observations.	One	problem	with	logic	analyzers	is	the	massive	amount	of	information
that	it	generates.	To	use	an	analyzer	effectively	one	must	learn	proper	triggering
mechanisms	to	capture	data	at	appropriate	times	eliminating	the	need	to	sift	through
volumes	of	output.	The	logic	analyzer	figures	in	this	book	were	collected	with	a	logic
analyzer	USBee	(from	http://www.usbee.com).	Some	of	the	models	from	USBee	combine
a	logic	analyzer	with	an	oscilloscope,	creating	an	extremely	effective	debugging	tool.

Maintenance	Tip:	First,	find	the	things	that	will	break	you.	Second,	break	them.

Common	error:	Sometimes	the	original	system	operates	properly,	and	the	debugging
code	has	mistakes.

	

Figure	3.16.	A	logic	analyzer	and	example	output.

Figure	3.17	shows	a	logic	analyzer	output,	where	signals	RxCAN	and	TxCAN	are	digital
input/output,	but	signals	PB3,	PB1,	and	PB5	are	debugging	outputs	to	measuring	timing
relationships	between	software	execution	and	digital	I/O.	The	rising	edge	of	PB3	is	used
to	trigger	the	data	collection.

Figure	3.17.	USBee	SX	logic	analyzer	output	(also	consider	Analog
Discovery	from	www.digilentinc.com).
An	emulator	is	a	hardware	debugging	tool	that	recreates	the	input/output	signals	of	the
processor	chip.	To	use	an	emulator,	we	remove	the	processor	chip	and	insert	the	emulator
cable	into	the	chip	socket.	In	most	cases,	the	emulator/computer	system	operates	at	full
speed.	The	emulator	allows	the	programmer	to	observe	and	modify	internal	registers	of
the	processor.	Emulators	are	often	integrated	into	a	personal	computer,	so	that	its	editor,
hard	drive,	and	printer	are	available	for	the	debugging	process.

The	only	disadvantage	of	the	in-circuit	emulator	is	its	cost.	To	provide	some	of	the
benefits	of	this	high-priced	debugging	equipment,	many	microcontrollers	use	a	JTAG
debugger.	The	JTAG	hardware	exists	both	on	the	microcontroller	chip	itself	and	as	an
external	interface	to	a	personal	computer.	Although	not	as	flexible	as	an	ICE,	the	JTAG
can	provide	the	ability	to	observe	software	execution	in	real-time,	the	ability	to	set
breakpoints,	the	ability	to	stop	the	computer,	and	the	ability	to	read	and	write	registers,	I/O
ports	and	memory.

3.9.2.	Debugging	Theory

Debugging	is	an	essential	component	of	embedded	system	design.	We	need	to	consider
debugging	during	all	phases	of	the	design	cycle.	It	is	important	to	develop	a	structure	or
method	when	verifying	system	performance.	This	section	will	present	a	number	of	tools
we	can	use	when	debugging.	Terms	such	as	program	testing,	diagnostics,	performance
debugging,	functional	debugging,	tracing,	profiling,	instrumentation,	visualization,
optimization,	verification,	performance	measurement,	and	execution	measurement	have
specialized	meanings,	but	they	are	also	used	interchangeably,	and	they	often	describe
overlapping	functions.	For	example,	the	terms	profiling,	tracing,	performance
measurement,	or	execution	measurement	may	be	used	to	describe	the	process	of
examining	a	program	from	a	time	viewpoint.		But,	tracing	is	also	a	term	that	may	be	used
to	describe	the	process	of	monitoring	a	program	state	or	history	for	functional	errors,	or	to
describe	the	process	of	stepping	through	a	program	with	a	debugger.		Usage	of	these	terms
among	researchers	and	users	vary.

Black-box	testing	is	simply	observing	the	inputs	and	outputs	without	looking	inside.
Black-box	testing	has	an	important	place	in	debugging	a	module	for	its	functionality.	On
the	other	hand,	white-box	testing	allows	you	to	control	and	observe	the	internal	workings
of	a	system.	A	common	mistake	made	by	new	engineers	is	to	just	perform	black	box
testing.	Effective	debugging	uses	both.	One	must	always	start	with	black-box	testing	by
subjecting	a	hardware	or	software	module	to	appropriate	test-cases.	Once	we	document
the	failed	test-cases,	we	can	use	them	to	aid	us	in	effectively	performing	the	task	of	white-
box	testing.

We	define	a	debugging	instrument	as	software	code	that	is	added	to	the	program	for	the
purpose	of	debugging.	A	print	statement	is	a	common	example	of	an	instrument.	Using	the
editor,	we	add	print	statements	to	our	code	that	either	verify	proper	operation	or	display
run-time	errors.	A	key	to	writing	good	debugging	instruments	is	to	provide	for	a
mechanism	to	reliably	and	efficiently	remove	all	them	when	the	debugging	is	done.
Consider	the	following	mechanisms	as	you	develop	your	own	unique	debugging	style.

•	Place	all	print	statements	in	a	unique	column	(e.g.,	first	column.),	so	that	the
only	code	that	exists	in	this	column	will	be	debugging	instruments.

	

•	Define	all	debugging	instruments	as	functions	that	all	have	a	specific	pattern
in	their	names(e.g.,	begin	with Debug_).	In	this	way,	the	find/replace
mechanism	of	the	editor	can	be	used	to	find	all	the	calls	to	the	instruments.

	

•	Define	the	instruments	so	that	they	test	a	run	time	global	flag.	When	this	flag
is	turned	off,	the	instruments	perform	no	function.	Notice	that	this	method
leaves	a	permanent	copy	of	the	debugging	code	in	the	final	system,	causing	it
to	suffer	a	runtime	overhead,	but	the	debugging	code	can	be	activated
dynamically	without	recompiling.	Many	commercial	software	applications
utilize	this	method	because	it	simplifies	“on-site”	customer	support.

	

•	Use	conditional	compilation	(or	conditional	assembly)	to	turn	on	and	off	the
instruments	when	the	software	is	compiled.	When	the	compiler	supports	this
feature,	it	can	provide	both	performance	and	effectiveness.

	
Some	compilers	support	a	configuration	mode	that	can	be	set	to	debug	or	release.	In	debug
mode,	debugging	instruments	are	added.	In	release	mode,	the	instruments	are	removed.

Checkpoint	3.15:	Consider	the	difference	between	a	runtime	flag	that	activates	a
debugging	command	versus	a	compile-time	flag.	In	both	cases	it	is	easy	to
activate/deactivate	the	debugging	statements.	List	one	factor	for	which	each	method	is
superior	to	the	other.

Checkpoint	3.16:	What	is	the	advantage	of	leaving	debugging	instruments	in	a	final
delivered	product?			

Nonintrusiveness	is	the	characteristic	or	quality	of	a	debugger	that	allows	the
software/hardware	system	to	operate	normally	as	if	the	debugger	did	not	exist.
Intrusiveness	is	used	as	a	measure	of	the	degree	of	perturbation	caused	in	program
performance	by	the	debugging	instrument	itself.	Let	tbe	the	time	required	to	execute	the
instrument,	and	let t	be	the	average	time	in	between	executions	of	the	instrument.	One
quantitative	measure	of	intrusiveness	is	t/ t,	which	is	the	fraction	of	available	processor
time	used	by	the	debugger.	For	example,	a	print	statement	added	to	your	source	code	may
be	very	intrusive	because	it	might	significantly	affect	the	real-time	interaction	of	the
hardware	and	software.	Observing	signals	that	already	exist	as	part	of	the	system	with	an
oscilloscope	or	logic	analyzer	is	nonintrusive.	A	debugging	instrument	is	classified	as
minimally	intrusive	if	it	has	a	negligible	effect	on	the	system	being	debugged.	In	a	real
microcontroller	system,	breakpoints	and	single-stepping	are	also	intrusive,	because	the
real	hardware	continues	to	change	while	the	software	has	stopped.	When	a	program
interacts	with	real-time	events,	the	performance	can	be	significantly	altered	when	using
intrusive	debugging	tools.	To	be	effective	we	must	employ	nonintrusive	or	minimally
intrusive	methods.

Checkpoint	3.17:	What	does	it	mean	for	a	debugging	instrument	to	be	minimally
intrusive?	Give	both	a	general	answer	and	a	specific	criterion.			

Although,	a	wide	variety	of	program	monitoring	and	debugging	tools	are	available	today,
in	practice	it	is	found	that	an	overwhelming	majority	of	users	either	still	prefer	or	rely
mainly	upon	“rough	and	ready”	manual	methods	for	locating	and	correcting	program
errors.		These	methods	include	desk-checking,	dumps,	and	print	statements,	with	print
statements	being	one	of	the	most	popular	manual	methods.		Manual	methods	are	useful
because	they	are	readily	available,	and	they	are	relatively	simple	to	use.		But,	the
usefulness	of	manual	methods	is	limited:	they	tend	to	be	highly	intrusive,	and	they	do	not
provide	adequate	control	over	repeatability,	event	selection,	or	event	isolation.	A	real-time
system,	where	software	execution	timing	is	critical,	usually	cannot	be	debugged	with
simple	print	statements,	because	the	print	statement	itself	will	require	too	much	time	to
execute.

The	first	step	of	debugging	is	to	stabilize	the	system.	In	the	debugging	context,	we
stabilize	the	problem	by	creating	a	test	routine	that	fixes	(or	stabilizes)	all	the	inputs.	In
this	way,	we	can	reproduce	the	exact	inputs	over	and	over	again.	Once	stabilized,	if	we
modify	the	program,	we	are	sure	that	the	change	in	our	outputs	is	a	function	of	the
modification	we	made	in	our	software	and	not	due	to	a	change	in	the	input	parameters.

Acceleration	means	we	will	speed	up	the	testing	process.	When	we	are	testing	one
module	we	can	increase	how	fast	the	functions	are	called	in	an	attempt	to	expose	possible
faults.	Furthermore,	since	we	can	control	the	test	environment,	we	will	vary	the	test
conditions	over	a	wide	range	of	possible	conditions.	Stress	testing	means	we	run	the
system	beyond	the	requirements	to	see	at	what	point	it	breaks	down.

When	a	system	has	a	small	number	of	possible	inputs	(e.g.,	less	than	a	million),	it	makes
sense	to	test	them	all.	When	the	number	of	possible	inputs	is	large	we	need	to	choose	a	set
of	inputs.	Coverage	defines	the	subset	of	possible	inputs	selected	for	testing.	A	corner
case	is	defined	as	a	situation	at	the	boundary	where	multiple	inputs	are	at	their	maximum,
like	the	corner	of	a	3-D	cube.	At	the	corner	small	changes	in	input	may	cause	lots	of
internal	and	external	changes.	In	particular,	we	need	to	test	the	cases	we	think	might	be
difficult	(e.g.,	the	clock	output	increments	one	second	from	11:59:59	PM	December	31,
1999.)	There	are	many	ways	to	decide	on	the	coverage.	We	can	select	values:

•	Near	the	extremes	and	in	the	middle

•	Most	typical	of	how	our	clients	will	properly	use	the	system

•	Most	typical	of	how	our	clients	will	improperly	use	the	system

•	That	differ	by	one

•	You	know	your	system	will	find	difficult

•	Using	a	random	number	generator
To	stabilize	the	system	we	define	a	fixed	set	of	inputs	to	test,	run	the	system	on	these
inputs,	and	record	the	outputs.	Debugging	is	a	process	of	finding	patterns	in	the
differences	between	recorded	behavior	and	expected	results.	The	advantage	of	modular
programming	is	that	we	can	perform	modular	debugging.	We	make	a	list	of	modules	that
might	be	causing	the	bug.	We	can	then	create	new	test	routines	to	stabilize	these	modules
and	debug	them	one	at	a	time.	Unfortunately,	sometimes	all	the	modules	seem	to	work,
but	the	combination	of	modules	does	not.	In	this	case	we	study	the	interfaces	between	the
modules,	looking	for	intended	and	unintended	(e.g.,	unfriendly	code)	interactions.

The	emergence	of	concurrent	systems	(e.g.,	distributed	networks	of	microcontrollers),
optimizing	architectures	(e.g.,	pipelines,	cache,	branch	prediction,	out	of	order	execution,
conditional	execution,	and	multi-core	processors),	and	the	increasing	need	for	security	and
reliably	place	further	demands	on	debuggers.	The	complexities	introduced	by	the
interaction	of	multiple	events	or	time	dependent	processes	are	much	more	difficult	to
debug	than	errors	associated	with	sequential	programs.		The	behavior	of	non-real-time
sequential	programs	is	reproducible:	for	a	given	set	of	inputs	their	outputs	remain	the
same.		In	the	case	of	concurrent	or	real-time	programs	this	does	not	hold	true.	Control
over	repeatability,	event	selection,	and	event	isolation	is	even	more	important	for
concurrent	or	real-time	environments.

Sometimes,	the	meaning	and	scope	of	the	term	debugging	itself	is	not	clear.		We	hold	the
view	that	the	goal	of	debugging	is	to	maintain	and	improve	software,	and	the	role	of	a
debugger	is	to	support	this	endeavor.		We	define	the	debugging	process	as	testing,
stabilizing,	localizing,	and	correcting	errors.		And	in	our	opinion,	although	testing,
stabilizing,	and	localizing	errors	are	important	and	essential	to	debugging,	they	are
auxiliary	processes:	the	primary	goal	of	debugging	is	to	remedy	faults	and	verify	the
system	is	operating	within	specifications.

3.9.3.	Functional	Debugging
Functional	debugging	involves	the	verification	of	input/output	parameters.	It	is	a	static
process	where	inputs	are	supplied,	the	system	is	run,	and	the	outputs	are	compared	against
the	expected	results.	We	will	present	seven	methods	of	functional	debugging.

1.	Single	Stepping	or	Trace.	Many	debuggers	allow	you	to	set	the	program	counter	to	a
specific	address	then	execute	one	instruction	at	a	time.	StepOver	will	execute	one
instruction,	unless	that	instruction	is	a	subroutine	call,	in	which	case	the	simulator	will
execute	the	entire	subroutine	and	stop	at	the	instruction	following	the	subroutine	call.
StepOut	assumes	the	execution	has	already	entered	a	function	and	will	finish	execution	of
the	function	and	stop	at	the	instruction	following	the	function	call.

2.	Breakpoints	without	filtering.	The	first	step	of	debugging	is	to	stabilize	the	system	with
the	bug.	In	the	debugging	context,	we	stabilize	the	problem	by	creating	a	test	routine	that
fixes	(or	stabilizes)	all	the	inputs.	In	this	way,	we	can	reproduce	the	exact	inputs	over	and
over	again.	Once	stabilized,	if	we	modify	the	program,	we	are	sure	that	the	change	in	our
outputs	is	a	function	of	the	modification	we	made	in	our	software	and	not	due	to	a	change
in	the	input	parameters.	A	breakpoint	is	a	mechanism	to	tag	places	in	our	software,	which
when	executed	will	cause	the	software	to	stop.

3.	Conditional	breakpoints.	One	of	the	problems	with	breakpoints	is	that	sometimes	we
have	to	observe	many	breakpoints	before	the	error	occurs.	One	way	to	deal	with	this
problem	is	the	conditional	breakpoint.	Add	a	global	variable	called count 	and	initialize	it
to	zero	in	the	ritual.	Add	the	following	conditional	breakpoint	to	the	appropriate	location,
and	run	the	system	again	(you	can	change	the	32	to	match	the	situation	that	causes	the
error).

		if(++count==32){

breakpoint();					//	<=	place	breakpoint	here

		}

Notice	that	the	breakpoint	occurs	only	on	the	32nd	time	the	break	is	encountered.	Any
appropriate	condition	can	be	substituted.

4.	Instrumentation:	print	statements.	The	use	of	print	statements	is	a	popular	and	effective
means	for	functional	debugging.	The	difficulty	with	print	statements	in	embedded	systems
is	that	a	standard	“printer”	may	not	be	available.	Another	problem	with	printing	is	that
most	embedded	systems	involve	time-dependent	interactions	with	its	external
environment.	The	print	statement	itself	may	so	slow	that	the	debugging	instrument	itself
causes	the	system	to	fail.	Therefore,	the	print	statement	is	usually	intrusive.	One	exception
to	this	rule	is	if	the	printing	channel	occurs	in	the	background	using	interrupts,	and	the
time	between	print	statements	(t2)	is	large	compared	to	the	time	to	execution	one	print	(t1),
then	the	print	statements	will	be	minimally	intrusive.	Nevertheless,	this	book	will	focus	on
debugging	methods	that	do	not	rely	on	the	availability	of	a	printer.

5.	Instrumentation:	dump	into	array	without	filtering.	One	of	the	difficulties	with	print
statements	is	that	they	can	significantly	slow	down	the	execution	speed	in	real-time
systems.	Many	times	the	bandwidth	of	the	print	functions	cannot	keep	pace	with	data
being	generated	by	the	debugging	process.	For	example,	our	system	may	wish	to	call	a
function	1000	times	a	second	(or	every	1	ms).	If	we	add	print	statements	to	it	that	require
50	ms	to	perform,	the	presence	of	the	print	statements	will	significantly	affect	the	system
operation.	In	this	situation,	the	print	statements	would	be	considered	extremely	intrusive.
Another	problem	with	print	statements	occurs	when	the	system	is	using	the	same	output
hardware	for	its	normal	operation,	as	is	required	to	perform	the	print	function.	In	this
situation,	debugger	output	and	normal	system	output	are	intertwined.

To	solve	both	these	situations,	we	can	add	a	debugger	instrument	that	dumps	strategic
information	into	arrays	at	run	time.	We	can	then	observe	the	contents	of	the	array	at	a	later
time.	One	of	the	advantages	of	dumping	is	that	the	JTAG	debugging	allows	you	to
visualize	memory	even	when	the	program	is	running.	Program	3.12	shows	a	dump
instrument.

#define	SIZE	100

uint32_t	Debug_Buffer[SIZE][2];

unsigned	int	Debug_Cnt=0;

void	Debug_Dump(void){	//	dump	Happy	and	Sad

		if(Debug_Cnt	<	SIZE){

Debug_Buffer[Debug_Cnt][0]	=	Happy;

Debug_Buffer[Debug_Cnt][1]	=	Sad;

Debug_Cnt++;

		}

}

Program	3.12.	Instrumentation	dump	without	filtering.
Assume Happy and Sad are	strategic	32-bit	variables.	The	first	step	when	instrumenting	a
dump	is	to	define	a	buffer	in	RAM	to	save	the	debugging	measurements.	
The Debug_Cnt will	be	used	to	index	into	the	buffers. Debug_Cnt 	must	be	initialized	to
zero,	before	the	debugging	begins.	The	debugging	instrument,	shown	in	Program	3.13,
saves	the	strategic	variables	into	the	buffer.

Next,	you	add Debug_Dump(); 	statements	at	strategic	places	within	the	system.	You	can
either	use	the	debugger	to	display	the	results	or	add	software	that	prints	the	results	after
the	program	has	run	and	stopped.	In	this	way,	you	can	collect	information	in	the	exact
same	manner	you	would	if	you	were	using	print	statements.

6.	Instrumentation:	dump	into	array	with	filtering.	One	problem	with	dumps	is	that	they
can	generate	a	tremendous	amount	of	information.	If	you	suspect	a	certain	situation	is
causing	the	error,	you	can	add	a	filter	to	the	instrument.	A	filter	is	a	software/hardware
condition	that	must	be	true	in	order	to	place	data	into	the	array.	In	this	situation,	if	we
suspect	the	error	occurs	when	the	pointer	nears	the	end	of	the	buffer,	we	could	add	a	filter
that	saves	in	the	array	only	when	the	pointer	is	above	a	certain	value.	In	the	example
shown	in	Program	3.13,	the	instrument	saves	the	strategic	variables	into	the	buffer	only
when Sad 	is	greater	than	100.

#define	SIZE	100

uint32_t	Debug_Buffer[SIZE][2];

unsigned	int	Debug_Cnt=0;

void	Debug_FilteredDump(void){	//	dump	Happy	and	Sad

		if((Sad	>	100)&&(Debug_Cnt	<	SIZE)){

Debug_Buffer[Debug_Cnt][0]	=	Happy;

Debug_Buffer[Debug_Cnt][1]	=	Sad;

Debug_Cnt	++;

		}

}

Program	3.13.	Instrumentation	dump	with	filter.
7.	Monitor	using	the	LED	heartbeat.	Another	tool	that	works	well	for	real-time
applications	is	the	monitor.	A	monitor	is	an	independent	output	process,	somewhat	similar
to	the	print	statement,	but	one	that	executes	much	faster	and	thus	is	much	less	intrusive.
The	OLED	or	LCD	can	be	an	effective	monitor	for	small	amounts	of	information	if	the
time	between	outputs	is	much	larger	than	the	time	to	output.	Another	popular	monitor	is
the	LED.	You	can	place	one	or	more	LEDs	on	individual	otherwise	unused	output	bits.
Software	toggles	these	LEDs	to	let	you	know	what	parts	of	the	program	are	running.	An
LED	is	an	example	of	a	Boolean	monitor	or	heartbeat.		Assume	an	LED	is	attached	to
Port	D	bit	1.	Program	3.14	will	toggle	the	LED.

#define	PD1	(*((volatile	uint32_t	*)0x40007008))

#define	Debug_HeartBeat()	(PD1	^=	0x02)

Program	3.14.	An	LED	monitor.
Next,	you	add Debug_HeartBeat(); 	statements	at	strategic	places	within	the	system.	Port
D	must	be	initialized	so	that	bit	1	is	an	output	before	the	debugging	begins.		You	can
either	observe	the	LED	directly	or	look	at	the	LED	control	signals	with	a	high-speed
oscilloscope	or	logic	analyzer.	When	using	LED	monitors	it	is	better	to	modify	just	the
one	bit,	leaving	the	other	7	as	is.	In	this	way,	you	can	have	multiple	monitors	on	one	port.

Checkpoint	3.18:	Write	a	debugging	instrument	that	toggles	Port	A	bit	3.	

3.9.4.	Performance	Debugging
Performance	debugging	involves	the	verification	of	timing	behavior	of	our	system.	It	is	a
dynamic	process	where	the	system	is	run,	and	the	dynamic	behavior	of	the	system	is
compared	against	the	expected	results.	We	will	present	three	methods	of	performance
debugging,	then	apply	the	techniques	to	measure	execution	speed.

1.	Counting	bus	cycles.	For	simple	programs	with	little	and	no	branching	and	for	simple
microcontrollers,	we	can	estimate	the	execution	speed	by	looking	at	the	assembly	code
and	adding	up	the	time	to	execute	each	instruction.

2.	Instrumentation	measuring	with	an	independent	counter.	SysTick	is	a	24-bit	counter
decremented	every	bus	clock.	It	automatically	rolls	over	when	it	gets	to	0.	If	we	are	sure
the	execution	speed	of	our	function	is	less	than	224	bus	cycles,	we	can	use	this	timer	to
collect	timing	information	with	only	a	minimal	amount	of	intrusiveness.

3.	Instrumentation	Output	Port.	Another	method	to	measure	real-time	execution	involves
an	output	port	and	an	oscilloscope.	Connect	a	microcontroller	output	bit	to	your	scope.
Add	debugging	instruments	that	set/clear	these	output	bits	at	strategic	places.	Remember
to	set	the	port’s	direction	register	to	1.	Assume	an	oscilloscope	is	attached	to	Port	D	bit	1.
Program	3.15	can	be	used	to	set	and	clear	the	bit.

#define	PD1	(*((volatile	uint32_t	*)0x40007008))

#define	Debug_Set()			(PD1	=	0x02)

#define	Debug_Clear()	(PD1	=	0x00)

Program	3.15.	Instrumentation	output	port.
Next,	you	add Debug_Set(); and Debug_Clear(); 	statements	before	and	after	the	code
you	wish	to	measure.	Port	D	must	be	initialized	so	that	bit	1	is	an	output	before	the
debugging	begins.		You	can	observe	the	signal	with	a	high-speed	oscilloscope	or	logic
analyzer.

Debug_Set();

Stuff();		//	User	code	to	be	measured

Debug_Clear();
	

To	illustrate	these	three	methods,	we	will	consider	measuring	the	execution	time	of	an
integer	square	root	function	as	presented	Program	3.16.

The	first	method	is	to	count	bus	cycles	using	the	assembly	listing.	This	approach	is	only
appropriate	for	very	short	programs,	and	becomes	difficult	for	long	programs	with	many
conditional	branch	instructions.	The	time	to	execute	each	assembly	instruction	can	be
found	in	the	CortexTM-M	Technical	Reference	Manual.	Because	of	the	complexity	of	the
ARM ® 	CortexTM-M,	this	method	is	only	approximate.	For	example	the	time	to	execute	a
divide	depends	on	the	data,	and	the	time	to	execute	a	branch	depends	on	the	alignment	of
the	instruction	pipeline.	A	portion	of	the	assembly	output	generated	by	the	ARM	KeilTM
uVision®	compiler	is	presented	on	the	left	side	of	Program	3.16.	Notice	that	the	total
cycle	count	for	could	range	from	155	to	353	cycles.	At	8	MHz	the	execution	time	could
range	from	19.4	to	44.1	µs.	For	most	programs	it	is	actually	very	difficult	to	get	an
accurate	time	measurement	using	this	technique.

sqrt	MOV			r1,r0									[1]

MOVS		r3,#0x01						[1]

ADD	r0,r3,r1,LSR	#4	[1]

MOVS		r2,#0x10						[1]

B					chck										[2-4]

loop	MLA			r3,r0,r0,r1			[2]*16

UDIV		r3,r3,r0						[2-12]*16

LSRS		r0,r3,#1						[1]*16

SUBS		r2,r2,#1						[1]*16

chck	CMP			r2,#0x00						[1]*17

BNE			loop										[2-4]*17

BX				lr												[2-4]

//	Newton’s	method

//	s	is	an	integer

//	sqrt(s)	is	an	integer

uint32_t	sqrt(uint32_t	s){

uint32_t	t;		//	t*t	becomes	s

int	n;												//	loop	counter

		t	=	s/10+1;					//	initial	guess

		for(n	=	16;	n;	—n){		//	will	finish

t	=	((t*t+s)/t)/2;	

		}

		return	t;

}

Program	3.16.	Assembly	listing	and	C	code	for	a	sqrt	function.

The	second	method	uses	an	internal	timer	called	SysTick.	The	ARM ® 	CortexTM-M
microcontrollers	provide	the	24-bit	SysTick	register(NVIC_ST_CURRENT_R)	that	is
automatically	decremented	at	the	bus	frequency.	When	the	counter	hits	zero,	it	is	reloaded
to	0xFFFFFF	and	continues	to	count	down.	If	we	are	sure	the	function	will	complete	in	a
time	less	than	224	bus	cycles,	then	the	internal	timer	can	be	used	to	measure	execution
speed	empirically.	The	code	in	Program	3.17	first	reads	the	SysTick	counter,	executes	the
function,	and	then	reads	the	SysTick	counter	again.	The	elapsed	time	is	the	difference	in
the	counter	before	and	after.	Since	the	execution	speed	may	be	dependent	on	the	input
data,	it	is	often	wise	to	measure	the	execution	speed	for	a	wide	range	of	input	parameters.
There	is	a	slight	overhead	in	the	measurement	process	itself.	To	be	accurate,	you	could
measure	this	overhead	and	subtract	it	off	your	measurements.	In	this	case,	a	constant	7	is
subtracted	so	that	if	the	call	to	the	function	were	completely	removed	the	elapsed	time
would	return	0.	Notice	that	in	this	example,	the	total	time	including	parameter	passing	is
measured.	Experimental	results	show	this	function	executes	in	238	bus	cycles.		At	8	MHz,
this	corresponds	to	29.8	µs.

uint32_t	Before,	Elapsed;

void	main(void){	volatile	uint32_t	Out;

SysTick_Init();													//	Program	2.11

Before	=	NVIC_ST_CURRENT_R;

Out	=	sqrt(1000);

Elapsed	=	(Before	-	NVIC_ST_CURRENT_R	–	7)&0x00FFFFFF;

}

Program	3.17:	Empirical	measurement	of	dynamic	efficiency.
The	third	technique	can	be	used	in	situations	where	a	timer	is	unavailable	or	where	the
execution	time	might	be	larger	than	224	counts.	In	this	empirical	technique	we	attach	an
unused	output	pin	to	an	oscilloscope	or	to	a	logic	analyzer.	We	will	set	the	pin	high	before
the	call	to	the	function	and	set	the	pin	low	after	the	function	call.	In	this	way	a	pulse	is
created	on	the	digital	output	with	a	duration	equal	to	the	execution	time	of	the	function.
We	assume	Port	D	is	available,	and	bit	0	is	connected	to	the	scope.	By	placing	the	function
call	in	a	loop,	the	scope	can	be	triggered.	With	a	storage	scope	or	logic	analyzer,	the
function	need	be	called	only	once.	Together	with	an	oscilloscope	or	logic	analyzer,
Program	3.18	measuresthe	execution	time	of	the	function sqrt 	(Figure	3.18).	We	stabilize
the	system	by	calling	it	over	and	over.	Using	the	scope,	we	can	measure	the	width	of	the
pulse	on	PD1,	which	will	be	execution	time	of	the	function sqrt .	Running	at	8	MHz,	the
results	in	Figure	3.18	showit	takes	30.5 � s	to	execute sqrt(1000) ,	which	is	244	bus
cycles.

int	main(void){	uint32_t	Out;	

		PortD_Init();							//	Program	2.6

		while(1){

Debug_Set();						//	Program	3.15

Out	=	sqrt(1000);

Debug_Clear();				//	Program	3.15

		}

}

Program	3.18.	Another	empirical	measurement	of	dynamic	efficiency.

Figure	3.18.	Logic	analyzer	output	measured	from	Program	3.18	using	an
USBee	AX.
Checkpoint	3.19:	If	you	were	to	remove	the	Out=sqrt(1000);	line	in	Program	3.18,	what
would	you	expect	the	pulse	width	on	PD0	to	be?		Why	does	Program	3.17	yield	a	result
smaller	than	Program	3.18?	

3.9.5.	Profiling
Profiling	is	a	type	of	performance	debugging	that	collects	the	time	history	of	program
execution.	Profiling	measures	where	and	when	our	software	executes.	It	could	also	include
what	data	is	being	processed.	For	example	if	we	could	collect	the	time-dependent	behavior
of	the	program	counter,	then	we	could	see	the	execution	patterns	of	our	software.	We	can
profile	the	execution	of	a	multiple	thread	software	system	to	detect	reentrant	activity.

Profiling	using	a	software	dump	to	study	execution	pattern.	In	this	section,	we	will	discuss
software	instruments	that	study	the	execution	pattern	of	our	software.	In	order	to	collect
information	concerning	execution	we	will	add	debugging	instruments	that	save	the	time
and	location	in	arrays	(Program	3.19).	By	observing	these	data,	we	can	determine	both	a
time	profile	(when)	and	an	execution	profile	(where)	of	the	software	execution.	Running
this	profile	revealed	the	sequence	of	places	as	0,	1,	2,	2,	2,	2,	2,	2,	2,	2,	2,	2,	2,	2,	2,	2,	2,
2,		and	3.Each	call	to Debug_Profile	requires	32	cycles	to	execute.	Therefore,	this
instrument	is	a	lot	less	intrusive	than	a	print	statement.

uint32_t	Debug_time[20];

uint8_t	Debug_place[20];

uint32_t	n;

void	Debug_Profile(uint8_t	p){

		if(n	<	20){

Debug_time[n]	=	NVIC_ST_CURRENT_R;	//	record	current	time

				Debug_place[n]	=	p;

				n++;

		}

}

uint32_t	sqrt(uint32_t	s){

uint32_t	t;		//	t*t	becomes	s

int	n;												//	loop	counter

		Debug_Profile(0);

		t	=	s/10+1;				//	initial	guess

		Debug_Profile(1);

		for(n	=	16;	n;	—n){		//	will	finish

Debug_Profile(2);

t	=	((t*t+s)/t)/2;	

		}

		Debug_Profile(3);

		return	t;

}	

Program	3.19:	A	time/position	profile	dumping	into	a	data	array.

	
Profiling	using	an	Output	Port.	In	this	section,	we	will	discuss	a	hardware/software
combination	to	visualize	program	activity.	Our	debugging	instrument	will	set	output	port
bits	D3–D0	(Program	3.20).	We	will	place	these	instruments	at	strategic	places	in	the
software.	In	particular,	we	will	output	1,	2,	4,	or	8	to	Port	D,	where	each	bit	uniquely
specifies	where	in	the	program	we	are	executing	(Figure	3.19).	We	connect	the	four	output
pins	to	a	logic	analyzer	and	observe	the	program	activity.	Each	debugging	instrument
requires	only	4	cycles	to	execute.	So	the	profile	in	Program	3.20	is	less	intrusive	than	the
one	in	Program	3.19.

#define	PROFILE	(*((volatile	uint32_t	*)0x4000703C))

uint32_t	sqrt(uint32_t	s){

uint32_t	t;		//	t*t	becomes	s

int	n;												//	loop	counter

		PROFILE	=	1;

		t	=	s/10+1;				//	initial	guess

		PROFILE	=	2;

		for(n	=	16;	n;	—n){		//	will	finish

PROFILE	=	4;

t	=	((t*t+s)/t)/2;	

PROFILE	=	8;

		}

		PROFILE	=	0;

		return	t;

}	

Program	3.20:	A	time/position	profile	using	four	output	bits.

Figure	3.19.	Logic	analyzer	output	measured	from	Program	3.20	using	an
USBee	AX.
Thread	Profile.	When	more	than	one	program	(multiple	threads)	is	running,	you	could	use
the	technique	in	Program	3.20	to	visualize	the	thread	that	is	currently	active	(the	one
running).	For	each	thread,	we	assign	one	output	pin.	The	debugging	instrument	would	set
the	corresponding	bit	high	when	the	thread	starts	and	clear	the	bit	when	the	thread	stops.
We	would	then	connect	the	output	pins	to	a	logic	analyzer	to	visualize	in	real	time	the
thread	that	is	currently	running.

3.10.	Exercises
3.1	List	3	factors	that	we	can	use	to	evaluate	the	“quality”	of	a	program.

3.2		In	32	words	or	less,	describe	the	meaning	of	each	of	the	following	terms.

a)	Dynamic	efficiency
b)	Static	efficiency
c)	Scope
d)	Cohesion

	
3.3	Consider	the	reasons	why	one	chooses	which	technique	to	create	a	variable.

a)	List	three	reasons	why	one	would	implement	a	variable	using	a	register.

b)	List	three	reasons	why	one	would	implement	a	variable	on	the	stack	and	access	it	using
SP	indexed	mode	addressing.

c)	List	three	reasons	why	one	would	implement	a	variable	in	RAM	and	access	it	using
extended	mode	addressing.

3.4		In	32	words	or	less,	give	an	example	of	each	of	the	following	terms.

a)	Invocation	coupling
b)	Bandwidth	coupling
c)	Control	coupling
	
3.5	For	each	term	specify	if	it	is	a	constant	or	a	variable.	For	the	variables	specify	if	it	is
permanent	or	temporary	and	if	it	is	public	or	private.

a)	FIFO_SIZE

b)	Fifo_Size

c)	FifoSize

d)	fifoSize

3.6		In	32	words	or	less,	give	an	example	of	each	of	the	following	terms.

a)	Logical	cohesion
b)	Temporal	cohesion
c)	Procedural	cohesion
d)	Communicational	cohesion
e)	Sequential	cohesion
f)	Functional	cohesion

	
3.7	Describe	how	you	could	create	an	array	that	is	temporary	in	allocation	but	public	in
scope.

3.8	In	32	words	or	less,	explain	the	differences	between	a	Mealy	and	Moore	FSM.	For
which	types	of	problems	should	you	implement	with	Mealy?	For	which	types	of	problems
should	you	implement	with	Moore?	

3.9		In	32	words	or	less,	describe	the	meaning	of	each	of	the	following	terms.

a)	Module

b)	BSP
c)	HAL
d)	Device	driver

	
3.10		Give	a	quantitative	measure	of	modularity.	E.g.,	system	A	is	more	modular	than
system	B	if…

3.11		In	32	words	or	less,	describe	the	meaning	of	each	of	the	following	debugging	terms.

a)	Profile
b)	Intrusive
c)	Stabilize
d)	Heartbeat
e)	Monitor

f)	Dump

g)	Logic	analyzer
h)	Filter

	
D3.12	Write	software	to	implement	the	Moore	FSM	shown	in	Figure	3.20.	Include	the
FSM	state	machine,	port	initialization,	timer	initialization	and	the	FSM	controller.	The
command	sequence	will	be	output,	wait	the	specified	time	in	ms,	input,	then	branch	to
next	state.	The	2-bit	input	is	on	Port	G	(PG1	and	PG0)	and	the	3-bit	output	is	also	on	Port
G	(PG7,	PG6,	PG5).

Figure	3.20.	FSM	for	Exercise	3.12.
D3.13	Write	software	to	implement	the	Mealy	FSM	shown	in	Figure	3.21.	Include	the
FSM	state	machine,	port	initialization,	timer	initialization	and	the	FSM	controller.	The
command	sequence	will	be	input,	output,	wait	10	ms,	input,	and	then	branch	to	next	state.
The	1-bit	input	is	on	Port	G	(PG0)	and	the	3-bit	output	is	on	Port	F	(PF3,	PF2,	PF1).

Figure	3.21.	FSM	for	Exercise	3.13.
D3.14Rewrite	the SysTick_Wait 	function	in	Program	2.11,	so	that	it	continuously	checks
an	alarm	input	on	PA7.	As	long	as	PA7	is	low	(normal),	it	will	wait	the	prescribed	time.
But,	if	PA7	goes	high	(alarm),	the	wait	function	returns.

3.11.	Lab	Assignments
Lab	3.1	The	overall	objective	is	to	create	a	4-key	digital	lock.	The	system	has	four	digital
inputs	and	one	digital	output.	The	LED	will	be	initially	on,	signifying	the	door	is	locked.
Define	two	separate	key	codes,	one	to	lock	and	one	to	unlock	the	door.	For	example,	if	the
keys	are	numbers	1,	2,	3	and	4,	one	possible	key	code	is	23.	This	means	if	you	push	both
the	2	and	3	keys	(not	pushing	the	1,	4	keys)	the	door	will	unlock.	Implement	the	design
such	that	the	unlock	function	occurs	in	the	software	of	the	microcontroller.

Lab	3.2	The	overall	objective	is	to	create	a	line	tracking	robot.	The	system	has	two
digital	inputs	and	two	digital	outputs.	You	can	simulate	the	system	with	two	switches	and
two	LEDs,	or	build	a	robot	with	two	DC	motors	and	two	optical	reflectance	sensors.	Both
sensor	inputs	will	be	on	if	the	machine	is	completely	on	the	line.		One	sensor	input	will	be
on	and	the	other	off	if	the	machine	is	just	going	off	the	track.	If	the	machine	is	totally	off
the	line,	then	both	sensor	inputs	will	be	off.	Implement	the	controller	using	a	finite	state
machine.	Choose	a	Moore	or	Mealy	format	as	appropriate.

Lab	3.3	The	overall	objective	is	to	create	an	enhanced	traffic	light	controller.	The
system	has	three	digital	inputs	and	seven	digital	outputs.	You	can	simulate	the	system	with
three	switches	and	seven	LEDs.	The	inputs	are	North,	East,	and	Walk.	The	outputs	are	six
for	the	traffic	light	and	one	for	a	walk	signal.	Implement	the	controller	using	a	finite	state
machine.	Choose	a	Moore	or	Mealy	format	as	appropriate.

Lab	3.4	The	overall	objective	is	to	create	an	8-key	digital	lock.	The	system	has	eight
digital	inputs	and	one	digital	output.	The	LED	will	be	initially	off,	signifying	the	door	is
locked.	Define	a	key	sequence	to	unlock	the	door.	For	example,	if	the	keys	are	numbers	1,
2,	…	and	8,	one	possible	key	code	is	556.	This	means	if	you	push	the	5,	release	the	5,	push
the	5,	release	the	5	and	push	the	6,	then	the	door	will	unlock.	The	unlock	operation	will	be
a	two	second	pulse	on	the	LED.

Lab	3.5	The	overall	objective	is	to	design	a	vending	machine	controller.	The	system	has
five	digital	inputs	and	three	digital	outputs.	You	can	simulate	the	system	with	five
switches	and	three	LEDs.	The	inputs	are quarter , dime , nickel , soda ,	and diet .
The quarter input	will	go	high,	then	go	low	when	a	25¢	coin	is	added	to	the	machine.
The dime and nickel inputs	work	in	a	similar	manner	for	the	10¢	and	5¢	coins.	The	sodas
cost	35¢	each.	The	user	presses	the soda button	to	select	a	regular	soda	and	the diet button
to	select	a	diet	soda.	The GiveSoda output	will	release	a	regular	soda	if	pulsed	high,	then
low.	Similarly,	the GiveDiet output	will	release	a	diet	soda	if	pulsed	high,	then	low.
The Change 	output	will	release	a	5¢	coin	if	pulsed	high,	then	low.	Implement	the
controller	using	a	finite	state	machine.	Choose	a	Moore	or	Mealy	format	as	appropriate.
Since	there	are	so	many	inputs	and	at	most	one	is	active	at	a	time,	you	may	wish	to
implement	a	FSM	with	a	different	format	than	the	examples	in	the	book.

	

	

	

	

4.	Hardware-Software	Synchronization
Chapter	4	objectives	are	to:
•	Introduce	basic	performance	measures	for	I/O	interfacing

•	Formalize	timing	using	equations	and	graphical	diagrams

•	Present	Petri	Nets	as	a	way	to	describe	synchronization

•	Introduce	Kahn	Process	Networks	(KPN)	to	describe	distributed	systems

•	Compare	and	contrast	possible	approaches	to	synchronization

•	Present	the	basic	hardware/software	for	a	parallel	port	LCD	interface

•	Interface	a	stepper	motor	using	blind-cycle	synchronization

•	Discuss	the	basic	concepts	of	busy-wait	synchronization

•	Introduce	the	general	concept	of	a	handshake	interface

•	Implement	a	busy-wait	serial	port	device	driver

•	Interface	a	keypad	using	busy-wait	synchronization

	
One	of	the	factors	that	make	embedded	systems	different	from	regular	computers	is	the
specialized	input/output	devices	we	attach	to	our	embedded	systems.	While	the	entire
book	addresses	the	design	and	analysis	of	embedded	systems,	this	chapter	serves	as	an
introduction	to	the	critical	task	of	I/O	interfacing.	Interfacing	includes	both	the	physical
connections	of	the	hardware	devices	and	the	software	routines	that	affect	information
exchange.	Key	to	this	task	is	the	need	to	synchronize	the	software	and	hardware
components.	The	chapter	begins	with	performance	measures	to	evaluate	the	effectiveness
of	our	system	(latency,	bandwidth,	priority).	As	engineers	we	are	not	simply	asked	to
design	and	build	devices,	but	we	are	also	required	to	evaluate	our	products.	Latency	and
bandwidth	are	two	quantitative	performance	parameters	we	can	measure	on	our	real-time
embedded	system.	A	number	of	formal	tools	will	be	presented	including	timing	equations,
timing	diagrams,	Petri	Nets,	and	Kahn	Process	Networks	(KPN).	The	edge-triggered		I/O
ports	on	the	LM3S/LM4F/TM4C	microcontrollers	will	be	presented.	Next,	five	basic
approaches	to	hardware/software	synchronization	are	presented,	which	include	blind
cycle,	busy	wait,	interrupts,	periodic	polling,	and	direct	memory	access.	A	more	thorough
treatment	of	interrupts	will	be	presented	in	Chapter	5.	However,	the	discussions	in	this
chapter	will	point	to	situations	that	require	interrupt	synchronization.	The	rest	of	chapter
presents	simple	examples	to	illustrate	the	“blind-cycle”	and	“busy-wait”	approaches	to
interfacing.

	

4.1.	Introduction

4.1.1.	Performance	Measures
Latency	is	the	time	between	when	the	I/O	device	indicated	service	is	required	and	when
service	is	initiated.	Latency	includes	hardware	delays	in	the	digital	gates	plus	computer
hardware	delays.	Latency	also	includes	software	delays.	For	an	input	device,	software
latency	(or	software	response	time)	is	the	time	between	new	input	data	ready	and	the
software	reading	the	data.	For	an	output	device,	latency	is	the	delay	from	output	device
idle	and	the	software	giving	the	device	new	data	to	output.	In	this	book,	we	will	also	have
periodic	events.	For	example,	in	our	data	acquisition	systems,	we	wish	to	invoke	the	ADC
at	a	fixed	time	interval.	In	this	way	we	can	collect	a	sequence	of	digital	values	that
approximate	the	continuous	analog	signal.	Software	latency	in	this	case	is	the	time
between	when	the	ADC	is	supposed	to	be	started	and	when	it	is	actually	started.	The
microcontroller-based	control	system	also	employs	periodic	software	processing.	Similar
to	the	data	acquisition	system,	the	latency	in	a	control	system	is	the	time	between	when
the	control	software	is	supposed	to	be	run	and	when	it	is	actually	run.	A	real-time	system
is	one	that	can	guarantee	a	worst-case	latency.	In	other	words,	there	is	an	upper	bound	on
the	software	response	time.	Throughput	or	bandwidth	is	the	maximum	data	flow	(bytes
per	second)	that	can	be	processed	by	the	system.	Sometimes	the	bandwidth	is	limited	by
the	I/O	device,	while	other	times	it	is	limited	by	computer	software.	Bandwidth	can	be
reported	as	an	overall	average	or	a	short-term	maximum.	Priority	determines	the	order	of
service	when	two	or	more	requests	are	made	simultaneously.	Priority	also	determines	if	a
high-priority	request	should	be	allowed	to	suspend	a	low-priority	request	that	is	currently
being	processed.	We	may	also	wish	to	implement	equal	priority	so	that	no	one	device	can
monopolize	the	computer.	In	some	computer	literature,	the	term	soft	real-time	is	used	to
describe	a	system	that	supports	priority.

4.1.2.	Synchronizing	the	software	with	the	state	of	the	I/O
One	can	think	of	the	hardware	as	being	in	one	of	three	states.	The	idle	state	occurs	when
the	device	is	disabled	or	inactive.	No	I/O	occurs	in	the	idle	state.	When	active	(not	idle),
the	hardware	toggles	between	the	busy	and	done	states,	as	illustrated	in	Figure	4.1.	For	an
input	device,	a	status	flag	is	set	when	new	input	data	are	available.	The	busy-to-done	state
transition	will	cause	a	busy-wait	loop	(gadfly	loop)	to	complete.	This	busy-to-done
transition	could	also	trigger	an	interrupt.	Once	the	software	recognizes	that	the	input
device	has	new	data,	it	will	read	the	data	and	ask	the	input	device	to	create	more	data.	It	is
the	busy-to-done	state	transition	that	signals	to	the	computer	that	service	is	required.
When	the	hardware	is	in	the	done	state,	the	I/O	transaction	is	complete.	Often	the	simple
process	of	reading	the	data	will	clear	the	flag	and	request	another	input.

For	an	output	device,	a	status	flag	is	set	when	the	output	is	idle	and	ready	to	accept	more
data.		The	“busy	to	done”	state	transition	causes	a	busy-wait	loop	to	complete.	Once	the
software	recognizes	the	output	is	idle,	it	gives	the	output	device	another	piece	of	data	to
output.	It	will	be	important	to	make	sure	the	software	clears	the	flag	each	time	new	output
is	started.

Figure	4.1.	Initially	the	device	is	idle.	While	active,	it	may	be	in	the	busy
or	done	state.	The	input	device	sets	a	flag	when	it	has	new	data.	The
output	device	sets	a	flag	when	it	has	finished	outputting	the	last	data.
The	problem	with	I/O	devices	is	that	they	are	usually	much	slower	than	software
execution.	Therefore,	we	need	synchronization,	which	is	the	process	of	the	hardware	and
software	waiting	for	each	other	in	a	manner	such	that	data	is	properly	transmitted.	A	way
to	visualize	this	synchronization	is	to	draw	a	state	versus	time	plot	of	the	activities	of	the
hardware	and	software.	For	an	input	device,	the	software	begins	by	waiting	for	new	input
(Figure	4.2).	When	the	input	device	is	busy,	it	is	in	the	process	of	creating	new	input.
When	the	input	device	is	done,	new	data	are	available.	When	the	input	device	makes	the
transition	from	busy	to	done,	it	releases	the	software	to	go	forward.	In	a	similar	way,	when
the	software	accepts	the	input,	it	can	release	the	input	device	hardware.	The	arrows	from
one	graph	to	the	other	represent	the	synchronizing	events.	In	this	example,	the	time	for	the
software	to	read	and	process	the	data	is	less	than	the	time	for	the	input	device	to	create
new	input.	This	situation	is	called	I/O	bound.

Figure	4.2.	The	software	must	wait	for	the	input	device	to	be	ready.
If	the	input	device	were	faster	than	the	software,	a	situation	called	CPU	bound,	then	the
software	waiting	time	would	be	zero.	In	general,	the	bandwidth	depends	on	both	the
hardware	and	the	software.	In	a	given	system,	if	the	producer	and	consumer	rates	vary,	the
system	may	oscillate	between	I/O	bound	and	CPU	bound.

This	configuration	is	also	labeled	as	unbuffered	because	the	hardware	and	software	must
wait	for	each	other	during	the	transmission	of	each	piece	of	data.	A	buffered	system	allows
the	input	device	to	run	continuously,	filling	a	FIFO	as	fast	as	it	can.	In	the	same	way,	the
software	can	empty	the	FIFO	whenever	it	is	ready	and	whenever	there	is	data	in	the	buffer.
We	will	implement	buffered	interfaces	in	Chapter	5	using	interrupts.

Figure	4.3	contains	a	state	versus	time	plot	of	the	activities	of	the	output	device	hardware
and	software.	For	an	output	device,	the	software	begins	by	generating	data	then	sending	it
to	the	output	device.	When	the	output	device	is	busy,	it	is	processing	the	data.	Normally
when	the	software	writes	data	to	an	output	port,	that	only	starts	the	output	process.	The
time	it	takes	an	output	device	to	process	data	is	usually	longer	than	the	software	execution
time.	When	the	output	device	is	done,	it	is	ready	for	new	data.	When	the	output	device
makes	the	transition	from	busy	to	done,	it	releases	the	software	to	go	forward.	In	a	similar
way,	when	the	software	writes	data	to	the	output,	it	releases	the	output	device	hardware.
The	output	interface	illustrated	in	Figure	4.3	is	also	I/O	bound	because	the	time	for	the
output	device	to	process	data	is	longer	than	the	time	for	the	software	to	generate	and	write
it.

Figure	4.3.	The	software	must	wait	for	the	output	device	to	finish	the
previous	operation.
This	output	interface	is	also	unbuffered,	because	when	the	hardware	is	done,	it	will	wait
for	the	software,	and	after	the	software	generates	data,	it	waits	for	the	hardware.	A
buffered	system	would	allow	the	software	to	run	continuously,	filling	a	FIFO	as	fast	as	it
wishes.	In	the	same	way,	the	hardware	can	empty	the	FIFO	whenever	it	is	ready	and
whenever	there	is	data	in	the	buffer.	We	will	implement	buffered	interfaces	in	Chapter	5
using	interrupts.

The	purpose	of	our	interface	is	to	allow	the	microprocessor	to	interact	with	its	external	I/O
device.	There	are	five	mechanisms	to	synchronize	the	microprocessor	with	the	I/O	device.	
Each	mechanism	synchronizes	the	I/O	data	transfer	to	the	busy	to	done	transition.	The	five
methods	are	discussed	in	the	following	paragraphs.

Blind	cycle	is	a	method	where	the	software	simply	waits	a	fixed	amount	of	time	and
assumes	the	I/O	will	complete	after	that	fixed	delay.	For	an	input	device,	the	software
triggers	(starts)	the	external	input	hardware,	wait	a	specified	time,	then	reads	data	from	the
device	(left	side	of	Figure	4.4.)	For	an	output	device,	the	software	writes	data	to	the	output
device,	triggers	(starts)	the	device,	then	waits	a	specified	time	(left	side	of	Figure	4.5.)	We
call	this	method	blind,	because	there	is	no	status	information	about	the	I/O	device	reported
to	the	software.	This	method	is	appropriate	for	situations	where	the	I/O	speed	is	short	and
predictable.

Figure	4.4.	Flowcharts	showing	an	input	interface	using	blind-cycle,	busy
wait	and	interrupts.

Figure	4.5.	Flowcharts	showing	an	output	interface	using	blind-cycle,
busy	wait	and	interrupts.
Busy	wait	or	gadfly	is	a	software	loop	that	checks	the	I/O	status	waiting	for	the	done
state.	For	an	input	device,	the	software	waits	until	the	input	device	has	new	data,	and	then
reads	it	from	the	input	device	(middle	of	Figure	4.4.)	For	an	output	device,	the	software
writes	data,	triggers	the	output	device	then	waits	until	the	device	is	finished.	Another
approach	to	output	device	interfacing	is	for	the	software	to	wait	until	the	output	device	has
finished	the	previous	output,	write	data,	and	then	trigger	the	device	(middle	of	Figure	4.5.)
We	will	discuss	these	two	approaches	to	output	device	interfacing	later	in	the	chapter.
Busy-wait	synchronization	will	be	used	in	situations	where	the	software	system	is
relatively	simple	and	real-time	response	is	not	important.

An	interrupt	uses	hardware	to	cause	special	software	execution.	With	an	input	device,	the
hardware	will	request	an	interrupt	when	input	device	has	new	data.	The	software	interrupt
service	will	read	from	the	input	device	and	save	in	a	global	structure	(right	side	of	Figure
4.4).	With	an	output	device,	the	hardware	will	request	an	interrupt	when	the	output	device
is	idle.	The	software	interrupt	service	will	get	data	from	a	global	structure,	and	then	write
to	the	device	(right	side	of	Figure	4.5).

Sometimes	we	configure	the	hardware	timer	to	request	interrupts	on	a	periodic	basis.	The
software	interrupt	service	will	perform	a	special	function.	A	data	acquisition	system	needs
to	read	the	ADC	at	a	regular	rate.	Details	of	data	acquisition	systems	can	be	found	in
Chapter	10.	Some	computers	can	be	configured	to	request	an	interrupt	on	an	access	to	an
illegal	address	or	a	divide	by	zero.	Interrupt	synchronization	will	be	used	in	situations
where	the	software	system	is	fairly	complex	or	when	real-time	response	is	important.

Periodic	polling	uses	a	clock	interrupt	to	periodically	check	the	I/O	status.	With	an	input
device,	a	ready	flag	is	set	when	the	input	device	has	new	data.	At	the	next	periodic
interrupt,	the	software	will	read	the	data	and	save	them	in	a	global	structure.	With	an
output	device,	a	ready	flag	is	set	when	the	output	device	is	idle.	At	the	next	periodic
interrupt,	the	software	will	get	data	from	a	global	structure	and	write	it.	Periodic	polling
will	be	used	in	situations	that	require	interrupts,	but	the	I/O	device	does	not	support
interrupt	requests.

DMA,	or	direct	memory	access	is	an	interfacing	approach	that	transfers	data	directly
to/from	memory.	With	an	input	device,	the	hardware	will	request	a	DMA	transfer	when
the	input	device	has	new	data.	Without	the	software’s	knowledge	or	permission	the	DMA
controller	will	read	from	the	input	device	and	save	in	memory.	With	an	output	device,	the
hardware	will	request	a	DMA	transfer	when	the	output	device	is	idle.	The	DMA	controller
will	get	data	from	memory,	and	then	write	to	the	device.	Sometimes	we	configure	the
hardware	timer	to	request	DMA	transfers	on	a	periodic	basis.	DMA	can	be	used	to
implement	a	high-speed	data	acquisition	system.		DMA	synchronization	will	be	used	when
bandwidth	and	latency	are	important.

4.1.3.	Variety	of	Available	I/O	Ports
Microcontrollers	perform	digital	I/O	using	their	ports.		In	this	chapter	we	will	focus	on	the
input	and	output	of	digital	signals.	Microcontrollers	have	a	wide	variety	of	configurations,
only	few	of	which	are	illustrated	in	Table	4.1.	Each	microcontroller	manufacturer	has
multiple	families	consisting	of	a	wide	range	of	parts	with	varying	numbers	and	types	of
I/O	devices.	For	example,	the	TM4C123GH6ZRB	has	120	GPIO	pins.	It	is	typical	for	port
pins	to	be	programmed	via	software	for	alternative	functions	other	than	parallel	I/O.	Each
microcontroller	family	comes	with	a	mechanism	to	download	code	and	debug.	The	9S12
family	includes	a	background	debug	module.	The	Texas	Instruments	MSP430,	Stellaris ®
and	Tiva ® 	families	include	either	a	JTag	or	Spy-Bi-Wire	debugging	interface.	The
Microchip	PIC	family	debugs	in	a	variety	of	ways	including	In-Circuit	Serial
Programming,	In-Circuit	Emulator,	PICSTART	and	PROMATE.	The	Atmel	family	can	be
developed	with	a	JTag	debugger.	Basically,	we	first	choose	the	processor	type	(e.g.,	PIC,
MSP430,	9S12,	LM3S,	or	LM4F)	depending	on	our	software	processing	needs.	Next,	we
choose	the	family	depending	on	our	I/O	requirements.	Lastly,	we	choose	the	particular
part	depending	on	our	memory	requirements.

	 Port
pins

Alternative	functions.

PIC12F629 6 Very	low	cost,	ADC,	timer

MSP430F2013 10 Very	low	power,	ADC,	SCI,	SPI,	I2C,
and	timer

MC9S12C32 60 Serial,	timer,	ADC,	SPI,	CAN

AT91RM Up	to
122

ARM	Thumb,	ADC,	serial,	DMA,
USB,	Ethernet,	Smart	card

LM3S/LM4F/TM4C Up	to
120

Cortex-M,	ADC,	serial,	DMA,	USB,
Ethernet,	LCD,	CAN,	QEI

Table	4.1.	The	number	of	I/O	ports	and	alternative	function.

The	current	trend	in	the	computer	industry	is	customer	specific	integrated	circuits	(CSIC).
A	similar	term	for	this	development	process	is	application	specific	integrated	circuits
(ASIC).	With	these	approaches,	the	design	engineers	(customer)	first	evaluate	the	needs	of
their	project.	The	design	engineers	working	closely	with	the	computer	manufacturer	make
a	list	of	features	the	microcontroller	requires.	For	example

CPU	type														CISC,	RISC,	multiple	buses,	multiple	cores

Coprocessors														Floating	point,	DMA,	graphics

Memory														RAM,	EEPROM,	Flash	ROM,	OTP	ROM,	ROM

Power																												PLL,	sleep	states,	variable	supply,	reduced	output
drive

Analog																												8	to	16-bit	ADC,	8	to	12-bit	DAC,	analog
comparators

Timer																												Pulse	width	modulation,	Input	capture,	Output
compare

Parallel	Ports														Edge	trigger	interrupts,	pull-up,	pull-down,	open
collector

Serial																												Asynchronous	(UART),	synchronous	(SPI),	peripheral
(I2C)

Sound																												Integrated	Interchip	Sound	(I2S)

Motor																												Quadrature	Encoder	Interface	(QEI)

Networks														USB,	CAN,	Ethernet,	wireless

	
The	design	engineers	either	choose	a	microcontroller	from	existing	products	that	meets
their	needs,	or	the	engineers	contract	with	the	manufacturer	to	produce	a	microcontroller
with	the	exact	specifications	for	that	project.	Many	manufacturers	distribute	starter	code,
reference	designs,	or	white	papers	showing	complete	implementations	using	that	particular
microcontroller	to	solve	actual	problems.	The	availability	of	such	solutions	will	be
extremely	helpful,	even	if	the	applications	are	just	remotely	similar	to	your	problem.

4.2.	Timing

4.2.1.	Timing	Equations
When	interfacing	devices,	it	is	important	to	manage	when	events	occur.	Typical	events
include	the	rise	or	fall	of	control	signals,	when	data	pins	need	to	be	correct,	and	when	data
pins	actually	contain	the	proper	values.	In	this	book,	we	will	use	two	mechanisms	to
describe	the	timing	of	events.	In	this	section,	we	present	a	formal	syntax	called	timing
equations,	which	are	algebraic	mechanisms	to	describe	time.	In	the	next	section,	we	will
present	graphical	mechanisms	called	timing	diagrams.

When	using	a	timing	equation,	we	need	to	define	a	zero-time	reference.	For	synchronous
systems,	which	are	systems	based	on	a	global	clock,	we	can	define	one	edge	of	the	clock
as	time=0.	Timing	equations	can	contain	number	constants	typically	given	in	ns,	variables,
and	edges.	For	example,	↓A	means	the	time	when	signal	A	falls,	and	↑A	means	the	time
when	it	rises.	To	specify	an	interval	of	time,	we	give	its	start	and	stop	times	between
parentheses	separated	by	a	comma.	For	example,	(400,	520)	means	the	time	interval
begins	at	400	ns	and	ends	at	520	ns.	These	two	numbers	are	relative	to	the	zero-time
reference.

We	can	use	algebraic	variables,	edges,	and	expressions	to	describe	complex	behaviors.
Some	timing	intervals	are	not	dependent	on	the	zero-time	reference.	For	example,	(↑A-10,
↑A+t)	means	the	time	interval	begins	10	ns	before	the	rising	edge	of	signal	A	and	ends	at
time	t	after	that	same	rising	edge.		Some	timing	variables	we	see	frequently	in	data	sheets
include

tpd														propagation	delay	from	a	change	in	input	to	a	change	in	output

tpHL														propagation	delay	from	input	to	output,	as	the	output	goes	from	high	to	low

tpLH														propagation	delay	from	input	to	output,	as	the	output	goes	from	low	to	high

tpZL														propagation	delay	from	control	to	output,	as	the	output	goes	from	floating	to
low

tpZH														propagation	delay	from	control	to	output,	as	the	output	goes	from	floating	to
high

tpLZ														propagation	delay	from	control	to	output,	as	the	output	goes	from	low	to
floating

tpHZ														propagation	delay	from	control	to	output,	as	the	output	goes	from	high	to
floating

ten														propagation	delay	from	floating	to	driven	either	high	or	low,	same	as	tpZL	and
tpZH
tdis														propagation	delay	from	driven	high/low	to	floating,	same	as	tpLZ	and	tpHZ
tsu														setup	time,	the	time	before	a	clock	input	data	must	be	valid

th														hold	time,	the	time	after	a	clock	input	data	must	continue	to	be	valid

	

Sometimes	we	are	not	quite	sure	exactly	when	an	event	starts	or	stops,	but	we	can	give
upper	and	lower	bounds.	We	will	use	brackets	to	specify	this	timing	uncertainty.	For
example,	assume	we	know	the	interval	starts	somewhere	between	400	and	430	ns,	and
stops	somewhere	between	520	and	530	ns,	we	would	then	write	([400,	430],	[520,	530]).

As	examples,	we	will	consider	the	timing	of	a	not	gate,	a	tristate	driver,	and	an	octal	D
flip-flop,	as	shown	in	Figure	4.6.	If	the	input	to	the	74HC04	is	low,	its	output	will	be	high.
Conversely,	if	the	input	to	the	74HC04	is	high,	its	output	will	be	low.	There	are	eight	data
inputs	to	the	74HC244,	labeled	as	A.	Its	eight	data	outputs	are	labeled	Y.	The	74HC244
tristate	driver	has	two	modes.	When	the	output	enable,	OE*,	is	low,	the	output	Y	equals
the	input	A.	When	OE*	is	high,	the	output	Y	floats,	meaning	it	is	not	driven	high	or	low.
The	slash	with	an	8	over	top	means	there	are	eight	signals	that	all	operate	in	a	similar	or
combined	fashion.		The	74HC374	octal	D	flip-flop	has	eight	data	inputs	(D)	and	eight	data
outputs	(Q).	A	D	flip-flip	will	store	or	latch	its	D	inputs	on	the	rising	edge	of	its	Clk.	The
OE*	signal	on	the	74HC374	works	in	a	manner	similar	to	the	74HC244.	When	OE*	is
low,	the	stored	values	in	the	flip-flop	are	available	at	its	Q	outputs.	When	OE*	is	high,	the
Q	outputs	float.	The	making	OE*	go	high	or	low	does	not	change	the	internal	stored
values.	OE*	only	affects	whether	or	not	the	stored	values	are	driven	on	the	Q	outputs.

Positive	logic	means	the	true	or	asserted	state	is	a	higher	voltage	than	the	false	or	not
asserted	state.	Negative	logic	means	the	true	or	asserted	state	is	a	lower	voltage	than	the
false	or	not	asserted	state.	The	*	in	the	name	OE*	means	negative	logic.	Other	syntax
styles	that	mean	negative	logic	include	a	slash	before	the	symbol	(e.g.,	\OE),	the	letter	n	in
the	name	(OEn),	or	a	line	over	the	top	(e.g.,).

Figure	4.6.	A	NOT	gate,	a	tristate	driver,	and	an	octal	D	flip-flop.
We	will	begin	with	the	timing	of	the	74HC04	not	gate.	The	typical	propagation	delay	time
(tpd)	for	this	not	gate	is	8	ns.	Considering	just	the	typical	delay,	we	specify	time	when	Y
rises	in	terms	of	the	time	when	A	falls.	That	is

↑Y	=	↓A	+	tpd	=	↓A	+	8

From	the	74HC04	data	sheet,	we	see	the	maximum	propagation	delay	is	15	ns,	and	no
minimum	is	given.	Since	the	delay	cannot	be	negative,	we	set	the	minimum	to	zero	and
write

↑Y	=	[↓A,	↓A	+	15]		=	↓A	+	[0,	15]

We	specify	the	time	interval	when	Y	is	high	as

(↑Y,	↓Y)		=		([↓A,	↓A+15],	[↑A,	↑A+15])		=		(↓A+[0,15],	↑A+[0,15])	

When	data	is	transferred	from	one	location	(the	source)	and	stored	into	another	(the
destination),	there	are	two	time	intervals	that	will	determine	if	the	transfer	will	be
successful.	The	data	available	interval	specifies	when	the	data	driven	by	the	source	is
valid.	The	data	required	interval	specifies	when	the	data	to	be	stored	into	the	destination
must	be	valid.	For	a	successful	transfer	the	data	available	interval	must	overlap	(start
before	and	end	after)	the	data	required	interval.	Let	a,	b,	c,	d	be	times	relative	to	the	same
zero-time	reference,	let	the	data	available	interval	be	(a,	d),	and	let	the	data	required
interval	be	(b,	c),	as	shown	in	Figure	4.7.	The	data	will	be	successfully	transferred	if

a	≤	b			and			c	≤	d

Figure	4.7.	The	data	available	interval	should	overlap	the	data	required
interval.
The	example	shown	in	Figure	4.8	illustrates	the	fundamental	concept	of	timing	for	a
digital	interface.	The	objective	is	to	transfer	the	data	from	the	input,	In,	to	the	output,	Out.
First,	we	assume	the	signal	at	the	In	input	of	the	74HC244	is	always	valid.	When	the
tristate	control,	G*,	is	low	then	the	In	is	copied	to	the	Bus.	On	the	rising	edge	of	C,	the
74HC374	D	flip-flop	will	copy	this	data	to	the	output	Out.

Figure	4.8.	Simple	circuit	to	illustrate	that	the	data	available	interval
should	overlap	the	data	required	interval.
The	data	available	interval	defines	when	the	signal	Bus	contains	valid	data	and	is
determined	by	the	timing	of	the	74HC244.	From	its	data	sheet,	the	output	of	the	74HC244
is	valid	between	0	and	38	ns	after	the	fall	of	G*.	It	will	remain	valid	until	0	to	38	ns	after
the	rise	of	G*.	The	data	available	interval	is

		DA	=	(↓G*+	ten,	↑G*+	tdis)	=	(↓G*+[0,	38],	↑G*+[0,38])

The	data	required	interval	is	determined	by	the	timing	of	the	74HC374.	The	74HC374
input,	Bus,	must	be	valid	from	25	ns	before	the	rise	of	C	and	remain	valid	until	5	ns	after
that	same	rise	of	C.	The	time	before	the	clock	the	data	must	be	valid	is	called	the	setup
time.	The	setup	time	for	the	74HC374	is	25	ns.	The	time	after	the	clock	the	data	must
continue	to	be	valid	is	called	the	hold	time.	The	hold	time	for	the	74HC374	is	5	ns.	The
data	required	interval	is

		DR	=	(↑C-	tsu,	↑C+	th)	=	(↑C-25,	↑C+5)

Since	the	objective	is	to	make	the	data	available	interval	overlap	the	data	required
window,	the	worst	case	situation	will	be	the	shortest	data	available	and	the	longest	data
required	intervals.	Without	loss	of	information,	we	can	write	the	shortest	data	available
interval	as

		DA	=	(↓G*+38,	↑G*)

Thus	the	data	will	be	properly	transferred	if	the	following	are	true:

↓G*+38	≤	↑C-25						and						↑C+5	≤	↑G*

Notice	in	Figure	4.8,	the	signal	between	the	74HC244	and	74HC374	is	labeled	Bus.	A	bus
is	a	collection	of	signals	that	facilitate	the	transfer	of	information	from	one	part	of	the
circuit	to	another.	Consider	a	system	with	multiple	74HC244’s	and	multiple	74HC374’s.
The	Y	outputs	of	all	the	74HC244’s	and	the	D	inputs	of	all	the	74HC374’s	are	connected
to	this	bus.	If	the	system	wished	to	transfer	from	input	6	to	output	5,	it	would	clear	G6*
low,	make	C5	rise,	and	then	set	G6*	high.	At	some	point	C5	must	fall,	but	the	exact	time
is	not	critical.	One	of	the	problems	with	shared	bus	will	be	bus	arbitration,	which	is	a
mechanism	to	handle	simultaneous	requests.

4.2.2.	Timing	Diagrams
An	alternative	mechanism	for	describing	when	events	occur	uses	voltage	versus	time
graphs,	called	timing	diagrams.	It	is	very	intuitive	to	describe	timing	events	using	graphs
because	it	is	easy	to	visually	sort	events	into	their	proper	time	sequence.	Figure	4.9	defines
the	symbols	we	will	use	to	draw	timing	diagrams	in	this	book.	Arrows	will	be	added	to
describe	the	causal	relations	in	our	interface.	Numbers	or	variables	can	be	included	that
define	how	far	apart	events	will	be	or	should	be.	It	is	important	to	have	it	clear	in	our
minds	whether	we	are	drawing	an	input	or	an	output	signal,	because	what	a	symbol	means
depends	on	whether	we	are	drawing	the	timing	of	an	input	or	an	output	signal.	Many
datasheets	use	the	tristate	symbol	when	drawing	an	input	signal	to	mean	“don’t	care”.

Figure	4.9.	Nomenclature	for	drawing	timing	diagrams.

To	illustrate	the	graphical	relationship	of	dynamic	digital	signals,	we	will	draw	timing
diagrams	for	the	three	devices	presented	in	the	last	section,	see	Figure	4.10.	The	arrows	in
the	74HC04	timing	diagram	describe	the	causal	behavior.	If	the	input	were	to	rise,	then	the
output	will	fall	tpHL	time	later.	The	subscript	HL	refers	to	the	output	changing	from	high	to
low.	Similarly,	if	the	input	were	to	fall,	then	the	output	will	rise	tpLH	time	later.

	

Figure	4.10.	Timing	diagrams	for	the	circuits	in	Figure	4.6.
	

The	arrows	in	the	74HC244	timing	diagram	also	describe	the	causal	behavior.	If	the	input
A	is	valid	and	if	the	OE*	were	to	fall,	then	the	output	will	go	from	floating	to	properly
driven	ten	time	later.	If	the	OE*	is	low	and	if	the	input	A	were	to	change,	then	the	output
will	change	tpd	time	later.		If	the	OE*	were	to	rise,	then	the	output	will	go	from	driven	to
floating	tdis	time	later.

The	parallel	lines	on	the	D	timing	of	the	74HC374	mean	the	input	must	be	valid.	“Must	be
valid”	means	the	D	input	could	be	high	or	low,	but	it	must	be	correct	and	not	changing.	In
general,	arrows	represent	causal	relationships	(i.e.,	“this”	causes	“that”).	Hence,	arrows
should	be	drawn	pointing	to	the	right,	towards	increasing	time.	The	setup	time	arrow	is	an
exception	to	the	“arrows	point	to	the	right”	rule.	The	setup	arrow	(labeled	with	tsu)	defines
how	long	before	an	edge	must	the	input	be	stable.	The	hold	arrow	(labeled	with	th)	defines
how	long	after	that	same	edge	the	input	must	continue	to	be	stable.

The	timing	of	the	74HC244	mimics	the	behavior	of	devices	on	the	computer	bus	during	a
read	cycle,	and	the	timing	of	the	74HC374	clock	mimics	the	behavior	of	devices	during	a
write	cycle.	Figure	4.11	shows	the	timing	diagram	for	the	interface	problem	presented	in
Figure	4.8.	Again	we	assume	the	input	In	is	valid	at	all	times.	The	data	available	(DA)	and
data	required	(DR)	intervals	refer	to	data	on	the	Bus.	In	this	timing	diagram,	we	see
graphically	the	same	design	constraint	developed	with	timing	equations.	↓G*+38	must	be
less	than	or	equal	to	↑C‑25	and	↑C+5 	must	be	less	than	or	equal	to	↑G*.	One	of	the
confusing	parts	about	a	timing	diagram	is	that	it	contains	more	information	than	actually
matters.	For	example,	notice	that	the	fall	of	C	is	drawn	before	the	rise	of	G*.	In	this
interface,	the	relative	timing	of	↑G*	and	↓C	does	not	matter.		However,	we	draw	↓C	so
that	we	can	specify	the	width	of	the	C	pulse	must	be	at	least	20	ns.

Figure	4.11.	Timing	diagram	of	the	interface	shown	in	Figure	4.8.

4.3.	Petri	Nets
In	the	last	chapter,	we	presented	finite	state	machines	as	a	formal	mechanism	to	describe
systems	with	inputs	and	outputs.	In	this	chapter,	we	present	two	methods	to	describe
synchronization	in	complex	systems:	Petri	Nets	and	Kahn	Process	Networks.	Petri	Nets
can	be	used	to	study	the	dynamic	concurrent	behavior	of	network-based	systems	where
there	is	discrete	flow,	such	as	packets	of	data.	A	Petri	Net	is	comprised	of	Places,
Transition,	and	Arcs.	Places,	drawn	as	circles	in	Figure	4.12,	can	contain	zero,	one,	or
more	tokens.	Consider	places	as	variables	(or	buffers)	and	tokens	as	discrete	packets	of
data.	Tokens	are	drawn	in	the	net	as	dots	with	each	dot	representing	one	token.	Formally,
the	tokens	need	not	comprise	data	and	could	simply	represent	the	existence	of	an	event.
Transitions,	drawn	as	vertical	bars,	represent	synchronizing	actions.	Consider	transitions
as	software	that	performs	work	for	the	system.	From	a	formal	perspective,	a	Petri	Net	does
not	model	time	delay.	But,	from	a	practical	viewpoint	we	know	executing	software	must
consume	time.	The	arcs,	drawn	as	arrows,	connect	places	to	transitions.	An	arc	from	a
place	to	a	transition	is	an	input	to	the	transition,	and	an	arc	from	a	transition	to	a	place	is
an	output	of	the	transition.

Figure	4.12.	Petri	Nets	are	built	with	places,	transitions	and	arcs.	Places
can	hold	tokens.
For	example,	an	input	switch	could	be	modeled	as	a	device	that	inserts	tokens	into	a	place.
The	number	of	tokens	would	then	represent	the	number	of	times	the	switch	has	been
pressed.	An	alphanumeric	keyboard	could	also	be	modeled	as	an	input	device	that	inserts
tokens	into	a	place.	However,	we	might	wish	to	assign	an	ASCII	string	to	the	token
generated	by	a	keyboard	device.	An	output	device	in	a	Petri	Net	could	be	modeled	as	a
transition	with	only	input	arcs	but	no	output	arcs.	An	output	device	consumes	tokens
(data)	from	the	net.

Arcs	are	never	drawn	from	place	to	place,	nor	from	transition	to	transition.	Transition
node	is	ready	to	fire	if	and	only	if	there	is	at	least	one	token	at	each	of	its	input	places.
Conversely,	a	transition	will	not	fire	if	one	or	more	input	places	is	empty.	Firing	a
transition	produces	software	action	(a	task	is	performed).	Formally,	firing	a	transition	will
consume	one	token	from	each	of	its	input	places	and	generate	one	token	for	each	of	its
output	places.	Figure	4.13	illustrates	an	example	firing.	In	this	case,	the	transition	will
wait	for	there	to	be	at	least	one	token	in	both	its	input	places.	When	it	fires	it	will	consume
two	tokens	and	merge	them	into	one	token	added	to	its	output	place.	In	general,	once	a
transition	is	ready	to	fire,	there	is	no	guarantee	when	it	will	fire.	One	useful	extension	of
the	Petri	Net	assigns	a	minimum	and	maximum	time	delay	from	input	to	output	for	each
transition	that	is	ready	to	fire.

Figure	4.13.	Firing	a	transition	consumes	one	token	at	each	input	and
produces	one	token	at	each	output.
Figure	4.14	illustrates	a	sequential	operation.	The	three	transitions	will	fire	in	a	strictly
ordered	sequence:	first	t1,	next	t2,	and	then	t3.

Figure	4.14.	A	Petri	Net	used	to	describe	a	sequential	operation.
Figure	4.15	illustrates	concurrent	operation.	Once	transition	t1	fires,	transitions	t2	and	t3	are
running	at	the	same	time.	On	a	distributed	system	t2	and	t3	may	be	running	in	parallel	on
separate	computers.	On	a	system	with	one	processor,	two	operations	are	said	to	be	running
concurrently	if	they	are	both	ready	to	run.	Because	there	is	a	single	processor,	the	tasks
must	run	one	at	a	time.

Figure	4.15.	A	Petri	Net	used	to	describe	concurrent	operations.
Figure	4.16	demonstrates	a	conflict	or	race	condition.	Both	t1	and	t2	are	ready	to	fire,	but
the	firing	of	one	leads	to	the	disabling	of	the	other.	It	would	be	a	mistake	to	fire	them	both.
A	good	solution	would	be	to	take	turns	in	some	fair	manner	(flip	a	coin	or	alternate).	A
deterministic	model	will	always	produce	the	same	output	from	a	given	starting	condition
or	initial	state.	Because	of	the	uncertainty	when	or	if	a	transition	will	fire,	a	system
described	with	a	Petri	Net	is	not	deterministic.	

Figure	4.16.	If	t1	were	to	fire,	it	would	disable	t2.	If	t2	were	to	fire,	it	would
disable	t1.

Figure	4.17	describes	an	assembly	line	on	a	manufacturing	plant.	There	are	two	robots.
The	first	robot	picks	up	one	Part1	and	one	Part2,	placing	the	parts	together.	After	the	robot
places	the	two	parts,	it	drills	a	hole	through	the	combination,	and	then	places	the	partial
assembly	into	the	Partial	bin.	The	second	robot	first	combines	Part3	with	the	partial
assembly	and	screws	them	together.	The	finished	product	is	placed	into	the	Done	bin.	The
tokens	represent	the	state	of	the	system,	and	transitions	are	actions	that	cause	the	state	to
change.

The	three	supply	transitions	are	input	machines	that	place	parts	into	their	respective	parts
bins.	The	tokens	in	places	Part1,	Part2,	Part3,	Partial,	and	Done	represent	the	number
of	components	in	their	respective	bins.	The	first	robot	performs	two	operations	but	can
only	perform	one	at	a	time.	The	Rdy-to-P&P	place	has	a	token	if	the	first	robot	is	idle	and
ready	to	pick	and	place.	The	Rdy-to-drill	place	has	a	token	if	the	first	robot	is	holding	two
parts	and	is	ready	to	drill.	The	Pick&Place	transition	is	the	action	caused	by	the	first	robot
as	it	picks	up	two	parts	placing	them	together.	The	Drill	transition	is	the	action	caused	by
the	first	robot	as	it	drills	a	hole	and	places	the	partial	assembly	into	the	Partial	bin.

Figure	4.17.	A	Petri	Net	used	to	describe	an	assembly	line.
The	first	robot	performs	two	operations	but	can	only	perform	one	at	a	time.	The	Rdy-to-
P&P	place	has	a	token	if	the	first	robot	is	idle	and	ready	to	pick	and	place.	The	Rdy-to-
drill	place	has	a	token	if	the	first	robot	is	holding	two	parts	and	is	ready	to	drill.	The
Pick&Place	transition	is	the	action	caused	by	the	first	robot	as	it	picks	up	two	parts
placing	them	together.	The	Drill	transition	is	the	action	caused	by	the	first	robot	as	it	drills
a	hole	and	places	the	partial	assembly	into	the	Partial	bin.

The	second	robot	performs	two	operations.	The	Rdy-to-combine	place	has	a	token	if	the
second	robot	is	idle	and	ready	to	combine.	The	Rdy-to-screw	place	has	a	token	if	the
second	robot	is	holding	two	parts	and	is	ready	to	screw.	The	Combine	transition	is	the
action	caused	by	the	second	robot	as	it	picks	up	a	Part3	and	a	Partial	combining	them
together.	The	Screw	transition	is	the	action	caused	by	the	second	robot	as	it	screws	it
together	and	places	the	completed	assembly	into	the	Done	bin.	The	Ship	transition	is	an
output	machine	that	sends	completed	assemblies	to	their	proper	destination.

Checkpoint	4.1:	Assuming	no	additional	input	machines	are	fired,	run	the	Petri	Net
shown	in	Figure	4.17	until	it	stalls.	How	many	competed	assemblies	are	shipped?

4.4.	Kahn	Process	Networks
Gilles	Kahn	first	introduced	the	Kahn	Process	Network	(KPN).	We	use	KPNs	to	model
distributed	systems	as	well	as	signal	processing	systems.	Each	node	represents	a
computation	block	communicating	with	other	nodes	through	unbounded	FIFO	channels.
The	circles	in	Figure	4.18	are	computational	blocks	and	the	arrows	are	FIFO	queues.	The
resulting	process	network	exhibits	deterministic	behavior	that	does	not	depend	on	the
various	computation	or	communication	delays.	As	such,	KPNs	have	found	many
applications	in	modeling	embedded	systems,	high-performance	computing	systems,	and
computational	tasks.

Figure	4.18.	A	Kahn	Process	Network	consists	of	process	nodes	linked	by
unbounded	FIFO	queues.
For	each	FIFO,	only	one	process	puts,	and	only	one	process	gets.	Figure	4.18	shows	a
KPN	with	four	processes	and	three	edges	(communication	channels).	Processes	P1	and	P2
are	producers,	generating	data	into	channels	A	and	B	respectively.	Process	P3	consumes
one	token	from	channel	A	and	another	from	channel	B	(in	either	order)	and	then	produces
one	token	into	channel	C.	Process	P4	is	a	consumer	because	it	consumes	tokens.

We	can	use	a	KPN	to	describe	signal	processing	systems	where	infinite	streams	of	data	are
transformed	by	processes	executing	in	sequence	or	parallel.	Streaming	data	means	we
input/analyze/output	one	data	packet	at	a	time	without	the	desire	to	see	the	entire
collection	of	data	all	at	once.	Despite	parallel	processes,	multitasking	or	parallelism	are
not	required	for	executing	this	model.	In	a	KPN,	processes	communicate	via	unbounded
FIFO	channels.	Processes	read	and	write	atomic	data	elements,	or	alternatively	called
tokens,	from	and	to	channels.	The	read	token	is	equivalent	to	a	FIFO	get	and	the	write
token	is	a	FIFO	put.	In	a	KPN,	writing	to	a	channel	is	non-blocking.	This	means	we
expect	the	put	FIFO	command	to	always	succeed.	In	other	words,	the	FIFO	never
becomes	full.	From	a	practical	perspective,	we	can	use	KPN	modeling	for	situations	where
the	FIFOs	never	actually	do	become	full.	Furthermore,	the	approximate	behavior	of	a
system	can	be	still	be	deemed	for	systems	where	FIFO	full	errors	are	infrequent.	For	these
approximations	we	could	discard	data	with	the	FIFO	becomes	full	on	a	put	instead	of
waiting	for	there	to	be	free	space	in	the	FIFO.

On	the	other	hand	reading	from	a	channel	requires	blocking.	A	process	that	reads	from	an
empty	channel	will	stall	and	can	only	continue	when	the	channel	contains	sufficient	data
items	(tokens).	Processes	are	not	allowed	to	test	an	input	channel	for	existence	of	tokens
without	consuming	them.	Given	a	specific	input	(token)	history	for	a	process,	the	process
must	be	deterministic	so	that	it	always	produces	the	same	outputs	(tokens).	Timing	or
execution	order	of	processes	must	not	affect	the	result	and	therefore	testing	input	channels
for	tokens	is	forbidden.

In	order	to	optimize	execution	some	KPNs	do	allow	testing	input	channels	for	emptiness
as	long	as	it	does	not	affect	outputs.	It	can	be	beneficial	and/or	possible	to	do	something	in
advance	rather	than	wait	for	a	channel.	In	the	example	shown	in	Figure	4.18,	process	P3
must	get	from	both	channel	A	and	channel	B.	The	left	side	of	Program	4.1	shows	the
process	stalls	if	the	AFifo	is	empty	(even	if	there	is	data	in	the	BFifo).	If	the	first	FIFO	is
empty,	it	might	be	efficient	to	see	if	there	is	data	in	the	other	FIFO	to	save	time	(right	side
of	Program	4.1).

Processes	of	a	KPN	are	deterministic.	For	the	same	input	history	they	must	always
produce	exactly	the	same	output.	Processes	can	be	modeled	as	sequential	programs	that	do
reads	and	writes	to	ports	in	any	order	or	quantity	as	long	as	the	determinism	property	is
preserved.

KPN	processes	are	monotonic,	which	means	that	they	only	need	partial	information	of	the
input	stream	in	order	to	produce	partial	information	of	the	output	stream.	Monotonicity
allows	parallelism.	In	a	KPN	there	is	a	total	order	of	events	inside	a	signal.	However,	there
is	no	order	relation	between	events	in	different	signals.	Thus,	KPNs	are	only	partially
ordered,	which	classifies	them	as	an	untimed	model.

void	Process3(void){

int32_t	inA,	inB,	out;

		while(1){

while(AFifo_Get(&inA)){};

while(BFifo_Get(&inB)){};

out	=	compute(inA,inB);

CFifo_Put(out);

		}

}

	

void	Process3(void){

int32_t	inA,	inB,	out;

		while(1){

if(AFifo_Size()==0){

while(BFifo_Get(&inB)){};

while(AFifo_Get(&inA)){};

}	else{

while(AFifo_Get(&inA)){};

while(BFifo_Get(&inB)){};

}

out	=	compute(inA,inB);

CFifo_Put(out);

		}

}

Program	4.1.	Two	C	implementations	of	a	process	on	a	KPN.	The	one	on
the	right	is	optimized.

4.5.	Edge-triggered	Interfacing
Synchronizing	software	to	hardware	events	requires	the	software	to	recognize	when	the
hardware	changes	states	from	busy	to	done.	Many	times	the	busy	to	done	state	transition	is
signified	by	a	rising	(or	falling)	edge	on	a	status	signal	in	the	hardware.	For	these
situations,	we	connect	this	status	signal	to	an	input	of	the	microcontroller,	and	we	use
edge-triggered	interfacing	to	configure	the	interface	to	set	a	flag	on	the	rising	(or	falling)
edge	of	the	input.	Using	edge-triggered	interfacing	allows	the	software	to	respond	quickly
to	changes	in	the	external	world.	If	we	are	using	busy-wait	synchronization,	the	software
waits	for	the	flag.	If	we	are	using	interrupt	synchronization,	we	configure	the	flag	to
request	an	interrupt	when	set.	Each	of	the	digital	I/O	pins	on	the	LM3S/LM4F/TM4C
family	can	be	configured	for	edge	triggering.	Table	2.18	listed	some	of	the	I/O	registers
associated	with	the	LM3S1968	and	TM4C123.	Table	4.2	expands	this	list	to	include	all
the	registers	available	for	Port	A.	The	differences	between	members	of	the
LM3S/LM4F/TM4C	family	include	the	number	of	ports	(e.g.,	the	LM3S1968	has	ports	A
–	H,	while	the	TM4C123	has	ports	A	–	F)	and	the	number	of	pins	in	each	port	(e.g.,	the
LM3S1968	has	pins	7	–	0	in	Port	F,	while	the	TM4C123	has	pins	4	–	0	in	Port	F).	For
more	details,	refer	to	the	datasheet	for	your	specific	microcontroller.	Any	or	all	of	digital
I/O	pins	can	be	configured	as	an	edge-triggered	input.		When	writing	C	code	using	these
registers,	include	the	header	file	for	your	particular	microcontroller	(e.g.,
tm4c123gh6pm.h).

To	use	any	of	the	features	for	a	digital	I/O	port,	we	first	enable	its	clock	in	the
SYSCTL_RCGCGPIO_R.	For	each	bit	we	wish	to	use	we	must	set	the	corresponding
DEN	(Digital	Enable)	bit.	To	use	a	pin	as	regular	digital	input	or	output,	we	clear	its
AFSEL	(Alternate	Function	Select)	bit.	Setting	the	AFSEL	will	activate	the	pin’s	special
function	(e.g.,	UART,	I2C,	CAN	etc.)	For	regular	digital	input/output,	we	clear	DIR
(Direction)	bits	to	make	them	input,	and	we	set	DIR	bits	to	make	them	output.

There	are	four	additional	registers	for	the	LM4F/TM4C.	We	clear	bits	in	the	AMSEL
register	to	use	the	port	for	digital	I/O.	AMSEL	bits	exist	for	those	pins	which	have	analog
functionality.	Which	pins	have	which	functionality	was	shown	in	Tables	2.7	and	2.8.	We
set	the	alternative	function	using	both	AFSEL	and	PCTL	registers.	We	need	to	unlock
PD7	and	PF0	if	we	wish	to	use	them.	Because	PC3-0	implements	the	JTAG	debugger,	we
will	never	unlock	these	pins.	Pins	PC3-0,	PD7	and	PF0	are	the	only	ones	that	implement
the	CR	bits	in	their	commit	registers,	where	0	means	the	pin	is	locked	and	1	means	the	pin
is	unlocked.	To	unlock	a	pin,	we	first	write	0x4C4F434B	to	the	LOCK	register,	and	then
we	write	zeros	to	the	CR	register.

Address 7 6 5 4 3 2 1 0 Name

$4000.43FC DATA DATA DATA DATA DATA DATA DATA DATA GPIO_PORTA_DATA_R

$4000.4400 DIR DIR DIR DIR DIR DIR DIR DIR GPIO_PORTA_DIR_R

$4000.4404 IS IS IS IS IS IS IS IS GPIO_PORTA_IS_R

$4000.4408 IBE IBE IBE IBE IBE IBE IBE IBE GPIO_PORTA_IBE_R

$4000.440C IEV IEV IEV IEV IEV IEV IEV IEV GPIO_PORTA_IEV_R

$4000.4410 IME IME IME IME IME IME IME IME GPIO_PORTA_IM_R

$4000.4414 RIS RIS RIS RIS RIS RIS RIS RIS GPIO_PORTA_RIS_R

$4000.4418 MIS MIS MIS MIS MIS MIS MIS MIS GPIO_PORTA_MIS_R

$4000.441C ICR ICR ICR ICR ICR ICR ICR ICR GPIO_PORTA_ICR_R

$4000.4420 SEL SEL SEL SEL SEL SEL SEL SEL GPIO_PORTA_AFSEL_R

$4000.4500 DRV2 DRV2 DRV2 DRV2 DRV2 DRV2 DRV2 DRV2 GPIO_PORTA_DR2R_R

$4000.4504 DRV4 DRV4 DRV4 DRV4 DRV4 DRV4 DRV4 DRV4 GPIO_PORTA_DR4R_R

$4000.4508 DRV8 DRV8 DRV8 DRV8 DRV8 DRV8 DRV8 DRV8 GPIO_PORTA_DR8R_R

$4000.450C ODE ODE ODE ODE ODE ODE ODE ODE GPIO_PORTA_ODR_R

$4000.4510 PUE PUE PUE PUE PUE PUE PUE PUE GPIO_PORTA_PUR_R

$4000.4514 PDE PDE PDE PDE PDE PDE PDE PDE GPIO_PORTA_PDR_R

$4000.4518 SLR SLR SLR SLR SLR SLR SLR SLR GPIO_PORTA_SLR_R

$4000.451C DEN DEN DEN DEN DEN DEN DEN DEN GPIO_PORTA_DEN_R

$4000.4524 CR CR CR CR CR CR CR CR GPIO_PORTA_CR_R

$4000.4528 AMSEL AMSEL AMSEL AMSEL AMSEL AMSEL AMSEL AMSEL GPIO_PORTA_AMSEL_R

	 	 	 	 	 	 	 	 	 	

	 31-28 27-24 23-20 19-16 15-12 11-8 7-4 3-0 	

$4000.452C PMC7 PMC6 PMC5 PMC4 PMC3 PMC2 PMC1 PMC0 GPIO_PORTA_PCTL_R

$4000.4520 LOCK	(write	0x4C4F434B	to	unlock,	other	locks)	(reads	1	if	locked,	0	if	unlocked) GPIO_PORTA_LOCK_R

Table	4.2.	Port	A	registers.	CR	AMSEL	LOCK	and	PCTL	only	on	LM4F/TM4C

To	configure	an	edge-triggered	pin,	we	first	enable	the	clock	on	the	port	and	configure	the
pin	as	a	regular	digital	input.	Clearing	the	IS	(Interrupt	Sense)	bit	configures	the	bit	for
edge	triggering.	If	the	IS	bit	were	to	be	set,	the	trigger	occurs	on	the	level	of	the	pin.	Since
most	busy	to	done	conditions	are	signified	by	edges,	we	typically	trigger	on	edges	rather
than	levels.	Next	we	write	to	the	IBE	(Interrupt	Both	Edges)	and	IEV	(Interrupt	Event)
bits	to	define	the	active	edge.	We	can	trigger	on	the	rising,	falling,	or	both	edges,	as	listed
in	Table	4.3.	We	clear	the	IME	(Interrupt	Mask	Enable)	bits	if	we	are	using	busy-wait
synchronization,	and	we	set	the	IME	bits	to	use	interrupt	synchronization.

DIR AFSEL IS IBE IEV IME Port	mode

0 0 0 0 0 0 Input,	falling	edge
trigger,	busy	wait

0 0 0 0 1 0 Input,	rising	edge
trigger,	busy	wait

0 0 0 1 - 0 Input,	both	edges
trigger,	busy	wait

0 0 0 0 0 1 Input,	falling	edge
trigger,	interrupt

0 0 0 0 1 1 Input,	rising	edge
trigger,	interrupt

0 0 0 1 - 1 Input,	both	edges
trigger,	interrupt

Table	4.3.	Edge-triggered	modes.

The	hardware	sets	an	RIS	(Raw	Interrupt	Status)	bit	(called	the	trigger)	and	the	software
clears	it	(called	the	acknowledgement).	The	triggering	event	listed	in	Table	4.3	will	set	the
corresponding	RISbit	in	the GPIO_PORTA_RIS_R 	register	regardless	of	whether	or	not
that	bit	is	allowed	to	request	a	controller	interrupt.	In	other	words,	clearing	an	IME	bit
disables	the	corresponding	pin’s	interrupt,	but	it	will	still	set	the	corresponding	RIS	bit
when	the	interrupt	would	have	occurred.	The	software	can	acknowledge	the	event	by
writing	ones	to	the	corresponding	IC	(Interrupt	Clear)bit	in	the GPIO_PORTA_IC_R
register.	The	RIS	bits	are	read	only,	meaning	if	the	software	were	to	write	to	this	registers,
it	would	have	no	effect.	For	example,	to	clear	bits	2,	1,	and	0	in
the GPIO_PORTA_RIS_R register,	we	write	a	0x07	to	the GPIO_PORTA_IC_R
register.	Writing	zeros	into	IC	bits	will	not	affect	the	RIS	bits.

For	input	signals	we	have	the	option	of	adding	either	a	pull-up	resistor	or	a	pull-down
resistor.	If	we	set	the	corresponding	PUE	(Pull-Up	Enable)	bit	on	an	input	pin,	the
equivalent	of	a	50	to	110	k � 	resistor	to	+3.3	V	power	is	internally	connected	to	the	pin.
Similarly,	if	we	set	the	corresponding	PDE	(Pull-Down	Enable)	bit	on	an	input	pin,	the
equivalent	of	a	55	to	180	k � 	resistor	to	ground	is	internally	connected	to	the	pin.	We
cannot	have	both	pull-up	and	a	pull-down	resistor,	so	setting	a	bit	in	one	register
automatically	clears	the	corresponding	bit	in	the	other	register.

A	typical	application	of	pull-up	and	pull-down	mode	is	the	interface	of	simple	switches.
Using	these	modes	eliminates	the	need	for	an	external	resistor	when	interfacing	a	switch.
Compare	the	interfaces	on	Port	A	to	the	interfaces	on	Port	B	illustrated	in	Figure	4.19.	The
Port	A	interfaces	employ	software-configured	internal	resistors,	while	the	Port	B
interfaces	require	actual	resistors.	The	PA2	and	PB2	interfaces	in	Figure	4.19a)	implement
negative	logic	switch	inputs,	and	the	PA3	and	PB3	interfaces	in	Figure	4.19b)	implement
positive	logic	switch	inputs.

Checkpoint	4.2:	What	do	negative	logic	and	positive	logic	mean	in	this	context?

Figure	4.19.	Edge-triggered	interfaces	can	generate	interrupts	on	a	switch
touch.
Checkpoint	4.3:	What	values	to	you	write	into	DIR,	AFSEL,	PUE,	and	PDE	to	configure
the	switch	interfaces	of	PA2	and	PA3	in	Figure	4.19?

Using	edge	triggering	to	synchronize	software	to	hardware	centers	around	the	operation	of
the	trigger	flags,	RIS.	A	busy-wait	interface	will	read	the	appropriate	RIS	bit	over	and
over,	until	it	is	set.	When	the	RIS	bit	is	set,	the	software	will	clear	the	RIS	bit	(by	writing
a	one	to	the	corresponding	IC	bit)	and	perform	the	desired	function.	With	interrupt
synchronization,	the	initialization	phase	will	arm	the	trigger	flag	by	setting	the
corresponding	IME	bit.	In	this	way,	the	active	edge	of	the	pin	will	set	the	RIS	and	request
an	interrupt.	The	interrupt	will	suspend	the	main	program	and	run	a	special	interrupt
service	routine	(ISR).	This	ISR	will	clear	the	RIS	bit	and	perform	the	desired	function.	At
the	end	of	the	ISR	it	will	return,	causing	the	main	program	to	resume.	In	particular,	five
conditions	must	be	simultaneously	true	for	an	edge-triggered	interrupt	to	be	requested:
	

•	The	trigger	flag	bit	is	set	(RIS)

•	The	arm	bit	is	set	(IME)

•	The	level	of	the	edge-triggered	interrupt	must	be	less	than	BASEPRI

•	The	edge-triggered	interrupt	must	be	enabled	in	the	NVIC_EN0_R

•	Bit	0	of	the	special	register	PRIMASK	is	0

	
In	this	chapter	we	will	develop	blind-cycle	and	busy-wait	solutions,	and	then	in	the	next
chapter	we	will	redesign	the	systems	using	interrupt	synchronization.

4.6.	Configuring	Digital	Output	Pins
To	use	a	digital	port,	we	must	first	enable	its	clock	in	the SYSCTL_RCGCGPIO_R
register.	Similar	to	using	an	input	pin,	we	must	set	the	DEN	bits	and	clear	the	AFSEL
bits.	To	make	a	pin	an	output,	we	set	the	corresponding	DIR	bit.	There	are	a	number	of
choices	when	configuring	digital	output	pins.	The	registers	for	Port	A	are	listed	in	Table
4.2.	The	available	IOH	and	IOL	for	a	digital	output	can	be	specified	with	its	DRV2,	DRV4,
or	DRV8	bits.	For	each	bit,	exactly	one	of	the	DRV2,	DRV4,	or	DRV8	bits	is	set,
specifying	the	output	drive	current	to	be	2	mA,	4	mA,	or	8	mA	respectively.	You	can	save
power	by	choosing	the	smallest	current	required	to	drive	the	interface.	In	particular,
determine	the	IIH	and	IIL	of	the	device	connected	to	the	output	pin	and	make	|IOH|	>	|IIH|	and
|IOL|	>	|IIL|.	The	TM4C1294	microcontroller	adds	a	12	mA	output	mode.	To	activate	12	mA
output	on	PA2	on	the	TM4C1294,	we	execute

GPIO_PORTA_PC_R	=	(GPIO_PORTA_PC_R&0xFFFFFFCF)+0x0030;

GPIO_PORTA_DR4R_R	|=	0x02;			//	2mA

GPIO_PORTA_DR8R_R	|=	0x02;			//	+4mA	more

GPIO_PORTA_DR12R_R	|=	0x02;		//	+4mA	more
	

An	output	pin	can	be	configured	as	open	drain,	which	is	similar	to	open	collector,	by
setting	the	ODE	(Open	Drain	Enable)	bit	for	the	pin.	In	open	drain	mode,	the	output	states
are	zero	and	off.	In	particular,	if	we	output	a	0,	the	pin	will	go	low	(VOL,	IOL).	If	we	output
a	1,	the	pin	will	float,	which	is	neither	high	nor	low.	In	the	floating	state,	the	output	will
not	source	or	sink	any	current.	We	can	use	open	drain	mode	for	interfacing	negative	logic
LEDs	and	to	create	a	multi-drop	network.

An	additional	configuration	bit	for	output	pins	is	the	slew	rate	control.	The	slew	rate	of	an
output	signal	is	defined	as	the	maximum	dV/dt	occurring	when	the	output	is	switching.
For	most	digital	interfaces,	we	want	the	fastest	possible	slew	rate	so	the	digital	output
spends	as	little	time	in	the	transition	range	as	possible.	However,	for	some	network
interfaces	we	will	want	to	limit	the	slew	rate	to	prevent	noise	coupling	across	the	wires	of
a	cable.	When	the	output	pin	is	configured	at	8	mA	drive,	we	can	set	SRL	(Slew	Rate
Limit)	bits	in	the GPIO_PORTA_SRL_R 	register	to	limit	the	slew	rate	on	the	pin.	When
the	SRL	bit	is	0,	an	8-mA	output	will	rise	from	20%	to	80%	of	its	voltage	in	[6,	9	ns]	and
will	fall	from	80%	to	20%	in	[6,	10	ns].	When	the	SRL	bit	is	1,	the	rise	and	fall	times
increase	to	[10,	12	ns]	and	[11,	13	ns]	respectively.

4.7.	Blind-cycle	Interfacing
The	basic	approach	for	blind-cycle	synchronization	is	to	issue	an	I/O	command	then	wait
a	fixed	time	delay	for	the	operation	to	complete.	Its	advantage	is	simplicity.		It	is
appropriate	for	I/O	devices	that	are	fast	and	predicable.	It	is	robust	because	it	cannot	crash
(i.e.,	never	returning).	Unfortunately,	there	are	several	disadvantages	of	blind-cycle
synchronization.	If	the	output	rate	is	variable	(like	a	“carriage	return”,	“tab”,	“graphics”,
or	“form	feed”)	then	this	technique	is	awkward.	If	the	input	rate	is	unknown	(like	a
keyboard)	this	technique	is	inappropriate.	The	delay	represents	wasted	time.	For	a	simple
system,	this	waste	usually	doesn’t	matter.	But	for	a	more	complex	system,	this	time	could
be	used	by	the	software	to	perform	other	operations.

4.7.1.	HD44780-controlled	LCD
Because	there	is	no	status	feedback	from	the	device,	if	the	device	is	missing	or	broken	the
software	will	not	know.	Nevertheless,	blind	cycle	counting	can	be	appropriate	for	simple
high-speed	interfaces.	In	this	section,	we	will	use	the	blind	cycle	method	to	interface	an
LCD	because	most	operations	will	complete	in	less	than40 � s.	Liquid	crystal	displays
operate	at	low	power	and	have	flexible	graphics.	Many	5V-powered	LCDs	use	an	industry
standard	HD44780S	controller.	The	HD44780U	and	ST7066U	LCD	drivers	shown	in
Figure	4.20	work	in	a	similar	way	but	operate	at	a	supply	voltage	of	3.3	V.	The	low-level
software	initializes	and	outputs	to	the	LCD	controller.	The	microcontroller	simply	writes
ASCII	characters	to	the	LCD	controller.	Each	ASCII	character	is	mapped	into	a	5	by	8	bit
pixel	image,	called	a	font.	A	1	by	8	LCD	is	40	pixels	wide	by	8	pixels	tall,	and	the	LCD
controller	is	responsible	for	refreshing	the	pixels	in	a	raster-scanned	manner	similar	to
maintaining	an	image	on	a	TV	screen.

There	are	four	types	of	access	cycles	to	the	LCD	controller	depending	on	RS	and	R/W	as
shown	in	Table	4.4.	Normally,	you	write	ASCII	characters	into	the	data	buffer	(called
DDRAM	in	the	data	sheets)	to	have	them	displayed	on	the	screen.	However,	you	can
create	up	to	8	new	characters	by	writing	to	the	character	generator	RAM	(CGRAM).
These	new	characters	exist	as	ASCII	data	0	to	7.

RS R/W Operation

0 0 Write	a	command	to	the	LCD
instruction	register

0 1 Read	Busy	Flag	(bit	7)

1 0 Write	data	to	the	LCD	data	buffer

1 1 Read	data	from	the	LCD	to	the
microcontroller

Table	4.4.	Two	control	signals	specify	the	type	of	access	to	the	LCD.

We	could	use	either	blind-cycle	or	busy-wait	synchronization.	Most	operations	require	37
µs	to	complete	while	some	require	1.52	ms.	Programs	4.2	and	4.3	use	the	SysTick	timer	to
create	the	blind-cycle	wait.	Busy-wait	synchronization	would	have	provided	feedback	to
detect	a	faulty	interface,	but	busy	wait	has	the	problem	of	creating	a	software	crash	if	the
LCD	never	finishes.	A	better	interface	would	have	utilized	both	busy	wait	and	blind-cycle,
so	that	the	software	can	return	with	an	error	code	if	a	display	operation	does	not	finish	on
time	(due	to	a	broken	display).	With	blind-cycle	synchronization	we	only	use	the	write
command	and	write	data	operations.	Consequently,	we	could	disconnect	the	PG1	pin	and
ground	the	LCD	R/W	line.

	

Figure	4.20.	Interface	of	an	LCD.
First,	we	present	a	low-level	private	helper	function,	see	Program	4.2.	This	function	would
not	have	a	prototype	in	the	LCD.h	file.	The	define	macros	specify	the	mapping	from	the
logic	name	to	the	physical	output	pin.	As	shown	in	Table	4.4,	an	output	command	is
created	with	R/W=0	and	RS=0.	To	output	a	command	to	the	LCD,	we	first	write	the	8-bit
command	to	the	data	lines,	then	we	pulse	the	E	pin	(E	=	1,	E=0.)

#define	E		0x80	//	on	PA7

#define	RS	0x40	//	on	PA6

#define	LCDDATA	(*((volatile	uint32_t	*)0x400053FC))	//	PORTB

#define	LCDCMD	(*((volatile	uint32_t	*)0x40004300))		//	PA7-PA6

#define	BusFreq	50												//	assuming	a	50	MHz	bus	clock

#define	T500ns	BusFreq/2						//	500ns

#define	T40us	40*BusFreq						//	40us

#define	T160us	160*BusFreq				//	160us

#define	T1600us	1600*BusFreq		//	1.60ms

#define	T5ms	5000*BusFreq					//	5ms

#define	T15ms	15000*BusFreq			//	15ms

//	send	a	command	byte	to	the	LCD

void	OutCmd(uint8_t	command){

		LCDDATA	=	command;

		LCDCMD	=	0;											//	E=0,	R/W=0,	RS=0

		SysTick_Wait(T500ns);	//	wait	500ns

		LCDCMD	=	E;											//	E=1,	R/W=0,	RS=0

		SysTick_Wait(T500ns);	//	wait	500ns

		LCDCMD	=	0;											//	E=0,	R/W=0,	RS=0

		SysTick_Wait(T40us);		//	wait	40us

}

Program	4.2.	Private	functions	for	an	LCD.	(LCD_xxx.zip).
Figure	4.21shows	a	rough	sketch	of	the	E,	RS,	R/W	and	data	signals	as	the OutCmd
function	is	executed.	As	time	advances,	the	program	executes	from	top	to	bottom,	and	the
output	signals	in	the	timing	diagram	progress	left	to	right.	The	500-ns	waits	are	to	satisfy
the	setup	and	holdtimes	for	the	LCD,	and	the	40- �s	wait	is	the	blind-cycle	delay	to	allow
the	command	to	complete.	The	clear	and	home	commands	will	require	a	1.6-ms	blind
wait.

Figure	4.21.	Timing	diagram	of	the	LCD	signals	as	a	command	is	sent	to
the	LCD.
//	Initialize	LCD

void	LCD_Init(void){

		SYSCTL_RCGCGPIO_R	|=	0x03;					//	1)	activate	clock	for	Ports	A	and	B

		while((SYSCTL_PRGPIO_R&0x03)	!=	0x03){};//	ready?

		GPIO_PORTB_AMSEL_R	&=	~0xFF;			//	3)	disable	analog	function	on	PB7-0

		GPIO_PORTA_AMSEL_R	&=	~0xC0;		//				disable	analog	function	on	PA7-
6													

		GPIO_PORTB_PCTL_R	=	0x00000000;			//	4)	configure	PB7-0	as	GPIO		

		GPIO_PORTA_PCTL_R	&=	~0xFF000000;	//				configure	PA7-6	as	GPIO

		GPIO_PORTB_DIR_R	=	0xFF;							//	5)	set	direction	register

		GPIO_PORTA_DIR_R	|=	0xC0;

		GPIO_PORTB_AFSEL_R	=	0x00;					//	6)	regular	port	function

		GPIO_PORTA_AFSEL_R	&=	~0xC0;

		GPIO_PORTB_DEN_R	=	0xFF;							//	7)	enable	digital	port

		GPIO_PORTA_DEN_R	|=	0xC0;

		GPIO_PORTB_DR8R_R	=	0xFF;						//	enable	8	mA	drive

		GPIO_PORTA_DR8R_R	|=	0xC0;

		SysTick_Init();							//	Program	2.11

		LCDCMD	=	0;											//	E=0,	R/W=0,	RS=0

		SysTick_Wait(T15ms);	//	see	datasheet	for	specific	wait	time

		OutCmd(0x30);									//	command	0x30	=	Wake	up

		SysTick_Wait(T5ms);			//	must	wait	5ms,	busy	flag	not	available

		OutCmd(0x30);									//	command	0x30	=	Wake	up	#2

		SysTick_Wait(T160us);	//	must	wait	160us,	busy	flag	not	available

		OutCmd(0x30);									//	command	0x30	=	Wake	up	#3

		SysTick_Wait(T160us);	//	must	wait	160us,	busy	flag	not	available

		OutCmd(0x38);									//	Function	set:	8-bit/2-line

		OutCmd(0x10);									//	Set	cursor

		OutCmd(0x0C);									//	Display	ON;	Cursor	ON

		OutCmd(0x06);}								//	Entry	mode	set

//	Inputs:	letter	is	ASCII	character,	0	to	0x7F				Outputs:	none

void	LCD_OutChar(char	letter){

		LCDDATA	=	letter;

		LCDCMD	=	RS;										//	E=0,	R/W=0,	RS=1

		SysTick_Wait(T500ns);	//	wait	500ns

		LCDCMD	=	E+RS;								//	E=1,	R/W=0,	RS=1

		SysTick_Wait(T500ns);	//	wait	500ns

		LCDCMD	=	RS;										//	E=0,	R/W=0,	RS=1

		SysTick_Wait(T40us);		//	wait	40us

}

//	Inputs:	none																																										Outputs:	none

void	LCD_Clear(void){

		OutCmd(0x01);											//	Clear	Display

		SysTick_Wait(T1600us);	//	wait	1.6ms

		OutCmd(0x02);											//	Cursor	to	home

		SysTick_Wait(T1600us);}	//	wait	1.6ms

Program	4.3.	Public	functions	for	the	LCD	(LCD_xxx.zip).
The	high-level	public	functions	are	shown	in	Program	4.3.	These	functions	would	have
prototypes	in	the	LCD.h	file.	The	initialization	sequence	is	copied	from	the	data	sheet	of
the	LCD	controller.	Figure	4.22shows	a	rough	sketch	of	the	E,	RS,	R/W	and	data	signals
as	the LCD_OutChar 	function	is	executed.	This	interface	can	operate	with	an	LCD
powered	with	+5	V.	For	some	LCDs,	the	VOH	of	the	LM3S/LM4F/TM4C	is	not	quite	high
enough	for	the	VIH	of	the	LCD	when	the	LCD	is	powered	with	+5	V.	In	these	cases,
the T500ns 	delays	need	to	be	increased	by	a	factor	of	10.

Figure	4.22.	Timing	diagram	of	the	LCD	signals	as	data	is	sent	to	the
LCD.

4.7.2.	Stepper	Motor	Interface
Stepper	motors	are	very	popular	for	microcontroller-controlled	machines	because	of	their
inherent	digital	interface.	It	is	easy	for	a	microcontroller	to	control	both	the	position	and
velocity	of	a	stepper	motor	in	an	open-loop	fashion.	Although	the	cost	of	a	stepper	motor
is	typically	higher	than	an	equivalent	DC	permanent	magnetic	field	motor,	the	overall
system	cost	is	reduced	because	stepper	motors	may	not	require	feedback	sensors.	For
these	reasons,	they	are	used	in	many	computer	peripherals	such	as	hard	disk	drives,
scanners,	and	printers.	Figure	4.23	shows	a	stepper	motor	is	made	with	EM	coils	and
permanent	magnets	(teeth).

Figure	4.23.	Stepper	motors	have	permanent	magnets	on	the	rotor	and
electromagnetics	around	the	stator.
Figure	4.24	shows	a	simplified	stepper	motor.	The	permanent	magnet	stepper	has	a	rotor
and	a	stator.	The	rotor	is	manufactured	from	a	gear-shaped	permanent	magnet.	This
simple	rotor	has	one	North	tooth	and	one	South	tooth.	North	and	South	teeth	are	equally
spaced	and	offset	from	each	other	by	half	the	tooth	pitch	as	illustrated	by	the	rotor	with	12
teeth.	The	stator	consists	of	multiple	iron-core	electromagnets	whose	poles	are	also
equally	spaced.	The	stator	of	this	simple	stepper	motor	has	four	electromagnets	and	four
poles.	The	stepper	motors	in	Figure	4.23	have	50	North	teeth	and	50	South	teeth,	resulting
in	motors	with	200	steps	per	revolution.	The	stator	of	a	stepper	motor	with	200	steps	per
revolution	has	eight	electromagnets	each	with	five	poles,	making	a	total	of	40	poles.	

Figure	4.24.	Simple	stepper	motor	with	4	steps/revolution	and	a	rotor	with
12	teeth.
The	operation	of	this	simple	stepper	motor	is	illustrated	in	Figure	4.25.	In	general,	if	there
are	n	North	teeth	and	n	South	teeth,	the	shaft	will	rotate	360°/(4∙n)	per	step.	For	this
simple	motor	in	Figure	4.25,	each	step	causes	90°	rotation.

Figure	4.25.	The	full-step	sequence	to	rotate	a	stepper	motor.	

Output=0101.	Assume	the	initial	position	is	the	one	on	the	left	with	the	output	equal	to
0101.	There	are	strong	attractive	forces	between	North	and	South	magnets.	This	is	a	stable
state	because	the	North	tooth	is	equally	positioned	between	the	two	South	electromagnets,
and	the	South	tooth	is	equally	positioned	between	the	two	North	electromagnets.	There	is
no	net	torque	on	the	shaft,	so	the	motor	will	stay	fixed	at	this	angle.	In	fact,	if	there	is	an
attempt	to	rotate	the	shaft	with	an	external	torque,	the	stepper	motor	will	oppose	that
rotation	and	try	to	maintain	the	shaft	angle	fixed	at	this	position.	In	fact,	stepper	motors
are	rated	according	to	their	holding	torque.	Typical	holding	torques	range	from	10	to	300
oz·in.

Output=0110.	When	the	software	changes	the	output	to	0110,	the	polarity	of	Phase	B	is
reversed.	The	rotor	is	in	an	unstable	state,	because	the	North	tooth	is	near	the	North
electromagnet	on	the	top,	and	the	South	tooth	is	near	the	South	electromagnet	on	the
bottom.	The	rotor	will	move	because	there	are	strong	repulsive	forces	from	the	top	and
bottom	poles.	By	observing	the	left	and	right	poles,	the	closest	stable	state	occurs	if	the
rotor	rotates	clockwise,	resulting	in	the	stable	state	illustrated	as	the	picture	in	Figure	4.25
labeled	“Output=0110”.	The	“Output=0110”	state	is	exactly	90°	clockwise	from	the
“Output=0101”	state.	Now,	once	again	the	North	tooth	is	near	the	South	poles	and	the
South	tooth	is	near	the	North	poles.	This	new	position	has	strong	attractive	forces	from	all
four	poles,	holding	the	rotor	at	this	new	position.	

Output=1010.	Next,	the	software	outputs	1010,	causing	the	polarity	of	Phase	A	to	be
reversed.	This	time,	the	rotor	is	in	an	unstable	state	because	there	are	strong	repulsive
forces	on	the	left	and	right	poles.	The	closest	stable	state	occurs	if	the	rotor	rotates
clockwise,	resulting	in	the	stable	state	illustrated	in	the	picture	Figure	4.25	labeled	as
“Output=1010”.	This	new	state	is	exactly	90°	clockwise	from	the	last	state,	moving	to
position	the	North	tooth	near	the	South	poles	and	the	South	tooth	near	the	North	poles.

Output=1001.	When	the	software	outputs	1001,	the	polarity	of	Phase	B	is	reversed.	This
causes	a	repulsive	force	on	the	top	and	bottom	poles	and	the	rotor	rotates	clockwise	again
by	90°,	resulting	in	the	stable	state	shown	as	the	picture	labeled	“Output=1001”.	After
each	change	in	software,	there	are	two	poles	that	repel	and	two	poles	that	attract,	causing
the	shaft	to	rotate.	The	rotor	moves	until	it	reaches	a	new	stable	state	with	the	North	tooth
close	to	South	poles	and	the	South	tooth	close	to	North	poles.	When	the	software	outputs	a
0101,	it	will	rotate	90°	resulting	in	a	position	similar	to	the	original	“Output=0101”	state.
If	the	software	outputs	a	new	value	from	the	5,6,10,9	sequence	every	250	ms,	the	motor
will	spin	clockwise	at	1	rps.	The	rotor	will	spin	in	a	counterclockwise	direction	if	the
sequence	is	reversed.		

There	is	an	eight-number	sequence	called	half-stepping.	In	full	stepping,	the	direction	of
current	in	one	of	the	coils	is	reversed	in	each	step.	In	half-stepping,	the	coil	goes	through	a
no-current	state	between	reversals.	The	half-stepping	sequence	is	0101,	0100,	0110,	0010
1010,	1000,	1001,	and	0001.	If	a	coil	is	driven	with	the	00	command,	it	is	not	energized,
and	the	electromagnet	applies	no	force	to	the	rotor.	A	motor	that	requires	200	full	steps	to
rotate	once	will	require	400	half-steps	to	rotate	once.	In	other	words,	the	half-step	angle	is
½	of	a	full-step	angle.

In	a	four-wire	(or	bipolar)	stepper	motor,	the	electromagnets	are	wired	together,	creating
two	phases.	The	five-	and	six-wire	(or	unipolar)	stepper	motors	also	have	two	phases,	but
each	is	center-tapped	to	simplify	the	drive	circuitry.	In	a	bipolar	stepper	all	copper	in	the
windings	carries	current	at	all	times;	whereas	in	a	unipolar	stepper,	only	half	the	copper	in
the	windings	is	used	at	any	one	time.

To	spin	the	stepper	motor	at	a	constant	speed	the	software	outputs	the	5–6–10–9	sequence
separated	by	a	fixed	time	between	outputs.	This	is	an	example	of	blind-cycle	interfacing,
because	there	is	no	feedback	from	the	motor	to	the	software	giving	the	actual	speed	and/or
position	of	the	motor.	If t	is	the	time	between	outputs	in	seconds,	and	the	motor	has	n	steps
per	revolution,	the	motor	speed	will	be	60/(n* � t)	in	RPM.

The	time	between	states	determines	the	rotational	speed	of	the	motor.	Let	∆t	be	the	time
between	steps,	and	let	θ	be	the	step	angle	then	the	rotational	velocity,	v,	is	θ/∆t.	As	long	as
the	load	on	the	shaft	is	below	the	holding	torque	of	the	motor,	the	position	and	speed	can
be	reliably	maintained	with	an	open	loop	software	control	algorithm.	In	order	to	prevent
slips	(digital	commands	that	produce	no	rotor	motion)	it	is	important	to	limit	the	change	in
acceleration	or	jerk.	Let	∆t(n-2),	∆t(n-1),	∆t(n)	be	the	discrete	sequence	of	times	between
steps.	The	instantaneous	rotational	velocity	is	given	by

														v(n)	=		θ/∆t

The	acceleration	is	given	by

a(n)	=	(v(n)	-	v(n-1))/∆t(n)	=(θ/∆t(n)	-	θ/∆t(n-1))/∆t(n)		=θ/∆t(n)2	-	θ/(∆t(n-1)∆t(n))	

The	change	in	acceleration,	or	jerk,	is	given	by

b(n)	=(a(n)	-	a(n-1))/∆t(n)

For	example	if	the	time	between	steps	is	to	be	increased	from	1000	to	2000	µs,	an
ineffective	approach	as	shown	in	Table	4.5	would	be	simply	to	go	directly	from	1000	to
2000.	This	produces	a	very	large	jerk	that	may	cause	the	motor	to	slip.

	

n ∆t	(µs) v(n)
(°/sec)

a(n)	(°/sec2) b(n)	(°/sec3)

1 1000 1800 	 	

2 1000 1800 0.00E+00 	

3 2000 900 -2.50E+05 0.00E+00

4 2000 900 0.00E+00 -2.25E+08

5 2000 900 0.00E+00 2.25E+08

6 2000 900 0.00E+00 0.00E+00

Table	4.5.	An	ineffective	approach	to	changing	motor	speed.

	

Table	4.6	shows	that	a	more	gradual	change	from	1000	to	2000	produces	a	10	times
smaller	jerk,	reducing	the	possibility	of	slips.	The	optimal	solution	(the	one	with	the
smallest	jerk)	occurs	when	v(t)	has	a	quadratic	shape.	This	will	make	a(t)	linear,	and	b(t)	a
constant.	Limiting	the	jerk	is	particularly	important	when	starting	to	move	a	stopped
motor.	

n ∆t	(µs) v(n)
(°/sec)

a(n)	(°/sec2) b(n)	(°/sec3)

1 1000 1800 	 	

2 1000 1800 0.00E+00 	

3 1000 1800 0.00E+00 0.00E+00

4 1008 1786 -1.39E+04 -1.38E+07

5 1032 1744 -4.11E+04 -2.64E+07

6 1077 1671 -6.77E+04 -2.47E+07

7 1152 1563 -9.37E+04 -2.26E+07

8 1275 1411 -1.19E+05 -1.96E+07

9 1500 1200 -1.41E+05 -1.48E+07

10 1725 1044 -9.06E+04 2.91E+07

11 1848 974 -3.78E+04 2.86E+07

12 1923 936 -1.96E+04 9.44E+06

13 1968 915 -1.09E+04 4.43E+06

14 1992 904 -5.65E+03 2.63E+06

15 2000 900 -1.77E+03 1.94E+06

16 2000 900 0.00E+00 8.85E+05

17 2000 900 0.00E+00 0.00E+00

Table	4.6.	An	effective	approach	to	changing	motor	speed.

	

The	bipolar	stepper	motor	can	be	controlled	with	two	H-bridge	drivers.	We	could	design
two	H-bridge	drivers	using	individual	transistors,	but	using	an	integrated	driver	usually
provides	better	performance	at	lower	cost.	In	this	section,	we	will	present	stepper	motor
interfaces	that	employ	integrated	circuits	to	control	the	stepper	motor.		In	addition	to	the
devices	presented	in	this	section,	Allegro,	Texas	Instruments,	and	ST	Microelectronics
offer	a	variety	of	stepper	motor	controllers,	e.g.,	A3972,	A3980,	UCN5804B,	and	L6203.
The	L293	is	a	popular	IC	for	interfacing	stepper	motors.	It	uses	Darlington	transistors	in	a
double	H-bridge	configuration	(as	shown	in	Figure	4.26),	which	can	handle	up	to	1	A	per
channel	and	voltages	from	4	to	36	V.	A	similar	H-bridge	interface	chip	that	can	drive	5	A
is	the	L6203	from	STMicroelectronics.

Figure	4.26.	Bipolar	stepper	motor	interface	using	a	L293	driver.
The	1N914	snubber	diodes	protect	the	electronics	from	the	back	EMF	generated	when
currents	are	switched	on	and	off.	The	L293D	has	internal	snubber	diodes,	but	can	handle
only	600	mA.	Figure	4.26	shows	four	digital	outputs	from	the	microcontroller	connected
to	the	1A,	2A,	3A,	4A	inputs.	The	software	rotates	the	stepper	motor	using	either	the
standard	full-step	(5–6–10–9…)	or	half-step	(5–4–6–2–10–8–9–1…)	sequence.

The	unipolar	stepper	architecture	provides	for	bi-directional	currents	by	using	a	center	tap
on	each	phase,	as	shown	in	Figure	4.27.	The	center	tap	is	connected	to	the	+V	power
source	and	the	four	ends	of	the	phases	are	controlled	with	drivers	in	the	L293.	Only	half	of
the	electromagnets	are	energized	at	one	time.		The	L293	provides	up	to	1A	current.

Figure	4.27.	Unipolar	stepper	motor	interface.
Checkpoint	4.4:	What	changes	could	you	make	to	a	stepper	motor	system	to	increase
torque,	increasing	the	probability	that	a	step	command	actually	rotates	the	shaft?	

Checkpoint	4.5:	Do	you	need	a	sensor	feedback	to	measure	the	shaft	position	when	using
a	stepper	motor?	

	
Example	4.1:	Interface	a	5-V,	200-mA	unipolar	stepper	motor.	The	motor	has	200	steps
per	revolution.	Write	software	that	can	set	the	motor	angle.
	

Solution:	The	computer	can	make	the	motor	spin	by	outputting	the	sequence
…,10,9,5,6,10,9,5,6,…	over	and	over.	For	a	motor	with	200	steps/revolution	each	new
output	will	cause	the	motor	to	rotate	1.8°.		If	the	time	in	between	outputs	is	fixed	at	∆t
seconds,	then	the	shaft	rotation	speed	will	be	0.005/∆t	in	rps.	In	each	system,	we	will
connect	the	stepper	motor	to	the	least	significant	bits	of	output	Port	D	using	Figure	4.27.
The	1N914	diodes	will	protect	the	L293	from	the	back	EMF	that	will	develop	across	the
coil	when	the	current	is	shut	off.	We	define	the	active	state	of	the	coil	when	current	is
flowing.	The	basic	operation	is	summarized	in	Table	4.7.

	

Port	D
output

A1 A2 B1 B2

10 Activate Deactivate Activate Deactivate

9 Activate Deactivate Deactivate Activate

5 Deactivate Activate Deactivate Activate

6 Deactivate Activate Activate Deactivate

Table	4.7.	Stepper	motor	sequence.
	

We	will	implement	a	linked-list	data	structure	to	hold	the	output	patterns	(Figure	4.28	and
Program	4.4).	This	approach	yields	a	solution	that	is	easy	to	understand	and	change.	If	the
computer	outputs	the	sequence	backwards	then	the	motor	will	spin	in	the	other	direction.
In	ensure	proper	operation,	this	…,10,9,5,6,10,9,5,6,…	sequence	must	be	followed.	For
example,	assume	the	computer	outputs	…,	9,	5,	6,	10,	and	9.	Now	it	wishes	to	reverse
direction,	since	the	output	is	already	at	9,	then	it	should	begin	at	10,	and	continue	with	6,
5,	9,	…		In	other	words	if	the	current	output	is	“9”	then	the	only	two	valid	next	outputs
would	be	“5”	if	it	wanted	to	spin	clockwise	or	“10”	if	it	wanted	to	spin	counterclockwise.
Maintaining	this	proper	sequence	will	be	simplified	by	implementing	a	double	circular
linked-list.	For	each	node	in	the	linked-list	there	are	two	valid	next	states	depending	upon
whether	the	computer	wishes	to	spin	clockwise	or	counterclockwise.
	

Figure	4.28.	A	double	circular	linked-list	used	to	control	the	stepper
motor.
	

A	slip	is	when	the	computer	issues	a	sequence	change,	but	the	motor	does	not	move.	A
slip	can	occur	if	the	load	on	the	shaft	exceeds	the	available	torque	of	the	motor.	A	slip	can
also	occur	if	the	computer	tries	to	change	the	outputs	too	fast.		If	the	system	knows	the
initial	shaft	angle,	and	the	motor	never	slips,	then	the	computer	can	control	both	the	shaft
speed	and	angle	without	a	position	sensor.	The	routines	CW	and	CCW	will	step	the	motor
once	in	the	clockwise	and	counterclockwise	directions	respectively.	If	every	time	the
computer	calls	CW	or	CCW	it	were	to	wait	for	5	ms,	then	the	motor	would	spin	at	1	rps.	
The	linked	data	structure	will	be	stored	in	flash	ROM.	The	variables	are	allocated	into
RAM	and	initialized	at	run	time	in	the	ritual.
	

struct	State{

		uint8_t	Out;																	//	Output

		const	struct	State	*Next[2];	//	CW/CCW

};

typedef	const	struct	State	StateType;

typedef	StateType	*StatePtr;

#define	clockwise	0								//	Next	index

#define	counterclockwise	1	//	Next	index

StateType	fsm[4]={

		{10,{&fsm[1],&fsm[3]}},

		{	9,{&fsm[2],&fsm[0]}},

		{	5,{&fsm[3],&fsm[1]}},

		{	6,{&fsm[0],&fsm[2]}}

};

uint8_t	Pos;					//	between	0	and	199

const	struct	State	*Pt;	//	Current	State

Program	4.4.	A	double	circular	linked	list	used	to	control	the	stepper
motor.
	

The	programs	that	step	the	motor	also	maintain	the	position	in	the	global, Pos .	If	the
motor	slips,	then	the	software	variable	will	be	in	error.	Also	it	is	assumed	the	motor	is
initially	in	position	0	at	the	time	of	the	initialization	(Program	4.5).
	

#define	STEPPER	(*((volatile	uint32_t	*)0x4000703C))

void	Stepper_CW(uint32_t	delay){	//	Move	1.8	degrees	clockwise

		Pt	=	Pt->Next[clockwise];				//	circular

		STEPPER	=	Pt->Out;	//	step	motor

		if(Pos==199){						//	shaft	angle

Pos	=	0;									//	reset

		}

		else{

Pos++;	//	CW

		}

		SysTick_Wait(delay);

}

void	Stepper_CCW(uint32_t	delay){	//	Move	1.8	deg	counterclockwise

		Pt	=	Pt->Next[counterclockwise];	//	circular

		STEPPER	=	Pt->Out;	//	step	motor

		if(Pos==0){								//	shaft	angle

Pos	=	199;							//	reset

		}

		else{

Pos—;	//	CCW

		}

		SysTick_Wait(delay);	//	blind-cycle	wait

}

void	Stepper_Init(void){	//	Initialize	Stepper	interface

		SYSCTL_RCGCGPIO_R	|=	0x08;	//	activate	port	D

		SysTick_Init();												//	program	2.11

		Pos	=	0;	Pt	=	&fsm[0];

		GPIO_PORTD_AFSEL_R	&=	~0x0F;		//	GPIO	function	on	PD3-0													

		GPIO_PORTD_AMSEL_R	&=	~0x0F;		//	disable	analog	function	on	PD3-0													

		GPIO_PORTD_PCTL_R	&=	~0x0000FFFF;			//	configure	PD3-0	as	GPIO		

		GPIO_PORTD_DIR_R	|=	0x0F;			//	make	PD3-0	out

		GPIO_PORTD_DEN_R	|=	0x0F;			//	enable	digital	I/O	on	PD3-0

		GPIO_PORTD_DR8R_R	|=	0x0F;}	//	enable	8	mA	drive

Program	4.5.	Helper	and	initialization	functions	used	to	control	the
stepper	motor.
	

In	Program	4.6,	the	software	will	step	the	motor	to	the	desired	position.	We	can	use	the
current	position, pos ,	to	determine	if	it	would	be	faster	to	go	CW	or	CCW. CWsteps is
calculated	as	the	number	of	steps	from pos 	to	desired	if	the	motor	where	to	spin
clockwise.	If	it	is	greater	than	100,	then	it	would	be	faster	to	get	there	going
counterclockwise.
	

//	Turn	stepper	motor	to	desired	position	(0	<=	desired	<=	199)

//	time	is	the	number	of	bus	cycles	to	wait	after	each	step

void	Stepper_Seek(uint8_t	desired,	uint32_t	time){

int16_t	CWsteps;

		if((CWsteps	=	(desired-Pos))<0){

CWsteps	+=	200;

		}	//	CW	steps	is	0	to	199

		if(CWsteps	>	100){

while(desired	!=	Pos){

Stepper_CCW(time);

}

		}

		else{

while(desired	!=	Pos){

Stepper_CW(time);

}

		}

}

Program	4.6.	High-level	function	to	control	the	stepper	motor
(Stepper_xxx.zip).

	
There	are	nine	considerations	when	selecting	a	stepper	motor:	speed,	torque,	holding
torque,	bipolar/unipolar,	voltage,	current,	steps/rotation,	size,	and	weight.	The	first	two
parameters	are	speed	and	torque.	Speed	is	the	rate	in	rotations	per	minute	(RPM)	that	the
motor	will	spin,	and	torque	is	the	available	force	times	distance	the	stepper	motor	can
provide	at	that	speed.	Stepper	motors	also	have	a	holding	torque,	which	is	the	force	times
distance	that	the	motor	will	remain	stopped	when	the	input	pattern	is	constant.	We	select
the	motor	voltage	to	match	the	available	power	supply.	Unlike	LEDs,	we	MUST	not	use	a
resistor	in	series	with	a	motor	to	reduce	the	voltage.	In	general,	the	motor	voltage	matches
the	power	supply	voltage.	When	interfacing	we	will	need	to	know	maximum	current.	We
choose	a	bipolar	stepper	for	situations	where	speed,	torque,	and	efficiency	are	important.
Unipolar	steppers	are	appropriate	for	low-cost	systems.	If	we	are	trying	to	control	shaft
angle	it	will	be	better	to	have	a	motor	with	more	steps	per	rotation.

4.8.	Busy-Wait	Synchronization
To	synchronize	the	software	with	the	I/O	device,	the	microcontroller	must	be	able	to
recognize	the	busy	to	done	transition.	With	busy-wait	synchronization,	the	software
checks	a	status	bit	in	the	I/O	device	and	loops	back	until	the	device	is	ready.		Another
name	for	busy-wait	is	gadfly.	The	busy-wait	loop	must	precede	the	data	transfer	for	an
input	device,	but	for	an	output	device	the	busy-wait	loop	can	be	either	before	or	after	the
data	transfer	(Figure	4.29).

Figure	4.29.	Software	flowcharts	for	busy-wait	I/O.
The	term	gadfly	was	chosen	as	an	alternate	to	busy	wait,	because	it	has	a	negative	context
outside	the	computer	field.	Plato	in	his	book	Apology	describes	Socrates	as	a	gadfly,
meaning	he	is	a	constant	and	annoying	pest	to	the	Athenian	political	scene.	In	biology,	a
gadfly	is	a	large	bug	in	the	horse-fly	family.	A	social	gadfly	is	an	irritating	person	who
constantly	upsets	the	status	quo.	As	we	will	learn	in	this	book,	interrupt	synchronization
will	provide	more	elegant	and	effective	solutions	over	gadfly	synchronization	for	complex
systems	when	considering	issues	such	as	latency,	bandwidth,	priority,	and	low-power.

Observation:	Busy-wait	is	appropriate	for	simple	systems	that	have	only	a	few	tasks.	

To	perform	an	output	the	software	must	transfer	the	data	and	wait	for	completion.	The
transfer	usually	executes	in	a	short	amount	of	time	because	it	involves	just	a	few
instructions	with	no	backward	jumps.	On	the	other	hand,	the	time	waiting	until	the	output
device	is	ready	is	usually	long	compared	to	the	data	transfer.	The	interface	is	I/O	bound
when	the	time	for	the	hardware	to	perform	the	output	is	long	compared	to	the	time	for	the
software	to	produce	the	data.	These	two	steps	can	be	performed	in	either	order,	as	long	as
that	order	is	consistently	maintained,	and	we	assume	the	device	is	initially	ready.	Polling
before	the	output,	allows	the	computer	to	perform	additional	tasks	while	the	output	is
occurring.	Therefore,	polling	before	the	output	will	have	a	higher	bandwidth	than	polling
after	the	output.	On	the	other	hand,	polling	after	the	output,	allows	the	computer	to	know
exactly	when	the	output	has	been	completed.	

To	illustrate	the	differences	between	polling	before	and	after	the	“write	data”	operation,
consider	a	system	with	3	printers	(Figure	4.30).		Each	printer	can	print	a	character	in	1ms.
In	other	words,	a	printer	will	be	ready	1	ms	after	the	“write	data”	operation.	We	will	also
assume	all	three	printers	are	initially	ready.	Since	the	execution	speed	of	the
microcontroller	is	fast	compared	to	the	1	ms	it	takes	to	print	a	character,	we	will	neglect
the	software	execution	time	(I/O	bound).	In	the	“busy	wait	before	output”	system,	all	three

outputs	are	started	together	and	will	operate	concurrently.	In	the	“busy	wait	after	output”
system,	the	software	waits	for	the	output	on	printer	1	to	finish	before	starting	the	output	on
printer	2.	In	this	system,	the	three	outputs	are	performed	sequentially,	that	is	about	three
times	slower	than	the	first	case.

	

Time(ms) Busy	wait	before
output

Busy	wait	after	output

0 Start	1,2,3 Start1

from	0	to
1

Wait	for	1 Wait	for	1

1 Start	1,2,3 Start	2

from	1	to
2

Wait	for	1 Wait	for	2

2 Start	1,2,3 Start	3

from	2	to
3

Wait	for	1 Wait	for	3

3 Start	1,2,3 Start1

from	3	to
4

Wait	for	1 Wait	for	1

4 Start	1,2,3 Start	2

from	4	to
5

Wait	for	1 Wait	for	2

	

Figure	4.30.	Two	software	flowcharts	for	multiple	busy-wait	outputs.
Performance	Tip:	Whenever	we	can	establish	concurrent	I/O	operations,	we	can	expect
an	improvement	in	the	overall	system	bandwidth.	

To	implement	busy-wait	synchronization	with	multiple	I/O	devices,	simply	poll	them	in
sequence	and	perform	service	as	required.		The	example	in	Figure	4.31	implements	a	fixed
polling	order,	and	does	not	allow	high	priority	devices	to	suspend	the	service	of	lower
priority	devices.	Consider	the	interface	latency	for	device	1,	which	is	the	time	between
when	Status1	become	ready	until	the	time	the	software	performs	the	input/output	service
on	data1.	The	worst	case	would	be	for	the	Status1	signal	to	become	ready	right	after	the
software	polled	it.	For	this	worst	case	scenario,	the	software	might	have	to	service	device
2,	service	device	3,	and	execute	other	functions	before	polling	device	1	again.	When	there
are	multiple	I/O	devices,	the	interface	latency	with	busy-wait	synchronization	will	be
poor.

	

Figure	4.31.	A	software	flowchart	for	multiple	busy-wait	inputs	and
outputs.
A	parallel	interface	encodes	the	information	as	separate	binary	bits	on	individual	port	pins,
and	the	information	is	available	simultaneously.	For	example	if	we	are	transmitting	ASCII
characters,	then	the	ASCII	code	is	represented	by	digital	voltages	on	7	(or	8)	digital
signals.	When	interfacing	a	device	to	a	microcontroller,	a	handshaked	interface	provides	a
mechanism	for	the	device	to	wait	for	the	microcontroller	and	for	the	microcontroller	to
wait	for	the	device.

	

You	can	find	the	three	examples	that	implement	busy-wait	on	the	book	web	site	as
ParallelKeypad_xxx.zip,	Handshake_xxx.zip,	and	ParallelPrinter_xxx.zip.	The	book
web	site	is	at	http://users.ece.utexas.edu/~valvano/arm/.

	
Example	4.2:	Design	a	one-directional	communication	channel	between	two
microcontrollers	using	a	handshaked	protocol.
	

Solution:	Handshaking	allows	each	device	to	wait	for	the	other.	This	is	particularly
important	when	communicating	between	two	computers.	The	right	side	of	Figure	4.32
shows	the	timing	as	one	byte	is	transferred	from	transmitter	to	receiver.	The	key	to
designing	a	handshaked	protocol	is	to	require	each	side	to	wait	until	the	other	side	is
ready.	The	transmitter	will	begin	communication	by	putting	new	data	on	the	Data	lines
and	issuing	a	rising	edge	on	Ready.	Furthermore,	notice	the	data	is	properly	driven
whenever	Ready	is	high.	Next,	the	receiver	signals	it	is	about	to	read	the	data	by	making
its	acknowledge,	called	Ack,	low.	The	receiver	then	reads	the	result	while	Ack	is	low.
Finally,	the	receiver	acknowledges	acceptance	of	the	data	by	outputting	a	rising	edge	on
Ack,	signaling	it	is	ready	to	accept	another.		The	handshake	ends	with	a	falling	edge	on
Ready.

Figure	4.32.	Handshaked	interface	between	two	microcontrollers
(LM3S1968	solution).
	

The	initialization	for	the	transmitter	is	given	in	Program	4.7.	PG1	is	configured	as	an
input.	PG0	and	Port	F	are	digital	outputs.	The	initialization	for	the	receiver	is	given	in
Program	4.8.	PG1	and	Port	F	are	configured	as	inputs.	PG0	is	a	simple	digital	output.
	

#define	Ready	(*((volatile	uint32_t	*)0x40026004))		//	PG0

#define	Ack			(*((volatile	uint32_t	*)0x40026008))		//	PG1

#define	Data		(*((volatile	uint32_t	*)0x400253FC))		//	Port	F

void	Xmt_Init(void){		volatile	uint32_t	delay;

		SYSCTL_RCGCGPIO_R	|=	0x60;	//	activate	clock	for	Ports	F,G

		while((SYSCTL_PRGPIO_R&0x60)	!=	0x60){};//	ready?

		Ready	=	0;														

		GPIO_PORTG_DIR_R	|=	0x01;	//	PG0	is	Ready	out

		GPIO_PORTG_DIR_R	&=	~0x02;	//	PG1	is	Ack	in

		GPIO_PORTG_DEN_R	|=	0x03;	//	enable	digital	I/O	on	PG1-0

		GPIO_PORTF_DIR_R	=	0xFF;	//	make	PF7-0	out	data

		GPIO_PORTF_DEN_R	=	0xFF;	//	enable	digital	I/O	on	PF7-0

}

Program	4.7.	Initialization	of	the	transmitter.
	

#define	Ack		(*((volatile	uint32_t	*)0x40026004))			//	PG0

#define	Ready	(*((volatile	uint32_t	*)0x40026008))			//	PG1

#define	Data	(*((volatile	uint32_t	*)0x400253FC))			//	Port	F

void	Rcv_Init(void){	

		SYSCTL_RCGCGPIO_R	|=	0x60;	//	activate	clock	for	Ports	F,G

		Ack	=	1;																		//	allow	time	to	finish	activating

		GPIO_PORTG_DIR_R	|=	0x01;	//	PG0	is	Ack	out

		GPIO_PORTG_DIR_R	&=	~0x02;	//	PG1	is	Ready	in

		GPIO_PORTG_DEN_R	|=	0x03;	//	enable	digital	I/O	on	PG1-0

		GPIO_PORTF_DIR_R	=	0x00;	//	make	PF7-0	input	data

		GPIO_PORTF_DEN_R	=	0xFF;	//	enable	digital	I/O	on	PF7-0

}

Program	4.8.	Initialization	of	the	receiver.
	

This	interface	is	called	handshaked	or	interlocked	because	each	event	(1	to	7)	follows	in
sequence	one	event	after	the	other	(Program	4.9).	The	arrows	in	Figure	4.32	represent
causal	events.	In	a	handshaked	interface,	one	event	causes	the	next	to	occur,	and	the
arrows	create	a	“head	to	tail”	sequence.		There	is	no	specific	minimum	or	maximum	time
delay	for	these	causal	events,	except	they	must	occur	in	sequence.

1	Transmitter	outputs	new	Data
2	Transmitter	makes	a	rising	edge	of	Ready	signifying	new	Data	available
3	Receiver	makes	a	falling	edge	of	Ack	signifying	it	is	starting	to	process	data
4	The	receiver	reads	the	Data
5	Receiver	makes	a	rising	edge	on	Ack	signifying	it	has	captured	the	Data
6	Transmitter	makes	a	falling	edge	on	Ready	meaning	Data	is	not	valid
7	Transmitter	no	longer	needs	to	maintain	Data	on	its	outputs
	

//	Transmitter

void	Out(uint8_t	data){

		Data	=	data;							//	1)

		Ready	=	1;									//	2)

		while(Ack){};						//	3)

		while(Ack	==	0){};	//	5)

//	Receiver

uint8_t	In(void){

uint8_t	data;

		while(Ready	==	0){};	//	2)

		Ack	=	0;														//	3)

		data	=	Data;									//	4)

		Ready	=	0;									//	6)

}

		Ack	=	1;													//	5)

		while(Ready){};					//	6)

		return(data);}

Program	4.9.	Handshaking	routines	to	initialize	and	transfer	data.
	

One	of	the	issues	involved	in	handshaked	interfaces	is	whether	the	receiver	should	wait
for	both	steps	2	and	6	or	just	step	2.	Similarly,	should	the	transmitter	wait	for	both	steps	3
and	5?	It	is	a	more	robust	design	to	affect	all	four	of	these	waits.	If	the	receiver	did	not
wait	for	step	6	(Ready=0),	then	a	subsequent	call	to In 	may	find	Ready	still	high	from
the	last	call,	and	return	the	same	Data	a	second	time.	We	could	have	employed	edge
triggering,	but	since	the	interface	is	interlocked,	there	is	no	need	to	capture	the	edges.
Edge-triggered	mode	on	the	PG1	would	be	required	if	interrupt	synchronization	were
desired.	Program	4.9	shows	the	solution	using	busy-wait	synchronization.

	
Checkpoint	4.6:	Assume	both	computers	in	Program	4.9	have	executed	the	initialization.
Assume	Out	is	called	before	In.	List	the	time-sequenced	execution	in	both	computers.
Repeat	for	the	case	that	In	is	called	before	Out.

Observation:	Programs	written	for	embedded	computers	are	tightly	coupled	(depend
highly)	on	the	hardware,	therefore	it	is	good	programming	practice	to	document	the
hardware	configuration	in	the	software.		

Performance	tip:	When	initializing	output	pins,	it	is	better	to	first	write	the	desired	initial
output	value,	and	then	set	the	direction	register	to	output.	This	way	the	pin	goes	from
input	to	output	of	the	correct	value,	rather	than	from	input	to	output	of	the	wrong	value,
and	then	output	with	the	correct	value.

Handshaking	is	a	very	reliable	synchronization	method	when	connecting	devices	from
different	manufacturers	and	different	speeds.	It	also	allows	you	to	upgrade	one	device
(e.g.,	get	a	newer	and	faster	sensor)	without	redesigning	both	sides	of	the	interface.
Handshaking	is	used	for	the	Small	Computer	Systems	Interface	(SCSI)	and	the	IEEE488
instrumentation	bus.

4.9.	UART	Interface
In	this	section	we	will	develop	a	simple	device	driver	using	the	Universal	Asynchronous
Receiver/Transmitter	(UART).	This	serial	port	allows	the	microcontroller	to	communicate
with	devices	such	as	other	computers,	printers,	input	sensors,	and	LCDs.		Serial
transmission	involves	sending	one	bit	a	time,	such	that	the	data	is	spread	out	over	time.
The	total	number	of	bits	transmitted	per	second	is	called	the	baud	rate.	The	reciprocal	of
the	baud	rate	is	the	bit	time,	which	is	the	time	to	send	one	bit.	Most	microcontrollers	have
at	least	one	UART.	Before	discussing	the	detailed	operation	on	the	LM3S/LM4F/TM4C,
we	will	begin	with	general	features	common	to	all	devices.	Each	UART	will	have	a	baud
rate	control	register,	which	we	use	to	select	the	transmission	rate.	Each	device	is	capable
of	creating	its	own	serial	clock	with	a	transmission	frequency	approximately	equal	to	the
serial	clock	in	the	computer	with	which	it	is	communicating.	A	frame	is	the	smallest
complete	unit	of	serial	transmission.	Figure	4.33	plots	the	signal	versus	time	on	a	serial
port,	showing	a	single	frame,	which	includes	a	start	bit	(which	is	0),	8	bits	of	data	(least
significant	bit	first),	and	a	stop	bit	(which	is	1).	There	is	always	only	one	start	bit,	but	the
Stellaris/Tiva	UARTs	allow	us	to	select	the	5	to	8	data	bits	and	1	or	2	stop	bits.	The	UART
can	add	even,	odd,	or	no	parity	bit.	However,	we	will	employ	the	typical	protocol	of	1
start	bit,	8	data	bits,	no	parity,	and	1	stop	bit.	This	protocol	is	used	for	both	transmitting
and	receiving.	The	information	rate,	or	bandwidth,	is	defined	as	the	amount	of	data	or
useful	information	transmitted	per	second.	From	Figure	4.33,	we	see	that	10	bits	are	sent
for	every	byte	of	usual	data.	Therefore,	the	bandwidth	of	the	serial	channel	(in
bytes/second)	is	the	baud	rate	(in	bits/sec)	divided	by	10.

Figure	4.33.	A	serial	data	frame	with	8-bit	data,	1	start	bit,	1	stop	bit,	and
no	parity	bit.
Common	Error:	If	you	change	the	bus	clock	frequency	without	changing	the	baud	rate
register,	the	UART	will	operate	at	an	incorrect	baud	rate.		

Checkpoint	4.7:	Assuming	the	protocol	drawn	in	Figure	4.33	and	a	baud	rate	of	9600
bits/sec,	what	is	the	bandwidth	in	bytes/sec?

Table	4.8	shows	the	three	most	commonly	used	RS232	signals.	The	RS232	standard	uses	a
DB25	connector	that	has	25	pins.	The	EIA-574	standard	uses	RS232	voltage	levels	and	a
DB9	connector	that	has	only	9	pins.		The	most	commonly	used	signals	of	the	full	RS232
standard	are	available	with	the	EIA-574	protocols.		Only	TxD,	RxD,	and	SG	are	required
to	implement	a	simple	bidirectional	serial	channel,	thus	the	other	signals	are	not	shown
(Figure	4.34).	We	define	the	data	terminal	equipment	(DTE)	as	the	computer	or	a
terminal	and	the	data	communication	equipment	(DCE)	as	the	modem	or	printer.

	

DB25
Pin

RS232
Name

DB9
Pin

EIA-
574

Signal Description True DTE DCE

Name

2 BA 3 103 TxD Transmit
Data

-12V out in

3 BB 2 104 RxD Receive
Data

-12V in out

7 AB 5 102 SG Signal
Ground

	 	 	

Table	4.8.	The	commonly-used	signals	on	the	RS232	and	EIA-574	protocols.

Figure	4.34.	Hardware	interface	implementing	an	asynchronous	RS232
channel.	The	LM3S1968	has	three	UART	ports.	The	LM4F120	and
TM4C123	have	eight	UART	ports.
Observation:	Most	LM3S/LM4F/TM4C	development	kits	send	one	UART	channel
through	the	USB	cable,	so	the	circuit	shown	in	Figure	4.34	will	not	be	needed.	On	the	PC
side	of	the	cable,	the	serial	channel	becomes	a	virtual	COM	port.		After	you	have	installed
the	drivers	for	your	development	kit,	look	in	the	Windows	Device	Manager	to	see	which
COM	port	it	is.

RS232	is	a	non-return-to-zero	(NRZ)	protocol	with	true	signified	as	a	voltage	between	-5
and	‑15	V.	False	is	signified	by	a	voltage	between	+5	and	+15	V.	A	MAX3232	converter
chip	is	used	to	translate	between	the	+5.5/-5.5	V	RS232	levels	and	the	0/+3.3	V	digital
levels,	as	shown	in	Figure	4.34.	The	capacitors	in	this	circuit	are	important,	because	they
form	a	charge	pump	used	to	create	the	±5.5	voltages	from	the	+3.3	V	supply.	The	RS232
timing	is	generated	automatically	by	the	UART.	During	transmission,	the	Maxim	chip
translates	a	digital	high	on	microcontroller	side	to	-5.5V	on	the	RS232/EIA‑574	cable,	and
a	digital	low	is	translated	to	+5.5V.	During	receiving,	the	Maxim	chip	translates	negative
voltages	on	RS232/EIA‑574	cable	to	a	digital	high	on	the	microcontroller	side,	and	a
positive	voltage	is	translated	to	a	digital	low.	The	computer	is	classified	as	DTE,	so	its
serial	output	is	pin	3	in	the	EIA‑574	cable,	and	its	serial	input	is	pin	2	in	the	EIA‑574
cable.	When	connecting	a	DTE	to	another	DTE,	we	use	a	cable	with	pins	2	and	3	crossed.
I.e.,	pin	2	on	one	DTE	is	connected	to	pin	3	on	the	other	DTE	and	pin	3	on	one	DTE	is
connected	to	pin	2	on	the	other	DTE.		When	connecting	a	DTE	to	a	DCE,	then	the	cable
passes	the	signals	straight	across.	In	all	situations,	the	grounds	are	connected	together
using	the	SG	wire	in	the	cable.	This	channel	is	classified	as	full	duplex,	because
transmission	can	occur	in	both	directions	simultaneously.

4.9.1.	Transmitting	in	asynchronous	mode
We	will	begin	with	transmission,	because	it	is	simple.	The	transmitter	portion	of	the
UART	includes	a	data	output	pin,	with	digital	logic	levels	as	drawn	in	Figure	4.33.	The
transmitter	has	a	16-element	FIFO	and	a	10-bit	shift	register,	which	cannot	be	directly
accessed	by	the	programmer	(Figure	4.35).	The	FIFO	and	shift	register	in	the	transmitter
are	separate	from	the	FIFO	and	shift	register	associated	with	the	receiver.	To	output	data
using	the	UART,	the	software	will	first	check	to	make	sure	the	transmit	FIFO	is	not	full	(it
will	wait	if	TXFF	is	1)	and	then	write	to	the	transmit	data	register(e.g., UART0_DR_R).
The	bits	are	shifted	out	in	this	order:	start,	b0,	b1,	b2,	b3,	b4,	b5,	b6,	b7,	and	then	stop,	where
b0	is	the	LSB	and	b7	is	the	MSB.	The	transmit	data	register	is	write	only,	which	means	the
software	can	write	to	it	(to	start	a	new	transmission)	but	cannot	read	from	it.	Even	though
the	transmit	data	register	is	at	the	same	address	as	the	receive	data	register,	the	transmit
and	receive	data	registers	are	two	separate	registers.

Figure	4.35.	Data	and	shift	registers	implement	the	serial	transmission.

When	a	new	byte	is	written	to	UART0_DR_R ,	it	is	put	into	the	transmit	FIFO.	Byte	by
byte,	the	UART	gets	data	from	the	FIFO	and	loads	them	into	the	10-bit	transmit	shift
register.	The	10-bit	shift	register	includes	a	start	bit,	8	data	bits,	and	1	stop	bit.	Then,	the
frame	is	shifted	out	one	bit	at	a	time	at	a	rate	specified	by	the	baud	rate	register.	If	there
are	already	data	in	the	FIFO	or	in	theshift	register	when	the UART0_DR_R 	is	written,
the	new	frame	will	wait	until	the	previous	frames	have	been	transmitted,	before	it	too	is
transmitted.	The	FIFO	guarantees	the	data	are	transmitted	in	the	order	they	were	written.
The	serial	port	hardware	is	actually	controlled	by	a	clock	that	is	16	times	faster	than	the
baud	rate,	referred	to	in	the	datasheet	as	Baud16.	When	the	data	are	being	shifted	out,	the
digital	hardware	in	the	UART	counts	16	times	in	between	changes	to	the	U0Tx	output
line.

The	software	can	actually	write	16bytes	to	the UART0_DR_R ,	and	the	hardware	will
send	them	all	one	at	a	time	in	the	proper	order.	This	FIFO	reduces	the	software	response
time	requirements	of	the	operating	system	to	service	the	serial	port	hardware.	
Unfortunately,	it	does	complicate	the	hardware/software	timing.	At	9600	bits/sec,	it	takes
1.04	ms	to	send	a	frame.	Therefore,	there	will	be	a	delay	ranging	from	1.04	and	16.7	ms
between	writing	to	the	data	register	and	the	completion	of	the	data	transmission.	This
delay	depends	on	how	much	data	are	already	in	the	FIFOat	the	time	the	software	writes
to UART0_DR_R .

4.9.2.	Receiving	in	asynchronous	mode
Receiving	data	frames	is	a	little	trickier	than	transmission	because	we	have	to	synchronize
the	receive	shift	register	with	the	incoming	data.	The	receiver	portion	of	the	UART
includes	an	U0Rx	data	input	pin	with	digital	logic	levels.	At	the	input	of	the
microcontroller,	true	is	3.3V	and	false	is	0V.	There	is	also	a	16-element	FIFO	and	a	10-bit
shift	register,	which	cannot	be	directly	accessed	by	the	programmer	(Figure	4.36).	Again
the	receive	shift	register	and	receive	FIFO	are	separate	from	those	in	the	transmitter.	The
receive	data	register, UART0_DR_R ,	is	read	only,	which	means	write	operations	to	this
address	have	no	effect	on	this	register	(recall	write	operations	activate	the	transmitter).
The	receiver	obviously	cannot	start	a	transmission,	but	it	recognizes	a	new	frame	by	its
start	bit.	The	bits	are	shifted	in	using	the	same	order	as	the	transmitter	shifted	them	out:
start	(0),	b0,	b1,	b2,	b3,	b4,	b5,	b6,	b7,	and	then	stop	(1).

There	are	six	status	bits	generated	by	receiver	activity.	The	Receive	FIFO	empty	flag,
RXFE,	is	clear	when	new	input	data	are	in	the	receive	FIFO.	When	the	software	reads
from 	UART0_DR_R ,	data	are	removed	from	the	FIFO.	When	the	FIFO	becomes	empty,
the	RXFE	flag	will	be	set,	meaning	there	are	no	more	input	data.	There	are	other	flags
associated	with	the	receiver.	There	is	a	Receive	FIFO	full	flag	RXFF,	which	is	set	when
the	FIFO	is	full.	There	are	four	status	bits	associated	with	each	byte	of	data.	For	this
reason,	the	receive	FIFO	is	12	bits	wide.	The	overrun	error,	OE,	is	set	when	input	data	are
lost	because	the	FIFO	is	full	and	more	input	frames	are	arriving	at	the	receiver.	An
overrun	error	is	caused	when	the	receiver	interface	latency	is	too	large.	The	break	error,
BE,	is	set	when	the	input	is	held	low	for	more	than	a	frame.	The	PE	bit	is	set	on	a	parity
error.	Because	the	error	rate	is	so	low,	most	systems	do	not	implement	parity.	The	framing
error,	FE,	is	set	when	the	stop	bit	is	incorrect.	Framing	errors	are	probably	caused	by	a
mismatch	in	baud	rate.

Figure	4.36.	Data	register	shift	registers	implement	the	receive	serial
interface.
The	receiver	waits	for	the	1	to	0	edge	signifying	a	start	bit,	then	shifts	in	10	bits	of	data
one	at	a	time	from	the	U0Rx	line.	The	internal	Baud16	clock	is	16	times	faster	than	the
baud	rate.	After	the	1	to	0	edge,	the	receiver	waits	8	Baud16	clocks	and	samples	the	start
bit.	16	Baud16	clocks	later	it	samples	b0.	Every	16	Baud16	clocks	it	samples	another	bit
until	it	reaches	the	stop	bit.	The	UART	needs	an	internal	clock	faster	than	the	baud	rate	so
it	can	wait	the	half	a	bit	time	between	the	1	to	0	edge	beginning	the	start	bit	and	the
middle	of	the	bit	window	needed	for	sampling.	The	start	and	stop	bits	are	removed
(checked	for	framing	errors),	the	8	bits	of	data	and	4	bits	of	status	are	put	into	the	receive
FIFO.	The	FIFO	implements	hardware	buffering	so	data	can	be	safely	stored	if	the
software	is	performing	other	tasks.	

Observation:	If	the	receiving	UART	device	has	a	baud	rate	mismatch	of	more	than	5%,
then	a	framing	error	can	occur	when	the	stop	bit	is	incorrectly	captured.		

An	overrun	occurs	when	there	are	16	elements	in	the	receive	FIFO,	and	a	17th	frame
comes	into	the	receiver.	In	order	to	avoid	overrun,	we	can	design	a	real-time	system,	i.e.,
one	with	a	maximum	latency.	The	latency	of	a	UART	receiver	is	the	delay	between	the
time	when	new	data	arrives	in	the	receiver	(RXFE=0)	and	the	time	the	software	reads	the
data	register.	If	the	latency	is	always	less	than	160	bit	times,	then	overrun	will	never
occur.	

Observation:	With	a	serial	port	that	has	a	shift	register	and	one	data	register	(no	FIFO
buffering),	the	latency	requirement	of	the	input	interface	is	the	time	it	takes	to	transmit	one
data	frame.		

In	the	example	illustrated	in	Figure	4.37,	assume	the	UART	receive	shift	register	and
receive	FIFO	are	initially	empty	(RXFE=1).	17	incoming	serial	frames	occur	one	right
after	another	(letters	A	–	Q),	but	the	software	does	not	respond.	At	the	end	of	the	first
frame,	the	0x41	goes	into	the	receive	FIFO,	and	the	RXFE	flag	is	cleared.	Normally,
the UART_InChar 	function	would	respond	to	RXFE	being	clear	and	read	the	data	from
the	UART.	In	this	scenario	however,	the	software	is	busy	doing	other	things	and	does	not
respond	to	the	presence	of	data	in	the	receive	FIFO.	Next,	15	more	frames	are	shifted	in
and	entered	into	the	receive	FIFO.	At	the	end	of	the	16th	frame,	the	FIFO	is	full
(RXFF=1).	If	the	software	were	to	respond	at	this	point,	then	all	16	characters	would	be
properly	received.	If	the	17th	frame	occurs	before	the	first	is	read	by	the	software,	then	an
overrun	error	occurs,	and	a	frame	is	lost.	We	can	see	from	this	worst	case	scenario	that	the
software	must	read	the	data	from	the	UART	within	160	bit	times	of	the	clearing	of	RXFE.

Figure	4.37.	Seventeen	receive	data	frames	result	in	an	overrun	(OE)
error.
	

4.9.3.	LM3S/LM4F/TM4C	UART	Details
Next	we	will	overview	the	specific	UART	functions	on	the	LM3S/LM4F/TM4C
microcontrollers.	This	section	is	intended	to	supplement	rather	than	replace	the	Texas
Instruments	manuals.	When	designing	systems	with	any	I/O	module,	you	must	also	refer
to	the	reference	manual	of	your	specific	microcontroller.	It	is	also	good	design	practice	to
review	the	errata	for	your	microcontroller	to	see	if	any	quirks	(mistakes)	exist	in	your
microcontroller	that	might	apply	to	the	system	you	are	designing.

The	LM3S/LM4F/TM4C	microcontrollers	have	one	to	eight	UARTs.	The	specific	port
pins	used	to	implement	the	UARTs	vary	from	one	chip	to	the	next.	To	find	which	pins
your	microcontroller	uses,	you	will	need	to	consult	its	datasheet.	Table	4.9	shows	some	of
the	registers	for	the	UART0.	If	the	microcontroller	has	multiple	UARTs,	the	register
names	will	replace	the	0	with	a	1	–	7.	For	the	exact	register	addresses,	you	should	include
the	appropriate	header	file	(e.g.,	tm4c1294ncpdt.h).	To	activate	a	UART	you	will	need	to
turn	on	the	UART	clock	in	the	SYSCTL_RCGCUART_R	register.	You	should	also	turn
on	the	clock	for	the	digital	port	in	the	SYSCTL_RCGCGPIO_R	register.	You	need	to
enable	the	transmit	and	receive	pins	as	digital	signals.	The	alternative	function	for	these
pins	must	also	be	selected.

The	OE,	BE,	PE,	and	FE	are	error	flags	associated	with	the	receiver.	You	can	see	these
flags	in	two	places:	associated	with	each	data	byte	in UART0_DR_R or	as	a	separate
error	register	in UART0_RSR_R .	The	overrun	error	(OE)	is	set	if	data	has	been	lost
because	the	input	driver	latency	is	too	long.	BE	is	a	break	error,	meaning	the	other	device
has	sent	a	break.	PE	is	a	parity	error	(however,	we	will	not	be	using	parity).	The	framing
error	(FE)	will	get	set	if	the	baud	rates	do	not	match.	The	software	can	clear	these	four
error	flags	by	writing	any	value	to UART0_RSR_R .

The	status	of	the	two	FIFOs	can	be	seen	in	the UART0_FR_R 	register.	The	BUSY	flag	is
set	while	the	transmitter	still	has	unsent	bits.	It	will	become	zero	when	the	transmit	FIFO
is	empty	and	the	last	stop	bit	has	been	sent.	If	you	implement	busy-wait	output	by	first
outputting	then	waiting	for	BUSY	to	become	0	(middle	flowchart	of	Figure	4.29),	then	the
routine	will	write	new	data	and	return	after	that	particular	data	has	been	completely
transmitted.

The UART0_CTL_R 	control	register	contains	the	bits	that	turn	on	the	UART.	TXE	is	the
Transmitter	Enable	bit,	and	RXE	is	the	Receiver	Enable	bit.	We	set	TXE,	RXE,	and
UARTEN	equal	to	1	in	order	to	activate	the	UART	device.		However,	we	should	clear
UARTEN	during	the	initialization	sequence.

	

	 31–12 11 10 9 8 7–0 Name

$4000.C000 	 OE BE PE FE DATA UART0_DR_R

	 	 	 	 	 	 	 	 	 	

	 31–3 3 2 1 0 	

$4000.C004 	 OE BE PE FE UART0_RSR_R

	 	 	 	 	 	 	 	 	 	

	 31–8 7 6 5 4 3 2–0 	

$4000.C018 	 TXFE RXFF TXFF RXFE BUSY 	 UART0_FR_R

	 	 	 	 	 	 	 	 	 	

	 31–16 15–0 	

$4000.C024 	 DIVINT UART0_IBRD_R

	 	 	 	 	 	 	 	 	 	

	 31–6 5–0 	

$4000.C028 	 DIVFRAC UART0_FBRD_R

	 	 	 	 	 	 	 	 	 	

	 31–8 7 6	–	5 4 3 2 1 0 	

$4000.C02C 	 SPS WLEN FEN STP2 EPS PEN BRK UART0_LCRH_R

	 	 	 	 	 	 	 	 	 	

	 31–10 9 8 7 6–3 2 1 0 	

$4000.C030 	 RXE TXE LBE 	 SIRLP SIREN UARTEN UART0_CTL_R

	 	 	 	 	 	 	 	 	 	

	 31–6 5-3 2-0 	

$4000.C034 	 RXIFLSEL TXIFLSEL UART0_IFLS_R

	 	 	 	 	 	 	 	 	 	

	 31-11 10 9 8 7 6 5 4 	 	

$4000.C038 	 OEIM BEIM PEIM FEIM RTIM TXIM RXIM 	 UART0_IM_R

$4000.C03C 	 OERIS BERIS PERIS FERIS RTRIS TXRIS RXRIS 	 UART0_RIS_R

$4000.C040 	 OEMIS BEMIS PEMIS FEMIS RTMIS TXMIS RXMIS 	 UART0_MIS_R

$4000.C044 	 OEIC BEIC PEIC FEIC RTIC TXIC RXIC 	 UART0_ICR_R

Table	4.9.	Some	UART	registers.	Each	register	is	32	bits	wide.	Shaded	bits	are	zero.

	

The UART0_IBRD_R 	and	UART0_FBRD_R 	registers	specify	the	baud	rate.	The	baud
rate	divider	is	a	22-bit	binary	fixed-point	value	with	a	resolution	of	2-6.	The	Baud16	clock
is	created	from	the	system	bus	clock,	with	a	frequency	of	(Bus	clock	frequency)/divider.
The	baud	rate	is	16	times	slower	than	Baud16

Baud	rate	=	Baud16/16	=	(Bus	clock	frequency)/(16*divider)

For	example,	if	the	bus	clock	is	8	MHz	and	the	desired	baud	rate	is	19200	bits/sec,	then
the	divider	should	be	8,000,000/16/19200	or	26.04167.	As	a	binary	fixed-point	number,
this	number	is	about	11010.000011.	We	can	establish	this	baud	rateby	putting	the	11010
into UART0_IBRD_R and	the	000011	into UART0_FBRD_R .	In	reality,	11010.000011
is	equal	to	1667/64	or	26.046875.	The	baud	rates	in	the	transmitter	and	receiver	must
match	within	5%	for	the	channel	to	operate	properly.	The	error	for	this	example	is	0.02%.

The	three	registers UART0_LCRH_R , UART0_IBRD_R ,and UART0_FBRD_R form
an	internal	30-bit	register.	This	internal	register	is	only	updated	when	a	write	operation
to UART0_LCRH_R is	performed,	so	any	changes	to	the	baud-rate	divisor	must	be
followed	by	a	write	to	the UART0_LCRH_R 	register	for	the	changes	to	take	effect.	Out
of	reset,	both	FIFOs	are	disabled	and	act	as	1-byte-deep	holding	registers.	The	FIFOs	are
enabled	by	setting	the	FENbit	in UART0_LCRH_R .

Checkpoint	4.8:	Assume	the	bus	clock	is	6	MHz.	What	is	the	baud	rate	if
UART0_IBRD_R	equals	10	and	UART0_FBRD_R	equals	20?

Checkpoint	4.9:	Assume	the	bus	clock	is	50	MHz.	What	values	should	you	put	in
UART0_IBRD_R	and	UART0_FBRD_R	to	make	a	baud	rate	of	38400	bits/sec?

To	use	interrupts	we	will	enable	the	FIFOs	by	setting	the	FENbit	in
the UART0_LCRH_R 	register.	RXIFLSEL	specifies	the	receive	FIFO	level	that	causes
an	interrupt.	TXIFLSEL	specifies	the	transmit	FIFO	level	that	causes	an	interrupt.

RXIFLSEL														RX	FIFO														Set	RXMIS	interrupt	trigger	when

0x0															≥	⅛	full																												Receive	FIFO	goes	from	1	to	2	characters

0x1															≥	¼	full																												Receive	FIFO	goes	from	3	to	4	characters

0x2															≥	½	full																												Receive	FIFO	goes	from	7	to	8	characters

0x3															≥	¾	full																												Receive	FIFO	goes	from	11	to	12	characters

0x4															≥	⅞	full																												Receive	FIFO	goes	from	13	to	14	characters

	

TXIFLSEL														TX	FIFO														Set	TXMIS	interrupt	trigger	when

0x0															≤	⅞	empty															Transmit	FIFO	goes	from	15	to	14	characters

0x1															≤	¾	empty															Transmit	FIFO	goes	from	13	to	12	characters

0x2															≤	½	empty															Transmit	FIFO	goes	from	9	to	8	characters

0x3															≤	¼	empty															Transmit	FIFO	goes	from	5	to	4	characters

0x4															≤	⅛	empty															Transmit	FIFO	goes	from	3	to	2	characters

	

There	are	seven	possible	interrupt	trigger	flags	that	are	in	the	UART0_RIS_R 	register.
The	setting	of	the	TXRIS	and	RXRIS	flags	is	defined	above.	The	OERIS	flag	is	set	on	an
overrun,	new	incoming	frame	received	but	the	receive	FIFO	is	full.	The	BERIS	flag	is	set
on	a	break	error.	The	PERIS	flag	is	set	on	a	parity	error.	The	FERIS	flag	is	set	on	a
framing	error	(stop	bit	is	not	high).	The	RTRISis	set	on	a	receiver	timeout,	which	is	when
the	receiver	FIFO	is	not	empty	and	no	incoming	frames	have	occurred	in	a	32-bit	time
period.		Each	of	the	seven	trigger	flags	has	a	corresponding	arm	bit	in	the UART0_IM_R
register.	A	bit	in	the	UART0_MIS_R register	set	if	the	trigger	flag	is	both	set	and	armed.
To	acknowledge	an	interrupt	(make	the	trigger	flag	become	zero),	software	writes	a	1	to
the	corresponding	bit	in UART0_IC_R .													

4.9.4.	UART	device	driver
Software	that	sends	and	receives	data	must	implement	a	mechanism	to	synchronize	the
software	with	the	hardware.	In	particular,	the	software	should	read	data	from	the	input
device	only	when	data	is	indeed	ready.	Similarly,	software	should	write	data	to	an	output
device	only	when	the	device	is	ready	to	accept	new	data.	With	busy-wait	synchronization,

the	software	continuously	checks	the	hardware	status	waiting	for	it	to	be	ready.		In	this
section,	we	will	use	busy-wait	synchronization	to	write	I/O	programs	that	send	and	receive
data	using	the	UART.	After	a	frame	is	received,	the	receive	FIFO	will	be	not	empty
(RXFE	becomes	0)	and	the	8-bit	data	is	available	to	be	read.	To	get	new	data	from	the
serial	port,	the	software	first	waits	for	RXFE	to	be	zero,	then	reads	the
resultfrom UART0_DR_R .	Recall	that	when	the	software	reads UART0_DR_R 		it	gets
data	from	the	receive	FIFO.	This	operation	is	illustrated	in	Figure	4.38	and	shown	in
Program	4.10.	In	a	similar	fashion,	when	the	software	wishes	to	output	via	the	serial	port,
it	first	waits	for	TXFF	to	be	clear,	then	performs	the	output.	When	the	software
writes UART0_DR_R 	it	puts	data	into	the	transmit	FIFO.	An	interrupt	synchronization
method	will	be	presented	in	Chapter	5.

Figure	4.38.	Flowcharts	of	InChar	and	OutChar	using	busy-wait
synchronization.
The	initialization	program, UART_Init ,	enables	the	UART	device	and	selects	the	baud
rate.	The	input	routine	waits	in	a	loop	until	RXFE	is	0	(FIFO	not	empty),	then	reads	the
data	register.	The	output	routine	first	waits	in	a	loop	until	TXFF	is	0	(FIFO	not	full),	then
writes	data	to	the	data	register.	Polling	before	writing	data	is	an	efficient	way	to	perform
output.

//	Assumes	an	80	MHz	bus	clock,	creates	115200	baud	rate

void	UART_Init(void){										//	should	be	called	only	once

		SYSCTL_RCGCUART_R	|=	0x0001;	//	activate	UART0

		SYSCTL_RCGCGPIO_R	|=	0x0001;	//	activate	port	A

		UART0_CTL_R	&=	~0x0001;					//	disable	UART

		UART0_IBRD_R	=	43;	//	IBRD=int(80000000/(16*115,200))	=	int(43.40278)

		UART0_FBRD_R	=	26;	//	FBRD	=	round(0.40278	*	64)	=	26

		UART0_LCRH_R	=	0x0070;					//	8-bit	word	length,	enable	FIFO

		UART0_CTL_R	=	0x0301;						//	enable	RXE,	TXE	and	UART

		GPIO_PORTA_PCTL_R	=	(GPIO_PORTA_PCTL_R&0xFFFFFF00)+0x00000011;
//	UART

		GPIO_PORTA_AMSEL_R	&=	~0x03;	//	TM4C,	disable	analog	on	PA1-0

		GPIO_PORTA_AFSEL_R	|=	0x03;		//	enable	alt	funct	on	PA1-0

		GPIO_PORTA_DEN_R	|=	0x03;				//	enable	digital	I/O	on	PA1-0

}

//	Wait	for	new	input,	then	return	ASCII	code

char	UART_InChar(void){

		while((UART0_FR_R&0x0010)	!=	0);	//	wait	until	RXFE	is	0

		return((char)(UART0_DR_R&0xFF));

}

//	Wait	for	buffer	to	be	not	full,	then	output

void	UART_OutChar(char	data){

		while((UART0_FR_R&0x0020)	!=	0);		//	wait	until	TXFF	is	0

		UART0_DR_R	=	data;

}

Program	4.10.	Device	driver	functions	that	implement	serial	I/O
(UART_xxx.zip).
Checkpoint	4.10:	How	does	the	software	clear	RXFE?

Checkpoint	4.11:	How	does	the	software	clear	TXFF?

Checkpoint	4.12:	Describe	what	happens	if	the	receiving	computer	is	operating	on	a	baud
rate	that	is	twice	as	fast	as	the	transmitting	computer?

Checkpoint	4.13:	Describe	what	happens	if	the	transmitting	computer	is	operating	on	a
baud	rate	that	is	twice	as	fast	as	the	receiving	computer?

4.10.	Keyboard	Interface
In	this	section	we	attempt	to	interface	switches	to	digital	I/O	pins	and	will	consider	three
interfacing	schemes,	as	shown	in	Figure	4.39.	In	a	direct	interface	we	connect	each
switch	up	to	a	separate	microcontroller	input	pin.	For	example	using	just	one	8-bit	parallel
port,	we	can	connect	8	switches	using	the	direct	scheme.	An	advantage	of	this	interfacing
approach	is	that	the	software	can	recognize	all	256	(28)	possible	switch	patterns.	If	the
switches	were	remote	from	the	microcontroller,	we	would	need	a	9-wire	cable	to	connect
it	to	the	microcontroller.	In	general,	if	there	are	n	switches,	we	would	need	n/8	parallel
ports	and	n+1	wires	in	the	cable.	This	method	will	be	used	when	there	are	a	small	number
of	switches,	or	when	we	must	recognize	multiple	simultaneous	key	presses.	We	will	use
the	direct	approach	for	music	keyboards	and	for	modifier	keys	such	as	shift,	control,	and
alt.

Figure	4.39.	Three	approaches	to	interfacing	multiple	keys.
In	a	scanned	interfacethe	switches	are	placed	in	a	row/column	matrix.	The 	at	the	four
outputs	signifies	open	drain	(an	output	with	two	states:	HiZ	and	low.)	The	software	drives
one	row	at	a	time	to	zero,	while	leaving	the	other	rows	at	HiZ.	By	reading	the	column,	the
software	can	detect	if	a	key	is	pressed	in	that	row.	The	software	“scans”	the	device	by
checking	all	rows	one	by	one.	The	Table	4.10	illustrates	the	sequence	to	scan	the	4	rows.

	

Row Out3 Out2 Out1 Out0

3 0 HiZ HiZ HiZ

2 HiZ 0 HiZ HiZ

1 HiZ HiZ 0 HiZ

0 HiZ HiZ HiZ 0

Table	4.10.	Scanning	patterns	for	a	4	by	4	matrix	keyboard.

	

For	computers	without	an	open	drain	output	mode,	the	direction	register	can	be	toggled	to
simulate	the	two	output	states,	HiZ/0,	or	open	drain	logic.	This	method	can	interface	many
switches	with	a	small	number	of	parallel	I/O	pins.	In	our	example	situation,	the	single	8-
bit	I/O	port	can	handle	16	switches	with	only	an	8-wire	cable.	The	disadvantage	of	the
scanned	approach	over	the	direct	approach	is	that	it	can	only	handle	situations	where	0,	1
or	2	switches	are	simultaneously	pressed.	This	method	is	used	for	most	of	the	switches	in
our	standard	computer	keyboard.	The	shift,	alt,	and	control	keys	are	interfaced	with	the
direct	method.	We	can	“arm”	this	interface	for	interrupts	by	driving	all	the	rows	to	zero.
The	edge-triggered	input	can	be	used	to	generate	interrupts	on	touch	and	release.	Because
of	the	switch	bounce,	an	edge-triggered	interrupt	will	occur	when	any	of	the	keys	change.
In	this	section	we	will	interface	the	keypad	using	busy-wait	synchronization.

With	a	scanned	approach,	we	give	up	the	ability	to	detect	three	or	more	keys	pressed
simultaneously.	If	three	keys	are	pressed	in	an	“L”	shape,	then	the	fourth	key	that
completes	the	rectangle	will	appear	to	be	pressed.	Therefore,	special	keys	like	the	shift,
control,	option,	and	alt	are	not	placed	in	the	scanned	matrix,	but	rather	are	interfaced
directly,	each	to	a	separate	input	port.	In	general,	an	n	by	m	matrix	keypad	has	n*m	keys,
but	requires	only	n+m	I/O	pins.	You	can	detect	any	0,	1,	or	2	key	combinations,	but	it	has
trouble	when	3	or	more	are	pressed.	The	scanned	keyboard	operates	properly	if

1.	No	key	is	pressed
2.	Exactly	one	key	is	pressed
3.	Exactly	two	keys	are	pressed.
	

In	a	multiplexed	interface,	the	computer	outputs	the	binary	value	defining	the	row
number,	and	a	hardware	decoder	(or	demultiplexer)	will	output	the	zero	on	the	selected
row	and	HiZ’s	on	the	other	rows.	The	decoder	must	have	open	collector	outputs
(illustrated	again	by	the 	in	the	above	circuit.)	The	computer	simply	outputs	the	sequence
0x00,0x10,0x20,0x30,…,0xF0	to	scan	the	16	rows,	as	shown	in	the	Table	4.11.

	

	 	 Computer	output 	 	 	 Decoder 	 	

Row Out3 Out2 Out1 Out0 15 14 … 0

15 1 1 1 1 0 HiZ 	 HiZ

14 1 1 1 0 HiZ 0 	 HiZ

… 	 	 	 	 	 	 	 	

1 0 0 0 1 HiZ HiZ 	 HiZ

0 0 0 0 0 HiZ HiZ 	 0

Table	4.11.	Scanning	patterns	for	a	multiplexed	16	by	16	matrix	keyboard.

In	a	similar	way,	the	column	information	is	passed	to	a	hardware	encoder	that	calculates
the	column	position	of	any	zero	found	in	the	selected	row.	One	additional	signal	is
necessary	to	signify	the	condition	that	no	keys	are	pressed	in	that	row.		Since	this	interface
has	16	rows	and	16	columns,	we	can	interface	up	to	256	keys!		We	could	sacrifice	one	of
the	columns	to	detect	the	no	key	pressed	in	this	row	situation.	In	this	way,	we	can	interface
240	(15•16)	keys	on	the	single	8-bit	parallel	port.	If	more	than	one	key	is	pressed	in	the
same	row,	this	method	will	only	detect	one	of	them.	Therefore	we	classify	this	scheme	as
only	being	able	to	handle	zero	or	one	key	pressed.

Applications	that	can	utilize	this	approach	include	touch	screens	and	touch	pads	because
they	have	a	lot	of	switches	but	are	only	interested	in	the	0	or	1	touch	situation.
Implementing	an	interrupt	driven	interface	would	require	too	much	additional	hardware.
In	this	case,	periodic	polling	interrupt	synchronization	would	be	appropriate.	In	general,
an	n	by	m	matrix	keypad	has	n*m	keys,	but	requires	only	x+y+1	I/O	pins,	where	2x	=	n	and
2y	=	m.	The	extra	input	is	used	to	detect	the	condition	when	no	key	is	pressed	in	that

	

	

Example	4.3:	Interface	a	16-key	matrix	keyboard.	There	will	be	either	one	key	touched	or
no	keys	touched.
	

Solution:	This	matrix	keyboard	divides	the	sixteen	keys	into	four	rows	and	four	columns,
as	shown	in	Figure	4.40.	Each	key	exists	at	a	unique	row/column	location.	It	will	take
eight	I/O	pins	to	interface	the	rows	and	columns.	Any	output	port	on	the
LM3S/LM4F/TM4C	could	have	been	used	to	interface	the	rows.	To	scan	the	matrix,	the
software	will	drive	the	rows	one	at	a	time	with	open	collector	logic	then	read	the	columns.
The	open	collector	logic,	with	outputs	HiZ	and	0,	will	be	created	by	toggling	the	direction
register	on	the	four	rows.	Actual	10	k � 	pull-up	resistors	will	be	placed	on	the	column
inputs	(PA5-PA2)	rather	than	configured	internally,	because	the	internal	pull-ups	are	not
fast	enough	to	handle	the	scanning	procedure.
	

Figure	4.40.	A	matrix	keyboard	interfaced	to	the	microcontroller.
	

Program	4.11	shows	the	initialization	software.	The	data	structure	will	assist	in	the
scanning	algorithm,	and	it	provides	a	visual	mapping	from	the	physical	layout	of	the	keys
to	the	ASCII	code	produced	when	touching	that	key.	The	structure	also	makes	it	easy	to
adapt	this	solution	to	other	keyboard	interfaces.	A	periodic	interrupt	can	be	used	to
debounce	the	switches.	The	key	to	debouncing	is	to	not	observe	the	switches	more
frequently	than	once	every	10	ms.
	

void	MatrixKeypad_Init(void){

		SYSCTL_RCGCGPIO_R	|=	0x09;					//	1)	activate	clock	for	Ports	A	and	D

		while((SYSCTL_PRGPIO_R&0x09)	!=	0x09){};//	ready?

		GPIO_PORTA_AFSEL_R	&=	~0x3C;							//	GPIO	function	on	PA5-2													

		GPIO_PORTA_AMSEL_R	&=	~0x3C;							//	disable	analog	function	on	PA5-
2													

		GPIO_PORTA_PCTL_R	&=	~0x00FFFF00;		//	configure	PA5-2	as	GPIO		

		GPIO_PORTA_DEN_R	|=	0x3C;										//	enable	digital	I/O	on	PA5-2

		GPIO_PORTA_DIR_R	&=	~0x3C;									//	make	PA5-2	in	(PA5-2	columns)

		GPIO_PORTD_AFSEL_R	&=	~0x0F;							//	GPIO	function	on	PD3-0													

		GPIO_PORTD_AMSEL_R	&=	~0x0F;							//	disable	analog	function	on	PD3-
0													

		GPIO_PORTD_PCTL_R	&=	~0x0000FFFF;		//	configure	PD3-0	as	GPIO		

		GPIO_PORTD_DATA_R	&=	~0x0F;								//	DIRn=0,	OUTn=HiZ;	DIRn=1,
OUTn=0

		GPIO_PORTD_DEN_R	|=	0x0F;										//	enable	digital	I/O	on	PD3-0

		GPIO_PORTD_DIR_R	&=	~0x0F;									//	make	PD3-0	in	(PD3-0	rows)

		GPIO_PORTD_DR8R_R	|=	0x0F;}								//	enable	8	mA	drive

Program	4.11.	Initialization	software	for	a	matrix	keyboard.
	

Program	4.12	shows	the	scanning	software.	The	scanning	sequence	is	listed	in	Table	4.12.
There	are	two	steps	to	scan	a	particular	row:
	

1.	Select	that	row	by	driving	it	low,	while	the	other	rows	are	HiZ,
2.	Read	the	columns	to	see	if	any	keys	are	pressed	in	that	row,
0	means	the	key	is	pressed

1	means	the	key	is	not	pressed
	

It	is	important	to	observe	column	and	row	signals	on	a	dual	trace	oscilloscope	while
running	the	software	at	full	speed,	because	it	takes	time	for	correct	signal	to	appear	on	the
column	after	the	row	is	changed.	In	some	cases,	a	software	delay	should	be	inserted
between	setting	the	row	and	reading	the	column.	The	length	of	the	delay	you	will	need
depends	on	the	size	of	the	pull-up	resistor	and	any	stray	capacitance	that	may	exist	in	your
circuit.

	

direction PD0 PD1 PD2 PD3 PA2 PA3 PA4 PA5

0x01 0 HiZ HiZ HiZ 1 2 3 A

0x02 HiZ 0 HiZ HiZ 4 5 6 B

0x04 HiZ HiZ 0 HiZ 7 8 9 C

0x08 HiZ HiZ HiZ 0 * 0 # D

Table	4.12.	Patterns	for	a	4	by	4	matrix	keyboard.

	

struct	Row{

		uint8_t	direction;

		char	keycode[4];};

typedef	const	struct	Row	RowType;

RowType	ScanTab[5]={

{			0x01,	“123A”	},	//	row	0

{			0x02,	“456B”	},	//	row	1

{			0x04,	“789C”	},	//	row	2

{			0x08,	“*0#D”	},	//	row	3

{			0x00,	“				”	}};

	

/*	Returns	ASCII	code	for	key	pressed,

Num	is	the	number	of	keys	pressed

both	equal	zero	if	no	key	pressed	*/

char	MatrixKeypad_Scan(int32_t	*Num){

		RowType	*pt;

		uint32_t	column;	char	key;

		uint32_t	j;

		(*Num)	=	0;

		key	=	0;				//	default	values

		pt	=	&ScanTab[0];

		while(pt->direction){

GPIO_PORTD_DIR_R	=	pt->direction;	//	one	output

GPIO_PORTD_DATA_R	&=	~0x0F;			//	DIRn=0,	OUTn=HiZ;	DIRn=1,	OUTn=0

for(j=1;	j<=10;	j++);									//	very	short	delay

column	=	((GPIO_PORTA_DATA_R&0x3C)>>2);//	read	columns

for(j=0;	j<=3;	j++){

if((column&0x01)==0){

key	=	pt->keycode[j];

(*Num)++;

}

column>>=1;		//	shift	into	position

}

pt++;

		}

		return	key;

}

/*	Waits	for	a	key	be	pressed,	then	released

Returns	ASCII	code	for	key	pressed,

Num	is	the	number	of	keys	pressed

both	equal	zero	if	no	key	pressed	*/

char	MatrixKeypad_In(void){	int32_t	n;

char	letter;

		do{

letter	=	MatrixKeypad_Scan(&n);

		}	while	(n	!=	1);	//	repeat	until	exactly	one

		do{

letter	=	MatrixKeypad_Scan(&n);

		}	while	(n	!=	0);	//	repeat	until	release

		return	letter;

}

Program	4.12.	Scanning	software	for	a	matrix	keyboard
(MatrixKeypad_xxx.zip).

	
Two-key	rollover	occurs	when	the	operator	is	typing	quickly.	For	example,	if	the	operator
is	typing	the	A,	B,	then	C,	he/she	might	type	A,	AB,	B,	BC,	C,	and	then	release.	With
rollover,	the	keyboard	does	not	go	through	a	no-key	state	in	between	typing.	The	hardware
interface	in	Figure	4.40	could	handle	two-key	rollover,	but	the	software	solution	in
Program	4.12	does	not.	An	interrupt	version	of	this	interface	will	be	presented	in	Chapter
5.

4.11.	Exercises
4.1		In	16	words	or	less,	describe	the	meaning	of	each	of	the	following	terms.

a)	Latency

b)	Real-time

c)	Bandwidth

d)	I/O	bound

e)	CPU	bound

f)	Blind-cycle	synchronization

g)	Busy-wait	synchronization

h)	Interrupt	synchronization

i)	Monotonic

j)	Non-blocking

k)	Deterministic

l)	Slew	rate

m)	Open	drain

n)	Handshake

	

4.2		In	16	words	or	less,	describe	the	meaning	of	each	of	the	following	terms.

a)	Frame

b)	Baud	rate

c)	Bandwidth

d)	Full	duplex

e)	DTE

f)	DCE

g)	Framing	error

h)	Overrun	error

i)	Device	driver

j)	NRZ

k)	Bit	time

l)	Start	and	stop	bits

	

4.3	List	five	different	methods	for	I/O	synchronization.	In	16	words	or	less,	describe	each
method.

4.4	List	one	advantage	of	blind-cycle	synchronization.	List	one	disadvantage.

4.5	What	is	difference	between	busy-wait	and	gadfly	synchronization?

4.6	In	16	words	or	less,	define	set	up	time.	In	16	words	or	less,	define	hold	time.

4.7		Simplify	↓A	=	5	+	[10,	20]	-	[5,	15]

4.8		Consider	a	circuit	like	Figure	4.8,	except	using	74LS244	and	74LS374.	Rework	the
timing	equations	to	find	the	appropriate	timing	relationship	between	↓G*,	↑C,		↑C	and
↑G*	so	the	interface	still	works.	Look	up	the	data	sheets	on	www.ti.com.

4.9		Consider	a	circuit	in	Figure	4.8	running	at	voltage	supply	VCC	of	2	V	at	25C.	Rework
the	timing	equations	to	find	the	appropriate	timing	relationship	between	↓G*,	↑C,		↑C	and
↑G*	so	the	interface	still	works.	Look	up	the	data	sheets	on	www.ti.com.

4.10		High	speed	CMOS	logic	will	run	at	a	wide	variety	of	supply	voltages.	Look	in	the
data	sheets	for	the	74HC04	74HC244	and	74HC374.	Make	a	general	observation	about
the	relationship	between	how	fast	the	chip	operates	and	the	power	supply	voltage	for	HC
logic.

4.11		What	is	the	effect	of	capacitance	added	to	a	digital	line?

4.12		Write	code	to	configure	Port	D	bit	5	as	a	rising	edge-triggered	input.	Write	code	that
waits	for	a	rising	edge	on	PD5.

4.13		Write	code	to	configure	Port	A	bit	2	as	a	falling	edge	edge-triggered	input.	Write
code	that	waits	for	a	falling	edge	on	PA2.

4.14		Write	code	to	initialize	all	of	Port	D	as	outputs,	in	power	saving	mode.

4.15		Interface	a	positive	logic	switch	to	PA5	without	an	external	resistor.	Write	code	to
configure	Port	A	bit	5	as	needed.	Write	code	that	waits	for	the	switch	to	be	touched,	then
released.	You	may	assume	the	switch	does	not	bounce.

4.16		Interface	a	negative	logic	switch	to	PB6	without	an	external	resistor.	Write	code	to
configure	Port	B	bit	6	as	needed.	Write	code	that	waits	for	the	switch	to	be	touched,	then
released.	You	may	assume	the	switch	does	not	bounce.

4.17	Assume	you	are	using	the	FIFO	implementations	in	Program	3.7.	What	happens	in
the	KPN	of	Program	4.1	if	a	FIFO	becomes	empty?		What	happens	in	Program	4.1	if	a
FIFO	becomes	full?

4.18		Assuming	the	bus	clock	to	be	8	MHz,	write	code	to	make	the	baud	rate	19200
bits/sec.

4.19		Assuming	the	busclock	to	be	24	MHz,	what	value	goes
into UART0_IBRD_R and UART0_FBRD_R 	to	make	the	baud	rate	9600	bits/sec?

4.20		Look	up	the	UART	module	in	the	data	sheet	and	describe	the	similarities	and
differences	between	BUSY	and	TXFF.

4.21		Look	up	the	UART	module	in	the	data	sheet	and	describe	the	two	bits	of	WLEN.

4.22		Look	up	the	UART	module	in	the	data	sheet.

a)	Redraw	Figure	4.33	with	1	start,	6	data,	no	parity	and	1	stop	bit.

b)	Redraw	Figure	4.33	with	1	start,	8	data,	no	parity	and	2	stop	bits.

c)	Redraw	Figure	4.33	with	1	start,	8	data,	even	parity	and	1	stop	bit.

4.23		Assume	you	are	given	a	working	system	with	a	UART	connected	to	an	external
device.	To	save	power,	you	decide	to	slow	down	the	bus	clock	by	a	factor	of	4.		Briefly
explain	the	changes	required	for	the	UART	software	driver.

4.24		Look	up	in	the	data	sheet	how	the	UART	operated	when	the	FIFOs	are	disabled.
Would	the	solution	in	Program	4.10still	work	if	the	FIFO	enable	bit
(UART0_LCRH_R bit	4)	were	cleared?	If	it	does	work,	in	what	way	is	it	less	efficient?

4.25		Is	the	write	access	to	Port	A	in	Program	4.2	friendly?	What	would	you	change	if	you
wished	to	switch	the	two	pins	on	Port	A	to	Port	E?

D4.26	Draw	the	equivalent	of	the	left	side	of	the	KPN	in	Program	4.1	using	a	Petri	Net.

D4.27	Look	at	the	data	sheet	for	the	Newhaven	Display	NHD-0108BZ-RN-YBW-3V3.
Write	a	software	function	using	the	LCD	hardware	in	Section	4.7.1	that	reads	the	LCD
status	bit.Use	this	function	to	convert LCD_OutChar 	from	blind	cycle	to	busy	wait.

D4.28	Write	the Stepper_Seek function	in	Program	4.6	to	minimize	jerk.	Slowly	ramp	up
the	acceleration	as	the	motor	goes	from	stopped	to	full	speed	(time 	parameter).	Similarly,
slowly	ramp	down	the	acceleration	as	the	motor	goes	from	full	speed	to	stopped.

D4.29	Rewrite	the	programs	in	Example	4.2	to	use	UART0	instead	of	the	parallel	ports.
Assume	the	bus	clock	is	50	MHz.	Do	it	is	such	a	way	that	the	function	prototypes	are
identical.	Look	up	the	maximum	allowable	baud	rate	for	the	UART.	Open	one	of	the
projects	for	Example	4.2	(Handshake_xxx.zip)from	the	web	site	and	count	the	number	of
assembly	instructions	in	both Out and In .	Add	these	two	counts	together	(because	they
wait	for	each	other).	Multiply	the	total	number	of	instructions	by	2	bus	periods	(40ns).	Use
this	number	to	estimate	how	long	it	takes	to	send	one	byte.	Compare	the	bandwidths	of	the
serial	and	parallel	approaches.	Most	high	speed	interfaces	use	a	serial	protocol	(e.g.,
SATA,	Ethernet.)	Most	processors	communicate	with	memory	using	a	parallel	protocol.
List	three	reasons	other	than	bandwidth	for	using	a	serial	link	over	a	parallel	port	when
communicating	between	two	computers.

D4.30Rewrite UART_OutChar 	in	Program	4.10	to	use	busy-wait	synchronization	on	the
BUSY	bit.	Use	the	middle	flowchart	in	Figure	4.29	so	the	routine	returns	after	the	data	has
been	transmitted.

D4.31	Rewrite	the	matrix	keypad	driver	in	Programs	4.12	and	4.13	to	use	open	drain
mode	on	pins	PD3	–	PD0.	In	other	words,	the	direction	register	is	set	once	during
initialization,	and	the	data	register	is	modified	during	scanning.

4.12.	Lab	Assignments
Lab	4.1	The	overall	objective	is	to	create	a	serial	port	device	driver	that	supports	fixed-
point	input/output.	The	format	will	be	32-bit	unsigned	decimal	fixed-point	with	a
resolution	of	0.001.	You	will	be	able	to	find	on	the	implementations	of	a	serial	port	driver
that	supports	character,	string,	and	integer	I/O,	UART_xxx.zip.	In	particular,	you	will
design,	implement,	and	test	two	routines
called UART_FixIn and UART_FixOut .	 UART_FixIn 	will	accept	input	from	the
UARTsimilar	to	the	function UART_InUDec .	 UART_FixOut 	will	transmit	output	to
the	UARTsimilar	to	the	function UART_OutUDec .	During	the	design	phase	of	this	lab,
you	should	define	the	range	of	features	available.		You	should	design,	implement,	and	test
a	main	program	that	illustrates	the	range	of	capabilities.

Lab	4.2	The	same	as	Lab	4.1	except	the	format	will	be	32-bit	signed	binary	fixed-point
with	a	resolution	of	2-8.

Lab	4.3	Design	a	four	function	(add,	subtract,	multiply,	divide)	calculator	using	fixed-
point	math	and	the	UART	for	input/output.	The	format	should	be	32-bit	signed	decimal
fixed-point	with	a	resolution	of	0.01.	You	are	free	to	design	the	syntax	of	the	calculator
however	you	wish.	

Lab	4.4	Design	a	four	function	(add,	subtract,	multiply,	divide)	calculator	using	fixed-
point	math.	Take	input	from	a	matrix	keypad	and	put	output	on	an	LCD	or	OLED.	The
format	should	be	32-bit	signed	decimal	fixed-point	with	a	resolution	of	0.001.	You	are	free
to	design	the	syntax	of	the	calculator	however	you	wish.	

Lab	4.5	The	overall	objective	of	this	lab	is	to	design,	implement	and	test	a	parallel	port
expander.	Using	less	than	16	I/O	pins	of	your	microcontroller,	you	will	design	hardware
and	software	that	supports	two	8-bit	latched	input	ports	and	two	strobed	output	ports.	Each
input	port	has	8	data	lines	and	one	latch	signal.	On	the	rising	each	of	the	latch,	your
system	should	capture	(latch),	the	data	lines.	Each	output	port	has	8	data	lines	and	one
strobe	signal.	The	hardware/software	system	should	generate	a	pulse	out	on	strobe
whenever	new	output	is	sent.	The	output	ports	do	not	need	to	be	readable.

Lab	4.6	The	overall	objective	of	this	lab	is	to	design,	implement	and	test	a	parallel	output
port	expander.	Using	just	three	I/O	pins	of	your	microcontroller,	you	will	design	hardware
and	software	that	supports	four	8-bit	output	ports.	The	output	ports	do	not	need	to	be
readable.

Lab	4.7	The	overall	objective	of	this	lab	is	to	design,	implement	and	test	a	parallel	input
port	expander.	Using	just	three	I/O	pins	of	your	microcontroller,	you	will	design	hardware
and	software	that	supports	four	8-bit	input	ports.	The	input	ports	do	not	need	to	be	latched.

Lab	4.8	The	overall	objective	is	to	create	a	HD44780-controlled	LCD	device	driver	that
supports	fixed-point	output.	The	format	will	be	32-bit	unsigned	decimal	fixed-point	with
resolutions	of	0.1,	0.01	and	0.001.	You	will	be	able	to	find	on	the	book	web	site
implementations	of	a	HD44780-controlled	LCD	device	driver	that	supports	character,
string,	and	integer	I/O.	In	particular,	you	will	design,	implement,	and	test	three	routines
called LCD_FixOut1 	LCD_FixOut2 	and LCD_FixOut3 ,	implementing	fixed-point
resolutions	0.1,	0.01	and	0.001	respectively.	During	the	design	phase	of	this	lab,	you
should	define	the	range	of	features	available.		You	should	design,	implement,	and	test	a
main	program	that	illustrates	the	range	of	capabilities.

Lab	4.9	The	same	as	Lab	4.8	except	the	format	will	be	32-bit	signed	decimal	fixed-point
with	resolutions	of	0.1,	0.01	and	0.001.	You	will	design,	implement,	and	test	three
routines.

Lab	4.10	The	same	as	Lab	4.8	except	the	format	will	be	32-bit	signed	binary	fixed-point
with	resolutions	of	2-4,	2-8	and	2-12.	You	will	design,	implement,	and	test	three	routines.

Lab	4.11	The	same	as	Lab	4.8	except	the	formats	will	be	12,	24	and	32-bit	unsigned
integers.	You	will	design,	implement,	and	test	three	routines.

Lab	4.12	The	overall	objective	is	to	create	a	HD44780-controlled	LCD	device	driver	that
supports	voltage	versus	time	graphical	output.	The	display	will	be	8	pixels	high	by	40
pixels	wide,	using	8	character	positions	on	the	LCD.	You	will	need	to	continuously	write
to	the	CGRAM	creating	new	fonts,	then	output	the	new	font	as	data	to	create	the	images.
The	initialization	routine	will	clear	the	graph	and	set	the	minimum	and	maximum	range
scale	on	the	voltage	axis	(y-axis).	The	plot	routine	takes	a	voltage	data	point	between
minimum	and	maximum	and	draws	one	pixel	on	the	8	by	40	display.	It	takes	40	calls	to
plot	to	complete	one	image	on	the	display	as	illustrated	in	Figure	4.41.

Figure	4.41.	Image	after	40	calls	to	plot	with	the	LCD	is	initialized	to	Max=32,	Min=0.
The	software	outputs	this	repeating	pattern	0,4,8,12,16,20,24,28,0,4,8,12,16…

Subsequent	calls	to	plot	should	remove	the	point	from	40	calls	ago	and	draw	the	new
point.	If	the	plot	is	called	at	a	fixed	period,	the	display	should	show	a	continuous	sweep	of
the	voltage	versus	time	data,	like	an	untriggered	oscilloscope.	During	the	design	phase	of
this	lab,	you	should	define	the	range	of	features	available.		You	should	design,	implement,
and	test	a	main	program	that	illustrates	the	range	of	capabilities.

Lab	4.13	You	will	be	able	to	find	on	the	implementations	of	a	OLED	driver	that	supports
the	printf	I/O,	OLED_xxx.zip.	You	will	design,	implement,	and	test	threeroutines
called OLED_FixOut1 , OLED_FixOut2 ,	and UART_FixOut3 .	These	three	functions
should	implement	16-bit	unsigned	fixed-point	resolutions	0.1,	0.01	and	0.001	respectively.
Create	functions	like Fixed_uDecOut2s that	convert	the	integer	portion	of	the	fixed-point
number	with � =0.01	to	an	ASCII	string.	You	should	be	able	to	control	the	position	and
color	of	these	outputs	in	a	convenient	manner.	During	the	design	phase	of	this	lab,	you
should	define	the	range	of	features	available.		You	should	design,	implement,	and	test	a
main	program	that	illustrates	the	range	of	capabilities.

Lab	4.14	The	same	as	Lab	4.13	except	the	format	will	be	16-bit	signed	decimal	fixed-
point	with	resolutions	of	0.1,	0.01	and	0.001.	Create	functions	like Fixed_sDecOut2s that
convert	the	integer	portion	of	the	fixed-point	number	with � =0.01	to	an	ASCII	string.
You	will	design,	implement,	and	test	three	routines.

Lab	4.15	The	same	as	Lab	4.13	except	the	format	will	be	16-bit	unsigned	binary	fixed-
point	with	resolutions	of	2-4,	2-8	and	2-12.	You	will	design,	implement,	and	test	three
routines.	For	example	the	function	, Fixed_uBinOut8s 	converts	the	integer	portion	of	the
unsigned	16-bit	fixed-point	number	with � =2-8		to	an	ASCII	string.

Lab	4.16	The	same	as	Lab	4.13	except	the	output	will	go	through	the	UART	to	a	COM
port	on	the	PC.	Run	a	termimal	program	like	PuTTy	on	the	PC.

Lab	4.17	The	same	as	Lab	4.14	except	the	output	will	go	through	the	UART	to	a	COM
port	on	the	PC.	Run	a	termimal	program	like	PuTTy	on	the	PC.

Lab	4.18	The	same	as	Lab	4.15	except	the	output	will	go	through	the	UART	to	a	COM
port	on	the	PC.	Run	a	termimal	program	like	PuTTy	on	the	PC.

	

	

	

5.	Interrupt	Synchronization
Chapter	5	objectives	are	to:
•	Introduce	the	concept	of	interrupt	synchronization

•	Discuss	the	issues	involved	in	reentrant	programming

•	Use	the	first	in	first	out	circular	queue	for	buffered	I/O

•	Discuss	the	specific	details	of	using	interrupts	on	Cortex-M

•	Interface	devices	using	edge-triggered	interrupts

•	Create	periodic	interrupts	using	SysTick

•	Implement	background	I/O	for	simple	devices	using	periodic	polling

	
There	are	many	reasons	to	consider	interrupt	synchronization.	The	first	consideration	is
that	the	software	in	a	real-time	system	must	respond	to	hardware	events	within	a
prescribed	time.	Given	a	change	in	input,	it	is	not	only	necessary	to	get	the	correct
response,	but	it	will	be	necessary	to	get	the	correct	response	at	the	correct	time.	To
illustrate	the	need	for	interrupts,	consider	a	keyboard	interface	where	the	time	between
new	keyboard	inputs	might	be	as	small	as	10ms.	In	this	situation,	the	software	latency	is
the	time	from	when	the	new	keyboard	input	is	ready	until	the	time	the	software	reads	the
new	data.		In	order	to	prevent	loss	of	data	in	this	case,	the	software	latency	must	be	less
than	10ms.	We	can	implement	real-time	software	using	busy-wait	polling	only	when	the
size	and	complexity	of	the	system	is	very	small.	Interrupts	are	important	for	real-time
systems	because	they	provide	a	mechanism	to	guarantee	an	upper	bound	on	the	software
response	time.		Interrupts	also	give	us	a	way	to	respond	to	infrequent	but	important	events.
Alarm	conditions	like	low	battery	power	and	error	conditions	can	be	handled	with
interrupts.	Periodic	interrupts,	generated	by	the	timer	at	a	regular	rate,	will	be	necessary	to
implement	data	acquisition	and	control	systems.	In	the	unbuffered	interfaces	of	the
previous	chapter,	the	hardware	and	software	took	turns	waiting	for	each	other.	Interrupts
provide	a	way	to	buffer	the	data,	so	that	the	hardware	and	software	spend	less	time
waiting.	In	particular,	the	buffer	we	will	use	is	a	first	in	first	out	queue	placed	between	the
interrupt	routine	and	the	main	program	to	increase	the	overall	bandwidth.	We	will	begin
our	discussion	with	general	issues,	then	present	the	specific	details	about	the
LM3S/LM4F/TM4C	microcontrollers.	After	that,	a	number	of	simple	interrupt	examples
will	be	presented,	and	at	the	end	of	the	chapter	we	will	discuss	some	advanced	concepts
like	priority	and	periodic	polling.

5.1.	Multithreading
An	interrupt	is	the	automatic	transfer	of	software	execution	in	response	to	a	hardware
event	that	is	asynchronous	with	the	current	software	execution.	This	hardware	event	is
called	a	trigger.	The	hardware	event	can	either	be	a	busy	to	ready	transition	in	an	external
I/O	device	(like	the	UART	input/output)	or	an	internal	event	(like	bus	fault,	memory	fault,
or	a	periodic	timer.)		When	the	hardware	needs	service,	signified	by	a	busy	to	ready	state
transition,	it	will	request	an	interrupt	by	setting	its	trigger	flag.	A	thread	is	defined	as	the
path	of	action	of	software	as	it	executes.	The	execution	of	the	interrupt	service	routine	is
called	a	background	thread.	This	thread	is	created	by	the	hardware	interrupt	request	and	is
killed	when	the	interrupt	service	routine	returns	from	interrupt	(e.g.,	executing	a	BX	LR).
A	new	thread	is	created	for	each	interrupt	request.	It	is	important	to	consider	each
individual	request	as	a	separate	thread	because	local	variables	and	registers	used	in	the
interrupt	service	routine	are	unique	and	separate	from	one	interrupt	event	to	the	next
interrupt.	In	a	multithreaded	system,	we	consider	the	threads	as	cooperating	to	perform
an	overall	task.	Consequently	we	will	develop	ways	for	the	threads	to	communicate	(e.g.,
FIFO)	and	synchronize	with	each	other.	Most	embedded	systems	have	a	single	common
overall	goal.	On	the	other	hand,	general-purpose	computers	can	have	multiple	unrelated
functions	to	perform.	A	process	is	also	defined	as	the	action	of	software	as	it	executes.
Processes	do	not	necessarily	cooperate	towards	a	common	shared	goal.	Threads	share
access	to	I/O	devices,	system	resources,	and	global	variables,	while	processes	have
separate	global	variables	and	system	resources.	Processes	do	not	share	I/O	devices.

There	are	no	standard	definitions	for	the	terms	mask,	enable	and	arm	in	the	professional,
Computer	Science,	or	Computer	Engineering	communities.	Nevertheless,	in	this	book	we
will	adhere	to	the	following	specific	meanings.	To	arm	(disarm)		a	device	means	to
enable	(shut	off)	the	source	of	interrupts.	Each	potential	interrupting	device	has	a	separate
arm	bit.	One	arms	(disarms)	a	device	if	one	is	(is	not)	interested	in	interrupts	from	this
source.	To	enable	(disable)	means	to	allow	interrupts	at	this	time	(postponing	interrupts
until	a	later	time).	On	the	ARM ® 	CortexTM-M	processor	there	is	one	interrupt	enable	bit
for	the	entire	interrupt	system.	We	disable	interrupts	if	it	is	currently	not	convenient	to
accept	interrupts.	In	particular,	to	disable	interrupts	we	set	the	I	bit	in	PRIMASK.

The	software	has	dynamic	control	over	some	aspects	of	the	interrupt	request	sequence.
First,	each	potential	interrupt	trigger	has	a	separate	arm	bit	that	the	software	can	activate
or	deactivate.	The	software	will	set	the	arm	bits	for	those	devices	it	wishes	to	accept
interrupts	from,	and	will	deactivate	the	arm	bits	within	those	devices	from	which
interrupts	are	not	to	be	allowed.	In	other	words	it	uses	the	arm	bits	to	individually	select
which	devices	will	and	which	devices	will	not	request	interrupts.	The	second	aspect	that
the	software	controls	is	the	interrupt	enable	bit.	Specifically,	bit	0	of	the	special	register
PRIMASK	is	the	interrupt	mask	bit,	I.	If	this	bit	is	1	most	interrupts	and	exceptions	are
not	allowed,	we	will	define	as	disabled.	If	the	bit	is	0,	then	interrupts	are	allowed,	we	will
define	as	enabled.	The	BASEPRI	register	prevents	interrupts	with	lower	priority
interrupts,	but	allows	higher	priority	interrupts.	For	example	if	BASEPRI	equals	3,	then
requests	with	level	0,	1,	and	2	can	interrupt,	while	requests	at	levels	3	and	higher	will	be
postponed.	The	software	can	specify	the	priority	level	of	each	interrupt	request.	If
BASEPRI	is	zero,	then	the	priority	feature	is	disabled	and	all	interrupts	are	allowed.	Four

conditions	must	be	true	for	an	interrupt	to	be	generated:	arm,	enable,	level,	and	trigger.	A
device	must	be	armed;	interrupts	must	be	enabled	(I=0);	the	level	of	the	requested
interrupt	must	be	less	than	BASEPRI;	and	an	external	event	must	occur	setting	a	trigger
flag	(e.g.,	new	UART	input	is	ready).	An	interrupt	causes	the	following	sequence	of
events.	First,	the	current	instruction	is	finished.	Second,	the	execution	of	the	currently
running	program	is	suspended,	pushing	eight	registers	on	the	stack	(R0,	R1,	R2,	R3,	R12,
LR,	PC,	and	PSR	with	the	R0	on	top).	Third,	the	LR	is	set	to	a	specific	value	signifying
an	interrupt	service	routine	(ISR)	is	being	run	(bits	[31:8]	to	0xFFFFFF,	bits	[7:1]	specify
the	type	of	interrupt	return	to	perform,	bit	0	will	always	be	1	on	the	Cortex-M	meaning
Thumb	mode).	Fourth,	the	IPSR	is	set	to	the	interrupt	number	being	processed.	Lastly,	the
PC	is	loaded	with	the	address	of	the	ISR	(vector).	These	five	steps,	called	a	context
switch,	occur	automatically	in	hardware	as	the	context	is	switched	from	foreground	to
background.	Next,	the	software	executes	the	ISR.

If	a	trigger	flag	is	set,	but	the	processor	is	disabled,	the	interrupt	level	is	not	high	enough,
or	the	flag	is	disarmed,	the	request	is	not	dismissed.	Rather	the	request	is	held	pending,
postponed	until	a	later	time,	when	the	system	deems	it	convenient	to	handle	the	requests.
Clearing	a	trigger	flag	is	called	acknowledgement,	which	occurs	only	by	specific
software	action.	Each	trigger	flag	has	a	specific	action	software	must	perform	to	clear	that
flag.	We	will	pay	special	attention	to	these	enable/disable	software	actions.	In	particular
we	will	need	to	disable	interrupts	when	executing	nonreentrant	code	but	disabling
interrupts	will	have	the	effect	of	increasing	the	response	time	of	software	to	external
events.	The	SysTick	periodic	interrupt	will	be	the	only	example	of	an	automatic
acknowledgement.	For	SysTick,	the	periodic	timer	requests	an	interrupt,	but	the	trigger
flag	will	be	automatically	cleared.	For	all	the	other	trigger	flags,	the	ISR	must	explicitly
execute	code	that	clears	the	flag.

The	interrupt	service	routine	(ISR)	is	the	software	module	that	is	executed	when	the
hardware	requests	an	interrupt.	There	may	be	one	large	ISR	that	handles	all	requests
(polled	interrupts),	or	many	small	ISRs	specific	for	each	potential	source	of	interrupt
(vectored	interrupts).	The	Cortex-M	has	both	polled	and	vectored	interrupts.	The	design	of
the	interrupt	service	routine	requires	careful	consideration	of	many	factors.	The	ISR	must
acknowledge	the	trigger	flag	that	caused	the	interrupt.	After	the	ISR	provides	the
necessary	service,	it	will	execute BX	LR .	Because	LR	contains	a	special	value,	this
instruction	pulls	the	8	registers	from	the	stack,	which	returns	control	to	the	main	program.
There	are	two	stack	pointers:	PSP	and	MSP.	The	software	in	this	book	will	exclusively	use
the	MSP.	It	is	imperative	that	the	ISR	software	balance	the	stack	before	exiting.	Execution
of	the	main	program	will	then	continue	with	the	exact	stack	and	register	values	that
existed	before	the	interrupt.	Although	interrupt	handlers	can	create	and	use	local	variables,
parameter	passing	between	threads	must	be	implemented	using	shared	global	memory
variables.	A	private	global	variable	can	be	used	if	an	interrupt	thread	wishes	to	pass
information	to	itself,	e.g.,	from	one	interrupt	instance	to	another.	The	execution	of	the
main	program	is	called	the	foreground	thread,	and	the	executions	of	the	various	interrupt
service	routines	are	called	background	threads.

An	axiom	with	interrupt	synchronization	is	that	the	ISR	should	execute	as	fast	as	possible.
The	interrupt	should	occur	when	it	is	time	to	perform	a	needed	function,	and	the	interrupt
service	routine	should	perform	that	function,	and	return	right	away.		Placing	backward
branches	(busy-wait	loops,	iterations)	in	the	interrupt	software	should	be	avoided	if
possible.	The	percentage	of	time	spent	executing	any	one	ISR	should	be	minimized.	For
an	input	device,	the	interface	latency	is	the	time	between	when	new	input	is	available,
and	the	time	when	the	software	reads	the	input	data.	We	can	also	define	device	latency	as
the	response	time	of	the	external	I/O	device.	For	example,	if	we	request	that	a	certain
sector	be	read	from	a	disk,	then	the	device	latency	is	the	time	it	take	to	find	the	correct
track	and	spin	the	disk	(seek)	so	the	proper	sector	is	positioned	under	the	read	head.	For	an
output	device,	the	interface	latency	is	the	time	between	when	the	output	device	is	idle,	and
the	time	when	the	software	writes	new	data.		A	real-time	system	is	one	that	can	guarantee
a	worst	case	interface	latency.

Many	factors	should	be	considered	when	deciding	the	most	appropriate	mechanism	to
synchronize	hardware	and	software.	One	should	not	always	use	busy	wait	because	one	is
too	lazy	to	implement	the	complexities	of	interrupts.	On	the	other	hand,	one	should	not
always	use	interrupts	because	they	are	fun	and	exciting.	Busy-wait	synchronization	is
appropriate	when	the	I/O	timing	is	predicable,	and	when	the	I/O	structure	is	simple	and
fixed.	Busy	wait	should	be	used	for	dedicated	single	thread	systems	where	there	is	nothing
else	to	do	while	the	I/O	is	busy.	Interrupt	synchronization	is	appropriate	when	the	I/O
timing	is	variable,	and	when	the	I/O	structure	is	complex.	In	particular,	interrupts	are
efficient	when	there	are	I/O	devices	with	different	speeds.	Interrupts	allow	for	quick
response	times	to	important	events.	In	particular,	using	interrupts	is	one	mechanism	to
design	real-time	systems,	where	the	interface	latency	must	be	short	and	bounded.

Interrupts	can	also	be	used	for	infrequent	but	critical	events	like	power	failure,	memory
faults,	and	machine	errors.	Periodic	interrupts	will	be	useful	for	real-time	clocks,	data
acquisition	systems,	and	control	systems.	For	extremely	high	bandwidth	and	low	latency
interfaces,	DMA	should	be	used.

An	atomic	operation	is	a	sequence	that	once	started	will	always	finish,	and	cannot	be
interrupted.	All	instructions	on	the	ARM ® 	CortexTM-M	processor	are	atomic	except	store
and	load	multiple, STM	LDM .	If	we	wish	to	make	a	section	of	code	atomic,	we	can	run
that	code	with	I=1.	In	this	way,	interrupts	will	not	be	able	to	break	apart	the	sequence.
Again,	requested	that	are	triggered	while	I=1	are	not	dismissed,	but	simply	postponed	until
I=0.	In	particular,	to	implement	an	atomic	operation	we	will	1)	save	the	current	value	of
the	PRIMASK,	2)	disable	interrupts,	3)	execute	the	operation,	and	4)	restore	the
PRIMASK	back	to	its	previous	value.

Checkpoint	5.1:	What	four	conditions	must	be	true	for	an	interrupt	to	occur?	

Checkpoint	5.2:	How	do	you	enable	interrupts?	

Checkpoint	5.3:	What	are	the	steps	that	occur	when	an	interrupt	is	processed?	

As	you	develop	experience	using	interrupts,	you	will	come	to	notice	a	few	common
aspects	that	most	computers	share.	The	following	paragraphs	outline	three	essential
mechanisms	that	are	needed	to	utilize	interrupts.	Although	every	computer	that	uses
interrupts	includes	all	three	mechanisms	there	are	a	wide	spectrum	of	implementation
methods.

All	interrupting	systems	must	have	the	ability	for	the	hardware	to	request	action	from
computer.	The	interrupt	requests	can	be	generated	using	a	separate	connection	to
processor	for	each	device,	or	using	a	shared	negative	logic	wire-or	requests	using	open
collector	logic.	The	LM3S/TM4C	microcontrollers	use	separate	connections	to	request
interrupts.

All	interrupting	systems	must	have	the	ability	for	the	computer	to	determine	the
source.	A	vectored	interrupt	system	employs	separate	connections	for	each	device	so	that
the	computer	can	give	automatic	resolution.	You	can	recognize	a	vectored	system	because
each	device	has	a	separate	interrupt	vector	address.	With	a	polled	interrupt	system,	the
interrupt	software	must	poll	each	device,	looking	for	the	device	that	requested	the
interrupt.	Most	interrupts	on	the	LM3S/TM4C	microcontrollers	are	vectored,	but	there	are
some	triggers,	like	edge-triggered	interrupts	on	the	GPIO	pins,	that	share	the	same	vector.
For	these	interrupts	the	ISR	must	poll	to	see	which	trigger	caused	the	interrupt.

The	third	necessary	component	of	the	interface	is	the	ability	for	the	computer	to
acknowledge	the	interrupt.	Normally	there	is	a	trigger	flag	in	the	interface	that	is	set	on
the	busy	to	ready	state	transition,	i.e.,	when	the	device	needs	service.	In	essence	this
trigger	flag	is	the	cause	of	the	interrupt.	Acknowledging	the	interrupt	involves	clearing
this	flag.	It	is	important	to	shut	off	the	request,	so	that	the	computer	will	not	mistakenly
request	a	second	(and	inappropriate)	interrupt	service	for	the	same	condition.	The	first
Intel	x86	processors	used	a	hardware	acknowledgment	that	automatically	clears	the
request.	Except	for	periodic	SysTick,	LM3S/TM4C	microcontrollers	use	software
acknowledge.	So	when	designing	an	interrupting	interface,	it	will	be	important	to	know
exactly	what	hardware	conditions	will	set	the	trigger	flag	(and	request	an	interrupt)	and
how	the	software	will	clear	it	(acknowledge)	in	the	ISR.

Common	Error:	The	system	will	crash	if	the	interrupt	service	routine	doesn’t	either
acknowledge	or	disarm	the	device	requesting	the	interrupt.		

Common	Error:	The	ISR	software	should	not	disable	interrupts	at	the	beginning	nor
should	it	reenable	interrupts	at	the	end.	Which	interrupts	are	allowed	to	run	is
automatically	controlled	by	the	NVIC.

5.2.	Interthread	Communication	and
Synchronization
For	regular	function	calls	we	use	the	registers	and	stack	to	pass	parameters,	but	interrupt
threads	have	logically	separate	resisters	and	stack.	In	particular,	registers	are	automatically
saved	by	the	processor	as	it	switches	from	main	program	(foreground	thread)	to	interrupt
service	routine	(background	thread).	Exiting	an	ISR	will	restore	the	registers	back	to	their
previous	values.	Thus,	all	parameter	passing	must	occur	through	global	memory.	One
cannot	pass	data	from	the	main	program	to	the	interrupt	service	routine	using	registers	or
the	stack.

In	this	chapter,	multithreading	means	one	main	program	(foreground	thread)	and	multiple
ISRs	(background	threads).	An	operating	system	allows	multiple	foreground	threads.
Synchronizing	threads	is	a	critical	task	affecting	efficiency	and	effectiveness	of	systems
using	interrupts.	In	this	section,	we	will	present	in	general	form	three	constructs	to
synchronize	threads:	binary	semaphore,	mailbox,	and	FIFO	queue.

A	binary	semaphore	is	simply	a	shared	flag,	as	described	in	Figure	5.1.	There	are	two
operations	one	can	perform	on	a	semaphore.	Signal	is	the	action	that	sets	the	flag.	Wait	is
the	action	that	checks	the	flag,	and	if	the	flag	is	set,	the	flag	is	cleared	and	important	stuff
is	performed.	This	flag	must	exist	as	a	private	global	variable	with	restricted	access	to
only	the	Wait	and	Signal	functions.In	C,	we	add	the	qualifier static 	to	a	global	variable	to
restrict	access	to	software	within	the	same	file.	In	order	to	reduce	complexity	of	the
system,	it	will	be	important	to	limit	the	access	to	this	flag	to	as	few	modules	as	possible.	

The	history	of	semaphores	dates	back	to	the	invention	of	fire.	Man	has	used	optical
telegraphs	such	as	fire,	smoke,	and	flags	to	communicate	over	short	distances.	The
transmitter	encodes	the	information	as	recognizable	images.	The	observer	at	a	distant
location	sees	(receives)	the	signals	produced	by	the	transmitter.	Semaphores	were	used	in
the	early	railroads	to	allow	multiple	trains	to	share	access	to	a	common	track.	The	position
of	the	semaphore	flag	described	the	status	of	the	upcoming	track.	The	basic	idea	of	these
physical	semaphores	is	used	in	I/O	interfacing.	A	shared	flag	describes	the	status,	and
threads	can	observe	or	change	the	flag.

Figure	5.1.	A	semaphore	can	be	used	to	synchronize	threads.

With	binary	semaphores,	the	flag	has	two	states:	0	and	1.	It	is	good	design	to	assign	a
meaning	to	this	flag.	For	example,	0	might	mean	the	switch	has	not	been	pressed,	and	1
might	mean	the	switch	has	been	pressed.	Figure	5.1	shows	two	examples	of	the	binary
semaphore.	The	big	arrows	in	this	figure	signify	the	synchronization	link	between	the
threads.	In	the	example	on	the	left,	the	ISR	signals	the	semaphore	and	the	main	program
waits	on	the	semaphore.	Notice	the	“important	stuff”	is	run	in	the	foreground	once	per
execution	of	the	ISR.	In	the	example	on	the	right,	the	main	program	signals	the	semaphore
and	the	ISR	waits.	It	is	good	design	to	have	NO	backwards	jumps	in	an	ISR.	In	this
particular	application,	if	the	ISR	is	running	and	the	semaphore	is	0,	the	action	is	just
skipped	and	the	computer	returns	from	the	interrupt.

A	counting	semaphore	is	a	shared	counter,	representing	the	number	of	objects.	When	a
new	object	is	created,	the	counter	is	incremented,	and	when	an	object	is	destroyed	the
counter	is	decremented.	A	counter	describes	the	status,	and	threads	can	observe,	increment
or	decrement.

The	second	interthread	synchronization	scheme	is	the	mailbox.	The	mailbox	is	a	binary
semaphore	with	associated	data	variable.	Figure	5.2	illustrates	an	input	device	interfaced
using	interrupt	synchronization.

Figure	5.2.	A	mailbox	can	be	used	to	pass	data	between	threads.
The	big	arrow	in	Figure	5.2	signifies	the	communication	and	synchronization	link	between
the	background	and	foreground.	The	mailbox	structure	is	implemented	with	two	shared
global	variables.Mail contains	data,	and Status 	is	a	binary	semaphore	specifying	whether
the	mailbox	is	full	or	empty.	The	interrupt	is	requested	on	its	hardware	trigger,	signifying
new	data	areready	from	the	input	device.		The	ISR	will	read	the	data	from	the	input	device
and	store	it	in	the	shared	global	variableMail ,	then	update	its	status	to	full.	The	main
program	will	perform	other	calculations,	while	occasionally	checking	the	status	of	the
mailbox.	When	the	mailbox	has	data,	the	main	program	will	process	it.	This	approach	is
adequate	for	situations	where	the	input	bandwidth	is	slow	compared	to	the	software
processing	speed.

One	way	to	visualize	the	interrupt	synchronization	is	to	draw	a	state	versus	time	plot	of
the	activities	of	the	hardware,	the	mailbox,	and	the	two	software	threads.		Figure	5.3
shows	that	at	time	(a)	the	mailbox	is	empty,	the	input	device	is	idle	and	the	main	program
is	performing	other	tasks,	because	mailbox	is	empty.	When	new	input	data	are	ready,	the
trigger	flag	will	be	set,and	an	interrupt	will	be	requested.	At	time	(b)	the	ISR	reads	data
from	input	device	and	saves	it	inMail ,	and	thenit	sets Status to	full.	At	time	(c)	the	main
program	recognizes Status is	full.	At	time	(d)	the	main	program	processes	data
fromMail ,	sets Status 	to	empty.	Notice	that	even	though	there	are	two	threads,	only	one
is	active	at	a	time.	The	interrupt	hardware	switches	the	processor	from	the	main	program
to	the	ISR,	and	the	return	from	interrupt	switches	the	processor	back.

Figure	5.3.	Hardware/software	timing	of	an	input	interface	using	a
mailbox.
The	third	synchronization	technique	is	the	FIFO	queue,	shown	in	Figure	5.4.	With
mailbox	synchronization,	the	threads	execute	in	lock-step:	one,	the	other,	one,	the	other…
However,	with	the	FIFO	queue	execution	of	the	threads	is	more	loosely	coupled.	The
classic	producer/consumer	problem	has	two	threads.	One	thread	produces	data	and	the
other	consumes	data.	For	an	input	device,	the	background	thread	is	the	producer	because	it
generates	new	data,	and	the	foreground	thread	is	the	consumer	because	it	uses	up	the	data.
For	an	output	device,	the	data	flows	in	the	other	direction	so	the	producer/consumer	roles
are	reversed.	It	is	appropriate	to	pass	data	from	the	producer	thread	to	the	consumer	thread
using	a	FIFO	queue.	Figure	5.4	shows	one	producer	linked	to	one	consumer.	However,	it
is	possible	to	have	multiple	producers	connected	to	multiple	consumers.	An	example	of
multiple	producers	is	a	USB	hub	or	Ethernet	router,	where	packets	can	arrive	from
multiple	essentially	equivalent	ports.	Another	name	for	this	is	client-server,	where	the
server	produces	data	and	the	client	consumes	data.

Figure	5.4.	In	a	producer/consumer	system,	FIFO	queues	can	be	used	to
pass	data	between	threads.
Observation:	For	systems	with	interrupt-driven	I/O	on	multiple	devices,	there	will	be	a
separate	FIFO	for	each	device.		

We	could	process	the	data	within	the	ISR	itself,	and	just	report	the	results	of	the
processing	to	the	main	program	using	the	mailbox.	Processing	data	in	the	ISR	is	usually
poor	design	because	we	try	to	minimize	the	time	running	in	the	ISR,	in	order	to	minimize
latency	of	other	interrupts.

An	input	device	needs	service	(busy	to	done	state	transition)	when	new	data	are	available,
see	Figures	5.4	and	5.5.	The	interrupt	service	routine	(background)	will	accept	the	data
and	put	it	into	a	FIFO.	Typically,	the	ISR	will	restart	the	input	hardware,	causing	a	done	to
busy	transition.

An	output	device	needs	service	(busy	to	done	state	transition)	when	the	device	is	idle,
ready	to	output	more	data.	The	interrupt	service	routine	(background)	will	get	more	data
from	the	FIFO	and	output	it.	The	output	function	will	restart	the	hardware	causing	a	done
to	busy	transition.	Two	particular	problems	with	output	device	interrupts	are

1.	How	does	one	generate	the	first	interrupt?	

In	other	words,	how	does	one	start	the	output	thread?	and

2.	What	does	one	do	if	an	output	interrupt	occurs	(device	is	idle)

but	there	is	no	more	data	currently	available	(e.g.,	FIFO	is	empty)?

	
The	foreground	thread	(main	program)	executes	a	loop,	and	accesses	the	appropriate	FIFO
when	it	needs	to	input	or	output	data.	The	background	threads	(interrupts)	are	executed
when	the	hardware	needs	service.

Figure	5.5.	The	input	device	interrupts	when	it	has	new	data,	and	the
output	device	interrupts	when	idle.
One	way	to	visualize	the	interrupt	synchronization	is	to	draw	a	state	versus	time	plot	of
the	activities	of	the	hardware	and	the	two	software	modules.	Figure	5.6	is	drawn	to
describe	a	situation	where	the	time	between	inputs	is	about	twice	as	long	as	it	takes	the
software	to	process	the	data.	For	this	example,	the	main	thread	begins	by	waiting	because
the	FIFO	is	empty	(a).	When	the	input	device	is	busy	it	is	in	the	process	of	creating	new
input.	When	the	input	device	is	done,	new	data	are	available	and	an	interrupt	is	requested.
The	interrupt	service	routine	will	read	the	data	and	put	it	into	the	FIFO	(b).	Once	data	are
in	the	FIFO,	the	main	program	is	released	to	go	on	because	the	get	function	will	return
with	data	(c).	The	main	program	processes	the	data	(d)	and	then	waits	for	more	input	(a).
The	arrows	from	one	graph	to	the	other	represent	the	synchronizing	events.	Because	the
time	for	the	software	to	read	and	process	the	data	is	less	than	the	time	for	the	input	device
to	create	new	input,	this	situation	is	called	I/O	bound.	In	this	situation,	the	FIFO	has
either	0	or	1	entry,	and	the	use	of	interrupts	does	not	enhance	the	bandwidth	over	the	busy-
wait	implementations	presented	in	the	previous	chapter.	Even	with	an	I/O	bound	device	it
may	be	more	efficient	to	utilize	interrupts	because	it	provides	a	straight-forward	approach
to	servicing	multiple	devices.

Figure	5.6.	Hardware/software	timing	of	an	I/O	bound	input	interface.

In	this	second	example,	the	input	device	starts	with	a	burst	of	high	bandwidth	activity.
Figure	5.7	is	drawn	to	describe	a	situation	where	the	input	rate	is	temporarily	two	to	three
times	faster	than	the	software	can	handle.	As	long	as	the	interrupt	service	routine	is	fast
enough	to	keep	up	with	the	input	device,	and	as	long	as	the	FIFO	does	not	become	full
during	the	burst,	no	data	are	lost.	The	software	waits	for	the	first	data	(a),	but	then	does
not	have	to	wait	until	the	burst	is	over.	In	this	situation,	the	overall	bandwidth	is	higher
than	it	would	be	with	a	busy-wait	implementation,	because	the	input	device	does	not	have
to	wait	for	each	data	byte	to	be	processed	(b).	This	is	the	classic	example	of	a	“buffered”
input,	because	the	ISR	puts	data	the	FIFO.	The	main	program	gets	data	from	the	FIFO	(c),
and	then	processes	it	(d).	When	the	I/O	device	is	faster	than	the	software,	the	system	is
called	CPU	bound.	As	we	will	see	later,	this	system	will	work	only	if	the	producer	rate
temporarily	exceeds	the	consumer	rate	(a	short	burst	of	high	bandwidth	input).	If	the
external	device	sustained	the	high	bandwidth	input	rate,	then	the	FIFO	would	become	full
and	data	would	be	lost.

Figure	5.7.	Hardware/software	timing	of	an	input	interface	during	a	high
bandwidth	burst.
For	an	input	device,	if	the	FIFO	is	usually	empty,	the	interface	is	I/O	bound.	During	times
when	there	are	many	elements,	the	interface	is	CPU	bound.

For	an	output	device,	the	interrupt	is	requested	when	the	output	is	idle	and	ready	to	accept
more	data.		The	“busy	to	done”	state	transition	causes	an	interrupt.	The	interrupt	service
routine	gives	the	output	device	another	piece	of	data	to	output.	Again,	we	can	visualize	the
interrupt	synchronization	by	drawing	a	state	versus	time	plot	of	the	activities	of	the
hardware	and	the	two	software	modules.	Figure	5.8	is	drawn	to	describe	a	situation	where
the	time	between	outputs	is	about	half	as	long	as	it	takes	the	software	to	generate	new
data.	For	an	output	device	interface,	the	output	device	is	initially	disarmed	and	the	FIFO	is
empty.	The	main	thread	begins	by	generating	new	data	(a).	After	the	main	program	puts
the	data	into	the	FIFO	it	arms	the	output	interrupts	(b).	This	first	interrupt	occurs
immediately	and	the	ISR	gets	some	data	from	the	FIFO	and	outputs	it	to	the	external
device	(c).	The	output	device	becomes	busy	because	it	is	in	the	process	of	outputting	data.
It	is	important	to	realize	that	it	only	takes	the	software	on	the	order	of	1	µsec	to	write	data
to	one	of	its	output	ports,	but	usually	it	takes	the	output	device	much	longer	to	fully
process	the	data.	When	the	output	device	is	done,	it	is	ready	to	accept	more	data	and	an
interrupt	is	requested.	If	the	FIFO	is	empty	at	this	point,	the	ISR	will	disarm	the	output
device	(d).	If	the	FIFO	is	not	empty,	the	interrupt	service	routine	will	get	from	the	FIFO,
and	write	it	out	to	the	output	port.	Once	data	are	written	to	the	output	port,	the	output

device	is	released	to	go	on.		In	this	first	example,	the	time	for	the	software	to	generate	data
is	larger	than	the	time	for	the	external	device	to	output	it.	This	is	an	example	of	a	CPU
bound	system.	In	this	situation,	the	FIFO	has	either	0	or	1	entry,	and	the	use	of	interrupts
does	not	enhance	the	bandwidth	over	the	busy-wait	implementations	presented	in	the
previous	chapter.	Nevertheless	interrupts	provide	a	well-defined	mechanism	for	dealing
with	complex	systems.

Figure	5.8.	Hardware/software	timing	of	a	CPU	bound	output	interface.
In	this	second	output	example,	the	software	starts	with	a	burst	of	high	bandwidth	activity.
Figure	5.9	is	drawn	to	describe	a	situation	where	the	software	produces	data	at	a	rate	that
is	temporarily	much	faster	than	the	hardware	can	handle.	As	long	as	the	FIFO	does	not
become	full,	no	data	are	lost.	In	this	situation,	the	overall	bandwidth	is	higher	than	it
would	be	with	a	busy-wait	implementation,	because	the	software	does	not	have	to	wait	for
each	data	byte	to	be	processed	by	the	hardware.	The	software	generates	data	(a)	and	puts	it
into	the	FIFO	(b).	When	the	output	is	idle,	it	generates	an	interrupt.	The	ISR	gets	data	and
restarts	the	output	device	(c).

Figure	5.9.	Hardware/software	timing	of	an	I/O	bound	output	interface.
This	is	the	classic	example	of	a	“buffered”	output,	because	data	enters	the	system	(via	the
main	program)	is	temporarily	stored	in	a	buffer	(put	into	the	FIFO)	and	the	data	are
processed	later	(by	the	ISR,	get	from	the	FIFO,	write	to	external	device.)	When	the	I/O
device	is	slower	than	the	software,	the	system	is	called	I/O	bound.	Just	like	the	input
scenario,	the	FIFO	might	become	full	if	the	producer	rate	is	too	high	for	too	long.

There	are	other	types	of	interrupt	that	are	not	an	input	or	output.	For	example	we	will
configure	the	computer	to	request	an	interrupt	on	a	periodic	basis.	This	means	an	interrupt
handler	will	be	executed	at	fixed	time	intervals.	This	periodic	interrupt	will	be	essential
for	the	implementation	of	real-time	data	acquisition	and	real-time	control	systems.	For
example	if	we	are	implementing	a	digital	controller	that	executes	a	control	algorithm	100
times	a	second,	then	we	will	set	up	the	internal	timer	hardware	to	request	an	interrupt
every	10	ms.	The	interrupt	service	routine	will	execute	the	digital	control	algorithm	and
return	to	the	main	thread.	We	will	use	periodic	interrupts	in	Chapters	10	and	12.

Performance	Tip:	It	is	poor	design	to	employ	backward	jumps	in	an	ISR,	because	they
may	affect	the	latency	of	other	interrupt	requests.	Whenever	you	are	thinking	about	using
a	backward	jump,	consider	redesigning	the	system	with	more	or	different	triggers	to
reduce	the	number	of	backward	jumps.		

As	you	recall,	the	FIFO	passes	the	data	from	the	producer	to	the	consumer.	In	general,	the
rates	at	which	data	are	produced	and	consumed	can	vary	dynamically.	Humans	do	not
enter	data	into	a	keyboard	at	a	constant	rate.	Even	printers	require	more	time	to	print	color
graphics	versus	black	and	white	text.	Let	tpbe	the	time	(in	sec)	between	calls	to Fifo_Put ,
and	rp	be	the	arrival	rate	(producer	rate	in	bytes/sec)	into	the	system,	so	rp	=	1/tp.	
Similarly,	let	tgbe	the	time	(in	sec)	between	calls	to Fifo_Get ,	and	rg	be	the	service	rate
(consumer	rate	in	bytes/sec)	out	of	the	system,	so	rg	=	1/tg.

If	the	minimum	time	between	calls	to Fifo_Put is	greater	than	the	maximum	time	between
calls	to Fifo_Get ,	then	a	FIFO	is	not	necessary	and	the	data	flow	could	be	solved	with	a
mailbox.	I.e.,	no	FIFO	is	needed	if	min(tp)	≥	max(tg).	On	the	other	hand,	if	the	time
between	calls	to Fifo_Put becomes	less	than	the	time	between	calls	to Fifo_Get 	because
either

•	The	arrival	rate	temporarily	increases

•	The	service	rate	temporarily	decreases

	
then	information	will	be	collected	in	the	FIFO.	For	example,	a	person	might	type	very	fast
for	a	while,	followed	by	long	pause.	The	FIFO	could	be	used	to	capture	without	loss	all
the	data	as	it	comes	in	very	fast.	Clearly	on	average	the	system	must	be	able	to	process	the
data	(the	consumer	thread)	at	least	as	fast	as	the	average	rate	at	which	the	data	arrives
(producer	thread).	If	the	average	producer	rate	is	larger	than	the	average	consumer	rate

Ave(rp)	>	Ave(rg)

then	the	FIFO	will	eventually	overflow	no	matter	how	large	the	FIFO.	If	the	producer	rate
is	temporarily	high,	and	that	causes	the	FIFO	to	become	full,	then	this	problem	can	be
solved	by	increasing	the	FIFO	size.

There	is	fundamental	difference	between	an	empty	error	and	a	full	error.	Consider	the
application	of	using	a	FIFO	between	your	computer	and	its	printer.	This	is	a	good	idea
because	the	computer	can	temporarily	generate	data	to	be	printed	at	a	very	high	rate
followed	by	long	pauses.	The	printer	is	like	a	turtle.	It	can	print	at	a	slow	but	steady

rate.The	computer	will	put	a	byte	into	the	FIFO	that	it	wants	printed.	The	printer	will	get	a
byte	out	of	the	FIFO	when	it	is	ready	to	print	another	character.	A	full	error	occurs	when
the	computer	calls Fifo_Put 	at	too	fast	a	rate.	A	full	error	is	serious,	because	if	ignored
data	will	be	lost.	Recall	that	one	of	the	definitions	of	a	Kahn	Process	Network	is	that	the
FIFOs	are	never	full.	So,	implementing	the	data	flow	in	such	a	way	that	the	FIFOs	never
become	full	allows	us	to	model	the	system	as	a	KPN.	On	the	other	hand,	an	empty	error
occurs	when	the	printer	is	ready	to	print	but	the	computer	has	nothing	in	mind.	An	empty
error	is	not	serious,	because	in	this	case	the	printer	just	sits	there	doing	nothing.

Checkpoint	5.4:	If	the	FIFO	becomes	full,	can	the	situation	always	be	solved	by
increasing	the	size?	

Consider	a	FIFO	that	has	a	feature	where	we	can	determine	the	number	of	elements	by
calling Fifo_Size .	If	we	place	this	debugging	instrument	inside	the	producer,	we	can
measure	a	histogram	of	FIFO	sizes	telling	us	1)	if	the	FIFO	ever	became	full;	2)	if	the
interface	is	CPU	bound;	or	3)	if	the	interface	is	I/O	bound.

uint32_t	Histogram[FIFOSIZE];

#define	Collect()	(Histogram[Fifo_Size()]++;)

5.3.	Critical	Sections
In	general,	if	two	threads	access	the	same	global	memory	and	one	of	the	accesses	is	a
write,	then	there	is	a	causal	dependency	between	the	threads.	This	means,	the	execution
order	may	affect	the	outcome.	Shared	global	variables	are	very	important	in	multithreaded
systems	because	they	are	required	to	pass	data	between	threads,	but	they	are	complicated
and	it	is	hard	to	find	bugs	that	result	with	their	use.

A	program	segment	is	reentrant	if	it	can	be	concurrently	executed	by	two	(or	more)
threads.	To	implement	reentrant	software,	we	place	variables	in	registers	or	on	the	stack,
and	avoid	storing	into	global	memory	variables.	When	writing	in	assembly,	we	use
registers,	or	the	stack	for	parameter	passing	to	create	reentrant	subroutines.	Typically	each
thread	will	have	its	own	set	of	registers	and	stack.	A	nonreentrant	subroutine	will	have	a
section	of	code	called	a	vulnerable	window	or	critical	section.	An	error	occurs	if

1)	One	thread	calls	the	function	in	question

2)	It	is	executing	in	the	critical	section	when	interrupted	by	a	second	thread

3)	The	second	thread	calls	the	same	function.

	
There	are	a	number	of	scenarios	that	can	happen	next.	In	the	most	common	scenario,	the
second	thread	is	allowed	to	complete	the	execution	of	the	function,	control	is	then	returned
to	the	first	thread,	and	the	first	thread	finishes	the	function.	This	first	scenario	is	the	usual
case	with	interrupt	programming.	In	the	second	scenario,	the	second	thread	executes	part
of	the	critical	section,	is	interrupted	and	then	re-entered	by	a	third	thread,	the	third	thread
finishes,	the	control	is	returned	to	the	second	thread	and	it	finishes,	lastly	the	control	is
returned	to	the	first	thread	and	it	finishes.	This	second	scenario	can	happen	in	interrupt
programming	if	the	second	interrupt	has	higher	priority	than	the	first.	A	critical	section
may	exist	when	two	different	functions	that	access	and	modify	the	same	memory-resident
data	structure.	

Program	5.1	shows	a	C	function	and	the	assembly	code	generated	by	the	ARM	KeilTM
uVision®	compiler.	The	function	is	nonreentrant	because	of	the	read-modify-write
nonatomic	access	to	theglobal	variable, num .

	

num			SPACE		4			

Count	LDR		r0,[pc,#116]		;	R0=
&num

;*******start	of	critical	section***

LDR		r0,[r0,#0x00]	;	R0=num

;could	be	bad	if	interrupt	occurs
here

uint32_t	volatile	num;			

void	Count(void){			

		num	=	num	+	1;	

}

ADDS	r0,r0,#1

;could	be	bad	if	interrupt	occurs
here

LDR		r1,[pc,#108]		;	R1=&num

;could	be	bad	if	interrupt	occurs
here

STR	r0,[r1,#0x00]	;	update	num

;*******end	of	critical	section***

BX			lr

ptr		DCD	num				

Program	5.1.	This	function	is	nonreentrant	because	of	the	read-modify-
write	access	to	a	global.
Assume	there	are	two	concurrentthreads	(the	main	program	and	a	background	ISR)	that
both	call	this	function.	Concurrent	means	that	both	threads	are	ready	to	run.	Because	there
is	only	one	computer,	exactly	one	thread	will	be	running	at	a	time.	Typically,	the	operating
system	switches	execution	control	back	and	forth	using	interrupts.	There	are	three	places
in	the	assembly	code	at	which	if	an	interrupt	were	to	occur	and	the	ISR	called	the	same
function,	the	end	result	would	be num would	be	incremented	only	once,	even	though	the
function	was	called	twice.	Assume	for	this	example num 	is	initially	100.	An	error	occurs
if:

1.The	main	program	calls Count
2.The	main	executes LDR 	 r0,[r0,#0x00]making	R0	=	100

3.	The	OS	halts	the	main	(using	an	interrupt)	and	starts	the	ISR
4.the	ISR	calls Count
Executes	num=num+1; making	equal	to	101

5.	The	OS	returns	control	back	to	the	main	program
R0	is	back	to	its	original	value	of	100

6.	The	main	program	finished	the	function	(adding	1	to	R0)
Making num 	equal	to	101

	

An	atomic	operation	is	one	that	once	started	is	guaranteed	to	finish.	In	most	computers,
once	an	instruction	has	begun,	the	instruction	must	be	finished	before	the	computer	can
process	an	interrupt.	In	general,	nonreentrant	code	can	be	grouped	into	three	categories	all
involving	1)	nonatomic	sequences,	2)	writes	and	3)	global	variables.	We	will	classify	I/O
ports	as	global	variables	for	the	consideration	of	critical	sections.	We	will	group	registers
into	the	same	category	as	local	variables	because	each	thread	will	have	its	own	registers
and	stack.

The	first	group	is	the	read-modify-write	sequence:

1.	The	software	reads	the	global	variable	producing	a	copy	of	the	data
2.	The	software	modifies	the	copy	(original	variable	is	still	unmodified)
3.	The	software	writes	the	modification	back	into	the	global	variable.
	

In	the	second	group,	we	have	a	write	followed	by	read,	where	the	global	variable	is	used
for	temporary	storage:

1.	The	software	writes	to	the	global	variable	(only	copy	of	the	information)
2.	The	software	reads	from	the	global	variable	expecting	the	original	data	to	be
there.						
	

In	the	third	group,	we	have	a	non-atomic	multi-step	write	to	a	global	variable:

1.	The	software	writes	part	of	the	new	value	to	a	global	variable
2.	The	software	writes	the	rest	of	the	new	value	to	a	global	variable.
	

Observation:	When	considering	reentrant	software	and	vulnerable	windows	we	classify
accesses	to	I/O	ports	the	same	as	accesses	to	global	variables.

Observation:	Sometimes	we	store	temporary	information	in	global	variables	out	of
laziness.	This	practice	is	to	be	discouraged	because	it	wastes	memory	and	may	cause	the
module	to	not	be	reentrant.

Sometime	we	can	have	a	critical	section	between	two	different	software	functions	(one
function	called	by	one	thread,	and	another	function	called	by	a	different	thread).	In
addition	to	above	three	cases,	a	non-atomic	multi-step	read	will	be	critical	when	paired
with	a	multi-step	write.		For	example,	assume	a	data	structure	has	multiple	components
(e.g.,	hours,	minutes,	and	seconds).	In	this	case,	the	write	to	the	data	structure	will	be
atomic	because	it	occurs	in	a	high	priority	ISR.	The	critical	section	exists	in	the
foreground	between	steps	1	and	3.	In	this	case,	a	critical	section	exists	even	though	no
software	has	actually	been	reentered.

	

Foreground	 thread	 	 	 	 	 	 	 	 	 	 	 	 	
													

1.	The	main	reads	some	of	the
data

	

3.	The	main	 reads	 the	 rest	 of
the	data

Background	 thread	 	 	 	 	 	 	 	 	 	 	 	 	
													

	

2.	 ISR	 writes	 to	 the	 data
structure

																

In	 a	 similar	 case,	 a	 non-atomic	 multi-step	 write	 will	 be	 critical	 when	 paired	 with	 a
multi-step	read.	 	Again,	assume	a	data	structure	has	multiple	components.	 In	 this	case,
the	 read	 from	 the	data	structure	will	be	atomic	because	 it	occurs	 in	a	high	priority	 ISR.
The	critical	section	exists	in	the	foreground	between	steps	1	and	3.

Foreground	 thread	 	 	 	 	 	 	 	 	 	 	 	 	
													

1.	The	main	writes	 some	of	 the
data

	

3.	 The	 main	 writes	 the	 rest	 of
the	data

Background	thread													
													

	

2.	 ISR	 reads	 from	 the	 data
structure

	

When	multiple	threads	are	active,	it	is	possible	for	two	threads	to	be	executing	the	same
program.	For	example,	the	system	may	be	running	in	the	foreground	and	calls Func .	Part
way	through	execution	the Func ,	an	interrupt	occurs.	If	the	ISR	also	calls Func ,	two
threads	are	simultaneously	executing	the	function.	To	experimentally	determine	if	a
function	has	been	reentered,	we	could	use	two	flags	or	two	output	pins.	Set	one	of	them
(PD1, Entered)	at	the	start	and	clear		it	at	the	end.	The	thread	has	been	re-entered	if	this
flag	or	pin	is	set	at	the	start	of	the	function,	as	shown	in	Program	3.7.	In	this	example,	Port
D	bits	1,0	are	not	part	of	the	original	code,	but	rather	used	just	for	the	purpose	of
debugging.	PD1	is	1	when	one	thread	starts	executing	the	function.	However,	if	PD0
becomes	1,	then	the	function	has	been	reentered.

	

#define	PD0				(*((volatile	uint32_t	*)0x40007004))

#define	PD1				(*((volatile	uint32_t	*)0x40007008))

//	function	to	be	tested

volatile	int	Entered=0,Flag=0;

void	Func(void){

//	function	to	be	tested

void	Func(void){

		if(PD1)	PD0	=	1;

		if(Entered)	Flag	=	1;

		Entered	=	1;

//	the	regular	function

		Entered	=	0;}

		PD1	=	2;

//	the	regular	function

		PD1	=	0;

}

Program	5.2.	Detection	of	re-entrant	behavior	using	two	flags	or	two
output	pins.
If	critical	sections	do	exist,	we	can	either	eliminate	it	by	removing	the	access	to	the	global
variable	or	implement	mutual	exclusion,	which	simply	means	only	one	thread	at	a	time	is
allowed	to	execute	in	the	critical	section.	In	general,	if	we	can	eliminate	the	global
variables,	then	the	subroutine	becomes	reentrant.	Without	global	variables	there	are	no
“vulnerable”	windows	because	each	thread	has	its	own	registers	and	stack.	Sometimes	one
must	access	global	memory	to	implement	the	desired	function.	Remember	that	all	I/O
ports	are	considered	global.	Furthermore,	global	variables	are	necessary	to	pass	data
between	threads.

;***********	DisableInterrupts	***************

;	disable	interrupts															

;	inputs:		none

;	outputs:	none															

DisableInterrupts

CPSID		I

BX					LR

;***********	EnableInterrupts	***************

;	disable	interrupts															

;	inputs:		none

;	outputs:	none															

EnableInterrupts

CPSIE		I

BX					LR

;***********	StartCritical	************************

;	make	a	copy	of	previous	I	bit,	disable	interrupts															

;	inputs:		none

;	outputs:	previous	I	bit															

StartCritical

MRS				R0,	PRIMASK		;	save	old	status

CPSID		I												;	mask	all	(except	faults)

BX					LR

;***********	EndCritical	************************

;	using	the	copy	of	previous	I	bit,	restore	I	bit	to	previous	value															

;	inputs:		previous	I	bit

;	outputs:	none														

EndCritical																								

MSR				PRIMASK,	R0

BX					LR

Program	5.3.	Assembly	functions	needed	for	interrupt	enabling	and
disabling.
A	simple	way	to	implement	mutual	exclusion	is	to	disable	interrupts	while	executing	the
critical	section.	It	is	important	to	disable	interrupts	for	as	short	a	time	as	possible,	so	as	to
minimize	the	effect	on	the	dynamic	performance	of	the	other	threads.	While	we	are
running	with	interrupts	disabled,	time-critical	events	like	power	failure	and	danger
warnings	cannot	be	processed.	Notice	also	that	the	interrupts	are	not	simply	disabled	then
enabled.	Before	the	critical	section,	the	interrupt	status	is	saved,	and	the	interrupts
disabled.	After	the	critical	section,	the	interrupt	status	is	restored.	You	cannot	save	the
interrupt	status	in	a	global	variable,	rather	you	should	save	it	either	on	the	stack	or	in	a
register.	We	will	add	the	assembly	code	of	Program	5.3	to	the	Startup.s	file	in	our
projects	that	use	interrupts.	Program	5.4	illustrates	how	to	implement	mutual	exclusion
and	eliminate	the	critical	section.

uint32_t	volatile	num;			

void	Count(void){	int32_t	sr;

		sr	=	StartCritical();	

		num	=	num	+	1;

		EndCritical(sr);	

}

Program	5.4.	This	function	is	reentrant	because	of	the	read-modify-write
access	to	the	global	is	atomic.
Checkpoint	5.5:	Consider	the	situation	of	nested	critical	sections.	For	example,	a	function
with	a	critical	section	calls	another	function	that	also	has	a	critical	section.	What	would
happen	if	you	simply	added	disable	interrupt	at	the	beginning	and	a	reenable	interrupt	at
the	end	of	each	critical	section?	

Another	category	of	timing-dependent	bugs,	similar	to	critical	sections,	is	called	a	race
condition.	A	race	condition	occurs	in	a	multi-threaded	environment	when	there	is	a	causal
dependency	between	two	or	more	threads.	In	other	words,	different	behavior	occurs
depending	on	the	order	of	execution	of	two	threads.	In	this	example	of	a	race	condition,
Thread-1	initializes	Port	B	bits	3	–	0	to	be	output	using	GPIO_PORTB_DIR_R	=	0x0F;
Thread-2	initializes	Port	Bbits	6	–	4	to	be	output	using GPIO_PORTB_DIR_R	=	0x70;
In	particular,	if	Thread-1	runs	first	and	Thread-2	runs	second,	then	Port	B	bits	3	–	0	will	be
set	to	inputs.	Conversely,	if	Thread-2	runs	first	and	Thread-1	runs	second,	then	Port	B	bits
6	–	4	will	be	set	to	inputs.	This	is	a	race	condition	caused	by	unfriendly	code.	The	solution
to	this	problem	is	to	write	the	two	initializations	in	a	friendly	manner.

In	a	second	example,	assume	two	threads	are	trying	to	get	data	from	the	same	input
device.Both	call	the	function UART_InChar 	given	in	Program	4.10.	When	data	arrives
at	the	input,	the	thread	that	executes	first	will	capture	the	data.	This	example	is	equivalent
to	the	Petri	Net	conflict	drawn	in	Figure	4.16.

5.4.	NVIC	on	the	ARM � 	Cortex-M	Processor
On	the	ARM ® 	CortexTM-M	processor,	exceptions	include	resets,	software	interrupts	and
hardware	interrupts.	Each	exception	has	an	associated	32-bit	vector	that	points	to	the
memory	location	where	the	ISR	that	handles	the	exception	is	located.	Vectors	are	stored	in
ROM	at	the	beginning	of	memory.	Program	5.5	shows	the	first	few	vectors	as	defined	in
the	Startup.sfile. DCD 	is	an	assembler	pseudo-op	that	defines	a	32-bit	constant.	ROM
location	0x0000.0000	has	the	initial	stack	pointer,	and	location	0x0000.0004	contains	the
initial	program	counter,	which	is	called	the	reset	vector.	It	points	to	a	function	called	the
reset	handler,	which	is	the	first	thing	executed	following	reset.	There	are	up	to	240	(77	on
the	TM4C123	microcontroller)	possible	interrupt	sources	and	their	32-bit	vectors	are	listed
in	order	starting	with	location	0x0000.0008.	From	a	programming	perspective,	we	can
attach	ISRs	to	interrupts	by	writing	the	ISRs	as	regular	C	functions	with	no	input	or	output
parameters	and	editing	the	Startup.s	file	to	specify	those	functions	for	the	appropriate
interrupt.	For	example,	if	we	wrote	a	Port	C	interrupt	service	routine		named PortCISR ,
then	we	would	replace GPIOPortC_Handler with PortCISR .	In	this	book,	we	will	write
our	ISRs	using	standard	function	names	so	that	the	Startup.s	file	need	not	be	edited.	I.e.,
we	will	simply	call	the	ISRfor	edge-triggered	interrupts	on	Port	C
as GPIOPortC_Handler .	For	more	details	see	the	Startup.s	files	within	the	interrupt
examples	posted	on	the	book	web	site.

EXPORT		__Vectors

__Vectors																													;	address				ISR

								DCD					StackMem	+	Stack						;	0x00000000	Top	of	Stack

DCD					Reset_Handler									;	0x00000004	Reset	Handler

DCD					NMI_Handler											;	0x00000008	NMI	Handler

DCD					HardFault_Handler					;	0x0000000C	Hard	Fault	Handler

DCD					MemManage_Handler					;	0x00000010	MPU	Fault	Handler

DCD					BusFault_Handler						;	0x00000014	Bus	Fault	Handler

DCD					UsageFault_Handler				;	0x00000018	Usage	Fault	Handler

DCD					0																					;	0x0000001C	Reserved

DCD					0																					;	0x00000020	Reserved

DCD					0																					;	0x00000024	Reserved

DCD					0																					;	0x00000028	Reserved

DCD					SVC_Handler											;	0x0000002C	SVCall	Handler

DCD					DebugMon_Handler						;	0x00000030	Debug	Monitor	Handler

DCD					0																					;	0x00000034	Reserved

DCD					PendSV_Handler								;	0x00000038	PendSV	Handler

DCD					SysTick_Handler							;	0x0000003C	SysTick	Handler

DCD					GPIOPortA_Handler					;	0x00000040	GPIO	Port	A

DCD					GPIOPortB_Handler					;	0x00000044	GPIO	Port	B

DCD					GPIOPortC_Handler					;	0x00000048	GPIO	Port	C

DCD					GPIOPortD_Handler					;	0x0000004C	GPIO	Port	D

DCD					GPIOPortE_Handler					;	0x00000050	GPIO	Port	E

DCD					UART0_Handler									;	0x00000054	UART0

DCD					UART1_Handler									;	0x00000058	UART1

DCD					SSI0_Handler										;	0x0000005C	SSI

DCD					I2C0_Handler										;	0x00000060	I2C

DCD					PWMFault_Handler						;	0x00000064	PWM	Fault

DCD					PWM0_Handler										;	0x00000068	PWM	Generator	0

Program	5.5.	Software	syntax	to	set	the	interrupt	vectors	for	the
LM3S/LM4F/TM4C.
Table	5.1	explains	where	to	find	the	priority	bits	for	some	of	the	interrupts	on	the
LM3S/TM4C.	In	particular,	this	table	shows	the	vector	address,	interrupt	number,	IRQ
number,	ISR	name	as	defined	in	the	file	Startup.s,	which	register	contains	priority	bits
and	which	bits	to	modify	when	configuring	priority.	Each	processor	is	a	little	different	so
check	the	data	sheet.

Vector	address Number IRQ ISR	name	in	Startup.s NVIC Priority	bits

0x00000038 14 -2 PendSV_Handler NVIC_SYS_PRI3_R 23	–	21

0x0000003C 15 -1 SysTick_Handler NVIC_SYS_PRI3_R 31	–	29

0x00000040 16 0 GPIOPortA_Handler NVIC_PRI0_R 7	–	5

0x00000044 17 1 GPIOPortB_Handler NVIC_PRI0_R 15	–	13

0x00000048 18 2 GPIOPortC_Handler NVIC_PRI0_R 23	–	21

0x0000004C 19 3 GPIOPortD_Handler NVIC_PRI0_R 31	–	29

0x00000050 20 4 GPIOPortE_Handler NVIC_PRI1_R 7	–	5

0x00000054 21 5 UART0_Handler NVIC_PRI1_R 15	–	13

0x00000058 22 6 UART1_Handler NVIC_PRI1_R 23	–	21

0x0000005C 23 7 SSI0_Handler NVIC_PRI1_R 31	–	29

0x00000060 24 8 I2C0_Handler NVIC_PRI2_R 7	–	5

0x00000064 25 9 PWMFault_Handler NVIC_PRI2_R 15	–	13

0x00000068 26 10 PWM0_Handler NVIC_PRI2_R 23	–	21

0x0000006C 27 11 PWM1_Handler NVIC_PRI2_R 31	–	29

0x00000070 28 12 PWM2_Handler NVIC_PRI3_R 7	–	5

0x00000074 29 13 Quadrature0_Handler NVIC_PRI3_R 15	–	13

0x00000078 30 14 ADC0_Handler NVIC_PRI3_R 23	–	21

0x0000007C 31 15 ADC1_Handler NVIC_PRI3_R 31	–	29

0x00000080 32 16 ADC2_Handler NVIC_PRI4_R 7	–	5

0x00000084 33 17 ADC3_Handler NVIC_PRI4_R 15	–	13

0x00000088 34 18 WDT_Handler NVIC_PRI4_R 23	–	21

0x0000008C 35 19 Timer0A_Handler NVIC_PRI4_R 31	–	29

0x00000090 36 20 Timer0B_Handler NVIC_PRI5_R 7	–	5

0x00000094 37 21 Timer1A_Handler NVIC_PRI5_R 15	–	13

0x00000098 38 22 Timer1B_Handler NVIC_PRI5_R 23	–	21

0x0000009C 39 23 Timer2A_Handler NVIC_PRI5_R 31	–	29

0x000000A0 40 24 Timer2B_Handler NVIC_PRI6_R 7	–	5

0x000000A4 41 25 Comp0_Handler NVIC_PRI6_R 15	–	13

0x000000A8 42 26 Comp1_Handler NVIC_PRI6_R 23	–	21

0x000000AC 43 27 Comp2_Handler NVIC_PRI6_R 31	–	29

0x000000B0 44 28 SysCtl_Handler NVIC_PRI7_R 7	–	5

0x000000B4 45 29 FlashCtl_Handler NVIC_PRI7_R 15	–	13

0x000000B8 46 30 GPIOPortF_Handler NVIC_PRI7_R 23	–	21

0x000000BC 47 31 GPIOPortG_Handler NVIC_PRI7_R 31	–	29

0x000000C0 48 32 GPIOPortH_Handler NVIC_PRI8_R 7	–	5

0x000000C4 49 33 UART2_Handler NVIC_PRI8_R 15	–	13

0x000000C8 50 34 SSI1_Handler NVIC_PRI8_R 23	–	21

0x000000CC 51 35 Timer3A_Handler NVIC_PRI8_R 31	–	29

0x000000D0 52 36 Timer3B_Handler NVIC_PRI9_R 7	–	5

0x000000D4 53 37 I2C1_Handler NVIC_PRI9_R 15	–	13

0x000000D8 54 38 Quadrature1_Handler NVIC_PRI9_R 23	–	21

0x000000DC 55 39 CAN0_Handler NVIC_PRI9_R 31	–	29

0x000000E0 56 40 CAN1_Handler NVIC_PRI10_R 7	–	5

0x000000E4 57 41 CAN2_Handler NVIC_PRI10_R 15	–	13

0x000000E8 58 42 Ethernet_Handler NVIC_PRI10_R 23	–	21

0x000000EC 59 43 Hibernate_Handler NVIC_PRI10_R 31	–	29

0x000000F0 60 44 USB0_Handler NVIC_PRI11_R 7	–	5

0x000000F4 61 45 PWM3_Handler NVIC_PRI11_R 15	–	13

0x000000F8 62 46 uDMA_Handler NVIC_PRI11_R 23	–	21

0x000000FC 63 47 uDMA_Error NVIC_PRI11_R 31	–	29

Table	5.1.	Some	of	the	interrupt	vectors	for	the	LM3S/TM4C	(goes	to	number	154
on	the	M4).

Interrupts	on	the	CortexTM-M	processor	are	controlled	by	the	Nested	Vectored	Interrupt
Controller	(NVIC).	To	activate	an	interrupt	source	we	need	to	set	its	priority	and	enable
that	source	in	the	NVIC.	This	activation	is	in	addition	to	the	arm	and	enable	steps.	Table
5.1	lists	the	interrupt	sources	available	on	the	LM3S/LM4F/TM4C	family	of
microcontrollers.	Interrupt	numbers	0	to	15	contain	the	faults,	software	interrupt	and
SysTick;	these	interrupts	will	be	handled	differently	from	interrupts	16	to	63.

Table	5.2	shows	the	twelve	priority	registers	on	the	NVIC	of	the	LM3S.	There	are	35	such
registers	on	the	TM4C.	Each	register	contains	an	8-bit	priority	field	for	four	devices.	On
the	LM3S/TM4C	microcontrollers,	only	the	top	three	bits	of	the	8-bit	field	are	used.	This
allows	us	to	specify	the	interrupt	priority	level	for	each	device	from	0	to	7,	with	0	being
the	highest	priority.	The	interrupt	number	(number	column	in	Table	5.1)	is	loaded	into	the
IPSR	register.	The	servicing	of	interrupts	does	not	set	the	I	bit	in	the	PRIMASK,	so	a
higher	priority	interrupt	can	suspend	the	execution	of	a	lower	priority	ISR.	If	a	request	of
equal	or	lower	priority	is	generated	while	an	ISR	is	being	executed,	that	request	is
postponed	until	the	ISR	is	completed.	In	particular,	those	devices	that	need	prompt	service
should	be	given	high	priority.

Address 31	–	29 23	–	21 15	–	13 7	–	5 Name

0xE000E400 GPIO	Port
D

GPIO	Port	C GPIO	Port
B

GPIO	Port
A

NVIC_PRI0_R

0xE000E404 SSI0,	Rx
Tx

UART1,	Rx
Tx

UART0,
Rx	Tx

GPIO	Port
E

NVIC_PRI1_R

0xE000E408 PWM	Gen
1

PWM	Gen	0 PWM
Fault

I2C0 NVIC_PRI2_R

0xE000E40C ADC	Seq	1 ADC	Seq	0 Quad
Encoder

PWM	Gen
2

NVIC_PRI3_R

0xE000E410 Timer	0A Watchdog ADC	Seq
3

ADC	Seq
2

NVIC_PRI4_R

0xE000E414 Timer	2A Timer	1B Timer	1A Timer	0B NVIC_PRI5_R

0xE000E418 Comp	2 Comp	1 Comp	0 Timer	2B NVIC_PRI6_R

0xE000E41C GPIO	Port
G

GPIO	Port	F Flash
Control

System
Control

NVIC_PRI7_R

0xE000E420 Timer	3A SSI1,	Rx	Tx UART2,
Rx	Tx

GPIO	Port
H

NVIC_PRI8_R

0xE000E424 CAN0 Quad
Encoder	1

I2C1 Timer	3B NVIC_PRI9_R

0xE000E428 Hibernate Ethernet CAN2 CAN1 NVIC_PRI10_R

0xE000E42C uDMA
Error

uDMA	Soft
Tfr

PWM	Gen
3

USB0 NVIC_PRI11_R

0xE000ED20 SysTick PendSV — Debug NVIC_SYS_PRI3_R

Table	5.2.	Some	of	the	LM3S/TM4C	NVIC	registers.	Bits	not	shown	are	zero.

There	are	two	enable	registers	NVIC_EN0_R 	and NVIC_EN1_R 	on	the	LM3S	(five	on
the	LM4F/TM4C).The	32	bits	in NVIC_EN0_R control	the	IRQ	numbers	0	to	31
(interrupt	numbers	16	–	47).	In	Table	5.1	we	see	UART0	is	IRQ=5.	To	enable	UART0
interrupts	we	set	bit	5	in NVIC_EN0_R .	The	bottom	16	bits	in NVIC_EN1_R control
the	IRQ	numbers	32	to	47	(interrupt	numbers	48	–	63).	In	Table	5.1	we	see	Timer	3A	is
IRQ=35.	To	enable	Timer	3A	interrupts	we	set	bit	3	(35-32=3)	in NVIC_EN1_R .	Not
every	interrupt	source	is	available	on	every	LM3S/LM4F/TM4C	microcontroller,	so	you
will	need	to	refer	to	the	data	sheet	for	your	microcontroller	when	designing	I/O
interfaces.Writing	zeros	to	the NVIC_EN0_R 	NVIC_EN1_R registers	has	no	effect.	To
disable	interrupts	we	write	ones	to	the	corresponding	bit	in	the NVIC_DIS0_R
or NVIC_DIS1_R 	register.

Figure	5.10	shows	the	context	switch	from	executing	in	the	foreground	to	running	an
edge-triggered	ISR	from	Port	C.	Assume	Port	C	interrupts	are	configured	for	a	priority
level	of	5.	The	I	bit	in	the	PRIMASK	is	0	signifying	interrupts	are	enabled.	The	interrupt
number	(ISRNUM)	in	the	IPSR	register	is	0,	meaning	we	are	running	in	Thread	mode
(i.e.,	the	main	program,	and	not	an	ISR).	Handler	mode	is	signified	by	a	nonzero	value	in

IPSR.	When	BASEPRI	register	is	zero,	all	interrupts	are	allowed	and	the	BASEPRI
register	is	not	active.

When	a	Port	C	interrupt	is	triggered,	the	current	instruction	is	finished.	(a)	Eight	registers
are	pushed	on	the	stack	with	R0	on	top.	These	registers	are	pushed	onto	the	stack	using
whichever	stack	pointer	is	active:	either	the	MSP	or	PSP.	(b)	The	vector	address	is	loaded
into	the	PC	(“Vector	address”	column	in	Table	5.2).	(c)	The	IPSR	register	is	set	to	18
(“Number”	column	in	Table	5.2)	(d)	The	top	24	bits	of	LR	are	set	to	0xFFFFFF,
signifying	the	processor	is	executing	an	ISR.	Bits	[7:1]	specify	how	to	return	from
interrupt.	Bit	0	means	Thumb	mode.

		0xE1	Return	to	Handler	mode	MSP	(using	floating	point	state	on
LM4F/TM4C)

		0xE9	Return	to	Thread	mode	MSP	(using	floating	point	state	on
LM4F/TM4C)

		0xED	Return	to	Thread	mode	PSP	(using	floating	point	state	on
LM4F/TM4C)

		0xF1	Return	to	Handler	mode	MSP

		0xF9	Return	to	Thread	mode	MSP

		0xFD	Return	to	Thread	mode	PSP

	
After	pushing	the	registers,	the	processor	always	uses	the	main	stack	pointer	(MSP)
during	the	execution	of	the	ISR.	Events	b,	c,	and	d	can	occur	simultaneously

Figure	5.10.	Stack	before	and	after	an	interrupt.
To	return	from	an	interrupt,	the	ISR	executes	the	typicalfunction	return BX	LR .
However,	since	the	top	24	bits	of	LR	are	0xFFFFFF,	it	knows	to	return	from	interrupt	by
popping	the	eight	registers	off	the	stack.	Since	the	bottom	eight	bits	of	LR	in	this	case	are
0xF9,	it	returns	to	thread	mode	using	the	MSP	as	its	stack	pointer,	in	Thumb	mode.	Since
the	IPSR	is	part	of	the	PSR	that	is	pulled,	so	it	is	automatically	reset	its	previous	state.

A	nested	interrupt	occurs	when	a	higher	priority	interrupt	suspends	an	ISR.	The	lower
priority	interrupt	will	finish	after	the	higher	priority	ISR	completes.	When	one	interrupt
preempts	another,	the	LR	is	set	to	0xFFFFFFF1,	so	it	knows	to	return	to	handler	mode.
Tail	chaining	occurs	when	one	ISR	executes	immediately	after	another.	Optimization
occurs	because	the	eight	registers	need	not	be	popped	only	to	be	pushed	once	again.	If	an
interrupt	is	triggered	and	is	in	the	process	of	stacking	registers	when	a	higher	priority
interrupt	is	requested,	this	late	arrival	interrupt	will	be	executed	first.	

On	the	CortexTM-M4,	if	an	interrupt	occurs	while	in	floating	point	state,	an	additional	18
words	are	pushed	on	the	stack.	These	18	words	will	save	the	state	of	the	floating	point
processor.	Bits	7-4	of	the	LR	will	be	0b1110	(0xE),	signifying	it	was	interrupted	during	a
floating	point	state.	When	the	ISR	returns,	it	knows	to	pull	these	18	words	off	the	stack
and	restore	the	state	of	the	floating	point	processor.

Priority	determines	the	order	of	service	when	two	or	more	requests	are	made
simultaneously.		Priority	also	allows	a	higher	priority	request	to	suspend	a	lower	priority
request	currently	being	processed.	Usually,	if	two	requests	have	the	same	priority,	we	do
not	allow	them	to	interrupt	each	other.	NVIC	assigns	a	priority	level	to	each	interrupt
trigger.	This	mechanism	allows	a	higher	priority	trigger	to	interrupt	the	ISR	of	a	lower
priority	request.	Conversely,	if	a	lower	priority	request	occurs	while	running	an	ISR	of	a
higher	priority	trigger,	it	will	be	postponed	until	the	higher	priority	service	is	complete.

5.5.	Edge-triggered	Interrupts
Table	4.2	listed	the	registers	for	Port	A.	The	other	ports	have	similar	registers.	We	will
begin	with	a	simple	example	that	counts	the	number	of	rising	edges	on	Port	C	bit	4
(Program	5.6).	The	initialization	requires	many	steps.	(a)	The	clock	for	the	port	must	be
enabled.	(b)	The	global	variables	should	be	initialized.	(c)	The	appropriate	pins	must	be
enabled	as	inputs.	(d)	We	must	specify	whether	to	trigger	on	the	rise,	the	fall,	or	both
edges.	In	this	case	we	will	trigger	on	the	rise	of	PC4.	(e)	It	is	good	design	to	clear	the
trigger	flag	during	initialization	so	that	the	first	interrupt	occurs	due	to	the	first	rising	edge
after	the	initialization	has	been	run.	We	do	not	wish	to	trigger	on	a	rising	edge	that	might
have	occurred	during	the	power	up	phase	of	the	system.	(f)	We	arm	the	edge-trigger	by
setting	the	corresponding	bits	in	the	IM	register.(g)	We	establish	the	priority	of	Port	C	by
setting	bits	23	–	21	in	the NVIC_PRI0_R 	register	as	listed	in	Table	5.2.	We	activate	Port
C	interrupts	in	the	NVIC	by	setting	bit	2	in	the NVIC_EN0_R 	register	(“IRQ	number”	in
Table	5.1).	This	initialization	is	shown	to	enable	interrupts	in	step	(i).	However,	in	most
systems	we	would	not	enable	interrupts	in	the	device	initialization.	Rather,	it	is	good
design	to	initialize	all	devices	in	the	system,	then	enable	interrupts.	On	the	LM4F/TM4C
we	also	clear	the	corresponding	bits	in	AMSEL	and	PCTL.

volatile	uint32_t	FallingEdges	=	0;

void	EdgeCounter_Init(void){

		SYSCTL_RCGCGPIO_R	|=	0x04;				//	(a)	activate	clock	for	Port	C

		FallingEdges	=	0;													//	(b)	initialize	counter

		GPIO_PORTC_DIR_R	&=	~0x10;				//	(c)	make	PC4	in

		GPIO_PORTC_DEN_R	|=	0x10;					//					enable	digital	I/O	on	PC4

		GPIO_PORTC_IS_R	&=	~0x10;					//	(d)	PC4	is	edge-sensitive

		GPIO_PORTC_IBE_R	&=	~0x10;				//					PC4	is	not	both	edges

		GPIO_PORTC_IEV_R	&=	~0x10;				//					PC4	falling	edge	event

		GPIO_PORTC_ICR_R	=	0x10;						//	(e)	clear	flag4

		GPIO_PORTC_IM_R	|=	0x10;						//	(f)	arm	interrupt	on	PC4

		NVIC_PRI0_R	=	(NVIC_PRI0_R&0xFF00FFFF)|0x00A00000;	//	(g)	priority	5

		NVIC_EN0_R	=	4;														//	(h)	enable	interrupt	2	in	NVIC

		EnableInterrupts();											//	(i)	Program	5.3

}

void	GPIOPortC_Handler(void){

		GPIO_PORTC_ICR_R	=	0x10;						//	acknowledge	flag4

		FallingEdges	=	FallingEdges	+	1;

}

Program	5.6.	Interrupt-driven	edge-triggered	input	that	counts	rising
edges	of	PC4	(EdgeInterrupt_xxx.zip).
All	ISRs	must	acknowledge	the	interrupt	by	clearing	the	trigger	flag	that	requested	the
interrupt.	For	edge-triggered	PC4,	the	trigger	flag	is	bit	4	of
the GPIO_PORTC_RIS_R register.	This	flag	can	be	cleared	by	writing	a	0x10
to GPIO_PORTC_ICR_R .

If	two	or	more	triggers	share	the	same	vector,	these	requests	are	called	polled	interrupts,
and	the	ISR	must	determine	which	trigger	generated	the	interrupt.	If	the	requests	have
separate	vectors,	then	these	requests	are	called	vectored	interrupts	and	the	ISR	knows
which	trigger	caused	the	interrupt.	Example	5.1	illustrates	these	differences.

	
Example	5.1.	Interface	two	switches	and	signal	associated	semaphores	when	each	switch
is	pressed.

	

Solution:	We	will	assume	the	switches	do	not	bounce	(interfacing	switches	that	bounce
will	be	covered	later	in	the	chapter).	The	semaphore	SW1	will	be	signaled	when	switch
SW1	is	pressed,	and	similarly,	semaphore	SW2	will	be	signed	when	switch	SW2	is
pressed.	In	the	first	solution,	we	will	use	vectored	interrupts	by	connecting	one	switch	to
Port	C	and	the	other	switch	to	Port	E.	Since	the	two	sources	have	separate	vectors,	the
switch	on	Port	C	will	automatically	activate GPIOPortC_Handler 	and	switch	on	Port
Ewill	automatically	activate GPIOPortE_Handler .	The	left	side	of	Figures	5.11	and
5.12	show	the	solution	with	vectored	interrupts.
	

Figure	5.11.	Two	solutions	of	switch-triggered	interrupts.
	

The	software	solution	using	vectored	interrupts	is	in	Program	5.7.	We	initialize	two	I/O
pins	as	inputs	with	rising	edge	interrupt	triggers.	In	this	way,	we	get	an	interrupt	request
when	the	switch	is	touched.	I.e.,	an	interrupt	occurs	on	the	0	to	1	rising	edge	either	of	PC4
or	PE4.	To	acknowledge	an	interrupt	we	clear	the	trigger	flag.	Writing	a	0x10	to	the	flag
register, GPIO_PORTn_ICR_R ,	will	clear	bit	4	without	affecting	the	other	bits	in	the
register.	Notice	that	the	acknowledgement	uses	an	“ = ”	instead	of	an	“ |= ”	to	avoid
clearing	all	the	bits.
	

volatile	uint8_t	SW1,	SW2;	//	semaphores

void	VectorButtons_Init(void){		

		SYSCTL_RCGCGPIO_R	|=	0x14;	//	activate	clock	for	Ports	C	and	E

		SW1	=	0;																				//	clear	semaphores

		SW2	=	0;

		GPIO_PORTC_DIR_R	&=	~0x10;		//	make	PC4	in	(PC4	built-in	button)

		GPIO_PORTC_DEN_R	|=	0x10;			//	enable	digital	I/O	on	PC4

		GPIO_PORTC_IS_R	&=	~0x10;			//	PC4	is	edge-sensitive	(default	setting)

		GPIO_PORTC_IBE_R	&=	~0x10;		//	PC4	is	not	both	edges	(default	setting)

		GPIO_PORTC_IEV_R	|=	0x10;			//	PC4	rising	edge	event

		GPIO_PORTC_ICR_R	=	0x10;				//	clear	flag4

		GPIO_PORTC_IM_R	|=	0x10;				//	arm	interrupt	on	PC4

		NVIC_PRI0_R	=	(NVIC_PRI0_R&0xFF00FFFF)|0x00400000;	//	PortC=priority	2

		GPIO_PORTE_DIR_R	&=	~0x10;		//	make	PE4	in	(PE4	button)

		GPIO_PORTE_DEN_R	|=	0x10;			//	enable	digital	I/O	on	PE4

		GPIO_PORTE_IS_R	&=	~0x10;			//	PE4	is	edge-sensitive	(default	setting)

		GPIO_PORTE_IBE_R	&=	~0x10;		//	PE4	is	not	both	edges	(default	setting)

		GPIO_PORTE_IEV_R	|=	0x10;			//	PE4	rising	edge	event

		GPIO_PORTE_ICR_R	=	0x10;				//	clear	flag4

		GPIO_PORTE_IM_R	|=	0x10;				//	arm	interrupt	on	PE4

		NVIC_PRI1_R	=	(NVIC_PRI1_R&0xFFFFFF00)|0x00000040;	//	PortE=priority	2

		NVIC_EN0_R	=	(NVIC_EN0_INT2+NVIC_EN0_INT4);	//	enable	interrupts	2,4

		EnableInterrupts();

}

void	GPIOPortC_Handler(void){

		GPIO_PORTC_ICR_R	=	0x10;				//	acknowledge	flag4

		SW1	=	1;																				//	signal	SW1	occurred

}

void	GPIOPortE_Handler(void){

		GPIO_PORTE_ICR_R	=	0x10;				//	acknowledge	flag4

		SW2	=	1;																				//	signal	SW2	occurred

}

Program	5.7.	Example	of	a	vectored	interrupt	(TwoButtonVector_xxx.zip).

	

Figure	5.12.	Flowcharts	for	a	vectored	and	polled	interrupt.
	

The	right	sides	of	Figures	5.11	and	5.12	show	the	solution	with	polled	interrupts.	Touching
either	switch	will	cause	a	Port	Einterrupt.	The	ISR	must	poll	to	see	which	one	or	possibly
both	caused	the	interrupt.	Fortunately,	even	though	they	share	a	vector,	the
acknowledgements	are	separate.	The	code GPIO_PORTE_ICR_R=0x10; will	clear	bit	4
in	the	status	register	without	affecting	bit	5,	and	the	code GPIO_PORTE_ICR_R=0x20;
will	clear	bit	5	in	the	status	register	without	affecting	bit	4.	This	means	the	timing	of	one
switch	does	not	affect	whether	or	not	pushing	the	other	switch	will	signal	its	semaphore.
On	the	other	hand,	whether	we	are	using	polled	or	vectored	interrupt,	because	there	is	only
one	processor,	the	timing	of	one	interrupt	may	delay	the	servicing	of	another	interrupt.
	

The	polled	solution	is	Program	5.8.	It	takes	three	conditions	to	cause	an	interrupt.	1)	The
PE4	and	PE5	are	armed	in	the	initialization;	2)	The	LM3S/LM4F/TM4Cis	enabled	for
interrupts	with	the EnableInterrupts() function;	3)	The	trigger GPIO_PORTE_RIS_R
is	set	on	the	rising	edge	of	PE4	or	the	trigger GPIO_PORTE_RIS_R 	is	set	on	the	rising
edge	of	PE5.	Because	the	two	triggers	have	separate	acknowledgments,	if	both	triggers	are
set,	both	will	get	serviced.	Furthermore,	the	polling	sequence	does	not	matter.
	

volatile	uint8_t	SW1,	SW2;

void	PolledButtons_Init(void){

		SYSCTL_RCGCGPIO_R	|=	0x10;	//	activate	clock	for	Port	E

		SW1	=	0;	SW2	=	0;											//	clear	semaphores

		GPIO_PORTE_DIR_R	&=	~0x30;		//	make	PE5-4	in	(PE5-4	buttons)

		GPIO_PORTE_DEN_R	|=	0x30;			//	enable	digital	I/O	on	PE5-4

		GPIO_PORTE_IS_R	&=	~0x30;			//	PE5-4	is	edge-sensitive

		GPIO_PORTE_IBE_R	&=	~0x30;		//	PE5-4	is	not	both	edges

		GPIO_PORTE_IEV_R	|=	0x30;			//	PE5-4	rising	edge	event

		GPIO_PORTE_ICR_R	=	0x30;				//	clear	flag5-4

		GPIO_PORTE_IM_R	|=	0x30;				//	arm	interrupts	on	PE5-4

		NVIC_PRI1_R	=	(NVIC_PRI1_R&0xFFFFFF00)|0x00000040;	//	PortE=priority	2

		NVIC_EN0_R	=	NVIC_EN0_INT4;	//	enable	interrupt	4	in	NVIC

		EnableInterrupts();

}

void	GPIOPortE_Handler(void){

		if(GPIO_PORTE_RIS_R&0x10){		//	poll	PE4

GPIO_PORTE_ICR_R	=	0x10;		//	acknowledge	flag4

SW1	=	1;																		//	signal	SW1	occurred

		}

		if(GPIO_PORTE_RIS_R&0x20){		//	poll	PE5

GPIO_PORTE_ICR_R	=	0x20;		//	acknowledge	flag5

SW2	=	1;																		//	signal	SW2	occurred

		}

}

Program	5.8.	Example	of	a	polled	interrupt	(TwoButtonPoll_xxx.zip).

	

5.6.	Interrupt-Driven	UART
Figure	5.13	shows	a	data	flow	graph	with	buffered	input	and	buffered	output.	FIFOs
implemented	in	this	section	are	statically	allocated	global	structures.	Because	they	are
global	variables,	it	means	they	will	exist	permanently	and	can	be	carefully	shared	by	the
foreground	and	background	threads.	The	advantage	of	using	a	FIFO	structure	for	a	data
flow	problem	is	that	we	can	decouple	the	producer	and	consumer	threads.	Without	the
FIFO	we	would	have	to	produce	one	piece	of	data,	then	process	it,	produce	another	piece
of	data,	then	process	it.	With	the	FIFO,	the	producer	thread	can	continue	to	produce	data
without	having	to	wait	for	the	consumer	to	finish	processing	the	previous	data.	This
decoupling	can	significantly	improve	system	performance.	

Figure	5.13.	A	data	flow	graph	showing	two	FIFOs	that	buffer	data
between	producers	and	consumers.
Checkpoint	5.6:	What	does	it	mean	if	the	RxFifo	in	Figure	5.13	is	empty?	

Checkpoint	5.7:	What	does	it	mean	if	the	TxFifo	in	Figure	5.13	is	empty?

The	system	shown	in	Figure	5.13	has	two	channels,	one	for	input	and	one	for	output,	and
each	channel	employs	a	separate	FIFO	queue.	Program	5.9	shows	the	interrupt-driven
UART	device	driver.	The	flowchart	for	this	interface	was	shown	previously	as	Figure	5.4.
During	initialization,	Port	A	pins	0	and	1	are	enabled	as	alternate	function	digital	signals.
The	two	software	FIFOs	of	Program	3.10	are	initialized.		The	baud	rate	is	set	at	115200
bits/sec,	and	the	hardware	FIFOs	are	enabled.	A	transmit	interrupt	will	occur	as	the
transmit	FIFO	goes	from	2	elements	down	to	1	element.	Not	waiting	until	the	hardware
FIFO	is	completely	empty	allows	the	software	to	refill	the	hardware	FIFO	and	maintain	a
continuous	output	stream,	achieving	maximum	bandwidth.	There	are	two	conditions	that
will	request	a	receive	interrupt.	First,	if	the	receive	FIFO	goes	from	2	to	3	elements	a
receive	interrupt	will	be	requested.	At	this	time	there	is	still	13	free	spaces	in	the	receive
FIFO	so	the	latency	requirement	for	this	real-time	input	will	be	130	bit	times	(about	1	ms).
The	other	potential	source	of	receiver	interrupts	is	the	receiver	time	out.	This	trigger	will
occur	if	the	receiver	becomes	idle	and	there	are	data	in	the	receiver	FIFO.	This	trigger	will
allow	the	interface	to	receive	input	data	when	it	comes	just	one	or	two	frames	at	a	time.	In
the	NVIC,	the	priority	is	set	at	2	and	UART0	(IRQ=5)	is	activated.	Normally,	one	does	not
enable	interrupts	in	the	individual	initialization	functions.	Rather,	interrupts	should	be
enabled	in	the	main	program,	after	all	initialization	functions	have	completed.

When	the	main	thread	wishes	to	output	it	calls UART_OutChar ,	which	will	put	the	data

into	the	software	FIFO.	Next,	it	copies	as	much	data	from	the	software	FIFO	into	the
hardware	FIFO	and	arms	the	transmitter.	The	transmitter	interrupt	service	will	also	get	as
much	data	from	the	software	FIFO	and	put	it	into	the	hardware	FIFO.
The copySoftwareToHardware function	has	a	critical	section	and	is	called	by
both UART_OutChar and	the	ISR.	To	remove	the	critical	section	the	transmitter	is
temporarily	disarmed	in	the UART_OutChar function	when copySoftwareToHardware
is	called.	This	helper	function	guarantees	data	is	transmitted	in	the	same	order	it	was
produced.

When	input	frames	are	received	they	are	placed	into	the	receive	hardware	FIFO.	If	this
FIFO	goes	from	2	to	3	elements,	or	if	the	receiver	becomes	idle	with	data	in	the	FIFO,	a
receive	interrupt	occurs.	The	helper	function copyHardwareToSoftware will	get	from	the
receive	hardware	FIFO	and	put	into	the	receive	software	FIFO.	When	the	main	thread
wished	to	input	data	it	calls UART_InChar .	This	function	simply	gets	from	the	software
FIFO.	If	the	receive	software	FIFO	is	empty,	it	will	spin.

#define	FIFOSIZE			16									//	size	of	the	FIFOs	(must	be	power	of	2)

#define	FIFOSUCCESS	1									//	return	value	on	success

#define	FIFOFAIL				0									//	return	value	on	failure

AddIndexFifo(Rx,	FIFOSIZE,	char,	FIFOSUCCESS,	FIFOFAIL)

AddIndexFifo(Tx,	FIFOSIZE,	char,	FIFOSUCCESS,	FIFOFAIL)

//	Assumes	an	80	MHz	bus	clock,	creates	115200	baud	rate

void	UART_Init(void){													//	should	be	called	only	once

		SYSCTL_RCGCUART_R	|=	0x0001;				//	activate	UART0

		SYSCTL_RCGCGPIO_R	|=	0x0001;				//	activate	port	A

		RxFifo_Init();																		//	initialize	empty	FIFOs

		TxFifo_Init();

		UART0_CTL_R	&=	~UART_CTL_UARTEN;						//	disable	UART

		UART0_IBRD_R	=	43;	//	IBRD=int(80000000/(16*115,200))	=	int(43.40278)

		UART0_FBRD_R	=	26;	//	FBRD	=	round(0.40278	*	64)	=	26

		UART0_LCRH_R	=	0x0070;	//	8-bit	word	length,	enable	FIFO

		UART0_IFLS_R	&=	~0x3F;	//	clear	TX	and	RX	interrupt	FIFO	level	fields

//	configure	interrupt	for	TX	FIFO	<=	1/8	full

//	configure	interrupt	for	RX	FIFO	>=	1/8	full

		UART0_IFLS_R	+=	(UART_IFLS_TX1_8|UART_IFLS_RX1_8);

//	enable	TX	and	RX	FIFO	interrupts	and	RX	time-out	interrupt

		UART0_IM_R	|=	(UART_IM_RXIM|UART_IM_TXIM|UART_IM_RTIM);

		UART0_CTL_R	|=	0x0301;																//	enable	RXE	TXE	UARTEN

		GPIO_PORTA_PCTL_R	=	(GPIO_PORTA_PCTL_R&0xFFFFFF00)+0x00000011;
//	UART

		GPIO_PORTA_AMSEL_R	&=	~0x03;	//	disable	analog	on	PA1-0

		GPIO_PORTA_AFSEL_R	|=	0x03;		//	enable	alt	funct	on	PA1-0

		GPIO_PORTA_DEN_R	|=	0x03;													//	enable	digital	I/O	on	PA1-0

		NVIC_PRI1_R	=	(NVIC_PRI1_R&0xFFFF00FF)|0x00004000;	//	UART0=priority	2

		NVIC_EN0_R	=	NVIC_EN0_INT5;										//	enable	interrupt	5	in	NVIC

		EnableInterrupts();

}

//	copy	from	hardware	RX	FIFO	to	software	RX	FIFO

//	stop	when	hardware	RX	FIFO	is	empty	or	software	RX	FIFO	is	full

void	static	copyHardwareToSoftware(void){	char	letter;

		while(((UART0_FR_R&UART_FR_RXFE)==0)&&(RxFifo_Size()	<	(FIFOSIZE-
1))){

letter	=	UART0_DR_R;

RxFifo_Put(letter);

		}

}

//	copy	from	software	TX	FIFO	to	hardware	TX	FIFO

//	stop	when	software	TX	FIFO	is	empty	or	hardware	TX	FIFO	is	full

void	static	copySoftwareToHardware(void){		char	letter;

		while(((UART0_FR_R&UART_FR_TXFF)	==	0)	&&	(TxFifo_Size()	>	0)){

TxFifo_Get(&letter);

UART0_DR_R	=	letter;

		}

}

//	input	ASCII	character	from	UART

//	spin	if	RxFifo	is	empty

char	UART_InChar(void){

		char	letter;

		while(RxFifo_Get(&letter)	==	FIFOFAIL){};

		return(letter);

}

//	output	ASCII	character	to	SCI

//	spin	if	TxFifo	is	full

void	UART_OutChar(char	data){

		while(TxFifo_Put(data)	==	FIFOFAIL){};

		UART0_IM_R	&=	~UART_IM_TXIM;										//	disable	TX	FIFO	interrupt

		copySoftwareToHardware();

		UART0_IM_R	|=	UART_IM_TXIM;											//	enable	TX	FIFO	interrupt

}

//	at	least	one	of	three	things	has	happened:

//	hardware	TX	FIFO	goes	from	3	to	2	or	less	items

//	hardware	RX	FIFO	goes	from	1	to	2	or	more	items

//	UART	receiver	has	timed	out

void	UART0_Handler(void){

		if(UART0_RIS_R&UART_RIS_TXRIS){							//	hardware	TX	FIFO	<=	2	items

UART0_ICR_R	=	UART_ICR_TXIC;								//	acknowledge	TX	FIFO

//	copy	from	software	TX	FIFO	to	hardware	TX	FIFO

copySoftwareToHardware();

if(TxFifo_Size()	==	0){													//	software	TX	FIFO	is	empty

UART0_IM_R	&=	~UART_IM_TXIM;						//	disable	TX	FIFO	interrupt

}

		}

		if(UART0_RIS_R&UART_RIS_RXRIS){							//	hardware	RX	FIFO	>=	2	items

UART0_ICR_R	=	UART_ICR_RXIC;								//	acknowledge	RX	FIFO

//	copy	from	hardware	RX	FIFO	to	software	RX	FIFO

copyHardwareToSoftware();

		}

		if(UART0_RIS_R&UART_RIS_RTRIS){							//	receiver	timed	out

UART0_ICR_R	=	UART_ICR_RTIC;								//	acknowledge	receiver	time	out

//	copy	from	hardware	RX	FIFO	to	software	RX	FIFO

copyHardwareToSoftware();

		}

}

Program	5.9.	Interrupt-driven	device	driver	for	the	UART	uses	two
hardware	FIFOs	and	two	software	FIFOs	to	buffer	data	(UART2_xxx.zip).

5.7.	Periodic	Interrupts	using	SysTick
The	SysTick	timer	is	a	simple	way	to	create	periodic	interrupts.	A	periodic	interrupt	is	one
that	is	requested	on	a	fixed	time	basis.	This	interfacing	technique	is	required	for	data
acquisition	and	control	systems,	because	software	servicing	must	be	performed	at	accurate
time	intervals.	For	a	data	acquisition	system,	it	is	important	to	establish	an	accurate
sampling	rate.	The	time	in	between	ADC	samples	must	be	equal	(and	known)	in	order	for
the	digital	signal	processing	to	function	properly.	Similarly	for	microcontroller-based
control	systems,	it	is	important	to	maintain	both	the	ADC	and	DAC	timing.	Later	in
Chapter	6,	we	will	see	the	general	purpose	timers	can	also	create	periodic	interrupts.

Another	application	of	periodic	interrupts	is	called	“intermittent	polling”	or	“periodic
polling”.	Figure	5.14	shows	busy	wait	side	by	side	with	periodic	polling.	In	busy-wait
synchronization,	the	main	program	polls	the	I/O	devices	continuously.	With	periodic
polling,	the	I/O	devices	are	polled	on	a	regular	basis	(established	by	the	periodic
interrupt.)	If	no	device	needs	service,	then	the	interrupt	simply	returns.	If	the	polling
period	is t,	then	on	average	the	interface	latency	will	be	½ t,	and	the	worstcase	latency	will
be t.	Periodic	polling	is	appropriate	for	low	bandwidth	devices	where	real-time	response	is
not	necessary.	This	method	frees	the	main	program	from	the	I/O	tasks.

	

	

Figure	5.14.	An	ISR	flowchart	that	implements	periodic	polling.
We	use	periodic	polling	if	the	following	two	conditions	apply:

1.	The	I/O	hardware	cannot	generate	interrupts	directly

2.	We	wish	to	perform	the	I/O	functions	in	the	background

	

Table	5.3	shows	the	SysTick	registers	used	to	create	a	periodic	interrupt.	SysTick	has	a	24-
bit	counter	that	decrements	at	the	bus	clock	frequency.	Let	fBUS	be	the	frequency	of	the	bus
clock,	and	let	n	be	the	value	of	the	RELOAD	register.	The	frequency	of	the	periodic
interrupt	will	be	fBUS/(n+1).	First,	we	clear	the	ENABLE	bit	to	turn	off	SysTick	during
initialization.	Second,	we	set	the	RELOADregister.	Third,	we	write	to
the NVIC_ST_CURRENT_R	value	to	clear	the	counter.	Lastly,	we	write	the	desired
mode	to	the	control	register,	NVIC_ST_CTRL_R .		We	must	set	CLK_SRC=1,	because
CLK_SRC=0	external	clock	mode	is	not	implemented.

Address 31-
24

23-
17

16 15-3 2 1 0 Name

$E000E010 0 0 COUNT 0 CLK_SRC INTEN ENABLE NVIC_ST_CTRL_R

$E000E014 0 24-bit	RELOAD	value NVIC_ST_RELOAD_R

$E000E018 0 24-bit	CURRENT	value	of	SysTick	counter NVIC_ST_CURRENT_R

	

Address 31-29 28-
24

23-21 20-
8

7-5 4-0 Name

$E000ED20 TICK 0 PENDSV 0 DEBUG 0 NVIC_SYS_PRI3_R

Table	5.3.	SysTick	registers.

We	set	INTENto	enable	interrupts.	We	establish	the	priority	of	the	SysTick	interrupts
using	the	TICK	field	in	the NVIC_SYS_PRI3_R 	register.	We	need	to	set	the	ENABLE
bit	so	the	counter	will	run.	When	the	CURRENT	value	counts	down	from	1	to	0,	the
COUNT	flag	is	set.	On	the	next	clock,	the	CURRENT	is	loaded	with	the	RELOAD
value.	In	this	way,	the	SysTick	counter	(CURRENT)	is	continuously	decrementing.		If	the
RELOAD	value	is	n,	then	the	SysTick	counter	operates	at	modulo	n+1	(…n,	n-1,	n-2	…
1,	0,	n,	n-1,	…).	In	other	words,	it	rolls	over	every	n+1	counts.	Thus,	the	COUNT	flag
will	be	configured	to	trigger	an	interrupt	every	n+1	counts.

volatile	uint32_t	Counts;

#define	PD0				(*((volatile	uint32_t	*)0x40007004))

//	period	has	units	of	the	bus	clock	(e.g.,	12.5ns	or	20ns)

void	SysTick_Init(uint32_t	period){

		SYSCTL_RCGCGPIO_R	|=	0x00000008;	//	activate	port	D

		Counts	=	0;

		GPIO_PORTD_DIR_R	|=	0x01;			//	make	PD0	out

		GPIO_PORTD_PCTL_R	&=	~0x0000000F;	//	GPIO

		GPIO_PORTD_AMSEL_R	&=	~0x01;	//	disable	analog	on	PD0

		GPIO_PORTD_AFSEL_R	|=	0x03;		//	disable	alt	funct	on	PD0

		GPIO_PORTD_DEN_R	|=	0x01;			//	enable	digital	I/O	on	PD0

		NVIC_ST_CTRL_R	=	0;									//	disable	SysTick	during	setup

		NVIC_ST_RELOAD_R	=	period-1;	//	reload	value

		NVIC_ST_CURRENT_R	=	0;						//	any	write	to	current	clears	it

		NVIC_SYS_PRI3_R	=	(NVIC_SYS_PRI3_R&0x00FFFFFF)|0x40000000;	//priority
2															

		NVIC_ST_CTRL_R	=	0x00000007;//	enable	with	core	clock	and	interrupts

		EnableInterrupts();

}

void	SysTick_Handler(void){

		PD0	^=	0x01;								//	toggle	PD0

		Counts	=	Counts	+	1;

}

Program	5.10.	Implementation	of	a	periodic	interrupt	using	SysTick
(PeriodicSysTickInts_xxx.zip).
One	of	the	problems	with	switches	is	called	switch	bounce.	Many	inexpensive	switches
will	mechanically	oscillate	for	up	to	a	few	milliseconds	when	touched	or	released.	It
behaves	like	an	underdamped	oscillator.	These	mechanical	oscillations	cause	electrical
oscillations	such	that	a	port	pin	will	oscillate	high/low	during	the	bounce.	In	some	cases
this	bounce	should	be	removed.

	
Example	5.2.	Redesign	Example	4.3	of	a	matrix	keyboard	interface	using	interrupt
synchronization.	The	ISR	will	put	ASCII	data	into	the	FIFO.	The	main	will	get	data	from
the	FIFO.
	

Solution:	Figure	4.40	is	redrawn	here	as	Figure	5.15.	There	are	two	good	solutions	to
using	interrupt	synchronization	for	the	keyboard.	The	approach	implemented	here	uses
periodic	polling,	because	it	affords	a	simple	solution	to	both	bouncing	and	two-key
rollover.	The	time	between	interrupts	is	selected	to	be	longer	than	the	maximum	bounce
time,	but	shorter	than	the	minimum	time	between	key	strikes.	If	you	type	ten	characters
per	second,	the	minimum	time	between	rising	and	falling	edges	is	about	50	ms.	Since
switch	bounce	times	are	less	than	10	ms,	we	will	poll	the	keyboard	every	25	ms.	This
means	the	average	latency	will	be	12.5	ms,	and	the	maximum	latency	will	be	25	ms.

Figure	5.15.	A	matrix	keyboard	interfaced	to	the	microcontroller	(same	as
Figure	4.40).
	

The	initialization	combines	Program	4.11	with	Program	5.10	with	the	additional
initialization	of	the	FIFO.	The	PD0	debugging	will	have	to	be	removed	from	SysTick
because	PD0	is	used	to	interrupt	the	keyboard.	A	key	is	recognized	if	the	scanning	returns
one	key	found,	and	this	key	is	different	from	what	it	scanned	25	ms	ago.
	

AddIndexFifo(Matrix,	16,	char,	1,	0)	//	create	a	FIFO

char	static	LastKey;

void	Matrix_Init(void){

		LastKey	=	0;												//	no	key	typed

		MatrixFifo_Init();

		MatrixKeypad_Init();				//	Program	4.11

		SysTick_Init(1250000);	//	Program	5.10,	25	ms	polling

}

void	SysTick_Handler(void){	char	thisKey;	int32_t	n;

		thisKey	=	MatrixKeypad_Scan(&n);	//	scan

		if((thisKey	!=	LastKey)	&&	(n	==	1)){

MatrixFifo_Put(thisKey);

LastKey	=	thisKey;

		}	else{

LastKey	=	0;	//	invalid

		}

}

char	Matrix_InChar(void){		char	letter;

		while(MatrixFifo_Get(&letter)	==	FIFOFAIL){};

		return(letter);

}

Program	5.11.	Periodic	polling	interface	of	a	scanned	keyboard
(MatrixKeypadPeriodic_xxx.zip).

	
One	of	the	advantages	of	Program	5.11	is	two-key	rollover.	When	people	type	very	fast,
they	sometimes	type	the	next	key	before	the	release	the	first	key.	For	example,	when	the
operator	types	the	letters	“BCD”	slowly	with	one	finger,	the	keyboard	status	goes	in	this
sequence

<none>,	,	<none>,	<C>,	<none>,	<D>,	<none>
	

Conversely,	if	the	operator	types	quickly,	there	can	be	two-key	rollover,	which	creates	this
sequence

<none>,	,	<BC>,	<C>,	<CD>,	<D>,	<none>
	

where		<BC>	means	both	keys	‘B’	and	‘C’	are	touched.	Two-key	rollover	means	the
keyboard	does	not	go	through	a	state	where	no	keys	are	touched	between	typing	the	‘B’
and	the	‘C’.	Since	each	of	the	keys	goes	through	a	state	where	exactly	one	key	is	pressed
and	is	different	than	it	was	25	ms	ago,	Program	5.11	will	handle	two-key	rollover.

A	second	approach	is	to	arm	the	device	for	interrupts	by	driving	all	rows	to	zero.	In	this
manner,	we	will	receive	a	falling	edge	on	one	of	the	Port	D	inputs	when	any	key	is
touched.	During	the	ISR	we	could	scan	the	keyboard	and	put	the	key	into	the	FIFO.	To
solve	the	bounce	problem	this	solution	implements	a	time	delay	from	key	touch	to	when
the	software	scans	for	keys.	This	approach	uses	a	combination	of	edge-triggered	inputs
and	output	compare	interrupts	to	perform	input	in	the	background.		When	arming	for
interrupts,	we	set	all	four	rows	to	output	zero.	In	this	way,	a	falling	edge	interrupt	will
occur	on	any	key	touched.	When	an	edge-triggered	interrupt	occurs	we	will	disarm	this
input	and	arm	an	output	compare	to	trigger	in	10	ms.	It	is	during	the	output	compare	ISR
we	scan	the	matrix.	If	there	is	exactly	one	key,	we	enter	it	into	the	FIFO.	An	interrupt	may
occur	on	release	due	to	bounce.	However,	10	ms	after	the	release,	when	we	scan	during
the	Timer0A_Handler	the	MatrixKeypad_Scan	function	will	return	a	Num	of	zero,	and
we	will	ignore	it.	This	solution	solves	switch	bounce,	but	not	two-key	rollover.	You	can
find	this	solution	on	the	web	site	as	MatrixKeypadInt_xxx.zip.

There	are	three	solutions	to	debounce	an	individual	switch	posted	on	the	example	page

1)	Blind	synchronization:	read	switch,	and	then	wait	10	ms	DebounceSysTick_xxx.zip

2)	Periodic	polling:	use	a	periodic	interrupt	at	10	ms	DebounceSysTick_xxx.zip

3)	Interrupt:	edge-triggered	interrupt,	then	time	delay	interrupt
DebounceCombo_xxx.zip

5.8.	Low-Power	Design
Reducing	the	amount	of	power	used	by	an	embedded	system	will	save	money	and	extend
battery	life.	In	CMOS	digital	logic,	power	is	required	to	make	signals	rise	or	fall.	Most
microcontrollers	allow	you	to	adjust	the	frequency	of	the	bus	clock.	Most	microcontrollers
allow	you	to	change	the	bus	clock	using	a	PLL.	Selecting	the	bus	clock	frequency	is	a
tradeoff	between	power	and	performance.	To	optimize	for	power,	we	choose	the	slowest
bus	clock	frequency	that	satisfies	the	minimum	requirements	of	the	system.	When	we
implement	the	software	system	with	interrupts,	it	allows	us	to	focus	the	processor	on
executing	tasks,	when	they	need	to	run.	Because	there	are	fewer	backward	jumps	wasting
time,	interrupt-driven	systems	typically	will	be	able	to	perform	the	same	functions	at	a
slower	bus	clock.

Capacitance	plays	a	major	role	in	high	speed	digital	systems.	The	current/voltage
relationship	across	a	capacitor	is	I	=	C	dV/dt.	For	a	given	digital	circuit	the	capacitances
are	approximately	fixed.	As	we	increase	the	bus	frequency	using	the	PLL,	the	slew	rates	in
the	signals	must	increase	(larger	dV/dt),	requiring	more	current	to	operate.	Furthermore,
CMOS	logic	requires	charge	to	create	a	transition,	so	as	the	frequency	increases	the
number	of	transitions	per	second	increases,	requiring	more	current	(charge	per	second	is
current).

A	second	factor	in	low-power	design	follows	the	axiom	“turn	the	light	off	when	you	leave
the	room.”	Basically,	we	turn	off	devices	when	they	are	not	being	used.	Most	I/O	devices
on	the	microcontroller	are	initialized	as	off,	so	we	have	to	turn	them	on	to	use	them.
However,	rather	than	turning	it	on	once	in	the	initialization	and	leaving	it	on	continuously,
we	could	dynamically	turn	it	on	when	needed	then	turn	it	off	when	done.	In	Chapter	9,	we
will	learn	ways	to	turn	off	external	analog	circuits	when	they	are	not	needed.

In	general,	as	we	reduce	the	voltage,	the	power	is	reduced.	Some	microcontroller	families
have	versions	that	will	run	at	different	voltages.	For	example	the	MC9S12C32	can	operate
at	either	3.3	or	5	V.	If	a	device	has	a	fixed	resistance	from	supply	voltage	to	ground,
reducing	from	5	to	3.3	V	will	drop	the	power	by	a	factor	of	(52-3.32)/52	=	56%.	The
MSP430F2012	can	operate	on	a	supply	voltage	ranging	from	1.8	to	3.6	V.	Reducing	the
voltage	on	the	MSP430	will	decrease	the	maximum	speed	at	which	we	can	run	the	bus
clock.

Many	microcontrollers	allow	us	to	control	the	current	output	on	the	output	pins.	Reducing
the	current	on	an	output	pin	will	make	it	operate	slower	but	draw	less	current.	Any	unused
input	pins	should	have	internal	or	external	pull-up	(or	pull-down).	An	input	pin	not
connected	to	anything	may	oscillate	at	a	frequency	of	an	external	field,	wasting	power
unnecessarily.	Unused	pins	can	also	be	made	outputs.	On	LM3S/LM4F/TM4C
microcontrollerswe	can	turn	off	individual	pins	that	we	are	not	using	by	clearing	bits	in
the	DEN	register	(e.g., GPIO_PORTD_DEN_R).	If	we	have	an	entire	port	not	being
used,	we	keep	it	completely	off.

One	way	to	save	power	is	to	perform	all	operations	as	background	tasks	and	put	the
processor	to	sleep	when	in	the	foreground.	The wfi 	instruction	stops	the	bus	clock,	and
the	processor	stops	executing	instructions.	One	way	to	use	it	is	to	make	a	function	that	C
programs	can	call.

WaitForInterrupt

WFI

BX					LR
	

An	interrupt	will	wake	up	the	sleeping	processor.	A	LM3S811	consumes	about	100	mA
while	running	at	50	MHz.	However,	in	sleep	mode,	the	supply	current	drops	to	about	20
mA,	depending	on	what	else	is	active.	The	LM3S/LM4F/TM4C	family	also	has	a	deep
sleep	mode,	where	it	consumes	about	1	mA.	To	illustrate	this	approach,	consider	the	two
systems	in	Program	5.12.	Both	systems	execute Stuff 	at	a	fixed	rate,	but	the	one	with	the
wait	for	interrupt	requires	less	power.

int	main(void){				

		SysTick_Init(50000);				

		while(1){

WaitForInterrupt();

		}

}

void	SysTick_Handler(void){

		Stuff();

}

int	main(void){				

		SysTick_Init(50000);				

		while(1){

//	runs	at	full	power

		}

}

void	SysTick_Handler(void){

		Stuff();

}

Program	5.12.	Example	showing	how	to	save	power	by	putting	the
processor	to	sleep.
Maintenance	Tip:	Whenever	your	software	performs	a	backward	jump	(e.g.,	waiting	for
an	event),	it	may	be	possible	to	put	the	processor	to	sleep,	thus	saving	power.		

5.9.	Debugging	Profile
One	way	to	see	both	how	long	it	takes	to	execute	an	ISR	and	how	often	it	executes	is	to
toggle	an	output	pin	three	times,	as	shown	in	Program	5.13.	Figure	5.16	shows	the	time
between	interrupts	is	1ms,	and	the	time	to	execute	one	ISR	is	650ns.

Figure	5.16.	Profile	showing	both	time	between	interrupts	and	time	within
the	interrupt	(TM4C123,	50	MHz).
#define	PF2				(*((volatile	uint32_t	*)0x40025010))

void	SysTick_Handler(void){

		PF2	^=	0x04;								//	toggle	PF2

		PF2	^=	0x04;								//	toggle	PF2

		Stuff();

		PF2	^=	0x04;								//	toggle	PF2

}

Program	5.13.	Profiling	both	the	execution	time	for	Stuff()	and	the	time
between	ISRs.

5.10.	Exercises
5.1		Syntactically,	I/O	ports	are	public	globals.	In	order	to	separate	mechanisms	from
policies	(i.e.,	improve	the	quality	of	the	software	system),	how	should	I/O	be	actually
used?

a)	Local	in	allocation																																										

b)	Private	in	scope

c)	Global	in	allocation																																										

d)	Like	volatile	memory

e)	Public	in	scope																																										

f)	Like	nonvolatile	memory
	

5.2	Why	do	we	add	the volatile 	qualifier	in	all	I/O	port	definitions?

	

5.3		What	happens	if	an	interrupt	service	routine	does	not	acknowledge	or	disarm?

a)	Software	crashes	because	no	more	interrupts	will	be	requested

b)	The	next	interrupt	is	lost

c)	This	interrupt	is	lost

d)	Software	crashes	because	interrupts	are	requested	over	and	over.

	

5.4	The	main	program	synthesizes	data	and	a	periodic	interrupt	will	output	the	data
separated	by	a	fixed	time.	A	FIFO	queue	is	used	to	buffer	data	between	a	main	program
(e.g.,	main	program	calls Fifo_Put).	Theinterrupt	service	routine	calls Fifo_Get 	and
actually	outputs.	Experimental	observations	show	this	FIFO	is	usually	empty,	and	has	at
most	3	elements.	What	does	it	mean?	Choose	a-f.

		a)	The	system	is	CPU	bound																									b)	Bandwidth	could	be	increased	by
increasing	FIFO	size

		c)	The	system	is	I/O	bound																									d)	The	FIFO	could	be	replaced	by	a	global
variable

		e)	The	latency	is	small	and	bounded	f)	Interrupts	are	not	needed	in	this	system

	

5.5	Answer	question	5.4,	under	the	condition	that	the	FIFO	often	becomes	full.

	

5.6	An	edge-triggered	input	is	armed	so	that	interrupts	occur	when	new	data	arrives	into
the	microcontroller.	Consider	the	situation	in	which	a	FIFO	queue	is	used	to	buffer	data
between	the	ISR	and	the	main	program.	The	ISR	inputs	the	data	and	saves	the	data	by
calling Fifo_Put .	When	the	main	program	wants	input	it	calls Fifo_Get .	Experimental
observations	show	this	FIFO	is	usually	empty,	having	at	most	3	elements.	What	does	it
mean?	Choose	a-f.

a)	The	system	is	CPU	bound													

														b)	Bandwidth	could	be	increased	by	increasing	FIFO	size

c)	The	system	is	I/O	bound													

d)	The	FIFO	could	be	replaced	by	a	global	variable

e)	The	latency	is	small	and	bounded																																																																																			

f)	Interrupts	are	not	needed	in	this	system

	

5.7	Answer	question	5.6,	under	the	condition	that	the	FIFO	often	becomes	full.

	

5.8		Consider	the	following	interrupt	service	routine.	The	goal	is	to	measure	the	elapsed
time	from	one	interrupt	call	to	the	other.	What	qualifier	do	you	place	in	the XX position	to
make	this	measurement	operational?	Choose	from volatile 	static 	float 	const or public .

uint32_t	Elapsed;		//	time	between	interrupt

void	handler(void){

XX	uint16_t	last=0;

		Elapsed	=	(NVIC_ST_CURRENT_R	–	last)&0x00FFFFFF;

		last	=	NVIC_ST_CURRENT_R;	}

	

5.9	What	purpose	might	there	be	to	use	the	PLL	and	slow	down	the	microcontroller?

a)	The	system	is	CPU	bound													

b)	To	make	the	batteries	last	longer	on	a	battery-powered	system

c)	In	order	to	adjust	the	baud	rate	to	a	convenient	value

d)	In	order	to	balance	the	load	between	foreground	and	background	threads

e)	To	reduce	latency

f)	None	of	the	above,	because	there	is	never	a	reason	to	run	slower

	

5.10	This	is	a	functional	debugging	question.	However,	the	debugging	instrument	still
needs	to	be	minimally	intrusive.	Assumey= Function(x) 	is	a	function	with	16-bit	input x
and	16-bit	output	y	and	is	called	from	an	ISR	as	part	of	a	real-time	system.	The	UART,
Port	F	and	Port	G	are	unused	by	the	system,	and	Port	F	and	Port	G	are	digital	outputs.	The
debugging	code	will	be	placed	at	the	end	just	before	the	return,	unless	otherwise
stated. UART_OutSDec outputs	a	16-bit	signed	integer. BufX and BufY are	16-bit	signed
global	buffers	of	length	100, n 	is	a	global	variable	initialized	to	0.	Which	debugging	code
would	you	add	to	verify	the	correctness	of	this	function?

a)														 GPIO_PORTF_DATA_R	=x;	GPIO_PORTG_DATA_R	=y;

b)														 UART_OutSDec(x);	UART_OutSDec(y);		//	busy	wait

c)														 if(n<100){BufX[n]=x;	BufY[n]=y;	n++;}	

d)														 GPIO_PORTF_DATA_R	|=	0x01;				//	at	beginning

														GPIO_PORTF_DATA_R	&=	~0x01;			//	at	end

e)														 if(n<100){BufX[n]=x;	BufY[n]=TCNT;	n++;}

5.11		Four	events	must	occur	for	an	edge-triggered	interrupt	on	Port	E	bit	1	to	be
generated:

1)	Software	sets	the	arm	bit	(IM	bit	1)

2)	Software	enables	interrupts	(I=0)

3)	Hardware	sets	the	flag	bit	(RIS	bit	1)

4)	Software	configures	the	NVIC	to	allow	Port	E	input	interrupts

Which	time	sequence	of	these	four	events	cause	the	interrupt	to	be	generated?

a)	Only	the	order	1,2,3,4

b)	Only	the	order	1,2,4,3

c)	Only	the	order	4,1,2,3

d)	Any	order	will	generate	an	interrupt

5.12	The	following	multithreaded	system	has	a	critical	section.	Modify	these	programs	to
remove	the	error.	You	may	assume	the	interrupts	are	enabled	and	are	running.

	

	

uint32_t	Sec,Min;

void	main(void){

		while(1){

if((Min==10)&&(Sec==0)){

UART_OutString(“done”);

}

void
InterruptHandler(void){

		if(Sec	==	59){

Sec	=	0;	Min++;

		}	else{

Sec++;

		}

}

		}

}

	

5.13	The	following	multithreaded	system	uses	Port	F	as	a	debugging	profile.	One	interrupt
has	higher	priority	than	the	other.	Stuff1 and Stuff2 	are	unrelated.	Is	there	a	critical
section?	If	yes,	edit	the	code	to	remove	the	critical	section.	If	no,	justify	your	answer	in	16
words	or	less.

	

void
InterruptHandler1(void){

		GPIO_PORTF_DATA_R
^=	0x02;						

		Stuff1();					

}

void
InterruptHandler2(void){

		GPIO_PORTF_DATA_R
^=	0x04;						

		Stuff2();					

}

	

The	assembly	code	for	the	InterruptHandler1	is

PUSH		{lr}

LDR			r0,[pc,#180]			;	R0	points	to	Port	F

LDR			r0,[r0,#0x00]		;	R0	is	the	value	from	Port	F

EOR			r0,r0,#0x02				;	toggle	bit	1

LDR			r1,[pc,#152]			;	R1	points	to	Port	F

STR			r0,[r1,#0x3FC]	;	write	new	value	to	Port	F

BL.W		Stuff0									;	call	function

POP			{pc}											;	return	from	interrupt

	

	

5.14	What	happens	if	two	interrupt	requests	are	made	during	the	same	instruction?	Is	one
lost?	If	both	are	serviced,	which	one	goes	first?

	

5.15	Specify	whether	each	statement	is	TRUE	or	FALSE.

a)A signed 	char 	or int8_t 	variable	can	store	values	from	–128	to	+128.

b)	Consider	an	input	device.	The	interface	latency	is	the	time	from	when	the	software
asks	for	new	data	until	the	time	new	data	are	ready.

c)	Consider	an	output	device.	The	interface	latency	is	the	time	from	when	the	software
sends	new	data	to	the	output	device	until	the	time	the	output	operation	is	complete.

d)The static 	qualifier	is	used	with	functions	to	specify	the	function	is	permanent,	created
at	compile	time	and	is	never	destroyed.	E.g.,

static	int16_t	AddTwo(int16_t	in){	return	in+2;}

e)The static 	qualifier	is	used	with	a	variable	defined	inside	a	function	to	specify	the
variable	is	permanent,	created	at	compile	time,	initialized	to	0,	and	is	never	destroyed.	
E.g.,

void	function(int16_t	in){	static	int16_t	myData;

f)The const qualifier	is	used	with	a	global	variable	to	specify	the	variable	should	be
allocated	in	ROM.	E.g., const	int16_t	myData=5;

g)	Code	that	is	friendly	means	it	can	be	executed	by	more	than	one	thread	without	causing
a	crash	or	loss	of	data.

h)The volatile 	qualifier	is	used	with	variables	to	tell	the	compiler	that	code	that	accesses
this	variable	should	be	optimized	as	much	as	possible.

i)	A	read-modify-write	access	to	a	shared	global	variable	always	creates	a	critical	section.

j)	The	compiler	automatically	sets	I=1	at	the	beginning	of	the	interrupt	service	routine
and	clears	I=0	at	the	end	so	that	the	computer	runs	with	interrupts	disabled	while	servicing
the	interrupt.

	

5.16	Modify	Program	5.9	assuming	the	bus	clock	is	8	MHz	and	want	to	a	baud	rate	of
9600	bits/sec.

	

5.17	Modify	Program	5.9	assuming	the	bus	clock	is	6	MHz	and	want	to	a	baud	rate	of
38400	bits/sec.

	

5.18	Modify	Program	5.9	assuming	the	bus	clock	is	25	MHz	and	want	to	a	baud	rate	of
19200	bits/sec.

	

5.19	Modify	Program	5.9	to	use	UART1,	assuming	the	bus	clock	is	50	MHz	and	want	to	a
baud	rate	of	115200	bits/sec.

	

5.20	Which	of	the	following	debugging	instruments	is	faster?

GPIO_PORTD0	^=	0x01;		

or

		GPIO_PORTD0	=	0x01;	GPIO_PORTD0	=	0x00;		

	

	

5.21	Modify	Program	5.10	assuming	the	bus	clock	is	8	MHz	and	you	want	to	interrupt
every		1	ms.

	

5.22	Modify	Program	5.10	assuming	the	bus	clock	is	50	MHz	and	you	want	to	interrupt
every	100	� s.

	

5.23	Modify	Program	5.10	assuming	the	bus	clock	is	6	MHz	and	you	want	to	interrupt
every	1	sec.

	

5.24	These	seven	events	all	occur	during	each	SysTick	interrupt.	Order	these	events	into	a
proper	time	sequence.	More	than	one	answer	may	be	correct.																											

1)	The	CURRENT	equals	0	and	the	hardware	sets	the	SysTick	trigger	flag

2)	The	SysTick	vector	address	is	loaded	into	the	PC																											

3)	The	SysTick	trigger	flag	is	automatically	cleared	by	hardware

4)	The	software	executes	the	SysTick	ISR

5)	The	R0,	R1,	R2,	R3,	R12,	LR,	PC	and	PSR	are	pushed	on	the	stack

6)	The	R0,	R1,	R2,	R3,	R12,	LR,	PC	and	PSR	are	pulled	from	the	stack

7)	The	software	executes bx	lr

	

D5.25	Design	and	implement	a	FIFO	that	can	hold	up	to	4	elements.	Each	element	is	10
bytes.	There	will	be	three	functions: Init , Put one	element	into	FIFO	and Get 	one
element	from	the	FIFO.	Show	the	private	RAM-based	variables.	Write	a	function	that
initializes	the	FIFO.	Write	a	function	that	puts	one	10-byte	element	into	the	FIFO.		Write	a
function	that	gets	one	10-byte	element	from	the	FIFO.	Document	how	parameters	are
passed	in	each	function.

	

D5.26	Design	and	implement	a	FIFO	that	uses	the	memory	manager	to	allocate	space.
Each	element	is	32-bits.	Call	malloc	and	free	on	blocks	of	1024	bytes	(256	words).	If	the
FIFO	needs	more	space	allocate	it	by	calling	malloc(1024).	After	all	the	data	from	one
block	is	returned	via	Get,	then	deallocate	that	block	by	calling	Free.	You	are	allowed	to
permanently	define	pointers	and	counters,	but	no	permanent	buffers	are	allowed.	There
will	be	three	functions: Fifo_Init , Fifo_Put one	element	into	FIFO	and Fifo_Get 	one
element	from	the	FIFO,	using	the	same	prototypes	as	Program	3.7.

	

D5.27	Solve	the	FSM	described	in	Exercise	D3.12	using	SysTick	interrupts.	Include	three
components:	the	FSM	structure,	an	initialization	function,	and	the	SysTick	ISR.	There
should	be	no	backwards	jumps.

	

D5.28	Solve	the	FSM	described	in	Exercise	D3.13	using	SysTick	interrupts.	Run	one	pass
through	the	FSM	every	10	ms.	Include	three	components:	the	FSM	structure,	an
initialization	function,	and	the	SysTick	ISR.	There	should	be	no	backwards	jumps.

	

D5.29	Solve	the	traffic	light	FSM	described	in	Example	3.1	using	SysTick	interrupts.	Run
the	FSM	in	the	ISR.	Include	three	components:	the	FSM	structure,	an	initialization
function,	and	the	SysTick	ISR.	There	should	be	no	backwards	jumps.

	

D5.30	You	will	design	and	implement	the	Example	3.2	FSM	using	the	edge-triggered
interrupts.	One	of	the	limitations	of	the	FSM	implementations	in	Chapter	3	is	that	they
require	100%	of	the	processor	time	and	run	in	the	foreground.	In	this	system,	there	are	two
inputs	and	two	outputs.		We	will	implement	a	FSM	where	state	transitions	only	occur	on
the	edges	of	one	of	the	two	inputs.	These	edges	should	cause	an	interrupt,	and	the	FSM
controller	will	be	run	in	the	interrupt	handler.

	

	

5.11.	Lab	Assignments
Lab	5.1	The	overall	objective	is	to	create	an	alarm	clock.	A	periodic	interrupt	establishes
the	time	of	day.	Input/output	of	the	system	uses	an	interrupting	UART	port.	Input	is	used
to	set	the	time,	and	set	the	alarm.	Design	a	command	interpreter	that	performs	the
necessary	operations.	Output	is	used	to	display	the	current	time.	A	flashing	LED	or	sound
buzzer	can	be	used	to	signify	the	alarm.

Lab	5.2	The	overall	objective	is	to	create	a	software-driven	variable-frequency	digital
square	wave	output.	A	periodic	interrupt	will	set	an	output	pin	high/low.	Input/output	of
the	system	uses	an	interrupting	UART	port.	Input	is	used	to	set	the	frequency	of	the	wave.
Design	a	command	interpreter	that	performs	the	necessary	operations.	Connect	the	output
to	an	oscilloscope.

Lab	5.3	The	overall	objective	is	to	create	an	interrupt-driven	LED	light	display.	Interface
8	to	16	colored	LEDs	to	individual	output	pins.	A	periodic	interrupt	will	change	the	LED
pattern.	Connect	one	or	two	switches	to	the	system,	and	use	them	to	control	which	LED
light	pattern	is	being	displayed.	Design	a	linked	data	structure	that	contains	the	light
patterns.	Create	device	drivers	for	the	LED	outputs,	switch	inputs,	and	periodic	interrupt.
The	main	program	will	initialize	the	LED	outputs,	switch	inputs,	and	periodic	interrupt.
All	of	the	input/output	will	be	performed	in	the	ISR.	You	should	create	a	general	purpose
timer	system	that	accepts	a	function	to	execute	and	a	period.	E.g.,

void	main(void){

		LED_Init();					//	Initialize	LED	output	system

		Switch_Init();		//	Initialize	switch	input	system

		SysTick_Init(&FSMcontroller,250);			//	Run	FSMcontroller()	every	250ms

		while(1){}

}

	

Lab	5.4	The	overall	objective	is	to	create	an	interrupt-driven	traffic	light	controller.
The	system	has	three	digital	inputs	and	seven	digital	outputs.	You	can	simulate	the	system
with	three	switches	and	seven	LEDs.	The	inputs	are	North,	East,	and	Walk.	The	outputs
are	six	for	the	traffic	light	and	one	for	a	walk	signal.	Implement	the	controller	using	a
finite	state	machine.	Choose	a	Moore	or	Mealy	data	structure	as	appropriate.	A	periodic
interrupt	will	run	the	FSM.		The	main	program	will	initialize	the	LED	outputs,	switch
inputs,	and	periodic	interrupt.	All	of	the	input/output	will	be	performed	in	the	ISR.	You
should	create	a	general	purpose	timer	system	that	accepts	a	function	to	execute	and	a
period.	E.g.,

void	main(void){

		Traffic_Init();					//	Initialize	switches	and	LED	

		Timer_Init(&Traffic_Controller,100);			//	Run	FSM	every	100ms

		while(1){}

}

	

	

	

	

6.	Time	Interfacing
Chapter	6	objectives	are	to:
•														Use	input	capture	to	generate	interrupts	and	measure	period	or	pulse
width

•														Use	output	compare	to	create	periodic	interrupts	and	generate	square
waves

•														Use	both	input	capture	and	output	compare	to	measure	frequency

•														Interface	coil-activated	devices	like	a	DC	motor,	solenoid,	and	relay

•														Interface	an	optical	tachometer

•														Generate	waveforms	using	the	pulse-width	modulator
	

The	timer	systems	on	state-of-the-art	microcontrollers	are	very	versatile.	Over	the	last	30
years,	the	evolution	of	these	timer	functions	has	paralleled	the	growth	of	new	applications
possible	with	these	embedded	computers.	In	other	words,	inexpensive	yet	powerful
embedded	systems	have	been	made	possible	by	the	capabilities	of	the	timer	system.	In	this
chapter	we	will	introduce	these	functions,	then	use	them	throughout	the	remainder	of	the
book.	To	adjust	power	to	a	DC	motor	we	will	use	a	time-based	method	called	pulse-width
modulation.	To	measure	motor	speed	we	will	use	a	tachometer	an	employ	the	timer	to
measure	period.	In	this	book,	we	will	not	use	the	real-time	clock	(RTC).	For	information
about	these	modes,	refer	to	the	datasheet	for	your	specific	microcontroller.	If	we	review
the	applications	introduced	in	the	first	chapter	(see	Section	1.1),	we	will	find	that	virtually
all	of	them	make	extensive	use	of	the	timer	functions	developed	in	this	chapter.

6.1.	Input	Capture	or	Input	Edge	Time	Mode

6.1.1.	Basic	Principles
The	Texas	Instruments	microcontrollers	have	timers	that	are	separate	and	distinct	from
SysTick,	see	Figure	6.1.	Input	edge	time	mode	(or	input	capture	mode)	is	used	to	make
time	measurements	on	input	signals.	We	can	use	input	capture	to	measure	the	period	or
pulse	width	of	digital-level	signals.	The	input	capture	system	can	also	be	used	to	trigger
interrupts	on	rising	or	falling	transitions	of	external	signals.	A	General	Purpose	Timer
Module	(GPTM)	has	two	16-bit	timers,	which	can	be	extended	to	24	bits.	Each	GPTM
input	capture	module	has

An	external	input	pin,	e.g.,	CCP0
A	trigger	flag	bit,	called	Raw	Interrupt	Status,	e.g.,	CAERIS
Two	edge	control	bits,	Event	bits,	e.g.,	TAEVENT
An	arm	bit,	called	interrupt	mask,	e.g.,	CAEIM
A	16-bit	or	24-bit	input	capture	register,	e.g.,	TAR
The	various	members	of	the	LM3S/TM4C	family	have	from	zero	to	twelve	input	capture
modules.	Figure	6.1	shows	the	port	pins	used	for	input	capture	vary	from	microcontroller
to	microcontroller.	The	input	capture	and	output	compare	pins	are	labeled	CCP0,	CCP1,
…	A	timer	module	has	associated	I/O	pins.	The	even	CCP	pin	is	attached	to	Submodule	A
and	the	odd	pin	to	Submodule	B.	Some	timer	modules	are	not	attached	to	any	I/O	pins	For
example,	the	TM4C1294	has	eight	timers,	but	Timer	6	and	Timer	7	do	not	have	I/O	pins.
Timers	without	pins	can	be	used	to	generate	periodic	interrupts,	but	not	for	input	capture.
Tables	2.7	and	2.8	describe	how	to	attach	I/O	pins	to	the	timer	modules	on	the	TM4C123
and	TM4C1294.

Figure	6.1.	Input	capture	pins	on	the	LM3S811,	the	LM3S1968,	the
TM4C123,	and	the	TM4C1294.
In	this	book	we	use	the	term	arm	to	describe	the	bit	that	allows/denies	a	specific	flag	from
requesting	an	interrupt.	The	Texas	Instruments	manuals	refer	to	this	bit	as	a	mask.	I.e.,	the
device	is	armed	when	the	mask	bit	is	1.	Typically,	there	is	a	separate	arm	bit	for	every	flag
that	can	request	an	interrupt.	An	external	input	signal	is	connected	to	the	input	capture	pin.
During	initialization	we	specify	whether	the	rising	or	falling	edge	of	the	external	signal
will	trigger	an	input	capture	event.	The	16-bit	counter	decrements	at	the	rate	of	the	bus
clock,	when	it	hits	0,	it	automatically	rolls	over	to	0xFFFF	and	continues	to	count	down
(Figure	6.2).	Two	or	three	actions	result	from	an	input	capture	event:	1)	the	current	timer
value	is	copied	into	the	input	capture	register	(TAR	or	TBR),	2)	the	input	capture	flag	is
set	(RIS)	and	3)	an	interrupt	is	requested	if	armed	(IM).	This	means	an	interrupt	can	be
requested	on	a	capture	event.	When	using	the	prescaler	on	the	TM4C,	the	counter	can	be
extended	to	24	bits	(not	on	LM3S	parts).

	

	 31–3 2–0 Name

$4003.0000 	 GPTMCFG TIMER0_CFG_R

	 	 	 	 	 	 	 	 	 	

	 31–4 3 2 1-0 	

$4003.0004 	 TAAMS TACMR TAMR TIMER0_TAMR_R

	 	 	 	 	 	 	 	 	 	

	 31–4 3 2 1-0 	

$4003.0008 	 TBAMS TBCMR TBMR TIMER0_TBMR_R

	 	 	 	 	 	 	 	 	 	

	 14 13 11-10 8 6 5 3-2 0 	

$4003.000CTBPWMLTBOTE TBEVENTTBEN TAPWMLTAOTE TAEVENTTAEN TIMER0_CTL_R

	 	 	 	 	 	 	 	 	 	

	 31-11 10 9 8 7-4 2 1 0 	

$4003.0018 	 CBEIM CBMIM TBTOIM 	 CAEIM CAMIM TATOIM TIMER0_IMR_R

	 	 	 	 	 	 	 	 	 	

	 31-11 10 9 8 7-4 2 1 0 	

$4003.001C 	 CBERIS CBMRIS TBTORIS 	 CAERIS CAMRIS TATORIS TIMER0_RIS_R

	 	 	 	 	 	 	 	 	 	

	 31-11 10 9 8 7-4 2 1 0 	

$4003.0020 	 CBEMIS CBMMIS TBTOMIS 	 CAEMIS CAMMIS TATOMIS TIMER0_MIS_R

	 	 	 	 	 	 	 	 	 	

	 31-11 10 9 8 7-4 2 1 0 	

$4003.0020 	 CBECINT CBMCINTTBTOCINT 	 CAECINTCAMCINT TATOCINTTIMER0_ICR_R

	 	 	 	 	 	 	 	 	 	

	 31–16 15–0 	

$4003.0028 TAILRH TAILRL TIMER0_TAILR_R

	 	 	 	

	 31–16 15–0 	

$4003.002C 	 TBILRL TIMER0_TBILR_R

	 	 	 	

	 31–16 15–0 	

$4003.0030 TAMRH TAMRL _TAMATCHR_R

	 	 	 	

	 31–16 15–0 	

$4003.0034 	 TBMRL _TBMATCHR_R

	 	 	 	 	 	 	 	 	 	

	 31–8 7-0 	

$4003.0038 	 TAPSR TIMER0_TAPR_R

	 	 	 	

	 31–8 7-0 	

$4003.003C 	 TBPSR TIMER0_TBPR_R

	 	 	 	

	 31–8 7-0 	

$4003.0040 	 TAPSMR TIMER0_TAPMR_R

	 	 	 	

	 31–8 7-0 	

$4003.0044 	 TBPSMR TIMER0_TBPMR_R

	 	 	 	 	 	 	 	 	 	

	 31–16 15-0 	

$4003.0048 TARH TARL TIMER0_TAR_R

	 	 	 	

	 31–16 15-0 	

$4003.004C 	 TBRL TIMER0_TBR_R

Table	6.1.	Timer0	registers.	RTC	bits	not	shown.	Each	register	is	32	bits	wide.
Shaded	bits	are	zero.	The	bits	shown	in	bold	will	be	used	in	this	section.	Timers	1,	2,
…	have	the	same	formats.

	

The	input	capture	mechanism	has	many	uses.	Three	of	common	applications	are:

1.	An	ISR	is	executed	on	the	active	edge	of	the	external	signal

2.	Perform	two	rising	edge	input	captures	and	subtract	the	two	to	get	period
3.	Perform	a	rising	edge	and	then	a	falling	edge	capture	and
subtract	the	two	measurements	to	get	pulse	width
	

Figure	6.2.	Rising	or	falling	edge	of	CCP0	causes	the	counter	to	be
latched	into	TAR,	setting	CAERIS.
Checkpoint	6.1:	When	does	an	input	capture	event	occur?

Checkpoint	6.2:	What	happens	during	an	input	capture	event?

Observation:	The	timer	is	very	accurate	because	of	the	stability	of	the	crystal	clock.

Observation:	When	measuring	period	or	pulse-width,	the	measurement	resolution	will
equal	the	bus	clock	period.

6.1.2.	Input	Capture	Details	on	the	LM3S/TM4C
Next	we	will	overview	the	specific	input	capture	functions	on	the	LM3S/TM4C	family.
This	section	is	intended	to	supplement	rather	than	replace	the	data	sheets.	When	designing
systems	with	input	capture,	please	refer	to	the	reference	manual	of	your	specific
microcontroller.	Table	6.1	shows	some	of	the	registers	for	Timer	0.	We	begin	initialization
by	enabling	the	clock	for	the	timer	and	for	the	digital	port	we	will	be	using.	We	enable	the
digital	pin	and	select	its	alternative	function.	We	will	disable	the	timer	during	initialization
by	clearing	the	TAEN	(or	TBEN)	bit	in	the TIMER0_CTL_R 	register.	To	use	16-bit
mode,	we	set	GPTMCFG	field	to	4.	We	clear	the	TAAMS	(or	TBAMS)	bit	for	capture
mode.	We	set	the	TACMR	(or	TBCMR)	bit	for	input	edge	time	mode.	The	TAMR	(or
TBMR)	field	is	set	to	3	for	capture	mode.	In	summary,	we	write	a	0x0007	to
the TIMER0_TAMR_R 	register	to	select	input	capture	mode.	Table	6.2	lists	the	edge
capture	modes	for	TAEVENT	(or	TBEVENT.)

TAEVENT Active	edge

00 Capture	on	rising

01 Capture	on	falling

10 Reserved

11 Capture	on	both	rising	and	falling

Table	6.2.	Two	control	bits	define	the	active	edge	used	for	input	capture	(TBEVENT
is	the	same)	.

When	we	are	measuring	time	with	prescaler,	such	as	period	measurement	and	pulse	width
measurement,	we	set	the	24-bit	reload	value	to	0xFFFFFF.	In	this	way,	the	24-bit
subtraction	of	two	capture	events	yields	the	time	difference	between	events.	In	particular,
we	will	initialize TIMER0_TAILR_R 	to	0xFFFFand TIMER0_TAPR_R 	to	0xFF.	We
arm	the	input	capture	by	setting	the	CAEIM	(or	CBEIM)	bit	in	the TIMER0_IMR_R
register.	It	is	good	practice	to	clear	the	trigger	flag	in	the	initialization	so	that	the	first
interrupt	occurs	do	to	actions	occurring	after	the	initialization,	and	not	due	to	edges	that
might	have	occurred	during	power	up.	The	trigger	flags	are	in	the TIMER0_RIS_R
register.	These	flags	are	cleared	by	writing	1’s	into	corresponding	bits
inthe TIMER0_ICR_R 	register.	After	all	configuration	bits	are	set,	the	Timer	can	be
enabled	by	setting	the	TAEN	(or	TBEN)	bit	in	the TIMER0_CTL_R 	register.	If
interrupts	are	required	then	the	NVIC	must	be	configured	by	setting	the	priority	and
enabling	the	appropriate	interrupt	number.	

There	is	an	8-bit	prescaler	defined	for	each	submodules	A	and
B: TIMER0_TAPMR_R and 	TIMER0_TBPMR_R .	These	prescalers	are	not	active
during	input	capture	mode	on	LM3S,	but	the	prescalers	on	the	TM4C	are	used	to	extend
the	16-bit	timer	to	24	bits.

The	TAEVENTbits	of TIMER0_CTL_R 	register	specify	whether	the	rising	or	falling
edge	of	CCP0	will	trigger	an	input	capture	event	on	Timer	0A.	Two	or	three	actions	result
from	an	input	capture	event:	1)	the	current	timer	value	is	copied	into	the	input	capture
register, TIMER0_TAR_R ,	2)	the	input	capture	flag	(CAERIS)	is	set,	and	3)	an
interrupt	is	requested	if	the	mask	bit	(CAEIM)	is	1.		The	CAERIS	and	CBERIS	flag
bitsin	the TIMER0_RIS_R 	register	do	not	behave	like	a	regular	memory	location.	In
particular,	the	flag	cannot	be	set	by	software.	Rather,	an	input	capture	or	output	compare
hardware	event	will	set	the	flag.	The	other	peculiar	behavior	of	the	flag	is	that	the	software
must	write	a	one	to	the TIMER0_ICR_R 	register	in	order	to	clear	the	flag.	If	the
software	writes	a	zero	to	the	TIMER0_ICR_R 	register,	no	change	will	occur.	From
Table	6.1,	we	see	the	CAERIStrigger	flag	is	in	bit	2	of	the TIMER0_RIS_R 	register.
The	proper	way	to	clear	this	trigger	flag	is

		TIMER0_ICR_R	=	0x0004;

	

Writes	the TIMER0_RIS_R 	register	have	no	effect.	No	effect	occurs	in	the	bits	to	which
we	write	a	zero	in	the TIMER0_ICR_R 	register.

Observation:	The	phase-lock-loop	(PLL)	on	the	ARM	will	affect	the	timer	period.

	
Example	6.1.	Design	a	measurement	system	for	the	robot	that	counts	the	number	of	times
a	wheel	turns.	This	count	will	be	a	measure	of	the	total	distance	travelled.	The	desired
resolution	is	1/32	of	a	turn

Solution:	Whenever	you	measure	something,	it	is	important	to	consider	the	resolution	and
range.	The	basic	idea	is	to	use	an	optical	sensor	(QRB1134)	to	visualize	the	position	of	the
wheel.	A	black/white	striped	pattern	is	attached	to	the	wheel,	and	an	optical	reflective
sensor	placed	near	the	stripes.	The	sensor	has	an	infrared	LED	output	and	a	light	sensitive
transistor.	The	resolution	will	be	determined	by	the	number	of	stripes	and	the	ability	of	the
sensor	to	distinguish	one	stripe	from	another.	The	range	will	be	determined	by	the
precision	of	the	software	global	variable	used	to	count	edges.

The	anode	and	cathode	leads	of	the	sensor	control	the	amount	of	emitted	IR	light.	The
operating	point	for	the	LED	in	the	QRB1134	is	15	mA	at	1.8	V.	The	current	to	the	LED	is
controlled	by	the	R1	resistor.	In	this	circuit,	the	LED	current	will	be	(3.3-1.8V)/R1,	which
we	set	to	15	mA	by	making	R1	equal	to	100 � .	The	R2	pull-up	resistor	on	the	transistor
creates	an	output	swing	at	V1	depending	on	whether	the	sensor	sees	a	black	stripe	or	white
stripe.	Unfortunately,	the	signal	V1	is	not	digital.	The	rail-to-rail	op	amp,	in	open	loop
mode,	creates	a	clean	digital	signal	at	V2,	which	has	the	same	frequency	as	V1.		The
negative	terminal	is	set	to	a	voltage	approximately	in	the	center	of	V1,	shown	as	+2V	in
Figure	6.3.	Slew	rate	is	defined	as	dV/dt.	An	uncertainty	in	voltage V	will	translate	to	an
uncertainty	in	time,	t	= V	/(dV/dt).	Thus	to	minimize	time	error,	we	choose	a	place	with
maximum	slew	rate.	In	other	words,	we	should	select	the	threshold	at	the	place	in	the
wave	where	the	slope	is	at	maximum.

We	then	interface	V2	to	an	input	capture	pin,	and	configure	the	system	to	trigger	an
interrupt	on	each	rising	edge.	Several		of	the	GPIO	pins	could	have	been	used,	but	we
selected	PD4	(CCP0)	as	shown	in	Figure	6.3.	This	means	that	Timer0A	will	be	used.

Because	there	are	32	stripes	on	the	wheel,	there	will	be	32	interrupts	each	time	the	wheel
rotates	once.	A	32-bit	global	variable	will	be	used	to	count	the	number	of	rising	edges.
This	count	is	a	binary	fixed-point	number	with	a	resolution	of	2-5	revolutions.	E.g.,	if	the
count	is	100,	this	means	100/32	or	3.125	revolutions.	If	the	circumference	of	the	wheel	is
fixed,	and	if	the	wheel	does	not	slip,	then	this	count	is	also	a	measure	of	distance	traveled.
We	solved	a	similar	problem	in	Program	5.6	using	edge-triggered	inputs.	However	in	this
solution,	we	will	use	input	capture.

The	initialization	sets	the	direction	register	bit	64	to	0,	so	PB6	is	an	input.	Bit
6in GPIO_PORTB_AFSEL_R 	is	set,	making	timer	channel	4	an	input	capture.	Bits	2
and	3	(TAEVENT)	in TIMER0_CTL_R 	specify	we	want	Timer0A	to	capture	on	the
rising	edge	of	PB6.	We	arm	the	input	capture	channel	by	setting	bit	2	(CAEIM)
in TIMER0_IMR_R .	It	is	good	design	practice	to	clear	trigger	flags	in	the	initialization,
so	the	first	interrupt	is	due	to	a	rising	edge	on	the	input	occurring	after	the	initialization
and	not	due	to	events	occurring	during	power	up	or	before	initialization.

Figure	6.3.	An	external	signal	is	connected	to	the	input	capture.
	

volatile	uint32_t	Count;						//	incremented	on	interrupt

void	TimerCapture_Init(void){

		SYSCTL_RCGCTIMER_R	|=	0x01;						//	activate	timer0

		SYSCTL_RCGCGPIO_R	|=	0x00000002;	//	activate	port	B

		Count	=	0;																							//	allow	time	to	finish	activating

		GPIO_PORTB_DEN_R	|=	0x40;								//	enable	digital	I/O	on	PB6

		GPIO_PORTB_AFSEL_R	|=	0x40;					//	enable	alt	funct	on	PB6

		GPIO_PORTB_PCTL_R	=
(GPIO_PORTB_PCTL_R&0xF0FFFFFF)+0x07000000;

		TIMER0_CTL_R	&=	~0x00000001;					//	disable	timer0A	during	setup

		TIMER0_CFG_R	=	0x00000004;							//	configure	for	16-bit	timer	mode

		TIMER0_TAMR_R	=	0x00000007;						//	configure	for	input	capture	mode

		TIMER0_CTL_R	&=	~(0x000C);							//	TAEVENT	is	rising	edge

		TIMER0_TAILR_R	=	0x0000FFFF;				//	start	value

		TIMER0_IMR_R	|=	0x00000004;						//	enable	capture	match	interrupt

		TIMER0_ICR_R	=	0x00000004;							//	clear	timer0A	capture	flag

		TIMER0_CTL_R	|=	0x00000001;						//	enable	timer0A

		NVIC_PRI4_R	=(NVIC_PRI4_R&0x00FFFFFF)|0x40000000;	//	Timer0A=priority
2

		NVIC_EN0_R	=	0x00080000;						//	enable	interrupt	19	in	NVIC

		EnableInterrupts();

}

void	Timer0A_Handler(void){

		TIMER0_ICR_R	=	0x00000004;							//	acknowledge	timer0A	capture	match

		Count	=	Count	+	1;

}

Program	6.1.	Counting	interrupt	using	input	capture
(InputCapture_xxx.zip).
	

An	input	capture	interrupt	occurs	on	each	rise	of	CCP0.	The	latencyof	the	system	is
defined	as	the	time	delay	between	the	rise	of	the	input	capture	signal	to	the	increment
of Count .	Assuming	there	are	no	other	interrupts,	and	assuming	the	main	program	does
not	disable	interrupts,	the	delay	will	be	on	the	order	of	1ms.	The	latency	may	be	larger	if
there	are	other	sections	of	code	that	execute	with	the	interrupts	disabled,	or	if	there	are
higher	priority	interrupts	active.	The	ritual, TimerCapture_Init() ,	sets	input	capture	to
interrupt	on	the	rise,	and	initializes	the	global, Count .	The	interrupt	software	performs	a
poll,	acknowledges	the	interrupt	and	increments	the	global	variable.	Actual	measurements
collected	with	this	interface	are	shown	in	Figure	6.4.
	

						

Figure	6.4.	Measured	V1	and	V2	from	the	circuit	in	Figure	6.3.

	
Checkpoint	6.3:	Explain	how	to	change	Program	6.1	to	run	on	a	LM3S1968	with	the
input	connected	to	CCP0/PB0.

Checkpoint	6.4:	Explain	how	to	change	Program	6.1	to	still	run	on	a	LM3S811	but	with
the	input	connected	to	CCP2/PD5.

Checkpoint	6.5:	Write	code	to	clear	CBMRIS	in	Timer	1.

Common	Error:	When	two	software	modules	both	need	to	set	the	same	configuration
register,	a	poorly	written	initialization	by	one	software	module	undoes	the	initialization
performed	by	the	other.		

On	the	LM4F120/TM4C123,	the	CCP0	input	of	Timer0	can	be	connected	to	either	PB6	or
to	PF0	as	described	in	Tables	2.7	and	2.8.	To	use	PB6,	we	set	PCTL	bits	for	PB6	to	7.	To
use	PF0,	we	set	PCTL	bits	for	PF0	to	7.	E.g.,

GPIO_PORTF_AFSEL_R	|=	0x01;

GPIO_PORTF_PCTL_R	=	(GPIO_PORTF_PCTL_R&0xFFFFFFF0)+0x00000007;

6.1.3.	Period	Measurement

Before	one	implements	a	system	that	measures	period,	it	is	appropriate	to	consider	the
issues	of	resolution,	precision	and	range.	The	resolution	of	a	period	measurement	is
defined	as	the	smallest	change	in	period	that	can	reliably	be	detected.	In	Example	6.2,	the
bus	clock	is	80	MHz.	This	means,	if	the	period	increases	by	12.5	ns,	then	there	will	be	one
more	Timer	clock	between	the	first	rising	edge	and	the	second	rising	edge.	In	this
situation,	the	24-bit	subtraction	will	increase	by	1,	therefore	the	period	measurement
resolution	is	12.5	ns.	The	resolution	is	the	smallest	measurable	change.	Resolution
definesthe	units	of	the	measurement.	In	this	first	example,	if	the	calculation	of Period
results	in	1000,	then	it	represents	a	period	of	1000•12.5ns	or	12.5µs.		The	precision	of	the
period	measurement	is	defined	as	the	number	of	separate	and	distinguishable
measurements.		If	the	24-bit	counter	is	used,	there	are	about	16	million	different	periods
that	can	be	measured.	We	can	specify	the	precision	in	alternatives,	e.g.,	224,	or	in	bits,	e.g.,
24	bits.	The	last	issue	to	consider	is	the	range	of	the	period	measurement,	which	is
defined	as	the	minimum	and	maximum	values	that	can	reliably	be	measured.	We	are
concerned	what	happens	if	the	period	is	too	small	or	too	large.	A	good	measurement
system	should	be	able	to	detect	overflows	and	underflows.	In	addition,	we	would	not	like
the	system	to	crash,	or	hang-up	if	the	input	period	is	out	of	range.	Similarly,	it	is	desirable
if	the	system	can	detect	when	there	is	no	period.	For	edge	detection,	the	input	must	be
high	for	at	least	two	system	clock	periods	and	low	for	at	least	two	system	clock	periods.

	

Example	6.2.	Design	a	system	that	measures	the	rotational	speed	of	a	motor	shaft	using
period	measurement	with	a	precision	of	24	bits	and	a	resolution	of	12.5	ns.

Solution:	For	details	of	the	sensor	refer	back	to	Figure	6.3.	In	this	example,	the	digital
input	signal	is	connected	to	an	input	capture	pin,	CCP0.	If	the	motor	shaft	rotates	once
there	will	be	N	rising	edges	on	CCP0.	We	will	make	the	bus	clock	equal	80	MHz.	Each
rising	edge	will	cause	Timer0A	to	generate	an	input	capture	interrupt	(Figure	6.5).

Figure	6.5.	To	measure	period	we	connect	the	external	signal	an	input
capture,	PB6	on	the	TM4C123.
	

The	period	is	calculated	as	the	difference	in TIMER0_TAR_R 	latch	values	from	one
rising	edge	to	the	other.	If	N=100,	and	the	motor	is	spinning	at	300	RPM,	then	the	period
will	be	[(60000ms/min)/(300RPM)/100edges/rotation)],	which	will	be	2.00	ms/edge,	as
shown	in	Figure	6.6.

For	example,	if	the	period	is	2000	µs,	the	Timer0A	interrupts	will	be	requested	every
160,000	cycles,	and	the	24-bit	difference	between TIMER0_TAR_R 	latch	values	will	be
160,000.	This	subtraction	remains	valid	even	if	the	timer	reaches	zero	and	wraps	around	in
between	Timer0A	interrupts.	On	the	other	hand,	this	method	will	not	operate	properly	if
the	period	is	larger	than	224	cycles,	or	about	209	ms.
	

Figure	6.6.	Timing	example	showing	counter	rollover	during	24-bit	period
measurement.
	

The	resolution	is	12.5	ns	because	the	period	must	increase	by	at	least	this	amount	before
the	difference	between	Timer0A	measurements	will	reliably	change.	Even	though	a	24-bit
counter	is	used,	the	precision	is	a	little	less	than	24	bits,	because	the	shortest	period	that
can	be	handled	with	this	interrupt-driven	approach	is	about	1	s.	It	takes	about	1 � s	to
complete	the	context	switch,	execute	the	ISR	software,	and	return	from	interrupt.	This
factor	is	determined	by	experimental	measurement.	In	other	words,	as	the	period
approaches	1	s,	a	higher	and	higher	percentage	of	the	computer	execution	is	utilized	just	in
the	handler	itself.

Because	the	input	capture	interrupt	has	a	separate	vector	the	software	does	not	poll.	An
interrupt	is	requested	on	each	rising	edge	of	the	input	signal.	In	this	situation	we	count	all
the	cycles	required	to	process	the	interrupt.	The	period	measurement	system	written	for
the	TM4C123	is	presented	in	Program	6.2.	The	24-bit	subtraction	is	produced	by	anding
the	difference	with	0x0FFFFFF,	calculating	the	number	of	bus	clocks	between	rising
edges.	The	first	period	measurement	will	be	incorrect	and	should	be	neglected.

uint32_t	Period;														//	24-bit,	12.5	ns	units

uint32_t	static	First;								//	Timer0A	first	edge,	12.5	ns	units

int32_t	Done;																//	mailbox	status	set	each	rising

void	PeriodMeasure_Init(void){

		SYSCTL_RCGCTIMER_R	|=	0x01;						//	activate	timer0

		SYSCTL_RCGCGPIO_R	|=	0x02;							//	activate	port	B

		First	=	0;																							//	first	will	be	wrong

		Done	=	0;																								//	set	on	subsequent

		GPIO_PORTB_DIR_R	&=	~0x40;							//	make	PB6	input

		GPIO_PORTB_AFSEL_R	|=	0x40;						//	enable	alt	funct	on	PB6

		GPIO_PORTB_DEN_R	|=	0x40;								//	configure	PB6	as	T0CCP0

		GPIO_PORTB_PCTL_R	=
(GPIO_PORTB_PCTL_R&0xF0FFFFFF)+0x07000000;

		TIMER0_CTL_R	&=	~0x00000001;					//	disable	timer0A	during	setup

		TIMER0_CFG_R	=	0x00000004;							//	configure	for	16-bit	capture	mode

		TIMER0_TAMR_R	=	0x00000007;						//	configure	for	rising	edge	event

		TIMER0_CTL_R	&=	~0x0000000C;					//	rising	edge

		TIMER0_TAILR_R	=	0x0000FFFF;					//	start	value

		TIMER0_TAPR_R	=	0xFF;												//	activate	prescale,	creating	24-bit

		TIMER0_IMR_R	|=	0x00000004;						//	enable	capture	match	interrupt

		TIMER0_ICR_R	=	0x00000004;							//	clear	timer0A	capture	match	flag

		TIMER0_CTL_R	|=	0x00000001;						//	timer0A	24-b,	+edge,	interrupts

		NVIC_PRI4_R	=	(NVIC_PRI4_R&0x00FFFFFF)|0x40000000;	//Timer0A=priority
2

		NVIC_EN0_R	=	1<<19;											//	enable	interrupt	19	in	NVIC

		EnableInterrupts();

}

void	Timer0A_Handler(void){

		TIMER0_ICR_R	=	0x00000004;							//	acknowledge	timer0A	capture

		Period	=	(First	-	TIMER0_TAR_R)&0x00FFFFFF;	//	12.5ns	resolution

		First	=	TIMER0_TAR_R;											//	setup	for	next

		Done	=	1;																								//	set	semaphore

}

Program	6.2.	24-bit	period	measurement	(PeriodMeasure_xxx.zip).

	
	

Example	6.3.	Design	an	ohmmeter	with	a	range	of	0	to	250	k � and	a	resolution	of	10 � .

Solution:	One	way	to	measure	resistance	or	capacitance	is	convert	the	electrical	parameter
to	time.	In	particular,	we	will	use	a	TLC555	to	convert	the	input	resistance	(Rin)	to	a	time
period	(P)	.	Figure	6.7	shows	the	hardware	circuit.	The	555	is	called	an	astable
multivibrator,	created	a	signal	wave	with	a	period	equal	to	CT*(RA	+	2*RB)*ln(2).	CT	and

RA	are	constants,	but	RBis	10k � 	plus	the	unknown	input,	Rin.	We	can	then	use	the	period
measurement	software	from	Program	6.2.	The	resistance	measurement	resolution	(R)
depends	on	the	period	measurement	resolution	(t)	and	the	capacitor	CT, t	=	CT* R*ln(2).
At	a	bus	frequency	of	50	MHz,	the	period	measurement	resolution	is	20	ns.	If	we	desire	a
10 � 	resistance	resolution,	the	capacitor	will	be	about	3nF.	In	this	circuit,	a	3.3nF
capacitor	was	used	because	it	is	a	standard	value.	As	the	input	resistance	varies	from	0	to
250	k � ,	the	period	(in	20ns	units)	varies	from	about	3000	to	60000.	A	linear	function	is
used	to	convert	the	measured	period	(20	ns	units)	to	resistance	(10 � 	units).	The	same
initialization	of	Program	6.2	can	be	used.

Figure	6.7.	The	TLC555	outputs	a	square	wave	with	a	period	depending
on	RA	RB	and	CT.
	

Program	6.3	shows	the	ISR	of	Program	6.2	extended	to	include	the	period	to	resistance
conversion.	The	coefficients	of	this	linear	fit	were	determined	by	empirical	calibration	Rin
= 0.4817* Period -1466.5 .	This	equation	is	implemented	with	fixed-point	math.
	

Although	mathematically,	it	seems	like	the	system	has	a	10 � 	resolution	and	a	precision
of	25000	alternatives,	the	actual	resolution	will	be	limited	by	the	stability	of	the	TLC555,
the	stability	of	capacitor,	and	any	added	noise	into	the	circuit.
	

uint32_t	Period;														//	16-bit,	20	ns	units

uint32_t	Resistance;										//	16-bit,	10	ohm	units

uint32_t	static	First;								//	Timer0A	first	edge

uint32_t	Done;																//	mailbox	status	set	each	rising

void	Timer0A_Handler(void){

		TIMER0_ICR_R	=	0x00000004;														//	acknowledge	timer0A	capture

		Period	=	(First	-	TIMER0_TAR_R)&0xFFFF;	//	20	ns	resolution

		Resistance	=	(1973*Period-6006784)>>12;	//	conversion

		First	=	TIMER0_TAR_R;																			//	setup	for	next

		Done	=	0xFF;																												//	set	mailbox	flag

}

Program	6.3.	16-bit	period	measurement	used	to	measure	resistance
(ResistanceMeasure_xxx.zip).

	

6.1.4.	Pulse	Width	Measurement
The	basic	idea	of	pulse	width	measurement	is	to	cause	an	input	capture	event	on	both	the
rising	and	falling	edges	of	an	input	signal.	Each	edge	captures	a	timer	value.	The
difference	between	these	two	captured	times	will	be	the	pulse	width.	Just	like	period
measurement,	the	resolution	is	determined	by	the	rate	at	which	the	timer	is	decremented.
The	maximum	pulse	width	is	216	times	the	resolution,	and	is	limited	by	the	16-bit	timer.
When	considering	measurement	resolution	it	is	important	to	consider	voltage	noise	as
well.	For	example,	in	Figures	6.3	and	6.5,	any	voltage	noise	on	the	sensor	will	cause	a
time-jitter,	which	is	a	noise	in	the	time	measurement.	If	the	slew	rate	of	the	sensor	at	the
threshold	voltage	is	dV/dt,	then	a	voltage	noise	of	V	will	cause	a	time	errorof t,	according
to t= V/(dV/dt).

	

Example	6.4.	Design	a	system	to	measure	resistance	and	use	it	to	interface	a	10	kΩ
joystick.
	

Solution:	Clearly,	you	could	just	connect	the	potentiometer	across	the	power	rails	and
measure	the	voltage	drop	using	the	ADC	(which	will	be	described	later).	However,	it	is
much	cheaper	and	easier	to	measure	time	precisely	than	to	measure	voltage	precisely.	This
makes	sense,	considering	that	an	inexpensive	clock	can	run	for	months	before	it	needs	to
be	reset,	but	even	a	high	quality	voltmeter	measures	to	only	a	few	digits	of	precision.
Therefore,	we	will	convert	the	resistance	to	a	pulse	width	using	external	circuitry	and
measure	the	pulse	using	input	capture.	The	TM4C123	microcontroller	runs	at	80	MHz,	so
the	pulse	width	resolution	will	be	12.5	ns.	The	range	will	be	1	s	to	209	ms.	With	the
minimum	determined	by	the	time	to	execute	software	and	the	maximum	determined	by	the
24-bit	counter	(12.5	ns	*224.)
	

The	objective	is	to	use	input	capture	pulse	width	measurement	to	measure	resistance.	This
basic	approach	is	employed	by	most	joystick	interfaces.	The	resistance	measurement
range	is	0	≤	R	≤	10	kΩ.	The	desired	resolution	is	1	Ω.	We	will	use	busy-wait
synchronization.
	

Most	joysticks	have	two	variable	resistances,	but	we	will	show	the	solution	for	just	one	of
the	potentiometers.	The	variable	resistance	R	in	Figure	6.8	is	one	channel	of	the	joystick.
We	use	a	monostable	to	convert	unknown	resistance,	R,	to	time	difference	t.	To	perform
high	quality	measurements	we	will	need	a	high	quality	capacitor,	because	of	the	basic
conversion	follows t	=	R*C.	PB5	is	a	digital	output	and	PB6	is	an	input	capture	input.	A

rising	edge	on	PB5	causes	a	monostable	positive	logic	pulse	on	the	“Q”	output	of	the
74HC123.	We	choose	R1	and	C,	so	that	the	resistance	resolution	maps	into	a	pulse	width
measurement	resolution	of	12.5	ns,	and	the	resistance	range	0	≤	R	≤	10	kΩ	maps	into	125
≤	t	≤	250	µs.	The	following	equation	describes	the	pulse	width	generated	by	the	74HC123
monostable	as	a	function	of	the	resistances	and	capacitance.
	

t	=	0.45•(R	+R1)•C
	

For	a	linear	system,	with	x	as	input	and	y	as	output,	we	can	use	calculus	to	relate	the
measurement	resolution	of	the	input	and	output.

Therefore,	the	relationship	between	the	pulse	width	measurement	resolution,	∆t,	and	the
resulting	resistance	measurement	resolution	is	determined	by	the	value	of	the	capacitor.
	

t=	0.45	• � R	•	C
	

To	make	a	∆t	of	12.5	ns	correspond	to	a	∆R	of	1	Ω,	we	choose
	

C=∆t/(0.45∆R)=12.5ns/(0.45•1Ω)=27.8nF
	

We	will	use	a	C0G	high-stability	27nF	ceramic	capacitor.	To	design	for	the	minimum
pulse	width,	we	set	R=0,	t=0.45•R1•C.	We	choose	R1	to	make	the	minimum	pulse	width
125 � s,
	

R1=t/(0.45•C)=125µs/(0.45•27nF)	=	10.288	kΩ
	

We	will	use	a	1%	metal	film	10	kΩ	resistor	for	R1.	To	check	the	minimum	and	maximum
pulse	widths	we	set	R=0	and	R=10kΩ,	and	calculate	t=	0.45•(10kΩ)•27nF=121.5µs	(close
to	125),	and	t=	0.45•(20kΩ)•27nF=243µs	(close	to	250).	The	importance	parameters	for
the	74HC123,	R1	and	C	are	the	long	term	stability.	I.e.,	their	performance	should	be
constant	over	time.	Any	differences	between	assumed	values	and	real	values	for	the
capacitor	and	the	0.45	constant	can	be	compensated	for	with	software	calibration.

Figure	6.8.	To	measure	resistance	using	pulse	width	we	connect	the
external	signal	an	input	capture.

	

The	measurement	function	returns	the	resistance,	R,	in	Ω.	For	example,	if	the	resistance,
R,	is	1234	Ω,	then	return	parameter	will	be	1234.	We	will	not	worry	about	resistances,	R,
greater	than	55535	Ω	or	if	R	is	disconnected.	The	solution	is	shown	as	Program	6.4.
	

#define	CALIBRATION			0

void	ResistanceMeasure_Init(void){

		SYSCTL_RCGCTIMER_R	|=	0x01;						//	activate	timer0

		SYSCTL_RCGCGPIO_R	|=	0x02;							//	activate	port	B

		while((SYSCTL_PRGPIO_R&0x02)	!=	0x02){};

		GPIO_PORTB_DATA_R	|=	0x20;							//	set	PB5	high

		GPIO_PORTB_DIR_R	=	(GPIO_PORTB_DIR_R&	~0x40)|0x20;		//	PB5	out,	PB6
in

		GPIO_PORTB_DEN_R	|=	0x60;								//	enable	digital	PB5	and	PB6

		GPIO_PORTB_AFSEL_R	|=	0x40;						//	enable	alt	funct	on	PB6

		GPIO_PORTB_PCTL_R	=
(GPIO_PORTB_PCTL_R&0xF0FFFFFF)+0x07000000;

		TIMER0_CTL_R	&=	~0x00000001;				//	disable	timer0A	during	setup

		TIMER0_CFG_R	=	0x00000004;							//	configure	for	16-bit	timer	mode

		TIMER0_TAMR_R	=	0x00000007;						//	configure	for	input	capture	mode

		TIMER0_TAILR_R	=	0x0000FFFF;					//	start	value

		TIMER0_IMR_R	&=	~0x7;												//	disable	all	interrupts	for	timer0A

		TIMER0_ICR_R	=	0x00000004;							//	clear	timer0A	capture	match	flag

		TIMER0_CTL_R	|=	0x00000001;						//	enable	timer0A	edge,	no	interrupts

}

//	return	resistance	in	ohms,	range	is	0	to	10000	ohm

uint16_t	ResistanceMeasure(void){	uint16_t	rising;

		GPIO_PORTB_DATA_R	&=	~0x20;					//	turn	off	PB5

		TIMER0_CTL_R	&=	~(0x000C);							//	rising	edge

		TIMER0_ICR_R	=	0x00000004;							//	clear	timer0A	capture	flag

		GPIO_PORTB_DATA_R	|=	0x20;							//	turn	on	PB5,	trigger	74HC123

		while((TIMER0_RIS_R&0x00000004)==0){};//	wait	for	rise

		rising	=	TIMER0_TAR_R;											//	timerA0	at	rising	edge

		TIMER0_ICR_R	=	0x00000004;							//	clear	timer0A	flag

		TIMER0_CTL_R	&=	~(0x000C);

		TIMER0_CTL_R	+=	0x00000004;						//	falling	edge

		while((TIMER0_RIS_R&0x00000004)==0){};	//	wait	for	fall

		TIMER0_ICR_R	=	0x00000004;								//	clear	timer0A	flag

		return(rising-TIMER0_TAR_R-CALIBRATION)&0xFFFF;

}

Program	6.4.	Measuring	resistance	using	pulse-width	measurement.

	
The	difficulty	with	pulse	width	measurement	in	the	previous	example	was	the	need	to
switch	from	rising	to	falling	edge	during	each	measurement.	It	was	not	a	problem	with	this
problem	because	the	smallest	pulse	width	was	1250 � s.	However,	to	handle	shorter
pulses	we	will	need	to	use	two	input	capture	pins.	One	pin	measures	the	time	of	the	rise
and	the	other	pin	measures	the	time	of	the	fall.	In	order	for	input	capture	to	operate,	the
input	must	be	high	for	at	least	two	bus	clocks	and	low	for	at	least	two	bus	clocks.
Otherwise	the	minimum	pulse	width	does	not	depend	on	software	execution	time	or
interrupt	latency.	However	the	minimum	period	will	depend	on	software	speed.

	

Example	6.5.	Design	a	system	to	measure	pulse	width	using	interrupts,	with	a	precision	of
24	bits	and	a	resolution	of	12.5	ns.	
	

Solution:	In	this	example,	the	digital-level	input	signal	is	connected	to	two	input	capture
pins,	CCP0	and	CCP1	(Figure	6.9).	The	bus	clock	is	selected	to	be	80	MHz	so	the
measurement	resolution	will	be	12.5	ns.	The	rising	edge	time	will	be	measured	by
Timer0B	without	the	need	of	an	interrupt	and	the	falling	edge	interrupts	will	be	handled
by	Timer0A.		The	pulse	width	is	calculated	as	the	difference	in TIMER0_TBR_R-
TIMER0_TAR_R 	latch	values.	In	this	example	the	Timer0Ainterrupt	handler	simply	sets
the	global	variable, PW ,	at	the	time	of	the	falling	edge.		Because	no	software	is	required
to	process	the	Timer0B	measurement,	there	is	no	software	limit	to	the	minimum	pulse
width.	There	is	the	hardware	limit	requiring	at	least	two	bus	clock	periods	while	high	and
two	bus	clock	periods	while	low.	On	the	other	hand,	software	processing	is	required	to
handle	the	Timer0A	signal,	so	there	is	a	minimum	period.	E.g.,	there	must	be	more	than	2
µs	from	one	falling	edge	to	the	next	falling	edge.	This	time	depends	on	software	execution
speed	in	the	ISR,	and	the	context	switch.	This	minimum	period	will	be	larger	for	systems
with	higher	priority	interrupts.	Again,	the	first	measurement	may	or	may	not	be	accurate.
	

Figure	6.9.	The	rising	edge	is	measured	with	Timer0B,	and	falling	edge	is
measured	with	Timer0A.
	

The	pulse	width	measurement	is	performed	from	rising	edge	to	falling	edge.	The
resolution	is	12.5	ns,	determined	by	the	system	bus	clock.	The	range	is	about	25	ns	to
209ms	with	no	overflow	checking.		Timer0Ainterrupts	only	occur	on	the	falling	edges.
The	global, PW ,	contains	the	most	recent	measurement. Done 	is	set	at	the	falling	edge
by	Timer0Asignifying	a	new	measurement	is	available.	If	the	first	edge	after
the PWMeasure2_Init(); 	is	executed	is	a	falling	edge,	then	the	first	measurement	will	be
incorrect	(because TIMER0_TBR_R 	is	incorrect).	If	the	first	edge	after
the PWMeasure2_Init(); 	is	executed	is	a	rising	edge,	then	the	first	measurement	will	be
correct.	Notice	how	little	software	overhead	is	required	to	perform	these	measurements
(Program	6.5).
	

uint32_t	PW;															//	24	bits,	12.5	ns	units

int	Done;																			//	set	each	falling

void	PWMeasure2_Init(void){	//	TM4C123	code

		SYSCTL_RCGCTIMER_R	|=	0x01;						//	activate	timer0

		SYSCTL_RCGCGPIO_R	|=	0x02;							//	activate	port	B

		Done	=	0;																								//	allow	time	to	finish	activating

		GPIO_PORTB_DIR_R	&=	~0xC0;							//	make	PB6,	PB7	inputs

		GPIO_PORTB_DEN_R	|=	0xC0;								//	enable	digital	PB6,	PB7

		GPIO_PORTB_AFSEL_R	|=	0xC0;						//	enable	alt	funct	on	PB6,	PB7

		GPIO_PORTB_PCTL_R	=	(GPIO_PORTB_PCTL_R&0x00FFFFFF)+0x77000000;

		TIMER0_CTL_R	&=	~0x00000003;

		TIMER0_CFG_R	=	0x00000004;							//	configure	for	16-bit	timer	mode

		//	****	timer0A	initialization	****

		TIMER0_TAMR_R	=	0x00000007;

		TIMER0_CTL_R	=	(TIMER0_CTL_R&(~0x0C))+0x04;	//	falling	edge

		TIMER0_TAILR_R	=	0x0000FFFF;					//	start	value

		TIMER0_TAPR_R	=	0xFF;												//	activate	prescale,	creating	24-bit

		TIMER0_IMR_R	|=	TIMER_IMR_CAEIM;	//	enable	capture	match	interrupt

		TIMER0_ICR_R	=	TIMER_ICR_CAECINT;//	clear	timer0A	capture	match	flag

		//	****	timer0B	initialization	****

		TIMER0_TBMR_R	=	0x00000007;

		TIMER0_CTL_R	=	(TIMER0_CTL_R&(~0x0C00))+0x00;	//	rising	edge

		TIMER0_TBILR_R	=	0x0000FFFF;					//	start	value

		TIMER0_TBPR_R	=	0xFF;												//	activate	prescale,	creating	24-bit

		TIMER0_IMR_R	&=	~0x700;										//	disable	all	interrupts	for	timer0B

		TIMER0_CTL_R	|=	0x00000003;						//	enable	timers

		//	****	interrupt	initialization	****

		NVIC_PRI4_R	=	(NVIC_PRI4_R&0x00FFFFFF)|0x40000000;	//	Timer0=priority	2

		NVIC_EN0_R	=	1<<19;													//	enable	interrupt	19	in	NVIC

		EnableInterrupts();

}

void	Timer0A_Handler(void){

		TIMER0_ICR_R	=	0x00000004;//	acknowledge	timer0A	capture	flag

		PW	=	(TIMER0_TBR_R-TIMER0_TAR_R)&0x00FFFFFF;//	from	rise	to	fall

		Done	=	1;

}

Program	6.5.	Pulse-width	measurement	using	two	input	captures
(HighPulseMeasureHW_xxx.zip).

	

6.2.	Output	Compare	or	Periodic	Timer
In	output	compare	(periodic	timer)	mode	the	timer	is	configured	as	a	16-bit	down-counter
with	an	optional	8-bit	prescaler	that	effectively	extends	the	counting	range	of	the	timer	to
24	bits.	When	the	timer	counts	from	1	to	0	it	sets	the	trigger	flag.	On	the	next	count,	the
timer	is	reloaded	with	the	value	in	TIMER0_TAILR_R	(or TIMER0_TBILR_R).	We
select	periodic	timer	mode	by	setting	the	2-bit	TAMR	(or	TBMR)	field	of
the TIMER0_TAMR_R (or 	TIMER0_TBMR_R)	to	0x02.	If	we	set	this	field	to	0x01,
the	timer	is	in	one	shot	mode.	In	periodic	mode	the	timer	runs	continuously,	and	in	one
shot	mode,	it	runs	once	and	stops.	The	periodic	mode	can	also	be	used	to	create	pulse
width	modulated	outputs.

We	will	use	output	compare	to	create	time	delays,	trigger	a	periodic	interrupts,	and	control
ADC	sampling.	We	will	also	use	output	compare	together	with	input	capture	to	measure
frequency.	Output	compare	and	input	capture	can	also	be	combined	to	measure	period	and
frequency	over	a	wide	range	of	ranges	and	resolutions.	We	may	run	the	output	compare
modes	with	or	without	an	external	output	pin	attached.	Each	periodic	timer	module	has

An	external	output	pin,	e.g.,	CCP0,

A	flag	bit,	e.g.,	TATORIS

A	control	bit	to	connect	the	output	to	the	ADC	as	a	trigger,	e.g.,	TAOTE,

An	interrupt	arm	bit,	e.g.,	TATOIM

A	16-bit	reload	register,e.g., TIMER0_TAILR_R
A	8-bit	prescaleregister,	e.g., TIMER0_TAPR_R
A	8-bit	prescale	match	register,	e.g., TIMER0_TAPMR_R
	

The	members	of	the	LM3S/LM4F/TM4C	family	have	varying	number	of	timers.	When
designing	a	system	using	the	timers,	you	will	need	to	consult	the	datasheet	for	your
particular	microcontroller.	In	particular,	some	of	the	channels	do	not	have	an	associated
output	pin.	For	example,	the	TM4C1294	has	eight	timers,	creating	up	to	eight	periodic
interrupts,	but	has	only	six	I/O	pins,	as	shown	in	Figure	6.10.

Figure	6.10.	Output	compare	pins	on	the	LM3S811,	the	LM3S1968,	the
TM4C123,	and	the	TM4C1294.
To	connect	the	output	pin	to	the	timer,	we	must	set	the	alternative	function	bit	for	that	pin.
Tables	2.7	and	2.8	describe	how	to	attach	I/O	pins	to	the	timer	module	on	the	TM4C123
and	TM4C1294.	The	output	compare	pin	is	an	output	of	the	computer,	hence	can	be	used
for	debugging	orto	control	an	external	device.	An	output	compare	event	occurs,	changing
the	state	of	the	output	pin,	when	the	16-bit	timer	matches	the	16-bit TIMER0_TAILR_R
register.	The	timer	will	be	used	without	the	output	pin	if	the	corresponding	alternative
function	bit	is	clear.

The	output	compare	event	occurs	when	a	timer	counts	down	to	zero.	The	timer	mode
specifies	what	effect	the	output	compare	event	will	have	on	the	output	pin	or	the	rest	of
the	system.	If	the	timer	is	in	one-shot	or	periodic	timer	mode,	the	TATORIS	(or
TBTORIS)	bit	of	the	Raw	Interrupt	Status	register	(TIMER0_RIS_R)	is	set.	If	the	arm
bit	TATOIM	(or	TBTOIM)	in	the	TIMER0_IMR_R 	register	is	set,	a	timer	interrupt	is
requested.	The	hardware	can	also	trigger	an	ADC	conversion	at	this	time.	If	the	timer	is	in
one-shot	mode,	it	stops	counting	after	the	first	output	compare	event.	In	periodic	timer
mode,	the	timer	continues	counting	indefinitely	until	explicitly	disabled	by	clearing	the
TAEN	(or	TBEN)	enable	bit	in	the	TIMER0_CTL_R 	register.	Just	like	the	input
capture,	the	output	compare	flag	is	cleared	by	writing	a	1	to	its	corresponding	bit	in	the
Interrupt	Clear	Register	(TIMER0_ICR_R).

One	simple	application	of	output	compare	is	to	create	a	fixed	time	delay.	Let delay 	be	the
number	of	bus	cycles	you	wish	to	wait,	up	to	65,535.	The	steps	to	create	the	delay	are:

0)	Enable	the	General-Purpose	Timer	Module	in	of	RCGCTIMER
1)	Ensure	that	the	timer	is	disabled	before	making	any	changes	(clear	TAEN)

2)	Put	the	timer	module	in	16-bit	mode	by	writing	0x4	to TIMER0_CFG_R
3)	Write	0x1	to	TAMR
4)	Load	the	desired delay into TIMER0_TAILR_R
5)	Write	a	1	to	CATOCINTof TIMER0_ICR_R 	to	clear	the	time-out	flag

6)	Set	the	TAEN	bit	to	start	the	timer	and	begin	counting	down	from delay
7)	Poll	TATORIS	of TIMER0_RIS_R ,	wait	is	over	when	this	bit	is	set

	
A	second	application	of	output	compare	is	to	create	a	periodic	interrupt.	Let prescale 	be
an	8-bit	number	loaded	into TIMER0_TAPR_R .	The	timer	frequency	will	be	bus
frequency	divided	by	prescale+1.	The	default	prescale	is	0,	meaning	the	timer	frequency
equals	the	bus	frequency.	Let period 	be	the	16-bit	value	loaded
into TIMER0_TAILR_R .	The	steps	to	create	the	periodic	interrupt	are:

0)	Enable	the	General-Purpose	Timer	Module	in	of	RCGCTIMER
1)	Ensure	that	the	timer	is	disabled	before	making	any	changes	(clear	TAEN)
2)	Put	the	timer	module	in	32-bit	mode	by	writing	0x00to TIMER0_CFG_R
3)	Write	0x2	to	TAMR	to	configure	for	periodic	mode
4)	Load period into TIMER0_TAILR_R
5)	Load prescale into TIMER0_TAPR_R
6)	Write	a	1	to	CATOCINTof TIMER0_ICR_R 	to	clear	the	time-out	flag

7)	Set	TATOIENof TIMER0_IMR_R 	to	arm	the	time-out	interrupt

8)	Set	the	priority	in	the	correct	NVIC	Priority	register

9)	Enable	the	correct	interrupt	in	the	correct	NVIC	Interrupt	Enable	register

10)	Set	the	TAEN	bit	to	start	the	timer	and	begin	counting	down	from period
	

If	the	bus	period	is t,	then	the	timer	interrupt	period	will	be 

t*(prescale +1)*(period +1).

A	few	cycles	of	instructions	should	separate	Steps	0	and	1	to	ensure	that	the	timer	is
receiving	a	clock	before	the	program	attempts	to	use	it.	Move	Step	0	earlier	in	your
program	or	insert	dummy	instructions	between	Steps	0	and	1	if	you	ever	get	a	Hardware
Fault.	The	maximum period 	can	be	24	bits	using	prescaler	or	32	bits	using	TimerA	and
TimerB	together	in	32-bit	mode.	Resolution	is	1	bus	cycle.

Checkpoint	6.6:	When	does	an	output	compare	event	occur	when	in	one-shot/periodic
timer	mode?

Checkpoint	6.7:	What	happens	during	an	output	compare	event	in	one-shot/periodic	timer
mode?

	

Example	6.6.	Design	a	system	to	execute	a	user	task	at	a	periodic	rate	with	units	of	12.5
ns.	
	

Solution:	We	will	generate	a	periodic	interrupt	and	call	the	user	task	from	the	ISR.
Assuming	a	80	MHz	bus	clock,	we	disable	the	prescale,	meaning	the	timer	counts	every
12.5ns.	To	define	the	user	task	we	will	create	a	private	global	variable	containing	a	pointer
to	the	user’s	function.	We	will	set	the	variable	during	initialization	and	call	that	function	at
run	time.	Another	name	for	a	dynamically	set	function	pointer	is	a	hook.The	maximum
possible	value	for period 	is	12.5ns*232,	which	is	about	53	seconds.
	

void	(*PeriodicTask)(void);		//	user	function
	

The	initialization	sequence	follows	the	1	–	10	outline	listed	above	(Program	6.6).
	

void	Timer2A_Init(void(*task)(void),	uint32_t	period){

		SYSCTL_RCGCTIMER_R	|=	0x04;			//	0)	activate	timer2

		PeriodicTask	=	task;										//	user	function

		TIMER2_CTL_R	=	0x00000000;				//	1)	disable	timer2A	during	setup

		TIMER2_CFG_R	=	0x00000000;				//	2)	configure	for	32-bit	mode

		TIMER2_TAMR_R	=	0x00000002;			//	3)	configure	for	periodic	mode

		TIMER2_TAILR_R	=	period-1;				//	4)	reload	value

		TIMER2_TAPR_R	=	0;												//	5)	bus	clock	resolution

		TIMER2_ICR_R	=	0x00000001;				//	6)	clear	timer2A	timeout	flag

		TIMER2_IMR_R	=	0x00000001;				//	7)	arm	timeout	interrupt

		NVIC_PRI5_R	=	(NVIC_PRI5_R&0x00FFFFFF)|0x80000000;	//	8)	priority	4

		NVIC_EN0_R	=	1<<23;											//	9)	enable	IRQ	23	in	NVIC

		TIMER2_CTL_R	=	0x00000001;				//	10)	enable	timer2A

		EnableInterrupts();

}

void	Timer2A_Handler(void){

		TIMER2_ICR_R	=	0x00000001;				//	acknowledge	timer2A	timeout

		(*PeriodicTask)();											//	execute	user	task

}

Program	6.6.	Implementation	of	a	periodic	interrupt	using	Timer2A
(PeriodicTimer0AInts_xxx.zip).

	
	

Example	6.7.	Design	a	system	that	generates	a	50%	duty	cycle	100	Hz	square	wave	on
PB5.
	

Solution:	This	example	generates	a	50%	duty	cycle	square	wave	using	output	compare.
The	output	is	high	for Period 	cycles	then	low	for Period 	cycles.	Program	6.6	will	be
used	to	request	interrupts	at	a	rate	twice	as	fast	as	the	resulting	square	wave	frequency.
One	interrupt	is	required	for	the	rising	edge	and	another	for	the	falling	edge.	The	output
compare	interrupt	handler	simply	acknowledges	the	interrupt	and	toggles	the	output	pin.
	

#define	PB5	(*((volatile	uint32_t	*)0x40005080))

void	TogglePB5(void){	PB5	^=	0x20;}

	

There	will	be	some	software	jitter	due	to	the	latency	in	processing	the	interrupt.	We	add
these	lines	to	the	initialization
	

		SYSCTL_RCGCGPIO_R	|=	0x00000002;	//	activate	clock	for	Port	B

		while((SYSCTL_PRGPIO_R&0x00000002)	==	0){};//	ready?

		GPIO_PORTB_DEN_R	|=	0x20;								//	enable	digital	I/O	on	PB5

		GPIO_PORTB_DIR_R	|=	0x20;							//	PB5	is	an	output

To	start	the	square	wave	we	call	initialization	in	Program	6.6	so	interrupts	occur	200	times
a	second	(every	5ms),	creating	the	100	Hz	wave.

	

		Timer2A_Init(&TogglePB5,400000);	//400,000*12.5ns	=	5ms
	

	

6.3.	Pulse	Width	Modulation
The	problem	with	the	solution	to	Example	6.7	is	that	the	minimum	period	is	determined
by	software	execution	speed,	the	time	running	with	interrupts	disabled,	and	the	existence
of	higher	priority	interrupts.	Generating	output	waves	is	an	essential	task	for	real-time
systems,	so	the	microcontrollers	have	multiple	methods	to	create	output	waves.

6.3.1.	Pulse	Width	Modulation	using	the	Timer	Module
Pulse	width	modulation	is	an	effective	and	thus	popular	mechanism	for	the	embedded
microcontrollers	to	control	external	devices.	The	timer	can	create	PWM	outputs	by	setting
the	TAAMS	bit	and	selecting	periodic	mode	in	TAMR	field	in	the	TIMER0_TAMR_R
register.	The	output	is	one	for High cycles	then	zero	for Low 	cycles.	This	example
generates	a	variable	duty	cycle	square	wave	using	output	compare.	Output	compare	events
will	again	be	requested	at	a	rate	twice	as	fast	as	the	resulting	square	wave	frequency.	One
event	is	required	for	the	rising	edge	and	another	for	the	falling	edge.	In	the	examples
below,	we	make	High plus Low 	be	a	constant.	By	adjusting	the	ratio	of	High 	and	Low
the	software	can	control	the	duty	cycle.

This	implementation	occurs	in	hardware	and	does	not	require	interrupts.		Therefore,	it	can
generate	waves	close	to	0	or	100%	duty	cycle.	If	we	clear	the	TAPWML	bit	of	the	control
register	we	select	normal	PWM	mode.	Innormal	mode,	the	corresponding	output	pin	is	set
when	the	timer	is	loaded	with	the	value	in	the TIMER0_TAILR_R 	register.	When	it
reaches	the	value	stored	in	the TIMER0_TAMATCHR_R 	register,	the	pin	is	cleared.
The	TAPWML	bit	of	the	control	register	inverts	this	behavior.	In	all	modes,	the	timer	is
reloaded	with	the	value	in	the TIMER0_TAILR_R 	register	on	the	cycle	after	it	reaches
0x0000.	In	PWM	output	mode,	the	timer	continues	counting	indefinitely	until	explicitly
disabled	by	clearing	the	TAEN	(or	TBEN)bit	in	the TIMER0_CTL_R 	register.	Figure
6.11	shows	the	PWM	output	can	be	used	to	interface	a	DC	motor	to	the	microcontroller.

Figure	6.11.	The	PWM	output	of	Timer	0A	can	adjust	the	power	to	the	DC
motor.
Program	6.7configures	Timer	0A	for	PWM	output.	The	user	calls PWM_Init once	to	turn
it	on,	and	then	calls PWM_Duty 	to	adjust	the	duty	cycle.

//	period	is	number	of	bus	clock	cycles	in	the	PWM	period

//	high	is	number	of	bus	clock	cycles	the	signal	is	high

void	PWM_Init(uint16_t	period,	uint16_t	high){

		SYSCTL_RCGCTIMER_R	|=	0x01;						//	activate	timer0

		SYSCTL_RCGCGPIO_R	|=	0x02;							//	activate	port	B

		while((SYSCTL_PRGPIO_R&0x02)	==	0){};

		GPIO_PORTB_DEN_R	|=	0x01;						//	enable	digital	I/O	on	PB0

		GPIO_PORTB_AFSEL_R	|=	0x01;				//	enable	alt	funct	on	PB0

		TIMER0_CTL_R	&=	~0x00000001;				//	disable	timer0A	during	setup

		TIMER0_CFG_R	=	0x00000004;						//	configure	for	16-bit	timer	mode

																																	//	configure	for	alternate	(PWM)	mode

		TIMER0_TAMR_R	=	0x0000000A;					//	PWM	and	periodic	mode

		TIMER0_TAILR_R	=	period-1;						//	timer	start	value

		TIMER0_TAMATCHR_R	=	period-high-1;	//	duty	cycle	=	high/period

		TIMER0_CTL_R	|=	0x00000001;					//	enable	timer0A	16-b,	PWM

}

void	PWM_Duty(uint16_t	high){	//	duty	cycle	is	high/period

		TIMER0_TAMATCHR_R	=	TIMER0_TAILR_R-high;	//	duty	cycle	=	high/period

}

Program	6.7.	Software	to	generate	a	PWM	output	using	Timer	0A
(Timer0APWM_xxx.zip).
Checkpoint	6.8:	When	does	an	output	compare	event	occur	when	in	PWM	mode?

Checkpoint	6.9:	What	happens	during	an	output	compare	event	in	PWM	mode?

6.3.2.	Pulse	Width	Module	using	the	PWM	Module
PWM	outputs	are	so	important,	the	many	microcontrollers	have	dedicated	PWM	modules.
The	number	of	PWMs	and	associated	pins	vary	from	one	microcontroller	to	the	next,	see
Figure	6.12.	The	LM4F120	has	none,	the	TM4C123	has	sixteen	and	the	TM4C1294	has
eight.	Refer	to	Tables	2.7	and	2.8.

Figure	6.12.	PWM	pins	on	the	LM3S1968,	the	TM4C123,	and	the
TM4C1294.
The	PWM0	block	produces	the	PWM0	and	PWM1	outputs,	the	PWM1	block	produces	the
PWM2	and	PWM3	outputs,	the	PWM2	block	produces	the	PWM4	and	PWM5	outputs,
and	the	PWM3	on	the	TM4C123	block	produces	the	PWM6	and	PWM7	outputs.	The
TM4C123	has	a	second	block	providing	for	an	additional	eight	PWM	outputs.	The	design
of	a	PWM	system	considers	three	factors.	The	first	factor	is	period	of	the	PWM	output.
Most	applications	choose	a	period,	initialize	the	waveform	at	that	period,	and	adjust	the
duty	cycle	dynamically.	The	second	factor	is	precision,	which	is	the	total	number	of	duty
cycles	that	can	be	created.	A	16-bit	channel	can	potentially	create	up	to	65536	different
duty	cycles.	However,	since	the	duty	cycle	register	must	be	less	than	or	equal	to	the	period
register,	the	precision	of	the	system	is	determined	by	the	value	written	to	the	period
register.	The	last	consideration	is	the	number	of	channels.	Different	members	of	the
LM3S/LM4F/TM4C	family	have	from	zero	to	sixteen	PWM	outputs.	Refer	to	the	data
sheet	for	your	specific	microcontroller	to	determine	how	many	PWM	outputs	it	has	and	to
which	ports	the	PWM	is	connected.

Program	6.8	shows	the	initialization	on	a	TM4C123	for	generating	a	PWM	on	the
PB6/PWM0	pin.	1)	First,	we	activate	the	clock	for	the	PWM	module.	2)	Second,	we
activate	the	output	pin	as	a	digital	alternate	function.	3)	Next,	we	select	the	clock	to	be
used	for	the	PWM	in	RCC	register.	If	we	do	not	use	the	PWM	divider,	then	it	is	clocked
from	the	bus	clock.	With	the	divider	we	can	choose	/2,	/4,	/8,	/16,	/32,	or	/64.	Assuming
the	LM3S1968	is	running	at	50	MHz,	this	program	specifies	the	PWM	clock	to	be
25MHz.	4)	We	set	the	PWM	to	countdown	mode.	We	specify	in	the PWM_0_GENA_R
register	that	the	comparator	action	is	to	set	to	one,	and	the	load	action	is	set	to	zero.	5)	We
specify	the	period	in	the	PWM_0_LOAD_R 	register.	6)	We	specify	the	duty	cycle	in	the
PWM_0_CMPA_R 	register.	7)	Lastly,	we	start	and	enable	the	PWM.	We
call PWM0_Init once	to	turn	it	on,	and	then	call PWM0_Duty to	adjust	the	duty	cycle.
Assume	the	bus	clock	is	6	MHz,	we	call PWM0_Init(30000,15000); 	to	create	a	10	ms
period	50	%	duty	cycle	output	on	PWM0	(PD0).

//	period	is	16-bit	number	of	PWM	clock	cycles	in	one	period	(3<=period)

//	duty	is	number	of	PWM	clock	cycles	output	is	high		(2<=duty<=period-1)

//	PWM	clock	rate	=	processor	clock	rate/SYSCTL_RCC_PWMDIV

//																=	BusClock/2	(in	this	example)

void	PWM0_Init(uint16_t	period,	uint16_t	duty){

		SYSCTL_RCGCPWM_R	|=	0x01;													//	1)	activate	PWM0

		SYSCTL_RCGCGPIO_R	|=	0x02;												//	2)	activate	port	B

		while((SYSCTL_PRGPIO_R&0x02)	==	0){};

		GPIO_PORTB_AFSEL_R	|=	0x40;											//	enable	alt	funct	on	PB6

		GPIO_PORTB_PCTL_R	=
(GPIO_PORTB_PCTL_R&0xF0FFFFFF)+0x04000000;	//	PWM0

		GPIO_PORTB_AMSEL_R	&=	~0x40;										//	disable	analog	fun	on	PB6

		GPIO_PORTB_DEN_R	|=	0x40;													//	enable	digital	I/O	on	PB6

		SYSCTL_RCC_R	=	0x00100000	|											//	3)	use	PWM	divider

(SYSCTL_RCC_R	&	(~0x000E0000));			//				configure	for	/2	divider

		PWM0_0_CTL_R	=	0;															//	4)	re-loading	down-counting	mode

		PWM0_0_GENA_R	=	0xC8;												//	low	on	LOAD,	high	on	CMPA	down

		PWM0_0_LOAD_R	=	period	-	1;					//	5)	cycles	needed	to	count	down	to	0

		PWM0_0_CMPA_R	=	duty	-	1;							//	6)	count	value	when	output	rises

		PWM0_0_CTL_R	|=	0x00000001;						//	7)	start	PWM0

		PWM0_ENABLE_R	|=	0x00000001;				//	enable	PB6/M0PWM0

}

void	PWM0_Duty(uint16_t	duty){

		PWM_0_CMPA_R	=	duty	-	1;									//	6)	count	value	when	output	rises

}

Program	6.8.	Implementation	of	a	16-bit	PWM	output.	low	on	LOAD,	high
on	CMPA	(PWM_xxx.zip).

6.4.	Frequency	Measurement

6.4.1.	Frequency	Measurement	Concepts
The	direct	measurement	of	frequency	involves	counting	input	pulses	for	a	fixed	amount	of
time.	The	basic	idea	is	to	use	input	capture	to	count	pulses,	and	use	output	compare	to
create	the	fixed	time	interval, t.	For	example,	we	could	initialize	input	capture	to
decrement	a	counter	in TIMER0_TAR_R on	every	rising	edge	of	our	input	signal.	At	the
beginning	of	our	fixed	time	interval, TIMER0_TAR_R 		is	initialized
to TIMER0_TAILR_R ,	and	at	the	end	of	the	interval,	we	can	calculate	frequency:

f=	(TIMER0_TAILR_R 		- TIMER0_TAR_R)/ t

The	frequency	resolution,	∆f,	is	defined	to	be	the	smallest	change	in	frequency	that	can	be
reliably	measured	by	the	system.	In	order	for	the	system	to	detect	a	change,	the	frequency
must	increase	(or	decrease)	enough	so	that	there	is	one	more	(or	one	less)	pulse	during	the
fixed	time	interval.	Therefore,	the	frequency	resolution	is

∆f=		1/ t

This	frequency	resolution	also	specifies	the	units	of	the	measurement.

	

Example	6.8.	Design	a	system	that	measures	frequency	with	a	resolution	of	100	Hz.

Solution:	If	we	count	pulses	in	a	10ms	time	interval,	then	the	number	of	pulses	represents
the	signal	frequency	with	units	1/10	ms	or	100	Hz.	E.g.,	if	there	are	7	pulses	during	the	10
ms	interval	then	the	frequency	is	700	Hz.	For	this	system,	the	measurement	resolution	is
100	Hz,	so	the	frequency	would	have	to	increase	to	800	Hz	(or	decrease	to	600	Hz)	for	the
change	to	be	detected	(Figure	6.13.)

Figure	6.13.	Frequency	measurement	using	both	input	capture	and	output
compare.
	

The	highest	frequency	that	can	be	measured	will	be	determined	by	how	fast	the	Input
Capture	hardware	can	count	pulses.	Since	there	must	be	two	clock	periods	while	it	is	high
and	two	clock	pulses	while	it	is	low,	the	fastest	frequency	that	can	be	measured	is	the	bus
frequency	divided	by	four.	The	precision	of	the	measurement	is	determined	by	the	number
of	bits	in	the	input	capture	register,	which	in	this	case	is	16	bits.	In	this	example,	the
digital	logicinput	signal	is	connected	to	PC5	(CCP1,	attached	to	Timer0B).	The	rising
edge	will	decrement	the	counter	in TIMER0_TBR_R .

The	frequency	measurement	software	is	given	as	Program	6.9.	The	frequency
measurement	counts	the	number	of	rising	edges	in	a	10	ms	interval.	The	measurement
resolution	is	100	Hz	(determined	by	the	10	ms	interval).	A	Timer0B	input	capture	event
occurs	on	each	rising	edge,	and	a	Timer0A	periodic	interrupt	occurs	every	10	ms.	The
foreground/background	threads	communicate	via	a	mailbox.	The	background	thread	will
update	the	data	in	Freq 	with	a	new	measurement	and	set	the	flag	Done .	When Done is
set,	the	foreground	thread	will	read	the	global Freq and	clear Done .
	

uint16_t	Freq;			/*	Frequency	with	units	of	100	Hz	*/

int	Done;														/*	Set	each	measurement,	every	10	ms	*/
	

If	the	bus	clock	is	6	MHz,	the	largest	frequency	we	can	measure	will	be	1.5	MHz.
Therefore,	the	maximum	values	of	the	frequency	measurement	will	be	15000,	which	will
not	overflow	the	16-bit	counter.	A	frequency	of	0	will	result	in	no	input	capture	interrupts
and	the	system	will	properly	report	the	frequency	of	0.	The	precision	of	this	system	is
15001	alternatives	or	about	14	bits.
	

void	FreqMeasure_Init(void){		//	****	general	initialization	****

		SYSCTL_RCGCTIMER_R	|=	0x01;						//	activate	timer0

		SYSCTL_RCGCGPIO_R	|=	0x0C;							//	activate	ports	C,	D

		Freq	=	0;																								//	allow	time	to	finish	activating

		Done	=	0;

		GPIO_PORTC_DEN_R	|=	0x20;								//	enable	digital	I/O	on	PC5

		GPIO_PORTC_AFSEL_R	|=	0x20;						//	enable	alt	funct	on	PC5

		GPIO_PORTD4	=	0x00;														//	turn	off	PD4

		GPIO_PORTD_DIR_R	|=	0x10;								//	make	PD4	out	(PD4	debug	heartbeat)

		GPIO_PORTD_DEN_R	|=	0x10;								//	enable	digital	I/O	on	PD4

		TIMER0_CTL_R	&=	~(TIMER_CTL_TAEN|TIMER_CTL_TBEN);

		TIMER0_CFG_R	=	TIMER_CFG_16_BIT;	//	configure	for	16-bit	timer	mode

		//	****	timer0A	initialization	****

		TIMER0_TAMR_R	=	TIMER_TAMR_TAMR_PERIOD;	//	periodic	mode

		TIMER0_TAILR_R	=	60000;										//	start	value	for	100	Hz	interrupts

		TIMER0_IMR_R	|=	TIMER_IMR_TATOIM;//	enable	timeout	(rollover)	interrupt

		TIMER0_ICR_R	=	TIMER_ICR_TATOCINT;//	clear	timer0A	timeout	flag

		//	****	timer0B	initialization	****

		TIMER0_TBMR_R	=	TIMER_TBMR_TBMR_CAP;	//	configure	for	capture	mode

		TIMER0_CTL_R	&=	~TIMER_CTL_TBEVENT_M;

		TIMER0_CTL_R	+=	TIMER_CTL_TBEVENT_POS;	//	rising	edge

		TIMER0_TBILR_R	=	0x0000FFFF;					//	maximum	start	value

		TIMER0_TBMATCHR_R	=	0;											//	count	down	to	zero

		TIMER0_IMR_R	&=	~0x700;										//	disable	all	interrupts	for	timer0B

		TIMER0_CTL_R	|=	(TIMER_CTL_TAEN|TIMER_CTL_TBEN);//	enable	timers

		//	****	interrupt	initialization	****

		NVIC_PRI4_R	=	(NVIC_PRI4_R&0x00FFFFFF)|0x40000000;	//	priority	2

		NVIC_EN0_R	=	NVIC_EN0_INT19;				//	enable	interrupt	19	in	NVIC

		EnableInterrupts();

}

void	Timer0A_Handler(void){

		GPIO_PORTD4	=	0x10;													//	heartbeat

		TIMER0_ICR_R	=	TIMER_ICR_TATOCINT;//	acknowledge	timer0A	timeout

		Freq	=	(0xFFFF-TIMER0_TBR_R);					//	f	=	(pulses)/(fixed	time)

		Done	=	-1;

		//	timer0B	needs	to	be	re-initialized

		TIMER0_CTL_R	&=	~TIMER_CTL_TBEN;	//	disable	timer0B	during	setup

		TIMER0_TBMR_R	=	TIMER_TBMR_TBMR_CAP;

		TIMER0_CTL_R	&=	~TIMER_CTL_TBEVENT_M;

		TIMER0_CTL_R	+=	TIMER_CTL_TBEVENT_POS;

		TIMER0_TBILR_R	=	0x0000FFFF;					//	maximum	start	value

		TIMER0_TBMATCHR_R	=	0;											//	count	down	to	zero

		TIMER0_IMR_R	&=	~0x700;										//	disable	all	interrupts	for	timer0B

		TIMER0_CTL_R	|=	TIMER_CTL_TBEN;		//	re-enable	timer0B

		GPIO_PORTD4	=	0x00;

}

Program	6.9.	Software	to	measure	frequency	with	a	resolution	of	100	Hz
(FreqMeasure_xxx.zip).

	

6.4.2.	Using	Period	Measurement	to	Calculate	Frequency
Period	and	frequency	are	obviously	related,	so	when	faced	with	a	problem	that	requires
frequency	information	we	could	measure	period,	and	calculate	frequency	from	the	period.

If	we	have	a	bus	clock	of	8	MHz,	the	a	period	measurement	system	will	have	a	resolution
of	125	ns.	Assume	p	is	16-bit	period	measurement.	With	a	resolution	of	125ns,	the	period
can	range	from	about	40	to	8192 � s . This	corresponds	to	a	frequency	range	of	122	Hz	to
25	kHz.	We	can	calculate	frequency	f	from	this	period	measurement,	f	=	8000000/p

It	is	easy	to	see	how	the	40	to	8192 � s	period	range	maps	into	the	122	Hz	to	25	kHz
frequency	range,	but	mapping	the	125	ns	period	resolution	into	an	equivalent	frequency
resolution	is	a	little	trickier.	If	the	frequency	is	f,	then	the	frequency	must	change	to	f+∆f
such	that	the	period	changes	by	at	least	∆p=	125	ns.	1/f	is	the	initial	period,	and	1/(f+∆f)	is
the	new	period.	These	two	periods	differ	by	125	ns.	In	other	words,

We	can	rearrange	this	equation	to	relate	∆f	as	a	function	of	∆p	and	f.

This	very	nonlinear	relationship,	shown	in	Table	6.3,	illustrates	that	although	the	period
resolution	is	fixed	at	125	ns,	the	equivalent	frequency	resolution	varies	from	500	Hz	to
0.0005	Hz.	If	the	signal	frequency	is	restricted	to	the	range	from	125	to	2828	Hz,	then	we
can	say	the	frequency	resolution	will	be	better	than	1	Hz.

Frequency
(Hz)

Period
(µsec)

∆f	(Hz)

25000 40 78.370

16000 63 32.064

8000 125 8.008

2000 500 0.500

1000 1000 0.125

500 2000 0.031

250 4000 0.008

125 8000 0.002

Table	6.3.	Relationship	between	frequency	resolution	and	frequency	when	calculated
using	period	measurement.

6.4.3.	Using	Frequency	Measurement	to	Calculate	Period
Similarly,	when	faced	with	a	problem	that	requires	a	period	measurement	we	could
measure	frequency,	and	calculate	period	from	the	frequency	measurement.	A	similar
nonlinear	relationship	exists	between	the	frequency	resolution	and	period	resolution.	In
general,	the	period	measurement	approach	will	be	faster,	but	the	frequency	measurement
approach	will	be	more	robust	in	the	face	of	missed	edges	or	extra	pulses.

6.4.4.	Period	Measurement	with	Flexible	Resolution	and
Range
One	of	the	limitations	of	using	input	capture	alone	is	the	choice	of	resolution	and
precision.	In	particular,	the	measurement	resolution	of	Example	6.2	is	the	period	of	the
bus	clock.	Furthermore	the	precision	is	fixed	at	16	bits.	When	running	at	50	MHz,	this
means	the	maximum	period	that	can	be	measured	is	only	1.3	ms.	In	order	to	extend	the
range	of	the	measurement	we	will	use	both	input	capture	and	output	compare.

A	periodic	interrupt	will	increment	a	software	counter.	The	period	of	this	interrupt
specifies	the	measurement	resolution.	The	precision	of	the	counter	sets	the	measurement
precision.	The	system	in	Example	6.9	can	measure	periods	of	up	to	50	days.	The	input
capture	interrupt	will	be	used	to	collect	the	counter	information	and	transmit	the	data	to
other	software	in	the	system.

	

Example	6.9.	Design	a	system	that	measures	period	with	a	resolution	of	1	ms.

Solution:	The	objective	is	to	measure	period	with	a	resolution	of	1	ms.	The	digital
logicinput	signal	is	connected	to	an	input	capture,	PD4	(CCP0).	Each	rising	edge	will
cause	Timer0A	to	generate	an	input	capture	interrupt.	In	addition,	Timer0B	is	configured
for	output	compare	and	is	used	to	increment	a	software	counter, Cnt ,	every	1	ms.	The
period	is	calculated	as	the	number	of	1	ms	output	compare	interrupts	between	one	rising
edge	of	the	input	capture	pin	to	the	next	rising	edge	of	the	input	capture	pin.		For	example,
if	the	period	is	8192	µs,	there	will	be	8	output	compare	interrupts	between	successive
input	capture	interrupts.

The	software	solution	is	presented	as	Program	6.10.	The	period	measurement	counts	the
number	of	1	ms	intervals	between	successive	rising	edges.	The	period	measurement
resolution	is	1ms,	because	the	period	must	increase	by	at	least	1	ms	in	order	for	there	to	be
a	different	number	of	counts.	The	range	is	0	to	232-1	ms,	and	the	precision	of	32bits	is
determined	by	the	size	of	the Cnt 	counter.	There	is	a	Timer0A	interrupt	each	period,	and
the	external	signal	is	connected	to	PD4	(CCP0).	A	periodic	interrupt	at	a	1000	Hz	rate	is
created	with	Timer0B.	The	foreground/background	threads	communicate	via	a	mailbox
created	with	3	shared	globals.	The	background	thread	will	update Period 	with	a	new
measurement	and	set Done .	When Done is	set,	the	foreground	thread	will	read	the
global Period and	clear Done . OverFlow 	is	set	by	the	background	and	read	by	the
foreground	if	the	period	is	larger	than	4,294,967	seconds	(about	50	days).	Thefirst
measurement	is	incorrect.	 Cnt 	is	a	private	global	(only	accessed	by	the	period
measurement	module	and	not	the	module	reading	the	mailbox.)
	

uint32_t	Period;						//	32-bit	period	in	msec

int	OverFlow;													//	Set	if	Period	is	too	big

int	Done;																		//	Set	each	rising	edge	of	PD4

uint32_t	static	Cnt;		//	number	of	msec	in	one	period

void	PeriodMeasure32_Init(void){

		//	****	general	initialization	****

		SYSCTL_RCGCTIMER_R	|=	0x01;						//	activate	timer0

		SYSCTL_RCGCGPIO_R	|=	0x0C;							//	activate	ports	C,	D

		Period	=	0;																						//	allow	time	to	finish	activating

		OverFlow	=	0;

		Done	=	0;

		Cnt	=	0;

		GPIO_PORTC_DIR_R	|=	0x20;								//	make	PC5	out	(PC5	built-in	LED)

		GPIO_PORTC_DEN_R	|=	0x20;								//	enable	digital	I/O	on	PC5

		GPIO_PORTD_AFSEL_R	|=	0x10;						//	enable	alt	funct	on	PD4

		TIMER0_CTL_R	&=	~(TIMER_CTL_TAEN|TIMER_CTL_TBEN);

		TIMER0_CFG_R	=	TIMER_CFG_16_BIT;	//	configure	for	16-bit	timer	mode

		//	****	timer0A	initialization	****

		TIMER0_TAMR_R	=	(TIMER_TAMR_TACMR|TIMER_TAMR_TAMR_CAP);

		TIMER0_CTL_R	&=	~TIMER_CTL_TAEVENT_M;

		TIMER0_CTL_R	+=	TIMER_CTL_TAEVENT_POS;	//	rising	edge	event

		TIMER0_TAILR_R	=	TIMER_TAILR_TAILRL_M;//	maximum	start	value

		TIMER0_IMR_R	|=	TIMER_IMR_CAEIM;	//	enable	capture	match	interrupt

		TIMER0_ICR_R	=	TIMER_ICR_CAECINT;//	clear	timer0A	capture	match	flag

		//	****	timer0B	initialization	****

		TIMER0_TBMR_R	=	TIMER_TBMR_TBMR_PERIOD;

		TIMER0_TBILR_R	=	6000;													//	start	value	for	1000	Hz

		TIMER0_IMR_R	|=	TIMER_IMR_TBTOIM;		//	enable	timeout	interrupt

		TIMER0_ICR_R	=	TIMER_ICR_TBTOCINT;	//	clear	timer0B	timeout	flag

		TIMER0_CTL_R	|=	TIMER_CTL_TAEN;				//	enable	timer0A

		//	****	interrupt	initialization	****

		NVIC_PRI4_R	=	(NVIC_PRI4_R&0x00FFFFFF)|0x40000000;	//	priority	2

		NVIC_PRI5_R	=	(NVIC_PRI5_R&0xFFFFFF00)|0x00000040;	//	priority	2

		NVIC_EN0_R	=	NVIC_EN0_INT19+NVIC_EN0_INT20;

		EnableInterrupts();

}

//	Interrupt	on	rising	edge	of	PD4	(CCP0)

void	Timer0A_Handler(void){

		TIMER0_ICR_R	=	TIMER_ICR_CAECINT;//	acknowledge	timer0A	capture
match

		if(OverFlow){

Period	=	4294967295;									//	actual	period	may	be	greater

OverFlow	=	0;

		}

		else{

Period	=	Cnt;

		}

		Cnt	=	0;

		Done	=	-1;

		//	restart	Timer0B

		TIMER0_CTL_R	&=	~TIMER_CTL_TBEN;

		TIMER0_TBILR_R	=	6000;											//	start	value	for	1000	Hz	interrupts

		TIMER0_ICR_R	=	TIMER_ICR_TBTOCINT;//	clear	timer0B	timeout	flag

		TIMER0_CTL_R	|=	TIMER_CTL_TBEN;			//	enable	timer0B

}

//	Interrupt	every	1	ms	after	rising	edge	of	PD4	(CCP0)

void	Timer0B_Handler(void){

		GPIO_PORTC5	=	0x20;														//	heartbeat

		TIMER0_ICR_R	=	TIMER_ICR_TBTOCINT;//	acknowledge	timer0B	timeout

		Cnt	=	Cnt	+	1;

		if(Cnt==0){

OverFlow	=	-1;

		}

		GPIO_PORTC5	=	0x00;

}

Program	6.10.	Software	to	measure	period	with	a	resolution	of	1ms
(LongPeriodMeasure_xxx.zip).

	

6.5.	Binary	Actuators

6.5.1.	Electrical	Interface
Relays,	solenoids,	and	DC	motors	are	grouped	together	because	their	electrical	interfaces
are	similar.	We	can	add	speakers	to	this	group	if	the	sound	is	generated	with	a	square
wave.		In	each	case,	there	is	a	coil,	and	the	computer	must	drive	(or	not	drive)	current
through	the	coil.	To	interface	a	coil,	we	consider	voltage,	current	and	inductance.	We
need	a	power	supply	at	the	desired	voltage	requirement	of	the	coil.	If	the	only	available
power	supply	is	larger	than	the	desired	coil	voltage,	we	use	a	voltage	regulator	(rather	than
a	resistor	divider	to	create	the	desired	voltage.)	We	connect	the	power	supply	to	the
positive	terminal	of	the	coil,	shown	as	+V	in	Figure	6.14.	We	will	use	a	transistor	device
to	drive	the	negative	side	of	the	coil	to	ground.	The	computer	can	turn	the	current	on	and
off	using	this	transistor.	The	second	consideration	is	current.	In	particular,	we	must
however	select	the	power	supply	and	an	interface	device	that	can	support	the	coil	current.
The	7406	is	an	open	collector	driver	capable	of	sinking	up	to	40	mA.	The	2N2222	is	a
bipolar	junction	transistor	(BJT),	NPN	type,	with	moderate	current	gain.	The	TIP120	is
a	Darlington	transistor,	also	NPN	type,	which	can	handle	larger	currents.	The	IRF540	is
a	MOSFET	transistor	that	can	handle	even	more	current.	BJT	and	Darlington	transistors
are	current-controlled	(meaning	the	output	is	a	function	of	the	input	current),	while	the
MOSFET	is	voltage-controlled	(output	is	a	function	of	input	voltage).	When	interfacing	a
coil	to	the	microcontroller,	we	use	information	like	Table	6.4	to	select	an	interface	device
capable	the	current	necessary	to	activate	the	coil.	It	is	a	good	design	practice	to	select	a
driver	with	a	maximum	current	at	least	twice	the	required	coil	current.	When	the	digital
Port	output	is	high,	the	interface	transistor	is	active	and	current	flows	through	the	coil.
When	the	digital	Port	output	is	low,	the	transistor	is	not	active	and	no	current	flows
through	the	coil.

The	third	consideration	is	inductance	in	the	coil.	The	1N914	diode	in	Figure	6.14	provides
protection	from	the	back	emf	generated	when	the	switch	is	turned	off,	and	the	large	dI/dt
across	the	inductor	induces	a	large	voltage	(on	the	negative	terminal	of	the	coil),	according
to	V=L∙dI/dt.	For	example,	if	you	are	driving	0.1A	through	a	0.1	mH	coil	(Port	output	=
1)	using	a	2N2222,	then	disable	the	driver	(Port	output	=	0),	the	2N2222	will	turn	off	in
about	20ns.	This	creates	a	dI/dt	of	at	least	5·106	A/s,	producing	a	back	emf	of	500	V!	The
1N914	diode	shorts	out	this	voltage,	protecting	the	electronics	from	potential	damage.	The
1N914	is	called	a	snubber	diode.

Device Type Maximum
current

LM3S/TM4C CMOS 8	mA

7406 TTL	logic 40	mA

PN2222 BJT	NPN 150	mA

2N2222 BJT	NPN 500	mA

TIP120 Darlington	NPN 5	A

IRF540 power	MOSFET 28	A

Table	6.4.	Four	possible	devices	that	can	be	used	to	interface	a	coil	compared	to	the
microcontroller.

	
Observation:	It	is	important	to	realize	that	many	devices	cannot	be	connected	directly	up
to	the	microcontroller.	In	the	specific	case	of	motors,	we	need	an	interface	that	can	handle
the	voltage	and	current	required	by	the	motor.

Figure	6.14.	Binary	interface	to	EM	relay,	solenoid,	DC	motor	or	speaker.
If	you	are	sinking	16	mA	(IOL)	with	the	7406,	the	output	voltage	(VOL)	will	be	0.4V.
However,	when	the	IOL	of	the	7406	equals	40	mA,	its	VOL	will	be	0.7V.	40	mA	is	not	a	lot
of	current	when	it	comes	to	typical	coils.	However,	the	7406	interface	is	appropriate	to
control	small	relays.

Checkpoint	6.10:	A	relay	is	interfaced	with	the	7406	circuit	in	Figure	6.14.	The	positive
terminal	of	the	coil	is	connected	to	+5V,	and	the	coil	requires	40	mA.	What	will	be	the
voltage	across	the	coil	when	active?

When	designing	an	interface,	we	need	to	know	the	desired	coil	voltage	(Vcoil)	and	coil
current		(Icoil).	Let	Vbe	be	the	base-emitter	voltage	that	activates	the	NPN	transistor	and	let
hfe	be	the	current	gain.	There	are	three	steps	when	interfacing	an	N-channel	(right	side	of
Figure	6.14.)

1)	Choose	the	interface	voltage	V	equal	to		Vcoil	(since	VCE	is	close	to	zero)

2)	Calculate	the	desired	base	current	Ib	=	Icoil	/hfe	(since	IC	equals	Icoil)

3)	Calculate	the	interface	resistor		Rb	≤	(VOH	-	Vbe)/	Ib	(choose	a	resistor	2	to	5	times
smaller)

With	an	N-channel	switch,	like	Figure	6.14,	current	is	turned	on	and	off	by
connecting/disconnecting	one	side	of	the	coil	to	ground,	while	the	other	side	is	fixed	at	the
voltage	supply.	A	second	type	of	binary	interface	uses	P-channel	switches	to
connect/disconnect	one	side	of	the	coil	to	the	voltage	supply,	while	the	other	side	fixed	at
ground,	as	shown	in	Figure	6.15.	In	other	to	activate	a	PNP	transistor	(e.g.,	PN2907	or
TIP125),	there	must	be	a	VEB	greater	than	0.7	V.	In	order	to	deactivate	a	PNP	transistor,	the
VEB	voltage	must	be	0.	Because	the	transistor	is	a	current	amplifier,	there	must	be	a	resistor
into	the	base	in	order	to	limit	the	base	current.

Figure	6.15.	PNP	interface	to	EM	relay,	solenoid,	DC	motor	or	speaker.
To	understand	how	the	PNP	interface	on	the	right	of	Figure	6.15	operates,	consider	the
behavior	for	the	two	cases:	the	Port	output	is	high	and	the	Port	output	is	low.	If	the	Port
output	is	high,	its	output	voltage	will	be	between	2.4	and	3.3	V.	This	will	cause	current	to
flow	into	the	base	of	the	PN2222,	and	its	Vbe	will	saturate	to	0.7	V.	The	base	current	into
the	PN2222	could	be	from	(2.4-0.7)/1000	to	(3.3-0.7)/1000,	or	1.7	to	2.6	mA.	The
microcontroller	will	be	able	to	source	this	current.	This	will	saturate	the	PN2222	and	its
VCE	will	be	0.3	V.	This	will	cause	current	to	flow	out	of	the	base	of	the	PN2907,	and	its
VEB	will	saturate	to	0.7	V.	If	the	supply	voltage	is	V,	then	the	PN2907	base	current	is	(V-
0.7-0.3)/Rb.	Since	the	PNP	transistor	is	on,	VEC	will	be	small	and	current	will	flow	from	the
supply	to	the	coil.	If	the	port	output	is	low,	the	voltage	output	will	be	between	0	and	0.4V.
This	not	high	enough	to	activate	the	PN2222,	so	the	NPN	transistor	will	be	off.	Since	there
is	no	IC	current	in	the	PN2222,	the	10k	and	Rb	resistors	will	place	+V	at	the	base	of	the
PN2907.	Since	the	VEB	of	the	PN2907	is	0,	this	transistor	will	be	off,	and	no	current	will
flow	into	the	coil.	For	parameter	values	refer	back	to	Table	1.6.

MOSFETs	can	handle	significantly	more	current	than	BJT	or	Darlington	transistors.
MOSFETs	are	voltage	controlled	switches.	The	difficulty	with	interfacing	MOSFETs	to	a
microcontroller	is	the	large	gate	voltage	needed	to	activate	it.	The	left	side	of	Figure	6.16
is	an	N-channel	interface.	The	IRF540	N-channel	MOSFET	can	sink	up	to	28A	when	the
gate-source	voltage	is	above	7V.	This	circuit	is	negative	logic.	When	the	port	pin	is	high,
the	2N2222	is	active	making	the	MOSFET	gate	voltage	0.3V	(VCE	of	the	PN2222).	A	VGS
of	0.3V	turns	off	the	MOSFET.	When	the	port	pin	is	low,	the	2N2222	is	off	making	the
MOSFET	gate	voltage	+V	(pulled	up	through	the	10k � 	resistor).	The	VGS	is	+V,	which
turns	the	MOSFET	on.	

The	right	side	of	Figure	6.16	shows	a	P-channel	MOSFET	interface.	The	IRF9540	P-
channel	MOSFET	can	source	up	to	20A	when	the	source-gate	voltage	is	above	7V.	The
FQP27P06	P-channel	MOSFET	can	source	up	to	27A	when	the	source-gate	voltage	is
above	6V.	This	circuit	is	positive	logic.	When	the	port	pin	is	high,	the	2N2222	is	active
making	the	MOSFET	gate	voltage	0.3V.	This	makes	VSG	equal	to	+V-0.3,	which	turns	on
the	MOSFET.	When	the	port	pin	is	low,	the	2N2222	is	off.	Since	the	2N2222	is	off,	the
10k � 	pull-up	resistor	makes	the	MOSFET	gate	voltage	+V.	In	this	case	VSG	equals	0,
which	turns	off	the	MOSFET.

Figure	6.16.	MOSFET	interfaces	to	EM	relay,	solenoid,	DC	motor	or
speaker.
An	H-bridge	uses	four	transistors,	allowing	current	to	flow	in	either	direction.	Figures
4.26	and	4.27	show	applications	of	the	L293	H-bridge,	while	Figure	6.17	shows	one	of	the
H-bridge	circuits	internal	to	the	L293.	Each	output	is	a	totem-pole	drive	circuit	with	a
Darlington	transistor	sink	and	a	pseudo-Darlington	source.	If	1A	is	high,	Q1	is	on	and	Q2	is
off.	If	1A	is	low,	Q1	is	off	and	Q2	is	on.	2A	controls	Q3	and	Q4	in	a	similar	fashion.	If	1A	is
high	and	2A	is	low,	then	Q1	Q4	are	on	and	current	flows	left	to	right	across	coil	A.	If	1A	is
low	and	2A	is	high,	then	Q2	Q3	are	on	and	current	flows	right	to	left	across	coil	A.

	

Observation:	We	used	the	L293	to	interface	unipolar	and	bipolar	stepper	motors	back	in
Section	4.7.2.

	

Figure	6.17.	An	H-bridge	can	drive	current	in	either	direction.

6.5.2.	Electromagnetic	and	Solid	State	Relays
A	relay	is	a	device	that	responds	to	a	small	current	or	voltage	change	by	activating
switches	or	other	devices	in	an	electric	circuit.	It	is	used	to	remotely	switch	signals	or
power.	The	input	control	is	usually	electrically	isolated	from	the	output	switch.	The	input
signal	determines	whether	the	output	switch	is	open	or	closed.	Relays	are	classified	into
three	categories	depending	upon	whether	the	output	switches	power	(i.e.,	high	currents
through	the	switch)	or	electronic	signals	(i.e.,	low	currents	through	the	switch).	Another
difference	is	how	the	relay	implements	the	switch.	An	electromagnetic	(EM)	relay	uses	a
coil	to	apply	EM	force	to	a	contact	switch	that	physically	opens	and	closes.	The	solid	state
relay	(SSR)	uses	transistor	switches	made	from	solid	state	components	to	electronically
allow	or	prevent	current	flow	across	the	switch).	The	three	types	are
														1.	The	classic	general	purpose	relay	has	an	EM	coil	and	can	switch
AC	power
														2.	The	reed	relay	has	an	EM	coil	and	can	switch	low-level	DC
electronic	signals
														3.	The	solid	state	relay	(SSR)	has	an	input	triggered	semiconductor
power	switch
Three	solid	state	relays	are	shown	in	Figure	6.18.	Interfacing	a	SSR	is	similar	to
interfacing	an	LED.	A	SSR	interface	was	developed	as	Example	2.1	and	Figure	2.33.
SSRs	allow	the	microcontroller	to	switch	AC	loads	from	1	to	30A.	They	are	appropriate	in
situations	where	the	power	is	turned	on	and	off	many	times.

The	input	circuit	of	an	EM	relay	is	a	coil	with	an	iron	core.	The	output	switch	includes
two	sets	of	silver	or	silver-alloy	contacts	(called	poles.)	One	set	is	fixed	to	the	relay
frame,	and	the	other	set	is	located	at	the	end	of	leaf	spring	poles	connected	to	the
armature.	The	contacts	are	held	in	the	“normally	closed”	position	by	the	armature	return
spring.	When	the	input	circuit	energizes	the	EM	coil,	a	“pull	in”	force	is	applied	to	the
armature	and	the	“normally	closed”	contacts	are	released	(called	break)	and	the	“normally
open”	contacts	are	connected	(called	make.)	The	armature	pull	in	can	either	energize	or
de-energize	the	output	circuit	depending	on	how	it	is	wired.			Relays	are	mounted	in
special	sockets,	or	directly	soldered	onto	a	PC	board.

The	number	of	poles	(e.g.,	single	pole,	double	pole,	3P,	4P	etc.)	refers	to	the	number	of
switches	that	are	controlled	by	the	input.	The	relay	shown	below	is	a	double	pole	because
it	has	two	switches.	Single-throw	means	each	switch	has	two	contacts	that	can	be	open	or
closed.	Double-throw	means	each	switch	has	three	contacts.	The	common	contact	will	be
connected	to	one	of	the	other	two	contacts	(but	not	both	at	the	same	time.)		The
parameters	of	the	output	switch	include	maximum	AC	(or	DC)	power,	maximum	current,
maximum	voltage,	on	resistance,	and	off	resistance.	A	DC	signal	will	weld	the	contacts
together	at	a	lower	current	value	than	an	AC	signal,	therefore	the	maximum	ratings	for	DC
are	considerable	smaller	than	for	AC.		Other	relay	parameters	include	turn	on	time,	turn
off	time,	life	expectancy,	and	input/output	isolation.	Life	expectancy	is	measured	in

number	of	operations.	Figure	6.19	illustrates	the	various	configurations	available.	The
sequence	of	operation	is	described	in	Table	6.5.

Figure	6.18.	Solid	state	relays	can	be	used	to	control	power	to	an	AC
appliance.

Figure	6.19.	Standard	relay	configurations.

Form Activation
Sequence

Deactivation
Sequence

A Make	1 Break	1

B Break	1 Make	1

C Break	1,	Make	2 Break	2,	Make	1

D Make	1,	Break	2 Make	2,	Break	1

E Break	1,	Make	2,
Break	3

	

Table	6.5.	Standard	definitions	for	five	relay	configurations.

6.5.3.	Solenoids
Solenoids	are	used	in	discrete	mechanical	control	situations	such	as	door	locks,	automatic
disk/tape	ejectors,	and	liquid/gas	flow	control	valves	(on/off	type).	Much	like	an	EM	relay,
there	is	a	frame	that	remains	motionless,	and	an	armature	that	moves	in	a	discrete	fashion
(on/off).		A	solenoid	has	an	electro-magnet.	When	current	flows	through	the	coil,	a

magnetic	force	is	created	causing	a	discrete	motion	of	the	armature.	Each	of	the	solenoids
shown	Figure	6.20	has	a	cylindrically-shaped	armature	the	moves	in	the	horizontal
direction	relative	to	the	photograph.	The	solenoid	on	the	top	is	used	in	a	door	lock,	and	the
second	from	top	is	used	to	eject	the	tape	from	a	video	cassette	player.	When	the	current	is
removed,	the	magnetic	force	stops,	and	the	armature	is	free	to	move.	The	motion	in	the
opposite	direction	can	be	produced	by	a	spring,	gravity,	or	by	a	second	solenoid.

Figure	6.20.	Photo	of	four	solenoids.

6.5.4.	DC	Motor	Interface	with	PWM
Similar	to	the	solenoid	and	EM	relay,	the	DC	motor	has	a	frame	that	remains	motionless,
and	an	armature	that	moves.	In	this	case,	the	armature	moves	in	a	circular	manner	(shaft
rotation).

In	the	previous	interfaces	the	microcontroller	was	able	to	control	electrical	power	to	a
device	in	a	binary	fashion:	either	all	on	or	all	off.	Sometimes	it	is	desirable	for	the
microcontroller	to	be	able	to	vary	the	delivered	power	in	a	variable	manner.	One	effective
way	to	do	this	is	to	use	pulse	width	modulation	(PWM).	The	basic	idea	of	PWM	is	to
create	a	digital	output	wave	of	fixed	frequency,	but	allow	the	microcontroller	to	vary	its
duty	cycle.	The	system	is	designed	in	such	a	way	that	High+Low	is	constant	(meaning	the
frequency	is	fixed).	The	duty	cycle	is	defined	as	the	fraction	of	time	the	signal	is	high:

Hence,	duty	cycle	varies	from	0	to	1.	We	interface	this	digital	output	wave	to	an	external
actuator	(like	a	DC	motor),	such	that	power	is	applied	to	the	motor	when	the	signal	is
high,	and	no	power	is	applied	when	the	signal	is	low.	We	purposely	select	a	frequency
high	enough	so	the	DC	motor	does	not	start/stop	with	each	individual	pulse,	but	rather
responds	to	the	overall	average	value	of	the	wave.	The	average	value	of	a	PWM	signal	is
linearly	related	to	its	duty	cycle	and	is	independent	of	its	frequency.	Let	P	(P=V*I)	be	the
power	to	the	DC	motor,	shown	in	Figure	6.21,	when	the	PP0	signal	is	high.	Notice	the
circuit	in	Figure	6.21	is	one	of	the	examples	previously	described	in	Figure	6.14.	Under
conditions	of	constant	speed	and	constant	load,	the	delivered	power	to	the	motor	is

linearly	related	to	duty	cycle.

Delivered	Power	=	

Unfortunately,	as	speed	and	torque	vary,	the	developed	emf	will	affect	delivered	power.
Nevertheless,	PWM	is	a	very	effective	mechanism,	allowing	the	microcontroller	to	adjust
delivered	power.

A	DC	motor	has	an	electro-magnet	as	well.	When	current	flows	through	the	coil,	a
magnetic	force	is	created	causing	a	rotation	of	the	shaft.	Brushes	positioned	between	the
frame	and	armature	are	used	to	alternate	the	current	direction	through	the	coil,	so	that	a
DC	current	generates	a	continuous	rotation	of	the	shaft.	When	the	current	is	removed,	the
magnetic	force	stops,	and	the	shaft	is	free	to	rotate.	The	resistance	in	the	coil	(R)	comes
from	the	long	wire	that	goes	from	the	+	terminal	to	the	–	terminal	of	the	motor.	The
inductance	in	the	coil	(L)	arises	from	the	fact	that	the	wire	is	wound	into	coils	to	create	the
electromagnetics.	The	coil	itself	can	generate	its	own	voltage	(emf)	because	of	the
interaction	between	the	electric	and	magnetic	fields.	If	the	coil	is	a	DC	motor,	then	the	emf
is	a	function	of	both	the	speed	of	the	motor	and	the	developed	torque	(which	in	turn	is	a
function	of	the	applied	load	on	the	motor.)	Because	of	the	internal	emf	of	the	coil,	the
current	will	depend	on	the	mechanical	load.	For	example,	a	DC	motor	running	with	no
load	might	draw	50	mA,	but	under	load	(friction)	the	current	may	jump	to	500	mA.

There	are	six	considerations	when	selecting	a	DC	motor:	speed,	torque,	voltage,	current,
size,	and	weight.	Speed	is	the	rate	in	rotations	per	minute	(RPM)	that	the	motor	will	spin,
and	torque	is	the	available	force	times	distance	the	motor	can	provide	at	that	speed.	We
select	the	motor	voltage	to	match	the	available	power	supply.	Unlike	LEDs,	we	MUST	not
use	a	resistor	in	series	with	a	motor	to	reduce	the	voltage.	In	general,	the	motor	voltage
matches	the	power	supply	voltage.	When	interfacing	we	will	need	to	know	maximum
current.

There	are	lots	of	motor	driver	chips,	but	they	are	fundamentally	similar	to	the	circuits
shown	in	Figure	6.14.	For	the	2N2222	and	TIP120	NPN	transistors,	if	the	port	output	is
low,	no	current	can	flow	into	the	base,	so	the	transistor	is	off,	and	the	collector	current,	IC,
will	be	zero.	If	the	port	output	is	high,	current	does	flow	into	the	base	and	VBE	goes	above
VBEsat	turning	on	the	transistor.	The	transistor	is	in	the	linear	range	if	VBE	≤	VBEsat	and	Ic	=
hfe·Ib.	The	transistor	is	in	the	saturated	mode	if	VBE	≥	VBEsat,	VCE	=	0.3V	and	Ic	<	hfe·Ib.	We
select	the	resistor	for	the	NPN	transistor	interfaces	to	operate	right	at	the	transition
between	linear	and	saturated	mode.	We	start	with	the	desired	coil	current,	Icoil	(the	voltage
across	the	coil	will	be	+V-VCE	which	will	be	about	+V-0.3V).		Next,	we	calculate	the
needed	base	current	(Ib)	given	the	current	gain	of	the	NPN

Ib	=	Icoil	/hfe
knowing	the	current	gain	of	the	NPN	(hfe),	see	Table	6.6.	Finally,	given	the	output	high
voltage	of	the	microcontroller	(VOH	is	about	3.3	V)	and	base-emitter	voltage	of	the	NPN
(VBEsat)	needed	to	activate	the	transistor,	we	can	calculate	the	desired	interface	resistor.

Rb	≤	(VOH	-	VBEsat)/	Ib	=		hfe	*(VOH	-	VBEsat)/	Icoil

The	inequality	means	we	can	choose	a	smaller	resistor,	creating	a	larger	Ib.	Because	the	of
the	transistors	can	vary	a	lot,	it	is	a	good	design	practice	to	make	the	Rb	resistor	about	½
the	value	shown	in	the	above	equation.	Since	the	transistor	is	saturated,	the	increased	base
current	produces	the	same	VCE	and	thus	the	same	coil	current.	

Parameter PN2222
(IC=150mA)

2N2222
(IC=500mA)

TIP120
(IC=3A)

hfe 100 40 1000

hie 60 250	to	8000 70	to	7000

VBEsat 0.6 2 2.5	V

VCE	at
saturation

0.3 1 2	V

Table	6.6.	Design	parameters	for	the	2N2222	and	TIP120.

	
The	IRF540	MOSFET	is	a	voltage-controlled	device,	if	the	Port	output	is	high,	the
2N2222	is	on,	the	MOSFET	is	off,	and	the	coil	current	will	be	zero.	If	the	Port	output	is
low,	the	2N2222	is	off,	the	gate	voltage	of	the	MOSFET	will	be	+V,	the	MOSFET	is	on,
and	the	VDS	will	be	very	close	to	0.	The	IRF540	needs	a	large	gate	voltage	(>	10V)	to	fully
turn	so	the	drain	will	be	able	to	sink	up	to	28	A.

Because	of	the	resistance	of	the	coil,	there	will	not	be	significant	dI/dt	when	the	device	is
turned	on.	Consider	a	DC	motor	as	shown	in	Figure	6.21	with	V=	12V,	R=	50 � 	and	L=
100 � H.	Assume	we	are	using	a	2N2222	with	a	VCE	of	1	V	at	saturation.	Initially	the
motor	is	off	(no	current	to	the	motor).	At	time	t=0,	the	digital	port	goes	from	0	to	+3.3	V,
and	transistor	turns	on.		Assume	for	this	section,	the	emf	is	zero	(motor	has	no	external
torque	applied	to	the	shaft)	and	the	transistor	turns	on	instantaneously,	we	can	derive	an
equation	for	the	motor	(Ic)	current	as	a	function	of	time.	The	voltage	across	both	LC
together	is	12-VCE	=	11	V	at	time	=	0+.	At	time	=	0+,	the	inductor	is	an	open	circuit.
Conversely,	at	time	=	∞,	the	inductor	is	a	short	circuit.	The	Ic	at	time	0-	is	0,	and	the
current	will	not	change	instantaneously	because	of	the	inductor.	Thus,	the	Ic	is	0	at	time	=
0+.	The	Icis	11V/50 � =	220mA	at	time	=	∞.

11	V	=	Ic	*R	+L*d	Ic/dt

General	solution	to	this	differential	equation	is

Ic	=	I0	+	I1e-t/ �						d	Ic/dt	=	-	(I1/ �)e-t/

We	plug	the	general	solution	into	the	differential	equation	and	boundary	conditions.

11	V	=	(I0	+	I1e-t/ �)*R	-L*(I1/ �)e-t/

To	solve	the	differential	equation,	the	time	constantwill	be 	=	L/R=	2 � sec.	Using	initial
conditions,	we	get

Ic	=	220mA*(1-	e-t/2 � s)

	
Example	6.10.	Design	an	interface	for	two	+12V	1A	geared	DC	motors.	These	two
motors	will	be	used	to	propel	a	robot	with	two	independent	drive	wheels.
	

Solution:	We	will	use	two	copies	of	the	TIP120	circuit	in	Figure	6.21	because	the	TIP120
can	sink	at	least	three	times	the	current	needed	for	this	motor.	We	select	a	+12V	supply
and	connect	it	to	the	+V	in	the	circuit.	The	needed	base	current	is
	

Ib	=	Icoil	/hfe	=	1A/1000	=	1mA
	

The	desired	interface	resistor.
	

Rb	≤	(VOH	-	Vbe)/	Ib	=	(5-2.5)/1mA	=	2.5	k
	

To	cover	the	variability	in	hfe,	we	will	use	a	1k � resistor	instead	of	the	2.5	k � .	The
actual	voltage	on	the	motor	when	active	will	be	+12-2	=	10V.
	

The	coils	and	transistors	can	vary	a	lot,	so	it	is	appropriate	to	experimentally	verify	the
design	by	measuring	the	voltages	and	currents.	Two	copies	of	Program	6.8	are	used	to
control	the	robot.	The	period	of	the	PWM	output	is	chosen	to	be	about	10	times	shorter
than	the	time	constant	of	the	motor.	The	electronic	driver	will	turn	on	and	off	at	this	rate,
but	the	motor	only	responds	to	the	average	level.	The	software	sets	the	duty	cycle	of	the
PWM	to	adjust	the	delivered	power.	When	active,	the	interface	will	drive	+10	V	across	the
motor.	The	current	will	be	a	function	of	the	friction	applied	to	the	shaft.

Figure	6.21.	DC	motor	interface.

	

Similar	to	the	solenoid	and	EM	relay,	the	DC	motor	has	a	frame	that	remains	motionless
(called	the	stator),	and	an	armature	that	moves	(called	the	rotor).	A	brushed	DC	motor
has	an	electromagnetic	coil	as	well,	located	on	the	rotor,	and	the	rotor	is	positioned	inside
the	stator.	In	Figure	6.22,	North	and	South	refer	to	a	permanent	magnet,	generating	a
constant	B	field	from	left	to	right.	In	this	case,	the	rotor	moves	in	a	circular	manner.	When
current	flows	through	the	coil,	a	magnetic	force	is	created	causing	a	rotation	of	the	shaft.
A	brushed	DC	motor	uses	commutators	to	flip	the	direction	of	the	current	in	the	coil.	In
this	way,	the	coil	on	the	right	always	has	an	up	force,	and	the	one	on	the	left	always	has	a
down	force.	Hence,	a	constant	current	generates	a	continuous	rotation	of	the	shaft.	When
the	current	is	removed,	the	magnetic	force	stops,	and	the	shaft	is	free	to	rotate.	In	a	pulse-
width	modulated	DC	motor,	the	computer	activates	the	coil	with	a	current	of	fixed
magnitude	but	varies	the	duty	cycle	in	order	to	adjust	the	power	delivered	to	the	motor.

Figure	6.22.	A	brushed	DC	motor	uses	a	commutator	to	flip	the	coil
current.
A	brushless	DC	motor	(BLDC),	as	the	name	implies,	does	not	have	mechanical
commutators	or	brushes	to	flip	the	currents.	It	is	a	synchronous	electric	motor	powered	by
direct	current	and	has	an	electronic	commutation	system,	rather	than	a	mechanical
commutator	and	brushes.	In	BLDC	motors,	current-to-torque	and	voltage-to-rpm	are
linear	relationships.		The	controller	uses	either	the	back	emf	of	the	motor	itself	or	Hall-
effect	sensors	to	know	the	rotational	angle	of	the	shaft.	The	controller	uses	this	angle	to	set
the	direction	of	the	currents	in	the	electromagnets,	shown	as	the	six	step	sequence	in
Figure	6.23.	Other	differences	from	a	brushed	DC	motor	are	that	the	BLDC	permanent
magnets	are	in	the	rotor	and	the	electromagnets	are	in	the	stator.	Typically,	there	are	three
electromagnetic	coils,	labeled	Phase	A,	Phase	B,	and	Phase	C,	which	are	arranged	in	a
Wye	formation.	Each	coil	can	be	modeled	as	a	resistance,	inductance,	and	emf,	as
previously	shown	in	Figure	6.14.	The	Hall	sensor	goes	through	the	sequence	001,	000,

100,	110,	111,	011	each	time	the	shaft	rotates	once.	It	is	a	synchronous	motor	because	the
controller	adjusts	the	phase	current	according	to	the	six-step	sequence.	For	example,	if	the
Hall	sensor	reads	001,	then	the	controller	places	+V	on	Phase	A	and	ground	on	Phase	C
(step	1).	In	other	words,	the	phase	currents	are	synchronized	to	the	shaft	position.	To
rotate	the	motor	in	the	other	direction,	we	reverse	the	currents	in	each	step.	We	will	see
later	for	stepper	motors	that	the	process	is	reversed.	For	stepper	motors,	the	controller	sets
the	phase	currents	and	the	motor	moves	to	that	position.	To	adjust	the	power	to	a	BLDC
motor,	we	change	the	voltage,	V,	or	use	PWM	on	the	control	signals	themselves.	The
PWM	period	should	be	at	least	10	times	shorter	than	the	time	for	each	of	the	six	steps.	In
other	words,	the	PWM	frequency	should	be	60	times	faster	than	the	shaft	rotational
frequency.

BLDC	motors	have	many	advantages	and	few	disadvantages	when	compared	to	brushed
DC	motors.	Because	there	are	no	brushes,	they	require	less	maintenance	and	hence	have	a
longer	life.	Therefore,	they	are	appropriate	for	applications	where	servicing	is
inconvenient	or	expensive.	BLDC	motors	produce	more	output	torque	per	weight	than
brushed	DC	motors	and	hence	are	used	for	pilotless	airplanes	and	helicopters.	Because	the
rotor	is	made	of	permanent	magnets,	the	rotor	inertia	is	less,	allowing	it	to	spin	faster	and
to	change	quicker.	In	other	words,	it	has	faster	acceleration	and	deceleration.	Removing
the	brushes	reduces	friction,	which	also	contributes	to	the	improved	speed	and
acceleration.	It	has	a	linear	speed/torque	relationship.	Because	there	is	no	brush	contact,
BLDC	motors	operate	more	quietly	and	have	less	Electromagnetic	Interference	(EMI).
The	only	disadvantages	are	the	complex	controller	and	increased	cost.

	

Figure	6.23.	A	brushless	DC	motor	uses	an	electronic	commutator.

	
Example	6.11.	Interface	a	24-V	2-A	brushless	DC	motor.
	

Solution:	A	brushless	DC	motor	has	three	coils	connected	in	a	Wye	pattern.	Each	of	the
phases	can	be	driven	into	one	of	three	states:	24	V,	ground,	or	floating.	We	will	use
MOSFETs	to	source	and	sink	the	current	required	by	the	motor	(Figure	6.16).	Remember,
when	the	motor	is	under	load,	the	current	will	increase.	The	P-channel	MOSFET	will
connect	the	24	V	to	the	phase	when	its	gate	voltage	is	below	24	V.	The	N-channel
MOSFET	will	drive	the	phase	to	ground	when	its	gate	is	above	zero.	It	will	be	important
to	prevent	turning	on	both	MOSFETs	at	the	same	time.	For	safety	reasons,	we	will	use
digital	logic	in	the	interface	so	the	driver	can	only	be	in	the	three	valid	states.	Table	6.7
shows	the	design	specification	for	Phase	A.	When	EnA	is	low,	both	MOSFETs	are	off	and
the	phase	will	float	(HiZ).	When	EnA	is	high,	the	InA	determines	whether	the	phase	is
high	or	low.	The	six	gate	voltages	are	labeled	in	Figure	6.24	as	G1	to	G6.	These	gate
voltages	are	24	V,	produced	by	the	10	k � 	pull-up,	when	the	corresponding	7406	driver
output	is	floating.	Alternatively,	these	gate	voltages	are	0.5	V	when	the	7406	driver	output
is	low.	It	is	good	design	to	use	integrated	drivers	like	the	ULN2074,	L293,	TPIC0107,	and
MC3479	rather	than	individual	transistors.	In	particular,	the	entire	interface	circuit	in
Figure	6.24	could	be	replaced	with	three	L6203	full	bridge	drivers.
	

EnA InA G1 G2 P-chan N-chan Phase	A

1 1 Low Low On Off +24	V

1 0 High High Off On Ground

0 X High Low Off` Off HiZ

Table	6.7.	Control	signals	for	one	phase	of	the	brushless	DC	motor.
	

Figure	6.24.	Brushless	DC	motor	interface.
	

The	InA,	InB,	and	InC	signals	in	Figure	6.24	are	connected	to	any	output	ports,	whereas
the	EnA,	EnB,	and	EnC	signals	will	be	attached	to	PWM	outputs.	The	PWM	period	will
be	selected	60	times	faster	than	the	motor	speed	in	rps.	The	three	Hall-effect	sensor	signals
will	be	attached	to	input	capture	pins.	Interrupts	will	be	armed	for	both	the	rise	and	fall	of
these	three	sensors.	In	this	way,	an	ISR	will	be	run	at	the	beginning	of	each	of	the	six
steps.	The	BLDC	motor	is	a	synchronous	motor,	so	the	six	control	signals	are	a	function	of
the	shaft	position.	In	particular,	the	ISR	will	look	up	the	Hall	sensors	and	output	the
pattern,	as	shown	in	Table	6.8.
	

Step HS1 HS2 HS3 EnA InA EnB InB EnC InC A B C

1 0 0 1 PWM 1 0 X PWM 0 24V HiZ 0V

2 0 0 0 PWM 1 PWM 0 0 X 24V 0V HiZ

3 1 0 0 0 X PWM 0 PWM 1 HiZ 0V 24V

4 1 1 0 PWM 0 0 X PWM 1 0V HiZ 24V

5 1 1 1 PWM 0 PWM 1 0 X 0V 24V HiZ

6 0 1 1 0 X PWM 1 PWM 0 HiZ 24V 0V

Table	6.8.	Input-output	relationships	for	the	synchronous	controller.
	

Furthermore,	when	any	of	the	enable	signals	are	scheduled	to	be	high,	they	will	be	pulsed
using	positive	logic	PWM.	The	software	can	adjust	the	delivered	power	to	the	BLDC
motor	by	setting	the	duty	cycle	of	the	PWM.		The	software	implementation	has	been	left
as	Lab	6.4.

	

6.6.	Integral	Control	of	a	DC	Motor
A	control	system	is	a	collection	of	mechanical	and	electrical	devices	connected	for	the
purpose	of	commanding,	directing,	or	regulating	a	physical	plant.	In	this	section	the
physical	plant	is	a	DC	motor	as	described	previously	in	Section	6.5.4.	The	real	state
variables	are	the	properties	of	the	physical	plant	that	are	to	be	controlled.	In	this	example,
we	wish	to	spin	the	motor	at	1500	RPM,	or	25	rps.	Thus,	the	state	variable	in	this	case	will
be	motor	speed.	The	sensor	and	state	estimator	comprise	a	data	acquisition	system.	The
goal	of	this	data	acquisition	system	is	to	estimate	the	state	variables.	We	will	attach	a
tachometer	to	the	motor	so	the	system	can	measure	speed.	Figures	6.4	and	6.4	illustrate
one	type	of	tachometer	and	how	the	signal	is	interfaced	to	the	microcontroller.	The
estimated	state	variables,	X’(t),	in	this	system	will	be	the	measured	speed	in	0.1	rps.		The
actuator	is	a	transducer	that	converts	the	control	system	commands,	U(t),	into	driving
forces,	V(t),	that	are	applied	the	physical	plant.	In	this	example	we	will	use	the	circuit	in
Figure	6.21,	which	allows	the	microcontroller	to	adjust	power	to	the	motor	using	the
functions	in	Program	6.8.	In	this	example,	the	bus	clock	is	80	MHz,	so	the	PWM	clock	is
40	MHz.	We	will	fix	the	PWM	period	1ms,	and	initialize	the	PWM	output	at	0.1%	by
calling PWM0_Init(40000,40) .	We	define	the	actuator	command,	U(t),	as	the	parameter
40	to	39960	that	we	pass	in	when	we	call PWM0_Duty .	Therefore	we	can	adjust	the
power	from	0.1%	to	99.9%.

In	general,	the	goal	of	the	control	system	is	to	drive	the	real	state	variables	to	equal	the
desired	state	variables.	In	actuality	though,	the	controller	attempts	to	drive	the	estimated
state	variables	to	equal	the	desired	state	variables.	It	is	important	to	have	an	accurate	state
estimator,	because	any	differences	between	the	estimated	state	variables	and	the	real	state
variables	will	translate	directly	into	controller	errors.		If	we	define	the	error	as	the
difference	between	the	desired	and	estimated	state	variables:
	

e(t)	=	X*(t)-	X’(t)
	

A	closed-loop	control	system	uses	the	output	of	the	state	estimator	in	a	feedback	loop	to
drive	the	errors	to	zero.	The	control	system	compares	X’(t),	to	the	desired	state	variables,
X*(t),	in	order	to	decide	appropriate	action,	U(t).	See	Figure	6.25.

	

Figure	6.25.	Block	diagram	of	a	microcomputer-based	closed-loop	control

system.
We	can	combine	the	period	measurement	from	Section	6.1,	the	PWM	output	of	Section
6.3,	and	the	DC	motor	interface	of	Section	6.5.4	to	build	a	motor	controller.	One	effective
yet	simple	control	algorithms	is	an	integral	controller.	We	specify	the	actuator	output	as
the	integral	of	the	accumulated	errors.

where	Ki	is	a	controller	constant.	For	this	controller,	if	the	error	is	zero	the	actuator
command	remains	constant.	If	the	motor	is	spinning	too	slowly,	the	controller	will
increase	power.	If	the	motor	is	spinning	too	quickly,	it	will	decrease	power.	For	an	integral
controller,	the	amount	of	increase	or	decrease	is	linearly	related	to	the	error.	So	if	the	error
is	large	it	adds	(or	subtracts)	a	lot,	and	if	the	error	is	small	it	adds	(or	subtracts)	a	little.	If
the	time	constant	of	the	motor	is	100ms,	then	we	will	run	the	controller	10	times	faster.
The	Timer2A	ISR	in	Program	6.11	is	set	to	execute	every	10	ms.	The	software	in	Program
6.2	will	set	the	global	variable Period 	with	the	measured	period	in	12.5	ns	units.

uint32_t	Period;														//	24-bit,	12.5	ns	units

uint32_t	Speed;														//	motor	speed	in	0.1	rps

int32_t	E;																				//	speed	error	in	0.1	rps

int32_t	U;																				//	duty	cycle	40	to	39960

void	Timer2A_Handler(void){

		TIMER2_ICR_R	=	0x01;						//	acknowledge	timer2A	timeout

		Speed	=	800000000/Period;	//	0.1	rps

		E	=	250-Speed;												//	0.1	rps

		U	=	U+(3*E)/64;											//	discrete	integral

		if(U	<	40)	U=40;										//	Constrain	output

		if(U>39960)	U=39960;						//	40	to	39960

		PWM0A_Duty(U);												//	output

}

Program	6.11.	ISR	to	implement	an	integral	controller
	

6.7.	Exercises
6.1	Show	the	changes	you	need	to	make	to	Program	6.1	to	run	on	a	LM3S1968	with	the
input	connected	to	CCP2/PB1.

	

6.2	Show	the	changes	you	need	to	make	to	Program	6.1	to	run	on	a	LM3S1968	with	the
input	connected	to	CCP3/PG4.

	

6.3	If	Timer	0A	and	Timer	0B	are	both	armed	for	interrupt,	are	the	two	sources	polled	or
vectored?	If	Timer	0A	and	Timer	1A	are	both	armed	for	interrupt,	are	the	two	sources
polled	or	vectored?

	

6.4	How	do	you	change	the	resolution	of	the	period	measurement	resolution	in	Program
6.2?

	

6.5	If	the	bus	clock	were	changed	to	50	MHz	without	any	changes	to	Program	6.2,	what
would	the	new	period	measurement	range	be?

	

6.6	Show	the	changes	you	need	to	make	to	Program	6.6	to	run	Timer	1A.

	

6.7	Show	the	changes	you	need	to	make	to	Program	6.6	to	run	Timer	2B.

	

6.8	Show	the	changes	you	need	to	make	to	Program	6.7	to	run	on	a	LM3S1968	with	the
output	connected	to	CCP2/PB1.

	

6.9	Show	the	changes	you	need	to	make	to	Program	6.8	to	run	on	a	LM3S1968	with	the
output	connected	to	PWM3/PH1.

	

D6.10	Create	two	synchronized	50%	duty	cycle	square	waves	using	PWM	channels.
Interface	the	two	PWM	outputs	to	a	stepper	motor	using	a	L293.	If	you	use	just	2	PWM
outputs	you	will	need	to	add	digital	logic	inverters.	Write	software	that	initialized	the
PWM	given	the	desired	shaft	speed	in	1	RPM,	with	a	range	of	speeds	from	0	to	100	RPM.
Assume	there	are	200	steps/revolution.	The	stepper	will	spin	without	software	overhead
until	the	function	is	called	again.	If	the	desired	speed	is	zero,	stop	the	motor	at	one	of	the
valid	states	(5,	6,	10	or	9).

D6.11	The	objective	of	this	problem	is	to	measure	the	frequency	of	a	square	wave
connected	to	CCP2.	The	frequency	range	is	0	to	2000	Hz	and	the	resolution	is	0.1Hz.	For
example,	if	the	frequency	is	567.83	Hz,	then	your	software	will	set	the	global Freq 	to
5678.	Don’t	worry	about	frequencies	above	2000	Hz.

	

D6.12	The	objective	of	this	problem	is	to	measure	body	temperature	using	input	capture
(period	measurement).	A	shunt	resistor	is	placed	in	parallel	with	a	thermistor.	The
thermistor-shunt	combination,	R,	has	the	following	linear	relationship	for	temperatures
from	90	to	110	˚F.

R	=	100	kΩ	-	(T	-	90˚F)•1kΩ/˚F														where	R	is	the	resistance	of	the	thermistor-shunt

In	other	words,	the	resistance	varies	from	100	kΩ	to	80	kΩ	as	the	temperature	varies	from
90	to	110˚F.	The	range	of	your	system	is	90	to	110	˚F	and	the	resolution	should	be	better
than	0.01˚F.	You	will	use	a	TLC555	to	convert	the	resistance	to	a	period.	The	period	of	a
TLC555	timer	is	0.693•CT•(RA+2RB).	Set	RA	=	R,	and	RB	=	50kΩ.

a)	The	pulse	width	measurement	resolution	will	be	125ns	because	the	bus	clock	is	8	MHz.
Choose	the	capacitor	value	so	that	this	pulse	width	measurement	resolution	matches	the
desired	temperature	resolution	of	0.01˚F.

b)		Given	this	value	of	C,	what	is	the	pulse	width	at	90	˚F?	Give	the	answer	both	in	µs	and
bus	clock	cycles.

c)		Given	this	value	of	C,	what	is	the	pulse	width	at	110	˚F?	Give	the	answer	both	in	µs
and	bus	clock	cycles.

d)		Write	the	initialization	that	configures	the	input	capture	interrupts.

e)	Show	the	interrupt	handler	that	performs	the	temperature	measurement	tasks	in	the
background	and	sets	a	global, Temperature .	Temperature 	will	vary	from	9000	to	11000
as	temperature	varies	from	90	to	110	˚F.

	

D6.13	Design	a	wind	direction	measurement	instrument	using	the	input	capture	technique.
Again,	you	are	given	a	transducer	that	has	a	resistance	that	is	linearly	related	to	the	wind
direction.	As	the	wind	direction	varies	from	0	to	360	degrees,	the	transducer	resistance
varies	from	0	to	1000	Ω.	The	frequencies	of	interest	are	0	to	0.5	Hz,	and	the	sampling	rate
will	be	1	Hz.	One	way	to	interface	the	transducer	to	the	computer	is	to	use	an	astable
multivibrator	like	the	TLC555.	The	period	of	a	TLC555	timer	is	0.693•CT•(RA+2RB).

a)	Show	the	hardware	interface

b)	Write	the	initialization	and	interrupt	service	routine	that	measures	the	wind	direction
and	creates	a	16-bit	unsigned	result	with	units	of	degrees.	I.e.,	the	value	varies	from	0	to
359.	You	do	not	have	to	write	software	that	samples	at	1	Hz,	simply	a	function	that
measures	wind	direction	in	the	background.
	

D6.14	The	objective	of	this	problem	is	to	design	an	underwater	ultrasonic	ranging	system.
The	distance	to	the	object,	d,	can	vary	from	1	to	100	m.	The	ultrasonic	transducer	will

send	a	short	5	µs	sound	pulse	into	the	water	in	the	direction	of	interest.	The	sound	wave
will	travel	at	1500m/sec	and	reflect	off	the	first	object	it	runs	into.	The	reflected	wave	will
also	travel	at	1500m/sec	back	to	the	transducer.	The	reflected	pulse	is	sensed	by	the	same
transducer.	Your	system	will	trigger	the	electronics	(give	a	5µs	digital	pulse),	measure	the
time	of	flight,	then	calculate	the	distance	to	the	object.	Using	periodic	interrupts,	the
software	will	issue	a	5	µs	pulse	out	once	a	second.	Using	interrupting	input	capture,	the
software	will	measure	the	time	of	flight,	∆t.	The	input	capture	interrupt	handler	will
calculate	distance,	d,	as	a	decimal	fixed-point	value	with	units	of	0.01m,	and	enter	it	into	a
FIFO	queue.	The	main	program	will	call	the	ritual,	then	get	data	out	of	the	FIFO	queue.
The	main	program	will	call Alarm() if	the	distance	is	less	than	15	m.	You	do	not	have	to
give	the	implementation	of Alarm() .	You	may	use	any	of	the	FIFOs	in	Chapter	3	without
showing	its	implementation.	Assume	the	bus	clock	is	8	MHz.

Figure	6.25.	Interface	for	Question	D6.14.
a)	Derive	an	equation	that	relates	the	distance,	d,	to	the	time	of	flight,	∆t.

b)	Use	this	equation	to	calculate	the	minimum	and	maximum	possible	time	of	flight,	∆t.

c)	Give	the	initialization	routine.

d)	Give	the	ISRs	that	measure	distance.

	

6.8.	Lab	Assignments
Lab	6.1	The	overall	objective	is	to	interface	a	joystick	to	the	microcontroller.	The	joystick
is	made	with	two	potentiometers.	You	can	use	two	astable	multivibrators	(TLC555)	to
convert	the	two	resistances	into	two	periods.	Use	two	period	measurement	channels	to
estimate	the	X-Y	position	of	the	joystick.	Organize	the	software	interface	into	a	device
driver,	and	write	a	main	program	to	test	the	interface.

Lab	6.2	The	overall	objective	is	to	measure	temperature.	A	thermistor	is	a	transducer	with
a	resistance	that	is	a	function	of	its	temperature.	You	can	use	an	astable	multivibrator
(TLC555)	to	convert	the	resistance	into	a	period.	Use	a	period	measurement	channel	to
estimate	the	resistance	of	the	thermistor.	Use	a	table	lookup	with	linear	interpolation	to
convert	resistance	to	temperature.	Organize	the	software	interface	into	a	device	driver,	and
write	a	main	program	that	outputs	temperature	to	the	UART	channel.

Lab	6.3	The	overall	objective	is	to	measure	linear	position.	A	slide-pot	is	a	transducer
with	a	resistance	that	is	a	function	of	the	linear	position	of	the	slide.	You	can	use	an
astable	multivibrator	(TLC555)	to	convert	the	resistance	into	a	period.	Use	a	period
measurement	channel	to	estimate	the	resistance	of	the	potentiometer.	Use	a	table	lookup
with	linear	interpolation	to	convert	resistance	to	position.	Organize	the	software	interface
into	a	device	driver,	and	write	a	main	program	that	outputs	position	to	the	UART	channel.

Lab	6.4	The	objective	of	this	lab	is	to	control	a	servo	motor.	Interface	a	servo	motor	to	the
PWM	output	pin	of	the	microcontroller.	The	desired	angle	is	input	from	the	UART
channel	(connected	to	PC	running	PuTTY.)		Organize	the	software	interface	into	a	device
driver,	and	write	a	main	program	that	inputs	from	the	UART	channel	and	maintains	the
PWM	output	to	the	servo.	Servos	are	a	popular	mechanism	to	implement	steering	in
robotics.		Ranging	from	micro	servos	with	15oz-in	torque	to	powerful	heavy-duty	sailboat
servos,	they	all	share	several	common	characteristics.	A	servo	is	essentially	a	positionable
motor.		The	servo	“knows”	two	things:	where	it	is	(the	actual	position)	and	where	it	wants
to	be	(the	desired	position).		When	the	servo	receives	a	position,	it	attempts	to	move	the
servo	horn	to	the	desired	position.		The	task	of	the	servo,	then,	is	to	make	the	actual
position	the	desired	position.			The	first	step	to	understanding	how	servos	work	is	to
understand	how	to	control	them.		Power	is	usually	between	4V	and	6V	and	should	be
separate	from	system	power	(as	servos	are	electrically	noisy).		Even	small	servos	can	draw
over	an	amp	under	heavy	load	so	the	power	supply	should	be	appropriately	rated.		Though
not	recommended,	servos	may	be	driven	to	higher	voltages	to	improve	torque	and	speed
characteristics.	Servos	are	commanded	through	“Pulse	Width	Modulation,”	or	PWM,
signals	sent	through	the	command	wire.		Essentially,	the	width	of	a	pulse	defines	the
position.		For	example,	sending	a	1.5ms	pulse	to	the	servo,	tells	the	servo	that	the	desired
position	is	90	degrees.		In	order	for	the	servo	to	hold	this	position,	the	command	must	be
sent	at	about	50	Hz,	or	every	20	ms.		If	you	were	to	send	a	pulse	longer	than	2.5	ms	or
shorter	than	0.5	ms,	the	servo	would	attempt	to	overdrive	(and	possibly	damage)	itself.
Once	the	servo	has	received	the	desired	position	(via	the	PWM	signal)	the	servo	must
attempt	to	match	the	desired	and	actual	positions.		It	does	this	by	turning	a	small,	geared
motor	left	or	right.		If,	for	example,	the	desired	position	is	less	than	the	actual	position,	the
servo	will	turn	to	the	left.		On	the	other	hand,	if	the	desired	position	is	greater	than	the

actual	position,	the	servo	will	turn	to	the	right.		In	this	manner,	the	servo	“zeros-in”	on	the
correct	position.		Should	a	load	force	the	servo	horn	to	the	right	or	left,	the	servo	will
attempt	to	compensate.	Note	that	there	is	no	control	mechanism	for	the	speed	of
movement	and,	for	most	servos,	the	speed	is	specified	in	degrees/second.		For	more
information	refer	to	the	data	sheet	of	your	servo.

Figure	6.26.	Example	servo	motor.

	
Lab	6.5	The	overall	objective	is	to	measure	capacitance.	The	system	will	measure	from
100	pF	to	1uF	with	a	resolution	of	100	pF.	You	can	use	an	astable	multivibrator	(TLC555)
to	convert	the	capacitance	into	a	period.	Use	a	period	measurement	channel	to	estimate	the
capacitance.	Use	a	table	lookup	with	linear	interpolation	to	convert	period	to	capacitance.
Organize	the	software	interface	into	a	device	driver,	and	write	a	main	program	that	outputs
position	to	the	UART	channel	or	on	a	local	display.

Lab	6.6.	The	objective	of	this	lab	is	to	interface	a	brushless	DC	motor.	Rather	than	use
discrete	transistors	like	Figure	6.21,	use	an	integrated	motor	interface	chip	like	the	L293
or	L6103.	Using	three	power	resistors	in	a	Wye	shape,	test	the	motor	drive	circuit.	Write
two	software	functions:	Initialization	and	PowerSet.	The	second	function	can	be	used	to
adjust	the	power	to	the	motor	from	0	to	100%.	Add	period	measurements	to	the	input
capture	ISRs,	and	use	them	to	measure	shaft	speed	in	RPM.	Use	a	logic	analyzer	to	collect
data	similar	to	Figure	8.62.	Take	measurements	of	shaft	speed	versus	duty	cycle.	Take
transient	measurements	of	speed	versus	time,	as	the	duty	cycle	changes	from	25	to	75%.

7.	Serial	Interfacing
Chapter	7	objectives	are	to:
•	Present	the	physical	drivers	and	protocols	for	serial	interfacing

•	Describe	the	RS232	standard

•	Design	interfaces	that	convert	between	+5	and	+3.3	V	digital	logic

•	Present	differential	line	protocols	such	as	RS422	and	USB

•	Describe	and	employ	the	SSI	synchronous	serial	protocol

•	Describe	and	employ	the	I2C	serial	bus

•	Introduce	the	USB	protocol

	
In	many	applications,	a	single	dedicated	microcontroller	is	insufficient	to	perform	all	the
tasks	of	the	embedded	system.	One	solution	would	be	to	use	a	larger	and	more	powerful
microcontroller,	and	another	approach	would	be	to	distribute	the	tasks	among	multiple
microcontrollers.	This	second	approach	has	the	advantages	of	modularity	and
expandability.	To	implement	a	distributed	system,	we	need	a	mechanism	to	send	and
receive	information	between	the	microcontrollers.	A	second	scenario	that	requires
communication	is	a	central	general-purpose	computer	linked	to	multiple	remote	embedded
systems	for	the	purpose	of	distributed	data	collection	or	distributed	control.	For	situations
where	the	required	bandwidth	is	less	than	about	100,000	bytes/sec,	the	built-in	serial	ports
of	the	microcontroller	can	be	used.

In	this	chapter	we	will	interface	DAC	and	ADC	devices	to	the	synchronous	serial	port.	In
Chapters	8	and	10	we	continue	by	showing	how	to	employ	the	DAC	and	ADC	for	signal
generation	and	data	acquisition.	We	can	use	the	I2C	bus	to	interface	sensors	and	actuators.
In	this	chapter	we	will	focus	on	serial	channels	that	employ	a	direct	physical	connection
between	the	microcontrollers,	and	later	in	Chapter	11	we	expand	the	communication
system	to	include	networks.

7.1.	Introduction	to	Serial	Communication
Serial	communication	involves	the	transmission	of	one	bit	of	information	at	a	time.	One
bit	is	sent,	a	time	delay	occurs,	then	the	next	bit	is	sent.	This	section	will	introduce	the	use
of	serial	communication	as	an	interfacing	technique	for	various	microcontroller
peripherals.	Since	many	peripheral	devices	such	as	printers,	keyboards,	scanners,	and	mice
operate	have	their	own	computers,	the	communication	problem	can	be	generalized	to	one
of	transmitting	information	between	two	computers.	The	universal	asynchronous
receiver/transmitter	(UART)	is	the	interface	device	that	implements	the	serial	data
transmission.	The	serial	channel	is	the	collection	of	signals	(or	wires)	that	implement	the
communication,	see	Figure	7.1.	To	improve	bandwidth,	remove	noise	and	increase	range,
we	place	interface	logic	between	the	digital	logic	UART	device	and	the	serial	channel.	We
define	the	data	terminal	equipment	(DTE)	as	the	computer	or	a	terminal	and	the	data
communication	equipment	(DCE)	as	the	modem	or	printer.		

Figure	7.1.	A	serial	channel	connects	two	data	terminal	equipment	(DTE)
devices.
When	transmitting	in	a	serial	fashion,	there	are	many	ways	to	encode	binary	information
on	the	line,	as	shown	in	Figure	7.2.	The	goal	is	to	maximize	bandwidth	and	minimize
errors.	Non-return-to-zero	(NRZ)	encoding	is	a	binary	code	in	which	the	signal	is	never
at	zero	voltage.	There	is	more	energy	in	the	wire	compared	to	typical	VOL/VOH	digital	logic,
because	there	is	always	a	voltage	causing	current	to	flow	continuously.	Energy	is	the
fundamental	property	needed	to	communicate	information	over	a	distance.	On	a	single
wire,	voltages	are	measured	relative	to	ground	(e.g.,	RS232).	On	a	twisted	pair,	voltages
are	differential	(e.g.,	RS422,	USB).	The	binary	values	of	1	and	0	are	encoded	as	positive
or	negative	voltage	differences.	In	positive	logic,	1	is	a	positive	voltage	difference	and	0	is
a	negative	voltage	difference.	In	negative	logic,	the	voltage	representing	0	is	higher	than
the	voltage	representing	1.

Non-return-to-zero-inverted	(NRZI)	is	a	method	of	encoding	binary	signal	as	transitions
or	changes	in	the	signal.	Similar	to	NRZ,	the	signal	in	a	NRZI	protocol	is	never	zero.	The
binary	information	is	encoded	as	the	presence	or	absence	of	a	transition	at	a	clock
boundary,	illustrated	by	the	arrows	in	Figure	7.2.	Both	the	transmitter	and	receiver	will
synchronize	their	clocks	so	the	receiver	knows	when	to	look	for	the	transition.	A	transition
is	a	change	from	positive	to	negative	or	from	negative	to	positive.	For	example,	we	could
send	a	1	by	placing	a	transition	on	the	signal,	or	send	a	0	by	causing	no	transition.	Also,
NRZI	might	take	the	opposite	convention,	as	in	Universal	Serial	Bus	(USB),	where	a
transition	means	0	and	a	steady	level	means	1.

Manchester	encoding	code	encodes	binary	bits	as	either	a	low-to-high	transition,	or	a
high-to-low	transition.	Manchester	encoding	is	a	type	of	phase	encoding,	which	means	the
information	transmitted	as	phase	shifts.	It	is	used	with	the	IEEE	802.3	Ethernet	protocol.
There	is	a	fixed	time	period	inside	which	one	bit	is	transmitted.	The	original	Manchester
encoding	scheme	defined	0	as	a	low-to-high,	and	1	as	a	high-to-low.	However,	the	IEEE
802.3	convention	defines	the	bits	in	the	opposite	manner.	The	transitions	that	signify	0	or
1	occur	at	the	midpoint	of	a	period,	shown	as	arrows	in	Figure	7.2.	There	may	be	an
additional	transitions	at	the	start	of	a	period;	these	are	extra	and	do	not	signify	data.	Since
every	bit	has	at	least	one	transition,	it	is	easier	for	the	receiver	to	align	correctly	or	to
synchronize	its	clock	with	the	transmitter	clock.	However,	the	cost	of	this	ease	of
synchronization	is	a	doubling	of	the	bandwidth	requirement	of	the	physical	channel	as
compared	to	NRZ	or	NZRI	encoding.	Consider	the	case	where	a	system	is	communicating
a	long	sequence	of	zeros	at	1	Mb/s.	Using	the	NRZI	USB	encoding,	the	line	will	be	a
square	wave	at	1	MHz.	However,	using	IEEE	802.3	encoding,	the	line	will	be	a	square
wave	at	2	MHz.

Figure	7.2.	Four	encodings	of	the	binary	10011011.
Figure	7.3	shows	the	UART	pins	available	on	some	LM3S/TM4C	microcontrollers.	The
descriptions	and	software	drivers	were	presented	earlier	as	Program	4.10	and	5.11.	Tables
2.7	and	2.8	describe	how	to	attach	I/O	pins	to	the	UART	modules	on	the
TM4C123/TM4C1294.

Figure	7.3.	Serial	port	pins	available	on	various	LM3S/LM4F/TM4C
microcontrollers.

The	interface	logic	(e.g.,	MAX3232)	converts	between	digital	logic	levels	and	RS232
logic	levels.	In	this	protocol,	a	typical	bidirectional	channel	requires	3	wires	(Rx,	Tx,
Ground.)	We	use	RS422	voltage	levels	when	we	want	long	cable	lengths	and	high
bandwidths.	The	binary	signal	is	encoded	on	the	RS422	line	as	a	voltage	difference	(e.g.,
MAX485).	In	this	protocol,	a	typical	bidirectional	channel	requires	5	wires	(RxD+,	RxD-,
TxD+,	TxD-,	Ground.)	Typical	voltage	levels	are	shown	in	Table	7.1.	If	the	two	computers
are	in	the	same	box,	we	can	implement	the	serial	channel	without	the	interface	drivers.

	

	 	 +3.3V
logic

+5V	logic RS232
level

RS422	level

True Mark +3V +5V TxD	=
-5.5V

(TxD+	-	TxD-)
=	-3V

False Space +0.1V +0.1V TxD	=
+5.5V

(TxD+	-	TxD-)
=	+3V

Table	7.1.	Typical	voltage	levels	for	the	digital	logic,	RS232	and	RS422	protocols.

	

A	frame	is	a	complete	and	nondivisible	packet	of	bits.	A	frame	includes	both	information
(e.g.,	data,	characters)	and	overhead	(start	bit,	error	checking,	and	stop	bits.)	A	frame	is
the	smallest	packet	that	can	be	transmitted.	The	RS232	and	RS422	protocols	have	1	start
bit,	7/8	data	bits,	no/even/odd	parity,	and	1/1.5/2	stop	bits.	The	RS232	idle	level	is	true
(-5V).	The	start	bit	is	false	(+5V.)	A	true	data	bit	is	-5V,	and	a	false	data	bit	is	+5V	(Figure
7.4).		

Observation:	RS232	and	RS422	data	channels	are	in	negative	logic	because	the	true
voltage	is	less	than	the	false	voltage.		

Observation:	The	RS232	protocol	always	has	one	start	bit	and	at	least	one	stop	bit.

Checkpoint	7.1:	If	the	RS232	protocol	has	eight	data	bits,	no	parity,	and	one	stop

bit,	how	many	total	bits	are	in	a	frame?

	

Figure	7.4.	A	RS232	frame	showing	1	start,	8	data,	no	parity,	and	1	stop
bit.

Parity	can	be	used	to	detect	errors.	Parity	is	generated	by	the	transmitter	and	checked	by
the	receiver.	For	even	parity,	the	number	of	ones	in	the	data	plus	parity	is	an	even
number.		For	odd	parity,	the	number	of	ones	in	the	data	plus	parity	is	an	odd	number.		If
errors	are	unlikely,	then	operating	without	parity	is	faster	and	simpler.

The	bit	time	is	the	basic	unit	of	time	used	in	serial	communication.	It	is	the	time	between
each	bit.	The	transmitter	outputs	a	bit,	waits	one	bit	time,	and	then	outputs	the	next	bit.
The	start	bit	is	used	to	synchronize	the	receiver	with	the	transmitter.	The	receiver	waits	on
the	idle	line	until	a	start	bit	is	first	detected.	After	the	true	to	false	transition,	the	receiver
waits	a	half	of	a	bit	time.	The	half	of	a	bit	time	wait	places	the	input	sampling	time	in	the
middle	of	each	data	bit,	giving	the	best	tolerance	to	variations	between	the	transmitter	and
receiver	clock	rates.	In	order	to	operate	properly	the	data	available	interval	must	overlap
the	data	required	interval	(Section	4.2).	Next,	the	receiver	reads	one	bit	every	bit	time.	The
baud	rate	is	the	total	number	of	bits	(information,	overhead,	and	idle)	per	time	that	are
transmitted	in	the	serial	communication.

baud	rate	=	1/(bit	time)

	
We	will	define	information	as	the	data	that	the	“user”	intends	to	be	transmitted	by	the
communication	system.	Examples	of	information	include

•	Characters	to	be	printed	on	your	printer

•	A	picture	file	to	be	transmitted	to	another	computer

•	A	digitally	encoded	voice	message	communicated	to	your	friend

•	The	object	code	file	to	be	downloaded	from	the	PC	to	the	microcontroller

	
We	will	define	overhead	as	signals	added	to	the	communication	in	order	to	affect	reliable
transmission.		Examples	of	overhead	include

•	Start	bit(s)	start	byte(s)	or	start	code(s)

•	Stop	bit(s)	stop	byte(s)	or	stop	code(s)

•	Error	checking	bits	like	parity,	CRC	(cyclic	redundancy	check),	and
checksum

•	Synchronization	messages	like	ACK,	NAK,	XON,	XOFF

	

Bandwidth,	latency,	and	reliability	are	the	fundamental	performance	measures	for	a
communication	system.	Although,	in	a	general	sense	overhead	signals	contain
“information”,	overhead	signals	are	not	included	when	calculating	bandwidth	or
considering	full	duplex,	half	duplex,	and	simplex.	In	similar	way,	if	we	are	sending	2	bits
of	data,	but	add	6	bits	of	zeros	to	fill	the	byte	field	in	the	frame,	we	consider	that	there	are
2	bits	of	information	per	frame	(not	8	bits.)	We	will	use	the	three	terms	bandwidth,	bit
rate	and	throughput	interchangeably	to	specify	the	number	of	information	bits	per	time
that	are	transmitted.	These	terms	apply	to	all	forms	of	communication:

•	Parallel

•	Serial

•	Mixed	parallel/serial

	
For	serial	communication	systems,	we	can	calculate:

	
Latency	is	the	time	delay	between	when	a	message	is	sent	and	when	it	is	received.	For	the
simple	systems	in	this	chapter,	at	the	physical	layer,	latency	can	be	calculated	as	the	frame
size	in	bits	divided	by	the	baud	rate	in	bits/sec.	For	example	a	RS232	protocol	with	10-bit
frames	running	at	9600-bps	baud	rate	will	take	1.04	ms	to	go	from	transmitter	to	receiver.

Reliability	is	defined	as	the	probability	of	corrupted	data	or	the	mean	time	between
failures	(MTBF).	One	of	the	confusing	aspects	of	bandwidth	is	that	it	could	mean	two
things.	The	peak	bandwidth	is	the	maximum	achievable	data	transfer	rate	over	short
periods	during	times	when	nothing	else	is	competing	for	resources.	When	we	say	the
bandwidth	of	a	serial	channel	with	10-bit	frames	and	a	baud	rate	of	9600	bps	is	960
bytes/s,	we	are	defining	peak	bandwidth.	At	the	component	level,	it	is	appropriate	to
specify	peak	bandwidth.	However,	on	a	complex	system,	there	will	be	delays	caused	by
the	time	it	takes	software	to	run,	and	there	will	be	times	when	the	transmission	will	be
stalled	due	to	conditions	like	full	or	empty	FIFOs.	The	sustained	bandwidth	is	the
achievable	data	transfer	rate	over	long	periods	of	time	and	under	typical	usage	and
conditions.		At	the	system	level,	it	is	appropriate	to	specify	sustained	bandwidth.

The	design	parameters	that	affect	bandwidth	are	resistance,	capacitance	and	power.	It
takes	energy	to	encode	each	bit,	therefore	the	bandwidth	in	bits	per	second	is	related	to	the
power,	which	is	energy	per	second.	Capacitance	exists	because	of	the	physical	proximity
of	the	wires	in	the	cable.	The	time	constant 	of	a	simple	RC	circuit	is	R·C.	An	increase	in
capacitance	will	decrease	the	slew	rate	of	the	signal	(see	Figure	1.14),	limiting	the	rate	at
which	signals	can	change,	thereby	reducing	the	bandwidth	of	the	digital	transmission.
However,	we	can	increase	the	slew	rate	by	using	more	power.	We	can	increase	the	energy
over	the	same	time	period	by	increasing	voltage,	increasing	current,	or	decreasing
resistance.

A	full	duplex	communication	system	allows	information	(data,	characters)	to	transfer
simultaneously	in	both	directions.	A	full	duplex	channel	allows	bits	(information,	error
checking,	synchronization	or	overhead)	to	transfer	simultaneously	in	both	directions,
shown	previously	in	Figure	7.1.	

A	half	duplex	communication	system	allows	information	to	transfer	in	both	directions,
but	in	only	one	direction	at	a	time.	Half	duplex	is	a	term	usually	defined	for	modem
communications,	but	in	this	book	we	will	expand	its	meaning	to	include	any	serial
protocol	that	allows	communication	in	both	directions,	but	only	one	direction	at	a	time.	A
fundamental	problem	with	half	duplex	is	the	detection	and	recovery	from	a	collision.	A
collision	occurs	when	both	computers	simultaneously	transmit	data.	Fortunately,	every
transmission	frame	is	echoed	back	into	its	own	receiver.	The	transmitter	program	can
output	a	frame,	wait	for	the	frame	to	be	transmitted	(which	will	be	echoed	into	its	own
receiver)	then	check	the	incoming	parity	and	compare	the	data	in	order	to	detect	a
collision.	If	a	collision	occurs,	then	it	will	probably	be	detected	by	both	computers.	After	a
collision,	the	transmitter	can	wait	awhile	and	retransmit	the	frame.	The	two	computers
need	to	decide	which	one	will	transmit	first	after	a	collision	so	that	a	second	collision	can
be	avoided.

Observation:	Most	people	communicate	in	half	duplex.		

A	common	hardware	mechanism	for	half	duplex	utilizes	open	drain	logic.	The
microcontroller	open	drain	mode	has	two	output	states:	zero	and	HiZ	(Figure	7.5).	The
logic	high	is	created	with	the	passive	pull-up.	With	open	drain,	the	half	duplex	channel	is
the	logical	AND	of	the	two	TxD	outputs.	In	this	system,	the	transmitter	simply	transmits
its	frame	without	needing	to	enable	or	disable	a	driver.	If	both	microcontrollers	transmit	at
the	same	time,	the	zeros	on	the	channel	will	dominate	the	ones,	and	the	data	will	be
corrupted.

Figure	7.5.	A	half	duplex	serial	channel	can	be	implemented	with	open
drain	logic.
Checkpoint	7.2:	What	is	the	difference	between	full	duplex	and	half	duplex?

A	simplex	communication	system	allows	information	to	transfer	only	in	one	direction.
The	XON/XOFF	protocol	that	we	will	cover	later	is	an	example	of	a	communication
system	that	has	a	full	duplex	channel,	but	implements	simplex	communication.	This	is
simplex	because	information	is	transmitted	from	the	computer	to	the	printer,	but	only
XON/XOFF	(error	checking	flags)	are	sent	from	the	printer	back	to	computer.	In	this	case,
no	data	is	sent	from	printer	to	computer.

In	order	to	transfer	information	correctly,	both	sides	of	the	channel	must	operate	at	the
same	baud	rate.	In	an	asynchronous	communication	system,	the	two	devices	have
separate	and	distinct	clocks.	Because	these	two	clocks	are	generated	separately	(one	on
each	side),	they	will	not	have	exactly	the	same	frequency	or	be	in	phase.	If	the	two	baud
rate	clocks	have	different	frequencies,	the	phase	between	the	clocks	will	also	drift	over
time.	Transmission	will	occur	properly	as	long	as	the	periods	of	the	two	baud	rate	clocks
are	close	enough.	The	-5V	to	+5V	edge	at	the	beginning	of	the	start	bit	is	used	to
synchronize	the	receiver	with	the	transmitter.	If	the	two	baud	rate	clock	periods	in	a
RS232	system	differ	by	less	than	5%,	then	after	10	bits	the	receiver	will	be	off	by	less	than
a	half	a	bit	time	(and	no	error	will	occur.)	Any	larger	difference	between	the	two	periods
may	cause	an	error.

In	a	synchronous	communication	system,	the	two	devices	share	the	same	clock	(Figure
7.6).	Typically	a	separate	wire	in	the	serial	cable	carries	the	clock.	In	this	way,	very	high
baud	rates	can	be	obtained.	Another	advantage	of	synchronous	communication	is	that	very
long	frames	can	be	transmitted.	Larger	frames	reduce	the	operating	system	overhead	for
long	transmissions	because	fewer	frames	need	be	processed	per	message.	Even	though	in
this	chapter,	we	will	design	various	low	bandwidth	synchronous	systems	using	the	SSI,
synchronous	communication	is	best	applied	to	systems	that	require	bandwidths	above	1
Mbps.		The	cost	of	this	increased	performance	is	the	additional	wire	in	the	cable.	The
clock	must	be	interfaced	with	channel	drivers	(e.g.,	RS232,	RS422,	optocouplers)	similar
to	the	transmit	and	receive	data	signals.	If	the	two	computers	are	in	the	same	box,	we	can
implement	communication	without	the	interface	drivers.

Checkpoint	7.3:	What	is	the	difference	between	synchronous	and	asynchronous
communication?

Observation:	Self-centered	people	employ	simplex	communication.		

	

Figure	7.6.	Nodes	on	a	synchronous	channel	operate	off	a	common	clock.
Checkpoint	7.4:	How	does	the	MAX3232	in	Figures	7.1	and	7.6	make	it	better?

7.2.	RS232	Interfacing
The	baud	rate	in	a	RS232	system	can	be	as	high	as	115,200	bits/sec.	Because	a	typical
cable	has	50pF/foot,	the	maximum	distance	for	RS232	transmission	is	limited	to	50	feet.
There	are	21	signals	defined	for	full	MODEM	(MOdulate/DEModulate)	communication
(Figure	7.7.)	The	RS232	standard	uses	a	DB25	connector	that	has	25	pins.	The	EIA-574
standard	uses	RS232	voltage	levels	and	a	DB9	connector	that	has	only	9	pins.	The	EIA-
561	standard	also	uses	RS232	voltage	levels	but	with	a	RJ45	connector	that	has	only	8
pins.

Figure	7.7.	RS232,	EIA-574	and	EIA-561	connectors	used	in	many	serial
applications.
Table	7.2	shows	the	entire	set	of	RS232	signals.	The	most	commonly	used	signals	of	the
full	RS232	standard	are	available	with	the	EIA-561/EIA-574	protocols.

The	frame	ground	is	connected	on	one	side	to	the	ground	shield	of	the	cable.	The	shield
will	provide	protection	from	electric	field	interference.	The	twisted	cable	has	a	small	area
between	the	wires.	The	smaller	the	area,	the	less	the	magnetic	field	pickup.	There	is	one
disadvantage	to	reducing	the	area	between	the	connectors.	The	capacitance	to	ground	is
inversely	related	to	the	separation	distance	between	the	wires.	Thus	as	the	area	decreases,
the	capacitance	will	increase.	This	increased	capacitive	load	will	limit	both	the	distance
and	the	baud	rate.	

	

DB25
Pin

RS232
Name

DB9
Pin

EIA-
574

Name

RJ45
Pin

EIA-
561

Name

Signal Description True DTE DCE

1	 	 	 	 	 	 FG Frame
Ground/Shield

	 	 	

2 BA 3 103 6 103 TxD Transmit	Data -5V out in

3 BB 2 104 5 104 RxD Receive	Data -5V in out

4 CA 7 105/133 8 105/133 RTS Request	to
Send

+5V out in

5 CB 8 106 7 106 CTS Clear	to	Send +5V in out

6 CC 6 107 	 	 DSR Data	Set	Ready +5V in out

7 AB 5 102 4 102 SG Signal	Ground 	 	 	

8 CF 1 109 2 109 DCD Data	Carrier
Detect

+5V in out

9 	 	 	 	 	 	 Positive	Test
Voltage

	 	 	

10 	 	 	 	 	 	 Negative	Test
Voltage

	 	 	

11 	 	 	 	 	 	 Not	Assigned 	 	 	

12 	 	 	 	 	 sDCD secondary
DCD

+5V in out

13 	 	 	 	 	 sCTS secondary	CTS +5V in out

14 	 	 	 	 	 sTxD secondary	TxD -5V out in

15 DB 	 	 	 	 TxC Transmit	Clk
(DCE)

	 in out

16 	 	 	 	 	 sRxD secondary	RxD -5V in out

17 DD 	 	 	 	 RxC Receive	Clock 	 in out

18 LL 	 	 	 	 	 Local
Loopback

	 	 	

19 	 	 	 	 	 sRTS secondary	RTS +5V out in

20 CD 4 108 3 108 DTR Data	Terminal
Rdy

+5V out in

21 RL 	 	 	 	 SQ Signal	Quality +5V in out

22 CE 9 125 1 125 RI Ring	Indicator +5V in out

23 	 	 	 	 	 SEL Speed	Selector
DTE

	 in out

24 DA 	 	 	 	 TCK Speed	Selector
DCE

	 out in

25 TM 	 	 	 	 TM Test	mode +5V in out

Table	7.2.	Pin	assignments	for	the	RS232	EIA-574	and	EIA-561	protocols.

The	signal	ground	is	connected	on	both	sides	to	the	supply	return.	A	separate	wire	should
be	used	for	signal	ground	(do	not	use	the	ground	shield	to	connect	the	two	signal	grounds.)
The	noise	immunity	will	be	degraded	if	the	ground	shield	is	connected	on	both	sides.
There	are	many	available	RS232	driver	chips	(e.g.,	Maxim	MAX3232).	These	chips
employ	a	charge	pump	(using	the	100	nF	capacitors)	to	create	the	standard	+5	and	-5
output	voltages	with	only	a	+3.3	V	supply.	The	following	overviews	the	RS232
specifications	for	an	output	signal

				Must	be	able	to	withstand	a	short	to	ground	or	short	to	another	wire
				True	voltage	is	between	-5	and	-15	V	(operating	range)
				False	voltage	is	between	+5	and	+15	V	(operating	range)
				Short	circuit	current	less	than	0.5	A
				Spends	less	than	4%	of	the	time	in	the	transition	range	from	-3	to	+3	V

	

Similarly,	the	following	overviews	the	RS232	specifications	for	an	input	signal

				The	maximum	slew	rate	is	30	V/ �s
				True	input	is	-3	to	-15	V
				False	input	is	+3	to	+15	V
				The	transition	range	is	-3	to	+3	V
				The	input	impedance	between	3000	and	7000
				The	input	capacitance	including	cable	must	be	less	than	2500	pF
				The	input	open	circuit	voltage	must	be	less	than	2	V

	

On	the	data	lines,	a	true	or	mark	voltage	is	negative.	Conversely	for	the	control	lines,	a
true	signal	has	a	positive	voltage.		Request	to	Send	(RTS)	is	a	signal	from	the	computer
to	the	MODEM	requesting	transmission	be	allowed.	Clear	to	Send	(CTS)	is	the
acknowledge	signal	back	from	the	MODEM	signifying	transmission	can	proceed.	Data
Set	Ready	(DSR)	is	a	MODEM	signal	specifying	that	input/output	can	occur.	Data
Carrier	Detect	(DCD)	is	a	modem	signal	specifying	that	the	carrier	frequencies	have
been	established	on	its	telephone	line.	Ring	Indicator	(RI)	is	a	modem	signal	that	is	true
when	the	phone	rings.	The	Receive	Clock	and	Transmit	Clock	are	used	to	establish
synchronous	serial	communication.	Data	Terminal	Ready	(DTR)	is	a	printer	signal
specifying	the	status	of	the	printer.		When	DTR	is	+5V,	the	printer	is	ready	and	can	accept
more	characters.		Conversely	when	DTR	is	-5V,	the	printer	is	busy	and	cannot	accept	more
characters.	Most	microcontrollers	do	not	support	these	control	lines	explicitly.	On	the
other	hand,	it	is	straight	forward	to	implement	these	hardware	handshaking	signals	using
simple	input/output	lines.	If	we	wish	to	generate	interrupts	on	edges	of	these	lines,	then	we
would	use	edge-triggered	input	features.

	

Example	7.1.	Design	a	simplex	printer	driver	with	DTR	synchronization.
	

Solution:	One	problem	with	printers	is	that	the	printer	bandwidth	(the	actual	number	of
characters	per	second	that	can	be	printed)	may	be	less	than	the	maximum	bandwidth
supported	by	the	serial	channel.	There	are	five	conditions	that	might	lead	to	a	situation
where	the	computer	outputs	serial	data	to	the	printer,	but	the	printer	isn’t	ready	to	accept
the	data.	First,	special	characters	may	require	more	time	to	print	(e.g.,	carriage	return,	line
feed,	tab,	formed,	and	graphics).	Second,	most	printers	have	internal	FIFOs	that	could	get
full.	If	the	FIFO	is	not	full,	then	it	can	accept	data	as	fast	as	the	channel	will	allow,	but
when	the	FIFO	becomes	full,	the	computer	should	stop	sending	data.	Third,	the	printer
cable	may	be	disconnected.	Fourth,	the	printer	may	be	deselected	or	attached	to	different
computer.	Fifth,	the	printer	power	may	be	off.	The	output	interfaces	shown	previously
provide	no	feedback	from	the	printer	that	could	be	used	to	detect/correct	these	five
problems.	There	are	two	mechanisms,	called	flow	control,	to	synchronize	the	computer
with	a	variable	rate	output	device.	These	two	flow	control	protocols	are	called	DTR	and
XON/XOFF.
	

The	first	method	uses	a	hardware	signal,	DTR	(pin	4	on	the	DB9	connector),	as	feedback
from	the	printer	to	the	microcontroller,	see	Figure	7.8.	DTR	is	–5V	if	the	printer	is	busy
and	is	not	currently	able	to	accept	transmission.	DTR	is	+5V	if	the	printer	is	ready	and
able	to	accept	transmission.	This	mechanism	can	handle	all	five	of	the	above	conditions
where	the	printer	is	not	ready.	The	computer	input	mechanism	will	handle	the	DTR
protocol	using	additional	software	checking.
	

With	a	standard	RS232	interface	when	DTR	is	–5V,	PC4	will	be	+3.3V	(which	will	stop
the	output	even	if	the	UART	transmit	FIFO	is	not	full).	Thus,	when	DTR	is	–5V,
transmission	is	temporarily	suspended.	When	DTR	is	+5V,	PC4	will	be	0V	and
transmission	can	proceed	normally.	In	this	design,	edge-triggered	input	on	PC4	will	be
used	to	detect	changes	in	the	DTR	signal.	

	

The	DTR	signal	from	the	printer	provides	feedback	information	about	the	printer	status.
When	DTR	is	‑5V	(PC4	is	high),	the	printer	is	not	ready	to	accept	more	data.	In	this	case,
our	computer	will	postpone	transmitting	more	frames.	When	DTR	is	+5V	(PC4is	low),	the
printer	is	ready	to	accept	more	data.	At	this	point,	the	computer	will	resume	transmission.
The Printer_OutChar(data) 	in	Program	7.1	is	called	by	the	main	program	to	print.

Figure	7.8.	Hardware	interface	implementing	a	RS232	simplex	channel
with	DTR	handshaking.
	

void	Printer_Init2(void){

		SYSCTL_RCGCUART_R	|=	0x01;								//	activate	UART0

		SYSCTL_RCGCGPIO_R	|=	0x05;								//	activate	ports	A,	C

		TxFifo_Init();																				//	initialize	empty	FIFOs

		GPIO_PORTC_DIR_R	&=	~0x10;								//	make	PC4	in

		GPIO_PORTC_DEN_R	|=	0x10;									//	enable	digital	I/O	on	PC4

		GPIO_PORTC_IS_R	&=	~0x10;									//	PC4	is	edge-sensitive

		GPIO_PORTC_IBE_R	|=	0x10;								//	PC4	is	both	edges

		GPIO_PORTC_ICR_R	=	0x10;									//	clear	flag4

		GPIO_PORTC_IM_R	|=	0x10;										//	enable	interrupt	on	PC4

		UART0_CTL_R	&=	~UART_CTL_UARTEN;		//	disable	UART

		UART0_IBRD_R	=	43;	//	IBRD=int(80000000/(16*115,200))	=	int(43.40278)

		UART0_FBRD_R	=	26;	//	FBRD	=	round(0.40278	*	64)	=	26

		UART0_LCRH_R	=	0x0070;					//	8-bit	word	length,	enable	FIFO

		UART0_IFLS_R	&=	~0x07;										//	clear	TX	interrupt	FIFO	level	field

		UART0_IFLS_R	+=	UART_IFLS_TX1_8;	//	interrupt	for	TX	FIFO	<=	1/8	full

		UART0_IM_R	|=	UART_IM_TXIM;						//	enable	TX	FIFO	interrupt

		UART0_CTL_R	|=	UART_CTL_UARTEN;		//	enable	UART

		GPIO_PORTA_PCTL_R	=	(GPIO_PORTA_PCTL_R&0xFFFFFF00)+0x00000011;
//	UART

		GPIO_PORTA_AMSEL_R	&=	~0x03;				//	disable	analog	on	PA1-0

		GPIO_PORTA_AFSEL_R	|=	0x03;						//	enable	alt	funct	on	PA1-0

		GPIO_PORTA_DEN_R	|=	0x03;							//	enable	digital	I/O	on	PA1-0

		NVIC_PRI0_R	=	(NVIC_PRI0_R&0xFF00FFFF)|0x00400000;	//	priority	2

		NVIC_PRI1_R	=	(NVIC_PRI1_R&0xFFFF00FF)|0x00004000;	//	priority	2

		NVIC_EN0_R	=	(NVIC_EN0_INT2|NVIC_EN0_INT5);

		EnableInterrupts();

}

//	check	the	status	of	the	printer	on	PC4

//	high	means	not	ready

void	checkStatus(void){

		if(GPIO_PORTC_DATA_R&0x10)										//	PC4=1	if	DTR	is	-5	to	-15

UART0_CTL_R	&=	~UART_CTL_TXE;				//	busy,	so	disable	transmitter

		else

UART0_CTL_R	|=	UART_CTL_TXE;						//	not	busy,	so	enable	transmitter

}

//	copy	from	software	TX	FIFO	to	hardware	TX	FIFO

//	stop	when	software	TX	FIFO	is	empty	or	hardware	TX	FIFO	is	full

void	copySoftwareToHardware(void){

		char	letter;

		while(((UART0_FR_R&UART_FR_TXFF)	==	0)	&&	(TxFifo_Size()	>	0)){

TxFifo_Get(&letter);

UART0_DR_R	=	letter;

		}

}

//	output	ASCII	character	to	Printer

//	spin	if	TxFifo	is	full

void	Printer_OutChar(char	data){

		while(TxFifo_Put(data)	==	FIFOFAIL){};

		checkStatus();

		UART0_IM_R	&=	~UART_IM_TXIM;										//	disable	TX	FIFO	interrupt

		copySoftwareToHardware();

		UART0_IM_R	|=	UART_IM_TXIM;											//	enable	TX	FIFO	interrupt

}

//	interrupt	when	hardware	TX	FIFO	goes	from	3	to	2	or	less	items

void	UART0_Handler(void){

		if(UART0_RIS_R&UART_RIS_TXRIS){							//	hardware	TX	FIFO	<=	2	items

UART0_ICR_R	=	UART_ICR_TXIC;								//	acknowledge	TX	FIFO

//	copy	from	software	TX	FIFO	to	hardware	TX	FIFO

copySoftwareToHardware();

if(TxFifo_Size()	==	0){													//	software	TX	FIFO	is	empty

UART0_IM_R	&=	~UART_IM_TXIM;						//	disable	TX	FIFO	interrupt

}

		}

}

//	interrupt	on	any	change	of	the	status	of	the	printer	on	PC4

void	GPIOPortC_Handler(void){

		GPIO_PORTC_ICR_R	=	0x10;														//	acknowledge	flag4

		checkStatus();

}

Program	7.1.	Software	implementation	of	a	printer	interface	with	DTR
synchronization	(SyncPrinter_xxx.zip).

	

7.3.	RS422/USB/RS423/RS485	Balanced
Differential	Lines
In	order	to	increase	the	baud	rate	and	maximum	distance,	the	balanced	differential	line
protocols	were	introduced.	The	RS422	signal	is	encoded	in	a	differential	signal,	A-B.	
There	are	many	RS422	interface	chips,	for	example,	SP301	or	MAX13433.	A	full	duplex
RS422	channel	is	implemented	in	Figure	7.9	with	MAX13433	drivers.	Often	terminating
resistors	are	placed	at	the	ends	of	long	cables.	E.g.,	we	can	place	a	100 � 	resistor	at
across	the	A’	B’	inputs.

Figure	7.9.	RS422	serial	channel.
Because	each	signal	requires	2	wires,	5	wires	(ground	included)	are	needed	to	implement	a
full	duplex	channel.	With	RS232	one	typically	connects	one	receiver	to	one	transmitter.
But	with	RS422,	up	to	10	receivers	can	be	connected	to	one	transmitter.	Table	7.3
summarizes	four	common	EIA	standards.

	

Specification RS232D RS423A RS422 RS485

Mode	of	operation single-
ended

single-
ended

differential differential

Drivers	on	one	line 1 1 1 32

Receivers	on	one
line

1 10 10 32

Maximum	distance
(feet)

50 4,000 4,000 4,000

Maximum	data	rate 20	kb/s 100	kb/s 10	Mb/s 10	Mb/s

Maximum	driver
output

±25	V ±6	V -0.25	to
+6V

-7	to	+12V

±5	V ±3.6	V ±2	V ±1.5	V

Driver	Output
(loaded)

Driver	Output
(unloaded)

±15	V ±6	V ±5	V ±5	V

Driver	Load
Impedance

3kΩ	to	7kΩ 450Ω	min 100Ω 54Ω

Receiver	input
voltage

±15	V ±12	V ±7	V -7	to	+12
V

Receiver	input
sensitivity

±3	V ±200	mV ±200	mV ±200	mV

Receiver	input
resistance

3kΩ	to	7kΩ 4kΩ	min 4kΩ	min 12kΩ	min

Table	7.3.	Specifications	for	the	RS232	RS423A	RS422	and	RS485	protocols.

	

The	maximum	baud	rate	at	40	feet	is	10	Mbps.	At	4000	feet,	the	baud	rate	can	only	be	as
high	as	100	Kbps.	Table	7.4	shows	two	implementations	of	the	RS422	protocol.

	

DB25
Pin

EIA-
530
Name

DB37
Pin

RS449

Name

Signal Description DTE DCE

1	 	 1	 	 FG Frame
Ground/Shield

	 	

2 BA	(A) 4 SD	(A) TxD Transmit	Data out in

14 BA	(B) 22 SD	(B) TxD Transmit	Data out in

3 BB	(A) 6 RD	(A) RxD Receive	Data in out

16 BB	(B) 24 RD	(B) RxD Receive	Data in out

4 CA	(A) 7 RS	(A) RTS Request	to	Send out in

19 CA	(B) 25 RS	(B) RTS Request	to	Send out in

5 CB	(A) 9 CS	(A) CTS Clear	to	Send in out

13 CB	(B) 27 CS	(B) CTS Clear	to	Send in out

6 CC	(A) 11 DM
(A)

DSR Data	Set	Ready in out

22 CC	(B) 29 DM
(B)

DSR Data	Set	Ready in out

20 CD
(A)

12 TR	(A) DTR Data	Terminal
Rdy

out in

23 CD	(B) 30 TR	(B) DTR Data	Terminal
Rdy

out in

7 AB 19 SG SG Signal	Ground 	 	

8 CF	(A) 13 RR	(A) DCD Data	Carrier
Detect

in out

10 CF	(B) 31 RR	(B) DCD Data	Carrier
Detect

in out

15 DB
(A)

5 ST	(A) TxC Transmit	Clk
(DCE)

in out

12 DB	(B) 23 ST	(B) TxC Transmit	Clk
(DCE)

in out

17 DD
(A)

8 RT	(A) RxC Receive	Clock in out

9 DD
(B)

26 RT	(B) RxC Receive	Clock in out

18 LL 10 LL 	 Local	Loopback out in

21 RL 14 RL RL Remote
Loopback

out in

24 DA
(A)

17 TT	(A) TCK Speed	Selector
DCE

out in

11 DA	(B) 35 TT	(B) TCK Speed	Selector
DCE

out in

25 TM 18 TM TM Test	mode in out

Table	7.4.	Pin	assignments	for	the	EIA-530	and	RS449	protocols.

	

In	this	section	we	will	introduce	the	electrical	specifications	of	the	Universal	Serial	Bus
(USB).	Figure	7.10	shows	the	two	types	of	USB	connectors.	A	single	host	computer
controls	the	USB,	and	there	can	only	be	one	host	per	bus.	The	host	controls	the	scheduling
of	all	transactions	using	a	token-based	protocol.	The	USB	architecture	is	a	tiered	star
topology,	similar	to	10BaseT	Ethernet.	The	host	is	at	the	center	of	the	star,	devices	are
attached	to	the	host.	The	number	of	nodes	on	the	bus	can	be	extended	using	USB	hubs.	Up
to	127	devices	can	be	connected	to	any	one	USB	bus	at	any	one	given	time.	USB
plug’n’plug	is	implemented	with	dynamically	loadable	and	unloadable	drivers.	When	the
user	plugs	the	device	into	the	USB	bus,	the	host	will	detect	the	connection,	interact	with
the	newly	inserted	device,	and	load	the	appropriate	driver.	The	USB	device	can	be	used
without	explicitly	installing	drivers	or	rebooting.	When	the	device	is	unplugged,	the	host
will	automatically	unload	its	driver.

	

Figure	7.10.	USB	connectors.
	

USB	uses	four	shielded	wires,	+5V	power,	GND,	and	a	twisted	pair	differential	data
signals,	as	listed	in	Table	7.5.	It	uses	a	NRZI	(Non	Return	to	Zero	Invert)	encoding
scheme	to	send	data	with	a	sync	field	to	synchronize	the	host	and	receiver	clocks.	The	D+
signal	has	a	15	k � pull-down	resistor	to	ground,	and	the	D-	signal	has	a	1.5	k � 	pull-up
resistor	to	+3.6V.	Like	the	other	protocols	in	this	section,	the	data	is	encoded	as	a
differential	signal	between	D+	and	D-.	In	general,	a	differential	‘1’	exists	when	D+	is
greater	than	D-.	More	specifically,	a	differential	‘1’	is	transmitted	by	pulling	D+	over	2.8V
and	D-	under	0.3V.	The	transmitter	creates	a	differential	‘0’	by	making	D-	greater	than
2.8V	and	D+	less	than	0.3V.	The	receiver	recognizes	the	differential	‘1’	when	D+	is	0.2V
greater	than	D-.	The	receiver	will	consider	the	input	as	a	differential	‘0’	when	D+	0.2V
less	than	D-.	The	polarity	of	the	signal	is	inverted	depending	on	the	speed	of	the	bus.
Therefore	the	terms	‘J’	and	‘K’	states	are	used	in	signifying	the	logic	levels.	At	low	speed,
a	‘J’	state	is	a	differential	‘0’.	At	high	speed,	a	‘J’	state	is	a	differential	‘1’.	USB	interfaces
employ	both	differential	and	single	ended	outputs.	Certain	bus	states	are	indicated	by
single	ended	signals	on	D+,	D-	or	both.	For	example,	a	single	ended	zero	(SE0)	signifies
device	reset	when	held	for	more	than	10mS.	More	specifically,	SE0	is	generated	by
holding	both	D-	and	D+	low	(<	0.3V).	USB	can	operate	at	three	speeds.	The	low
speed/full	speed	bus	has	a	characteristic	impedance	of	90 � .	High	Speed	mode	uses	a
constant	current	protocol	to	reduce	noise.

High	speed	data	is	clocked	at	480Mb/s

Full	speed	data	is	clocked	at	12Mb/s	

Low	speed	data	is	clocked	at	1.5Mb/s
	

Pin
Number

Color Function 	 Pin
Number

Function

1 Red VBUS	(5
V)

	 1 VBUS	(5
V)

2 White D- 	 2 D-

3 Green D+ 	 3 D+

4 Black Ground 	 4 ID

	 	 	 	 5 Ground

Table	7.5.	USB	signals.

7.3.1.	RS422	Output	Specifications
Table	7.6	shows	the	output	voltage	levels	for	RS422.

	 Output
Voltage

True	or
Mark

-6	≤	A-B	≤
-2V

Transition -2	≤	A-B	≤
+2V

False	or
Space

+2	≤	A-B	≤
+6V

Table	7.6.	Output	voltage	levels	for	the	RS422	differential	line	protocol.

	

A	key	RS422	specification	is	that	the	output	impedance	of	the	A	and	B	outputs	should	be
balanced.	If	the	input/output	impedances	are	balanced	then	added	noise	in	the	cable
creates	a	common	mode	voltage,	and	the	common	mode	rejection	of	the	input	will
eliminate	it.	

RAout	=	RBout			≤	100
	

The	time	in	the	transition	region	must	be	less	than

10%	for	baud	rates	above	5Mbps,	and

20ns	for	baud	rates	below	5Mbps

7.3.2.	RS422	Input	Specifications
Let	A’	and	B’	be	the	voltages	at	the	input.	Table	7.7	defines	the	input	encoding.

	 Input	Voltage

True	or	Mark A’-B’	≤	-0.2V

Transition -0.2V	≤		A’-B’	≤	+0.2V

False	or	Space +0.2V	≤	A’-B’

Table	7.7.	Input	voltage	thresholds	for	the	RS422	differential	line	protocol.

	

As	mentioned	earlier,	to	provide	noise	immunity	the	common	mode	input	impedances
must	also	be	balanced

4	kΩ	≤	RA’in	=	RB’in

The	balanced	nature	of	the	interface	produces	good	noise	immunity.	The	differential	input
impedance	is	specified	by	Figure	7.11.	Any	point	within	the	shaded	region	is	allowed.

Figure	7.11.	RS422	input	current	versus	input	voltage	relationship.
Even	though	the	ground	connection	in	the	RS422	cable	is	optional,	it	is	assumed	the
grounds	are	connected	somewhere.	In	particular,	the	interface	will	operate	with	a	common
mode	voltage	up	to	7	volts.

|A’+B’|/2	≤	+7V													

	

Checkpoint	7.5:	What	is	the	effect	of	capacitance	on	a	serial	channel?

	

7.3.3.	RS485	Half	Duplex	channel
RS485	can	be	either	half	duplex	or	full	duplex.	The	RS485	protocol,	illustrated	in	Figure
7.12,	implements	a	half	duplex	channel	using	differential	voltage	signals.	The	Sipex
SP483	or	Maxim	MAX13431	implements	the	half	duplex	RS485	channel.	One	of	the
advantages	of	RS485	is	that	up	to	32	devices	can	be	connected	onto	a	single	serial	bus.
When	more	than	one	transmitter	can	driver	the	serial	bus,	the	protocol	is	also	called
“multi-drop”.	Normally,	we	make	both	DE	and	RE	active	on	all	devices.	To	transmit	the
computer	sends	the	serial	frame	from	the	TxD	output	of	the	UART	port.	The	transmitted
frame	is	echoed	into	the	serial	receiver	of	the	SCI	RxD	line.	To	receive	a	frame	the
computer	accepts	a	serial	frame	on	the	RxD	line	in	the	usual	manner.	When	careful	when
selecting	the	resistances	on	a	half	duplex	network	so	that	the	total	driver	impedance	is
about	54Ω.

	

Figure	7.12.	A	half	duplex	serial	channel	is	implemented	with	RS485
logic.
	

RS422,	RS485,	Ethernet,	and	CAN	are	high-speed	communication	channels.	This	means
the	bandwidth	and	slew	rate	on	the	signals	are	higher	than	RS232.	There	is	a
correspondence	between	rise	time	()	of	a	digital	signal	and	equivalent	sinusoidal
frequency	(f).	The	derivative	of	A∙sin(2 � ft)	is	2 � f∙A∙cos(2 � ft).	The	maximum	slew
rate	of	this	sinusoid	is	2 � f∙A.	Approximating	the	slew	rate	as	A/ ,	we	get	a
correspondence	between	fand

f=	1/
	

For	example,	if	the	rise	time	is	5	ns,	the	equivalent	frequency	is	200	MHz.	Notice	that	this
equivalent	frequency	is	independent	of	baud	rate.	So	even	at	1000	bits/sec,	if	the	rise	time
is	5	ns,	then	the	signal	has	a	strong	200	MHz	frequency	component!	To	deal	with	this
issue,	the	RS232	protocol	limits	the	slew	rate	to	a	maximum	of	30V/ �s.	This	means	it
will	take	about	1 � s	for	a	signal	to	rise	from	-12	to	+12	V.	Consequently,	RS232	signals

have	frequency	components	less	than	1	MHz.	However,	to	transmit	faster	than	RS232,	the
protocol	must	have	faster	rise	times.	Electrical	signals	travel	at	about	0.6	to	0.9	times	the
speed	of	light.	This	velocity	factor	(VF)	is	a	property	of	the	cable.	For	example,	VF	for
RG-6/U	coax	cable	is	0.75,	whereas	VF	is	only	0.66	for	RG-58/U	coax	cable.	Using	the
slower	0.66	estimate,	the	speed	is	v	=	2∙108m/s.	According	to	wave	theory,	the	wavelength
is 	=	v/f.	Estimating	the	frequency	from	rise	time,	we	get

λ	=	v	*	τ
	

In	our	example,	a	rise	time	of	5	ns	is	equivalent	to	a	wavelength	of	about	1	m.	As	a	rule	of
thumb,	we	will	consider	the	channel	as	a	transmission	lineif	the	length	of	the	wire	is
greater	than /4.	Another	requirement	is	for	the	diameter	of	the	wire	to	be	much	smaller
than	the	wavelength.	In	a	transmission	line,	the	signals	travel	down	the	wires	as	waves
according	to	the	wave	equation.	Analysis	of	the	wave	equation	is	outside	the	scope	of	this
book.	However,	you	need	to	know	that	when	a	wave	meets	a	change	in	impedance,	some
of	the	energy	will	transmit	(a	good	thing)	and	some	of	the	energy	will	reflect	(a	bad	thing).
Reflections	are	essentially	noise	on	the	signal,	and	if	large	enough,	they	will	cause	bit
errors	in	transmission.	We	can	reduce	the	change	in	impedance	by	placing	terminating
resistors	on	both	ends	of	a	long	high-speed	cable,	as	shown	in	Figure	7.12.	These	resistors
reduce	reflections;	hence	they	improve	signal	to	noise	ratio.

7.4.	Logic	Level	Conversion
There	are	many	3.3-V	devices	we	wish	to	interface	to	a	5-V	microcontroller,	and	there	are
many	5-V	devices	we	wish	to	interface	to	a	3.3-V	microcontroller.	This	section	will	study
various	methods	to	convert	one	logic	level	to	another.	We	begin	with	a	5-V	output
interfaced	to	a	3.3-V	input.	Many	3.3-V	inputs	are	5-V	tolerant,	which	means	no	special
interface	circuits	are	required.	One	of	the	simplest	ways	to	convert	5-V	logic	into	3.3-V
logic	is	to	use	a	resistor	divider	as	shown	in	Figure	7.13.	A	Schottky	diode	can	also	be
used	to	convert	5	V	into	3.3	V,	and	convert	a	0.4	V	into	a	0.5	V.	The	Schottky	diode	must
be	fast	and	have	a	low	voltage	drop.	The	7407	is	another	way	to	convert	between	logic
families.	When	the	7407	input	is	5	V,	its	output	floats,	and	the	3.3-V	pull-up	makes	a	3.3-
V	signal.	When	the	7407	input	is	low,	its	output	is	low.

Many	5	V	inputs	are	3.3	V	tolerant,	which	means	no	special	interface	circuits	are	required.
The	7407	can	also	be	used	to	interface	3.3-V	logic	into	5-V	logic.	The	VIH	of	the	7407	is	2
V,	so	when	the	7407	input	is	3.3	V,	its	output	floats,	and	the	5-V	pull-up	makes	a	5-V
signal.	When	the	7407	input	is	low,	its	output	is	low.	A	MOSFET,	like	the	BSS138,	is	a
popular	method	to	convert	logic	levels	because	it	is	fast	and	efficient.	SparkFun	makes	a
breakout	board	with	resistor-divider	and	BSS138	circuits	(www.sparkfun.com	BOB-
0874).

We	can	produce	the	same	open	collector	behavior	of	any	I/O	port	that	has	a	direction
register.	We	initialize	the	port	by	writing	a	zero	to	the	data	port.	On	subsequent	accesses	to
the	open	collector	port,	we	write	the	complement	to	the	direction	register.	I.e.,	if	we	want
the	I/O	port	bit	to	drive	low,	we	set	the	direction	register	bit	to	1,	and	if	we	want	the	I/O
port	bit	to	float	(open	collector),	we	set	the	direction	register	bit	to	0.

It	is	good	design	practice	to	read	the	errata	for	the	microcontrollers	in	your	system.	For
example,	the	LM3S811	errata	states,	“GPIO	buffers	are	not	5-V	tolerant	when	used	in
open-drain	mode.	Pulling	up	the	open-drain	pin	above	4V	results	in	high	current	draw.”
Furthermore,	“The	pins	associated	with	GPIO	signals	PB6,	PC5,	and	PC6	are	not	5-V
tolerant.	Applying	a	voltage	to	any	of	these	pins	that	is	greater	than	VDD	(3.3V)	will	have
undetermined	results.”	These	particular	mistakes	apply	specifically	to	silicon	version	C0
for	the	LM3S811.	However,	in	general	one	must	read	the	errata	for	the	microcontroller
you	are	using.

Figure	7.13.	Circuits	to	interface	between	5-V	logic	and	3.3-V	logic.

7.5.	Synchronous	Transmission	and	Receiving
using	the	SSI
SSI	allows	microcontrollers	to	communicate	synchronously	with	peripheral	devices	and
other	microcontrollers.	The	SSI	system	can	operate	as	a	master	or	as	a	slave.	The	channel
can	have	one	master	and	one	slave,	or	it	can	have	one	master	and	multiple	slaves.	With
multiple	slaves,	the	configuration	can	be	a	star	(centralized	master	connected	to	each
slave),	or	a	ring	(each	node	has	one	receiver	and	one	transmitter,	where	the	nodes	are
connected	in	a	circle.)	The	master	initiates	all	data	communication.

Stellaris	and	Tiva	microcontrollers	have	0	to	4	Synchronous	Serial	Interface	or	SSI
modules.	Another	name	for	this	protocol	is	Serial	Peripheral	Interface	or	SPI.	The
fundamental	difference	between	a	UART,	which	implements	an	asynchronous	protocol,
and	a	SSI,	which	implements	a	synchronous	protocol,	is	the	manner	in	which	the	clock	is
implemented.	Two	devices	communicating	with	asynchronous	serial	interfaces	(UART)
operate	at	the	same	frequency	(baud	rate)	but	have	two	separate	clocks.	With	a	UART
protocol,	the	clock	signal	is	not	included	in	the	interface	cable	between	devices.	Two
UART	devices	can	communicate	with	each	other	as	long	as	the	two	clocks	have
frequencies	within	±5%	of	each	other.	Two	devices	communicating	with	synchronous
serial	interfaces	(SSI)	operate	from	the	same	clock	(synchronized).	With	a	SSI	protocol,
the	clock	signal	is	included	in	the	interface	cable	between	devices.	Typically,	the	master
device	creates	the	clock,	and	the	slave	device(s)	uses	the	clock	to	latch	the	data	in	and
send	data	out.

The	SSI	protocol	includes	four	I/O	lines.	The	slave	select	SSI0Fss	is	an	optional	negative
logic	control	signal	from	master	to	slave	signal	signifying	the	channel	is	active.	The
second	line,	SCK,	is	a	50%	duty	cycle	clock	generated	by	the	master.	The	SSI0Tx	(master
out	slave	in,	MOSI)	is	a	data	line	driven	by	the	master	and	received	by	the	slave.	The
SSI0Rx	(master	in	slave	out,	MISO)	is	a	data	line	driven	by	the	slave	and	received	by	the
master.	In	order	to	work	properly,	the	transmitting	device	uses	one	edge	of	the	clock	to
change	its	output,	and	the	receiving	device	uses	the	other	edge	to	accept	the	data.	Figure
7.14	shows	the	I/O	port	locations	of	the	synchronous	serial	ports	for	the	three
microcontrollers	discussed	in	this	book.	Tables	2.7	and	2.8	describe	how	to	attach	I/O	pins
to	the	SSI	modules	on	the	TM4C123/TM4C1294.

Figure	7.14.	Synchronous	serial	port	pins	on	four	LM3S/TM4C
microcontrollers.
On	the	LM3S/TM4C	the	shift	register	can	be	configured	from	4	to	16	bits.	The	shift
register	in	the	master	and	the	shift	register	in	the	slave	are	linked	to	form	a	distributed
register.	Figure	7.15	illustrates	communication	between	master	and	slave.	Typically,	the
microcontroller	and	the	I/O	device	slave	are	so	physically	close	we	do	not	use	interface
logic.

The	SSI	on	the	LM3S/TM4Cemploys	two	hardware	FIFOs.	Both	FIFOs	are	8	elements
deep	and	4	to	16	bits	wide,	depending	on	the	selected	data	width.	When	performing	I/O
the	software	puts	into	the	transmit	FIFO	by	writing	to	the SSI0_DR_R register	and	gets
from	the	receive	FIFO	by	reading	from	the SSI0_DR_R 	register.

If	there	is	data	in	the	transmit	FIFO,	the	SSI	module	will	transmit	it.	With	SSI	it	transmits
and	receives	bits	at	the	same	time.	When	a	data	transfer	operation	is	performed,	this
distributed	8-	to	32-bit	register	is	serially	shifted	4	to	16	bit	positions	by	the	SCK	clock
from	the	master	so	the	data	is	effectively	exchanged	between	the	master	and	the	slave.
Data	in	the	master	shift	register	are	transmitted	to	the	slave.		Data	in	the	slave	shift	register
are	transmitted	to	the	master.	Typically,	the	microcontroller	is	master	and	the	I/O	module
is	the	slave,	but	one	can	operate	the	microcontroller	in	slave	mode.	When	designing	with
SSI,	you	will	need	to	consult	the	data	sheets	for	your	specific	microcontroller.

Figure	7.15.	A	synchronous	serial	interface	between	a	microcontroller	and
an	I/O	device.
Table	7.8	lists	the	SSI0	registers	on	the	LM3S/TM4C.	The	LM3S/TM4C	can	operate	in
slave	mode,	but	we	will	focus	on	master	mode.	The	PCTL	bits	are	defined	in	Tables	4.3
and	4.4.

Address 31-6 3 2 1 0 Name

$400F.E61C 	 SSI3 SSI2 SSI1 SSI0 SYSCTL_RCGCSSI_R

	 	 	 	 	 	 	 	 	 	

	 31-16 15-8 7 6 5-4 3-0 	

$4000.8000 	 SCR SPH SPO FRF DSS SSI0_CR0_R

	 	 	 	 	 	 	 	 	 	

	 31-16 15-0 	

$4000.8008 	 Data SSI0_DR_R

	 	 	 	 	 	 	 	 	 	

	 7 6 5 4 3 2 1 0 	

$4000.8004 	 	 	 	 SOD MS SSE LBM SSI0_CR1_R

$4000.800C 	 	 	 BSY RFF RNE TNF TFE SSI0_SR_R

$4000.8010 CPSDVSR SSI0_CPSR_R

$4000.8014 	 	 	 	 TXIM RXIM RTIM RORIM SSI0_IM_R

$4000.8018 	 	 	 	 TXRIS RXRIS RTRIS RORRIS SSI0_RIS_R

$4000.801C 	 	 	 	 TXMIS RXMIS RTMIS RORMIS SSI0_MIS_R

$4000.8020 	 	 	 	 	 	 RTIC RORIC SSI0_ICR_R

$4005.8420 SEL SEL SEL SEL SEL SEL SEL SEL GPIO_PORTA_AFSEL_R

$4005.841C DEN DEN DEN DEN DEN DEN DEN DEN GPIO_PORTA_DEN_R

$4005.8400 DIR DIR DIR DIR DIR DIR DIR DIR GPIO_PORTA_DIR_R

$400F.E608 GPIOH GPIOG GPIOF GPIOE GPIOD GPIOC GPIOB GPIOA SYSCTL_RCGCGPIO_R

Table	7.8.	The	LM3S/TM4C	SSI0	registers.	Each	register	is	32	bits	wide.	Bits	31	–	8
are	zero.

	

The	SSI	clock	frequency	is	established	by	the	8-bit	field	SCRfield	in	the SSI0_CR0_R
register	and	the	8-bit	field	CPSDVSRfield	in	the SSI0_CPSR_R 	register.	SCR	can	be
any	8‑bit	value	from	0	to	255.	CPSDVSR	must	be	an	even	number	from	2	to	254.	Let	fBUS
be	the	frequency	of	the	bus	clock.	The	frequency	of	the	SSI	is

fSSI	=	fBUS	/	(CPSDVSR	*	(1	+	SCR))

Common	control	features	for	the	SSI	module	include:

Baud	rate	control	register,	used	to	select	the	transmission	rate

Data	size	4	to	16	bits,	set	4-bit	DSS	field	equal	to	size-1

Mode	bits	in	the	control	register	to	select

Master	versus	slave

Freescale	mode	with	clock	polarity	and	clock	phase

TI	synchronous	serial	mode

Microwire	mode

Interrupt	arm	bit

Ability	to	make	the	outputs	open	drain	(open	collector)

	
Common	status	bits	for	the	SPI	module	include:

BSY,	SSI	is	currently	transmitting	and/or	receiving	a	frame,

or	the	transmit	FIFO	is	not	empty

RFF,	SSI	receive	FIFO	is	full

RNE,	SSI	receive	FIFO	is	not	empty

TNF,	SSI	transmit	FIFO	is	not	full

TFE,	SSI	transmit	FIFO	is	empty
	

The	key	to	proper	transmission	is	to	select	one	edge	of	the	clock	(shown	as	“T”	in	Figure
7.16)	to	be	used	by	the	transmitter	to	change	the	output,	and	use	the	other	edge	(shown	as
“R”)	to	latch	the	data	in	the	receiver.	In	this	way	data	is	latched	during	the	time	when	it	is
stable.	Data	available	is	the	time	when	the	output	data	is	actually	valid,	and	data	required
is	the	time	when	the	input	data	must	be	valid.

During	transmission,	the	output	data	will	be	valid	from	S5max	after	the	clock	edge	until
S5min	after	the	next	clock	edge.	The	maximum	S5	time	is	1	system	bus	period	(e.g.,	20ns)
and	the	minimum	is	0.	When	receiving	the	setup	time	(S8)	is	1	system	bus	period	and	the
hold	time	(S9)	is	2	system	bus	periods.	In	order	for	the	communication	to	occur	without
error,	the	data	available	from	the	device	that	is	driving	the	data	line	must	overlap	(start
before	and	end	after)	the	data	required	by	the	other	device	that	is	receiving	the	data.	It	is
this	overlap	that	will	determine	the	maximum	frequency	at	which	synchronous	serial
communication	can	occur.	The	concepts	of	data	available	and	data	required	were
presented	previously	in	Section	4.2.

Figure	7.16.	Synchronous	serial	timing	showing	the	data	available
interval	overlaps	the	data	required	interval.
Checkpoint	7.6:	What	are	the	definitions	of	setup	time	and	hold	time?

	

Observation:	Because	the	clocks	are	shared,	if	you	change	the	bus	clock	frequency,	the
transfer	rate	will	change	in	both	master	and	slave.		

The	Freescale	SPI	timing	is	shown	in	Figure	7.17	(FRF=00).

Figure	7.17.	Synchronous	serial	Freescale	single	transfer	mode	(n	is	4	to
16	bits).
The	SPI	transmits	data	at	the	same	time	as	it	receives	input.	In	the	Freescale	modes,	the
SPI	changes	its	output	on	the	opposite	edge	of	the	clock	as	it	uses	to	shift	data	in.	There
are	three	mode	control	bits	(MS,	SPO,	SPH)	that	affect	the	transmission	protocol.	If	the
device	is	a	master	(MS=0)	it	generates	the	SCLK,	and	data	is	output	on	the	SSI0Tx	pin,
and	input	on	the	SSI0Rx	pin.	The	SPO	control	bit	specifies	the	polarity	of	the	SCLK.	In
particular,	the	SPO	bit	specifies	the	logic	level	of	the	clock	when	data	is	not	being
transferred.	The	SPH	bit	affects	the	timing	of	the	first	bit	transferred	and	received.	If	SPH
is	0,	then	the	device	will	shift	data	in	on	the	first	(and	3rd,	5th,	7th,	…	etc.)	clock	edge.	If
SPH	is	1,	then	the	device	will	shift	data	in	on	the	second	(and	4th,	6th,	8th,	…	etc.)	clock
edge.	The	data	is	transmitted	MSB	first.

The	TI	synchronous	serial	timing	is	shown	in	Figure	7.18	(FRF=01).	There	is	a	third
protocol	called	Microwire	(FRF=10).	Refer	to	the	data	sheets	for	details	of	these	modes.

Figure	7.18.	Synchronous	serial	TI	single	transfer	mode.
	

Example	7.2.	Interface	the	Maxim	MAX5353	digital	to	analog	converter.

Solution:	This	first	example	shows	a	synchronous	serial	interface	between	the
microcontroller	and	a	Maxim	MAX5353	12-bit	digital	to	analog	converter	as	drawn	in
Figure	7.19.	A	digital	to	analog	converter	(DAC)	accepts	a	digital	input	(in	our	case	a
number	between	0	and	4095)	and	creates	an	analog	output	(in	our	case	a	voltage	between
0	and	VREF*GAIN.)	Detailed	discussion	of	converters	will	be	presented	later	in	Chapter	8.
Here	in	this	section	we	will	focus	on	the	digital	hardware	and	software	aspects	of	the
serial	interface.

Figure	7.19.	A	12-bit	DAC	interfaced	to	the	SSI	port.
	

Table	7.9	and	Figure	7.20	describe	the	protocol.	The	first	3	bits	sent	will	be	zero,	then	the
12	data	bits	that	specify	the	analog	output,	and	then	one	more	zero	will	be	sent.	The
SSI0Fss	control	signal	will	be	low	during	the	16-bit	transmission.	As	with	any	SPI
interface,	there	are	basic	interfacing	issues	to	consider.

Word	size.	In	this	case	we	need	to	transmit	16	bits	to	the	DAC.	The	MAX5353	data	sheet
specifies	that	the	first	three	bits	are	command	codes,	the	next	12	bits	are	the	DAC	output
(MSB	transmitted	first),	and	the	last	bit	is	zero.	Bit	order.	The	MAX5353	requires	the
most	significant	bits	first.

Clock	phase,	clock	polarity.	There	are	two	issues	to	resolve.	Since	the	MAX5353	samples
its	serial	input	data	on	the	rising	edge	of	the	clock,	the	SSI	must	change	the	data	on	the
falling	edge.	SPO=SPH=0	(Figure	7.17)	and	SPO=SPH=1	both	satisfy	this	requirement.
The	second	issue	is	which	edge	comes	first	the	rise	or	the	fall.	In	this	interface	it	probably
doesn’t	matter.

Bandwidth.	We	look	at	the	timing	specifications	of	the	MAX5353.	The	minimum	clock
low	width	of	40	ns	means	the	shortest	SSI	period	we	can	use	is	100	ns.	The	commands
are:

	

C2 C1 C0 D11	:	D0

MSB		LSB

S0 Description

X 0 0 12	bits	of	data 0 Load	input	register;	DAC	register
immediately	updated.

X 0 1 12	bits	of	data 0 Load	input	register;	DAC	register
unchanged.

X 1 0 XXXXXXXXXXXX X Update	DAC	register	from	input	register.

1 1 1 XXXXXXXXXXXX X Shutdown

0 1 1 XXXXXXXXXXXX X No	operation

Table	7.9.	MAX5353	protocols
	

	

	

Figure	7.20.	MAX5353	DAC	serial	timing.
	

The	ritual	initializes	the	Freescale	SPI	master	mode,	16-bit	data,	and	8	MHz	bandwidth
(Program	7.2).	To	change	the	DAC	output,	one	16-bit	transmission	issent	(DAC_Out).
The	data	returned	in	this	case	is	not	significant	because	the	SSI0Rx	pin	in	Figure	7.19	is
left	not	connected.	In	this	example,	the	bus	clock	is	16	MHz,	and	the	SSI	clock	will	be	8
MHz.
	

void	DAC_Init(uint16_t	data){	

		SYSCTL_RCGCSSI_R	|=	0x01;							//	activate	SSI0

		SYSCTL_RCGCGPIO_R	|=	0x01;						//	activate	port	A

		while((SYSCTL_PRGPIO_R&0x01)	==	0){};//	ready?

		GPIO_PORTA_AFSEL_R	|=	0x2C;					//	enable	alt	funct	on	PA2,3,5

		GPIO_PORTA_DEN_R	|=	0x2C;							//	configure	PA2,3,5	as	SSI

		GPIO_PORTA_PCTL_R	=	(GPIO_PORTA_PCTL_R&0xFF0F00FF)+0x00202200;

		GPIO_PORTA_AMSEL_R	=	0;									//	disable	analog	functionality	on	PA

		SSI0_CR1_R	=	0x00000000;								//	disable	SSI,	master	mode

		SSI0_CPSR_R	=	0x02;													//	8	MHz	SSIClk

		SSI0_CR0_R	&=	~(0x0000FFF0);				//	SCR	=	0,	SPH	=	0,	SPO	=	0	Freescale

		SSI0_CR0_R	|=	0x0F;													//	DSS	=	16-bit	data

		SSI0_DR_R	=	data;															//	load	‘data’	into	transmit	FIFO

		SSI0_CR1_R	|=	0x00000002;							//	enable	SSI

}

void	DAC_Out(uint16_t	code){		

		while((SSI0_SR_R&0x00000002)==0){};//	SSI	Transmit	FIFO	Not	Full

		SSI0_DR_R	=	code;	}																//	data	out,	no	reply

//	send	the	16-bit	code	to	the	SSI,	return	a	reply

//	you	will	need	to	enable	PA4	as	SSI0Rx	to	use	this	routine

uint16_t	DAC_Out2(uint16_t	code){			uint16_t	receive;

		while((SSI0_SR_R&0x00000002)==0){};//	SSI	Transmit	FIFO	Not	Full

		SSI0_DR_R	=	code;																		//	data	out

		while((SSI0_SR_R&0x00000004)==0){};//	SSI	Receive	FIFO	Not	Empty

		receive	=	SSI0_DR_R;															//	acknowledge	response

		return	receive;

}

Program	7.2.	Functions	to	initialize	and	to	send	data	to	the	DAC	using	the
SSI	(MAX5353_xxx.zip).

	
	

Example	7.3.	Interface	the	Maxim	MAX1246	analog	to	digital	converter.

Solution:	This	second	SSI	example	shows	a	synchronous	serial	interface	between	the
computer	and	a	Maxim	MAX1246	analog	to	digital	converter.	An	analog	to	digital
converter	accepts	an	analog	input	(in	our	case	a	voltage	between	0	and	+2.5V	on	one	of
the	four	analog	inputs	CH3–CH0)	and	creates	a	digital	output	(in	our	case	a	number
between	0	and	4095.)	Detailed	discussion	of	converters	will	also	be	presented	later	in
Chapter	8.	Here	in	this	section	we	will	focus	on	the	hardware	and	software	aspects	of	the
serial	interface	(Figure	7.21).	Again,	the	basic	interfacing	issues	to	consider	for	this
interface	are:

Word	size.	In	this	case	we	need	to	first	transmit	8	bits	to	the	ADC,	then	receive	12	bits
back	from	the	ADC.	The	MAX1246	data	sheet	suggests	that	it	will	embed	the	12	bit	data
into	two	8-bit	transmissions.

Bit	order.	The	MAX1246	requires	the	most	significant	bits	first.

Clock	phase,	clock	polarity.		Since	the	MAX1246	samples	its	serial	input	data	on	the
rising	edge	of	the	clock,	the	SPI	must	changes	the	data	on	the	falling	edge.	SPO=SPH=0
and	SPO=SPH=1	both	satisfy	this	requirement.	We	will	use	the	SPO=SPH=0	mode	as
suggested	in	the	Maxim	data	sheet,	refer	back	to	Figure	7.17.

Bandwidth.	We	look	at	the	timing	specifications	of	the	MAX1246.	The	maximum	SCLK
frequency	is	2	MHz,	and	the	minimum	clock	low/high	widths	is	200	ns,	so	the	shortest
SPI	period	we	can	use	is	500ns.

Figure	7.21.	A	four	channel	12-bit	ADC	interfaced	to	the	SSI	port.
	

The	first	8	bits	sent	will	specify	the	channel	and	ADC	mode	as	shown	in	Figure	7.22.
After	conversion,	the	12	data	bit	result	is	returned.	Notice	that	bit	7	of	the	mode	select	is
always	high,	and	the	12-bit	ADC	result	is	embedded	into	the	middle	of	the	two	8-bit
transmissions.	The	software	will	shift	the	16-bit	data	3	bits	to	the	right	in	order	to	produce
the	0	to	4095	result.
	

Figure	7.22.	MAX1247	ADC	serial	timing.
	

Because	we	want	the	CS	signal	to	remain	low	for	the	entire	24-bit	transfer,	we	will
implement	it	using	the	regular	I/O	pin	functions.	The	ritual	initializes	the	direction
register,	Freescale	SPI	mode,	and	bandwidth	(Program	7.3).	In	this	example,	the	bus	clock
is	6	MHz,	and	the	SSI	clock	will	be	1.5	MHz.

Recall	that	when	the	software	outputs	to	the	SSI	data	register,	the	8-bit	register	in	the	SSI
is	exchanged	with	the	8-bit	register	in	the	ADC.	To	read	the	ADC,	three	8-bit
transmissions	are	exchanged.	On	the	first	exchange,	the	software	specifies	the	channel	and
ADC	mode,	then	the	12-bit	ADC	data	returned	during	the	2nd	and	3rdtransmission.	All	of
the	ADC	modes	in	the #define 	statements	implement	unipolar	voltage	range,	single
ended,	and	external	clock.
	

#define	GPIO_PORTA3													(*((volatile	uint32_t	*)0x40004020))

void	ADC_Init2(void){		

		SYSCTL_RCGCSSI_R	|=	0x01;								//	activate	SSI0

		SYSCTL_RCGCGPIO_R	|=	0x01;							//	activate	port	A

		while((SYSCTL_PRGPIO_R&0x01)	==	0){};//	ready?

		GPIO_PORTA_PCTL_R	=	(GPIO_PORTA_PCTL_R&0xFF0F00FF)+0x00202200;

		GPIO_PORTA_AMSEL_R	=	0;											//	disable	analog	functionality	on	PA

		GPIO_PORTA_AFSEL_R	|=	0x34;								//	enable	alt	funct	on	PA2,4,5

		GPIO_PORTA_DIR_R	|=	0x08;											//	make	PA3	out	(PA3	!CS	signal)

		GPIO_PORTA_DEN_R	|=	0x3C;											//	enable	digital	I/O	on	PA2,3,4,5

		GPIO_PORTA3	=	0x08;																	//	!CS	=	1

		SSI0_CR1_R	&=	~SSI_CR1_SSE;									//	disable	SSI

		SSI0_CR1_R	&=	~SSI_CR1_MS;										//	master	mode	(default	setting)

		SSI0_CPSR_R	=	(SSI0_CPSR_R&~SSI_CPSR_CPSDVSR_M)+4;	//1.5	MHz
SSIClk

		SSI0_CR0_R	&=	~(SSI_CR0_SCR_M	|				//	SCR	=	0

											SSI_CR0_SPH	|							//	SPH	=	0

										SSI_CR0_SPO);							//	SPO	=	0

		SSI0_CR0_R	=	(SSI0_CR0_R&~SSI_CR0_FRF_M)+SSI_CR0_FRF_MOTO;
//Freescale

		SSI0_CR0_R	=	(SSI0_CR0_R&~SSI_CR0_DSS_M)+SSI_CR0_DSS_8;//	8-bit	data

		SSI0_CR1_R	|=	SSI_CR1_SSE;												//	enable	SSI

}

#define	SSI_SR_RNE														0x00000004		//	SSI	Receive	FIFO	Not	Empty

#define	SSI_SR_TFE														0x00000001		//	SSI	Transmit	FIFO	Empty

#define	CH0																					0x9F	//	sample	on	channel	0

#define	CH1																					0xDF	//	sample	on	channel	1

#define	CH2																					0xAF	//	sample	on	channel	2

#define	CH3																					0xEF	//	sample	on	channel	3

//	send	the	8-bit	code	to	the	SSI	after	waiting	for	FIFOs	to	empty

//	return	a	reply

uint8_t	sendAfterWaiting(uint8_t	code){

		while((SSI0_SR_R&SSI_SR_TFE)==0){};//	wait	until	FIFO	empty

		SSI0_DR_R	=	code;																		//	data	out

		while((SSI0_SR_R&SSI_SR_RNE)==0){};//	wait	until	response

		return	SSI0_DR_R;																		//	acknowledge	response

}

//	take	one	ADC	measurement	and	return	the	result

//	NOTE:	to	ensure	correct	operation,	use	one	of	the	CHn	definitions

uint16_t	ADC_In2(uint8_t	code){

		uint16_t	data;

		GPIO_PORTA3	=	0;															//	!CS	=	0

		sendAfterWaiting(code);								//	send	channel,mode

		data	=	sendAfterWaiting(0)<<8;	//	msbyte	of	ADC

		data	+=	sendAfterWaiting(0);			//	lsbyte	of	ADC

		GPIO_PORTA3	=	0x08;												//	!CS	=	1

		return	data>>3;																//	right	justify

}

Program	7.3.	Functions	to	initialize	and	to	receive	data	from	the	ADC
using	the	SSI	(MAX1246_xxx.zip).

	

	
	

Example	7.4.	Design	an	output	port	expander	using	a	shift	register	and	SSI.

Solution:	Sometimes	we	need	more	output	pins	than	available	on	our	microcontroller.	In
general,	the	proper	design	approach	would	be	to	upgrade	to	a	microcontroller	with	more
pins.	However	in	situations	where	we	do	not	have	the	time	or	money	to	change
microcontrollers,	we	can	interface	a	74HC595	shift	register	to	the	SSI	port	for	a	quick
solution	providing	additional	output	pins.	Basically,	three	pins	of	the	SSI	(SS,	MOSI,	and
SCLK)	will	be	converted	to	eight	digital	outputs	Q	on	the	74HC595,	as	shown	in	Figure
7.23.

Additional	shift	registers	can	be	chained	together	(connect	the	QH’	outputs	of	one	to	the
SER	inputs	of	the	next)	to	provide	additional	outputs	without	requiring	more	LM3S811
pins.	The	gate	input,	G*,	of	the	74HC595	is	grounded	so	the	eight	Q	outputs	will	be
continuously	driven.	The	SPI	clock	output	is	connected	to	the	74HC595	clock	input
(SCK)	and	the	SPI	data	output	is	connected	to	the	74HC595	data	input	(SER).	The
Freescale	SPI	mode	(SPO=0,	SPH=0)	is	selected	to	the	LM3S811	changes	the	output	data
on	the	fall	of	the	clock	and	the	74HC595	shifts	data	in	on	the	rise.	Because	the	74HC595
is	fast	(maximum	clock	25	MHz,	and	setup	time	of	20	ns),	we	run	the	SSI	as	fast	as
possible.	In	this	example,	the	bus	clock	is	6	MHz,	and	the	SSI	clock	will	be	3	MHz.

After	eight	bits	are	transferred	from	the	LM3S811	to	the	74HC595,	software	will	create	a
rising	edge	of	RCK,	causing	the	new	data	to	be	latched	into	the	74HC595.	If	there	is	just
one	74HC595	like	Figure	7.23,	we	can	use	the	automatic	SS	feature	of	the	SPI	to	create	a
rising	edge	latch	on	RCLK.	To	enable	this	feature,	we	set	bit	3	AFSEL3	of
GPIO_PORTA_AFSEL_R.	In	this	solution,	we	perform	one	SSI	transmission	to	change
all	8	bits	of	the	port	output	(Program	7.4).	The	SS	pulse,	see	Figure	7.17,	accords
automatically	and	does	not	require	software	overhead	to	produce.	However,	if	we	were
chaining	multiple	shift	registers,	we	would	not	use	the	automatic	SS	feature;	rather	we
would	output	all	the	data	and	then	manually	latch	it	in	with	explicit	outputs	on	RCK	by
using	PA3	as	a	regular	GPIO	port.

	

Figure	7.23.	Interface	between	the	LM3S811	and	a	74HC595	shift	register.
void	Port_Init(void){		

		SYSCTL_RCGCSSI_R	|=	0x01;								//	activate	SSI0

		SYSCTL_RCGCGPIO_R	|=	0x01;							//	activate	port	A

		while((SYSCTL_PRGPIO_R&0x01)	==	0){};//	ready?

		GPIO_PORTA_AFSEL_R	|=	0x2C;											//	enable	alt	funct	on	PA2,3,5

		GPIO_PORTA_PCTL_R	=	(GPIO_PORTA_PCTL_R&0xFF0F00FF)+0x00202200;

		GPIO_PORTA_AMSEL_R	=	0;											//	disable	analog	functionality	on	PA

		GPIO_PORTA_DEN_R	|=	0x2C;													//	enable	digital	I/O	on	PA2,3,5

		SSI0_CR1_R	&=	~SSI_CR1_SSE;											//	disable	SSI

		SSI0_CR1_R	&=	~SSI_CR1_MS;												//	master	mode	(default	setting)

		SSI0_CPSR_R	=	(SSI0_CPSR_R&~SSI_CPSR_CPSDVSR_M)+2;	//	3	MHz	SSIClk

		SSI0_CR0_R	&=	~(SSI_CR0_SCR_M|SSI_CR0_SPH	|SSI_CR0_SPO);		//
SPO=SPH=0

		SSI0_CR0_R	=	(SSI0_CR0_R&~SSI_CR0_FRF_M)+SSI_CR0_FRF_MOTO;
//Freescale

		SSI0_CR0_R	=	(SSI0_CR0_R&~SSI_CR0_DSS_M)+SSI_CR0_DSS_8;//	8-bit	data

		SSI0_CR1_R	|=	SSI_CR1_SSE;												//	enable	SSI

}

uint8_t	Port_Out(uint16_t	code){

		while((SSI0_SR_R&SSI_SR_TNF)==0){};//	wait	until	room	in	FIFO

		SSI0_DR_R	=	code;																		//	data	out

		while((SSI0_SR_R&SSI_SR_RNE)==0){};//	wait	until	response

		return	SSI0_DR_R;																		//	acknowledge	response

}

Program	7.4.	Software	to	control	an	output	parallel	port	expanded	using
the	SSI	(74HC595_xxx.zip).

	
Checkpoint	7.7:	How	would	you	change	Program	7.4	to	run	at	1	MHz?

	

7.6.	Inter-Integrated	Circuit	(I2C)	Interface

7.6.1.	The	Fundamentals	of	I2C
Ever	since	microcontrollers	have	been	developed,	there	has	been	a	desire	to	shrink	the	size
of	an	embedded	system,	reduce	its	power	requirements,	and	increase	its	performance	and
functionality.	Two	mechanisms	to	make	systems	smaller	are	to	integrate	functionality	into
the	microcontroller	and	to	reduce	the	number	of	I/O	pins.		The	inter-integrated	circuit	I2C
interface	was	proposed	by	Philips	in	the	late	1980s	as	a	means	to	connect	external	devices
to	the	microcontroller	using	just	two	wires.	The	SSI	interface	has	been	very	popular,	but	it
takes	3	wires	for	simplex	and	4	wires	for	full	duplex	communication.	In	1998,	the	I2C
Version	1	protocol	become	an	industry	standard	and	has	been	implemented	into	thousands
of	devices.	The	I2C	bus	is	a	simple	two-wire	bi-directional	serial	communication	system
that	is	intended	for	communication	between	microcontrollers	and	their	peripherals	over
short	distances.	This	is	typically,	but	not	exclusively,	between	devices	on	the	same	printed
circuit	board,	the	limiting	factor	being	the	bus	capacitance.	It	also	provides	flexibility,
allowing	additional	devices	to	be	connected	to	the	bus	for	further	expansion	and	system
development.	The	interface	will	operate	at	baud	rates	of	up	to	100	kbps	with	maximum
capacitive	bus	loading.	The	module	can	operate	up	to	a	baud	rate	of	400	kbps	provided	the
I2C	bus	slew	rate	is	less	than	100ns.	The	maximum	interconnect	length	and	the	number	of
devices	that	can	be	connected	to	the	bus	are	limited	by	a	maximum	bus	capacitance	of
400pF	in	all	instances.	These	parameters	support	the	general	trend	that	communication
speed	can	be	increased	by	reducing	capacitance.	Version	2.0	supports	a	high	speed	mode
with	a	baud	rate	up	to	2.4	MHz	(supported	by	LM4F/TM4C).

Figure	7.24	shows	a	block	diagram	of	a	communication	system	based	on	the	I2C	interface.
The	master/slave	network	may	consist	of	multiple	masters	and	multiple	slaves.	The	Serial
Clock	Line	(SCL)	and	the	Serial	Data	line	(SDA)	are	both	bidirectional.	Each	line	is
open	drain,	meaning	a	device	may	drive	it	low	or	let	it	float.	A	logic	high	occurs	if	all
devices	let	the	output	float,	and	a	logic	low	occurs	when	at	least	one	device	drives	it	low.
The	value	of	the	pull-up	resistor	depends	on	the	speed	of	the	bus.	4.7	k � 	is
recommended	for	baud	rates	below	100	kbps,	2.2	k � is	recommended	for	standard	mode,
and	1	k � 	is	recommended	for	fast	mode.

	

Checkpoint	7.8:	Why	is	the	recommended	pull-up	resistor	related	to	the	bus	speed?

Checkpoint	7.9:	What	does	open	drain	mean?

	

The	SCL	clock	is	used	in	a	synchronous	fashion	to	communicate	on	the	bus.	Even	though
data	transfer	is	always	initiated	by	a	master	device,	both	the	master	and	the	slaves	have
control	over	the	data	rate.	The	master	starts	a	transmission	by	driving	the	clock	low,	but	if
a	slave	wishes	to	slow	down	the	transfer,	it	too	can	drive	the	clock	low	(called	clock
stretching).	In	this	way,	devices	on	the	bus	will	wait	for	all	devices	to	finish.	Both	address
(from	Master	to	Slaves)	and	information	(bidirectional)	are	communicated	in	serial
fashion	on	SDA.

Figure	7.24.		Block	diagram	of	an	I2C	communication	network.
The	bus	is	initially	idle	where	both	SCL	and	SDA	are	both	high.	This	means	no	device	is
pulling	SCL	or	SDA	low.	The	communication	on	the	bus,	which	begins	with	a	START	and
ends	with	a	STOP,	consists	of	five	components:

START	(S)	is	used	by	the	master	to	initiate	a	transfer
DATA	is	sent	in	8-bit	blocks	and	consists	of
7-bit	address	and	1-bit	direction	from	the	master

control	code	for	master	to	slaves

information	from	master	to	slave

information	from	slave	to	master

ACK	(A)	is	used	by	slave	to	respond	to	the	master	after	each	8-bit	data
																																										transfer

RESTART	(R)	is	used	by	the	master	to	initiate	additional	transfers	without
																												releasing	the	bus

STOP	(P)	is	used	by	the	master	to	signal	the	transfer	is	complete	and	the	bus
																												is	free

	

The	basic	timings	for	these	components	are	drawn	in	Figure	7.25.	For	now	we	will	discuss
basic	timing,	but	we	will	deal	with	issues	like	stretching	and	arbitration	later.	A	slow	slave
uses	clock	stretching	to	give	it	more	time	to	react,	and	masters	will	use	arbitration	when
two	or	more	masters	want	the	bus	at	the	same	time.	An	idle	bus	has	both	SCL	and	SDA
high.	A	transmission	begins	when	the	master	pulls	SDA	low,	causing	a	START	(S)
component.	The	timing	of	a	RESTART	is	the	same	as	a	START.	After	a	START	or	a
RESTART,	the	next	8	bits	will	be	an	address	(7-bit	address	plus	1-bit	direction).	There	are
128	possible	7-bit	addresses,	however,	32	of	them	are	reserved	as	special	commands.	The
address	is	used	to	enable	a	particular	slave.	All	data	transfers	are	8	bits	long,	followed	by	a
1-bit	acknowledge.	During	a	data	transfer,	the	SDA	data	line	must	be	stable	(high	or	low)
whenever	the	SCL	clock	line	is	high.	There	is	one	clock	pulse	on	SCL	for	each	data	bit,
the	MSB	being	transferred	first.		Next,	the	selected	slave	will	respond	with	a	positive
acknowledge	(Ack)	or	a	negative	acknowledge	(Nack).	If	the	direction	bit	is	0	(write),
then	subsequent	data	transmissions	contain	information	sent	from	master	to	slave.

For	a	write	data	transfer,	the	master	drives	the	RDA	data	line	for	8	bits,	then	the	slave
drives	the	acknowledge	condition	during	the	9th	clock	pulse.	If	the	direction	bit	is	1	(read),
then	subsequent	data	transmissions	contain	information	sent	from	slave	to	master.	For	a
read	data	transfer,	the	slave	drives	the	RDA	data	line	for	8	bits,	then	the	master	drives	the
acknowledge	condition	during	the	9th	clock	pulse.		The	STOP	component	is	created	by	the
master	to	signify	the	end	of	transfer.	A	STOP	begins	with	SCL	and	SDA	both	low,	then	it
makes	the	SCL	clock	high,	and	ends	by	making	SDA	high.	The	rising	edge	of	SDA	while
SCL	is	high	signifies	the	STOP	condition.

	

Figure	7.25.		Timing	diagrams	of	I2C	components.
	

Checkpoint	7.10:	What	happens	if	no	device	sends	an	acknowledgement?

	

Figure	7.26	illustrates	the	case	where	the	master	sends	2	bytes	of	data	to	a	slave.	The
shaded	regions	demark	signals	driven	by	the	master,	and	the	white	areas	show	those	times
when	the	signal	is	driven	by	the	slave.		Regardless	of	format,	all	communication	begins
when	the	master	creates	a	START	component	followed	by	the	7-bit	address	and	1-bit
direction.	In	this	example,	the	direction	is	low,	signifying	a	write	format.	The	1st	through
8th	SCL	pulses	are	used	to	shift	the	address/direction	into	all	the	slaves.	In	order	to
acknowledge	the	master,	the	slave	that	matches	the	address	will	drive	the	SDA	data	line
low	during	the	9th	SCL	pulse.		During	the	10th	through	17th	SCL	pulses	sends	the	data	to
the	selected	slave.	The	selected	slave	will	acknowledge	by	driving	the	SDA	data	line	low
during	the	18th	SCL	pulse.	A	second	data	byte	is	transferred	from	master	to	slave	in	the
same	manner.	In	this	particular	example,	two	data	bytes	were	sent,	but	this	format	can	be
used	to	send	any	number	of	bytes,	because	once	the	master	captures	the	bus	it	can	transfer
as	many	bytes	as	it	wishes.	If	the	slave	receiver	does	not	acknowledge	the	master,	the	SDA
line	will	be	left	high	(Nack).	The	master	can	then	generate	a	STOP	signal	to	abort	the	data
transfer	or	a	RESTART	signal	to	commence	a	new	transmission.	The	master	signals	the
end	of	transmission	by	sending	a	STOP	condition.

	

Figure	7.26.		I2C	transmission	of	two	bytes	from	master	to	slave
Figure	7.27	illustrates	the	case	where	a	slave	sends	2	bytes	of	data	the	master.	Again,	the
master	begins	by	creating	a	START	component	followed	by	the	7-bit	address	and	1-bit
direction.	In	this	example,	the	direction	is	high,	signifying	a	read	format.	During	the	10th
through	17th	SCL	pulses	the	selected	slave	sends	the	data	to	the	master.	The	selected	slave
can	only	change	the	data	line	while	SCL	is	low	and	must	be	held	stable	while	SCL	is	high.
The	master	will	acknowledge	by	driving	the	SDA	data	line	low	during	the	18th	SCL	pulse.
Only	two	data	bytes	are	shown	in	Figure	7.27,	but	this	format	can	be	used	to	receive	as
any	many	bytes	the	master	wishes.	Except	for	the	last	byte	all	data	are	transferred	from
slave	to	master	in	the	same	manner.	After	the	last	data	byte,	the	master	does	not
acknowledge	the	slave	(Nack)	signifying	‘end	of	data’	to	the	slave,	so	the	slave	releases
the	SDA	line	for	the	master	to	generate	STOP	or	RESTART	signal.	The	master	signals	the
end	of	transmission	by	sending	a	STOP	condition.

Figure	7.27.		I2C	transmission	of	two	bytes	from	slave	to	master.

Figure	7.28	illustrates	the	case	where	the	master	uses	the	RESTART	command	to
communicate	with	two	slaves,	reading	one	byte	from	one	slave	and	writing	one	byte	to	the
other.	As	always,	the	master	begins	by	creating	a	START	component	followed	by	the	7-bit
address	and	1-bit	direction.	During	the	first	start,	the	address	selects	the	first	slave	and	the
direction	is	read.	During	the	10th	through	17th	SCL	pulses	the	first	slave	sends	the	data	to
the	master.	Because	this	is	the	last	byte	to	be	read	from	the	first	slave,	the	master	will	not
acknowledge	letting	the	SDA	data	float	high	during	the	18th	SCL	pulse,	so	the	first	slave
releases	the	SDA	line.	Rather	than	issuing	a	STOP	at	this	point,	the	master	issues	a
repeated	start	or	RESTART.	The	7-bit	address	and	1-bit	direction	transferred	in	the	20th
through	27th	SCL	pulses	will	select	the	second	slave	for	writing.	In	this	example,	the
direction	is	low,	signifying	a	write	format.	The	28th	pulse	will	be	used	by	the	second	slave
pulls	SDA	low	to	acknowledge	it	has	been	selected.	The	29th	through	36th	SCL	pulses	send
the	data	to	the	second	slave.	During	the	37th	pulse	the	second	slave	pulls	SDA	low	to
acknowledge	the	data	it	received.		The	master	signals	the	end	of	transmission	by	sending	a
STOP	condition.

Figure	7.28.		I2C	transmission	of	one	byte	from	the	first	slave	and	one	byte
to	a	second	slave.
Checkpoint	7.11:	Is	the	communication	in	Figure	7.28	full	duplex,	half	duplex,	or
simplex?

	

Table	7.10	lists	some	addresses	that	have	special	meaning.	A	write	to	address	0	is	a
general	call	address,	and	is	used	by	the	master	to	send	commands	to	all	slaves.	The	10-bit
address	mode	gives	two	address	bits	in	the	first	frame	and	8	more	address	bits	in	the
second	frame.	The	direction	bit	for	10-bit	addressing	is	in	the	first	frame.

	

Address R/W Description

0000	000 0 General	call	address

0000	000 1 Start	byte

0000	001 x CBUS	address

0000	010 x Reserved	for	different
bus	formats

0000	011 0 Reserved

0000	1xx x High	speed	mode

1111	0xx x 10-bit	address

1111	1xx X Reserved

Table	7.10.	Special	addresses	used	in	the	I2C	network.

7.6.2.	I2C	Synchronization
The	I2C	bus	supports	multiple	masters.	If	two	or	more	masters	try	to	issue	a	START
command	on	the	bus	at	the	same	time,	both	clock	synchronization	and	arbitration	will
occur.	Clock	synchronization	is	procedure	that	will	make	the	low	period	equal	to	the
longest	clock	low	period	and	the	high	is	equal	to	the	shortest	one	among	the	masters.
Figure	7.29	illustrates	clock	synchronization,	where	the	top	set	of	traces	is	generated	by
the	first	master,	and	the	second	set	of	traces	is	generated	by	the	second	master.	Since	the
outputs	are	open	drain,	the	actual	signals	will	be	the	wired-AND	of	the	two	outputs.	Each
master	repeats	these	steps	when	it	generates	a	clock	pulse.	It	is	during	step	3)	that	the
faster	device	will	wait	for	the	slower	device

1.	Drive	its	SCL	clock	low	for	a	fixed	amount	of	time
2.	Let	its	SCL	clock	float
3.	Wait	for	the	SCL	to	be	high

4.	Wait	for	a	fixed	amount	of	time,	stop	waiting	if	the	clock	goes	low

	
	

Because	the	outputs	are	open	drain,	the	signal	will	be	pulled	to	a	logic	high	by	the	2	k �
resistor	only	if	all	devices	release	the	line	(output	a	logic	high).	Conversely,	the	signal	will
be	a	logic	low	if	any	device	drives	it	low.	When	masters	create	a	START,	they	first	drive
SDA	low,	then	drive	SCL	low.	If	a	group	of	masters	are	attempting	to	create	START
commands	at	about	the	same	time,	then	the	wire-AND	of	their	SDA	lines	has	its	1	to	0
transition	before	the	wire-AND	of	their	SCL	lines	has	its	1	to	0	transition.	Thus,	a	valid
START	command	will	occur	causing	all	the	slaves	to	listen	to	the	upcoming	address.	In
the	example	shown	in	Figure	7.29,	Master	#2	is	the	first	to	drive	its	clock	low.		In	general,
the	SCL	clock	will	be	low	from	the	time	the	first	master	drives	it	low	(time	1	in	this
example),	until	the	time	the	last	master	releases	its	clock	(time	2	in	this	example.)
Similarly,	the	SCL	clock	will	be	high	from	the	time	the	last	master	releases	its	clock	(time
2	in	this	example),	until	the	time	the	first	master	drives	its	clock	low	(time	3	in	this
example.)

Figure	7.29.		I2C	timing	illustrating	clock	synchronization	and	data
arbitration.
The	relative	priority	of	the	contending	masters	is	determined	by	a	data	arbitration
procedure.	A	bus	master	loses	arbitration	if	it	transmits	logic	“1”	while	another	master
transmits	logic	“0”.	The	losing	masters	immediately	switch	over	to	slave	receive	mode
and	stop	driving	the	SCL	and	SDA	outputs.	In	this	case,	the	transition	from	master	to	slave
mode	does	not	generate	a	STOP	condition.	Meanwhile,	a	status	bit	is	set	by	hardware	to
indicate	loss	of	arbitration.	In	the	example	shown	in	Figure	7.29,	master	#1	is	generating
an	address	with	A7=1	and	A6=0,	while	master	#2	is	generating	an	address	with	A7=1	and
A6=1.	Between	times	2	and	3,	both	masters	are	attempting	to	send	A7=1,	and	notice	the
actual	SDA	line	is	high.	At	time	4,	master	#2	attempts	to	make	the	SDA	high	(A6=1),	but
notices	the	actual	SDA	line	is	low.	In	general,	the	master	sending	a	message	to	the	lowest
address	will	win	arbitration.

Checkpoint	7.12:	If	Master	1	sends	address	0x30	and	Master	2	sends	address	#0x0F,
which	one	wins	arbitration?

	

The	third	synchronization	mechanism	occurs	between	master	and	slave.	If	the	slave	is	fast
enough	to	capture	data	at	the	maximum	rate,	the	transfer	is	a	simple	synchronous	serial
mechanism.	In	this	case	the	transfer	of	each	bit	from	master	to	slave	is	illustrated	by	the
following	interlocked	sequences,	see	Figure	7.25.

	

Master	sequence																																										Slave	sequence	(no	stretch)

1.	Drive	its	SCL	clock	low																												

2.	Set	the	SDA	line

3.	Wait	for	a	fixed	amount	of	time

4.	Let	its	SCL	clock	float

5.	Wait	for	the	SCL	to	be	high																											

6.	Wait	for	a	fixed	amount	of	time														6.	Capture	SDA	data	on	low	to	high	edge	of
SCL

7.	Stop	waiting	if	the	clock	goes	low

	

If	the	slave	is	not	fast	enough	to	capture	data	at	the	maximum	rate,	it	can	perform	an
operation	called	clock	stretching.	If	the	slave	is	not	ready	for	the	rising	edge	of	SCL,	it
will	hold	the	SCL	clock	low	itself	until	it	is	ready.	Slaves	are	not	allowed	to	cause	any	1	to
0	transitions	on	the	SCL	clock,	but	rather	can	only	delay	the	0	to	1	edge.	The	transfer	of
each	bit	from	master	to	slave	with	clock	stretching	is	illustrated	by	the	following
sequences

	

Master	sequence																																										Slave	sequence	(clock	stretching)

1.	Drive	its	SCL	clock	low																													1.	Wait	for	the	SCL	clock	to	be	low

2.	Set	the	SDA	line																																										2.	Drive	SCL	clock	low

3.	Wait	for	a	fixed	amount	of	time														3.	Wait	until	it’s	ready	to	capture

4.	Let	its	SCL	clock	float																																										4.	Let	its	SCL	float

5.	Wait	for	the	SCL	clock	to	be	high														5.	Wait	for	the	SCL	clock	to	be	high													

6.	Wait	for	a	fixed	amount	of	time														6.	Capture	the	SDA	data

7.	Stop	waiting	if	the	clock	goes	low

	

Clock	stretching	can	also	be	used	when	transferring	a	bit	from	slave	to	master

	

Master	sequence																																										Slave	sequence	(clock	stretching)

1.	Drive	its	SCL	clock	low																													1.	Wait	for	the	SCL	clock	to	be	low

2.	Wait	for	a	fixed	amount	of	time														2.	Drive	SCL	clock	low

3.	Wait	until	next	data	bit	is	ready

4.	Let	its	SCL	clock	float																																										4.	Let	its	SCL	float

5.	Wait	for	the	SCL	clock	to	be	high														5.	Wait	for	the	SCL	clock	to	be	high

6.	Capture	the	SDA	input

7.	Wait	for	a	fixed	amount	of	time,

8.	Stop	waiting	if	the	clock	goes	low

	

Observation:	Clock	stretching	allows	fast	and	slow	devices	to	exist	on	the	same	I2C	bus
Fast	devices	will	communicate	quickly	with	each	other,	but	slow	down	when
communicating	with	slower	devices.

Checkpoint	7.13:	Arbitration	continues	until	one	master	sends	a	zero	while	the	other
sends	a	one.	What	happens	if	two	masters	attempt	to	send	data	to	the	same	address?

7.6.3.	LM3S/TM4C	I2C	Details
LM3S/TM4C	microcontrollers	have	zero	to	ten	I2C	modules,	see	Figure	7.30.	The	LM3S
microcontrollers	implement	just	a	subset	of	the	standard.	They	support	master	and	slave
modes,	can	generate	interrupts	on	start	and	stop	conditions,	and	allow	I2C	networks	with
multiple	masters.	On	the	other	hand,	the	LM3S	microcontrollers	do	not	support	general
call,	or	10-bit	addressing.	As	shown	in	Figure	7.24,	microcontroller	pins	SDA	and	SCL
can	be	connected	directly	to	an	I2C	network.	Because	I2C	networks	are	intended	to	connect
devices	on	the	same	PCB,	no	special	hardware	interface	electronics	are	required.	Table
7.11	lists	the	I2C	ports	on	the	LM3S.	The	LM3S	can	operate	in	slave	mode,	but	we	will
focus	on	master	mode.	Tables	2.7	and	2.8	describe	how	to	attach	I/O	pins	to	the	I2C
modules	on	the	TM4C123/TM4C1294.

	 	 	 	 	 	 	 	 	 	

	 7 6 5 4 3 2 1 0 Name

$4002.0000 SA R/S I2C0_MSA_R

$4002.0004 	 BUSBSY IDLE ARBLST DATACK ADRACK ERROR BUSY I2C0_MCS_R

$4002.0008 DATA DATA DATA DATA DATA DATA DATA DATA I2C0_MDR_R

$4002.000C 	 TPR I2C0_MTPR_R

$4002.0010 	 	 	 	 	 	 	 IM I2C0_MIMR_R

$4002.0014 	 	 	 	 	 	 	 RIS I2C0_MRIS_R

$4002.0018 	 	 	 	 	 	 	 MIS I2C0_MMIS_R

$4002.001C 	 	 	 	 	 	 	 IC I2C0_MICR_R

$4002.0020 	 	 SFE MFE 	 	 	 LPBK I2C0_MCR_R

$4000.5420 SEL SEL SEL SEL SEL SEL SEL SEL GPIO_PORTB_AFSEL_R

$4000.551C DEN DEN DEN DEN DEN DEN DEN DEN GPIO_PORTB_DEN_R

$4000.550C SEL SEL SEL SEL SEL SEL SEL SEL GPIO_PORTB_ODR_R

$400F.E608 GPIOH GPIOG GPIOF GPIOE GPIOD GPIOC GPIOB GPIOA SYSCTL_RCGCGPIO_R

$400F.E620 	 	 	 	 I2C3 I2C2 I2C1 I2C0 SYSCTL_RCGCI2C_R

Table	7.11.	The	LM3S	I2C	master	registers.	Each	register	is	32	bits	wide.	Bits	31	–	8
are	zero.

	

Figure	7.30.	I/O	port	pins	for	I2C	on	various	LM3S/TM4C
microcontrollers.
There	are	seven	steps	to	initialize	I2C0	in	master	mode.

Step	1)	we	activate	the	I2C0	clock	by	setting	bit	0	the SYSCTL_RCGCI2C_R 	register.

Step	2)	Since	I2C0	uses	two	pins	on	Port	B,	we	need	to	activate	Port	B	clock	in
register SYSCTL_RCGCGPIO_R .

Step	3)	We	connect	I2C0	to	pins	PB3/PB2	by	setting	the	alternative	function.	I.e.,	we	set
bits	2	and	3	of GPIO_PORTB_AFSEL_R 	register.

Step	4)	I2C0	uses	open	drain	mode,	so	we	set	bits	2	and	3	of GPIO_PORTB_ODR_R
register.	The	port	will	drive	the	line	low	when	it	wants	to	output	a	zero.	Conversely,	to
make	the	line	high,	open	drain	mode	causes	the	output	to	float	and	the	pull-up	resistor	in
Figure	7.24	causes	the	line	to	go	high.

Step	5)	We	enable	the	digital	circuits	by	setting	2	and	3	of GPIO_PORTB_DEN_R
register.

Step	6)	We	enable	master	mode	by	setting	the	MFEbit	in	the I2C0_MCR_R 	register.

Step	7)	Lastly,	I2C0_MTPR_R 	is	the	I2C	Master	Timer	Period	Register,	which
determines	the	baud	rate	transferred	as	a	master.	It	is	the	master’s	responsibility	to
generate	the	I2C	clock.		The	timing	of	the	I2C	interface	is	derived	from	the	bus	clock.	We
set	the	baud	rate	by	writing	to	the	TPRfield	in	the I2C0_MTPR_R 	register.	Let	fBUS	be
the	frequency	of	the	bus	clock	and	let	t	=1/fBUS	be	the	period	of	the	bus	clock.	The	I2C
clock	period	(tbit)	will	be	20*(TPR+1)*t.	In	standard	mode,	we	set	the	I2C	clock	frequency
to	be	about	100	kHz	(tbit=10 � s).	In	fast	mode,	we	set	the	I2C	clock	frequency	to	be	about
400	kHz.	For	example,	to	set	the	I2C	to	standard	speed,	assuming t	is	given	in	ns,

tbit	=	20*(TPR+1)*t	=	10000	ns

or																												TPR	=	500/t	-1

The	R/S	bit	(bit	0)	of	the	Master’s	Slave	Address	Register,	I2C0_MSA_R ,	specifies
whether	the	next	data	transfer	will	be	a	receive	from	slave	(equals	1)	or	a	write	to	slave
(equals	0).	Bits	7	through	1	of	the	Master’s	Slave	Address	Register	contain	the	unique	7-
bit	address	of	the	slave	that	the	master	is	addressing.	Generally,	no	two	devices	should
have	the	same	slave	address.	Many	devices	can	permanently	accept	a	new	slave	address
from	the	master.	I2C_MCS_ACK 	specifies	whether	or	not	the	master	acknowledges	data
received	from	the	slave.	I2C_MCS_ACK 	is	only	used	when	the	I2C	Bus	is	a	receiver,	not
a	transmitter.

When	receiving	data	as	a	master,	this	bit	determines	if	an	acknowledgement	will	be	sent
during	the	9th	clock	bit.	1	means	an	acknowledgement	will	be	sent	(Ack),	and	0	means	no
acknowledgement	will	be	sent	(Nack).	The	master	may	not	acknowledge	the	final	byte
sent	by	a	slave.	It	must	issue	a	STOP	or	repeated	START	condition	after	the	negative
acknowledge.	The	I2C	module	will	always	acknowledge	address	matches,	provided	it	is
enabled.	A	START	or	repeated	start	(RESTART)	will	be	sent	if	software	writes	a	1	to
the I2C_MCS_START 	bit,	provided	this	microcontrolleris	the	current	bus	master.
Attempting	a	repeated	start	when	the	bus	is	owned	by	another	master	will	result	in	loss	of
arbitration. I2C_MCS_START 	is	part	of	the	Master’s	Control/Status	Register,	which	is	a
special	register.Reads	from	this	register	return	information	about	the	master’s	status,	and
writes	to	this	register	control	the	master’s	next	transmission.	For	example,	set
the I2C_MCS_ACK , I2C_MCS_STOP ,	and/or I2C_MCS_START bits	and
the I2C_MCS_RUN bit	to	begin	the	next	transmission.	Afterwards,	read
the I2C_MCS_ARBLST or I2C_MCS_ERROR bits	to	see	if	the	master	has	lost
arbitration	of	the	bus.	Many	applications	may	also	require	reading
the I2C_MCS_ADRACK and I2C_MCS_DATACK 	bits	to	ensure	that	the	slave	has
acknowledged	its	address	and	any	data.	An	unresponsive	device	may	represent	a	serious
hardware	problem	to	which	the	system	must	react.

The	master	can	be	in	three	modes:	idle,	transmit	and	receive.	Table	7.12	summarizes	the
modes	and	operation	of	I2C.	Combinations	not	listed	in	this	table	are	either	illegal	or	no
operation.

	

	

	

State R/S ACK STOP START Run Action	(and	new	state)

Idle 0 X 0 1 1 START	condition
followed	by	SEND
(goes	to	Master
Transmit)

0 X 1 1 1 START	condition
followed	by	a	SEND
and	STOP	condition
(remains	in	Idle).

1 0 0 1 1 START	condition,
RECEIVE	operation
with	negative	ACK
(goes	to	the	Master
Receive)

1 0 1 1 1 START	condition
followed	by	RECEIVE
and	STOP	condition
(remains	in	Idle	state)

1 1 0 1 1 START	condition
followed	by	RECEIVE
(goes	to	the	Master
Receive	state)

	 	 	 	 	 	 	

Master
Transmit

X X 0 0 1 SEND	operation
(remains	in	Master
Transmit

state)

X X 1 0 0 STOP	condition	(goes
to	Idle	state)

X X 1 0 1 SEND	followed	by
STOP	condition	(goes
to	Idle

state)

0 X 0 1 1 Repeated	START
condition	followed	by	a
SEND	(remains	in
Master	Transmit	state)

0 X 1 1 1 Repeated	START
condition	followed	by
SEND	and	STOP
condition	(goes	to	Idle
state)

1 0 0 1 1

Repeated	START,	then
RECEIVE	operation
with	a	negative	ACK
(goes	to	Master
Receive	state)

1 0 1 1 1 Repeated	START
condition	followed	by	a
SEND	and	STOP
condition	(goes	to	Idle
state)

1 1 0 1 1 Repeated	START
condition	followed	by
RECEIVE	(goes	to
Master	Receive	state)

	 	 	 	 	 	 	

Master

Receive

X 0 0 0 1 RECEIVE	operation
with	negative	ACK
(remains

in	Master	Receive
state)

X X 1 0 0 STOP	condition	(goes
to	Idle	state)

X 0 1 0 1 RECEIVE	followed	by
STOP	condition	(goes
to	Idle	state)

X 1 0 0 1 RECEIVE	operation
(remains	in	Master
Receive	state)

1 0 0 1 1 Repeated	START,	then
RECEIVE	operation
with	a	negative	ACK
(remains	in	Master
Receive	state).

1 0 1 1 1 Repeated	START,	then
RECEIVE	and	STOP
condition	(goes	to	Idle
state)

1 1 0 1 1 Repeated	START
condition	followed	by
RECEIVE	(remains	in
Master	Receive	state)

0 X 0 1 1 Repeated	START
condition	followed	by
SEND	(goes	to	Master
Transmit	state)

0 X 1 1 1 Repeated	START
condition	followed	by
SEND	and	STOP
condition	(goes	to	Idle
state)

Table	7.12.		I2C	commands,	actions,	and	state	changes.

Figure	7.31	and	Table	7.13	describe	the	timing	of	I2C.	Let	tbit	be	the	I2C	period	as	defined
by	the	bus	clock	and	the	TPRfield	in	the I2C0_MTPR_R 	register.	Because	SCL	and
SDA	are	open-drain-type	outputs,	which	the	controller	can	only	actively	drive	low.	The
setup	time,	tsetup,	is	the	time	before	the	rise	of	SCL	that	the	data	on	SDA	will	be	valid.	The
data	remains	valid	throughout	the	time	SCL	is	high.	The	hold	time,	thold,	is	the	time	after
the	fall	of	SCL	that	the	data	on	SDA	continues	to	be	valid.	The	rise	time,	trise,	of	SDA	and
SCL	depends	on	external	signal	capacitance	and	pull-up	resistor	values	(**).	The	fall	time,
tfall,	is	specified	up	to	a	maximum	50	pF	load.

Figure	7.31.		I2C	timing	intervals.
	

Parameter Minimum Typical Maximum

tstart 36	t 	 	

thigh 24	t 	 	

tlow 36	t 	 	

18	t 	 	

tsetup

thold 2	t 	 	

trise ** ** **

tfall 	 9	ns 10	ns

tstop 24	t 	 	

Table	7.13.		I2C	timing	intervals,	where	t	is	the	system	bus	period	(**	depends	on
external	factors).

7.6.4.	I2C	Single	Master	Example
The	objective	of	this	example	is	to	present	a	low-level	device	driver	for	an	I2C	network
where	this	microcontroller	is	the	only	master,	as	shown	in	Program	7.5.	This	simple
example	will	employ	busy-wait	synchronization. I2C_Init 	first	enables	the	I2C	interface,
starting	out	in	master	mode.	Since	this	is	the	only	master,	it	need	to	initialize	any	of	the
slave	mode	settings.
	

//	Assumes	a	50	MHz	bus	clock,	20*(TPR+1)*20ns	=	10us,	with	TPR=24

#define	TPR	(500/20	–	1)

void	I2C_Init(void){	

		SYSCTL_RCGCI2C_R	|=	0x0001;											//	activate	I2C0

		SYSCTL_RCGCGPIO_R	|=	0x0002;									//	activate	port	B

		while((SYSCTL_PRGPIO_R&0x0002)	==	0){};//	ready?

		GPIO_PORTB_AFSEL_R	|=	0x0C;										//	enable	alt	funct	on	PB2,3

		GPIO_PORTB_ODR_R	|=	0x0C;												//	enable	open	drain	on	PB2,3

		GPIO_PORTB_PCTL_R	=	(GPIO_PORTB_PCTL_R&0xFFFF00FF)+0x00003300;
//	I2C

		GPIO_PORTB_DEN_R	|=	0x0C;										//	enable	digital	I/O	on	PB2,3

		I2C0_MCR_R	=	0x00000010;											//	master	function	enable

		I2C0_MTPR_R	=	TPR;																	//	configure	for	100	kbps	clock

}

Program	7.5.	TM4C123	I2C	initialization	in	single	master	mode
(I2C_xxx.zip).

Program	7.6contains	the	function I2C_Send2 	that	transmits	two	bytes	to	a	slave,	creating
a	transmission	shown	in	Figure	7.26.		In	a	system	with	multiple	masters	this	should	check
to	see	if	the	bus	is	idle	first.	Because	this	system	has	just	one	master,	the	bus	should	be
idle.	However,	the	first	line	of	the	function	makes	certain	that	the	I2C	hardware	is	free	and
there	is	not	already	another	transaction	pending.	By	setting	the I2C_MCS_START 	bit	of
the	I2C	Master	Control/Status	Register, I2C0_MCS_R ,	the	microcontrollerwill	create	a
START	condition.	In	a	system	with	multiple	masters,	it	should	check	to	see	if	it	lost	bus
arbitration	(I2C_MCS_ARBLST).	The	slave	address	(with	bit	0	equal	to	0)	will	be	sent.
The	two	data	bytes	are	sent,	then	the	STOP	is	issued.	If	there	is	a	possibility	the	slave
doesn’t	exist,	data	doesn’t	get	acknowledged,	or	bus	arbitration	is	lost	then	this	program
could	have	checked I2C_MCS_ERROR 	after	each	transfer.

uint32_t	I2C_Send2(uint8_t	slave,	uint8_t	data1,	uint8_t	data2){

		while(I2C0_MCS_R&0x00000001){};	//	wait	for	I2C	ready

		I2C0_MSA_R	=	(slave<<1)&0xFE;			//	MSA[7:1]	is	slave	address

		I2C0_MSA_R	&=	~0x01;												//	MSA[0]	is	0	for	send

		I2C0_MDR_R	=	data1&0xFF;								//	prepare	first	byte

		I2C0_MCS_R	=	(I2C_MCS_START		//	generate	start/restart

						|	I2C_MCS_RUN);			//	no	ack,	no	stop,master	enable

		while(I2C0_MCS_R&0x00000001){};	//	wait	for	transmission	done

																								//	check	error	bits

		if((I2C0_MCS_R&

(I2C_MCS_DATACK|I2C_MCS_ADRACK|I2C_MCS_ERROR))	!=	0){

I2C0_MCS_R	=	I2C_MCS_STOP;		//	stop,	no	ack,	disable

return	(I2C0_MCS_R&			//	return	error	bits	if	nonzero

(I2C_MCS_DATACK|I2C_MCS_ADRACK|I2C_MCS_ERROR));

		}

I2C0_MDR_R	=	data2&0xFF;							//	prepare	second	byte

		I2C0_MCS_R	=	(I2C_MCS_STOP					//	no	ack,	stop,	no	start

		|	I2C_MCS_RUN);				//	master	enable

		while(I2C0_MCS_R&0x00000001){};	//	wait	for	transmission	done

		return	(I2C0_MCS_R&												//	return	error	bits

(I2C_MCS_DATACK|I2C_MCS_ADRACK|I2C_MCS_ERROR));

}

Program	7.6.	I2C	transmission	in	single	master	mode	(I2C_xxx.zip).
Program	7.7contains	the	function I2C_Recv2 	that	receives	two	bytes	from	a	slave,

creating	a	transmission	shown	in	Figure	7.27.		By	setting	the I2C_MCS_START 	bit,	the
microcontroller	will	create	a	START	condition.	During	the	first	transfer,	the	Tx/Rx	bit	is
1,	so	the	slave	address	(with	bit	0	equal	to	1)	will	be	sent,	and	the	master	goes	into	receive
mode.	During	the	next	two	transfers,	the	master	is	in	receive	mode,	so	data	flows	into	the
microcontroller.	To	trigger	any	data	transfer,	the	software	writes	a	valid	value
to I2C0_MCS_R with	the I2C_MCS_RUN bit	set.	During	the	first	data
transfer I2C_MCS_ACK 	is	1,	creating	a	positive	acknowledgement.	Conversely	during
the	second	data	transfer I2C_MCS_ACK is	0,	creating	a	negative	acknowledgement	and
signaling	to	the	slave	that	this	is	the	last	data	to	be	transferred.	The	STOP	is	requested
when	the I2C_MCS_STOP bit	of	the I2C0_MCS_R 	register	is	set,	and	it	automatically
is	issued	after	the	final	data	transfer.

This	is	a	simple	concept	that	may	seem	complicated	at	first.		Basically:

0)	Initialize:	turn	on	GPIOB	and	I2C	modules,	set	up	GPIOB	pins,	set	up	I2C	master

1)	Put	slave	address	into I2C0_MSA_R [7:1]

2)	(receive	only)	Set I2C0_MSA_R [0]

2)	(transmit	only)	Clear I2C0_MSA_R [0]	and	put	first	byte	into I2C0_MDR_R [7:0]

3)	Write	a	valid	value	to I2C0_MCS_R [3:0]	to	start	transfer

4)	Wait	for	transfer	to	finish: while(I2C0_MCS_R&0x00000001){};

5)	(receive	only)	Read	first	byte	from I2C0_MDR_R [7:0]

6)	repeat	Steps	2-5	until	done

	

Timing	is	complicated	and	potentially	confusing.		Fortunately,	it	is	handled	by	hardware
you	are	already	given.		There	are	two	complicated	things	for	which	you	are	responsible.	
The	first	issue	is	understanding	what	codes	to	send	to	the	I2C	slave.	The	second
complicated	issue	is	Step	3.		There	are	4	bits	to	write	to I2C0_MCS_R [3:0],	and	they
depend	on	the	master’s	current	state	and	next	state	as	described	in	Table	7.12.	

	

#define	I2C_MCS_ACK													0x00000008		//	Data	Acknowledge	Enable

#define	I2C_MCS_ADRACK										0x00000004		//	Acknowledge	Address

#define	I2C_MCS_STOP												0x00000004		//	Generate	STOP

#define	I2C_MCS_START											0x00000002		//	Generate	START

#define	I2C_MCS_ERROR											0x00000002		//	Error

#define	I2C_MCS_RUN													0x00000001		//	I2C	Master	Enable

#define	MAXRETRIES	5				//	number	of	receive	attempts	before	giving	up

	

uint16_t	I2C_Recv2(uint8_t	slave){		uint8_t	data1,data2;

		int	retryCounter	=	1;

		do{

while(I2C0_MCS_R&0x00000001){};		//	wait	for	I2C	ready

I2C0_MSA_R	=	(slave<<1)&0xFE;				//	MSA[7:1]	is	slave	address

I2C0_MSA_R	|=	0x01;														//	MSA[0]	is	1	for	receive

I2C0_MCS_R	=	(I2C_MCS_ACK						//	positive	data	ack

|	I2C_MCS_START				//	no	stop,	yes	start/restart

|	I2C_MCS_RUN);				//	master	enable

while(I2C0_MCS_R&0x00000001){};	//	wait	for	transmission	done

data1	=	(I2C0_MDR_R&0xFF);						//	MSB	data	sent	first

I2C0_MCS_R	=	(I2C_MCS_STOP						//	generate	stop,	no	start

|	I2C_MCS_RUN);				//	master	enable

while(I2C0_MCS_R&0x00000001){};		//	wait	for	transmission	done

data2	=	(I2C0_MDR_R&0xFF);							//	LSB	data	sent	last

retryCounter	=	retryCounter	+	1;	//	increment	retry	counter

		}																																	//	repeat	if	error

		while(((I2C0_MCS_R&(I2C_MCS_ADRACK|I2C_MCS_ERROR))	!=	0)

&&	(retryCounter	<=	MAXRETRIES));

		return	(data1<<8)+data2;							//	usually	returns	0xFFFF	on	error

}

Program	7.7.	I2C	reception	in	single	master	mode	(I2C_xxx.zip).
Figure	7.32	shows	a	logic	analyzer	measurement	taken	with	Program	7.7	communicating
with	a	Texas	Instruments	TMP102	thermometer.	The	main	program
calls I2C_Recv2(0x48); The	first	transmission	sends	the	0x91	(slave	address,	read)
command.	It	then	receives	two	transmissions,	which	is	the	temperature	encoded	with
0.0625°C	resolution.

Figure	7.32.	Logic	analyzer	transmission	of	I2C_Recv2,	with	one	output
and	two	inputs.

I2C	can	be	very	difficult	to	configure.	We	suggest	you	obverve	the	SCL	and	SDL	on	an
oscilloscope.	First	check	the	clock	rate	and	second	verify	the	output	high	and	output	low
voltages	are	within	specification.	Look	up	VIH	and	VIL	of	both	the	microcontroller	and	the
remote	sensor.	The	high	voltage	measured	by	the	scope	should	be	higher	than	VIH	of	both
devices.	The	low	voltage	measured	by	the	scope	should	be	lower	than	VIL	of	both	devices.

7.7.	Introduction	to	Universal	Serial	Bus	(USB)

7.7.1.	Basic	Principles
The	Universal	Serial	Bus	(USB)	is	a	host-controlled,	token-based	high-speed	serial
network	that	allows	communication	between	many	of	devices	operating	at	different
speeds.	The	objective	of	this	section	is	not	to	provide	all	the	details	required	to	design	a
USB	interface,	but	rather	it	serves	as	an	introduction	to	the	network.	There	is	650-page
document	on	the	USB	standard,	which	you	can	download	from	http://www.usb.org.	In
addition,	there	are	quite	a	few	web	sites	setup	to	assist	USB	designers,	such	as	the	one
titled	“USB	in	a	NutShell”	at	http://www.beyondlogic.org/usbnutshell/.

The	standard	is	much	more	complex	than	the	other	networks	presented	in	this	chapter.
Fortunately,	however,	there	are	a	number	of	USB	products	that	facilitate	incorporating
USB	into	an	embedded	system.		In	addition,	the	USB	controller	hardware	handles	the	low-
level	protocol.	USB	devices	usually	exist	within	the	same	room,	and	are	typically	less	than
4	meters	from	each	other.	USB	2.0	supports	three	speeds.

High	Speed	-	480Mbits/s

Full	Speed	-	12Mbits/s

Low	Speed	-	1.5Mbits/s
The	original	USB	version	1.1	supported	just	full	speed	mode	and	a	low	speed	mode.	The
Universal	Serial	Bus	is	host-controlled,	which	means	the	host	regulates	communication	on
the	bus,	and	there	can	only	be	one	host	per	bus.	On	the	other	hand,	the	On-The-Go
specification,	added	in	version	2.0,	includes	a	Host	Negotiation	Protocol	that	allows	two
devices	negotiate	for	the	role	of	host.	The	USB	host	is	responsible	for	undertaking	all
transactions	and	scheduling	bandwidth.	Data	can	be	sent	by	various	transaction	methods
using	a	token-based	protocol.		USB	uses	a	tiered	star	topology,	using	a	hub	to	connect
additional	devices.	A	hub	is	at	the	center	of	each	star.	Each	wire	segment	is	a	point-to-
point	connection	between	the	host	and	a	hub	or	function,	or	a	hub	connected	to	another
hub	or	function,	as	shown	in	Figure	7.33.	Because	the	hub	provides	power,	it	can	monitor
power	to	each	device	switching	off	a	device	drawing	too	much	current	without	disrupting
other	devices.	The	hub	can	filter	out	high	speed	and	full	speed	transactions	so	lower	speed
devices	do	not	receive	them.	Because	USB	uses	a	7-bit	address,	up	to	127	devices	can	be
connected.

Figure	7.33.	USB	network	topology.
	

The	electrical	specification	for	USB	was	introduced	in	Figure	7.10	and	Table	7.5,	using
four	shielded	wires	(+5V	power,	D+,	D-	and	ground).	The	D+	and	D-	are	twisted	pair
differential	data	signals.	It	uses	Non	Return	to	Zero	Invert	(NRZI)	encoding	to	send
data	with	a	sync	field	to	synchronize	the	host	and	receiver	clocks.		

USB	drivers	will	dynamically	load	and	unload.	When	a	device	plugged	into	the	bus,	the
host	will	detect	this	addition,	interrogate	the	device	and	load	the	appropriate	driver.
Similarly,	when	the	device	is	unplugged,	the	host	will	detect	its	absence	and	automatically
unload	the	driver.	The	USB	architecture	comprehends	four	basic	types	of	data	transfers:

•	Control	Transfers:	Used	to	configure	a	device	at	attach	time	and	can	be	used
for	other	device-specific	purposes,	including	control	of	other	pipes	on	the
device.

•	Bulk	Data	Transfers:	Generated	or	consumed	in	relatively	large	quantities
and	have	wide	dynamic	latitude	in	transmission	constraints.

•	Interrupt	Data	Transfers:	Used	for	timely	but	reliable	delivery	of	data,	for
example,	characters	or	coordinates	with	human-perceptible	echo	or	feedback
response	characteristics.

•	Isochronous	Data	Transfers:	Occupy	a	prenegotiated	amount	of	USB
bandwidth	with	a	prenegotiated	delivery	latency.	(Also	called	streaming	real-
time	transfers).
	

Isochronous	transfer	allows	a	device	to	reserve	a	defined	about	of	bandwidth	with
guaranteed	latency.	This	is	appropriate	for	real-time	applications	like	in	audio	or	video
applications.	An	isochronous	pipe	is	a	stream	pipe	and	is,	therefore,	always	unidirectional.
An	endpoint	description	identifies	whether	a	given	isochronous	pipe’s	communication
flow	is	into	or	out	of	the	host.	If	a	device	requires	bidirectional	isochronous
communication	flow,	two	isochronous	pipes	must	be	used,	one	in	each	direction.

A	USB	device	indicates	its	speed	by	pulling	either	the	D+	or	D-	line	to	3.3	V,	as	shown	in
Figure	7.34.	A	pull-up	resistor	attached	to	D+	specifies	full	speed,	and	a	pull-up	resistor
attached	to	D-	means	low	speed.	These	device-side	resistors	are	also	used	by	the	host	or
hub	to	detect	the	presence	of	a	device	connected	to	its	port.	Without	a	pull-up	resistor,	the
host	or	hub	assumes	there	is	nothing	connected.		High	speed	devices	begin	as	a	full	speed
device	(1.5k	to	3.3V).	Once	it	has	been	attached,	it	will	do	a	high	speed	chirp	during	reset
and	establish	a	high	speed	connection	if	the	hub	supports	it.	If	the	device	operates	in	high
speed	mode,	then	the	pull-up	resistor	is	removed	to	balance	the	line.

	

Figure	7.34.	Pull-up	resistors	on	USB	devices	signal	specify	the	speed.
Like	most	communication	systems,	USB	is	made	up	of	several	layers	of	protocols.	Like
the	CAN	network	presented	earlier,	the	USB	controllers	will	be	responsible	for
establishing	the	low-level	communication.		Each	USB	transaction	consists	of	three	packets

																																																																		Token	Packet	(header),
																																																																		Optional	Data	Packet,	(information)	and	
																																																																		Status	Packet	(acknowledge)

	

The	host	initiates	all	communication,	beginning	with	the	Token	Packet,	which	describes
the	type	of	transaction,	the	direction,	the	device	address	and	designated	endpoint.	The	next
packet	is	generally	a	data	packet	carrying	the	information	and	is	followed	by	a
handshaking	packet,	reporting	if	the	data	or	token	was	received	successfully,	or	if	the
endpoint	is	stalled	or	not	available	to	accept	data.	Data	is	transmitted	least	significant	bit
first.	Some	USB	packets	are	shown	in	Figure	7.35.	All	packets	must	start	with	a	sync
field.	The	sync	field	is	8	bits	long	at	low	and	full	speed	or	32	bits	long	for	high	speed	and
is	used	to	synchronize	the	clock	of	the	receiver	with	that	of	the	transmitter.	PID	(Packet
ID)	is	used	to	identify	the	type	of	packet	that	is	being	sent,	as	shown	in	Table	7.14.	

The	address	field	specifies	which	device	the	packet	is	designated	for.	Being	7	bits	in
length	allows	for	127	devices	to	be	supported.	Address	0	is	not	valid,	as	any	device	which
is	not	yet	assigned	an	address	must	respond	to	packets	sent	to	address	zero.	The	endpoint
field	is	made	up	of	4	bits,	allowing	16	possible	endpoints.	Low	speed	devices,	however
can	only	have	2	additional	endpoints	on	top	of	the	default	pipe.	Cyclic	Redundancy
Checks	are	performed	on	the	data	within	the	packet	payload.	All	token	packets	have	a	5-
bit	CRC	while	data	packets	have	a	16-bit	CRC.	EOP	stands	for	End	of	packet.	Start	of
Frame	Packets	(SOF)	consist	of	an	11-bit	frame	number	is	sent	by	the	host	every	1ms	±
500ns	on	a	full	speed	bus	or	every	125	µs	±	0.0625	µs	on	a	high	speed	bus.

Figure	7.35.	USB	packet	types.

Group PID
Value

Packet	Identifier

Token

	

0001 OUT	Token,	Address	+	endpoint

1001 IN	Token,	Address	+	endpoint

0101 SOF	Token,	Start-of-Frame	marker	and	frame
number

1101 SETUP	Token,	Address	+	endpoint

Data

	

	

0011 DATA0

1011 DATA1

0111 DATA2	(high	speed)

1111 MDATA	(high	speed)

Handshake

	

	

0010 ACK	Handshake,	Receiver	accepts	error-free
data	packet

1010 NAK	Handshake,	device	cannot	accept	data	or
cannot	send	data

1110 STALL	Handshake,	Endpoint	is	halted	or	pipe
request	not	supported

0110 NYET	(No	Response	Yet	from	receiver)

Special

	

	

	

1100 PREamble,	Enables	downstream	bus	traffic	to
low-speed	devices.

1100 ERR,	Split	Transaction	Error	Handshake

1000 Split,	High-speed	Split	Transaction	Token

0100 Ping,	High-speed	flow	control	probe	for	a
bulk/control	endpoint

Table	7.14.	USB	PID	numbers.

USB	functions	are	USB	devices	that	provide	a	capability	or	function	such	as	a	Printer,	Zip
Drive,	Scanner,	Modem	or	other	peripheral.	Most	functions	will	have	a	series	of	buffers,
typically	8	bytes	long.	Endpointscan	be	described	as	sources	or	sinks	of	data,	shown
as EP0In , EP0Out 	etc.	in	Figure	7.36.	As	the	bus	is	host	centric,	endpoints	occur	at	the
end	of	the	communications	channel	at	the	USB	function.	The	host	software	may	send	a
packet	to	an	endpoint	buffer	in	a	peripheral	device.	If	the	device	wishes	to	send	data	to	the
host,	the	device	cannot	simply	write	to	the	bus	as	the	bus	is	controlled	by	the	host.
Therefore,	it	writes	data	to	endpoint	buffer	specified	for	input,	and	the	data	sits	in	the
buffer	until	such	time	when	the	host	sends	a	IN	packet	to	that	endpoint	requesting	the	data.
Endpoints	can	also	be	seen	as	the	interface	between	the	hardware	of	the	function	device
and	the	firmware	running	on	the	function	device.

	

Figure	7.36.	USB	data	flow	model.
While	the	device	sends	and	receives	data	on	a	series	of	endpoints,	the	client	software
transfers	data	through	pipes.	A	pipe	is	a	logical	connection	between	the	host	and
endpoint(s).	Pipes	will	also	have	a	set	of	parameters	associated	with	them	such	as	how
much	bandwidth	is	allocated	to	it,	what	transfer	type	(Control,	Bulk,	Iso	or	Interrupt)	it
uses,	a	direction	of	data	flow	and	maximum	packet/buffer	sizes.	Stream	Pipes	can	be	used
send	unformatted	data.	Data	flows	sequentially	and	has	a	pre-defined	direction,	either	in	or
out.	Stream	pipes	will	support	bulk,	isochronous	and	interrupt	transfer	types.	Stream	pipes
can	either	be	controlled	by	the	host	or	device.	Message	Pipes	have	a	defined	USB	format.
They	are	host-controlled,	which	are	initiated	by	a	request	sent	from	the	host.	Data	is	then
transferred	in	the	desired	direction,	dictated	by	the	request.	Therefore	message	pipes	allow
data	to	flow	in	both	directions	but	will	only	support	control	transfers.

7.7.2.	Modular	USB	Interface
There	are	two	approaches	to	implementing	a	USB	interface	for	an	embedded	system.	In

the	modular	approach,	we	will	employ	a	USB-to-parallel,	or	USB-to-serial	converter.	The
modular	approach	is	appropriate	for	adding	USB	functionality	to	an	existing	system.	For
about	$30,	we	can	buy	a	converter	cable	with	a	USB	interface	to	connect	to	the	personal
computer	(PC)	and	a	serial	interface	to	connect	to	the	embedded	system,	as	shown	in
Figure	7.37.	The	embedded	system	hardware	and	software	is	standard	RS232	serial.	These
systems	come	with	PC	device	drivers	so	that	the	USB-serial-embedded	system	looks	like	a
standard	serial	port	(COM)	to	the	PC	software.	The	advantage	of	this	approach	is	that
software	development	on	the	PC	and	embedded	system	is	simple.	The	disadvantage	of	this
approach	is	none	of	the	power	and	flexibility	of	USB	is	utilized.	In	particular,	the
bandwidth	is	limited	by	the	RS232	line,	and	the	data	stream	is	unformatted.	Similar
products	are	available	that	convert	USB	to	the	parallel	port.	Companies	that	make	these
converters	include

IOGear	Inc.																																										http://www.iogear.com

Wyse	Technology																												http://www.wyse.com

D-Link	Corporation																												http://www.dlink.com

Computer	Peripheral	Sys,	Inc.														http://www.cpscom.com

Jo-Dan	International,	Inc.														http://www.jditech.com
	

	

Figure	7.37.	Modular	approach	to	USB	interfacing.
The	second	modular	approach	is	to	purchase	a	USB	parallel	interface	module.	These
devices	allow	you	to	send	and	receive	data	using	parallel	handshake	protocols	similar	to
the	input/output	examples	in	Chapter	3.	They	typically	include	a	USB-enabled
microcontroller	and	receiver/transmit	FIFO	buffers.	This	approach	is	more	flexible	than
the	serial	cable	method,	because	both	the	microcontroller	module	and	the	USB	drivers	can
be	tailored	personalized.	In	particular,	some	modules	allow	you	to	burn	PID	and	VID
numbers	into	EEPROM.	The	advantages/disadvantages	of	this	approach	are	similar	to	the
serial	cable,	in	that	the	data	is	unformatted	and	you	will	not	be	able	to	implement	high

bandwidth	bulk	transfers	or	negotiate	for	real-time	bandwidth	available	with	isochronous
data	transfers.	Companies	that	make	these	modules	include	

Future	Tech.	Devices	Inter.	Ltd.															http://www.ftdichip.com/

ActiveWire,	Inc.																																										http://www.activewireinc.com

DLP	Design,	Inc.																												http://www.dlpdesign.com

Elexol	Pty	Ltd.																																										http://www.elexol.com

7.7.3.	Integrated	USB	Interface
The	second	approach	to	implementing	a	USB	interface	for	an	embedded	system	is	to
integrate	the	USB	capability	into	the	microcontroller	itself.	This	method	affords	the
greatest	flexibility	and	performance,	but	requires	careful	software	design	on	both	the
microcontroller	and	the	host.	Over	the	last	15	years	USB	has	been	replacing	RS232	serial
communication	as	the	preferred	method	for	connecting	embedded	systems	to	the	personal
computer.	Manufacturers	of	microcontrollers	have	introduced	versions	of	the	product	with
USB	capability.		Every	company	that	produces	microcontrollers	has	members	of	the
family	with	USB	functionality.	Examples	include	the	Microchip	PIC18F2455,	Atmel
AT89C5131A,	FTDI	FT245BM,	Freescale	MCF51Jx,	STMicrosystems	STM32F102,
Texas	Instruments	MSP430F5xx,	and	Texas	Instruments	LM4F120/TM4C123.	Figure
7.38	shows	the	USB	configuration	on	the	EK-TM4C123GXL	LaunchPad	Evaluation	Kit,
which	is	capable	of	operating	as	a	device,	a	host	or	on-the-go	(OTG).	To	use	USB
populate	R25	and	R29.	The	LM4F120	can	be	only	configured	as	a	USB	device.	The
TivaWare ® 	software	library	has	14	example	projects	for	this	evaluation	board,	including
serial	port	translator,	secure	digital	card,	mouse,	and	keyboard	interface.

Figure	7.38.	The	TM4C123	LaunchPad	kit	supports	USB	host,	device,	and
OTG	modes.
To	operate	a	USB	interface	at	full	speed	DMA	synchronization	will	be	required,	so	that
data	is	transferred	directly	from	memory	to	USB	output,	or	from	USB	input	to	memory.

7.8.	Exercises
7.1	For	each	term	give	a	definition	in	32	words	or	less.

a)	Asynchronous																												b)	Baud	rate																												c)	Bandwidth

d)	Break																																											e)	DCE																																										f)	DTE

g)	Even	parity																												h)	Full	duplex																												i)	Frame

j)	Framing	error																												k)	Half	duplex																												l)	Mark

m)	Negative	logic																												n)	NRZ																																										o)	NRZI

p)	Open	drain																												q)	Overrun																												r)	Positive	logic

s)	Simplex																																										t)	Space																																										u)	Synchronous

	

7.2	In	32	words	or	less,	describe	the	similarities	and	differences	between	these	pairs	of
terms

a)	Baud	rate	versus	bandwidth																																										b)	Positive	logic	versus	negative
logic

c)	XON	versus	XOFF																																										d)	Full	duplex	versus	half	duplex

e)	DS275	versus	MAX232																																										f)	SCI	versus	SPI

g)	NRZ	versus	NRZI																																																								h)	DTE	versus	DCE
	

7.3	What	fundamental	electrical	property	is	used	to	transfer	digital	data	across	a	distance?

A)	Voltage																												D)	Frequency

B)	Current																												E)	Phase

C)	Energy																												F)	Wavelength

	

7.4	Look	up	in	the	LM3S/LM4F/TM4C	data	sheet	what	the	BUSY	bit	in	the	UART
operates.	In	particular,	when	is	it	set?	When	is	it	clear?	Can	the	software	clear	it?	Can	it
trigger	an	interrupt?

7.5	In	16	words	or	less,	explain	why	the	UART	receiver	ISR	in	Program	5.9	interrupts	on
both	RXRIS	and	RTRIS.	In	particular	when	does	RXRIS	trigger	and	when	does	RTRIS
trigger?

7.6	Draw	a	plot	similar	to	Figure	7.2	for	the	binary	data	00110111.

7.7	Draw	a	plot	similar	to	Figure	7.2	for	the	binary	data	10011100.

7.8	Consider	a	serial	port	operating	with	a	baud	rate	of	10,000	bits	per	second.	Draw	the
waveform	occurring	at	the	U0Tx	output	(voltage	levels	are	+3.3	and	0)	when	the	ASCII
‘a’	(0x61)	is	transmitted	on	UART0.	The	protocol	is	1	start,	8	data	and	1	stop	bit.	UART0
is	initially	idle,	and	the	software	writes	the	0x61	to UART0_DR_R 	at	time=0.	Show	the
U0Tx	line	before	and	after	the	frame,	assuming	the	channel	is	idle	before	and	after	the
frame.

7.9	Consider	a	serial	port	operating	with	a	baud	rate	of	1000	bits	per	second.	Draw	the
waveform	occurring	at	the	U1Tx	output	(voltage	levels	are	+3.3	and	0)	when	the	ASCII
‘B’	(0x42)	is	transmitted	on	UART1.	The	protocol	is	1	start,	8	data	and	1	stop	bit.	UART1
is	initially	idle,	and	the	software	writes	the	0x42to UART1_DR_R 	at	time=0.	Show	the
U1Tx	line	before	and	after	the	frame,	assuming	the	channel	is	idle	before	and	after	the
frame.

7.10	Assume	the	UART	baud	rate	is	1000	bits/sec	and	the	protocol	is	1	start,	8	data,	no
parity	and	1	stop	bit.	What	is	the	channel	bandwidth?	If	we	used	2	stop	bits	instead	of	1
without	changing	the	baud	rate,	would	the	bandwidth	be	higher,	lower	or	the	same?

7.11	The	data	in	Figure	7.39	was	measured	on	a	U0Rx	serial	input,	which	we	think	is	one
frame,	but	it	might	be	two	frames.	The	serial	format	is	1-start,	8-bit,	and	1-stop	bit.

a)	What	is	the	baud	rate	in	Case	A?

b)	What	data	is	being	transferred	in	Case	A?	Give	the	number(s)	in	hexadecimal.

c)	What	is	the	baud	rate	in	Case	B?

d)	What	data	is	being	transferred	in	Case	B?	Give	the	number(s)	in	hexadecimal.
	

Figure	7.39.	Serial	transmission	for	exercise	7.11.
7.12	RXRIS	and	RTRIS	interrupts	are	armed	so	that	interrupts	occur	when	new	data
arrives	into	the	LM3S/LM4F/TM4C.	Consider	the	situation	like	Program	5.9	in	which	a
software	FIFO	queue	is	used	to	buffer	data	between	the	ISR	and	the	main	program.	The
ISR	reads	data	from	the	UARTand	saves	the	data	by	calling Fifo_Put .	When	the	main
program	wants	input	it	calls UART_InChar ,	which	in	turn	calls Fifo_Get .	Experimental
observations	show	this	FIFO	is	usually	empty,	and	has	at	most	3	elements.	What	does	it
mean?	Choose	A-F.

A)	The	system	is	CPU	bound													

														B)	Bandwidth	could	be	increased	by	increasing	FIFO	size

C)	The	system	is	I/O	bound													

D)	The	FIFO	could	be	replaced	by	a	global	variable

E)	The	latency	is	small	and	bounded																																																																																			

F)	Interrupts	are	not	needed	in	this	system

	

7.13	A	slave	device	will	be	interfaced	to	the	master	LM3S/LM4F/TM4C	using	SSI.	The
timing	is	shown	in	Figure	7.40.	There	are	three	signals	that	will	be	outputs	of	the
LM3S/LM4F/TM4C	and	inputs	to	the	device	(Enable,	Clock,	and	Data).	The	timing	of	the
external	device	is	shown	below.	Assuming	a	Freescale	SPI	protocol,	what	SPH,	SPO
mode	should	you	use?

Figure	7.40.	Serial	transmission	for	exercise	7.13.
D7.14.	Write	software	that	creates	the	SSI	protocol	on	a	regular	digital	port.	More
specifically,	interface	the	DAC	in	Example	7.2	to	port	pins	PD3,	PD2,	PD1,	and	PD0.
(PD0	is	not	used).

D7.15.	Write	software	that	creates	the	SSI	protocol	on	a	regular	digital	port.	More
specifically,	interface	the	ADC	in	Example	7.3	to	port	pins	PB3,	PB2,	PB1,	and	PB0.

D7.16.	Write	software	that	creates	the	SSI	protocol	on	a	regular	digital	port.	More
specifically,	interface	the	74HC595	in	Example	7.4	to	port	pins	PD3,	PD2,	PD1,	and	PD0.
(PD0	is	not	used).

D.7.17		This	problem	addresses	the	issue	of	capacitive	loading	on	a	high-speed	serial
transmission	line	like	SSI.	The	SSI	ports	of	two	microcontrollers	are	connected	with	a
VERY	long	cable.	We	will	model	this	cable	as	a	single	resistor	in	series	with	a	capacitor,
as	shown	in	Figure	7.41.	For	this	question,	assume	an	ideal	transmitter	(output	impedance
of	0)	and	an	ideal	receiver	(input	impedance	of	infinity).	Let	the	resistance	R	be1 � ,	and
the	capacitance	C	be	10	nF.	Consider	a	3.3-V	100-ns	pulse	(T	=	100	ns)	on	the	output	of
the	transmitter	(labeled	as	Vin)	as	might	occur	with	a	5-Mbps	SSI	transmission.		Derive	an
equation	for	Vout	as	a	function	of	time	for	the	first	100	ns.	Show	your	work.	Calculate
values	for	Vout	at	time	equals	0	and	time	equals	100	ns.	Create	a	Vin	versus	time	sketch
similar	to	the	right	of	Figure	7.41,	and	add	a	sketch	of	Vout	on	this	same	plot.	Show	both	0
to	time	T	and	time	T	to	time	2T.

Figure	7.41.	Circuit	model	for	exercises	D7.17	and	D7.18.
D.7.18		Solve	exercise	D7.17with	R	=10 � ,	C	=	100	nF	and	T	=	10	ns.	Justify	whether	or
not	this	system	will	work?

D7.19	The	output	of	one	shift	register	is	connected	to	the	input	of	a	second	shift	register,
as	shown	in	Figure	7.42.	The	two	registers	are	controlled	by	the	same	50%	duty	cycle
Clock.	The	period	of	the	clock	is	t1.		The	data	is	shifted	out	on	the	falling	edge	of	Clock.
The	time	t2	=	[10ns	min,	200ns	max]	is	the	delay	from	the	falling	edge	of	Clock	until
when	the	output	is	valid.	The	data	is	shifted	into	the	second	register	on	the	rising	edge	of
Clock.	The	time	t3	=	50ns	is	the	time	before	the	rising	edge	of	Clock	that	the	data	must	be
valid.	The	time	t4	=	20ns	is	the	time	after	that	same	rising	edge	of	Clock	that	the	data	must
continue	to	be	valid.	What	is	the	smallest	t1	clock	period	that	reliably	transverses	data
from	one	shift	register	to	the	other?

Figure	7.42.	Circuit	and	timing	for	exercise	D7.19.

7.9.	Lab	Assignments
Lab	7.1	The	overall	objective	is	to	redesign	the	Lab	6.2	or	6.3	data	acquisition	system	to
employ	two	microcontrollers.	The	slave	microcontroller	will	perform	the	data	acquisition
(position	or	temperature),	and	the	master	microcontroller	will	interface	to	the	PC.	The	two
microcontrollers	will	be	linked	using	their	SSI	ports.	The	master	microcontroller	will	fetch
data	from	the	slave,	and	transmit	it	to	the	PC,	using	UART	interrupt	synchronization.	The
user	will	interact	with	a	PC	running	PuTTY.

Lab	7.2	The	overall	goal	is	to	develop	an	interrupting	UARTdevice	driver	that
implements	fixed-point	input/output.	The	fixed-point	constant	is	0.001.	The	full-scale
range	is	from	0	to	65.534.	The Fix_InDec 	function	should	provide	for	flexible	operation.
For	example	“50.5”	is	returned	as	50500,	and	“1.4595”	is	returned	as	1460.	The	operator
creates	the	input	by	typing	on	the	keyboard,	and	the	output	is	a	number	passed	back	as	the
return	parameter	of	the	function.	Notice	that Fix_InDec	rounds	the	input	to	the	closest
fixed-point	result	(e.g.,	1.4595	rounds	to	1.460	and	1.4604	also	rounds	to	1.460).	Some
numbers	like	1.2345678	might	be	considered	illegal	because	they	cause	overflow	of
intermediate	results.	In	the	comments	of	your	software,	please	discuss	why	you	chose	your
particular	implementation	method	over	the	other	available	choices.	Please	handle	the
backspace	character,	allowing	the	operator	to	erase	characters.	In	particular,	you	are	free	to
use	iterative	or	recursive	algorithms.	You	are	free	to	modify	the	prototypes	as	well	as
handle	illegal	inputs	in	any	way	you	feel	is	appropriate.	You	must	detect	illegal	input,	but
you	have	a	choice	as	to	how	your	system	responds	to	the	illegal	input.	One	possibility	for
handling	an	illegal	number	would	be	to	return	65535,	which	you	could	define	as	an	illegal
number.	A	second	possibility	for	when	an	illegal	number	is	typed	is	to	output	an	error
message,	and	require	the	operator	to	enter	the	number	again.	For	example,	50	is	output	as
“0.050”	and	12345	is	output	as	“12.345”.

Lab	7.3.	The	overall	goal	is	to	interface	a	DS1620	temperature	controller	to	the
microcontroller.	Create	the	functions	to	initialize,	set	high	temperature,	set	low
temperature	and	read	current	temperature.	When	reading	the	temperature	you	will	have	to
start	a	conversion	and	wait	for	the	conversion	to	be	complete.	Perform	experiments	to
determine	the	accuracy	of	the	temperature	measurement.	Interface	three	LEDs	to	TH	TL
TCOM	outputs,	and	perform	experiments	to	verify	the	temperature	controller	in	the
DS1620	is	operating	properly.

	

Lab	7.4.	The	overall	objective	of	this	lab	is	to	design,	implement	and	test	an	output	port
expander.	You	will	use	three	I/O	pins	of	the	microcontroller,	and	four	74HC595	shift
registers.	You	will	design	hardware	and	software	that	supports	four	8-bit	output	ports.	The
output	ports	do	not	need	to	be	readable.	Measure	how	long	it	takes	for	the	microcontroller
to	perform	outputs	to	all	32	bits.

Lab	7.5	The	overall	objective	of	this	lab	is	to	design,	implement	and	test	an	input	port
expander.	You	will	use	thee	I/O	pins	of	the	microcontroller,	and	four	74HC165	shift
registers.	You	will	design	hardware	and	software	that	supports	four	8-bit	input	ports.	The
input	ports	do	not	need	to	be	latched	by	an	external	signal.	Measure	how	long	it	takes	for
the	microcontroller	to	perform	inputs	from	all	32	bits.

Lab	7.6	The	objective	of	this	lab	is	to	design	a	digital	clock	using	a	DS1307	external
clock	chip.	The	first	step	is	to	interface	the	clock	chip	to	the	microcontroller	using	an	I2C
network.	The	second	step	is	to	design	low-level	drivers	to	allow	the	microcontroller	to
send	and	receive	data	from	the	DS1307.	The	next	software	layer	includes	functions
like SetTime 	FormatTime and ReadTime .	The	highest	level	is	a	main	program	that
implements	a	digital	clock	using	an	LED	or	LCD	display.	2,	3,	or	4	momentary	switches
will	be	used	to	control	the	operation	of	the	digital	clock.

Lab	7.7	The	objective	of	this	lab	is	to	design	a	digital	thermometer	using	a	DS1631A
external	thermometer	chip.	The	first	step	is	to	interface	the	thermometer	chip	to	the
microcontroller	using	an	I2C	network.	The	second	step	is	to	design	low-level	drivers	to
allow	the	microcontroller	to	send	and	receive	data	from	the	DS1631A.	The	next	software
layer	includes	functions	like SetMode and ReadTemperature .	The	highest	level	is	a
main	program	that	implements	a	digital	thermometer	using	an	LED	or	LCD	display.	2	or	3
momentary	switches	will	be	used	to	control	the	operation	of	the	digital	thermometer.

	

	

	

8.	Analog	Interfacing
Chapter	8	objectives	are	to:
• 	Design	analog	amplifiers	and	filters

•	Study	building	blocks	for	data	acquisition	including	DAC	and	ADC

•	Discuss	the	functionality	of	the	ADC	on	the	LM3S	and	TM4C

	
Most	embedded	systems	include	components	that	measure	and/or	control	real	world
parameters.	These	real	world	parameters,	like	position,	speed,	temperature,	and	voltage,
usually	exist	in	a	continuous	or	analog	form.	Therefore,	the	design	of	an	embedded	system
involving	these	parameters	rarely	uses	only	binary	or	digitallogic.	Rather,	we	will	often
need	to	amplify,	filter	and	eventually	convert	to	digital	form	these	signals.	In	this	chapter
we	will	develop	the	analog	circuit	building	blocks	used	in	the	design	of	data	acquisition
systems	and	control	systems. 	A	computer	engineer	interested	in	the	field	of	embedded
systems	will	find	more	job	opportunities	if	he	or	she	can	develop	microcontroller	skills
along	with	analog	circuit	design	skills. 													

8.1.	Resistors	and	Capacitors

8.1.1.	Resistors
As	engineers,	we	use	resistors	and	capacitors	for	many	purposes.	The	resistor	or	capacitor
type	is	defined	by	the	manufacturing	process,	the	materials	used,	and	the	testing
performed.	The	performance	and	cost	of	these	devices	vary	significantly.	For	example,	a
5%	1/4	watt	carbon	resistor	costs	less	than	1¢,	while	a	0.01%	thin	film	or	wirewound
resistor	may	cost	$6.		It	is	important	to	understand	both	our	circuit	requirements	and	the
resistor	parameters	so	that	we	match	the	correct	resistor	type	to	each	application	yielding
an	acceptable	cost-performance	balance.	We	must	specify	in	our	technical	drawings	the
device	type	and	tolerance	(e.g.,	1%	metal	film),	so	that	your	prototype	can	be	effectively
manufactured.	The	characteristics	of	various	resistor	types	are	shown	in	Table	8.1.

Type Range Tolerance Temperature
coef

Max
Power

Carbon
composition

1	Ω	to	22	MΩ 5	to	10	% 200	to	700	ppm/
˚C

1	W

Carbon	film 1	Ω	to	22	MΩ 1	to	10	% 200	to	1500
ppm/˚C

2	W

Metal	film 0.01	Ω	to	68
MΩ

>0.05	% 2	to	300	ppm/˚C 1	W

Thick	and	thin
film

0.001	Ω	to	100
GΩ

0.1	to	20
%

5	to	1000	ppm/
˚C

100	W

Wirewound 0.005	Ω	to	167
kΩ

>0.0005
%

10	to	900	ppm/
˚C

30	W

Table	8.1.	General	specification	of	various	types	of	resistor	components.

	

Carbon	composition	resistors	are	manufactured	with	hot-pressed	carbon	granules.	Various
amounts	of	filler	are	added	to	achieve	a	wide	range	of	resistance	values.	Film	resistors	are
made	by	depositing	pure	metals,	such	as	nickel,	or	an	oxide	film,	such	as	tin-oxide,	onto
an	insulating	ceramic	rod	or	substrate.	A	wirewound	resistor,	is	made	by	winding	a	thin
metal	alloy	wire	such	as	Nichrome	onto	an	insulating	ceramic	in	the	form	of	a	spiral	helix.

The	least	expensive	type	of	a	through-hole	resistor	is	carbon	film.	We	add	them	to	digital
circuits	as	+3.3-V	pull-ups.	In	order	to	improve	the	accuracy	and	stability	of	our	precision
analog	circuits,	we	will	use	resistors	with	a	lower	tolerance	and	smaller	temperature
coefficient.	For	most	applications	1%	thick	film	or	metal	film	resistors	will	be	sufficient	to
build	our	analog	amplifier	circuits.	For	surface	mount	construction	we	use	either	thick
film	or	thin	film	resistors,	which	come	in	a	wide	range	of	sizes	and	tolerances.	Wirewound
resistors	are	manufactured	by	twisting	a	very	long	very	thin	wire	like	a	spring.	The	wire	is
coiled	up	and	down	a	shaft	in	such	a	way	to	try	and	cancel	the	inductance.	Since	some
inductance	remains,	wirewound	resistors	should	not	be	used	for	high	frequency	(above	1
MHz)	applications.

Observation:	All	resistors	produce	white	(thermal)	noise.

Observation:	Wirewound	resistors	do	not	generate	1/f	noise,	whereas	the	other	types	do.

8.1.2.	Capacitors
Similarly,	capacitors	come	in	a	wide	variety	of	sizes	and	tolerances.	Polarized	capacitors
operate	best	when	only	positive	voltages	are	applied.	Nonpolarized	or	bipolar	capacitors
operate	for	both	positive	and	negative	voltages.	We	select	a	capacitor	based	on	the
following	parameters:	capacitance	value,	polarized/nonpolarized,	maximum	voltage	level,
tolerance,	leakage	current	(resistance),	temperature	coefficient,	useful	frequency	response,
and	temperature	range.	The	maximum	voltage	rating	is	important	for	high	voltage	circuits,
but	is	of	lesser	importance	for	embedded	microcontroller	systems.	Table	8.2	compares
various	capacitor	types	we	could	use	in	our	circuit.

	

Type Range Tolerance Temp
coef

Leakage Frequencies

Polystyrene 10pF	to
2.7µF

±0.5% Excellent 10GΩ 0	to	1010	Hz

Polypropylene 100pF	to
50µF

Excellent Good Excellent 	

Teflon 1000pF	to
2µF

Excellent Best Best 	

Mica 1pF	to	0.1µF ±1	to	±20% 	 1000MΩ 103	to	1010
Hz

Ceramic 1pF	to
0.01µF

±5	to	±20% Poor 1000MΩ 103	to	1010
Hz

	 100MΩ

Paper	(oil-
soaked)

1000pF	to
50µF

±10	to
±20%

100	to	108
Hz

Mylar
(polyester)

5000pF	to
10µF

±20% Poor 10GΩ 103	to	1010
Hz

Tantalum 0.1µF	to
220µF

±10% Poor 	 	

Electrolytic 0.47µF	to
0.01F

±20% Ghastly 1MΩ 10	to	104
Hz

Table	8.2.	General	specification	of	various	types	of	capacitor	components	(Wolf	and
Smith,	Student	Reference	Manual,	Prentice	Hall,	pg.	302,	1990	and	Horowitz	and
Hill,	The	Art	of	Electronics,	Cambridge	University	Press,	pg.	22,	1989).

	

We	will	use	capacitors	for	two	purposes	in	our	microcontroller-based	embedded	systems.
First,	we	will	place	them	on	the	DC	power	lines	to	filter	the	supply	voltage	to	our	circuits.
A	voltage	supply	typically	will	include	ripple,	which	is	added	noise	on	top	of	the	DC
voltage	level.	There	are	two	physical	locations	to	place	the	supply	filters.	The	first
location	is	at	the	entry	point	of	the	supply	voltage	onto	the	circuit	board.	There	are	two
approaches	to	this	board-level	filter.	If	the	supply	noise	is	mostly	voltage	ripple,	then	two
capacitors	in	parallel	can	be	used.	The	large	amplitude	polarized	capacitor	(e.g.,	1	to	47	µF
electrolytic	or	tantalum)	will	remove	low	frequency	large	amplitude	voltage	noise,	and	the
nonpolarized	capacitor	(e.g.,	0.01	to	0.47	µF	ceramic)	will	remove	high	frequency	voltage
noise.	Two	different	types	of	capacitors	are	used	because	they	are	effective	(i.e.,	behave
like	a	capacitor)	at	different	frequencies.		The	∏	filter	(CLC)	is	very	effective	in	removing
current	spike	noise.	The	CLC	parameters	depend	on	the	amplitude	of	the	current	ripple.
The	inductor	in	Figure	8.1	can	be	a	ferrite	bead.	At	DC	the	bead	is	essentially	a	short
current.	The	ferrite	beadincreases	both	its	real	and	reactive	impedance	at	high	frequencies.
The	bead	should	be	selected	to	have	large	impedance	at	the	digital	clock	frequency.
Panasonic	makes	a	series	of	ferrite	beads.	The	Panasonic	EXC-ELDR25C	has	a	DC
resistance	of	0.08 � ,	can	conduct	7A	DC,	but	has	an	80- �	impedance	at	24	MHz.

Figure	8.1.	DC	supply	filters.

In	addition	to	the	board-level	supply	filter,	we	will	add	bypass	capacitors	at	the	supply
pins	of	each	chip.	It	will	be	important	to	place	these	capacitors	as	close	to	the	pin	as
physically	possible	as	illustrated	in	Figure	8.2.	A	nonpolarized	capacitor	(e.g.,	0.01	to	0.1
µF	ceramic)	will	smooth	the	supply	voltage	as	seen	by	the	chip.	Placing	the	capacitor
close	to	the	chip	prevents	current	surges	from	one	chip	from	affecting	the	voltage	supply
of	another.

Figure	8.2.	PCB	layout	positioning	the	bypass	capacitor	close	to	the	chip.
The	second	application	of	capacitors	in	our	embedded	systems	will	be	in	the	linear	analog
circuits	of	the	low	pass	filter,	the	high	pass	filter,	the	derivative	circuit,	and	the	integrator
circuit.	For	these	applications	we	will	select	a	nonpolarized	capacitor	even	if	the	signal
amplitude	is	always	positive.	In	addition,	we	usually	want	a	low-tolerance,	low-leakage
capacitor	to	improve	the	accuracy	of	the	linear	analog	circuit.	Ceramic	capacitors	are	a
low-cost	medium-quality	choice	for	analog	circuit	design.	They	come	in	three	tolerances,
see	Table	8.2.	The	best	ceramic	is	C0G,	which	has	a	1	to	10%	tolerance	and	a	temperature
coefficient	of	30ppm/oC	or	±0.3%	over	-55	to	125oC.	The	middle	grade	is	X7R	ceramic,
which	has	a	5	to	20%	tolerance	and	a	temperature	coefficient	of	±15%	over	-55	to	125oC.
The	lowest	cost	ceramic	is	Z5U,	which	has	a	20%	tolerance	and	a	temperature	coefficient
of	22	to	-56%	over	10	to	86oC.	We	can	use	Z5U	for	bypass	capacitors	on	power	lines,	but
we	should	use	either	C0G	or	X7R	for	analog	filters.

Part	number Type Tolerance Cost

06035A102FAT2A C0G ±1% $0.846

06035C102JAT2A X7R ±5% $0.11

06035C102KAT2A X7R ±10% $0.022

Table	8.3.	Cost	of	AVX	ceramic	capacitors:	1000	pF,	50	V,	surface	mount	0603
package	(2013	prices	on	www.digikey.com	for	quantity	10).

	

Observation:	The	maximum	voltage	rating	of	a	capacitor	is	limited	to	its	size.

Common	error:	Polarized	capacitors	often	have	a	nonlinear	capacitance	versus	frequency
response,	therefore	using	them	in	an	analog	filter	will	cause	distortion.

Common	error:		If	you	design	an	electronic	circuit	and	neglect	to	explicitly	specify	the
resistor	and	capacitor	types,	then	an	incorrect	substitution	may	occur	in	the
layout/manufacturing	stage	of	the	project.

	

8.2.	Op	Amps
	

While	the	design	of	analog	electronics	is	not	an	explicit	objective	of	this	book,	we	will
include	a	brief	discussion	of	analog	circuit	design	issues	often	related	to	embedded
systems.	For	example,	low	cost,	small	size,	single	voltage	supply,	and	low	power	are	four
characteristics	typical	of	embedded	systems.	Other	factors	to	consider	are	reliability,
noise,	frequency	response,	availability,	and	temperature	range.

Over	a	dozen	manufacturers	produce	thousands	of	analog	integrated	circuits.
Manufacturers	include:	Analog	Devices,	Avago	Technologies,	Cirrus	Logic,	Fairchild,
Honeywell,	Intersil,	Linear	Technology,	Maxim	IC,	Microchip,	National	Semiconductor,
NXP	Semiconductors,	ON	Semiconductor,	Silicon	Laboratories,	Texas	Instruments,	and
Toshiba.	The	fact	that	there	are	so	many	op	amps	available	makes	the	choice	confusing.
The	manufacturers	do	publish	a	selection	guide	of	their	products	to	assist	in	finding	an
appropriate	part.

Table	8.4	lists	performance	parameters	of	four	op	amps,	and	the	choice	of	these	particular
devices	typify	the	kinds	of	op	amps	used	in	an	embedded	system,	but	the	selection	of	these
particular	four	is	not	meant	as	a	recommendation.	Many	op	amps	come	in	a	variety	of
package	sizes	and	are	available	in	1,	2,	or	4	op	amps	per	package.	We	will	use	rail-to-rail
op	amps,	like	the	ones	in	Table	8.4	to	design	analog	circuits	that	run	on	a	single	+3.3	V
supply.	The	OPA330	and	MAX494	are	low-power	devices.

The	op	amp	rails	are	its	two	power	supplies,	-Vs	and	+Vs.	A	typical	op	amp	powered	with
±12‑V	rails	operates	properly	when	its	inputs	and	outputs	are	between	-10	to	+10	V.	A
rail-to-rail	op	amp	operates	in	a	linear	fashion	for	output	voltages	all	the	way	from	the
minus	rail	to	the	plus	rail.	Some	op	amps	operate	“rail-to-rail”	for	both	the	inputs	and
output.

	

Single	op	amp

Double	op	amp

Quad	op	amp

OPA330

OPA2330

OPA4330

OPA350

OPA2350

OPA4350

	

TLC2272

TLC2274

	

MAX492

MAX494

Description Low
power

High	speed Rail-to-
Rail

Rail-to-
Rail

K,	Open	loop
gain

100	dB 122	dB 104	dB 108	dB

Rcm,	Input
impedance

4	pF 1013	Ω	||
6.5pF

1012	Ω	||
8pF

	

2	pF 2	MΩ

Rdiff,	Input
impedance

1013	Ω	||
2.5pF

1012	Ω	||
8pF

Vos,	Offset
voltage

50	V 0.5	mV 3	mV 0.5	mV

Ios,	Offset	current 500	pA 10	pA 100	pA 6	nA

Ib,	Bias	current 1	nA 10	pA 100	pA 60	nA

en,	Noise	density 55	nV/√Hz 5	nV/√Hz 50	nV/
√Hz

25	nV/
√Hz

f1,
Gain*bandwidth
product

350	kHz 38	MHz 2.18	MHz 500	kHz

dV/dt,	Slew	rate 0.16V/ �s 22V/ �s 3.6	V/ �s 0.2	V/ �s

+Vs,	Voltage
supply

1.5	to	5.5
V

2.7	to	5.5
V

0	to	5	or
±5	V

2.7	to	6	V

Is,	Supply	current 35	A 7.5	mA 3	mA 170 � A

Cost $2 $4 $2 $6

Table	8.4.	Parameters	for	various	rail-to-rail	CMOS	op	amps	used	in	this	chapter
(with	–Vs	grounded).

	
Checkpoint	8.1:	What	is	the	relationship	between	bandwidth	and	supply	current?	

Observation:	The	op	amp	should	be	much	faster	than	the	signal	you	are	trying	to
process.	

8.2.1.	Ideal	Op	Amp	Model
We	will	begin	our	discussion	of	op	amps	with	the	ideal	op	amp.	For	simple	analog
circuits	using	high	quality	devices,	the	ideal	model	will	be	sufficient.		With	an	ideal	op
amp,	the	output	voltage,	Vout,	is	linearly	related	to	the	difference	between	the	input
voltages,

Vout	=	K	•	(Vy–Vx)

where	the	gain,	K,	is	a	very	large	number,	as	shown	in	Figure	8.3.

Voltage	ranges	of	the	inputs	and	outputs	are	bounded	by	the	supply	voltages,	+Vs	and	-Vs.
Op	amp	circuits	found	in	many	traditional	analog	design	textbooks	are	powered	with	±12-
V	supplies.	On	the	other	hand,	it	will	reduce	system	cost	to	power	our	embedded	systems
with	a	single	voltage.	More	specifically,	if	the	microcontroller	operates	with	+3.3-V
supply,	we	will	run	the	analog	circuits	also	on	+3.3	V.	In	particular,	we	will	use	rail-to-rail
op	amps	and	set	+Vs	to	+3.3	V	and	-Vs	to	ground.

No	matter	how	we	power	the	analog	circuits,	we	assume	the	input	and	output	voltages	will
exist	between	-Vs	and	+Vs.		The	input	currents	into	the	op	amp	are	very	small.	Because	the
input	impedance	of	the	op	amp	is	large,	the	ideal	model	assumes	Ix	and	Iy	are	zero.

Figure	8.3.	Regular	op	amp	and	a	single	supply	rail-to-rail	op	amp.
If	a	feedback	resistor	is	placed	between	the	output	and	the	negative	terminal	of	the	op
amp,	then	this	negative	feedback	will	select	an	output	such	that	Vx	is	very	close	to	Vy.	In
the	ideal	model,	we	let	Vx=Vy.	One	way	to	justify	this	behavior	is	to	recall	that	Vout=K•(Vy-
Vx).	Since	K	is	very	large,	the	only	way	for	Vout	to	be	between	-Vs	and	+Vs	is	for	Vx	to	be
very	close	to	Vy.

We	can	design	a	threshold	detector	using	positive	or	no	feedback.	A	threshold	detector
has	a	binary	output	(true	or	false)	depending	on	whether	or	not	an	input	signal	is	greater
than	a	threshold	value.	Positive	feedback	or	no	feedback	drives	Vout	to	equal	-Vs	or	+Vs		If	a
feedback	resistor	is	placed	between	the	output	and	the	positive	terminal	of	the	op	amp,
then	this	feedback	will	saturate	the	output	to	either	the	positive	or	negative	supply.	With
no	feedback,	the	output	will	also	saturate.	In	both	cases	the	output	will	saturate	to	the
positive	supply	if	Vy>Vx,	and	to	the	negative	supply	if	Vx>Vy.	We	will	see	later,	that
positive	feedback	can	be	used	to	create	hysteresis.

8.2.2.	Realistic	Op	Amp	Model
Although	the	input	impedance	of	an	op	amp	is	large,	it	is	not	infinite	and	some	current
enters	the	input	terminals.	Figure	8.4	illustrates	the	definition	of	input	impedance.	We
define	the	common-mode	input	impedance,	Rcm,	as	the	common	mode	voltage	divided
by	the	common	mode	current.	We	define	the	differential	input	impedance,	Rdiff	as	the
differential	voltage	divided	by	the	differential	current.	These	parameters	vary	considerably
from	op	amp	to	op	amp.	The	CMOS	and	FET	devices	have	very	large	input	impedances.

Figure	8.4.	Definition	of	op	amp	input	impedance.
The	next	realistic	parameter	we	will	define	is	open-loop	output	impedance.	When	the	op
amp	is	used	without	feedback,	the	op	amp	output	impedance	is	defined	as	the	open	circuit
voltage	divided	by	the	short	circuit	current.	The	output	impedance	is	a	measure	of	how
much	current	the	op	amp	can	source	or	sink.	The	open	loop	output	impedance	of	the
TLC2274	is	140Ω.

Checkpoint	8.2:	The	MAX494	has	an	output	short-circuit	current	of	30	mA.		Assuming
an	output	of	5	V,	what	is	its	output	impedance?	

Observation:	The	input	and	output	impedance’s	of	the	op	amp	are	not	necessarily	the
same	as	the	input	and	output	impedance’s	of	the	entire	analog	circuit.

As	illustrated	in	Figure	8.5,	the	op	amp	offset	voltage	Vos	is	defined	as	the	voltage
difference	between	Vy	and	Vx	which	yields	an	output	of	zero.	The	offset	current	Ios	is
defined	as	the	current	difference	between	inputs.	There	will	be	an	output	error	equal	to	the
offset	voltage	times	the	gain	of	amplifier.	Similarly,	the	offset	current	creates	an	offset
voltage	through	the	resistors	of	the	circuit.		Some	op	amps	provide	the	capability	to	add	an
external	potentiometer	to	nullify	the	two	offset	errors.	The	use	of	a	null	offset	pot
increases	manufacturing	costs	and	incurs	a	labor	cost	to	adjust	it	periodically.	Therefore,
the	overall	system	cost	may	be	reduced	by	using	more	expensive	op	amps	that	do	not
require	a	null	offset	pot.	Alternatively,	if	the	gain	and	offset	are	small	enough	not	to
saturate	the	output,	then	the	offset	error	can	be	corrected	in	software	by	adding/subtracting
an	appropriate	calibration	constant.

The	op	amp	bias	current	Ib	is	defined	as	the	common	current	coming	out	of	both	Vy	and
Vx.	We	can	reduce	the	effect	of	bias	current	by	selecting	resistors	in	our	circuit	in	order	to
equalize	the	effective	impedance	to	ground	from	the	two	input	terminals.

Figure	8.5.	Definition	of	op	amp	offset	voltage,	offset	current,	and	bias
current.
Checkpoint	8.3:	Consider	the	situation	where	a	MAX494	is	used	to	create	an	analog
amplifier	with	gain	100.		What	will	be	the	output	error	due	to	offset	voltage?	

Checkpoint	8.4:	Why	can’t	a	TLC2274	is	be	used	to	create	an	amplifier	with	gain	1000?

The	input	voltage	noise,	Vn,	arises	from	the	thermal	noise	generated	in	the	resistive
components	within	the	op	amp.	Due	to	the	white-noise	process,	the	magnitude	of	the	noise
is	a	function	of	the	bandwidth	(BW)	of	the	analog	circuit.	This	parameter	varies	quite	a	bit
from	op	amp	to	op	amp.	To	calculate	the	RMS	amplitude	of	the	input	voltage	noise,	we
need	to	calculate,	Vn	=	en•√(BW).	To	reduce	the	effect	of	noise	we	can	limit	the	bandwidth
of	the	analog	system	using	an	analog	low	pass	filter	or	buy	a	better	op	amp.	The	output
voltage	noise	will	be	the	input	voltage	noise	multiplied	by	the	gain	of	the	circuit.

There	are	two	approaches	to	defining	the	transient	response	of	our	analog	circuits.	In	the
frequency	domain	we	can	specify	the	frequency	and	phase	response.	In	the	time	domain,
we	can	specify	the	step	response.	For	most	simple	analog	circuits	designed	with	op	amps,
the	frequency	response	depends	on	the	op	amp	performance	and	the	analog	circuit	gain.	If
the	unity-gain	op	amp	frequency	response	is	f1,	then	the	frequency	response	at	gain,	G,
will	be	f1/G.	The	bandwidth,	BW,	is	defined	as	the	frequency	at	which	the	gain	(Vout/Vin)
drops	to	0.707	of	the	original.	The	voltage	gain	in	decibels	Gdb	is	related	to	the	voltage
gain	in	V/V.	When	Vout/Vin	equals	0.707	(√½),	the	Gdb	=	-3	dB.

The	output	slew	rate	is	the	maximum	slope	that	the	output	can	generate.	Slew	rate	is
important	if	the	circuit	must	response	quickly	to	changes	in	input	(e.g.,	a	sensor	detecting
discrete	events).	Alternatively,	bandwidth	is	important	if	the	circuit	is	responding	to	a
continuously	changing	input	(e.g.,	audio	and	video).

Checkpoint	8.5:	Consider	the	situation	where	a	MAX494	is	used	to	create	an	analog
amplifier	with	a	gain	of	100.	What	will	be	the	bandwidth	of	this	circuit?	Given	this
bandwidth,	what	will	be	the	RMS	output	voltage	noise?	

When	we	consider	the	performance	of	a	linear	amplifier	normally	we	specify	the	voltage
gain,	input	impedance	and	output	impedance.	These	three	parameters	can	be	lumped	into	a
single	parameter,	Adb,	called	the	power	gain.	Let	Vin	Rin	be	the	inputs	and	Vout	Rout	be	the
outputs	of	our	amplifier.	The	input	and	output	powers	are	Pin=V2in/Rin	and	Pout=V2out/Rout
respectively.	Then	the	power	gain	in	decibels	has	voltage	gain	and	impedance
components.

8.2.3.	Op	Amp	Circuit	Design
The	open	loop	or	saturated	mode	performance	of	a	OPA2350	op	amp	can	be	studied	by
looking	at	the	simple	circuit	in	Figure	8.6.	We	use	saturated	mode	to	create	a	threshold
detector.	When	the	input,	V1,	is	above	the	reference,	Vt,	then	the	output,	V2,	saturates	to
+3.3	V.	Similarly,	when	V1	is	below		Vt	then	V2	saturates	to	0	V.

Figure	8.6.	A	positive	logic	voltage	comparator	using	a	OPA2350	op	amp.
The	OPA2350	will	operate	on	a	supply	range	of	2.7	to	5.5	V.	Notice	that	it	will	create	a
digital	output	when	+Vs	is	3.3V	and	-Vs	is	ground.	The	input	voltages	on	input	pins	of	the
OPA2350	must	be	between	-0.3	and	+3.6V.	The	short	circuit	output	current	of	the
OPA2350	is	80	mA.	The	OPA2350	slew	rate	is	22V/µsec,	with	a	settling	time	of	500ns.

	

A	wide	range	of	analog	circuits	can	be	designed	by	following	these	simple
design	rules.
1.	Choose	quality	components.

It	is	important	to	use	op	amps	with	good	enough	parameters.	Similarly	we	should	use	low
tolerance	resistors	and	capacitors.	On	the	other	hand,	once	the	preliminary	prototype	has
been	built	and	tested,	then	we	could	create	alternative	designs	with	less	expensive
components.	Because	a	working	prototype	exists,	we	can	explore	the	cost/performance
tradeoff.

	

2.	Negative	feedback	is	required	to	create	a	linear	mode	circuit.

As	mentioned	earlier,	the	negative	feedback	will	produce	a	linear	input/output	response.	In
particular,	we	place	a	resistor	between	the	negative	input	terminal	and	the	output	(Figure
8.7).	A	corollary	to	this	is	we	almost	never	place	a	resistor	between	the	positive	input
terminal	and	the	output.

Figure	8.7.	Negative	feedback	is	created	by	placing	a	resistor	between	the
-	input	and	output.
3.	Assume	no	current	flows	into	the	op	amp	inputs.

Since	the	input	impedance	of	the	op	amp	is	large	compared	to	the	other	resistances	in	the
circuit,	we	can	assume	that	Ix=Iy=0.

	

4.	Assume	negative	feedback	equalizes	the	op	amp	input	voltages.

If	the	analog	circuit	is	in	linear	mode	with	negative	feedback,	then	we	can	assume	Vx=Vy.

	

5.	Choose	resistor	values	in	the	1	kΩ	to	1	MΩ	range.

In	order	to	have	the	resistors	in	the	circuit	be	much	larger	than	the	output	impedance	of	the
op	amp	and	much	smaller	than	the	input	impedance	of	the	op	amp,	we	choose	resistors	in
the	1	kΩ	to	1	MΩ	range.	If	we	can,	it	is	better	to	restrict	values	to	the	10	kΩ	to	100	kΩ
range.	If	we	choose	resistors	below	1	kΩ,	then	currents	will	increase.	If	the	currents	get
too	large	the	batteries	will	drain	faster	and	the	op	amp	may	not	be	able	to	source	or	sink
enough	current.	As	the	resistors	go	above	1	MΩ,	the	white	noise	increases,	the	current
errors	(Ios	Ib	In)	become	more	significant.	In	addition,	low	tolerance	resistors	are	expensive
in	sizes	above	2	MΩ.

	

6.	The	analog	circuit	bandwidth	depends	on	the	gain	and	the	op	amp	performance.

Let	the	unity-gain	op	amp	frequency	response	be	f1,	and	let	the	analog	circuit	gain	be	G.
The	frequency	response	or	bandwidth	of	the	analog	circuit,	BW,	will	be	f1/G.	Design	the
circuit	bandwidth	10	times	faster	than	the	signal	you	are	trying	to	process.

	

7.	Equalize	the	effective	resistance	to	ground	at	the	two	op	amp	input	terminals.

To	study	the	bias	currents,	consider	all	other	voltage	sources	as	shorts	to	ground,	and	all
other	current	sources	as	open	circuits.	Adjust	the	resistance	values	in	the	circuit	so	that	the
impedance	from	the	+	terminal	to	ground	is	the	same	as	the	impedance	from	the	-	terminal
to	ground.	In	this	way,	the	bias	currents	will	create	a	common	mode	voltage,	which	will
not	appear	at	the	op	amp	output	because	of	the	common	mode	rejection	of	the	op	amp.

	

8.	The	impedance	is	the	voltage	divided	by	the	current.

If	the	analog	circuit	has	a	single	input	voltage,	then	the	input	impedance,	Zin,	is	simply	the
input	voltage	divided	by	the	input	current	as	shown	in	Figure	8.8.	The	output	impedance,
Zout,	is	the	open	circuit	output	voltage	divided	by	the	short	circuit	output	current.

	

Figure	8.8.	Definition	of	input	and	output	impedance	for	an	analog	circuit
with	a	single	input.
If	the	input	stage	of	the	analog	circuit	is	a	differential	amplifier	with	two	input	voltages,
then	we	can	specify	the	common	mode	input	impedance,	Zcm,	and	the	differential	mode
input	impedance,	Zdiff.		See	Figure	8.9.

	

Figure	8.9.	Definition	of	input	impedance	for	an	analog	circuit	with	two
inputs.
Observation:	In	most	cases,	the	differential	mode	input	impedance	of	the	analog	circuit
will	be	the	differential	mode	input	impedance	of	the	op	amp.

9.	Match	input	impedances	to	improve	CMRR.

If	the	input	stage	of	the	analog	circuit	is	a	differential	amplifier	with	two	input	voltages,	a
very	important	performance	parameter	is	called	the	common	mode	rejection	ratio
(CMRR).	It	is	assumed	that	the	signal	of	interest	is	the	differential	voltage,	whereas
common	mode	voltages	are	considered	noise.	I.e.,	Vdiff	will	be	the	desired	signal	and	Vcm	is
the	added	noise.	The	CMRR	is	defined	to	be	the	ratio	of	the	differential	gain	divided	by
the	common	mode	gain.	See	Figure	8.10.	Therefore	a	differential	amplifier	with	a	large
CMRR	will	pass	the	signal	and	reject	the	noise.	In	decibels,	it	is	calculated	as

CMRR	=	20	•	log10	(Gdiff/Gcm)

	

	

Figure	8.10.	Definition	of	common	mode	rejection	ratio	(CMRR).
Remember,	Vdiff	is	the	signal	and	Vcm	is	noise.	There	are	two	sets	of	impedances	we	must
match	to	achieve	a	good	CMRR.	Each	amplifier	input	has	a	separate	input	impedance	to
ground,	shown	as	Zin1	and	Zin2	in	Figure	8.11.	To	improve	CMRR,	we	make	Zin1	equal	to
Zin2.	Similarly,	the	signal	source	(Vdiff)	has	a	separate	output	impedance,	Zout1	and	Zout2.	
Again,	we	try	to	make	Zout1	equal	to	Zout2.	Unfortunately,	if	Zin1	does	not	equal	Zin2	or	if	Zout1

does	not	equal	Zout2	then	a	common	mode	signal	(e.g.,	added	noise	in	the	cable)	will
appear	as	a	differential	signal	to	the	analog	circuit	and	thus	be	present	in	the	output.

Figure	8.11.	Circuit	model	for	improving	common	mode	rejection	ratio
(CMRR).
10.	Rail-to-rail	considerations.

When	designing	with	rail-to-rail	op	amps,	we	must	guarantee	that	the	voltages	at	all	input
and	output	pins	of	the	op	amps	never	go	outside	the	range	of		-Vs	to	+Vs		.

We	will	begin	with	an	inverting	amplifier	(Figure	8.12),	which	is	a	simple	linear	mode
analog	circuit.	The	gain	is	the	R2/R1	ratio.	Notice	that	the	gain	response	is	independent	of
R3.	Thus,	we	can	choose	R3	to	be	the	parallel	combination	of	R1||R2	so	that	the	effect	of	the
bias	currents	is	reduced.	Because	Iy	is	zero,	Vy	is	also	zero.	Because	of	negative	feedback,
Vx	equals	Vy.	Thus,	Vx	equals	zero	too.	Because	Vx	is	zero,	Iin	is	Vin/R1	and	I2	is	-Vout/R2.
Because	Ix	is	zero,	Iin	equals	I2.	Setting	Iin	equal	to	I2	yields

Vout	=		-(R2/R1)•Vin
	

The	input	impedance	(Zin)	of	this	circuit	(defined	as	Vin/Iin)	is	R1.	If	the	circuit	were	built
with	an	OPA227,	which	has	a	gain	bandwidth	product	of	8	MHz,	the	bandwidth	of	this
circuit	will	be	8	MHz	divided	by	the	gain,	R2/R1.

Figure	8.12.	Inverting	amplifier,	built	with	OP227,	powered	with	+12	and
-12V.
Common	error:	This	low	input	impedance	of	Zin	may	cause	loading	on	the	previous
analog	stage.

Observation:	The	inverting	amplifier	input	impedance	is	independent	of	the	op	amp	input
impedance.

The	negative	feedback	will	reduce	the	output	impedance	of	the	amplifier,	Zout,	to	a	value
much	less	than	the	output	impedance	of	the	op	amp	itself,	Rout.	To	calculate	Zout,	we	first
determine	the	open	circuit	voltage

Vopen	=		-(R2/R1)•Vin
	

We	next	determine	the	short	circuit	current,	Ishort.	This	means	we	consider	what	would
happen	if	the	output	were	shorted	to	ground.	If	the	output	is	shorted,	the	circuit	is	no
longer	in	feedback	mode,	and	Vx	will	not	equal	Vy.	In	fact,	Vx	will	be	a	simple	voltage
divider	from	Vin	through	R1	and	R2	to	ground,

Vx	=	Vin•R2/(R1+R2)

	

Because	of	the	large	open-loop	gain,	the	ideal	output	will	attempt	to	become

Vo	=	K•(Vy-Vx)	=	-K•Vin•R2/(R1+R2)

	

The	short	circuit	current	will	be	a	function	of	the	ideal	output	voltage,	and	the	output
resistance	of	the	op	amp,

Ishort	=	Vo/Rout
	

The	output	impedance	of	the	circuit	is	defined	to	be	the	open	circuit	voltage	divided	by	the
short	circuit	current,	which	for	this	inverting	amplifier	is

Zout	=	Vopen/Ishort	=		Rout•(R2+R1)/(K•R1)

	

Observation:The	output	impedance	of	analog	circuits	using	op	amps	with	negative
feedback	is	typically	in	the	m � s.

A	mixed-signal	design	includes	both	analog	and	digital	components.	The	classic	approach
to	combining	analog	and	digital	circuits	is	to	power	the	analog	system	with	a	low	noise
±12	V	power	supply,	maintain	separate	analog	and	digital	grounds,	and	connect	the	analog
ground	to	the	digital	ground	only	at	the	ADC.	One	of	the	limitations	of	the	ADC	built	into
a	microcontroller	is	that	analog	signals	extending	beyond	the	0	to	+3.3	V	range	will
permanently	damage	the	microcontroller.	One	approach	to	allowing	signed	analog
voltages,	while	still	using	a	single	voltage	supply	and	protecting	the	microcontroller	is	to
create	an	analog	ground	that	is	at	a	different	potential	from	the	digital	ground.	For	our
micontroller	systems,	which	are	powered	with	a	+3.3	V	supply,	we	will	create	an	analog
ground	that	is	at	1.5	V	relative	to	the	digital	ground.	Thus,	analog	signals	ranging	from
-1.5	to	+1.5	V	are	actually	0	to	+3	V	relative	to	the	microcontroller	digital	ground.	The
first	step	to	implementing	this	approach	is	to	use	an	analog	reference	chip,	like	the	ones
shown	in	Table	8.5,	to	create	a	low-noise	+1.50	V	signal	(the	analog	ground).	The	second
step	is	to	connect	power	to	the	analog	circuits	with	-Vs	set	to	digital	ground,	and	the	+Vs
set	to	the	+3.3	V	supply.	We	will	use	rail-to-rail	op	amps	that	operate	on	3.3	V	power.	The
last	step	is	to	replace	all	connections	to	analog	ground	with	the	low-noise	+1.50	V
reference	voltage.	Figure	8.13	shows	the	inverting	amplifier,	redesigned	from	Figure	8.12

to	operate	on	a	single	+3.3	V	supply.	The	signals	Vin	and	Vout	are	allowed	to	vary	from	0	to
+3	V	relative	to	digital	ground,	but	relative	to	the	analog	ground,	these	signals	will	vary
from	-1.5	to	+1.5	V.	An	adjustable	shunt	voltage	references	like	the	LM4041	also	can	be
used	to	create	constant	analog	voltages.

	

Part Voltage
(V)

±Accuracy
(mV)

AD1580,	AD589,	REF1004,	MAX6120,
LT1034,	LM385

1.2 1	to	15

MAX6101,	REF3312,	ADR1581 1.25 2

MAX6108 1.6 3

ADR420,	ADR520,	REF191,	MAX6191,
LT1790,	LM4120

2.048 1	to	10

AD580,	REF03,	REF1004,	MAX6192,
MAX6225,	LT1389,	LM336

2.5 1	to	75

AD1583,	ADR530,	ADR423,	REF193,
MAX6163,	LT1461,	LM4120

3 1.5	to	10

ADR366,		REF196,	MAX6331,	LT1461,
LM3411,	LM4120

3.3 4	to	10

AD1584,	ADR540,	ADR292,	REF198,
MAX6241,	LT1790,	LM4040

4.096 2	to	8

Table	8.5.	Parameters	of	various	precision	reference	voltage	chips.

Common	Error:	Precision	reference	chips	do	not	provide	much	output	current	and	should
not	be	used	to	power	other	chips.		

We	can	analyze	the	response	of	the	circuit	in	Figure	8.13	by	assuming	an	ideal	op	amp.
Since	there	are	no	currents	into	the	inputs,	the	voltage	at	the	positive	input	will	be	1.50	V.
Because	of	negative	feedback,	the	voltage	at	the	negative	input	will	also	be	1.50	V.	The
current	through	R1	will	be	(Vin-1.5)/R1.	The	current	through	R2	will	be	(1.5-Vout)/R2.	Since
there	are	no	currents	into	the	inputs	of	the	op	amp,	these	two	currents	are	equal,

(Vin	-	1.5)/R1	=	(1.5	-	Vout)/R2
or																												Vout	=	1.5	-	(Vin	-	1.5)	R2/R1
Define	the	analog	signals	relative	to	1.5V,	i.e.,	V’in		(Vin-1.5)	and	V’out		(Vout-1.5).	The
circuit	in	Figure	8.13	implements	a	negative	gain	inverter.

																												V’out	=		-	(R2/R1)	V’in
Observation:	It	is	important	in	this	scheme	to	separate	the	digital	and	analog	grounds
avoiding	direct	connections	between	the	two	grounds.

	

Figure	8.13.	Inverting	amplifier	with	an	effective	-1.5	V	to	+1.5	V	analog
signal	range.
The	second	linear	mode	circuit	we	will	study	is	the	noninverting	amplifier,	as	shown	in
Figure	8.14.	The	gain	is	1+R2/R1.	The	noninverting	amplifier	cannot	have	a	gain	less	than
1.	Just	like	the	inverting	amp,	the	gain	response	is	independent	of	R3.	So,	we	choose	R3	to
be	the	parallel	combination	R1||R2	so	that	the	effect	of	the	bias	currents	is	reduced.

Figure	8.14.	Noninverting	amplifier.
Because	Iy	is	zero,	Vy	equals	Vin.	Because	of	negative	feedback	Vx	equals	Vy.	Thus,	Vx
equals	Vin	too.	Calculating	currents	we	get,	I1	is	Vin/R1	and	I2	is	(Vout-Vin)/R2.	Because	Ix	is
zero,	I1	equals	I2.	Setting	I1	equal	to	I2		yields

Vout	=	(1	+	R2/R1)•Vin
	

Using	the	simple	op	amp	rules	Iy	is	zero,	so	the	input	impedance	(Zin)	of	this	circuit
(defined	as	Vin/Iin)	would	be	infinite.	In	this	situation	we	specify	the	amplifier	input
impedance	to	be	the	op	amp	input	impedance.	If	the	circuit	were	built	with	an	OPA350,
which	has	a	gain	bandwidth	product	of	38	MHz,	the	bandwidth	of	this	circuit	will	be	38
MHz	divided	by	the	gain.

Checkpoint	8.6:	If	the	noninverting	amplifier	in	Figure	8.14	were	built	with	an	OPA350,
what	would	be	the	input	impedance	of	the	amplifier?	

The	calculation	of	the	output	impedance	of	this	amp	follows	the	same	approach	as	the
inverting	amp,

Zout	=		Rout•(R2+R1)/(K•R1)

	

The	following	design	process	can	be	used	to	build	any	analog	circuit	in	the	form	of

Vout	=	A1V1	+	A2V2	+…+AnVn	+	B

	

where	A1	A2…An	B	are	constants	and	V1	V2	…Vn	are	input	voltages.		The	circuit	will	be
designed	with	one	op	amp	beginning	with	the	boiler	plate	shown	in	Figure	8.15.

Figure	8.15.	Boiler	plate	circuit	model	for	linear	circuit	design.
The	first	step	is	to	choose	a	reference	voltage	from	available	reference	voltage	chips,	like
ones	shown	in	the	Table	8.5.	Some	of	the	manufacturers	that	produce	voltage	references
are	Analog	Devices,	Texas	Instruments,	Linear	Technology,	Maxim,	and	National
Semiconductor.	The	parameters	to	consider	when	choosing	a	voltage	reference	are
voltage,	package	configuration,	accuracy,	temperature	coefficient,	and	power.	In
particular,	let	Vref	be	this	reference	voltage.

Common	Error:	If	you	use	resistor	divider	from	the	power	supply	to	create	a	voltage
constant,	then	the	power	supply	ripple	will	be	added	directly	to	your	analog	signal.	

The	second	step	is	to	rewrite	the	design	equation	in	terms	of	the	reference	voltage,	Vref.	In
particular,	we	make	Aref	=	B/Vref.

Vout	=	A1V1	+	A2V2	+…+AnVn	+	ArefVref
	

where	A1	A2…An	Aref	are	constants	and	V1	V2	…Vn	are	input	voltages.	The	third	step	is	to
add	a	ground	input	to	the	equation.	Ground	is	zero	volts	(Vg=0),	but	it	is	necessary	to	add
this	ground	so	that	the	sum	of	all	the	gains	is	equal	to	one.

Vout	=	A1V1	+	A2V2	+…+AnVn	+	ArefVref	+	AgVg

	

Choose	Ag	such	that																A1	+	A2	+…+An	+	Aref	+	Ag	=	1

In	other	words,	let	Ag	=		1	–	(A1	+	A2	+…+An	+	Aref)

The	fourth	step	is	to	choose	a	feedback	resistor,	Rf,	in	the	range	of	10	k � 	to	1	M � .	The
larger	the	gains,	the	larger	the	value	of	Rf	must	be.	Then	calculate	input	resistors	to	create
the	desired	gains.	In	particular,

|A1|	=	Rf	/	R1														so	R1	=	Rf	/	|A1|

|A2|	=	Rf	/	R2														so	R2	=	Rf	/	|A2|

|An|	=	Rf	/	Rn														so	Rn	=	Rf	/	|An|

|Aref|	=	Rf	/	Rref														so	Rref	=	Rf	/	|Aref|

|Ag|	=	Rf	/	Rg														so	Rg	=	Rf	/	|Ag|

	

Observation:	We	will	get	a	low-cost	solution	if	we	choose	standard	resistor	values,	as
shown	in	Tables	9.1,	9.2,	9.3,	or	9.4.

The	last	step	is	to	build	the	circuit.	If	the	gain	is	positive,	then	the	input	resistor	is
connected	to	the	positive	terminal	of	the	op	amp.	Conversely,	if	the	gain	is	negative,	then
the	input	resistor	is	connected	to	the	negative	terminal	of	the	op	amp.	The	feedback
resistor,	Rf,	will	always	be	connected	from	the	negative	input	to	the	output.

	
Example	8.1.	Design	an	analog	circuit	with	two	inputs	and	one	output.	The	first	input
varies	from	1	to	1.5	V	and	the	second	input	varies	from	0.75	to	1	V.	The	output	will	be
equally	sensitive	to	the	two	inputs,	so	the	gain	of	the	second	input	will	be	twice	the	gain	of
the	first	input.	The	output	should	range	from	0	to	3	V.	In	particular,	build	a	circuit	with	a
transfer	function	of	Vout	=	3V1	+	6V2	–	7.5.

	

Solution:	The	first	step	is	to	choose	a	reference	voltage.	The	REF3312	+1.25-V	voltage
reference	will	be	used.		The	second	step	is	to	rewrite	the	design	equation	in	terms	of	the
reference	voltage.	Notice	that	Aref	=	-7.5/1.25	=	-6.

	

Vout	=	3V1	+	6V2	–	6Vref
	

The	third	step	is	to	add	a	ground	input	to	the	equation	so	that	the	sum	of	all	the	gains	is
equal	to	one.	Notice,	Ag	=	1	–	(3	+	6	–	6)	=	-2

	

Vout	=	3V1	+	6V2	–	6Vref		–	2Vg
	

The	fourth	step	is	to	choose	a	feedback	resistor,	Rf	=60	k � .	This	value	is	a	common
multiple	of	the	gains:	6,3,2.	Then	calculate	input	resistors	to	create	the	desired	gains.

	

R1															=	Rf	/	2															=	20	k

R2															=	Rf	/	6															=	10	k

Rref															=	Rf	/	6															=	10	k

Rg															=	Rf	/	2															=	30	k

	

The	last	step	is	to	build	the	circuit,	as	shown	in	Figure	8.16.	The	positive	gain	inputs	are
connected	to	the	plus	input	of	the	op	amp	and	the	negative	gain	inputs	are	connected	to	the
minus	input	of	the	op	amp	input.

Figure	8.16.	A	linear	op	amp	circuit.

	
Tables	9.1,	9.2,	9.3	and	9.4	list	standard	resistance	values.	We	designing	analog	circuits
we	need	to	select	from	these	specific	values	to	reduce	cost	and	simplify	manufacturing.

The	instrumentation	amp	will	amplify	a	differential	voltage,	Vout	=	G•(V2-V1).		We	use
instrumentation	amps	in	applications	that	require	a	large	gain	(above	100),	a	high	input
impedance,	and	a	good	common	mode	rejection	ratio.	An	instrumentation	amp	can	be
built	using	three	high	quality	op	amps	as	shown	in	Figure	8.17.

Figure	8.17.	Instrumentation	amplifier	made	with	three	op	amps.

Observation:	In	order	to	achieve	quality	performance	with	a	3-op-amp	instrumentation
amp	circuit,	we	must	use	precision	resistors	and	quality	op	amps.	

Common	Error:	If	you	use	a	potentiometer	in	place	of	one	the	gain	resistors	in	the	above
circuit,	then	fluctuations	in	the	potentiometer	resistance	that	can	occur	with	temperature,
vibration,	and	time	will	have	a	strong	effect	on	the	amplifier	gain.	

Because	of	the	wide	range	of	applications	that	require	instrumentation	amplifiers,	chip
manufacturers	have	developed	integrated	solutions.	In	many	cases	we	can	achieve	higher
performance	at	reduced	cost	by	utilizing	an	integrated	circuit.	The	gain	is	selected	by
external	jumpers	or	external	resistors.	The	MAX4460,	AD627,	and	INA122	are	single-
supply	rail-to-rail	instrumentation	amps.	The	AD627	and	INA122	have	the	same	pins	and
the	same	formula	for	calculating	gain,	as	shown	in	Figure	8.18.

Figure	8.18.	Integrated	instrumentation	amplifier	made	with	INA122	or
AD627.
Common	Error:	If	you	use	a	potentiometer	as	the	RG	gain	resistors	in	the	above	circuit,
then	fluctuations	in	the	potentiometer	resistance	that	can	occur	with	temperature,
vibration,	and	time	will	have	a	strong	effect	on	the	amplifier	gain.	

We	can	use	a	voltage	comparator	to	detect	events	in	an	analog	waveform.	The	input
voltage	range	is	determined	by	the	analog	supply	voltages	of	the	comparator.	The	output	is
takes	on	two	values,	shown	an	Vh	and	Vl	in	Figure	8.19.	A	comparator	with	hysteresis	has
two	thresholds,	Vt+	and	Vt-.	In	both	the	positive	and	negative	logic	cases	the	threshold	(Vt+
or	Vt-)	depends	on	the	present	value	of	the	output.

	

Figure	8.19.	Input/output	response	of	voltage	converters	with	hysteresis.
Hysteresis	prevents	small	noise	spikes	from	creating	a	false	trigger.	

Performance	Tip:	In	order	to	eliminate	false	triggering,	we	select	a	hysteresis	level	(Vt+	–
Vt-)	greater	than	the	noise	level	in	the	signal.

In	Figure	8.20,	a	rail-to-rail	op	amp	is	used	to	design	a	voltage	comparator.	Since	the
output	swings	from	0	to	3.3	V,	it	can	be	connected	directly	to	an	input	pin	of	the
microcontroller.	On	the	other	hand,	since	+3.3	and	0	are	used	to	power	the	op	amp,	the
analog	input	must	remain	in	the	0	to	+3.3	V	range.	The	hysteresis	level	is	determined	by
the	amplitude	of	the	output	and	the	R1/(R1+R2)	ratio.	If	the	output	is	at	0V,	the	voltage	at
the	+terminal	is	Vin*R2/(R1+R2).	The	output	switches	when	the	voltage	at	the	+terminal
goes	above	1.65.	By	solving	for	Vin*200k/(10k+200k)=1.65,	we	see	Vin	must	go	above
+1.73	for	the	output	to	switch.	Similarly,	if	the	output	is	at	+3.3	V,	the	voltage	at	the
+terminal	can	be	calculated	as	Vin+(3.3-Vin)*R1/(R1+R2).	The	output	switches	back	when
the	voltage	at	the	+terminal	goes	below	1.65.	By	solving	for	Vin+(3.3-
Vin)*R1/(R1+R2)=1.65,	we	see	Vin	go	below	+1.57	before	the	+terminal	of	the	op	amp	falls
below	1.65	V.	In	linear	mode	circuits	we	should	not	use	the	supply	voltage	to	create
voltage	references,	but	in	a	saturated	mode	circuit,	power	supply	ripple	will	have	little
effect	on	the	response.

Figure	8.20.	A	voltage	comparator	with	hysteresis	using	a	rail	to	rail	op
amp.
In	some	medical	and	industrial	applications	we	need	to	design	analog	instrumentation	that
is	isolated	from	earth	ground.	In	an	industrial	setting,	isolation	is	one	way	to	reduce	noise
pickup	from	large	EM	fields	produced	by	heavy	machinery.	In	medical	applications	we
need	to	protect	the	patient	from	potentially	dangerous	microshocks,	Thus,	the	medical
instrument	must	be	isolated.	There	are	three	approaches	to	isolation,	as	shown	in	Figure
8.21.	In	the	first	approach,	shown	at	the	top	of	Figure	8.21,	an	analog	isolation	barrier	is
created	between	the	preamp	and	amp.	This	was	the	original	approach	used	in	analog
instruments	before	the	advent	of	mixed	analog-digital	systems.	It	is	expensive,	bulky	and
introduces	a	very	large	transfer	error.	It	is	not	appropriate	for	embedded	applications	that
use	a	microcontroller.	In	the	second	approach,	we	use	digital	isolation.	The	6N139	optical
isolator	is	an	effective	low-cost	mechanism	to	implement	digital	isolation.	This	is	the	most
common	approach	used	for	new	designs	when	a	hard	connection	between	the	data
acquisition	system	and	building	is	required.	It	is	fast,	small,	cheap,	and	will	not	introduce
errors.	The	third	approach	runs	the	entire	system	with	batteries.	This	is	a	very	attractive
approach	due	to	the	availability	of	high-quality	low-power	LED/LCD	displays	and
wireless	networks,	such	as	Bluetooth,	ZigBee,	and	802.11b.

	

Figure	8.21.	Analog	isolation,	digital	isolation,	and	battery-powered	all
provide	protection	from	microshocks.

8.3.	Analog	Filters

8.3.1.	Simple	Analog	Filters
We	will	use	a	low-pass	filter	to	remove	unwanted	high	frequency	signals.	We	can	add	a
capacitor	in	parallel	with	the	feedback	resistor	in	the	inverting	amplifier	to	create	a	simple
one	pole	low-pass	filter.	The	impedance	of	a	resistor,	R2	in	parallel	the	capacitor,	C	is	a
function	of	frequency,	see	Figure	8.22.

Figure	8.22.	A	parallel	combination	of	a	resistor	and	capacitor	make	a
frequency-dependent	impedance.
In	Figure	8.23,	the	feedback	path	has	both	a	resistor	and	capacitor.	Therefore	the	gain	of
the	circuit	is	-Z/R1,	which	exhibits	low-pass	behavior.	The	cutoff	frequency	is	defined	to
be	the	frequency	at	which	the	gain	drops	to	0.707	of	its	original	value.	In	this	simple	low-
pass	filter,	the	cutoff	frequency,	fc,	is	1/(2πR2C).	The	gain	drops	off	at	high	frequencies.

Vout/Vin	=	(-R2/R1)*(1/(1+j R2	C))

Figure	8.23.	One	pole	low-pass	analog	filter.
We	classify	this	low-pass	filter	as	one	pole,	because	the	transfer	function	has	only	one	pair
of	poles	in	the	s-plane.	One	pole	low​-pass	filters	have	a	gain	versus	frequency	response	of

We	will	use	a	high-pass	filter	(HPF)	to	remove	unwanted	low	frequency	signals.	Sound
and	biopotentials	are	examples	of	signals	where	the	low	frequency	components	are	not
wanted.	If	we	place	a	capacitor	in	series	it	will	block	low	frequencies.	One	of	the
difficulties	in	high-pass	filters	for	embedded	systems	is	the	fact	that	we	often	power	the
analog	electronics	with	a	single	supply.	Because	we	cannot	process	negative	voltages,	we
must	use	an	analog	ground	different	from	the	digital	ground	when	building	high-pass
filters,	as	illustrated	in	Figure	8.24.	The	filter	on	the	left	is	a	simple	approach.	The	middle
one	is	low	cost	and	not	appropriate	for	high	fidelity	systems.	The	one	on	the	right	is
appropriate	for	differential	signals.	Each	of	these	filters	has	a	one-pole	HPF	shape,	with
2 � f= � ,	and	1/fc=2 � RC.

														or														

Figure	8.24.	One	pole	high-pass	analog	filters	operating	on	a	single
supply	voltage.

8.3.2.	Butterworth	Filters
Higher	order	analog	filters	can	be	designed	using	multiple	capacitors.	One	of	the
advantages	of	the	two-pole	Butterworth	analog	filter	is	that	as	long	as	the	capacitors
maintain	the	2/1	ratio,	the	analog	circuit	will	be	a	Butterworth	filter.	Figure	8.25	is	a
template	for	a	Salen-Key	form	of	the	filter.	The	design	steps	for	the	two-pole	Butterworth
low-pass	filter	are	as	follows:

		1)	Select	the	cutoff	frequency,	fc
		2)	Divide	the	two	capacitors	by	2πfc	(let	C1A,	C2A	be	the	new	capacitor	values)

C1A	=	141.4µF/2πfc
C2A	=	70.7µF/2πfc
		3)	Locate	two	standard	value	capacitors	(with	the	2/1	ratio)	with	the	same	order	of
magnitude	as	the	desired	values.	We	can	create	capacitors	with	a	2/1	ratio	using	three
capacitors	of	the	same	value.	Let	C1B,	C2B	be	these	standard	value	capacitors,	let	x	be	this
convenience	factor

C1B	=	C1A/x

C2B	=	C2A/x

		4)	Adjust	the	resistors	to	maintain	the	cutoff	frequency

R	=	10kΩ•x

		5)	Vref	can	be	set	to	analog	ground,	e.g.,	1.50V	or	0V.

	

													

Figure	8.25.	Two-pole	Butterworth	low-pass	analog	filter	(see	the	file
LPF.xls).
The	analog	filters	in	this	section	all	require	low	leakage,	high	accuracy	and	low
temperature	coefficient	capacitors	like	C0G	ceramic.

Performance	Tip:	If	you	choose	standard	value	resistors	near	the	desired	values,	you	will
save	money	and	the	circuit	will	still	be	a	Butterworth	filter.	The	only	difference	is	that	the
cutoff	frequency	will	be	slightly	off	from	the	original	specification.

We	can	use	a	similar	approach	to	design	a	two-pole	Butterworth	high-pass	filter.	Figure
8.26	is	a	template	for	a	Salen-Key	form	of	the	HPF.	The	design	steps	for	the	two-pole
Butterworth	high-pass	filter	are	as	follows:

		1)	Select	the	cutoff	frequency,	fc
		2)	Divide	the	two	capacitors	by	2πfc	(let	CA	be	the	new	capacitor	values)

CA	=	10µF/2πfc
3)	Locate	a	standard	value	capacitor	with	the	same	order	of	magnitude	as	the	desired
value.	Let	CB,	be	this	standard	value,	let	x	be	this	convenience	factor

CB	=	CA/x

		4)	Adjust	the	two	resistors	to	maintain	the	cutoff	frequency

R1	=	70.7kΩ•x														and														R2	=	141.4kΩ•x													

		5)	Vref	should	be	set	to	analog	ground,	e.g.,	1.50V.

	

Figure	8.26.	Two-pole	Butterworth	high-pass	analog	filter.
Many	analog	IC	manufacturers	provide	design	tools.	FilterPro	is	a	free	design	tool	from
Texas	Instruments	you	can	use	to	design	analog	filters	(www.ti.com).	Using	these	design
tools	you	will	be	able	to	create	filters	much	better	than	the	ones	presented	in	this	book.		

8.4.	Digital	to	Analog	Converters
An	analog	signal	is	one	that	is	continuous	in	both	amplitude	and	time.	Neglecting
quantum	physics,	most	signals	in	the	world	exist	as	continuous	functions	of	time	in	an
analog	fashion	(e.g.,	voltage,	current,	position,	angle,	speed,	force,	pressure,	temperature,
and	flow	etc.)	In	other	words,	the	signal	has	an	amplitude	that	can	vary	over	time,	but	the
value	cannot	instantaneously	change.	To	represent	a	signal	in	the	digital	domain	we	must
approximate	it	in	two	ways:	amplitude	quantizing	and	time	quantizing.	From	an	amplitude
perspective,	we	will	first	place	limits	on	the	signal	restricting	it	to	exist	between	a
minimum	and	maximum	value	(e.g.,	0	to	+3V),	and	second,	we	will	divide	this	amplitude
range	into	a	finite	set	of	discrete	values.	The	range	of	the	system	is	the	maximum	minus
the	minimum	value.	The	precision	of	the	system	defines	the	number	of	values	from	which
the	amplitude	of	the	digital	signal	is	selected.		Precision	can	be	given	in	number	of
alternatives,	binary	bits,	or	decimal	digits.	The	resolution	is	the	smallest	change	in	value
that	is	significant.		Figure	8.27	shows	a	temperature	waveform	(solid	line),	with	a
corresponding	digital	representation	sampled	at	1	Hz		and	stored	as	a	5-bit	integer	number
with	a	range	of	0	to	31	oC.	Because	it	is	digitized	in	both	amplitude	and	time,	the	digital
samples	(individual	dots)	in	Figure	8.27	must	exist	at	an	intersection	of	grey	lines.
Because	it	is	a	time-varying	signal	(mathematically,	this	is	called	a	function),	we	have	one
amplitude	for	each	time,	but	it	is	possible	for	there	to	be	0,	1,	or	more	times	for	each
amplitude.

The	second	approximation	occurs	in	the	time	domain.	Time	quantizing	is	caused	by	the
finite	sampling	interval.	For	example,	the	data	are	sampled	every	1	second	in	Figure	8.27.
In	practice	we	will	use	a	periodic	timer	to	trigger	an	analog	to	digital	converter	(ADC)	to
digitize	information,	converting	from	the	analog	to	the	digital	domain.	Similarly,	if	we	are
converting	from	the	digital	to	the	analog	domain,	we	use	the	periodic	timer	to	output	new
data	to	a	digital	to	analog	converter	(DAC).	The	Nyquist	Theorem	states	that	if	the	signal
is	sampled	with	a	frequency	of	fs,	then	the	digital	samples	only	contain	frequency
components	from	0	to	½	fs.	Conversely,	if	the	analog	signal	does	contain	frequency
components	larger	than	½	fs,	then	there	will	be	an	aliasing	error	during	the	sampling
process.		Aliasing	is	when	the	digital	signal	appears	to	have	a	different	frequency	than	the
original	analog	signal.

Figure	8.27.	An	analog	signal	is	represented	in	the	digital	domain	as	5-bit

discrete	samples.

8.4.1.	DAC	Operation	and	Performance	Measures
A	DAC	converts	digital	signals	into	analog	form	as	illustrated	in	Figure	8.28.	Although
one	can	interface	a	DAC	to	a	regular	output	port,	most	DACs	are	interfaced	using	high-
speed	synchronous	protocols.	The	DAC	output	can	be	current	or	voltage.	Additional
analog	processing	may	be	required	to	filter,	amplify	or	modulate	the	signal.	We	can	also
use	DACs	to	design	variable	gain	or	variable	offset	analog	circuits.

The	DAC	precision	is	the	number	of	distinguishable	DAC	outputs	(e.g.,	4096	alternatives,
12	bits).	The	DAC	range	is	the	maximum	and	minimum	DAC	output.	The	DAC
resolution	is	the	smallest	distinguishable	change	in	output.	The	resolution	is	the	change	in
output	that	occurs	when	the	digital	input	changes	by	1.	The	units	of	range	and	resolution
are	in	volts	or	amps	depending	on	whether	the	output	is	voltage	or	current.

Range(volts)	=	Precision(alternatives)	•	Resolution(volts)

	

Figure	8.28.	A	12-bit	DAC	provides	analog	output.	A	12-bit	ADC	provides
analog	input.
The	DAC	accuracy	is	(Actual	-	Ideal)	/	Ideal	where	Ideal	is	referred	to	the	National
Institute	of	Standards	and	Technology	(NIST).	One	can	choose	the	full	scale	range	of	the
DAC	to	simplify	the	use	of	fixed-point	math.	For	example,	if	an	8-bit	DAC	had	a	full
scale	range	of	0	to	2.55	volts,	then	the	resolution	would	be	exactly	10	mV.	This	means	that
if	the	DAC	digital	input	were	123	(decimal),	then	the	DAC	output	voltage	would	be	1.23
volts.

A	DAC	gain	error	is	a	shift	in	the	slope	of	the	Vout	versus	digital	input	static	response.	A
DAC	offset	error	is	a	shift	in	the	Vout	versus	digital	input	static	response.	The	DAC
transient	response	has	three	components:	delay	phase,	slewing	phase,	ringing	phase.
During	the	delay	phase,	the	input	has	changed	but	the	output	has	not	yet	begun	to	change.
During	the	slewing	phase,	the	output	changes	rapidly.	During	the	ringing	phase,	the	output
oscillates	while	it	stabilizes.	For	purposes	of	linearity,	let	m,n	be	digital	inputs,	and	let
f(n)	be	the	analog	output	of	the	DAC,	see	Figure	8.29.	One	quantitative	measure	of
linearity	is	the	correlation	coefficient	of	a	linear	regression	fit	of	the	f(n)	responses.	If	∆	is
the	DAC	resolution,	it	is	linear	if

f(n+1)-f(n)	=	f(m+1)-f(m)		=	∆																												for	all	n,	m

The	DAC	is	monotonic	if

sign(f(n+1)-f(n))	=	sign(f(m+1)-f(m))															for	all	n,	m

Conversely,	the	DAC	is	nonlinear	if

f(n+1)-f(n)	≠	f(m+1)-f(m)																																											for	some	n,	m

Practically	speaking	all	DACs	are	nonlinear,	but	the	worst	nonlinearity	is
nonmonotonicity.		The	DAC	is	nonmonotonic	if

sign(f(n+1)-f(n))	≠	sign(f(m+1)-f(m))															for	some	n,	m

Figure	8.29.	Nonlinear	and	nonmonotonic	DACs.
	

Example	8.2.	Design	a	2-bit	binary-weighted	DAC	with	a	range	of	0	to	+3.3V	using
resistors.
	

Solution:	We	begin	by	specifying	the	desired	input/output	relationship	of	the	2-bit	DAC.
There	are	two	possible	solutions	depending	upon	whether	we	want	a	resolution	of	0.825	V
or	1.1	V,	as	shown	as	V1	and	V2	in	Table	8.6.	Both	solutions	are	presented	in	Figure	8.30.
	

N Q1							Q0 V1	(V) V2	(V)

0 0				0 0.000 0.0

1 0				3.3 0.825 1.1

2 3.3		0 1.650 2.2

3 3.3		3.3 2.475 3.3

Table	8.6.	Specifications	of	the	2-bit	DAC.
	

Assume	the	output	high	voltage	(VOH)	of	the	microcontroller	is	3.3	V,	and	its	output	low
voltage	(VOL)	is	0.	With	a	binary-weighted	DAC,	we	choose	the	resistor	ratio	to	be	2/1	so
Q1	bit	is	twice	as	significant	as	the	Q0	bit,	as	shown	in	Figure	8.30.	Considering	the	circuit
on	the	right,	if	both	Q1	and	Q0	are	0,	the	output	V2	is	zero.	If	Q1	is	0	and	Q0	is	+3.3V,	the
output	V2	is	determine	by	the	resistor	divider	network

which	is	1.1V.	If	Q1	is	+3.3V	and	Q0	is	0,	the	output	V2	is	determine	by	the	network

which	is	2.2V.	If	both	Q1	and	Q0	are	+3.3V,	the	output	V2	is	+3.3V.	The	output
impedanceof	this	DAC	is	approximately	20	k � ,	which	means	it	cannot	source	or	sink
much	current.
	

Figure	8.30.	Two	solutions	for	a	2-bit	DAC.

	
	

Example	8.3.	Design	a	6-bit	DAC	with	a	range	of	0	to	+3.3V	using	E96	1%	standard
resistors.

Solution:	1%	error	is	of	course	1	part	out	of	100,	while	6-bit	precision	will	be	only	1	part
out	of	64.	So	we	expect	it	will	be	possible	to	build	a	6-bit	DAC	with	1%	parts.	We	begin
the	design	by	specifying	the	desired	input/output	relationship	of	the	6-bit	DAC.	All	zeros
will	map	to	Vout=0,	and	all	ones	will	map	to	Vout=3.3V.	The	exponential	weighting	of	the
bits	corresponds	to	the	basis	elements	in	a	6-bit	number.	Let	b5,	b4,	b3,	b2,	b1,	b0	be	the	6-
bit	DAC	input,	the	desired	performance	is

Vout	=	3.3V*(32*b5	+	16*b4	+	8*b3	+	4*b2	+	2*b1	+	b0)/63

One	set	of	E96	standard	resistors	with	values	approximating	the	desired	exponential
weighting	is	shown	on	the	left	of	Figure	8.31.	The	performance	of	the	DAC	is	shown	on
the	left.	This	DAC	remains	monotonic	even	if	the	resistors	are	varied	by	±1%.

		

Figure	8.31.	A	6-bit	binary-weighted	DAC.

	
It	is	not	feasible	to	construct	a	DAC	with	more	than	8	bits	using	the	binary	weighted
technique	for	three	reasons.	First,	if	one	chooses	the	resistor	values	from	the	practical
10kΩ	to	1MΩ	range,	then	the	maximum	precision	would	be	1MΩ/10kΩ,	which	equals
100	or	about	7	bits.	The	second	problem	is	that	it	would	be	difficult	to	avoid
nonmonotonicity	because	a	small	percentage	change	in	the	small	resistor	(e.g.,	the	one
causing	the	largest	gain)	would	overwhelm	the	effects	of	the	large	resistor	(e.g.,	the	one
causing	the	smallest	gain.)	For	example,	if	you	tried	to	add	a	7th	bit	to	the	DAC	in	Figure
8.31	using	a	523	k � 	1%	resistor,	the	DAC	could	become	nonmonotonic.	Third,	the
summing	DAC	includes	the	errors,	uncertainty	and	noise	in	the	digital	power	supply.	To
address	all	three	of	these	limitations,	the	R-2R	ladder	is	used.	It	is	practical	to	build
resistor	networks	such	that	all	the	resistances	are	equal.	To	create	a	2R	component,	we	use
two	resistors	in	series.	Resistance	errors	will	change	all	resistors	equally.	This	type	of
error	affects	the	slope,	Vfs,	but	not	the	linearity	or	the	monotonicity.	In	Figure	8.32	each	of
the	three	digital	inputs	(bit2,	bit1,	bit0)	controls	a	current	switch.	When	the	digital	signal
is	true,	the	reference	voltage	is	applied	to	the	ladder.	When	the	digital	signal	is	false,	that
position	on	the	ladder	is	a	virtual	ground	(0V).	Using	a	reference	voltage	instead	of	the
VOH	of	the	microcontroller	greatly	reduces	the	noise	in	the	output.

Figure	8.32.	3-bit	unsigned	R-2R	DAC.
To	analyze	this	circuit	we	will	consider	the	three	basis	elements	(1,	2,	and	4).	If	these	three
cases	are	demonstrated,	then	the	law	of	superposition	guarantees	the	other	five	will	work.
When	one	of	the	digital	inputs	is	true	then	Vref	is	connected	to	the	R-2R	ladder,	and	when
the	digital	input	is	false,	then	the	connection	is	grounded.	See	Figure	8.33.

Figure	8.33.	Analysis	of	the	three	basis	elements	{100,	010,	001}	of	the	3-
bit	unsigned	R-2R	DAC.
In	each	of	the	three	test	cases,	the	current	across	the	active	switch	is	I0=Vref	/	(3R).	This
current	is	divided	by	2	at	each	branch	point.	I.e.,	I1	=	I0/2,	and	I2	=	I1/2.	Current	injected
from	the	lower	bits	will	be	divided	more	times.	Since	each	stage	divides	by	two,	the
exponential	behavior	is	produced.	An	actual	DAC	is	implemented	with	a	current	switch
rather	than	a	voltage	switch.	Nevertheless,	this	simply	circuit	illustrates	the	operation	of
the	R-2R	ladder	function.	When	the	input	is	001,	Vref	is	presented	to	the	left.	The	effective
impedance	to	ground	is	3R,	so	the	current	injected	into	the	R-2R	ladder	is	I0=Vref	/	(3R).
The	current	is	divided	in	half	three	times,	and	I001=Vref	/	(24R).

When	the	input	is	010,	Vref	is	presented	in	the	middle.	The	effective	impedance	to	ground
is	still	3R,	so	the	current	injected	into	the	R-2R	ladder	is	I0=Vref	/	(3R).	The	current	is
divided	in	half	twice,	and	I010=Vref	/	(12R).

When	the	input	is	100,	Vref	is	presented	on	the	right.	The	effective	impedance	to	ground	is
once	again	3R,	so	the	current	injected	into	the	R-2R	ladder	is	I0=Vref	/	(3R).	The	current	is
divided	in	half	once,	and	I100=Vref	/	(6R).

Using	the	Law	of	Superposition,	the	output	voltage	is	a	linear	combination	of	the	three
digital	inputs,	Iout=(4b2	+	2b1	+	b0)Vref	/	(3R).	A	current	to	voltage	circuit	is	used	to	create	a
voltage	output.	To	increase	the	precision	one	simply	adds	more	stages	to	the	R-2R	ladder.

Many	manufacturers,	like	Analog	Devices,	Texas	Instruments,	Sipex	and	Maxim	produce
DACs.	These	DACs	have	a	wide	range	of	performance	parameters	and	come	in	many
configurations.	The	following	paragraphs	discuss	the	various	issues	to	consider	when
selecting	a	DAC.	Although	we	assume	the	DAC	is	used	to	generate	an	analog	waveform,
these	considerations	will	generally	apply	to	most	DAC	applications.

Precision/range/resolution.	These	three	parameters	affect	the	quality	of	the	signal	that	can
be	generated	by	the	system.	The	more	bits	in	the	DAC	the	finer	the	control	the	system	has
over	the	waveform	it	creates.	As	important	as	this	parameter	is,	it	is	one	of	the	more
difficult	specifications	to	establish	a	priori.	A	simple	experimental	procedure	to	address
this	question	is	to	design	a	prototype	system	with	a	very	high	precision	(e.g.,	12,	14,	16,	or
20	bits.)	The	software	can	be	modified	to	use	only	some	of	the	available	precision.	For
example,	the	12-bit	Max5353	hardware	developed	in	Example	7.2,	can	be	reduced	to	4,	8,
or	10	bits	using	the	following	functions.	The	bottom	bits	are	set	to	zero,	instead	of	shifting
so	the	rest	of	the	system	will	operate	without	change.

void	DAC_Out4(uint16_t	code){

DAC_Out(code&0xFF00);}			//	ignore	bottom	8	bits

	

void	DAC_Out8(uint16_t	code){

DAC_Out(code&0xFFF0);}			//	ignore	bottom	4	bits

	

void	DAC_Out10(unsigned	int	code){

DAC_Out(code&0xFFFC);}		//	ignore	bottom	2	bits

Program	8.1.	Software	used	to	test	how	many	bits	are	really	needed.
Multiple	versions	of	the	software	(e.g.,	4-bit,	8-bit,	10-bit,	and	12-bit	DAC)	are	used	to	see
experimentally	the	effect	of	DAC	precision	on	the	overall	system	performance.	Figure
8.34	illustrates	how	DAC	precision	affects	the	quality	of	the	generated	waveform.

	

Figure	8.34.	The	waveform	on	the	left	uses	a	4-bit	DAC,	while	on	one	on
the	right	uses	a	12-bit	DAC.
Channels.	Even	though	multiple	channels	could	be	implemented	using	multiple	DAC
chips,	it	is	usually	more	efficient	to	design	a	multiple	channel	system	using	a	multiple
channel	DAC.	Some	advantages	of	using	a	DAC	with	more	channels	than	originally
conceived	are	future	expansion,	automated	calibration,	and	automated	testing.	A	multiple
channel	DAC	allows	you	to	update	all	channels	at	the	same	time.

Configuration.	DACs	can	have	voltage	or	current	outputs.	Current	output	DACs	can	be
used	in	a	wide	spectrum	of	applications	(e.g.,	adding	gain	and	filtering),	but	do	require
external	components.	DACs	can	have	internal	or	external	references.	An	internal	reference
DAC	is	easier	to	use	for	standard	digital	input/analog	output	applications,	but	the	external
reference	DAC	can	often	be	used	in	variable	gain	applications	(multiplying	DAC).
Sometimes	the	DAC	generates	a	unipolar	output,	while	other	times	the	DAC	produces
bipolar	outputs.

Speed.	There	are	a	couple	of	parameters	manufacturers	use	to	specify	the	dynamic
behavior	of	the	DAC.	The	most	common	is	settling	time,	another	is	maximum	output	rate.
When	operating	the	DAC	in	variable	gain	mode,	we	are	also	interested	in	the
gain/bandwidth	product	of	the	analog	amplifier.	When	comparing	specifications	reported
by	different	manufacturers	it	is	important	to	consider	the	exact	situation	used	to	collect	the
parameter.	In	other	words,	one	manufacturer	may	define	settling	time	as	the	time	to	reach
0.1%	of	the	final	output	after	a	full	scale	change	in	input	given	a	certain	load	on	the
output,	while	another	manufacturer	may	define	settling	time	as	the	time	to	reach	1%	of	the
final	output	after	a	1	volt	change	in	input	under	a	different	load.	The	speed	of	the	DAC
together	with	the	speed	of	the	computer/software	will	determine	the	effective	frequency
components	in	the	generated	waveforms.	Both	the	software	(rate	at	which	the	software
outputs	new	values	to	the	DAC)	and	the	DAC	speed	must	be	fast	enough	for	the	given
application.	In	other	words,	if	the	software	outputs	new	values	to	the	DAC	at	a	rate	faster
than	the	DAC	can	respond,	then	errors	will	occur.	Figure	8.35	illustrates	the	effect	of	DAC
output	rate	on	the	quality	of	the	generated	waveform.	According	to	the	Nyquist	Theorem
states	the	digital	data	rate	must	be	greater	than	twice	the	maximum	frequency	component
of	the	desired	analog	waveform.	However,	both	waveforms	in	Figure	8.35	satisfy	the
Nyquist	Theorem,	but	increasing	the	output	rate	by	eight	improves	the	signal	to	noise	ratio
by	eight.	31	dB	is	a	ratio	of	about	35	to	1,	and	49	dB	is	a	ratio	of	about	281	to	1.	If	the
goal	is	to	create	a	sine	wave	at	a	fixed	frequency,	we	could	improve	the	SNR	greatly	by
using	an	analog	low	pass	filter.

	

Experimental	data	of	a	32-output	523	Hz	sine-wave						Experimental	data	of	a	256-output
523	Hz	sine-wave

																						
Signal/noise	ratio	is	31	dB	(3dB	–	-28dB)																																										Signal/noise	ratio	is
49	dB	(3dB	–	-46dB)

	

Figure	8.35.	The	waveform	on	the	right	was	created	by	a	12-bit	DAC	with
eight	times	the	output	rate	than	the	left.	Voltage	versus	time	data	on	top
and	the	Fourier	Transform	(frequency	spectrum	dB	versus	kHz)	of	the	data
on	the	bottom.	There	is	a	point	in	the	spectrum	at	0,	which	is	the	DC

component.	However,	the	signal	is	the	523	Hz	bump	with	a	magnitude	of
3dB,	representing	the	sine	wave.	The	noises	are	all	the	other	points	not	at
0	or	523	Hz.	The	largest	noise	on	the	left	is	-28	dB.	The	largest	noise	on
the	right	is	-46	dB.
Power.	There	are	three	power	issues	to	consider.	The	first	consideration	is	the	type	of
power	required.	Older	devices	require	three	power	voltages	(e.g.,	+5	and	-5	V),	while	most
devices	will	operate	on	a	single	voltage	supply	(e.g.,	+2.7,	+3.3,	or	+5	V.)	If	a	single
supply	can	be	used	to	power	all	the	digital	and	analog	components	then	the	overall	system
costs	will	be	reduced.	The	second	consideration	is	the	amount	of	power	required.	Some
devices	can	operate	on	less	than	0.1	mW	and	are	appropriate	for	battery-operated	systems
or	for	systems	where	excess	heat	is	a	problem.	The	last	consideration	is	the	need	for	a
low-power	sleep	mode.	Some	battery	operated	systems	need	the	DAC	only	intermittently.
In	these	applications,	we	wish	to	give	a	shutdown	command	to	the	DAC,	so	that	it	draws
less	current	when	not	needed.

Interface.	Three	approaches	exist	for	interfacing	the	DAC	to	the	computer.	In	a	digital
logic	or	parallel	interface,	the	individual	data	bits	are	connected	to	a	dedicated	computer
output	port.	For	example,	a	12-bit	DAC	requires	a	12-bit	output	port	bits	to	interface.	The
software	simply	writes	to	the	parallel	port(s)	to	change	the	DAC	output.	The	second
approach	is	called	µP-bus	or	microprocessor-compatible.	These	devices	are	intended	to	be
interfaced	onto	the	address/data	bus	of	an	expanded	mode	microcontroller.	The	third
approach	is	a	high-speed	serial	interface	like	I2C	or	SPI.	The	SSI/MAX5353	interface	is
an	example	of	a	high-speed	serial	interface.	This	approach	requires	the	fewest	number	of
I/O	pins.	Even	if	the	microcontroller	does	not	support	the	SPI	interface	directly,	these
devices	can	be	interfaced	to	regular	I/O	pins	via	the	bit-banging	software	approach.

Package.	DIP	packages	are	convenient	for	creating	and	testing	an	original	prototype.	On
the	other	hand	surface	mount	packages	require	less	board	space.	Because	surface	mount
packages	do	not	require	holes	in	the	PC	board,	circuits	with	these	devices	are
easier/cheaper	to	produce.

Cost.	Cost	is	always	a	factor	in	engineering	design.	Beside	the	direct	costs	of	the
individual	components	in	the	DAC	interface,	other	considerations	that	affect	cost	include:
1)	power	supply	requirements;	2)	manufacturing	costs;	3)	the	labor	involved	in	individual
calibration	if	required;	and	4)	software	development	costs.

8.4.2.	DAC	Waveform	Generation

One	application	that	requires	a	DAC	is	waveform	generation.	In	this	section,	we	will
discuss	various	software	methods	for	creating	analog	waveforms	with	a	DAC.	In	each
case,	we	will	be	using	the	MAX5353	hardware/software	interface	introduced	in	Example
7.2.	In	addition,	we	will	use	an	output	capture	interrupt	for	the	timing,	so	that	the
waveform	generation	occurs	in	the	background.	The	rituals	for	initializing	the	periodic
interrupt	are	shown	in	Chapter	6.		In	order	to	get	a	fair	comparison	between	the	various
methods,	each	implementation	will	generate	32	interrupts	per	waveform.	In	the	first
approach,	we	assume	there	exists	a	time	to	voltage	function,	called 	Wave() ,	which	we
can	call	to	determine	the	next	DAC	value	to	output.	The	waveform	on	the	left	of	Figure
8.36	could	be	generated	by	Programs	8.2	and	8.3.

const	float	A=2048.0,	B=1000.0,	C=2*pi*31.25,	D=-500.0,	E=2*pi*125.0;

uint16_t	Wave(float	time){	float	result;

		result	=	A	+	B*cos(C*time)	+	D*sin(E*time);

return	(uint16_t)	result;

}

Program	8.2.	Waveform	is	defined	by	a	mathematical	function.
The	simplest	solution	generates	an	output	compare	interrupt	at	a	regular	rate.	The
advantage	of	this	approach	is	that	complex	waveforms	can	be	encoded	with	a	small
amount	of	data.	In	this	particular	example,	the	entire	waveform	can	be	stored	as	5	data
points	(2048.0	1000.0	31.25	-500.0	125.0).	The	disadvantage	of	this	technique	is	that	not
all	waveforms	have	a	simple	function,	and	this	software	will	run	slower	as	compared	to
the	other	techniques.	If	you	were	to	implement	this	approach,	performance	would	be
improved	by	replacing	the	floating-point	math	with	fixed-point.

float	Time;	//	incremented	every	1ms

void	Timer0A_Handler(void){

		TIMER0_ICR_R	=	TIMER_ICR_CAECINT;//	acknowledge

		Time	=	Time+0.001;

		DACout(Wave(Time));

}

Program	8.3.	Periodic	interrupt	used	to	create	the	analog	output
waveform.
In	the	second	approach,	we	put	the	waveform	information	in	a	large	statically	allocated
global	array,	see	Program	8.4.	Every	interrupt	we	fetch	a	new	value	out	of	the	data
structure	and	output	it	to	the	DAC.	In	this	case	the	output	compare	interrupt	also	occurs	at
a	regular	rate.	Assume	the	ritual	initializes Time=0 .	Running	at	50	MHz	bus	clock,	the
ISR	in	Program	8.4	executes	in	less	than	1 � s.

uint16_t	Time;		//	incremented	every	1ms,	0-31

const	uint16_t	Wave[32]=	{	3048,2675,2472,2526,2755,2957,

		2931,2597,2048,1499,1165,1139,1341,1570,1624,1421,1048,714,624,863,

		1341,1846,2165,2206,2048,1890,1931,2250,2755,3233,3472,3382};

	

uint16_t	Time;	//	every	1ms

void	Timer0A_Handler(void){

		TIMER0_ICR_R	=	TIMER_ICR_CAECINT;	//	acknowledge

		Time	=	(Time+1)&0x1F;

		DACout(Wave[Time]));

}

Program	8.4.	Periodic	interrupt	used	to	create	the	analog	output
waveform.
Since	the	output	rate	is	equal	and	fixed	these	first	two	methods	have	the	same	performance
as	illustrated	in	the	left	of	Figure	8.36.	The	solid	line	is	the	desired	waveform	and	the
dotted	line	is	the	actual	generated	curve.

	

Figure	8.36.	Generated	waveforms.	Left	uses	either	the	function	or	the
table	lookup	technique.	Center	uses	a	small	table	and	interpolation.	Right
uses	a	variable	output	rate.
If	the	size	of	the	table	gets	large	it	is	possible	to	store	a	smaller	table	in	memory	and	use
linear	interpolation	to	recover	the	data	points	in	between	the	stored	samples.	The	center	of
Figure	8.36	shows	the	generated	waveform	derived	from	only	9	of	the	original	32	data
points.	To	simplify	the	software,	the	first	data	point	is	repeated	as	the	last	data	point.	For
each	point	we	will	need	to	save	both	the	DAC	value	and	time	length	of	the	current	line
segment.	For	the	9	saved	data	points	we	simply	output	the	data,	but	for	the	other	points,
we	must	perform	a	linear	interpolation	to	get	the	value	to	output	to	the	DAC,	see	Program
8.5.	Assume	the	ritual	initializes I=J=0 .	Signed	16-bit	numbers	are	used	so	the
subtractions	operate	properly.	In	other	words,	some	of	the	intermediate	calculations	can	be
negative.

int16_t	I;		//	incremented	every	1ms

int16_t	J;		//	index	into	these	two	tables

const	int16_t	Time[10]=	{0,2,6,10,14,18,22,25,30,32};		//	time	in	msec

const	int16_t	Wave[10]={3048,2472,2931,1165,1624,624,2165,1890,3472,3048};
//last=first

uint16_t	Time;	//	every	1ms

void	Timer0A_Handler(void){

		TIMER0_ICR_R	=	TIMER_ICR_CAECINT;	//	acknowledge

		if((++I)==32)	{I=0;	J=0;}

		if(I==Time[J])

DACout(Wave[J]);

		else	if	(I==Time[J+1]){

J++;

DACout(Wave[J]);}

		else

DACout(Wave[J]+((Wave[J+1]-Wave[J])*(I-t[J]))/(Time[J+1]-Time[J]));

}

Program	8.5.	Periodic	interrupt	used	to	create	the	analog	output
waveform.
The	software	in	the	previous	techniques	changes	the	DAC	at	a	fixed	rate.	While	most	of
the	time	this	is	adequate,	there	are	some	waveforms	for	which	uneven	times	between
outputs	seem	appropriate.	In	our	test	signal,	there	are	places	in	the	wave	where	the	signal
varies	slowly	in	addition	to	places	in	the	wave	with	rapidly	changing	values.	Notice	the
data	points	in	this	figure	are	placed	at	uneven	time	intervals	to	match	the	various	phases	of
this	signal.	This	generated	waveform	is	still	created	with	32	points,	but	placing	the	points
closer	together	during	phases	with	large	slopes	improves	the	overall	accuracy,	see
Program	8.6.	The	table	data	structure	will	encode	both	the	voltage	(as	a	DAC	value)	and
the	time.	The	time	parameter	is	stored	as	a	∆t	in	Timer0	cycles	to	simplify	servicing	the
output	compare	interrupt.

uint16_t	Time;		//	incremented	every	sample,	0	to	31

const	uint16_t	Wave[32]=	{

3048,2675,2472,2526,2817,2981,2800,2337,1901,1499,1165,1341,1570,1597,

1337,952,662,	654,	863,1210,1605,1950,2202,2141,1955,1876,2057,

2366,2755,3129,3442,3382};

const	uint16_t	dt[32]=	{	//	time	increment	in	Timer0	cycles

2000,2000,2000,2500,2500,2000,2000,1500,1500,2000,4000,2000,2500,

2000,2000,2000,	2000,1500,1500,1500,1500,2000,2500,2000,2000,2000,

1500,1500,1500,2000,2500,2000};

	

void	Timer0A_Handler(void){

		Time	=	(Time+1)&0x1F;

		DACout(Wave[Time]);								//	this	output	amplitude

		TIMER0_TAILR_R	=	dt[Time];		//	this	time	duration

		TIMER0_ICR_R	=	TIMER_ICR_CAECINT;	//	acknowledge

}

Program	8.6.	Periodic	interrupt	at	unequal	rates	used	to	create	the	analog
output	waveform.

8.4.3.	PWM	DAC
We	can	use	the	PWM	module	to	create	a	DAC.	The	PWM	digital	signal	is	feed	through	an
analog	low-pass	filter	to	create	a	DC	voltage	linearly	related	to	the	duty	cycle	of	the	PWM
wave.	The	precision	of	the	DAC	will	be	the	precision	of	the	counter	used	to	create	the
PWM.	In	particular,	the	precision	will	be	the	number	we	put	into	the PWM_0_LOAD_R
register	of	the	LM3S/TM4C.	For	example,	if	we	call	Program
6.8with PWM0_Init(1024,512) ,	then	the	DAC	precision	will	be	1024	alternatives	or	10
bits.	The	frequency	of	the	DAC	is	the	rate	at	which	the	DAC	output	can	be	changed	and
depends	on	the	frequency	of	the	PWM	output.	In	particular,	we	can	change	the	PWM	duty
cycle	only	once	per	cycle.	If	the	bus	clock	is	8	MHz,	and	we	initialize
with PWM0_Init(4000,2000) ,	the	PWM	period	will	be	1ms.	This	means	we	can	update
the	12-bit	DAC	1000	times	a	second.	However,	if	the	bus	clock	is	50	MHz,	and	we
initialize	with PWM0_Init(250,125) ,	the	PWM	period	will	be	10 � s.	This	means	we	can
update	the	8-bit	DAC	100,000	times	a	second.	It	is	usually	best	for	the	PWM	signal
frequency	to	be	10	to	100	times	higher	than	the	desired	bandwidth	of	analog	signals	to	be
produced.	Generally,	the	higher	the	PWM	frequency,	the	lower	the	order	of	filter	required,
and	the	easier	it	is	to	build	a	suitable	filter.	Let	fmax	be	the	highest	frequency	component	we
wish	to	create	in	the	analog	output,	and	let	fPWM	be	the	PWM	frequency.	We	want	the
analog	LPF	to	reject	fPWM	and	pass	fmax.

	

Example	8.4.	Design	a	system	that	outputs	a	1-kHz	sine	wave	using	a	PWM	DAC.

Solution:	This	solution	will	use	the	periodic	timer	shown	in	Program	6.6	and	the	PWM
driver	shown	in	Program	6.8.	We	will	run	the	PWM	output	wave	at	100	kHz,	which	is
much	faster	than	the	desired	sine	wave.	We	can	create	an	8-bit	PWM	DAC	using	a	bus
clock	of	50	MHz	and	initializing	with PWM0_Init(250,125) .	50	MHz/100kHz	is	250
alternatives,	which	about	8	bits.	To	change	the	amplitude	of	the	DAC	we	adjust	the	duty
cycle	of	the	PWM	by	calling PWM0_SetDuty() .	We	will	output	32	points	to	the	8-bit
PWM	DAC	for	each	cycle	in	the	sine	wave,	see	Program	8.7.	The	LPF	must	pass	1	kHz
and	reject	100	kHz.	We	choose	the	LPF	cutoff	at	3	kHz,	which	is	between	fPWM	and	fmax.	A
passive	LPF	can	be	made	with	a	resistor	and	capacitor,	fc=	1/(2 � RC).	An	Requal	to	22
k � 	and	C	equal	to	2.2nF	will	create	a	LPF	at	3.3	kHz,	as	shown	in	Figure	8.37.	If	we
need	low	output	impedance,	we	could	replace	the	passive	filter	with	an	active	filter	like
Figure	8.25.

Figure	8.37.	PWM	DAC	used	to	create	a	1	kHz	sine	wave.
const	uint16_t	Wave[32]	=	{	

		125,143,159,175,189,200,208,213,215,213,208,

		200,189,175,159,143,125,107,91,75,61,50,

		42,37,35,37,42,50,61,75,91,107

};	

void	OutputSineWave(void){

		static	uint8_t	index	=	0;	//	counting	index	of	output	sequence

		PWM0_Duty(Wave[index]);								//	output	next	value	in	sequence

		index	=	(index	+	1)&0x1F;						//	increment	counter

}

int	main(void){	//	PWM	code	in	Program	6.8

		SysCtlClockSet(SYSCTL_SYSDIV_4	|	SYSCTL_USE_PLL	|
SYSCTL_OSC_MAIN	|

SYSCTL_XTAL_8MHZ);

		PWM0_Init(250,125);																	//	initialize	PWM0,	100kHz

		Timer0A_Init(&OutputSineWave,31);				//	Program	6.6,	31us,	32kHz

		while(1){

WaitForInterrupt();

		}

}

Program	8.7.	Software	for	PWM	DAC	creating	a	1	kHz	sine	wave
(PWMSine_xxx.zip).

	
	

8.5.	Analog	to	Digital	Converters

8.5.1.	ADC	Parameters
An	ADC	converts	an	analog	signal	into	digital	form.	The	input	signal	is	usually	an	analog
voltage	(Vin),	and	the	output	is	a	binary	number.	The	ADC	precision	is	the	number	of
distinguishable	ADC	inputs	(e.g.,	4096	alternatives,	12	bits).	The	ADC	range	is	the
maximum	and	minimum	ADC	input	(volts,	amps).	The	ADC	resolution	is	the	smallest
distinguishable	change	in	input	(volts,	amps).	The	resolution	is	the	change	in	input	that
causes	the	digital	output	to	change	by	1.

Range(volts)	=	Precision(alternatives)	•	Resolution(volts)

Normally	we	don’t	specify	accuracy	for	just	the	ADC,	but	rather	we	give	the	accuracy	of
the	entire	system	(including	transducer,	analog	circuit,	ADC	and	software).	Therefore,
accuracy	will	be	described	later	in	Chapter	10	as	part	of	the	systems	approach	to	data
acquisition	systems.	An	ADC	is	monotonic	if	it	has	no	missing	codes.	This	means	if	the
analog	signal	is	a	slow	rising	voltage,	then	the	digital	output	will	hit	all	values
sequentially.	The	ADC	is	linear	if	the	resolution	is	constant	through	the	range.	Let	f(x)	be
the	input/output	ADC	transfer	function.	One	quantitative	measure	of	linearity	is	the
correlation	coefficient	of	a	linear	regression	fit	of	the	f(x)	responses.	The	ADC	speed	is
the	time	to	convert,	called	tc.	The	ADC	cost	is	a	function	of	the	number	and	price	of
internal	components.	There	are	four	common	encoding	schemes	for	an	ADC.	Table	8.7
shows	two	encoding	schemes	for	a	12-bit	unipolar	ADC,	and	Table	8.8	shows	two
encoding	schemes	for	a	12-bit	bipolar	ADC.

Unipolar
Codes

Straight	Binary Complementary
Binary

+Vmax 1111,1111,1111 0000,0000,0000

+Vmax/2 1000,0000,0000 0001,1111,1111

+Vmax/1024 0000,0000,0001 1111,1111,1110

+0.00 0000,0000,0000 1111,1111,1111

Table	8.7.	Unipolar	codes	for	a	12-bit	ADC	with	a	range	of	0	to	+Vmax.

	

Bipolar
Codes

Offset	Binary Two’s	Complement
Binary

+Vmax 1111,1111,1111 0111,1111,1111

+Vmax/2 1000,0000,0000 0100,0000,0000

+Vmax/512 1000,0000,0001 0000,0000,0001

+0.00 1000,0000,0000 0000,0000,0000

-Vmax/512 0111,1111,1111 1111,1111,1111

-Vmax/2 0100,0000,0000 1100,0000,0000

-Vmax 0000,0000,0000 1000,0000,0000

Table	8.8.	Bipolar	codes	for	a	12-bit	ADC	with	a	range	of	-Vmax	to	+Vmax.

	

The	TM4C	uses	straight	binary,	has	a	precision	of	12	bits,	and	has	a	range	of	0	to	3.3	V.
The	LM3S	has	a	10-bit	ADC	with	a	range	of	0	to	3V.	To	convert	between	straight	binary
and	complementary	binary	we	simply	complement	(change	0	to	1,	change	1	to	0)	all	the
bits.	To	convert	between	offset	binary	and	2’s	complement,	we	complement	just	the	most
significant	bit.	The	exclusive-or	operation	can	be	used	to	complement	bits.

Just	like	the	DAC,	one	can	choose	the	full	scale	range	to	simplify	the	use	of	fixed-point
math.	For	example,	if	a	12-bit	ADC	had	a	full	scale	range	of	0	to	4.095	volts,	then	the
resolution	would	be	exactly	1	mV.	This	means	that	if	the	ADC	input	voltage	were	1.234
volts,	then	the	result	would	be	1234	(decimal).		

The	total	harmonic	distortion	(THD)	of	a	signal	is	a	measure	of	the	harmonic	distortion
present	and	is	defined	as	the	ratio	of	the	sum	of	the	powers	of	all	harmonic	components	to
the	power	of	the	fundamental	frequency.	Basically,	it	is	a	measure	of	all	the	noise
processes	in	an	ADC	and	usually	is	given	in	dB	full	scale.	A	similar	parameter	is	signal-
to-noise	and	distortion	ratio	(SINAD),	which	is	measured	by	placing	a	pure	sine	wave	at
the	input	of	the	ADC	(signal)	and	measuring	the	ADC	output	(signal	plus	noise).	We	can
compare	precision	in	bits	to	signal-to-noise	ratio	in	dB	using	the	relation	dB	=	20	log10(2n).
For	example,	the	12-bit	MAX1247	ADC	has	a	SINAD	of	73	dB.	Notice	that	20	log10(212)
is	72	dB.

Dynamic	range,	expressed	in	dB,	is	defined	as	the	range	between	the	noise	floor	of	a
device	and	its	specified	maximum	output	level.	The	dynamic	range	is	the	range	of	signal
amplitudes	which	the	ADC	can	resolve.	If	an	ADC	can	resolve	signals	from	1	mV	to	1	V,
it	has	a	dynamic	range	of	20*log(1V/1mV)	=	60dB.	Dynamic	range	is	important	in
communication	applications,	where	signal	strengths	vary	dramatically.	If	the	signal	is	too
large,	it	saturates	the	ADC	input.	If	the	signal	is	too	small,	it	gets	lost	in	the	quantization
noise.

The	effective	number	of	bits	(ENOB)	specifies	the	dynamic	performance	of	an	ADC	at	a
specific	input	frequency	and	sampling	rate.	In	an	ideal	situation,	ADC	error	consists	only
of	quantization	noise	(resolution	=	range/precision).	As	the	input	frequency	increases,	the

overall	noise	(particularly	in	the	distortion	components)	also	increases,	thereby	reducing
the	ENOB	and	SINAD.

8.5.2.	ADC	Conversion	Techniques
The	most	pervasive	method	for	ADC	conversion	is	the	successive	approximation
technique,	as	illustrated	in	Figure	8.38.	A	12-bit	successive	approximation	ADC	is	clocked
12	times.	At	each	clock	another	bit	is	determined,	starting	with	the	most	significant	bit.
For	each	clock,	the	successive	approximation	hardware	issues	a	new	“guess”	on	Vdac	by
setting	the	bit	under	test	to	a	“1”.	If	Vdac	is	now	higher	than	the	unknown	input,	Vin,	then
the	bit	under	test	is	cleared.	If	Vdac	is	less	than	Vin,	then	the	bit	under	test	is	remains	1.	In
this	description,	bit	is	an	unsigned	integer	that	specifies	the	bit	under	test.	For	a	12-bit
ADC,	bit	goes	2048,	1024,	512,	256,	128,	64,…,1.	Dout	is	the	ADC	digital	output,	and	Z	is
the	binary	input	that	is	true	if	Vdac	is	greater	than	Vin.

Figure	8.38.	A	12-bit	successive	approximation	ADC.
Observation:	The	speed	of	a	successive	approximation	ADC	relates	linearly	with	its
precision	in	bits.

The	sigma	delta	analog	to	digital	converter	is	used	in	many	audio	applications.	It	is	a	cost
effective	approach	to	16-bit	44	kHz	sampling	(CD	quality	audio).	Sigma	delta	converters
have	a	DAC,	a	comparator	and	digital	processing	similar	to	the	successive	approximation
technique.	While	successive	approximation	converters	have	DACs	with	the	same
precision	as	the	ADC,	sigma	delta	converters	use	DACs	with	a	much	smaller	precision
than	the	ADC.	A	1-bit	DAC	is	simply	a	digital	signal	itself.	The	digital	signal	processing
will	run	at	a	clock	frequency	faster	than	the	overall	ADC	system,	called	oversampling.	It
uses	complex	signal	processing	to	drive	the	output	voltage	V0	to	equal	the	unknown	input
Vin	in	a	time-averaged	sense.	The	“delta”	part	of	the	sigma	delta	converter	is	the
subtractor,	where	V1=V0–Vin.	Next	comes	the	“sigma”	part	that	implements	an	analog
integration.	If	V0	to	equal	the	unknown	input	Vin	in	a	time-averaged	sense,	then	V2	will	be
zero.	The	comparator	tests	the	V2	signal.	If	V2	is	positive	then	V0	is	made	smaller.	If	V2	is
negative	then	V0	is	made	larger.	This	DAC-subtractor-integrator-comparator-digital	loop	is
executed	at	a	rate	much	faster	than	the	eventual	digital	output	rate.

A	very	simple	algorithm,	shown	in	Figure	8.39	is	run	continuously.	For	every	time	through
the	outer	while	loop	there	is	one	ADC	output.	This	algorithm	is	much	too	simple	to	be
appropriate	in	an	actual	converter,	but	it	does	illustrate	the	sigma	delta	approach.	For	a	10-
bit	conversion,	the	DAC	output	rate	is	1024	times	the	ADC	conversion	rate.	We	assume
the	input	voltage,	Vin,	is	between	0	and	+3	V.	DAC	is	an	output	of	the	sigma-delta

processing	that	sets	the	1-bit	DAC.	Z	is	the	comparator	output,	which	is	an	input	to	the
signal	processing.

Figure	8.39.	Block	diagram	of	the	sigma-delta	ADC	conversion	technique.
In	this	very	simple	solution,	the	DAC	is	set	to	1	(V0=+3)	if	Z	is	0	(V2<0).	Conversely,	the
DAC	is	set	to	0	(V0=0)	if	Z	is	1	(V2>0).	Each	time	the	DAC	is	set	to	1,	sum	is	incremented.
At	the	end	of	1024	passes,	the	value	sum	is	recorded	as	the	ADC	sample.	Since	there	are
1024	passes	through	the	loop,	sum	will	vary	from	0	to	1023.	For	example,	if	the	Vin	is	1.5
V,	then	half	of	the	DAC	outputs	will	be	1	and	the	other	half	0.	This	will	make	V0	oscillate
between	0	and	3V,	with	a	50%	duty	cycle,	V1	will	oscillate	between	-1.5	and	+1.5	with	a
50	%	duty	cycle,	and	the	time-averaged	V2	will	be	zero.

A	second	example	is	illustrated	in	Figure	8.40.	The	input	Vin	is	2.25	V,	so	the	output
should	be	2.25/3*1024	or	768.	The	sigma	delta	will	adjust	the	DAC	output	so	that	V1=V0
–Vin.	is	equal	to	0	in	a	time-averaged	sense.	V1	is	2.25	V	for	25%	of	the	time	and	‑0.75	V
for	75%	of	the	time.	Three	out	of	every	four	DAC	outputs	are	high,	so	three	out	of	every
four	time,	V2	will	be	above	0.	Therefore	after	1024	times	through	the	loop,	768	of	them
will	increment	sum,	yielding	the	correct	ADC	result.	If	the	Vin	input	rises,	a	higher
percentage	of	DAC	outputs	will	be	high,	increasing	sum.	If	the	Vin	input	falls,	a	lower
percentage	of	DAC	outputs	will	be	high,	decreasing	sum.

Figure	8.40.	Example	operation	of	a	sigma-delta	conversion.
In	a	real	sigma	delta	the	overclock	rate	is	typically	8	to	1	or	16	to	1.	Multiple	bits	are
obtained	each	time	through	the	output-input	cycle	using	DSP	algorithms.

Another	ADC	technique	is	called	flash.	Flash	converters	are	very	expensive	and	very	fast.
Figure	8.41	shows	a	3-bit	flash.	The	MAX104	is	a	±5V,	1Gsps,	8-Bit	ADC	with	on-chip
2.2GHz	sample/hold.

Figure	8.41.	Block	diagram	of	a	3-bit	flash	ADC.

8.5.3.	Sample/Hold
A	sample	and	hold	(S/H)	is	an	analog	latch,	illustrated	in	Figure	8.42.	An	alternative
name	for	this	analog	component	is	track	and	hold.	The	purpose	of	the	S/H	is	to	hold	the
ADC	analog	input	constant	during	the	conversion.	There	is	S/H	at	the	input	of	most	ADC,
including	the	ones	on	the	Stellarid	and	Tiva	microcontrollers.	The	first	phase	of	most
analog	to	digital	conversions	is	the	sampling	phase,	where	the	input	voltage	Vin,	is
recorded	as	a	charge	on	the	capacitor	C.

Figure	8.42.	The	sample	and	hold	has	a	digital	input,	an	analog	input	and
an	analog	output.
The	digital	input,	Control,	determines	the	S/H	mode.	The	S/H	is	in	sample	mode,	where
Vout	equals	Vin,	with	the	switch	is	closed.	The	S/H	is	in	hold	mode,	Vout	is	fixed	because	the
switch	is	open.	The	acquisition	time	is	the	time	for	the	output	to	equal	the	input	after	the
control	is	switched	from	hold	to	sample.	This	is	the	time	to	charge	the	capacitor	C.	The
aperture	time	is	the	time	for	the	output	to	stabilize	after	the	control	is	switched	from
sample	to	hold.	This	is	the	time	to	open	the	switch,	which	is	usually	quite	fast.	The	droop
rate	is	the	output	voltage	slope	(dVout/dt)	when	Control	equals	hold.	Normally	the	gain,	K,
should	be	one	and	the	offset,	Voff,	should	be	zero.	The	gain	and	offset	error	specify	how
close	is	the	Vout	to	the	desired	Vin	when	Control	equals	sample,

Vout	=	K	Vin	+	Voff
To	choose	the	capacitor,	C:

1)	One	should	use	a	high	quality	capacitor	with	high

insulation	resistance	and	low	dielectric	absorption.

2)	A	larger	value	of	C	will	decrease	(improve)	the	droop	rate.

If	the	droop	current	is	IDR,	then	the	droop	rate	will	be	dVout/dt	=IDR/C

3)	A	smaller	C	will	decrease	(improve)	the	acquisition	time.

The	system	will	require	a	sample	and	hold	if	the	input	signal	could	change	during	an	ADC
conversion.	There	will	be	a	time	during	which	the	ADC	samples	the	input	voltage,	tsamp.
Let	the	maximum	slew	rate	of	the	input	signal	be	dVin/dt.	If	the	slew	rate	times	the
sampling	time	is	larger	than	the	ADC	resolution,	we	should	add	a	sample	and	hold	module
to	keep	the	analog	input	stable	during	conversion.	The	LM3S/LM4F/TM4C	ADC	modules
have	a	built-in	S/H.

8.5.4.	Internal	ADC
Table	8.9	shows	the	ADC	register	bits	required	to	perform	periodic	sampling.	We	will
show	timer	triggering	on	one	and	on	two	channels.	For	more	complex	configurations	refer
to	the	specific	data	sheet.	The	value	in	ADC0_PC_R	specifies	the	maximum	sampling
rate,	see	Table	8.10.	The	LM3S1968,	TM4C123,	and	TM4C1294	can	sample	up	to	1
million	samples	per	second,	but	the	maximum	sampling	rate	on	many	LM3S
microcontrollers	is	only	500K.	Refer	to	the	data	sheet	of	your	specific	microcontroller	for
maximum	possible	sampling	rate,	the	number	of	channels,	and	the	number	of	bits.	The
ADC	has	four	sequencers,	but	we	will	present	code	using	sequencers	2	and	3.	We	set	the
ADC0_SSPRI_R	register	to	0x3210	to	make	sequencer	0	the	highest	and	sequencer	3	the
lowest	priority.	We	need	to	make	sure	each	sequencer	has	a	unique	priority.	We	set	bits
15–12	(EM3)	in	the	ADC0_EMUX_R	register	to	specify	how	sequencer	3	will	be
triggered.	Similarly,	we	set	bits	11–8	(EM2)	to	specify	how	sequencer	2	will	be	triggered.
Table	8.11	shows	the	various	ways	to	trigger	an	ADC	conversion.	In	this	section,	we	will
use	timer	triggering	(EM3=0x5).

Address 31-2 1 0 Name

$400F.E638 	 ADC1 ADC0 SYSCTL_RCGCADC_R

	 	 	 	 	 	 	 	 	 	

	 31-14 13-12 11-10 9-8 7-6 5-4 3-2 1-0 	

$4003.8020 	 SS3 	 SS2 	 SS1 	 SS0 ADC0_SSPRI_R

	 	 	 	 	 	 	 	 	 	

	 31-16 15-12 11-8 7-4 3-0 	

$4003.8014 	 EM3 EM2 EM1 EM0 ADC0_EMUX_R

	 	 	 	 	 	 	 	 	 	

	 31-4 3 2 1 0 	

$4003.8000 	 ASEN3 ASEN2 ASEN1 ASEN0 ADC0_ACTSS_R

$4003.8028 	 SS3 SS2 SS1 SS0 ADC0_PSSI_R

$4003.8004 	 INR3 INR2 INR1 INR0 ADC0_RIS_R

$4003.8008 	 MASK3MASK2 MASK1MASK0 ADC0_IM_R

$4003.8FC4	 Speed ADC0_PC_R

$4003.800C 	 IN3 IN2 IN1 IN0 ADC0_ISC_R

	 	 	 	 	 	 	 	 	 	

	 31-28 27-24 23-20 19-16 15-12 11-8 7-4 3-0 	

$4003.8040 MUX7 MUX6 MUX5 MUX4 MUX3 MUX2 MUX1 MUX0 ADC0_SSMUX0_R

	 	 	 	 	 	 	 	 	 	

	 31-16 15-12 11-8 7-4 3-0 	

$4003.8060 	 MUX3 MUX2 MUX1 MUX0 ADC0_SSMUX1_R

$4003.8080 	 MUX3 MUX2 MUX1 MUX0 ADC0_SSMUX2_R

$4003.80A0	 	 	 	 MUX0 ADC0_SSMUX3_R

	 	 	 	 	 	 	 	 	 	

	 31 30 29 28 27 26 … 8 7 6 5 4 3 2 1 0 	

$4003.8044 TS7IE7END7D7TS6IE6… D2TS1IE1 END1D1TS0IE0 END0D0ADC0_SSCTL0_R

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 	

$4003.8064 TS3IE3END3D3TS2IE2END2D2TS1IE1 END1D1TS0IE0 END0D0ADC0_SSCTL1_R

$4003.8084 TS3IE3END3D3TS2IE2END2D2TS1IE1 END1D1TS0IE0 END0D0ADC0_SSCTL2_R

$4003.80A4	 	 	 	 	 	 	 	 	 	 	 	 TS0IE0 END0D0ADC0_SSCTL3_R

	 	 	 	 	 	 	 	 	 	

	 31-10 11-0 	

$4003.8048 	 DATA ADC0_SSFIFO0_R

$4003.8068 	 DATA ADC0_SSFIFO1_R

$4003.8088 	 DATA ADC0_SSFIFO2_R

$4003.80A8	 DATA ADC0_SSFIFO3_R

Table	8.9.	Some	of	the	ADC	registers.	Each	register	is	32	bits	wide.	LM3S	has	10-bit
data

Value Description

0x7 1M	samples/second

0x5 500K	samples/second

0x3 250K	samples/second

0x1 125K	samples/second

Table	8.10.	The	Speed	bits	in	the	ADC0_PC_R	register.

When	using	sequencer	0,	we	can	specify	up	to	eight	channels	to	convert	on	a	single
command.	Sequencers	1	and	2	allow	up	to	four	channels	to	be	converted.	The	control	bits
for	sequencer	2	are	shown	in	Table	8.9.	The	ADC0_SSMUX2_R	register	specifies	which
channels	to	convert	and	the	ADC0_SSCTL2_R	register	specifies	how	many	samples	to
take	and	if/when	to	interrupt.	For	example,	if	we	wish	to	convert	channels	2,	3,	and	6,	we
set	MUX0,	MUX1,	and	MUX2	fields	to	2,3,6	respectively	in	ADC0_SSMUX2_R.	The
ADC0_SSCTL2_R	bit	END2	is	set	to	specify	three	conversions,	assuming	END0=0	and
END1=0.	The	IE2	bit	can	be	set	to	request	an	interrupt	after	the	third	conversion.	10-bit
results	from	sequencer	2	are	read	from	the	ADC0_SSFIFO2	register.	All	other	bits	in	the
ADC0_SSCTL2_R	register	will	be	clear	for	this	example	(no	temperature	or	differential
measurements).

The	ADC0_RIS_R	register	has	flags	that	are	set	when	the	conversion	is	complete,
assuming	the	IE0	bit	is	set.	The	ADC_IM_R	register	has	interrupt	arm	bits.	The
ADC0_ISC_R	register	has	interrupt	trigger	bits.	The	IN3	bit	is	set	when	both	INR3	and
MASK3	are	set.	We	clear	the	INR3	and	IN3	bits	by	writing	an	8	to	the	ADC0_ISC_R
register.	The	interrupt	vector	for	ADC	sequencer	3	is	at	0x00000084.

Value Event

0x0 Software	start

0x1 Analog	Comparator	0

0x2 Analog	Comparator	1

0x3 Analog	Comparator	2

0x4 External	(GPIO	PB4)

0x5 Timer

0x6 PWM0

0x7 PWM1

0x8 PWM2

0xF Always	(continuously
sample)

Table	8.11.	The	ADC	EM3,	EM2,	EM1,	and	EM0	bits	in	the	ADC0_EMUX_R
register.

	

There	are	13	steps	to	configure	the	ADC	to	sample	a	single	channel	at	a	periodic	rate.	The
most	accurate	sampling	method	is	timer-triggered	sampling	(EM3=0x5).	On	the
TM4C123,	the	MUX	fields	are	4	bits	wide,	allowing	us	to	specify	channels	0	to	11.	On	the
TM4C1294,	the	channel	ranges	from	0	to	19	(see	Table	3.2).

Step	1.	We	enable	the	ADC	clock	in	the	SYSCTL_RCGCADC_R	register.

Step	2.	Bits	3	–	0	of	the	ADC0_PC_R	register	specify	the	maximum	sampling	rate	of	the
ADC.	In	this	example,	we	will	sample	slower	than	125	kHz,	so	the	maximum	sampling
rate	is	set	at	125	kHz.	This	will	require	less	power	and	produce	a	longer	sampling	time	as
described	the	S/H	section,	creating	a	more	accurate	conversion.

Step	3.	We	will	set	the	priority	of	each	of	the	four	sequencers.	In	this	case,	we	are	using
just	one	sequencer,	so	the	priorities	are	irrelevant,	except	for	the	fact	that	no	two
sequencers	should	have	the	same	priority.	The	default	configuration	has	Sample
Sequencer	0	with	the	highest	priority,	and	Sample	Sequencer	3	as	the	lowest	priority.

Step	4.	Next,	we	need	to	configure	the	timer	to	run	at	the	desired	sampling	frequency.	We
enable	the	Timer0	clock	by	setting	bit	0	of	the	SYSCTL_RCGCTIMER_R	register.	This
initialization	is	similar	to	Program	6.6	with	two	changes.	First	we	set	bit	5	of	the
TIMER0_CTL_R	register	to	activate	TAOTE,	which	is	the	Timer	A	output	trigger
enable.	Secondly,	we	do	not	arm	any	Timer0	interrupts.	The	rate	at	which	the	timer	rolls
over	determines	the	sampling	frequency.	Let	prescale	be	the	value	loaded	into
TIMER0_TAPR_R,	and	let	period	be	the	value	loaded	into	TIMER0_TAILR_R.		If	the
period	of	the	bus	clock	frequency	is t,	then	the	ADC	sampling	period	will	be

t	*(prescale	+	1)*(period	+	1)

The	fastest	sampling	rate	is	determined	by	the	speed	of	the	processor	handling	the	ADC
interrupts	and	by	the	speed	of	the	main	program	consuming	the	data	from	the	FIFO.	If	the
bus	clock	is	80	MHz,	the	slowest	possible	sampling	rate	for	this	example	is	80MHz/232,
which	is	about	0.018	Hz,	which	is	every	53	seconds.

Step	5.	Before	configuring	the	sequencer,	we	need	to	disable	it.	To	disable	sequencer	3,
we	write	a	0	to	bit	3	(ASEN3)	in	the	ADC0_ACTSS_R	register.	Disabling	the	sequencer
during	programming	prevents	erroneous	execution	if	a	trigger	event	were	to	occur	during
the	configuration	process.

Step	6.	We	configure	the	trigger	event	for	the	sample	sequencer	in	the	ADC0_EMUX_R
register.		For	this	example,	we	write	a	0101	to	bits	15–12	(EM3)	specifying	timer	trigger
mode	for	sequencer	3.

Step	7.	For	each	sample	in	the	sample	sequence,	configure	the	corresponding	input	source
in	the	ADC0_SSMUXn	register.		In	this	example,	we	write	the	channel	number	(0,	1,	2,	or
3)	to	bits	3–0	in	the	ADC0_SSMUX3_R	register.

Step	8.	For	each	sample	in	the	sample	sequence,	we	configure	the	sample	control	bits	in
the	corresponding	nibble	in	the	ADC0_SSCTLn	register.	When	programming	the	last
nibble,	ensure	that	the	END	bit	is	set.	Failure	to	set	the	END	bit	causes	unpredictable
behavior.	Sequencer	3	has	only	one	sample,	so	we	write	a	0110	to	the	ADC0_SSCTL3_R
register.		Bit	3	is	the	TS0	bit,	which	we	clear	because	we	are	not	measuring	temperature.
Bit	2	is	the	IE0	bit,	which	we	set	because	we	want	to	request	an	interrupt	when	the	sample
is	complete.	Bit	1	is	the	END0	bit,	which	is	set	because	this	is	the	last	(and	only)	sample
in	the	sequence.	Bit	0	is	the	D0	bit,	which	we	clear	because	we	do	not	wish	to	use
differential	mode.

Step	9.	If	interrupts	are	to	be	used,	write	a	1	to	the	corresponding	mask	bit	in	the
ADC0_IM_R	register.	We	want	an	interrupt	to	occur	when	the	conversion	is	complete	(set
bit	3,	MASK3).

Step	10.	We	enable	the	sample	sequencer	logic	by	writing	a	1	to	the	corresponding
ASENn.	To	enable	sequencer	3,	we	write	a	1	to	bit	3	(ASEN3)	in	the	ADC0_ACTSS_R
register.

Step	11.	The	priority	of	the	ADC0	sequencer	3	interrupts	are	in	bits	13–15	of	the
NVIC_PRI4_R	register.

Step	12.	Since	we	are	requesting	interrupts,	we	need	to	enable	interrupts	in	the	NVIC.
ADC	sequencer	3	interrupts	are	enabled	by	setting	bit	17	in	the	NVIC_EN0_R	register.

Step	13.	Lastly,	we	must	enable	interrupts	in	the	PRIMASK	register.

The	timer	starts	the	conversion	at	a	regular	rate.	Bit	3	(INR3)	in	the	ADC0_RIS_R
register	will	be	set	when	the	conversion	is	done.	This	bit	is	armed	and	enabled	for
interrupting,	so	conversion	complete	will	trigger	an	interrupt.	The	IN3	bit	in	the
ADC0_ISC_R	register		triggers	the	interrupt.		The	ISR	acknowledges	the	interrupt	by
writing	a	1	to	bit	3	(IN3).	The	12-bit	result	is	read	from	the	ADC0_SSFIFO3_R	register.
The	book	web	site	for	has	example	code.	In	order	to	reduce	latency	of	other	interrupt
requests	in	the	system,	this	ISR	simply	stores	the	12-bit	conversion	in	a	FIFO,	to	be
processed	later	in	the	main	program.	Program	8.8	shows	the	initialization	and	interrupt

service	routine	to	affect	the	periodic	sampling.	For	the	port	pin,	we	disable	its	DEN,	clear
its	DIR,	set	its	AFSEL	and	enable	its	AMSEL	bit.

void	ADC0_InitTimer0ATriggerSeq3PD3(uint32_t	period){

		volatile	uint32_t	delay;

		SYSCTL_RCGCADC_R	|=	0x01;					//	1)	activate	ADC0

		SYSCTL_RCGCGPIO_R	|=	0x08;				//	Port	D	clock

		delay	=	SYSCTL_RCGCGPIO_R;				//	allow	time	for	clock	to	stabilize

		GPIO_PORTD_DIR_R	&=	~0x08;				//	make	PD3	input

		GPIO_PORTD_AFSEL_R	|=	0x08;			//	enable	alternate	function	on	PD3

		GPIO_PORTD_DEN_R	&=	~0x08;				//	disable	digital	I/O	on	PD3

		GPIO_PORTD_AMSEL_R	|=	0x08;			//	enable	analog	functionality	on	PD3

		ADC0_PC_R	=	0x01;													//	2)	configure	for	125K	samples/sec

		ADC0_SSPRI_R	=	0x3210;								//	3)	seq	0	is	highest,	seq	3	is	lowest

		SYSCTL_RCGCTIMER_R	|=	0x01;			//	4)	activate	timer0

		delay	=	SYSCTL_RCGCGPIO_R;

		TIMER0_CTL_R	=	0x00000000;				//	disable	timer0A	during	setup

		TIMER0_CTL_R	|=	0x00000020;			//	enable	timer0A	trigger	to	ADC

		TIMER0_CFG_R	=	0;													//	configure	for	32-bit	timer	mode

		TIMER0_TAMR_R	=	0x00000002;			//	configure	for	periodic	mode

		TIMER0_TAPR_R	=	0;												//	prescale	value	for	trigger

		TIMER0_TAILR_R	=	period-1;				//	start	value	for	trigger

		TIMER0_IMR_R	=	0x00000000;				//	disable	all	interrupts

		TIMER0_CTL_R	|=	0x00000001;			//	enable	timer0A	32-b,	periodic

		ADC0_ACTSS_R	&=	~0x08;								//	5)	disable	sample	sequencer	3

		ADC0_EMUX_R	=	(ADC0_EMUX_R&0xFFFF0FFF)+0x5000;	//	6)	timer	trigger

		ADC0_SSMUX3_R	=	4;												//	7)	PD3	is	analog	channel	4

		ADC0_SSCTL3_R	=	0x06;									//	8)	set	flag	and	end	after	first	sample																					

		ADC0_IM_R	|=	0x08;												//	9)	enable	SS3	interrupts

		ADC0_ACTSS_R	|=	0x08;									//	10)	enable	sample	sequencer	3

		NVIC_PRI4_R	=	(NVIC_PRI4_R&0xFFFF00FF)|0x00004000;	//	11)priority	2

		NVIC_EN0_R	=	1<<17;											//	12)	enable	interrupt	17	in	NVIC

		EnableInterrupts();											//	13)	enable	interrupts

}

void	ADC0Seq3_Handler(void){

		ADC0_ISC_R	=	0x08;					//	acknowledge	ADC	sequence	3	completion

		Fifo_Put(ADC0_SSFIFO3_R);		//	pass	to	foreground

}

Program	8.8.	Software	to	sample	data	using	the	ADC
(ADCT0ATrigger_xxx.zip).
Checkpoint	8.7:	If	the	input	voltage	is	1.0V,	what	value,	in	10-bit	unsigned	right-justified
mode,	will	the	LM3S	ADC	return?	What	will	a	TM4C	with	a	12-bit	ADC	return?

Sequencer	3	can	only	sample	one	analog	input.	When	we	wish	to	sample	multiple
channels	with	one	trigger,	we	need	to	use	sequencers	0,	1,	or	2.	The	next	example	shows
how	to	sample	two	channels	using	sequencer	2.	The	TM4C123	has	pins	that	could	be	12
analog	input	and	the	TM4C1294	has	20	possible	analog	pins.	Both	of	these
microcontrollers	have	two	ADC	modules	and	each	module	has	4	sequencers.

	

Example	8.5.	Write	software	to	sample	ADC	channels	4	and	5	at	1	kHz.	Channel	4	on	the
TM4C123	is	PD3	and	channel	5	is	PD2.

Solution:	This	solution	will	use	the	periodic	timer	to	establish	the	1000	Hz	sampling	rate,
similar	to	Program	8.8.	We	specify	the	channels	to	sample	in	the	ADC0_SSMUX2_R
register.	0x0054	means	first	sample	channel	4	then	sample	channel	5.	The
ADC0_SSCTL2_R	bit	END1	is	set	to	specify	two	conversions,	assuming	END0=0.	The
IE1	bit	is	set	to	request	an	interrupt	after	the	second	conversion.	We	read	the	two	12-bit
results	from	the	ADC0_SSFIFO2	register.	All	other	bits	in	the	ADC0_SSCTL2_R
register	will	be	clear	for	this	example	(no	temperature	or	differential	measurements).

void	ADC_Init(void){		//	assumes	a	80	MHz	bus	clock

		SYSCTL_RCGCADC_R	|=	0x01;					//	1)	activate	ADC0

		SYSCTL_RCGCGPIO_R	|=	0x08;				//	Port	D	clock

		SYSCTL_RCGCTIMER_R	|=	0x01;			//	4)	activate	timer0

		Ch1Fifo_Init();															//	initialize	FIFOs

		Ch3Fifo_Init();															//	wait	for	clocks	to	stabilize

		GPIO_PORTD_DIR_R	&=	~0x0C;				//	make	PD3-2	input

		GPIO_PORTD_AFSEL_R	|=	0x0C;			//	enable	alternate	function	on	PD3-2

		GPIO_PORTD_DEN_R	&=	~0x0C;				//	disable	digital	I/O	on	PD3-2

		GPIO_PORTD_AMSEL_R	|=	0x0C;			//	enable	analog	functionality	on	PD3-2

		ADC0_PC_R	=	0x01;													//	2)	configure	for	125K	samples/sec

		ADC0_SSPRI_R	=	0x3210;								//	3)	Priority	of	sequencers

		TIMER0_CTL_R	=	0x00000000;				//	disable	timer0A	during	setup

		TIMER0_CTL_R	|=	0x00000020;			//	enable	timer0A	trigger	to	ADC

		TIMER0_CFG_R	=	0;													//	configure	for	32-bit	timer	mode

		TIMER0_TAMR_R	=	0x00000002;			//	configure	for	periodic	mode

		TIMER0_TAPR_R	=	0;												//	prescale	value	for	trigger

		TIMER0_TAILR_R	=	79999;						//	80000	cycles	is	1ms

		TIMER0_IMR_R	=	0x00000000;				//	disable	all	interrupts

		TIMER0_CTL_R	|=	0x00000001;			//	enable	timer0A	32-b,	periodic

		ADC0_ACTSS_R	&=	~0x04;								//	5)	disable	sample	sequencer	2

		ADC0_EMUX_R	=	(ADC0_EMUX_R&0xFFFFF0FF)+0x0500;	//	6)	timer	trigger

		ADC0_SSMUX2_R	=	0x0054;						//	7)	PD3-2	are	channel	4,5

		ADC0_SSCTL2_R	=	0x0060;							//	8)	set	flag	and	end	after	second																						

		ADC0_IM_R	|=	0x04;												//	9)	enable	SS2	interrupts

		ADC0_ACTSS_R	|=	0x04;									//	10)	enable	sample	sequencer	2

		NVIC_PRI4_R	=	(NVIC_PRI4_R&0xFFFFFF00)|0x00000040;	//	ADC2	priority	2

		NVIC_EN0_R	=	1<<16;											//	12)enable	interrupt	16

		EnableInterrupts();										//	13)enable	all	interrupts

}

void	ADC0Seq2_Handler	(void){

		ADC0_ISC_R	=	0x04;						//	acknowledge	ADC	sequence	2	completion

		Ch1Fifo_Put(ADC0_SSFIFO2_R);		//	PD3,	Channel	4	first

		Ch3Fifo_Put(ADC0_SSFIFO2_R);		//	PD3,	Channel	5	second

}

Program	8.9.	Software	to	sample	channels	4	and	5	at	1	kHz
(ADC_TwoChan_xxx.zip).

	

8.5.5.	Multiple	Access	Circular	Queue
A	multiple	access	circular	queue	(MACQ)	is	used	for	data	acquisition	and	control
systems.	A	MACQ	is	a	fixed	length	order	preserving	data	structure,	see	Figure	8.43.	The
source	process	(ADC	sampling	software)	places	information	into	the	MACQ.	Once
initialized,	the	MACQ	is	always	full.	The	oldest	data	is	discarded	when	the	newest	data	is
Put	into	a	MACQ.		The	sink	process	can	read	any	of	the	data	from	the	MACQ.	The	Read
function	is	non-destructive.	This	means	that	the	MACQ	is	not	changed	by	the	Read
operation.

Figure	8.43.	When	data	is	put	into	a	multiple	access	circular	queue,	the
oldest	data	is	lost.
For	example	consider	the	problem	of	weather	forecasting	as	shown	in	Figure	8.44.

Figure	8.44.	Application	of	the	multiple	access	circular	queue.
The	weatherman	measures	the	temperature	every	day	at	12	noon,	and	puts	the	temperature
into	the	MACQ.	To	predict	tomorrow’s	temperature,	she	looks	at	the	trend	over	the	last	3
days.	Let	T(0)	be	today’s	temperature,	T(1)	be	yesterday’s	temperature,	etc.	We	could
predict	tomorrow’s	by	executing	this	digital	equation

U	=	(170•T(0)+60•T(1)+36•T(2))/256

The	MACQ	is	useful	for	implementing	digital	filters	and	linear	control	systems.	One
common	application	of	the	MACQ	is	the	real-time	calculation	of	derivative.	Also	assume
the	ADC	sampling	is	triggered	every	1	ms.	x(n)	will	refer	to	the	current	sample,	and	x(n-1)
will	be	the	sample	1	ms	ago.	There	are	a	couple	of	ways	to	implement	the	discrete	time
derivative.	The	simple	approach	is

d(n)	=	(x(n)	–	x(n-1))/Δt

In	practice,	this	first	order	equation	is	quite	susceptible	to	noise.	An	approach	generating
less	noise	calculates	the	derivative	using	a	higher	order	equation	like

d(n)	=	(x(n)	+	3x(n-1)	–	3x(n-2)	–	x(n-3))/Δt

	

The	C	implementation	of	this	discrete	derivative	uses	a	MACQ.	Since	∆t	is	1	ms,	we
simply	consider	the	derivative	to	have	units	mV/ms	and	not	actually	execute	the	divide	by
∆t	operation.	Signed	arithemetic	is	used	because	the	slope	may	be	negative.

int32_t	x[4];	//	MACQ	(mV)

int32_t	d;				//	derivative(V/s)

void	ADC3_Handler(void){

		ADC0_ISC_R	=	0x08;					//	acknowledge	ADC	sequence	3	completion

		x[3]	=	x[2];		//	shift	data

		x[2]	=	x[1];		//	units	of	mV

		x[1]	=	x[0];

		x[0]	=	(3300*ADC_SSFIFO3_R)/4096;	//	in	mV

		d	=	x[0]+3*x[1]-3*x[2]-x[3];						//	in	V/s

		Fifo_Put(d);		//	pass	to	foreground

}

Program	8.9.	Software	implementation	of	first	derivative	using	a	multiple
access	circular	queue.
When	the	MACQ	holds	many	data	points	it	can	be	implemented	using	a	pointer	or	index
to	the	newest	data.	In	this	way,	the	data	need	not	be	shifted	each	time	a	new	sample	is
added.	The	disadvantage	of	this	approach	is	that	address	calculation	is	required	during	the
Read	access.	For	example,	we	could	implement	a	16-element	averaging	filter.	More
specifically,	we	will	calculate	the	average	of	the	last	16	samples.

uint32_t	Data[32];		//	two	copies

uint32_t	*Pt;						//	pointer	to	current

uint32_t	Sum;							//	sum	of	the	last	16	samples

void	LPF_Init(void){

		Pt	=	&Data[0];	Sum	=	0;

}

//	calculate	one	filter	output

//	called	at	sampling	rate

//	Input:	new	ADC	data

//	Output:	filter	output,	DAC	data

uint32_t	LPF_Calc(uint32_t	newdata){

		Sum	=	Sum-*(Pt+16);	//	subtract	the	one	16	samples	ago

		if(Pt	==	&Data[0]){

Pt	=	&Data[16];			//	wrap

		}	else{

Pt—;											//	make	room	for	data

		}

		*Pt	=	*(Pt+16)	=	newdata;	//	two	copies	of	the	new	data

		return	Sum/16;

}

Program	8.10.	Digital	low	pass	filter	implemented	by	averaging	the
previous	16	samples	(cutoff	=	fs/32).

8.6.	Exercises
8.1	For	each	term	give	a	definition	in	32	words	or	less.

a)	Thermal	noise																																																																						b)	CLC	or � 	filter

c)	Voltage	comparator																																																								d)	Differential	amplifier

e)	Low	pass	filter																																																																						f)	Rail	to	rail

g)	Common	mode	rejection	ratio																																										h)	Output	impedance

i)	Shunt	reference																																																																						j)	Hysteresis

k)	Analog	isolation																																																																						l)	Complementary	binary

m)	Analog	multiplexor																																																									n)	Sample	and	hold

	

8.2	For	each	op	amp	parameter	give	a	definition	in	32	words	or	less.

a)	Open	loop	gain																																																																						b)	Gain	bandwidth	product

c)	Offset	voltage																																																																						d)	Offset	current

e)	Bias	current																																																																						f)	Common	mode	input
impedance

g)	Differential	mode	input	impedance																																										h)	Slew	rate

i)	Noise	density																																																																						j)	Supply	current

	

8.3	For	each	DAC	parameter	give	a	definition	in	32	words	or	less.

a)	Precision																																																																						b)	Range

c)	Resolution																																																								d)	Monotonic

e)	Linearity																																																																						f)	Settling	time

g)	Supply	current																																																								h)	Slew	rate

	

8.4	For	each	ADC	parameter	give	a	definition	in	32	words	or	less.

a)	Precision																																																																						b)	Range

c)	Resolution																																																								d)	Total	harmonic	distortion	

e)	No	missing	codes																																																								f)	Conversion	time

g)	Supply	current																																																								h)	Bandwidth

	

8.5	For	each	pair	of	terms	explain	the	similarities	and	differences	in	32	words	or	less

a)	Carbon	versus	metal	film	resistor																												b)	Ceramic	versus	tantalum	capacitor

c)	Linear	versus	buck-boost	regulator																												d)	Regular	versus	rail-to-rail	op
amp

e)	Op	amp	versus	instrumentation	amp																												f)	One-pole	versus	two-pole	filter

g)	Li-ion	versus	NiMH	battery																																										h)	Negative	feedback	versus
positive	feedback

	

8.6	Describe	each	ADC	type	in	32	words	or	less.

a)	Flash																																																																						b)	Sigma	delta

c)	Successive	approximation																																										d)	Pipeline		

	

8.7	A	microcontroller	with	an	8-bit	DAC	is	used	to	create	a	software-controlled	analog
output.	The	8-bit	signed	DAC	uses	offset	binary	format	is	connected	to	a	parallel	port	of
the	microcontroller	and	has	a	-2V	to	+2V	range.	N	is	the	port	output	(DAC	input)	and	V	is
the	DAC	output.

a)	Derive	the	linear	relationship	between	N	and	V.	Show	both	the	equation	that	expresses
V	in	terms	of	N,		and	the	equation	that	expresses	N	in	terms	of	V.

b)	What	is	the	DAC	precision?	State	the	units.

c)	What	is	the	DAC	resolution?	State	the	units.

	

8.8	A	microcontroller	with	a	10-bit	DAC	is	used	to	create	a	software-controlled	analog
output.	The	10-bit	signed	DAC	uses	two’s	complement	format	is	connected	to	a	parallel
port	of	the	microcontroller	and	has	a	-1V	to	+1V	range.	N	is	the	port	output	(DAC	input)
and	V	is	the	DAC	output.

a)	Derive	the	linear	relationship	between	N	and	V.	Show	both	the	equation	that	expresses
V	in	terms	of	N,		and	the	equation	that	expresses	N	in	terms	of	V.

b)	What	is	the	DAC	precision?	State	the	units.

c)	What	is	the	DAC	resolution?	State	the	units.

	

8.9		If	a	10-bit	ADC	has	a	range	of	0	to	+10	volts,	what	is	its	resolution?

	

8.10	Give	three	equivalent	ways	to	specify	the	precision	of	a	12-bit	ADC.

	

8.11		If	an	8-bit	ADC	has	a	range	of	0	to	3	volts,	what	will	be	output	for	an	input	voltage
of	1	volt	assuming	straight	binary	encoding?

	

8.12		If	an	8-bit	ADC	takes	inputs	ranging	from	-2.5	V	to	+2.5	V,	what	will	the	output
corresponding	to	+1	V	assuming	offset	binary	encoding?

	

D8.13.	Design	2-bit	analog	to	digital	converter.	The	range	is	0	to	3.2	V.	For	input	voltages
between	0	and	0.8V	make	the	output	00,	for	inputs	between	0.8	and	1.6V	make	the	output
01,	for	inputs	between	1.6	and	2.4V	make	the	output	10,	and	for	inputs	between	2.4	and
3.2V	make	the	output	11.	Use	rail-to-rail	op	amps	powered	at	3.3V.	Specify	resistor	values
and	capacitor	values.

	

D8.14.	Design	a	variable	gain	analog	amplifier.	The	analog	input	is	Vin,	the	3-bit	digital
inputs	(connected	to	a	microcontroller	output	digital	output)	are	B2,	B1,	B0	and	the	analog
output	is	Vout.	Use	an	analog	switch,	such	as	a	MAX4783.	Exactly	one	of	the	digital	inputs
will	be	one,	and	the	gain	should	be

B2,B1,B0 Gain	(Vout/Vin)

001 1

010 10

100 100

	

D8.15.	Design	an	analog	circuit	with	the	following	specifications

two	single-ended	inputs	(not	differential)

any	input	impedance	is	OK

transfer	function																													Vout	=	5•V1	-3•V2		+	5

You	are	limited	to	one	OPA227	op	amp	and	one	reference	chip	(you	choose	it).	Give	chip
numbers	but	not	pin	numbers.	Specify	all	resistor	values.	You	will	use	+12	and	–12V
analog	supply	voltages.

	

D8.16.	Design	an	instrumentation	amp,	using	an	AD627,	with	the	following	transfer
function.

Vout	=	500*(V2-V1)

	

D8.17.	Design	an	analog	circuit	with	the	following	transfer	function	Vout	=	3-2*Vin.	The
input	is	a	single	voltage	(not	differential).	The	input	range	is	0	to	1.5V	and	the	output
range	is	0	to	3V.	Use	an	analog	reference	and	one	rail-to-rail	op	amp.	Show	your	work	and
label	all	chip	numbers	and	resistor	values.	You	do	not	have	to	show	pin	numbers.

	

D8.18		The	input,	Vin,	is	differential,	not	single-ended.	Design	an	analog	circuit	with	a
transfer	function	of	Vout	=	30*Vin+1.5	powered	by	a	single	+3.3	V	supply.	You	may	use	any
of	the	analog	chips	in	this	chapter.	The	input	range	is	-0.05	V	to	+0.05	V,	and	the	output
range	is	0	to	+3	V.		Label	all	chips,	resistors	and	capacitors	as	needed.

	

D8.19.		The	input,	Vin,	is	single-ended,	not	differential.	Design	an	analog	circuit	with	a
transfer	function	of	Vout	=	30*Vin-3	using	one	rail-to-rail	op	amp	powered	by	a	single	+3.3
V	supply.	The	input	range	is	0.1	V	to	0.2	V,	and	the	output	range	is	0	to	+3	V.

	

D8.20.	Design	a	two-pole	Butterworth	analog	high	pass	filter	with	a	cutoff	of	10	Hz.

	

D8.21.	Design	a	two-pole	Butterworth	analog	low	pass	filter	with	a	cutoff	of	250	Hz.

	

D8.22.	Design	a	two-pole	Butterworth	analog	low	pass	filter	with	a	cutoff	of	10000	Hz.

	

D8.23.	Design	an	analog	band	pass	filter	with	a	cutoffs	of	1	and	1000	Hz.	First,	design	a
two-pole	Butterworth	analog	high	pass	filter,	and	then	follow	it	with	a	two-pole
Butterworth	analog	low	pass	filter.

	

8.7.	Lab	Assignments
Lab	8.1.	The	overall	objective	of	this	lab	is	to	design	a	variable	gain	amplifier,	where	the
gain	is	controlled	by	a	digital	output	of	the	microcontroller.	The	gain	settings	are	10,	20,
50,	and	100.	As	preparation,	design	two	separate	circuits	using	different	approaches.
Evaluate	the	bandwidth,	noise,	error	due	to	offset	voltage,	and	cost.	Build	and
experimentally	measure	bandwidth,	noise,	and	offset	error.

Lab	8.2.	Most	digital	music	devices	rely	on	high-speed	DACs	to	create	the	analog
waveforms	required	to	produce	high-quality	sound.	In	this	lab	you	will	create	a	very
simple	sound	generation	system	that	illustrates	this	application	of	the	DAC.	Your	goal	is	to
play	your	favorite	song.	For	the	first	step,	you	will	build	a	DAC.You	are	free	to	design
your	DAC	with	a	precision	anywhere	from	5	to	8	bits.	You	will	convert	the	binary	bits
(digital)	to	an	analog	output	current	using	a	simple	resistor	network.	The	third	step	is	to
convert	the	DAC	analog	output	to	speaker	current	using	an	audio	amplifier.	The	fourth
step	is	to	design	a	low-level	device	driver	for	the	DAC.	The	fifth	step	is	to	design	a	data
structure	to	store	the	sound	waveform.	The	sixth	step	is	to	organize	the	music	software
into	a	device	driver.		The	last	step	is	to	write	a	main	program	that	inputs	from	three	binary
switches	and	performs	the	three	public	functions.

Lab	8.3.	The	overall	objective	of	this	lab	is	design	the	music	player	described	in	Lab	8.2
with	a	two	channel	DAC	chip,	and	design	two	audio	amplifiers.	The	system	will
implement	two-channel	stereo	sound.

	

	

	

9.	System-Level	Design
Chapter	9	objectives	are	to:
•	Discuss	issues	associated	with	manufacturability	and	testability

•	Describe	power	sources

•	Design	methods	to	charge	batteries

•	Present	approaches	for	low-power	design

•	Introduce	PCB	design

	
Chapters	1	to	8	of	this	book	have	presented	embedded	systems	from	an	interfacing	or
component	level.	The	remaining	chapters	will	focus	on	systems	level	design.	The	chapter
begins	with	a	discussion	of	selecting	resistor	and	capacitor	components.	Next,	it	will
describe	power	sources,	including	batteries	and	battery	chargers.	One	of	the	important
aspects	of	embedded	systems	is	low-power	operation.	The	chapter	will	conclude	with	an
introduction	to	PCB	design.

	

9.1.	Design	for	Manufacturability
Using	standard	values	for	resistors	and	capacitors	makes	finding	parts	quicker.	Standard
values	for	1%	resistors	range	from	10 � to	2.2	M � .	We	can	multiply	a	number	in	Tables
9.1,	9.2,	9.3,	and	9.4by	powers	of	10	to	select	a	standard	value	resistor.	For	example,	if	we
need	a	5	k � 1%	resistor,	the	closest	number	is	49.9*100,	or	4.99	k � .

Sometimes	we	need	a	pair	of	resistors	with	a	specific	ratio.	There	are	19	pairs	of	resistors
with	a	2	to	1	ratio	(e.g.,	20/10).	There	is	only	one	pair	with	a	3	to	1	ratio,	102/34.
Similarly,	there	is	only	one	pair	with	a	4	to	1	ratio,	102/25.5.	There	are	19	pairs	of
resistors	with	a	5	to	1	ratio	(e.g.,	100/20).	There	are	5	pairs	of	resistors	with	a	7	to	1	ratio
(e.g.,	93.1/13.3,	105/15,	140/20,	147/21,	196/28).	There	are	no	pairs	with	ratios	of	6,	8,	or
9.

Using	standard	values	can	greatly	reduce	manufacturing	costs	because	parts	are	less
expensive,	and	parts	for	one	project	can	be	used	in	other	projects.	Ceramic	capacitors	can
be	readily	purchased	as	E6,	E12,	or	E24	standards.	Filters	scale	over	a	fairly	wide	range.	If
a	resistor	is	increased	by	a	factor	of	x	and	the	capacitor	is	reduced	by	by	a	factor	of	x,	the
filter	response	will	remain	unchanged.	For	example,	the	response	of	a	filter	that	uses	100
k � and	0.1 � F	will	be	the	same	as	a	filter	with	20	k � 	and	0.5	F.	Resistors	that	are	too
low	will	increase	power	consumption	in	the	circuit,	and	resistor	values	that	are	too	high
will	increase	noise.		1%	resistors	below	100 � and	above	10	M � 	are	hard	to	obtain.
Precision	capacitors	below	10pF	and	above	1 � F	are	hard	to	obtain.	High-speed
applications	use	lower	values	of	resistors	in	the	100 � to	1	k � range,	precision	equipment
operates	best	with	resistors	in	the	100	k � to	1	M � 	range,	while	portable	equipment	uses
higher	values	in	the	100	k � to	10	M � 	range.

E12	standard	values	for	10%	resistors	range	from	10 � to	22	M � .	We	can	multiply	a
number	in	Table	9.1	by	powers	of	10	to	select	a	standard	value	10%	resistor	or	capacitor.
The	E6	series	is	every	other	value	and	typically	available	in	20%	tolerances.

10 12 15 18 22 27 33 39 47 56 68 82

Table	9.1.	E12	Standard	resistor	and	capacitor	values	for	10%	tolerance.

E24	standard	values	for	5%	resistors	range	from	10 � to	22	M � .	We	can	multiply	a
number	in	Table	9.2by	powers	of	10	to	select	a	standard	value	5%	resistor.	For	example,	if
we	need	a	25	k � 5%	resistor,	the	closest	number	is	24*1000,	or	24	k � .	Capacitors	range
from	10	pF	to	10 � F,	although	ceramic	capacitors	above	1 � F	can	be	quite	large.	The
physical	dimensions	of	a	capacitor	also	depend	on	the	rated	voltage.	You	can	also	get	1%
resistors	and	1%	capacitors	in	the	E24	series.	For	example,	if	you	need	a	0.05 � F
capacitor,	you	can	choose	an	0.047 � F	E12,	or	a	0.051 � F	E24	capacitor.

10 11 12 13 15 16 18 20 22 24 27 30

33 36 39 43 47 51 56 62 68 75 82 91

Table	9.2.	E24	Standard	resistor	and	capacitor	values	for	5%	tolerance.

Table	9.3	shows	the	E96	standard	resistance	values	for	1	%	resistors.	Table	9.4	shows
E192	standard	resistance	values	for	0.5,	0.25,	0.1%	tolerances.	Tables	9.1	and	9.2	refer	to
both	resistors	and	capacitors,	but	the	E96	and	E192	standards	refer	only	to	resistors.

10.0 10.2 10.5 10.7 11.0 11.3 11.5 11.8 12.1 12.4 12.7 13.0

13.3 13.7 14.0 14.3 14.7 15.0 15.4 15.8 16.2 16.5 16.9 17.4

17.8 18.2 18.7 19.1 19.6 20.0 20.5 21.0 21.5 22.1 22.6 23.2

23.7 24.3 24.9 25.5 26.1 26.7 27.4 28.0 28.7 29.4 30.1 30.9

31.6 32.4 33.2 34.0 34.8 35.7 36.5 37.4 38.3 39.2 40.2 41.2

42.2 43.2 44.2 45.3 46.4 47.5 48.7 49.9 51.1 52.3 53.6 54.9

56.2 57.6 59.0 60.4 61.9 63.4 64.9 66.5 68.1 69.8 71.5 73.2

75.0 76.8 78.7 80.6 82.5 84.5 86.6 88.7 90.9 93.1 95.3 97.6

Table	9.3.	E96	Standard	resistor	values	for	1%	tolerance(resistors	only,	not	for
capacitors).

	

Checkpoint	9.1:	Let	R	=	100	k � .	Find	an	E24	capacitor	such	that1/(2 � RC)	is	as	close
to	1000	Hz	as	possible.

Checkpoint	9.2:	Rather	than	using	an	E96	resistor,	find	two	E24	resistors	such	that	the
series	combination	is	as	close	to	127	k � 	as	possible.

	

10.0 10.1 10.2 10.4 10.5 10.6 10.7 10.9 11.0 11.1 11.3 11.4

11.5 11.7 11.8 12.0 12.1 12.3 12.4 12.6 12.7 12.9 13.0 13.2

13.3 13.5 13.7 13.8 14.0 14.2 14.3 14.5 14.7 14.9 15.0 15.2

15.4 15.6 15.8 16.0 16.2 16.4 16.5 16.7 16.9 17.2 17.4 17.6

17.8 18.0 18.2 18.4 18.7 18.9 19.1 19.3 19.6 19.8 20.0 20.3

20.5 20.8 21.0 21.3 21.5 21.8 22.1 22.3 22.6 22.9 23.2 23.4

23.7 24.0 24.3 24.6 24.9 25.2 25.5 25.8 26.1 26.4 26.7 27.1

27.4 27.7 28.0 28.4 28.7 29.1 29.4 29.8 30.1 30.5 30.9 31.2

31.6 32.0 32.4 32.8 33.2 33.6 34.0 34.4 34.8 35.2 35.7 36.1

36.5 37.0 37.4 37.9 38.3 38.8 39.2 39.7 40.2 40.7 41.2 41.7

42.2 42.7 43.2 43.7 44.2 44.8 45.3 45.9 46.4 47.0 47.5 48.1

48.7 49.3 49.9 50.5 51.1 51.7 52.3 53.0 53.6 54.2 54.9 55.6

56.2 56.9 57.6 58.3 59.0 59.7 60.4 61.2 61.9 62.6 63.4 64.2

64.9 65.7 66.5 67.3 68.1 69.0 69.8 70.6 71.5 72.3 73.2 74.1

75.0 75.9 76.8 77.7 78.7 79.6 80.6 81.6 82.5 83.5 84.5 85.6

86.6 87.6 88.7 89.8 90.9 92.0 93.1 94.2 95.3 96.5 97.6 98.8

Table	9.4.	E192	Standard	resistor	values	for	tolerances	better	than	1%	(resistors
only,	not	for	capacitors).

9.2.	Power

9.2.1.	Regulators
One	of	the	important	aspects	of	a	system	is	power.	Many	embedded	systems	are	powered
with	an	AC	adapter.	Other	names	for	this	adapter	that	takes	120	VAC	in	and	outputs	an
unregulated	DC	voltage	include	power	adapter,	power	block,	wall	wart,	wall	cube,	and
power	brick.	A	9-V,	500-mA	unregulated	AC	adapter	means	the	voltage	is	above	9	V	for
all	currents	less	than	500	mA.	However,	the	actual	voltage	can	vary	considerably.	For
example,	the	voltage	might	range	from	13	V	at	no	current	down	to	9.5V	at	500	mA.
Therefore,	a	regulator	will	be	used	to	provide	a	constant	voltage	to	power	the	system.
There	are	many	considerations	when	choosing	a	regulator.	Linear	regulators,	like	the
78x05	series	and	the	LP2981,	use	transistors,	a	reference	diode,	and	feedback	to	create	a
constant	output	voltage	(Figure	9.1).	Linear	regulators	need	an	input	voltage,	Vin,	larger
than	the	output	voltage,	Vout.	If	the	current	is	Iout,	then	power	is	lost	in	the	regulator	and
dissipated	as	heat	in	the	amount	of	(Vin‑Vout)*Iout.		Linear	regulators	have	a	voltage
dropout,	which	specifies	how	much	higher	Vin	needs	to	be	above	Vout	in	order	for	it	to
work.	The	dropout	voltage	for	the	5-V	78L05	regulator	is	2	V,	meaning	Vin	must	be	larger
than	+7	V	for	the	output	to	be	+5V.	Conversely,	the	dropout	voltage	for	the	LP2981	is	only
0.2	V.	For	example,	a	3.7-V	Li‑ion	battery	with	a	LP2981-3.3	regulator	could	be	used	to
power	a	3.3	V	system.

A	buck-boost	regulator	uses	an	inductor	and	a	switching	circuit	to	create	the	constant
output	voltage.	The	TPS63002	buck-boost	regulator	will	create	a	+5V	output	as	long	as
the	input	is	between	1.8	and	5.5	V,	making	it	suitable	for	battery-powered	applications.
Buck-boost	regulators	are	rated	for	their	efficiency	and	have	a	sizeable	100-kHz	switching
noise	in	the	power	line.	Since	linear	regulators	have	lower	noise,	they	are	more	suitable
for	precision	analog	electronics.

Regulators	can	be	fixed	output	(e.g.,	3.3	or	5	V)	or	adjustable.	Adjustable	regulators	use
two	resistors	to	set	the	output	voltage	level.	Many	regulator	families	have	both	fixed
output	and	adjustable	versions	such	as	LM1086,	LM1117,	LT1761,	and	TPS6300x.
Adjustable	regulators	are	convenient	if	the	system	needs	to	have	a	user-controlled	switch
to	decide	whether	the	system	is	powered	at	3.3	or	5	V.	We	choose	a	regulator	that	has	a
maximum	current	larger	than	the	current	requirements	of	the	system.	For	example,	the
maximum	currents	for	the	78L05,	78M05,	7805,	and	78S05	are	100	mA,	500	mA,	1	A,
and	2	A,	respectively.	The	line	regulation	parameter	specifies	how	the	output	voltage	will
vary	as	a	function	of	input	voltage.	The	load	regulation	parameter	specifies	how	the
output	voltage	will	vary	as	a	function	of	the	current	to	the	system.

Figure	9.1.	Regulators	can	be	used	to	create	a	constant	voltage	to	power
the	system.	The	TPS6300x	devices	are	buck-boost,	while	the	others	are
linear	regulators.
Observation:	Regulators	are	very	different	from	each	other,	so	it	is	essential	to	read	the
data	sheet	and	follow	all	the	design	recommendations	concerning	external	components,
heat	sinks,	and	layout.

Checkpoint	9.3:	Which	regulator	in	Figure	9.1	can	create	a	5V	supply	from	a	3.7V
battery?

	

9.2.2.	Low-Power	Design
To	save	energy,	our	parents	taught	us	to	“turn	off	the	light	when	you	leave	the	room.”	We
can	use	this	same	approach	to	conserve	energy	in	our	embedded	system.	There	are	many
ways	to	place	analog	circuits	in	low-power	mode.	Some	analog	circuits	have	a	low-power
mode	that	the	software	can	select.	For	example,	the	MAX5353	12-bit	DAC	requires
280 � A	for	normal	operation,	but	the	software	can	place	it	into	shut-down	mode,
reducing	the	supply	current	to	2	A.	Some	analog	circuits	have	a	digital	input	that	the
microcontroller	can	control	placing	the	circuit	in	active	or	low-power	mode.	For	example,
the	MC34119	audio	amplifier	has	a	CD	pin,	see	Figure	9.2.	When	this	pin	is	low,	the
amplifier	operates	normally	with	a	supply	current	of	3	mA.	However,	when	CDpin	is
above	2	V,	the	supply	current	drops	down	to	65 � A.	So,	when	the	software	wishes	to
output	sound,	it	sends	a	command	to	the	MAX5353	to	turn	on	and	makes	PB0	equal	to	0.
Conversely,	when	the	software	wishes	to	save	power,	it	sends	a	shutdown	command	to	the
MAX5353	and	makes	PB0	high.

Figure	9.2.	Audio	amplifier	that	can	be	placed	into	low-power	mode.
The	most	effective	way	to	place	analog	circuit	in	a	low-power	state	is	to	actually	shut	off
its	power.	Some	regulators	have	a	digital	signal	the	microcontroller	can	control	to	apply	or
remove	power	to	the	analog	circuit.	For	example,	when	the	OFF	pin	of	the	MAX604
regulator	is	high,	the	voltage	output	is	regulated	to	+3.3	V,	as	shown	in	Figure	9.3.
Conversely,	when	the	OFF	pin	is	low,	the	regulator	goes	into	shut-down	mode,	and	no
current	is	supplied	to	the	analog	circuit.	When	the	software	wishes	to	turn	off	power	to	the
analog	circuit,	it	makes	PB0	equal	to	0.	Conversely,	when	the	software	wishes	enable	the
analog	circuit,	it	makes	PB0	high.	The	microcontroller	itself	always	will	be	powered.
However,	most	microcontrollers	can	put	themselves	into	a	low-power	state.

We	can	save	power	by	designing	with	low-power	components.	Many	analog	circuits
require	a	small	amount	of	current,	even	when	active.	The	MAX494requires	only	200 � A
per	amplifier.	If	there	are	ten	op	amps	in	the	circuit,	the	total	supply	current	will	be	2	mA.
For	currents	less	than	8	mA,	we	can	use	the	output	port	itself	to	power	the	analog	circuit,
as	shown	in	Figure	9.4.	To	activate	the	analog	circuit,	the	microcontroller	makes	the	PB0
high.	To	turn	the	power	to	the	analog	circuit	off,	the	microcontroller	makes	PB0	low.

Figure	9.3.	Power	to	analog	circuits	can	be	controlled	by	switching	on/off
the	regulator.
	

Figure	9.4.	Power	to	analog	circuits	can	be	delivered	from	a	port	output
pin.
As	we	mentioned	in	Chapter	1,	considerable	power	can	be	saved	by	reducing	the	supply
voltage.	A	microcontroller	operating	at	3.3	V	requires	less	than	half	the	power	for	an
equivalent	+5	V	system.	Power	can	be	saved	by	turning	off	modules	(like	the	timer,	ADC,
UART,	and	SSI)	when	not	in	use.	Whenever	possible,	slowing	down	the	bus	clock	with
the	PLL	will	save	power.	Many	microcontrollers	can	put	themselves	into	a	low-power
sleep	mode	to	be	awakened	by	a	timer	or	external	event.

There	are	a	number	of	factors	that	affect	the	supply	current	to	a	microcontroller.	The	first
is	bus	frequency;	power	increases	linearly	with	bus	frequency.	A	second	factor	is	turning
on/off	I/O	ports.	A	third	factor	is	activating	a	sleep	mode.	The	LM3S/LM4F/TM4C	has	a
sleep	mode,	a	deep	sleep	mode,	and	a	hibernate	mode.	The	deep	sleep	mode	on	a
LM3S811	requires	about	1	mA	of	supply	current.	Hibernate	mode	on	the	TM4C123
requires	5 � A.	Conversely,	the	deep	sleep	mode	on	a	MSP430F2012	microcontrolleris
less	than	1 � A.

9.2.3.	Battery	Power
A	battery	is	a	source	of	energy	that	can	be	used	in	an	embedded	system	to	make	the
system	portable.	Another	application	of	batteries	is	to	supply	power	to	a	mission-critical
system	when	the	regular	AC	power	is	lost	temporarily.	Typically,	a	battery	has	three	parts.
The	anode	is	the	negative	terminal	of	the	battery,	the	cathode	is	the	positive	terminal,	and
the	electrolyte	is	a	liquid	solution	that	accepts	stores	and	releases	energy.	These	three
components	can	be	constructed	from	many	different	materials	and	configured	in	an	almost
endless	array	of	sizes	and	shapes.	The	type,	size,	and	shape	of	the	materials	play	a	major
role	in	determining	the	battery	performance.	A	primary	battery	is	used	once	and
discarded,	and	a	secondary	battery	can	be	recharged	and	reused.

There	are	many	parameters	to	consider	when	selecting	a	battery.	Nominal	voltage	is	the
typical	voltage	of	the	battery	when	fully	charged.		Some	batteries	maintain	a	fairly
constant	voltage	output	while	energy	is	being	discharged.	However,	other	batteries	will
drop	the	voltage	steadily	during	usage.	Physical	parameters	of	the	battery	(such	as
volume,	weight,	and	shape)	often	play	a	significant	role	in	the	overall	appeal	of	an
embedded	system.	Peak	current	is	the	maximum	current	the	battery	can	deliver.	Shelf-
life,	operating	temperature,	and	storage	temperature	are	other	parameters	to	consider	when
choosing	a	battery.	Memory	effect	is	an	observable	condition	in	some	rechargeable
batteries	that	causes	them	to	hold	less	charge	over	time.	The	energy	storage	of	a	battery	is
typically	defined	in	amp-hours,	because	the	voltage	is	assumed	constant.	The	standard
units	of	energy	are	watt-hours	(1	W-hr	is	3600	J).	One	can	estimate	the	operation	time	of	a
battery-powered	embedded	system	by	dividing	the	energy	storage	by	the	average	current
required	to	run	the	system.	The	power	budget	embodies	this	concept.	Let	E	be	the	battery
specification	in	amp-hours	and	tlife	be	the	desired	lifetime	of	the	product;	then	we	can
estimate	the	average	current	our	system	is	allowed	to	draw:

Average	Current	≤	E / tlife
Checkpoint	9.4:	A	medical	device	implanted	inside	the	body	has	a	500	mA-hour	battery
that	must	last	5	years.	What	is	your	power	budget?	

Heavy-duty	batteries,	were	first	made	with	zinc-carbon	in	the	mid-1800s,	but	now	are
made	with	zinc	chloride.	They	are	a	low-cost,	low-performance	battery	but	are	not
appropriate	for	most	embedded	applications.	An	alkaline	battery	is	made	with	alkaline
manganese.	Alkaline	batteries	are	appropriate	for	situations	that	require	long	shelf	life,	but
size	and	weight	are	not	important.		There	are	two	kinds	of	lead	acid	batteries.	Flooded
lead-acid	vent	inflammable	gasses	and	require	additional	water	to	maintain	the	proper
specific	gravity	of	the	acid.	Valve-regulated	lead-acid	(VRLA	also	called	sealed	lead
battery)	have	about	a	two-to-one	advantage	over	the	flooded	type	battery	in	specific
energy	and	energy	density.	In	the	VRLA	cell,	the	vent	for	the	gas	space	incorporates	a
pressure	relief	valve	to	minimize	the	gas	loss	and	to	prevent	direct	contact	between	the
headspace	and	outside	air.	Lead	acid	batteries	can	be	used	for	backing	up	power	on
systems	that	require	large	currents.	Lead	acid	batteries	have	a	maximum	storage	time	of
six	months	at	temperatures	between	20	and	30°C,	after	which	they	require	a	freshening
charge.	Zinc	chloride,	alkaline,	and	lead-acid	batteries	all	have	voltages	that	drop	as
energy	is	drained	from	them.	In	these	systems,	the	voltage	can	be	monitored	as	a	measure
of	the	energy	left	in	the	battery.	However,	embedded	systems	that	use	these	types	of
battery	will	require	a	voltage	regulator	to	maintain	a	constant	voltage	for	the	electronics.
For	example,	the	MSP430	microcontroller	will	operate	with	a	power	supply	voltage
anywhere	from	1.8	to	3.6	V.	The	LM3S/TM4C	microcontrollers	will	run	with	a	supply
voltage	from	3.0	to	3.6	V.

Nickel-cadmium	(NiCad)	and	nickel-metal	hydride	(NiMH)	are	low-cost	rechargeable
batteries	that	used	to	be	popular	for	embedded	systems.	NiMH	batteries	have	about	twice
the	storage	capacity	as	NiCad.	Certain	NiCad	batteries	gradually	lose	their	maximum
energy	capacity	if	they	are	repeatedly	recharged	after	being	only	partially	discharged.
Most	NiMH	batteries	do	not	suffer	from	a	memory-effect.	The	NiMH	batteries	operate
between	10	to	55°C,	and	have	a	projected	life	of	seven	and	a	half	years	at	30	°C.	You

should	cycle	new	NiMH	batteries	three	to	five	times	to	achieve	peak	performance.
Cycling	or	conditioning	a	NiMH	battery	is	performed	by	completely	discharging	it	then
completely	recharging	it.	At	room	temperature,	NiMH	batteries	will	self-discharge	in	30	to
60	days	without	usage,	depending	on	environmental	conditions.		In	general,	you	can
expect	NiMH	batteries	to	last	up	to	500	recharges.	

The	search	for	a	lighter	battery	that	uses	metallic	lithium	as	its	anode	was	driven	by	the
fact	that	lithium	is	the	lightest	and	the	most	electropositive	of	metals.	The	specific	energy
of	lithium	metal	(1727Ah/lb)	is	greater	than	lead	(118Ah/lb)	and	cadmium	(218Ah/lb).
There	are	a	whole	range	of	batteries	based	on	Lithium,	both	single	use	(used	in	cameras)
and	rechargeable.	The	most	common	rechargeable	type	is	called	Lithium-ion	(Li-ion).
When	energy	is	being	discharged,	the	lithium	ion	moves	from	the	anode	to	the	cathode.
During	charging,	the	lithium	ion	moves	from	the	cathode	to	the	anode.	Because	of	their
excellent	energy-to-weight	and	energy-to-size	ratios,	Lithium-ion	rechargeable	batteries
are	commonly	employed	in	portable	embedded	systems.	Table	9.5	shows	energy	storage
for	typical	AA-sized	batteries	(50	mm	tall	by	14	mm	diameter).	Table	9.6	lists	some	Li-
Ion	rechargeable	batteries.

Battery Voltage
(V)

Energy
(mAh)

Type

Alkaline 1.5 2000 Primary

Lithium 1.5 3000 Primary

NiCad 1.2 1200 Secondary

NiMH 1.2 1800 Secondary

Li-ion 3.6 1900 Secondary

Table	9.5.	Energy	storage	for	different	AA-sized	battery	types.

	

Battery Shape Energy
(mAh)

Size	(mm) Weight	(g)

GMB	power
GM041124

Thin	Pack 60 4.0	×	11	×
24

1.2

GMB	power
GM041429

Thin	Pack 120 4.0	×	14	×
29

2.8

GMB	power
GM041842

Thin	Pack 250 4.0	×	18	×
42

5.5

TrustFire	10440 AAA 600 10.25	×
46.25

9.5

UltraFire	14500 AA 900 14	×	50 31

Tenergy	30027 Cylinder 2200 69	×	19 54

Tenergy		31000 Pack 4400 65	×	37	×
18

170

Tenergy	31002 Pack 6600 69	×	54	×
18

255

Table	9.6.	Example	3.7	V	Li-Ion	batteries	(http://www.powerstream.com/	
http://www.gmbattery.com/		http://www.batteryjunction.com/).

	

Checkpoint	9.5:	A	medical	device	implanted	inside	the	body	has	an	average	current
20 � A	and	must	last	for	1	year.	Which	battery	in	Table	9.6	would	you	choose?

To	make	the	system	more	convenient,	battery-powered	embedded	systems	could	include	a
built-in	recharger.	The	system	can	run	and	charge	while	plugged	in.	However,	it	will	also
run	off	the	battery	when	AC	power	is	not	available.	There	are	many	battery	charging
circuits	available.	Figure	9.5	shows	a	charging	circuit	a	NiMH	battery.	R1	is	depends	on
the	smallest	Vin	from	the	wall	cube.	If	Vin	is	larger	than	10	V,	the	set	R1=	(10-5V)/5mA		=
1	k � .		R3	and	R4	are	part	of	a	thermal	shut-down	safety	circuit,	which	is	not
implemented	in	this	simple	version.	The	Rsense	resistor	sets	the	fast	programming	current:
Ifast	=	2.5V/Rsense,	which	is	1	A	for	this	circuit.	The	PGM0,	PGM1,	PGM2,	and	PGM3
pins	specify	the	charging	protocol	and	the	number	of	NiMH	cells,	which	is	7	cells	or	8.4	V
for	this	circuit.	Figure	9.6	shows	a	charging	circuit	for	a	Li-ion	battery.	You	should	refer	to
the	specific	datasheets	to	work	through	the	resistor	and	capacitor	values	depending	on	the
voltage	and	current	of	the	battery.

Figure	9.5.	Charging	circuit	for	an	8.4-V	NiMH	battery	with	a	1-A
charging	current.

	

Figure	9.6.	Charging	circuit	for	a	7.2-V	Li-ion	with	a	1.2-A	charging
current.

9.3	Tolerance
The	first	step	in	effective	communication	is	establishing	a	clear	agreement	on	the
definition	of	terms.	Broadly	put,	tolerance	means	putting	up	with	error.	However,	the
dictionary	definitions	of	tolerance	and	error	are	not	adequate	for	engineering	design	as
listed	in	Table	9.7.	From	an	engineering	perspective,	tolerance	is	the	quantitative
difference	between	the	desired	parameter	and	the	actual	value.	For	example,	a	±1%
1000 � 	resistor	may	have	an	actual	value	from990 � to	1010 � .		Sometimes	a	parameter
is	listed	as	the	minimum	and	maximum	values.	For	example,	the	offset	voltage	of	an
OPA2350	op	amp	will	be	between	-500	and	+500 � V.	Specifying	tolerance	will	have	a
profound	impact	on	both	price	and	performance.	If	we	over	specify	(use	1%	resistors
when	5%	would	have	been	OK),	then	the	system	costs	increase.	However,	if	we	under
specify	(use	5%	resistors	for	a	system	needing	1%),	then	some	of	the	devices	we
manufacture	will	not	operate	properly.

Tolerance

1)	a	fair,	objective,	and	permissive
attitude	toward	those	whose
opinions,	practices,	race,	religion,
nationality,	etc.,	differ	from	one’s
own;	freedom	from	bigotry.

	

2)	a	fair,	objective,	and	permissive
attitude	toward	opinions	and
practices	that	differ	from	one’s	own.

	

3)	interest	in	and	concern	for	ideas,
opinions,	practices,	etc.,	foreign	to
one’s	own;	a	liberal,	undogmatic
viewpoint.

	

4)	the	act	or	capacity	of	enduring;
endurance:	My	tolerance	of	noise	is
limited.

	

Error

1)	a	deviation	from	accuracy	or
correctness;	a	mistake,	as	in	action	or
speech:	His	speech	contained	several
factual	errors.

	

2)	belief	in	something	untrue;	the
holding	of	mistaken	opinions.

	

3)	the	condition	of	believing	what	is
not	true:	in	error	about	the	date.

	

4)	a	moral	offense;	wrongdoing;	sin.

	

5)	Baseball.	a	misplay	that	enables	a
base	runner	to	reach	base	safely	or
advance	a	base,	or	a	batter	to	have	a
turn	at	bat	prolonged,	as	the	dropping
of	a	ball	batted	in	the	air,	the
fumbling	of	a	batted	or	thrown	ball,
or	the	throwing	of	a	wild	ball,	but	not
including	a	passed	ball	or	wild	pitch.

	

5)	Medicine/Medical,	Immunology.
a)	the	power	of	enduring	or	resisting
the	action	of	a	drug,	poison,	etc.:	a
tolerance	to	antibiotics.	b)	the	lack	of
or	low	levels	of	immune	response	to
transplanted	tissue	or	other	foreign
substance	that	is	normally
immunogenic.

Table	9.7.	Dictionary	definitions	of	tolerance	and	error
http://dictionary.reference.com

Another	factor	related	to	tolerance	is	temperature	coefficient.	Properties	of	most	devices
will	change	with	temperature.	For	example,	the	Temperature	Coefficient	of	Resistance
(TCR)	is	defined	as

TCR	(ppm/ºC)	=	

where	R25	is	the	temperature	at	25ºC,	and	R	is	the	resistance	at	temperature	T,	as	T	varies
from	‑55ºC	to	+125ºC.
We	will	do	a	simple	example	illustrating	the	effect	of	tolerance	on	performance.	We	will
revisit	the	LED	interface	initially	presented	in	Figure	1.23.	Back	in	Chapter	1,	we	assumed
the	VCE	of	the	PN2222	was	0.3V,	the	desired	LED	operating	point	was	1.9V	10mA,	and	we
calculated	the	resistor	value	to	be	(3.3-1.9-0.3V)/10mA	=	110 � .

Figure	1.23.	Open	collector	used	to	interface	a	light	emitting	diode.
The	LED	data	sheet	specifies	the	light	intensity	is	linear	with	current.	So	we	will
determine	the	effect	of	tolerance	on	LED	current.	In	particular	we	will	investigate	an	E24
5%-resistor	with	nominal	value	of	110	.	This	resistor	can	vary	from	104.5	to	115.5	,
causing	the	LED	current	to	vary	from	9.5	to	10.5	mA.	In	this	case	the	±5%	resistance
tolerance	converted	simply	to	a	±5%	variability	in	light	intensity.	To	consider	the	effect	of
tolerance	in	the	PN2222	transistor,	we	need	to	know	the	possible	range	for	VCE.	At
saturation,	the	VCE	has	a	maximum	of	0.3	V.	Assuming	a	worst	case	of	VCE	equal	to	0,	the
LED	current	could	increase	to	12.7	mA.	Putting	these	two	effects	together	is	presented	in
Table	9.8.	Realistically,	the	VCE	probably	varies	only	from	0.2	to	0.3	V,	so	the	LED	current
could	vary	from	9.5	to	11.5	mA,	or	-5%	to	+15%	from	desired.

	 VCE	=	0

VCE	=
0.1

VCE	=
0.2

VCE	=
0.3

R=104.5 13.4 12.4 11.5 10.5

R=110 12.7 11.8 10.9 10.0

R=115.5 12.1 11.3 10.4 9.5

Table	9.8.	LED	current	varies	with	R	and	VCE.

Table	9.8	is	a	simple	two-dimensional	analysis.	If	we	added	the	effect	of	temperature,	then
the	problem	becomes	three	dimensional.	As	the	number	of	parameters	increases	so	does
the	complexity	of	the	problem.	It	is	important	to	determine	which	parameters	have	the
largest	effect	on	output.	These	parameters	will	then	require	lower	tolerance.	For	example,
assume	the	circuit	has	three	resistors	(R1,	R2,	and	R3)	and	the	output	is	the	voltage	V.	Each
resistor	has	anerror	due	to	tolerance	and/or	temperature	drift	(± 1,	± 2,	and	± 3).	We	could
use	differential	calculus	to	determine	the	relative	sensitivity	to	each	parameter	(S1,	S2,	and
S3).	We	should	focus	our	money	and	attention	on	the	parameters	having	the	largest	effect
on	performance.	We	can	calculate	the	error	in	V(V)	due	to	errors	in	R.	Let	xbe	the
measurand	and	let x	be	the	desired	resolution.	Using	the	sensitivity	of	V	to	x,	we	can
determine	a	design	metric.

S1	=	∂V/∂R1																												S2	=	∂V/∂R2																												S3	=	∂V/∂R3

V	=	±(∂V/∂R1) • � 1	±		(∂V/∂R2) • � 2		±		(∂V/∂R3) • � 3

x	=	(±(∂V/∂R1) • � 1	±		(∂V/∂R2) • � 2		±		(∂V/∂R3) • � 3)/(∂V/∂x)		≤	 x

9.4.	Design	for	Testability
Design	for	test	(DFT)	is	important	and	should	be	incorporated	at	every	stage	of	a	design.
We	can	greatly	increase	reliability	by	testing	the	device	before	it	is	used,	while	it	is	being
used,	and	after	it	has	been	used.	Having	a	plan	for	testing	should	be	a	part	of	every	project.
In	software	we	can	add	verbose	output,	event	logging,	assertions,	diagnostics,	resource
monitoring,	test	points,	and	fault	injection	hooks.	The	approach	to	hardware	testing
mimics	the	two	important	factors	for	software	testing:	visibility	and	control.	Visibility
allows	the	test	engineer	to	observe	system	behavior,	and	control	allows	the	test	procedure
to	manipulate	inputs	to	modules	within	the	system.	We	need	to	observe	the	outputs,	side
effects	and	internal	states.	An	important	parameter	is	the	intrusiveness	of	the	observation.
In	other	words,	we	need	to	be	careful	to	not	introduce	delays	that	affect	the	dynamic
behavior.	Storing	data	into	an	array	(software	dump)	at	run	time	can	usually	be	performed
with	delay	overheads	of	less	than	1 � s.

We	can	add	hardware	features	to	our	system	to	facilitate	testing.	The	first	is	the	ability	to
quickly	and	reliable	attach	hardware	test	equipment	to	the	device.	For	low	production
products	we	can	add	test	points	to	the	circuit	to	make	it	easy	to	attach	oscilloscopes	and
voltmeters.	For	higher	production	projects	we	can	add	test	connectors	that	directly	connect
to	test	equipment	like	logic	analyzers	or	signal	generators.	Basically,	we	need	to	create
known	inputs,	and	record	responses	at	strategic	points	in	the	system.

The	verbose	modes	found	in	some	compilers	add	debugging	output	along	with	data
output.	This	approach	may	cause	significant	slowdown	in	dynamic	behavior,	so	it	will	be
important	to	measure	timing	behavior	with	and	without	verbose	mode.	For	aspects	of	the
system	that	are	not	real	time,	verbose	is	an	excellent	testing	feature.	When	you	add	the	“-
v”	switch	with	a	command	in	Unix,	the	mail	program	will	display	its	communication	with
the	local	mail	server.

Logging	or	a	software	dump	is	an	excellent	tool	for	real-timesystems.	If	you	place	the
following	dump	at	strategic	places	in	your	system,	after	a	short	while,	the Buffer 	contains
the	last	256	times	the	debugging	instrument	was	invoked.	Subtracting	“3”	compensates	for
the	time	it	takes	to	run	the	instrument	up	to	the	point	at	which	it	reads	the	SysTick	timer.
The	entire	instrument	is	12	assembly	instructions	and	runs	in	about	16	bus	cycles.	In	most
cases	this	will	be	minimally	intrusive.

uint32_t	Buffer[256];

uint8_t	N=0;

__inline	void	RecordTime(void){

		Buffer[N]	=	NVIC_ST_CURRENT_R-3;

		N++;		//	8-bit	variable	goes	0	to	255

}

	

Fault	injection	is	the	ability	to	introduce	error	conditions	to	see	if	the	system	properly
handles	them.	A	monitor	is	a	debugging	mechanism	to	observe	internal	behavior.	A	good
example	of	a	monitor	is	configuring	unused	pins	as	outputs	and	writing	strategic
information	to	these	pins	during	execution.	If	we	connect	the	pins	to	a	logic	analyzer,	we
have	a	minimally	intrusive	debugging	instrument.	Other	examples	of	monitors	include
streaming	data	out	unused	ports	such	as	a	UART,	CAN,	or	SPI.	We	could	log	debug	data
onto	flash	drive.	A	testing	interface	is	a	hardware	or	software	connection	between	the
system	and	test	procedure.

Checkpoint	9.6:	Identify	three	design	for	test	features	on	the	PCB	shown	on	page	451.

9.5.	Printed	Circuit	Board	Layout	and	Enclosures
Begin	with	choosing	a	PCB	size	you	need	to	hold	all	the	components.	Next	you	choose	a
box	with	which	to	enclose	the	system.	The	enclosure	is	an	important	aspect	of	the	design.
It	determines	the	look	and	feel	of	the	device.	Many	manufacturers	give	suggested	PCB
sizes	for	their	enclosures.	One	way	to	make	sure	everything	will	fit	is	to	create	a	mockup.
One	collects	all	the	electrical	and	mechanical	components	of	the	system.	The	PCB	design
is	printed	on	paper	and	glued	to	cardboard	or	wood	matching	the	thickness	of	the	PCB.
Mounting	holes	are	drilled	and	components	are	attached	to	the	PCB	mockup.	All
components	are	assembled	and	mounted	into	the	enclosure	to	verify	proper	fit.	The	left
side	of	Figure	9.7	shows	a	mockup	of	an	LM3S811-based	recorder	with	an	LCD	touch
screen.	The	right	side	shows	the	final	system.	The	hardware,	software,	and	PCB	layout	for
this	system	can	be	downloaded	from	the	book	web	site	as	ezLCD_811.zip.

Figure	9.7.	Mockup	and	PCB	for	an	LM3S811	system	using	a	PacTec
enclosure.
Laying	out	a	PCB	is	an	art	that	is	best	learned	by	practice	under	the	watchful	eye	of	a
master	craftsman.	So,	show	your	PCB	art	to	others	and	solicit	feedback.		For	many	years,
it	has	been	common	PCB	design	practice	to	avoid	90°	corners	in	PCB	traces.	Many	claim
that	a	90°	turn	produces	a	¼	turn	inductor,	which	will	affect	the	frequency	response	of	the
signals.	The	standard	practice	is	to	use	a	mitered	corner	replacing	a	90°	turn	with	two	45°
turns.	The	reality	is	that	the	signal-integrity	benefits	of	avoiding	90°	angles	are
insignificant	at	the	frequencies/edge-rates	seen	in	microcontroller	circuits	(even	up	to	and
past	1	GHz/100ps).	[Johnson,	H	and	Graham,	M,	High-Speed	Digital	Design:	a	Handbook
of	Black	Magic,	Prentice	Hall:	New	Jersey,	1993.]		However,	there	are	a	few	simple
reasons	to	continue	to	avoid	90°	angles.	There	is	a	higher	possibility	of	an	acid-trap
forming	during	etching	on	the	inside	of	the	angle	(especially	in	acute	angles).	An	acid	trap
causes	over-etching	that	can	be	a	yield	issue	in	PC	boards	with	small	trace	widths.	Routing
at	45°	typically	reduces	overall	trace	length	and	uses	less	board	area.	Most	PCB	designers
think	it	looks	better.	Looking	good	is	an	important	factor	for	anyone	who	appreciates	the
art	of	PCB	layout.

This	paragraph	contains	suggestions	to	consider	when	laying	out	a	PCB.	Make	sure	the
“Snap	to	Grid”	mode	is	active.	You	should	experiment	with	different	settings	of	the	snap.
A	net	defines	which	pins	and	pads	must	be	connected.	Just	like	software	variables,	nets

should	have	descriptive	names.	You	should	visualize	the	unconnected	nets	while	placing
components	on	the	board.	Place	all	components	initially	on	the	board	to	facilitate
input/output	connectors.	You	also	want	to	minimize	the	lengths	and	the	crossings	of	the
nets.	Extra	time	spent	placing	nets	will	be	recovered	many	times	over	while	the	drawing
the	traces.	Think	about	how	it	will	be	soldered,	by	placing	though-hole	components	on	the
top	side	so	soldering	will	occur	on	the	bottom.	Surface	mount	components	can	go	on
either	side.	Add	top	and	bottom	silk	labeling	to	assist	in	construction,	debugging,	and
device	operation.	For	example,	all	components	need	labels	(e.g.,	U1	R1	C1	J1	etc.),	shown
both	on	the	board	and	the	circuit	diagram.	Add	test	points	at	strategic	points	to	assist	in
debugging.	One	inexpensive	test	point	can	be	made	by	placing	two	holes	0.1	inch	apart
then	soldering	a	U	wire	into	it.	You	can	also	purchase	test	point	hardware	such	as
Keystone	Electronics	5000	through	5004,	which	uses	a	0.090	in	pad	with	0.043	in	hole.
One	way	to	connect	all	traces	is	to	go	left-right	on	one	side	and	up-down	on	the	other	side.
Table	9.7	shows	the	trace	width	is	a	function	of	the	length	and	current	in	the	trace.	1oz/ft2
is	a	typical	trace	thickness.

	

Length Temperature
Rise

Current Thickness Resistance Trace
Width

5” 1	C 100	mA 1	oz/ft2 1 2	mil

5” 1	C 200	mA 1	oz/ft2 0.47 5	mil

5” 1	C 500	mA 1	oz/ft2 0.13 20	mil

5” 1	C 1	A 1	oz/ft2 0.05 50	mil

5” 1	C 2	A 1	oz/ft2 0.02 120	mil

Table	9.7.	Minimum	trace	width	for	various	current	levels

	

In	order	to	verify	all	components	will	fit,	you	must	analyze	dimensions	in	3-D.	You	can
use	a	design	tool	like	AutoCAD,	or	you	can	fabricate	a	mockup	with	actual	parts.	You	can
cut	cardboard	in	the	shape	of	the	PCB,	drill	holes	in	the	cardboard,	and	glue	the	parts	onto
the	cardboard.	Figure	9.8	shows	an	embedded	system	using	a	LM3S8962,	placed	in	an
enclosure.

Figure	9.8.	An	EEG	system	designed	with	a	LM3S8962	that	fits	into	a	case
(designed	by	Katy	Loeffler).
It	is	important	to	read	data	sheets	and	application	notes	for	each	component	of	the	system.
The	manufacturer	will	suggest	tips	and	reference	designs	for	their	parts.	Figures	9.9	and
9.10	show	the	suggested	layouts	for	Texas	Instruments	microcontrollers.	In	Figure	9.9,	the
layouts	show	connections	to	power	and	ground	on	the	microcontroller.	It	is	recommended
to	place	a	capacitor	as	close	to	the	chip	as	possible.	The	circles	in	Figure	9.9	represent	vias
to	the	power	and	ground	planes.	A)	is	the	best	practice	because	there	is	minimal
inductance	between	capacitor,	pins	and	power	planes.	B)	is	not	recommended	because	the
distance	from	pins	to	vias	increases	inductance	in	power	rails.	C)	is	acceptable	because	the
distance	from	pin	to	via	is	short.

Figure	9.9.	Capacitor	layout	suggestions	(System	Design	Guidelines	for
Stellaris® 	Microcontrollers,	AN01283).

Figure	9.10	shows	a	suggested	crystal	layout,	where	an	important	objective	is	to	minimize
the	effective	capacitance	from	OSC0	to	ground	and	from	OSC1	to	ground	inherent	in	the
board	layout	itself	(called	Cboard).	When	calculating	the	capacitor	values	needed	for	the
oscillator	one	must	account	for	this	board	capacitance.	The	values	of	these	capacitors	also
depend	on	the	crystal	load	capacitance,	CL.	A	typical	equation	is	C1	=	C2	=	2×(CL	-	Cboard).
This	means	one	should	not	place	power	or	ground	planes	under	the	crystal	or	the	OSC0
and	OSC1	signals.

Figure	9.10.	Crystal	layout	suggestion	(System	Design	Guidelines	for
Stellaris® 	Microcontrollers,	AN01283).

9.6.	Exercises
9.1	Find	a	combination	of	an	E12	capacitor	and	E24	resistor	with	a	frequency	response,
1/(2 � RC)	of	1000	Hz.	Select	the	resistor	as	close	to	100	k � 	as	possible.

9.2		Find	a	combination	of	an	E12	capacitor	and	E24	resistor	with	a	frequency	response,
1/(2 � RC)	of	12	kHz.	Select	the	resistor	as	close	to	100	k � 	as	possible.

9.3		Find	two	E24	resistors	that	can	be	combined	to	create	a	resistance	as	close	to	5.12
k � 	as	possible.

9.4		Find	two	E24	resistors	that	can	be	combined	to	create	a	resistance	as	close	to	25.6
k � 	as	possible.

9.5	Assume	the	system	requires	50	mA	at	3.3V.	What	is	the	dropout	voltage	of	an
LM317LZ?	Use	this	regulator	to	design	a	3.3V	regulated	power	supply.	What	is	the	range
of	input	voltages	that	can	be	used	for	your	circuit?

9.6		Assume	the	system	requires	25	mA	at	2.5V.	What	is	the	dropout	voltage	of	an
LM317LZ?	Use	this	regulator	to	design	a	2.5V	regulated	power	supply.	What	is	the	range
of	input	voltages	that	can	be	used	for	your	circuit?

9.7	A	low-powersystem	requires	an	average	current	of	50 � A	at	3.7V.	The	system	must
run	for	6	months.	Which	battery	in	Table	9.6	would	you	use?

9.8	A	low-powersystem	requires	an	average	current	of	25 � A	at	3.7V.	The	system	must
run	for	3	months.	Which	battery	in	Table	9.6	would	you	use?

9.9	If	your	ARM	microcontroller	requires	50	mA	to	run,	how	do	you	build	the	system	with
an	average	current	of	less	than	10	mA?

9.10	If	your	crystal	has	a	load	capacitance	of	18	pF,	and	the	PCB	has	a	board	capacitance
of	6pF,	what	capacitor	values	would	you	use	to	build	the	oscillator?

D9.11Write	a	C	program	that	knows	the	E24	capacitors	values	and	E192	resistors	values.
The	input	to	the	program	is	the	desired	frequency	response,	1/(2 � RC),	and	the	output	is
an	E192	resistor	value	and	an	E24	capacitor	value	that	combines	to	create	the	desired
frequency.

9.7.	Lab	Assignments
Lab	9.1	Design,	build	and	test	a	Li-Ion	battery	charger.	Assume	the	battery	voltage	is	3.7
V.

Lab	9.2	Design,	build	and	test	a	NiMH	battery	charger.	Assume	the	battery	voltage	is	4.2
V.

Lab	9.3	Design,	build	and	test	complete	battery-powered	embedded	system.	Begin	with	a
requirements	document.	Design	and	layout	a	PCB.	Place	the	components	in	an	enclosure
like	the	one	shown	in	Figure	9.8.	Include	design	for	test	features.

10.	Data	Acquisition	Systems
Chapter	10	objectives	are	to:
•	Define	performance	criteria	to	evaluate	our	overall	data	acquisition	system

•	Introduce	specifications	necessary	to	select	the	proper	transducer

•	Develop	a	methodology	for	designing	data	acquisition	systems

•	Analyze	the	sources	of	noise	and	suggest	methods	to	reduce	their	effect

•	Illustrate	concepts	of	this	chapter	with	case	studies

	
Embedded	systems	are	different	from	general-purpose	computers	in	a	sense	that
embedded	systems	have	a	dedicated	purpose.	As	part	of	this	purpose,	many	embedded
systems	are	required	to	collect	information	about	the	environment.	A	system	that	collects
information	is	called	a	data	acquisition	system.	In	this	chapter,	we	will	use	the	two	terms,
data	acquisition	system	and	instrument	interchangeably.	Previous	chapters	presented	the
basic	building	blocks	to	acquire	data	into	the	computer,	and	in	this	chapter	we	will
combine	these	blocks	into	data	acquisition	systems.	Sometimes	the	acquisition	of	data	is
fundamental	purpose	of	the	system,	such	as	with	a	voltmeter,	a	thermometer,	a	tachometer,
an	accelerometer,	an	altimeter,	a	manometer,	a	barometer,	an	anemometer,	an	audio
recorder,	or	a	camera.	At	other	times,	the	acquisition	of	data	is	an	integral	part	of	a	larger
system	such	as	a	control	system	or	communication	system.	Control	systems	will	be
presented	in	Volume	3,	and	communication	systems	will	be	discussed	in	Chapter	11.

InteL
Highlight

InteL
Highlight

10.1.	Introduction
Figure	10.1	illustrates	the	integrated	approach	to	instrument	design.	In	this	section,	we
begin	with	the	clear	understanding	of	the	problem.	We	can	use	the	definitions	in	this
section	to	clarify	the	design	parameters	as	well	as	to	report	the	performance	specifications.
Next	in	Section	10.2,	we	will	define	the	parameters	and	discuss	the	physics	in	order	to
select	a	suitable	transducer.	Performing	differentiation	and	integration	is	described	in
Section	10.3.	In	Section	10.4,	we	put	together	the	analog	and	digital	components,
introduced	in	Chapter	8,	to	build	data	acquisition	systems.	The	use	of
period/pulse/frequency	as	a	means	of	collecting	information	was	developed	in	Chapter	6.
Noise	can	never	be	eliminated,	but	we	will	study	techniques	in	Section	10.5	to	reduce	its
effect	on	our	system.	The	integrated	approach	to	design	will	be	illustrated	using	the	case
studies	in	Section	10.6.

The	measurand	is	the	physical	quantity,	property,	or	condition	that	the	instrument
measures.	See	Figure	10.2.	The	measurand	can	be	inherent	to	the	object	(like	position,
mass,	or	color),	located	on	the	surface	of	the	object	(like	the	human	EKG,	or	surface
temperature),	located	within	the	object	(e.g.,	fluid	pressure,	or	internal	temperature),	or
separated	from	the	object	(like	emitted	radiation.)

	

Figure	10.1.	Individual	components	are	integrated	into	a	data	acquisition
system.
In	general,	a	transducer	converts	one	energy	type	into	another.	In	the	context	of	this
book,	the	transducer	converts	the	measurand	into	an	electrical	signal	that	can	be	processed
by	the	microcontroller-based	instrument.	Typically,	a	transducer	has	having	a	primary
sensing	element	and	a	variable	conversion	element.	The	primary	sensing	element
interfaces	directly	to	the	object	and	converts	the	measurand	into	a	more	convenient	energy
form.	The	output	of	the	variable	conversion	element	is	an	electrical	signal	that	hopefully

InteL
Highlight

InteL
Highlight

InteL
Highlight

InteL
Highlight

depends	on	the	measurand.	For	example,	the	primary	sensing	element	of	a	pressure
transducer	is	the	diaphragm,	which	converts	pressure	into	a	displacement	of	a	plunger.	The
variable	conversion	element	is	a	strain	gauge	that	converts	the	plunger	displacement	into	a
change	in	electrical	resistance.	If	the	strain	gauge	is	placed	in	a	bridge	circuit,	the	voltage
output	is	directly	proportional	to	the	pressure.	Some	transducers	perform	a	direct
conversion	without	having	a	separate	primary	sensing	element	and	variable	conversion
element.	The	instrumentation	contains	signal	processing,	which	manipulates	the
transducer	signal	output	to	select,	enhance,	or	translate	the	signal	to	perform	the	desired
function,	usually	in	the	presence	of	disturbing	factors.	The	signal	processing	can	be
divided	into	stages.	The	analog	signal	processing	consists	of	instrumentation	electronics,
isolation	amplifiers,	amplifiers,	analog	filters,	and	analog	calculations.	The	first	analog
processing	involves	calibration	signals	and	preamplification.	Calibration	is	necessary	to
produce	accurate	results.	An	example	of	a	calibration	signal	is	the	reference	junction	of	a
thermocouple.	The	second	stage	of	the	analog	signal	processing	includes	filtering	and
range	conversion.	The	analog	signal	range	should	match	the	ADC	analog	input	range.
Examples	of	analog	calculations	include:	RMS	calculation,	integration,	differentiation,
peak	detection,	threshold	detection,	phase	lock	loops,	AM	FM	modulation/demodulation,
and	the	arithmetic	calculations	of	addition,	subtraction,	multiplication,	division,	and
square	root.	When	period,	pulse	width,	or	frequency	measurement	is	used,	we	typically
use	an	analog	comparator	to	create	a	digital	logic	signal	to	measure	(see	Figures	8.6	and
8.20).	Whereas	the	Figure	10.1	outlined	design	components,	Figure	10.2	shows	the	data
flow	graph	for	a	data	acquisition	system	or	control	system.	The	control	system	uses	an
actuator	to	drive	a	parameter	in	the	real	world	to	a	desired	value	while	the	data	acquisition
system	has	no	actuator	because	it	simply	measures	the	parameter	in	a	nonintrusive
manner.

Figure	10.2.	Signal	paths	a	data	acquisition	system.

InteL
Highlight

InteL
Highlight

InteL
Highlight

InteL
Highlight

The	data	conversion	element	performs	the	conversion	between	the	analog	and	digital
domains.	This	part	of	the	instrument	includes:	hardware	and	software	computer	interfaces,
ADC,	DAC,	S/H,	analog	multiplexer,	and	calibration	references.	The	ADC	converts	the
analog	signal	into	a	digital	number.	In	Chapter	6,	we	saw	the	period,	pulse	width,	and
frequency	measurement	approach	provides	a	low-cost	high-precision	alternative	to	the
traditional	ADC.	The	digital	signal	processing	includes:	data	acquisition	(sampling	the
signal	at	a	fixed	rate),	data	formatting	(scaling,	calibration),	data	processing	(filtering,
curve	fitting,	FFT,	event	detection,	decision	making,	analysis),	control	algorithms	(open	or
closed	loop).	The	human	interface	includes	the	input	and	output	which	is	available	to	the
human	operator.	The	advantage	of	computer-based	instrumentation	is	that	sophisticated
but	easy	to	use	and	understand	devices	are	possible.	The	inputs	to	the	instrument	can	be
audio	(voice),	visual	(light	pens,	cameras),	or	tactile	(keyboards,	touch	screens,	buttons,
switches,	joysticks,	roller	balls).	The	outputs	from	the	instrument	can	be	numeric
displays,	CRT	screens,	graphs,	buzzers,	bells,	lights,	and	voice.	If	the	system	can	deliver
energy	to	the	real	world	then	it	is	classified	as	a	control	system.	Control	systems	will	be
developed	in	the	next	book	(Volume	3).	In	this	chapter,	we	focus	on	data	acquisition.

Whenever	reporting	specifications	of	our	instrument,	it	is	important	to	give	the	definitions
of	each	parameter,	the	magnitudes	of	each	parameter,	and	the	experimental	conditions
under	which	the	parameter	was	measured.	This	is	because	engineers	and	scientists	apply	a
wide	range	of	interpretations	for	these	terms.

10.1.1.	Accuracy
The	instrument	accuracy	is	the	absolute	error	referenced	to	the	National	Institute	of
Standards	and	Technology	(NIST)	of	the	entire	system	including	transducer,	electronics,
and	software.	Let	xmi	be	the	values	as	measured	by	the	instrument,	and	let	xti	be	the	true
values	from	NIST	references.	In	some	applications,	the	signal	of	interest	is	a	relative
quantity	(like	temperature	or	distance	between	objects).		For	relative	signals,	accuracy	can
be	appropriately	defined	many	ways:

Average	accuracy		(with	units	of	x)		=	 	

Maximum	error	(with	units	of	x)			=		max	

Standard	error	(with	units	of	x)			=			

	

In	other	applications,	the	signal	of	interest	is	an	absolute	quantity.	For	these	situations,	we
can	specify	errors	as	a	percentage	of	reading	or	as	a	percentage	of	full	scale:

Average	accuracy	of	reading	(%)		=	 																																											

InteL
Highlight

InteL
Highlight

InteL
Highlight

InteL
Highlight

Average	accuracy	of	full	scale	(%)		=		 																																									

Maximum	accuracy	of	reading	(%)		=			100		max	 																											

Maximum	accuracy	or	full	scale	(%)		=			100	max	 																																									
																											

Observation:	The	definitions	of	the	terms	accuracy,	resolution,	and	precision	vary
considerably	in	the	technical	literature.	It	is	good	practice	to	include	both	the	definitions	of
your	terms	as	well	as	their	values	in	your	technical	communication.	

Since	the	Celsius	and	Fahrenheit	temperature	scales	have	arbitrary	zeroes	(e.g.,	0˚C	is	the
freezing	point	of	water),	it	is	inappropriate	to	specify	temperature	error	as	a	percentage	of
reading	or	as	a	percentage	of	full	scale	when	Celsius	and	Fahrenheit	scales	are	used.	When
specifying	temperature	error,	we	should	use	average	accuracy,	maximum	error,	or	standard
error.	These	errors	have	units	of	˚C	or	˚F.

Typically,	we	calibrate	a	quantitative	data	acquisition	system	by	determining	a	transfer
function	that	relates	the	measured	variable,	x,	to	raw	measurements	such	as	the	ADC
sample.	Accuracy	is	limited	by	two	factors:	resolution	and	calibration	drift.	Calibration
drift	is	the	change	in	the	transfer	function	occurring	over	time	used	to	calculate	the
measured	variable	from	the	raw	measurements.

10.1.2.	Resolution
The	instrument	resolution	is	the	smallest	input	signal	difference,	∆x	that	can	be	detected
by	the	entire	system	including	transducer,	electronics,	and	software.		The	resolution	of	the
system	is	sometimes	limited	by	noise	processes	in	the	transducer	itself	(e.g.,	thermal
imaging)	and	sometimes	limited	by	noise	processes	in	the	electronics	(e.g.,	thermistors,
RTDs,	and	thermocouples).

The	spatial	resolution	(or	spatial	frequency	response)	of	the	transducer	is	the	smallest
distance	between	two	independent	measurements.		The	size	and	mechanical	properties	of
the	transducer	determine	its	spatial	resolution.		When	measuring	temperature,	a	metal
probe	will	disturb	the	existing	medium	temperature	field	more	than	a	glass	probe.		Hence,
a	glass	probe	has	a	smaller	spatial	resolution	than	a	metal	probe	of	the	same	size.	
Noninvasive	imaging	systems	exhibit	excellent	spatial	resolution	because	the	instrument
does	not	disturb	the	medium,	which	is	being	measured.	The	spatial	resolution	of	an
imaging	system	is	the	medium	surface	area	from	which	the	radiation	originates	that	is
eventually	focused	onto	the	detector	during	the	imaging	of	a	single	pixel,	the	so-called
instantaneous	field	of	view,	IFOV.	When	measuring	force,	pressure,	or	flow,	the	spatial
resolution	is	the	effective	area	over	which	the	measurement	is	obtained.	Another	way	to
illustrate	spatial	resolution	is	to	attempt	to	collect	a	2-D	or	3-D	image	of	the	measurand.
The	spatial	resolution	is	the	distance	between	points	in	our	image.

InteL
Highlight

InteL
Highlight

InteL
Highlight

InteL
Highlight

10.1.3.	Precision
Precision	is	the	number	of	distinguishable	alternatives,	nx,	from	which	the	given	result	is
selected.	Precision	can	be	expressed	in	alternatives,	bits	or	decimal	digits.	Consider	a
thermometer	instrument	with	a	temperature	range	of	0	to	100	˚C.		The	system	displays	the
output	using	3	digits	(e.g.,	12.3	˚C).		In	addition,	the	system	can	resolve	each	temperature
T	from	the	temperature	T+0.1˚C.		This	system	has	1001	distinguishable	outputs,	and	hence
has	a	precision	of	1001	alternatives	or	about	10	bits.		For	a	linear	system,	there	is	a	simple
relationship	between	range	(rx),	resolution	(∆x)	and	precision	(nx).	Range	is	equal	to
resolution	times	precision

rx	(100˚C)	=	∆x	(0.1˚C)	•	nx	(1001	alternatives)

where	“range”	is	the	maximum	minus	minimum	temperature,	and	precision	is	specified	in
terms	of	number	of	alternatives.	Table	10.1	illustrates	the	relationship	between	alternatives
and	decimal	digits.

Alternatives Decimal
digits

1000 3

2000 3	½

4000 3	¾

10000 4

Table	10.1.	Definition	of	decimal	digits.

Observation:	A	good	rule	of	thumb	to	remember	is	210•n≈103•n.	

10.1.4.	Reproducibility	and	Repeatability
Reproducibility	(or	repeatability)	is	a	parameter	that	specifies	whether	the	instrument	has
equal	outputs	given	identical	inputs	over	some	period	of	time.		This	parameter	can	be
expressed	as	the	full	range	or	standard	deviation	of	output	results	given	a	fixed	input,
where	the	number	of	samples	and	time	interval	between	samples	are	specified.		One	of	the
largest	sources	of	this	type	of	error	comes	from	transducer	drift.	Statistical	control	is	a
similar	parameter	based	on	a	probabilistic	model	that	also	defines	the	errors	due	to	noise.	
The	parameter	includes	the	noise	model	(e.g.,	normal,	chi-squared,	uniform,	salt	and
pepper)	and	the	parameters	of	the	model	(e.g.,	average,	standard	deviation).

InteL
Highlight

InteL
Highlight

10.2.	Transducers
In	this	section,	we	will	start	with	quantitative	performance	measures	for	the	transducer.
Next,	specific	transducers	will	be	introduced.	Rather	than	give	an	exhaustive	list	of	all
available	transducers,	the	intent	in	this	section	is	to	illustrate	the	range	of	possibilities,	and
to	provide	specific	devices	to	use	in	the	design	sections	later	in	the	chapter.

10.2.1.	Static	Transducer	Specifications
The	input	or	measurand	is	x.	The	output	is	y.		A	transducer	converts	x	into	y.	In	this
subsection,	we	assume	the	input	parameter,	x,	is	constant	or	static.

Figure	10.3.	Transducers	in	this	book	convert	a	physical	signal	into	an
electrical	signal.
The	input	x	and	the	output	y	can	be	either	absolute	or	differential.	An	absolute	signal
represents	a	parameter	that	exists	in	a	single	place	at	a	single	time.	A	differential	signal	is
derived	from	the	difference	between	two	signals	that	exist	at	different	places	or	at	different
times.	Voltage	is	indeed	defined	as	a	potential	difference,	but	when	the	voltage	is	referred
to	ground,	we	consider	it	an	absolute	quantity.	On	the	other	hand,	if	the	signal	is
represented	by	the	voltage	difference	between	two	points	neither	of	which	are	ground,
then	we	consider	the	signal	as	differential.	Table	10.2	illustrates	four	types	of	transducers.

Type Input-
>output

Example

Absolute	→
absolute

		x	→			y Thermistor	converts	absolute	temperature	to
a	resistance

Relative		→
absolute

∆x	→			y Mass	balance	converts	mass	difference	to	an
angle

Absolute	→
relative

		x	→	∆y Strain	gauge	converts	displacement	to	a
resistance	difference

Relative		→
relative

∆x	→	∆y Thermocouple	converts	temperature
difference	to	voltage	difference

Table	10.2.	Four	types	of	transducers.

InteL
Highlight

The	static	sensitivity	is	the	slope,	m,	of	the	straight	line	through	the	static	calibration
curve	that	gives	minimal	mean	squared	error.	Let	xi,	yi	be	the	input/output	signals	of	the
transducer	as	shown	in	the	figure	below.		The	linearity	is	a	measure	of	the	straightness	of
the	static	calibration	curve.		Let	yi	=	f(xi)	be	the	transfer	function	of	the	transducer.		A
linear	transducer	satisfies:

f(ax1+bx2)	=	af(x1)+bf(x2)																																																																					

	

for	any	arbitrary	choice	of	the	constants	a	and	b.		Let	yi	=	mxi+b	be	the	best	fit	line
through	the	transducer	data.		Linearity	(or	deviation	from	it)	as	a	figure-of-merit	can	be
expressed	as	percentage	of	reading	or	percentage	of	full	scale.		Let	ymax	be	the	largest
transducer	output.

Average	linearity	of	reading	(percent)		=			 																																									
													

Average	linearity	of	full	scale	(percent)		=			 																																									
													

Two	definitions	for	sensitivity	are	used	for	temperature	transducers.		The	static	sensitivity
is:

If	the	transducer	is	linear	then	the	static	sensitivity	is	the	slope,	m,	of	the	straight	line
through	the	static	calibration	curve	which	gives	the	minimum	mean	squared	error.		If	xi
and	yi	represent	measured	input/output	responses	of	the	transducer,	then	the	least	squares
fit	to	yi=mxi	+b	is

m		=															and														b		=																																										

Thermistors	can	be	manufactured	to	have	a	resistance	value	at	25	˚C	ranging	from	4	Ω	to
20	MΩ.	Because	the	interface	electronics	can	just	as	easily	convert	any	resistance	into	a
voltage,	a	20	MΩ	thermistor	is	not	more	sensitive	than	a	30	Ω	thermistor.	In	this	situation,
it	makes	more	sense	to	define	fractional	sensitivity	as:

	=			 	(units	1/˚C)																											 	=				 																											

	

Unfortunately,	transducers	are	often	sensitive	to	factors	other	than	the	signal	of	interest.
Environmental	issues	involve	how	the	transducer	interacts	with	its	external	surroundings
(e.g.,	temperature,	humidity,	pressure,	motion,	acceleration,	vibration,	shock,	radiation
fields,	electric	fields	and	magnetic	fields.)		Specificity	is	a	measure	of	relative	sensitivity
of	the	transducer	to	the	desired	signal	compared	to	the	sensitivity	of	the	transducers	to
these	other	unwanted	influences.		A	transducer	with	a	good	specificity	will	respond	only	to
the	signal	of	interest	and	be	independent	of	these	disturbing	factors.	On	the	other	hand,	a

InteL
Highlight

InteL
Highlight

transducer	with	a	poor	specificity	will	respond	to	the	signal	of	interest	as	well	as	to	some
of	these	disturbing	factors.		If	all	these	disturbing	factors	are	grouped	together	as	noise,
then	the	signal-to-noise	ratio	(S/N)	is	a	quantitative	measure	of	the	specificity	of	the
transducer.

The	input	range	is	the	allowed	range	of	input,	x.	The	input	impedance	is	the	phasor
equivalent	of	the	steady	state	sinusoidal	effort	(voltage,	force,	pressure)	input	variable
divided	by	the	phasor	equivalent	of	steady	state	flow	(current,	velocity,	flow)	input
variable.	The	output	signal	strength	of	the	transducer	can	be	specified	by	the	output
resistance,	Rout,	and	output	capacitance,	Cout.

Figure	10.4.	Output	model	of	a	transducer.
The	input	impedance	of	a	thermal	sensor	is	a	measure	of	the	thermal	perturbation	that
occurs	due	to	the	presence	of	the	probe	itself	in	the	medium.	For	example,	a	thermocouple
needle	inserted	into	a	laser-irradiated	medium	will	affect	the	medium	temperature	because
heat	will	conduct	down	the	stainless	steel	shaft.		A	thermocouple	has	a	low	input
impedance	(which	is	bad)	because	the	transducer	itself	loads	(reduces)	the	medium
temperature.		On	the	other	hand,	an	infrared	detector	measures	surface	medium
temperature	without	physical	contact.		Infrared	detectors	therefore	have	a	very	high	input
impedance	(which	is	good)	because	the	presence	of	the	transducer	has	no	effect	on	the
temperature	to	be	measured.	In	the	case	of	temperature	sensors,	the	driving	force	for	heat
transfer	is	the	temperature	difference,	∆T.		The	resulting	heat	flow,	q,	can	be	expressed
using	Fourier’s	law	of	thermal	conduction:

where	k	is	the	probe	thermal	conductivity,	and	A	is	the	probe	surface	area	and	a	is	the
radius	of	a	spherical	transducer.		The	steady	state	input	impedance	of	a	spherical
temperature	probe	can	thus	be	approximated	by:

Again,	the	approximation	in	the	above	equation	assumes	a	spherical	transducer.	Similar
discussions	can	be	constructed	for	the	sinusoidal	input	impedance.	Since	most	thermal
events	can	be	classified	as	step	events	rather	than	sinusoidally	varying	events,	most
researchers	prefer	the	use	of	time	constant	to	describe	the	transient	behavior	of
temperature	transducers.

InteL
Highlight

Some	transducers	are	completely	passive	(e.g.,	thermocouple,	EKG	electrode),		and	others
are	active	requiring	external	power	(e.g.	ultrasonic	crystals,	strain	gauge,	microphone,	and
thermistors.)	Electrical	isolation	is	a	critical	factor	in	medical	instrumentation.	Some
transducers	are	inherently	isolated	(e.g.,	thermistors,	thermocouples,	microphones),	while
others	are	not	isolated	(e.g.,	EKG	electrodes,	pacemakers,	blood	pressure	catheters.)	
Minimization	of	errors	is	important	for	all	instruments.	The	sensitivity	to	disturbing
factors	(electric	fields,	magnetic	fields,	radiation,	vibration,	shock,	acceleration,
temperature,	humidity)	must	be	determined	before	a	device	can	be	used.

The	zero	drift	is	the	change	in	the	static	sensitivity	curve	intercept,	b,	as	a	function	of
time	or	other	factor	(see	the	Figure	10.5).		The	sensitivity	drift	is	the	change	in	the	static
sensitivity	curve	slope,	m,	as	a	function	of	time	or	some	other	factor.		These	drift	factors
determine	how	often	the	transducer	must	be	calibrated.	For	example,	thermistors	have	a
drift	much	larger	than	that	of	RTDs	or	thermocouples.	Transducers	may	be	aged	at	high
temperatures	for	long	periods	of	time	to	improve	their	reproducibility.

Figure	10.5.	The	two	types	of	transducer	drift:	sensitivity	drift	and	zero
drift.
The	transducer	is	often	a	critical	device	involving	both	the	cost	and	performance	of	the
entire	system.	A	quality	transducer	may	produce	better	signals	but	at	an	increased	cost.	An
important	manufacturing	issue	is	the	availability	of	components.	The	availability	of	a
device	may	be	enhanced	by	having	a	second	source	(more	than	one	manufacturer	produces
the	device).	The	use	of	standard	cables	and	connectors	will	simplify	the	construction	of
your	system.	The	power	requirements,	size	and	weight	of	the	device	are	important	in	some
systems,	and	thus	should	be	considered	when	selecting	a	transducer.

10.2.2.	Dynamic	Transducer	Specifications
The	transient	response	is	the	combination	of	the	delay	phase,	the	slewing	phase,	and	the
ringing	phase	as	shown	in	Figure	10.6.	The	total	transient	response	is	the	time	for	the
output,	y(t),	to	reach	99%	of	its	final	value	after	a	step	change	in	input,	x(t)=u0(t).

InteL
Highlight

InteL
Highlight

InteL
Highlight

InteL
Highlight

Figure	10.6.	The	step	response	often	has	delay,	slewing	and	ringing
phases.
The	transient	response	of	a	temperature	transducer	to	a	sudden	change	in	signal	input	can
sometimes	be	approximated	by	an	exponential	equation	(assuming	first-order	response):

y(t)	=	yf	+	(y0-	yf)	e-t/ �																																																																					

where	y0	and	yf	are	the	initial	and	final	transducer	outputs	respectively.		The	time
constant, � ,	of	a	transducer	is	the	time	to	reach	63.2%	of	the	final	output	after	the	input
is	instantaneously	increased.	This	time	is	dependent	on	both	the	transducer	and	the
experimental	setup.		Manufacturers	often	specify	the	time	constant	of	thermistors	and
thermocouples	in	well-stirred	oil	(fastest)	or	still	air	(slowest).		In	your	applications,	one
must	consider	the	situation.		If	the	transducer	is	placed	in	a	high	flow	liquid	like	an	artery
or	a	water	pipe,	it	may	be	reasonable	to	use	the	stirred	oil	time	constant.		If	the	transducer
is	in	air	or	embedded	in	a	solid,	then	thermal	conduction	in	the	medium	will	determine	the
time	constant	almost	independently	of	the	transducer.

The	frequency	response	is	a	standard	technique	to	describe	the	dynamic	behavior	of
linear	systems.	Let	y(t)	be	the	system	response	to	x(t).	Let

x(t)	=	Asin(� t)														y(t)	=	Bsin(� t+ �)																												� =	2	π	f

	

The	magnitude	B/Aand	the	phase 	responses	are	both	dependent	on	frequency.	Differential
equations	can	be	used	to	model	linear	transducers.	Let	x(t)	be	the	time	domain	input
signal.	Let	X(j �)	be	the	frequency	domain	input	signal.	Let	y(t)	be	the	time	domain
output	signal.	Let	Y(j �)	be	the	frequency	domain	output	signal.

Classification differential	equation gain	response phase	response

ZERO	ORDER y(t)	=	m	x(t)		 Y/X	=	m	=	static
sensitivity

	

FIRST	ORDER y’(t)	+	a	y(t)	=	b	x(t) Y/X	=b/sqrt(a2+ 2) =	arctan	(- /a)

InteL
Highlight

SECOND
ORDER

y”(t)	+	a	y’(t)	+	b	y(t)
=	c	x(t)

	 	

TIME	DELAY y(t)	=	x(t-T) Y/X	=	exp(-j � T) 	

Table	10.3.	Classifications	of	simple	linear	systems.

10.2.3.	Nonlinear	Transducers
Nonlinear	characteristics	include	hysteresis,	saturation,	bang-bang,	breakdown,	and	dead
zone.		Hysteresis	is	created	when	the	transducer	has	memory.	We	can	see	in	the	Figure
10.7	that	when	the	input	was	previously	high	it	falls	along	the	higher	curve,	and	when	the
input	was	previously	low	it	follows	along	the	lower	curve.	Hysteresis	will	cause	a
measurement	error,	because	for	any	given	sensor	output,	y,	there	may	be	two	possible
measurand	inputs.	Saturation	occurs	when	the	input	signal	exceeds	the	useful	range	of
the	transducer.	With	saturation,	the	sensor	does	not	respond	to	changes	in	input	value
when	the	input	is	either	too	high	or	too	low.	Breakdown	describes	a	second	possible	result
that	may	occur	when	in	the	input	exceeds	the	useful	range	of	the	transducer.	With
breakdown,	the	sensor	output	changes	rapidly,	usually	the	result	of	permanent	damage	to
the	transducer.	Hysteresis,	bang	bang	and	dead	zone	all	occur	within	the	useful	range	of
the	transducer.	Bang	bang	is	a	sudden	large	change	in	the	output	for	a	small	change	in	the
input.	If	the	bang	bang	occurs	predictably,	then	it	can	be	corrected	for	in	software.	A	dead
zone	is	a	condition	where	a	large	change	in	the	input	causes	little	or	no	change	in	the
output.	Dead	zones	cannot	be	corrected	for	in	software,	thus	if	present	will	cause
measurement	errors.

Figure	10.7.	Nonlinear	transducer	responses.

InteL
Highlight

InteL
Highlight

InteL
Highlight

InteL
Highlight

InteL
Highlight

InteL
Highlight

InteL
Highlight

InteL
Highlight

InteL
Highlight

InteL
Highlight

InteL
Highlight

There	are	many	ways	to	model	nonlinear	transducers.	A	nonlinear	transducer	can	be
described	as	a	piecewise	linear	system.	The	first	step	is	to	divide	the	range	of	x	into	a
finite	subregions,	assuming	the	system	is	linear	in	each	subregion.	The	second	step	is	to
solve	the	coupled	linear	systems	so	that	the	solution	is	continuous.	Another	method	to
model	a	nonlinear	system	is	to	use	empirically	determined	nonlinear	equations.	The	first
step	in	this	approach	is	to	observe	the	transducer	response	experimentally.	Given	a	table	of
x	and	y	values,	the	second	step	is	to	fit	the	response	to	a	nonlinear	equation.	Engineers	call
these	empirical	fits	performance	maps.

A	third	approach	to	model	a	nonlinear	transducer	uses	a	lookup	table	located	in	memory.
This	method	is	convenient	and	flexible.	Let	x	be	the	measurand	and	y	be	the	transducer
output.	The	table	contains	x	values	and	the	measured	y	value	is	used	to	index	into	the
table.	Sometimes	a	small	table	coupled	with	linear	interpolation	achieves	equivalent
results	to	a	large	table.	The	spreadsheet	Therm12.xls,	which	can	be	found	on	the	web	site,
is	an	example	of	this	approach.

A	nonmonotonic	response	is	an	input/output	function	that	does	not	have	a	mathematical
inverse.	For	example,	if	two	or	more	input	values	yield	the	same	output	value,	then	the
transducer	is	nonmonotonic.	Software	will	have	a	difficult	time	correcting	a	nonmonotonic
transducer.	For	example,	the	Sharp	GP2Y0A21YK	IR	distance	sensor	has	a	transfer
function	as	shown	in	Figure	10.8.	If	you	read	a	transducer	voltage	of	2	V,	you	cannot	tell	if
the	object	is	3	cm	away	or	12	cm	away.

	

Figure	10.8.	The	Sharp	IR	distance	sensor	exhibits	nonmonotonic
behavior.

10.2.4.	Position	Transducers
One	of	the	simplest	methods	to	convert	position	into	an	electrical	signal	uses	a	position
sensitive	potentiometer.	These	devices	are	inexpensive	to	build	and	are	sensitive	to	small
displacements.	The	transducer	is	constructed	from	a	potentiometer.	The	fixed	part	of	the
potentiometer	is	called	the	frame,	and	the	movable	part	is	the	armature.	The	armature	is
free	to	move	up	and	down	along	the	measurement	axis,	see	Figure	10.9.	The	frame	is	fixed
and	the	armature	is	attached	to	the	object	being	measured.	The	total	electrical	resistance	of
the	transducer	is	fixed,	but	the	resistance	to	the	slide	arm	varies	with	distance,	d.

InteL
Highlight

InteL
Highlight

InteL
Highlight

InteL
Highlight

InteL
Highlight

InteL
Highlight

InteL
Highlight

InteL
Highlight

InteL
Highlight

Rout	=	Rmax*d/dmax
	

where	dmax	is	distance	at	full	scale	and	Rmax	is	the	resistance	at	full	scale.	If	the	material	in
the	potentiometer	has	uniform	resistance,	then	Rout	will	be	linearly	related	to	displacement,
d.	The	disadvantages	of	this	transducer	are	its	low	frequency	response,	its	high	mechanical
input	impedance,	and	it	degenerates	with	time.	Nevertheless,	this	type	of	transducer	is
adequate	for	many	applications.	This	transducer	will	be	interfaced	two	ways	later	in
Example	10.3.

Figure	10.9.	Potentiometer-based	position	sensor.
The	transducer	in	Figure	10.8	uses	IR	light	to	measure	distanceto	a	reflecting	object.
These	sensors	require	a	nonuniform	power,	so	placing	a	10 � F	near	the	power	line	of	the
sensor	reduces	noise	on	other	components.	If	the	object	is	more	than	6	cm	away,	the
output	voltage	is	inversely	related	to	voltage.	If	N	is	the	ADC	sample,	then	distance	can	be
calculated	as

d	=	c/N																												where	c	is	a	calibration	constant

Another	method	to	measure	the	distance	between	two	objects	is	to	transmit	a	ultrasonic
wave	from	one	object	at	the	other	and	listen	for	the	reflection	(Figure	10.10).	The
instrument	must	be	able	to	generate	the	sound	pulse,	hear	the	echo	and	measure	the	time,
tin,	between	pulse	and	echo.	If	the	speed	of	sound,	c,	is	known,	then	the	distance,	d,	can	be
calculated.	Our	microcontrollers	also	have	mechanisms	to	measure	the	pulse	width	tin.

d	=	c	tin	/	2

	

	

Figure	10.10.	An	ultrasonic	pulse-echo	transducer	measures	the	distance
to	an	object,	Ping))).

10.2.5.	Sound	Transducers

InteL
Highlight

InteL
Highlight

InteL
Highlight

A	microphone	is	a	type	of	displacement	transducer.	Sound	waves,	which	are	pressure
waves	travelling	in	air,	cause	a	diaphragm	to	vibrate,	and	the	diaphragm	motion	causes	the
distance	between	capacitor	plates	to	change.	This	variable	capacitance	creates	a	voltage,
which	can	be	amplified	and	recorded.	The	electret	condenser	microphone	(ECM)	is	an
inexpensive	choice	for	converting	sound	to	analog	voltage.	Electret	microphones	are	used
in	consumer	and	communication	audio	devices	because	of	their	low	cost	and	small	size.
For	applications	requiring	high	sensitivity,	low	noise,	and	linear	response,	we	could	use
the	dynamic	microphone,	like	the	ones	used	in	high-fidelity	audio	recording	equipment.
The	ECM	capsule	acts	as	an	acoustic	resonator	for	the	capacitive	electret	sensor	shown	in
Figure	10.11.	The	ECM	has	a	Junction	Field	Effect	Transistor	(JFET)	inside	the
transducer	providing	some	amplification.	This	JFET	requires	power	as	supplied	by	the	R1
resistor.	This	local	amplification	allows	the	ECM	to	function	with	a	smaller	capsule	than
typically	found	with	other	microphones.	ECM	devices	are	cylindrically	shaped,	have	a
diameter	ranging	from	3	to	10	mm,	and	have	a	thickness	ranging	from	1	to	5	mm.

Figure	10.11.	Physical	and	electrical	view	of	an	ECM	with	JFET	buffer
(Vcc	depends	on	microphone)
An	ECM	consists	of	a	pre-charged,	non-conductive	membrane	between	two	plates	that
form	a	capacitor.	The	backplate	is	fixed,	and	the	other	plate	moves	with	sound	pressure.
Movement	of	the	plate	results	in	a	capacitance	change,	which	in	turn	results	in	a	change	in
voltage	due	to	the	non-conductive,	pre-charged	membrane.	An	electrical	representation	of
such	an	acoustic	sensor	consists	of	a	signal	voltage	source	in	series	with	a	source
capacitor.	The	most	common	method	of	interfacing	this	sensor	is	a	high-impedance
buffer/amplifier.	A	single	JFET	with	its	gate	connected	to	the	sensor	plate	and	biased	as
shown	in	Figure	10.11	provides	buffering	and	amplification.	The	capacitor	C	provides
high-pass	filtering,	so	the	voltage	at	the	output	will	be	less	than	±100	mV	for	normal
voice.	Audio	microphones	need	additional	amplification	and	band-pass	filtering.	Typical
audio	signals	exist	from	100	Hz	to	10	kHz.	The	presence	of	the	R1	resistor	is	called
“phantom	biasing”.	The	electret	has	two	connections:	Gnd	and	Signal/bias.	Typically,	the
metallic	capsule	is	connected	to	Gnd.

10.2.6.	Force	and	Pressure	Transducers

InteL
Highlight

InteL
Highlight

A	common	device	to	measure	force	and	pressure	is	the	strain	gauge.	As	a	wire	is	stretched
its	length	increases	and	its	cross-sectional	area	decreases.	These	geometric	changes	cause
an	increase	in	the	electrical	resistance	of	the	wire,	R.	The	transducer	is	constructed	with
four	sets	of	wires	mounted	between	a	stationary	member	(frame)	and	a	moving	member
(armature.)		As	the	armature	moves	relative	to	the	frame,	two	wires	are	stretched	(increase
in	R1	R4),	and	two	wires	are	compressed	(decrease	in	R2	R3),	as	shown	in	Figure	10.13.
The	strain	gauge	is	a	displacement	transducer,	such	that	a	change	in	the	relative	position
between	the	armature	and	frame,	∆x,	causes	a	change	in	resistance,	∆R.	The	sensitivity	of
a	strain	gauge	is	called	its	gauge	factor.

Figure	10.12.	Strain	gauges	used	for	force	or	pressure	measurement.
The	gauge	factor	for	an	Advance	strain	gauge	is	2.1.	The	typical	resistance,	R,	is	120	Ω.	If
the	gauge	is	bonded	onto	a	material	with	a	spring	characteristic:

F	=	-k	x	
	

then	the	transducer	can	be	used	to	measure	force.	The	wires	each	have	a	significant
temperature	drift.	When	the	four	wires	are	placed	into	a	bridge	configuration,	the
temperature	dependence	cancels.	A	high	gain,	high	input	impedance,	high	CMRR
differential	amplifier	is	required.

Figure	10.13.	Four	strain	gauges	are	placed	in	a	bridge	configuration.
Force	and	pressure	sensors	can	also	be	made	from	semiconductor	materials.	These	silicon
sensors	can	be	made	much	smaller	than	strain	gauges,	but	tend	to	much	more	nonlinear.	A
force	sensing	resistor	(FSR)	is	made	with	a	resistive	film	and	converts	force	into
resistance.	These	sensors	are	low	cost	and	easy	to	interface,	but	tend	to	be	quite	nonlinear.

InteL
Highlight

InteL
Highlight

10.2.7.	Temperature	Transducers
Thermistors	are	a	popular	temperature	transducer	made	from	a	ceramic-like
semiconductor.		A	NTC	(negative	temperature	coefficient)	thermistor	is	made	from
combinations	of	metal	oxides	of	manganese,	nickel,	cobalt,	copper,	iron,	and	titanium.		A
mixture	of	milled	semiconductor	oxide	powders	and	a	binder	is	shaped	into	the	desired
geometry.		The	mixture	is	dried	and	sintered	(under	pressure)	at	an	elevated	temperature.	
The	wire	leads	are	attached	and	the	combination	is	coated	with	glass	or	epoxy.		By	varying
the	mixture	of	oxides,	a	range	of	resistance	values	from	30	Ω	to	20	MΩ	(at	25	˚C)	is
possible.		Table	10.4	lists	the	tradeoffs	between	thermistors	and	thermocouples.

Thermistors Thermocouples

More	sensitive More	sturdy

Better	temperature
resolution

Faster	response

Less	susceptible	to
noise

Inert,	interchangeable	V
vs.	T	curves

Less	thermal
perturbation

Requires	less	frequent
calibration

Does	not	require	a
reference

More	linear

Table	10.4.		Tradeoffs	between	thermistors	and	thermocouples.

A	precision	thermometer,	an	ohmmeter,	and	a	water	bath	are	required	to	calibrate
thermistor	probes.	The	following	empirical	equation	yields	an	accurate	fit	over	a	narrow
range	of	temperature:

														or														

where	T	is	the	temperature	in	Kelvin,	and	R	is	the	thermistor	resistance	in	ohms.	0	degrees
Celsius	is	273.15	degrees	Kelvin.		It	is	preferable	to	use	the	ohmmeter	function	of	the
eventual	instrument	for	calibration	purposes	so	that	influences	of	the	resistance
measurement	hardware	and	software	are	incorporated	into	the	calibration	process.

The	first	step	in	the	calibration	process	is	to	collect	temperature	(measured	by	a	precision
thermometer)	and	resistance	data	(measured	by	the	ohmmeter	process	of	the	instrument).
The	thermistor(s)	to	be	calibrated	should	be	placed	as	close	to	the	sensing	element	of	the
precision	thermometer	as	possible.	The	water	bath	creates	a	stable	yet	controllable
environment	in	which	to	perform	the	calibration.	See	the	spreadsheet	Therm12.xls	on	the
book	web	site	for	an	example	thermistor	calibration.

A	thermocouple	is	constructed	by	spot	welding	two	different	metal	wires	together.	Probe

InteL
Highlight

InteL
Highlight

InteL
Highlight

InteL
Highlight

InteL
Highlight

transducers	include	a	protective	casing	which	surrounds	the	thermocouple	junction.	Probes
come	in	many	shapes	including	round	tips,	conical	needles	and	hypodermic	needles.	Bare
thermocouple	junctions	provide	faster	response	but	are	more	susceptible	to	damage	and
noise	pickup.	Ungrounded	probes	allow	electrical	isolation	but	are	not	as	responsive	as
grounded	probes.	Commercial	thermocouples	have	been	constructed	in	16	to	30	gauge
hypodermic	needles	—	a	30	gauge	needle	has	an	outside	diameter	of	above	0.03	cm.	Bare
thermocouples	can	be	made	from	30-µm	wire	producing	a	tip	with	an	80	µm	diameter.	A
spot	weld	is	produced	by	passing	a	large	current	through	the	metal	junction	that	fuses	the
two	metals	together.	If	the	wires	form	a	loop,	and	the	junctions	are	at	different
temperatures,	then	a	current	will	flow	in	the	loop.	This	thermal	to	electrical	energy
conversion	is	called	the	Seebeck	effect	(see	Figure	10.14).		If	the	temperature	difference	is
small,	then	the	current,	I,	is	linearly	proportional	to	the	temperature	difference	T1-T2.

Figure	10.14.	When	the	two	thermocouple	junctions	are	at	different
temperatures	current	will	flow.
If	the	loop	is	broken,	and	an	electrical	voltage	is	applied,	then	heat	will	be	absorbed	at	one
junction	and	released	at	the	other.	This	electrical	to	thermal	energy	conversion	is	called	the
Peltier	effect,	see	Figure	10.15.	If	the	voltage	is	small,	then	the	heat	transferred	is	linearly
proportional	to	the	voltage,	V.

Figure	10.15.	When	voltage	is	applied	to	two	thermocouple	junctions	heat
will	flow.
If	the	loop	is	broken,	and	the	junctions	are	at	different	temperatures,	then	a	voltage	will
develop	because	of	the	Seebeck	effect.		If	the	temperature	difference	is	small,	then	the
voltage,	V,	is	nearly	linearly	proportional	to	the	temperature	difference	T1-T2.	An	amplifier
is	required	to	match	the	transducer	output	range	to	the	ADC	range,	see	Figure	10.16.
Under	most	conditions	we	will	add	an	analog	low	pass	filter.

Type	-	Thermocouple µV/˚C	at
20˚C

Useful	range
˚C

Comments

T	-	Copper/Constantan 45 -150	to	+350 Moist
environment

InteL
Highlight

InteL
Highlight

J	-	Iron/Constantan 53 -150	to
+1000

Reducing
environment

K	-	Chromel/alumel 40 -200	to
+1200

Oxidizing
environment

E	-	Chromel/constantan 80 0	to	+500 Most	sensitive

R	S	-	Platinum/platinum-
rhodium

6.5 0	to	+1500 Corrosive
environment

C	–	Tungsten/rhenium 12 0	to	2000 High	temperature

Table	10.5.	Temperature	sensitivity	and	range	of	various	thermocouples.

	

Figure	10.16.	A	thermocouple	converts	temperature	difference	to	voltage.
Thermocouples	are	characterized	by:	1)	low	impedance	(resistance	of	the	wires),		2)	low
temperature	sensitivity	(45	µV/˚C	for	copper/constantan),		3)	low-power	dissipation,		4)
fast	response	(because	of	the	metal),		5)	high	stability	(because	of	the	purity	of	the	metals),
and		6)	interchangeability	(again	because	of	the	physics	and	the	purity	of	the	metals).

If	the	temperature	range	is	less	than	25˚C,	then	the	linear	approximation	can	be	used	to
measure	temperature.		Let	N	be	the	digital	sample	from	the	ADC	for	the	unknown	medium
temperature,	T1.		A	calibration	is	performed	under	the	conditions	of	a	constant	reference
temperature:	typically,	one	uses	the	extremes	of	the	temperature	range	(Tmin	and	Tmax).	A
precision	thermometer	system	is	used	to	measure	the	“truth”	temperatures.		Let	Nmin	and
Nmax	be	the	digital	samples	at	Tmin	and	Tmax	respectively.		Then	the	following	equation	can
be	used	to	calculate	the	unknown	medium	temperature	from	the	measured	digital	sample.

T1	=	Tmin	+		(N-Nmin)	•																																																																						

Because	the	thermocouple	response	is	not	exactly	linear,	the	errors	in	the	above	linear
equation	will	increase	as	the	temperature	range	increases.		For	instruments	with	a	larger
temperature	range,	a	quadratic	equation	can	be	used,

T1	=	H0	+		H1•N	+		H2•N2																																																																																			

InteL
Highlight

	

where	H0	H1	and	H2	are	determined	by	calibration	of	the	instrument	over	the	range	of
interest.	

10.3.	Discrete	Calculus
Given	a	method	to	measure	position,	we	can	use	calculus	to	determine	velocity	and
acceleration.

																												

The	continuous	derivative	can	be	expressed	as	a	limit.

The	microcontroller	can	approximate	the	velocity	be	calculating	the	discrete	derivative.

				

where	∆t	is	the	time	between	velocity	samples.	At	this	point	we	introduce	a	short	hand	to
describe	digital	samples.	x(n)	is	the	current	sample,	x(n-1)	is	the	previous	sample,	and	x(n-
2)	is	the	sample	two	times	ago.	When	describing	calculations	performed	on	sampled	data
it	is	customary	to	use	this	notation.	The	use	of	n	as	the	time	variable	emphasizes	the	signal
exists	only	at	discrete	times.

				

This	calculation	of	derivative	is	very	sensitive	to	errors	in	the	measurement	of	x(n).	A
more	stable	calculation	averages	two	or	more	derivative	terms	taken	over	different	time
windows.	In	general	we	can	define	such	a	robust	calculation	as

If	the	integers	p,	m,	and	c	are	all	positive,	this	calculation	can	be	performed	in	real-time.
The	first	term	is	the	derivative	over	the	large	time	window	of	p∆t.	The	second	window
term	has	a	smaller	size	of	m∆t.	It	normally	fits	entire	inside	the	first	with	c>0	and	c-m<p.
The	coefficients	a	and	b	create	the	weight	for	combining	the	short	and	long	intervals.	With
a=b=1,	p=3,	m=1,	and	c=1,	we	get:

				

The	acceleration	can	also	be	approximated	by	a	discrete	derivative.

				

Observation:	In	the	above	calculations	of	derivative,	a	single	error	in	one	of	the	x(t)	input
terms	will	propagate	to	only	a	finite	number	of	the	output	calculations.	

Observation:	Although	the	central	difference	calculation	of	v(t)=(x(t+∆t)-x(t-∆t))/2∆t	is
theoretically	valid,	we	cannot	use	it	for	real-time	applications,	because	it	requires
knowledge	about	the	future,	x(t+∆t),	which	is	unavailable	at	the	time	v(t)	is	being
calculated.	

Similarly,	we	can	perform	integration	of	velocity	to	determine	position.

													

The	microcontroller	can	perform	a	discrete	integration	by	summation.

													

There	are	two	problems	with	this	approach.	The	first	difficulty	is	determining	x(0).	The
second	problem	is	the	accumulation	of	errors.		If	one	is	calculating	velocity	from	position
and	an	error	occurs	in	the	measurement	of	x(n),	then	that	error	affects	only	two
calculations	of	v(n).	Unfortunately,	if	one	is	calculating	position	from	velocity	and	an	error
occurs	in	the	measurement	of	v(n),	then	that	error	will	affect	all	subsequent	calculations	of
x(n).

	

Observation:	In	the	above	calculation	of	integration,	a	single	error	in	one	of	the	x(t)	input
terms	will	propagate	into	all	remaining	output	calculations.	

The	following	function,	which	is	quite	similar	to	the	derivative,	is	actually	a	low	pass
digital	filter.

				

Furthermore,	if	you	sample	an	input	at	a	regular	rate,	fs,	then	the	following	is	a	digital	low
pass	filter	with	a	cutoff	of	about	fs	/2k.	This	filter	calculates	the	average	of	the	last	k
samples	(see	Program	8.10).

				
Checkpoint	10.1:	If	you	sample	at	1000	Hz,	how	do	you	create	a	digital	low	pass	filter
with	a	cutoff	of	10	Hz?	

10.4.		Data	Acquisition	System	Design

10.4.1.	Introduction	and	Definitions
Before	designing	a	data	acquisition	system	(DAS)	we	must	have	a	clear	understanding	of
the	system	goals.	We	can	classify	system	as	a	Quantitative	DAS,	if	the	specifications	can
be	defined	explicitly	in	terms	of	desired	range	(rx),	resolution	(∆x),	precision	(nx),	and
frequencies	of	interest	(fmin	to	fmax).	If	the	specifications	are	more	loosely	defined,	we
classify	it	as	a	Qualitative	DAS.	Examples	of	qualitative	systems	include	those	which
mimic	the	human	senses	where	the	specifications	are	defined	using	terms	like	“sounds
good”,	“looks	pretty”,	and	“feels	right.”	Other	qualitative	systems	involve	the	detection	of
events.	We	will	consider	two	examples,	a	burglar	detector,	and	an	instrument	to	diagnose
cancer.		For	binary	detection	systems	like	the	presence/absence	of	a	burglar	or	the
presence/absence	of	cancer,	we	define	a	true	positive	(TP)	when	the	condition	exists	(there
is	a	burglar)	and	the	system	properly	detects	it	(the	alarm	rings.)	We	define	a	false	positive
(FP)	when	the	condition	does	not	exist	(there	is	no	burglar)	but	the	system	thinks	there	is
(the	alarm	rings.)		A	false	negative	(FN)	occurs	when	the	condition	exists	(there	is	a
burglar)	but	the	system	does	not	think	there	is	(the	alarm	is	silent.)		A	true	negative	(TN)
occurs	when	the	condition	does	not	exist	(the	patient	does	not	have	cancer)	and	the	system
properly	detects	it	(the	instrument	says	the	patient	is	normal.)	Prevalence	is	the
probability	the	condition	exists,	sometimes	called	pre-test	probability.	In	the	case	of
diagnosing	the	disease,	prevalence	tells	us	what	percentage	of	the	population	has	the
disease.		Sensitivity	is	the	fraction	of	properly	detected	events	(a	burglar	comes	and	the
alarm	rings)	over	the	total	number	of	events	(number	of	robberies.)	It	is	a	measure	of	how
well	our	system	can	detect	an	event.	For	the	burglar	detector,	a	sensitivity	of	1	means
when	a	burglar	breaks	in	the	alarm	will	go	off.	For	the	diagnostic	instrument,	a	sensitivity
of	1	means	every	sick	patient	will	get	treatment.	Specificity	is	the	fraction	of	properly
handled	non-events	(a	patient	doesn’t	have	cancer	and	the	instrument	claims	the	patient	is
normal)	over	the	total	number	of	non-events	(the	number	of	normal	patients.)	A	specificity
of	1	means	no	people	will	be	treated	for	a	cancer	they	don’t	have.	The	positive	predictive
value	of	a	system	(PPV)	is	the	probability	that	the	condition	exists	when	restricted	to
those	cases	where	the	instrument	says	it	exists.	It	is	a	measure	of	how	much	we	believe	the
system	is	correct	when	it	says	it	has	detected	an	event.	A	PPV	of	1	means	when	the	alarm
rings,	the	police	will	come	and	arrest	a	burglar.	Similarly,	a	PPV	of	1	means	if	our
instrument	says	a	patient	has	the	disease,	then	that	patient	is	sick.	The	negative	predictive
value	of	a	system	(NPV)	is	the	probability	that	the	condition	does	not	exists	when
restricted	to	those	cases	where	the	instrument	says	it	doesn’t	exist.	A	NPV	of	1	means	if
our	instrument	says	a	patient	doesn’t	have	cancer,	then	that	patient	is	not	sick.	Sometimes
the	true	negative	condition	doesn’t	really	exist	(how	many	times	a	day	does	a	burglar	not
show	up	at	your	house?)	If	there	are	no	true	negatives,	only	sensitivity	and	PPV	are
relevant.

Prevalence															=		(TP	+	FN)	/	(TP	+	TN	+	FP	+	FN)

Sensitivity														=	TP	/	(TP	+	FN)

InteL
Highlight

InteL
Highlight

InteL
Highlight

InteL
Highlight

InteL
Highlight

InteL
Highlight

InteL
Highlight

InteL
Highlight

InteL
Highlight

InteL
Highlight

InteL
Highlight

InteL
Highlight

InteL
Highlight

Specificity														=	TN	/	(TN	+	FP)

PPV																													=	TP	/	(TP	+	FP)

NPV																													=	TN	/	(TN	+	FN)
	

The	transducer	converts	the	physical	signal	into	an	electrical	signal.	The	amplifier
converts	the	weak	transducer	electrical	signal	into	the	range	of	the	ADC	(e.g.,	0	to	+3	V).
The	analog	filter	removes	unwanted	frequency	components	within	the	signal.	The	analog
filter	is	required	to	remove	aliasing	error	caused	by	the	ADC	sampling.	The	analog
multiplexer	is	used	to	select	one	signal	from	many	sources.	The	sample	and	hold	is	an
analog	latch	used	to	keep	the	ADC	input	voltage	constant	during	the	ADC	conversion.
The	clock	is	used	to	control	the	sampling	process.		Inherent	in	digital	signal	processing	is
the	requirement	that	the	ADC	be	sampled	on	a	fixed	time	basis.	The	computer	is	used	to
save	and	process	the	digital	data.	A	digital	filter	may	be	used	to	amplify	or	reject	certain
frequency	components	of	the	digitized	signal.	The	multiple	access	circular	queue	is	a
convenient	data	structure	to	use	with	the	digital	filter.

10.4.2.	Using	Nyquist	Theory	to	Determine	Sampling	Rate
There	are	two	errors	introduced	by	the	sampling	process.		Voltage	quantizing	is	caused
by	the	finite	word	size	of	the	ADC.	The	precision	is	determined	by	the	number	of	bits	in
the	ADC.	If	the	ADC	has	n	bits,	then	the	number	of	distinguishable	alternatives	is

nz	=	2n													

Time	quantizing	is	caused	by	the	finite	discrete	sampling	interval.	The	Nyquist	Theorem
states	that	if	the	signal	is	sampled	at	fs,	then	the	digital	samples	only	contain	frequency
components	from	0	to	0.5	fs.	Conversely,	if	the	analog	signal	does	contain	frequency
components	larger	than	½	fs,	then	there	will	be	an	aliasing	error.		Aliasing	is	when	the
digital	signal	appears	to	have	a	different	frequency	than	the	original	analog	signal.	Simply
put,	if	one	samples	a	sine	wave	at	a	sampling	rate	of	fs,

V(t)	=	A	sin(2πft+)													

	

is	it	possible	to	determine	A	f	and 	from	the	digital	samples?		Nyquist	Theory	says	that	if	fs
is	strictly	greater	than	twice	f,	then	one	can	determine	A	fand 	from	the	digital	samples.		In
other	words,	the	entire	analog	signal	can	be	reconstructed	from	the	digital	samples.	But	if
fs	less	than	or	equal	to	f,	then	one	cannot	determine	A	f	and .		In	this	case,	the	apparent
frequency,	as	predicted	by	analyzing	the	digital	samples,	will	be	shifted	to	a	frequency
between	0	and	½	fs.

In	this	example,	the	sampling	rate	is	fixed	at	1600	Hz	and	the	signal	frequency	is	varied.
When	sampling	rate	is	exactly	twice	the	input	frequency,	the	original	signal	may	or	may
not	be	properly	reconstructed.	In	this	specific	case,	it	is	frequency	shifted	(aliased)	to	DC
and	lost.

InteL
Highlight

InteL
Highlight

	
100	Hz	sine	wave	(properly	sampled)																												400	Hz	sine	wave	(properly
sampled)

	
800	Hz	sine	wave	(aliased)																																										1500	Hz	sine	wave	(aliased)

Figure	10.17.	Aliasing	does	not	occur	when	the	sampling	rate	is	more	than
twice	the	signal	frequency.
When	sampling	rate	is	slower	than	twice	the	input	frequency,	the	original	signal	cannot	be
properly	reconstructed.	It	is	frequency	shifted	(aliased)	to	a	frequency	between	0	and	½	fs.
In	this	case	the	1500	Hz	wave	was	aliased	to	100	Hz.

The	choice	of	sampling	rate,	fs,	is	determined	by	the	maximum	useful	frequency
contained	in	the	signal.	One	must	sample	at	least	twice	this	maximum	useful	frequency.
Faster	sampling	rates	may	be	required	to	implement	a	digital	filter	and	other	digital	signal
processing.

fs	>	2	fmax																											

Even	though	the	largest	signal	frequency	of	interest	is	fmax,	there	may	be	significant	signal
magnitudes	at	frequencies	above	fmax.	These	signals	may	arise	from	the	input	x,	from
added	noise	in	the	transducer	or	from	added	noise	in	the	analog	processing.	Once	the
sampling	rate	is	chosen	at	fs,	then	a	low	pass	analog	filter	may	be	required	to	remove
frequency	components	above	½fs.		A	digital	filter	cannot	be	used	to	remove	aliasing.

An	interesting	question	arises:	how	do	we	determine	the	maximum	frequency	component
in	our	input?	If	we	know	enough	about	our	system	we	might	be	able	to	derive	an	equation
to	determine	the	maximum	frequency.	For	example,	if	a	mechanical	system	consists	of	a
mass,	friction	and	a	spring,	then	we	can	write	a	differential	equation	relating	the	applied
force	to	the	position	of	the	object.	The	second	way	to	find	the	maximum	frequency
component	in	our	signal	is	to	measure	it	with	a	spectrum	analyzer.

InteL
Highlight

	
Valvano	Postulate:	If	fmax	is	the	largest	frequency	component	of	the	analog
signal,	then	you	must	sample	more	than	ten	times	fmax	in	order	for	the
reconstructed	digital	samples	to	look	like	the	original	signal	when	plotted	on	a
voltage	versus	time	graph.

	

10.4.3.	How	Many	Bits	Does	One	Need	for	the	ADC?
The	choice	of	the	ADC	precision	is	a	compromise	of	various	factors.		The	desired
resolution	of	the	data	acquisition	system	will	dictate	the	number	of	ADC	bits	required.		If
the	transducer	is	nonlinear,	then	the	ADC	precision	must	be	larger	than	the	precision
specified	in	the	problem	statement.		For	example,	let	y	be	the	transducer	output,	and	let	x
be	the	real	world	signal.	Assume	for	now,	that	the	transducer	output	is	connected	to	the
ADC	input.	Let	the	range	of	x	be	rx.	Let	the	range	of	y	be	ry.		Let	the	required	precision	of
x	be	nx.	The	resolutions	of	x	and	y	are	∆x	and	∆y	respectively.		Let	the	following	describe
the	nonlinear	transducer.

y	=	f(x)

The	required	ADC	precision,	ny,	(in	alternatives)	can	be	calculated	by:

∆x	=	rx	/	nx													

∆y	=	min	{f(x+∆x)-f(x)}	for	all	x	in	rx													

ny	=	ry	/	∆y																																																																						

For	example,	consider	the	nonlinear	transducer	y	=	x2.	The	range	of	x	is	0	≤	x	≤	1.	Thus,
the	range	of	y	is	also	0	≤	y	≤	1.	Let	the	desired	resolution	be	∆x=0.01.	nx	=	rx ∆x	=	100
alternatives	or	about	7	bits.	From	the	above	equation,	∆y	=min{(x+0.01)2-x2}	=	min{0.02x
+	0.0001}	=	0.0001.	Thus,	ny	=	ry ∆y	=	10000	alternatives	or	almost	15	bits.

Checkpoint	10.2:	What	is	the	relationship	between	nx	and	ny	if	the	transducer	is	linear?	

10.4.4.	Specifications	for	the	Analog	Signal	Processing

InteL
Highlight

InteL
Highlight

In	general	we	wish	the	analog	signal	processing	to	map	the	full	scale	range	of	the
transducer	into	the	full	scale	range	of	the	ADC.	If	the	ADC	precision	is	N=2n	in
alternatives,	and	the	output	impedance	of	the	transducer	is	Rout,	then	we	need	an	input
impedance	larger	than	N*Rout	to	avoid	loading	the	signal.	We	need	the	analog	circuit	to
pass	the	frequencies	of	interest.	When	considering	noise,	we	determine	the	signal
equivalent	noise.	For	example,	consider	the	thermistor	circuit	in	Figure	10.16.	If	we	wish
to	consider	noise	on	signal	Vout,	we	calculate	the	relationship	between	input	temperature	T
and	the	signal	Vout.	Next,	we	determine	the	sensitivity	of	the	signal	to	temperature,
dVout/dT.	If	the	noise	is	Vn,	then	the	temperature	equivalent	noise	is	Tn=Vn/(dVout/dT).	In
general,	we	wish	all	equivalent	noises	to	be	less	than	the	system	resolution.

An	analog	low	pass	filter	may	be	required	to	remove	aliasing.	The	cutoff	of	this	analog
filter	should	be	less	than	½fs.	Some	transducers	automatically	remove	these	unwanted
frequency	components.	For	example,	a	thermistor	is	inherently	a	low	pass	device.	Other
types	of	filters	(analog	and	digital)	may	be	used	to	solve	the	data	acquisition	system
objective.	One	useful	filter	is	a	60	Hz	bandreject	filter.

In	order	to	prevent	aliasing,	one	must	know	the	frequency	spectrum	of	the	ADC	input
voltage.	This	information	can	be	measured	with	a	spectrum	analyzer.	Typically,	a
spectrum	analyzer	samples	the	analog	signal	at	a	very	high	rate	(>1	MHz),	performs	a
Discrete	Fourier	Transform	(DFT),	and	displays	the	signal	magnitude	versus	frequency.
As	defined	in	Figure	10.2,	z(t)	is	the	input	to	the	ADC.	Let	|Z(f)|	be	the	magnitude	of	the
ADC	input	voltage	as	a	function	of	frequency.	There	are	3	regions	in	the	magnitude	versus
frequency	graph	shown	in	Figure	10.18.	

Figure	10.18.	To	prevent	aliasing	there	should	be	no	measurable	signal
above	½	fs.
We	will	classify	any	signal	with	an	amplitude	less	than	the	ADC	resolution,	∆z,	to	be
undetectable.	This	region	is	labeled	“Undetectable”.	Undetectable	signals	cannot	cause
aliasing	regardless	of	their	frequency.	

We	will	classify	any	signal	with	an	amplitude	larger	than	the	ADC	resolution	at
frequencies	less	than	½fs	to	be	properly	sampled.	This	region	is	labeled	“Properly
sampled”.	It	is	information	in	this	region	that	is	available	to	the	software	for	digital
processing.

The	last	region	includes	signals	with	amplitude	above	the	ADC	resolution	at	frequencies
greater	than	or	equal	to	½fs.	Signals	in	this	region	will	be	aliased,	which	means	their
apparent	frequencies	will	be	shifted	into	the	0	to	½fs	range.

InteL
Highlight

InteL
Highlight

InteL
Highlight

InteL
Highlight

InteL
Highlight

InteL
Highlight

InteL
Highlight

InteL
Highlight

Most	spectrum	analyzers	give	the	output	in	decibels	full	scale	(dBFS).	For	an	ADC	system
with	a	range	of	0	to	3V,	the	full	scale	peak-to-peak	amplitude	for	any	AC	signal	is	3	V.	If
V	is	the	DFT	output	magnitude	in	volts

																dBFS	=	20	log10(V/3)													

Table	10.6	calculates	the	ADC	resolution	in	dBFS.	For	a	real	ADC,	the	resolution	will	be	a
function	of	other	factors	other	than	bits.	For	example,	the	MAX1246	12-bit	ADC	has	a
minimum	Signal-to-Noise+Distortion	Ratio	(SINAD)	of	70	dB,	meaning	it	is	not	quite	12
bits.	The	typical	SINAD	is	73	dB,	which	is	slightly	better	than	12	bits.

Bits dBFS

8 -48.2

9 -54.2

10 -60.2

11 -66.2

12 -72.2

13 -78.3

14 -84.3

Table	10.6.	ADC	resolution	in	dBFS,	assuming	full	scale	is	defined	as	peak-to-peak
voltage.

	

Aliasing	will	occur	if	|Z|	is	larger	than	the	ADC	resolution	for	any	frequency	larger	than	or
equal	to	½fs.	In	order	to	prevent	aliasing,	|Z|	must	be	less	than	the	ADC	resolution.	Our
design	constraint	will	include	a	safety	factor	of	≤	1.		Thus,	to	prevent	aliasing	we	will
make:

|Z|< 	∆z														for	all	frequencies	larger	than	or	equal	to	½fs
This	condition	usually	be	can	be	satisfied	by	increasing	the	sampling	rate	or	increasing	the
number	of	poles	in	the	analog	low	pass	filter.	We	cannot	remove	aliasing	with	a	digital
low	pass	filter,	because	once	the	high	frequency	signals	are	shifted	into	the	0	to	½fs	range,
we	will	be	unable	to	separate	the	aliased	signals	from	the	regular	ones.To	determine ,	the
sum	of	all	errors	(e.g.,	ADC,	aliasing,	and	noise)	must	be	less	than	the	desired	resolution.

10.5.	Analysis	of	Noise
The	consideration	of	noise	is	critical	for	all	instrumentation	systems.	The	success	of	an
instrument	does	depend	on	careful	transducer	design,	precision	analog	electronics,	and
clever	software	algorithms.	But	any	system	will	fail	if	the	signal	is	overwhelmed	by	noise.
Fundamental	noise	is	defined	as	an	inherent	and	nonremovable	error.		It	exists	because	of
fundamental	physical	or	statistical	uncertainties.	We	will	consider	three	types	of
fundamental	noise:

Thermal	noise,	White	noise	or	Johnson	noise

Shot	noise

1/f	noise
Although	fundamental	noise	cannot	be	eliminated,	there	are	ways	to	reduce	its	effect	on
the	measurement	objective.	In	general,	added	noise	includes	the	many	disturbing	external
factors	that	interfere	with	or	are	added	to	the	signal.	We	will	consider	three	types	of	added
noise:

Galvanic	noise

Motion	artifact

Electromagnetic	field	induction

10.5.1.	Thermal	Noise
Thermal	fluctuations	occur	in	all	materials	at	temperatures	above	absolute	zero.	Brownian
motion,	the	random	vibration	of	particles,	is	a	function	of	absolute	temperature.	As	the
particles	vibrate,	there	is	an	uncertainty	as	to	the	position	and	velocity	of	the	particles.
This	uncertainty	is	related	to	the	thermal	energy

The	absolute	temperature,	T	(K)

Boltzmann’s	constant,	k	=	1.67	10-23		joules/K

Uncertainty	in	thermal	energy	� 		1/2	kT	
	

Because	the	electrical	power	of	a	resistor	is	dissipated	as	thermal	power,	the	uncertainty	in
thermal	energy	produces	an	uncertainty	in	electrical	energy.	The	electrical	energy	of	a
resistor	depends	on

Resistance,	R	(Ω)

voltage,	V	(volts)

Time,	(sec).

Electrical	power	=	V2/R	(watts)

InteL
Highlight

InteL
Highlight

InteL
Highlight

InteL
Highlight

InteL
Highlight

InteL
Highlight

Electrical	energy	=	V2*time/R	(watt-sec)
	

By	equating	these	two	energies	we	can	derive	(hand	wave)	an	equation	for	voltage	noise
similar	to	the	empirical	findings	of	J.	B.	Johnson.	In	1928,	he	found	that	the	open	circuit
root-mean-square	(RMS)	voltage	noise	of	a	resistor	is	given	by:

VJ2		=	4	k	T	R	∆ � 																											 where															∆ � 			=			fmax-fmin
where		fmax-fmin	is	the	frequency	interval,	or	bandwidth	over	which	the	measurement	was
taken.	For	instance,	if	the	system	bandwidth	is	DC	to	1000	Hz	then	∆ � 	is	1000
cycles/sec.		Similarly,	if	the	system	is	a	bandpass	from	10	kHz	to	11	kHz,	then		∆ � 	is
also	1000	cycles/sec.	The	term	“white	noise”	comes	from	the	fact	that	thermal	noise
contains	the	superposition	of	all	frequencies	and	is	independent	of	frequency.		It	is
analogous	to	optics	where	“white	light”	is	the	superposition	of	all	wavelengths.

	 1	Hz 10	Hz 100	Hz 1	kHz 10	kHz 100	kHz 1	MHz

10	kΩ 14	nV 45	nV 142	nV 448	nV 1.4	µV 4.5	µV 14	µV

100	kΩ 45	nV 142	nV 448	nV 1.4	µV 4.5	µV 14	µV 45	µV

1	MΩ 142	nV 448	nV 1.4	µV 4.5	µV 14	µV 45	µV 142	µV

Table	10.7.	White	noise	for	resistors	at	300K=27˚C.

	

Interestingly,	only	resistive	but	not	capacitive	or	inductive	electrical	devices	exhibit
thermal	noise.	Thus	a	transducer	which	dissipates	electrical	energy	will	have	thermal
noise,	and	a	transducer	which	simply	stores	electrical	energy	will	not.

Figure	10.19	defines	root-mean-squared	as	the	square	root	of	the	time	average	of	the
voltage	squared.	RMS	noise	is	proportional	to	noise	power.	The	crest	factor	is	the	ratio	of
peak	value	divided	by	RMS.	The	peak	value	is	1/2	of	the	peak	to	peak	amplitude,	and	can
be	easily	measured	from	recorded	data.	From	Table	10.8,	we	see	that	the	crest	factor	is
about	4.	The	crest	factor	can	be	defined	for	other	types	of	noise.

	

Percent	of	the	time	the	peak
is	exceeded

Crest	factor
(peak/RMS)

1.0 2.6

0.1 3.3

0.01 3.9

InteL
Highlight

InteL
Highlight

0.001 4.4

0.0001 4.9

Table	10.8.	Crest	factor	for	thermal	noise.

	

Figure	10.19.	Root-mean-squared	(RMS)	is	a	time	average	of	the	voltage
squared.
Observation:	When	measured	with	a	spectrum	analyzer,	the	response	is	uniform
amplitude	at	all	frequencies,	which	is	why	it	is	classified	as	white	noise.

	

10.5.2.	Shot	Noise
Shot	noise	arises	from	the	statistical	uncertainty	of	counting	discrete	events.	Thermal
cameras,	radioactive	detectors,	photomultipliers,	and	O2	electrodes	count	individual
photons,	gamma	rays,	electrons,	and	O2	particles	respectively	as	they	impinge	upon	the
transducer.		Let	dn/dt	be	the	count	rate	of	the	transducer.	Let	t	be	the	measurement	interval
or	count	time.	The	average	count	is

n		=		dn/dt		•	t

	

On	the	other	hand,	the	statistical	uncertainty	of	counting	random	events	is	√n.	Thus	the
shot	noise	is

shot	noise	=	

	

The	signal	to	noise	ratio	(S/N)	is

S/N		=	 	

The	solutions	are	to	maximize	the	count	rate	(by	moving	closer	or	increasing	the	source)
and	to	increase	the	count	time.		There	is	a	clear	tradeoff	between	accuracy	and
measurement	time.

	

InteL
Highlight

10.5.3.	1/f,	Flicker,	or	Pink	Noise
Pink	noise	is	somewhat	mysterious.	The	origin	of	1/f	noise	lacks	rigorous	theory.	It	is
present	in	devices	that	have	connections	between	conductors.	Garrett	describes	it	as	a
fluctuating	conductivity.	It	is	of	particular	interest	to		low	bandwidth	applications	due	to
the	1/f	behavior.	Wire	wound	resistors	do	not	have	1/f	noise,	but	semiconductors	(like
MOSFETs)and	carbon	resistors	do.	One	of	the	confusing	aspects	of	1/f	noise	is	its
behavior	as	the	frequency	approaches	0	Hz.	The	noise	at	DC	is	not	infinite	because
although	1/f	is	infinite	at	DC,	∆ � 	is	zero.	Garrett	gives	an	equation	to	calculate	the	1/f
noise	of	a	carbon	resistor.

	

where														Vc														is	the	1/f	voltage	noise	in	volts

f														is	the	frequency	in	Hz

R														is	the	resistance	in	Ω

I														is	the	average	DC	current	in	amps

∆ 															is	the	system	bandwidth	in	Hz

	

f	(Hz)			 Vc		(µV)

1 316

10 100

		100 		32

1000 		10

Table	10.9.		Vc	versus	frequency	for	R=10	kΩ,	I=1	mA,	∆ � 		=	1	kHz.		

10.5.4.	Galvanic	Noise
The	contact	between	dissimilar	metals	will	induce	a	voltage,	due	to	the	electrochemistry	at
the	metal-metal	interface.	Voltages	will	also	develop	when	a	conductive	liquid	contacts	a
metal.	This	problem	usually	arises	as	a	metal	surface	within	a	connector	oxidizes
(corrosion	due	to	moisture).	The	materials	least	susceptible	to	corrosion	are	silver,
graphite,	gold	and	platinum.	For	this	reason,	we	use	gold-plated	connector	pins	and
sockets.	

10.5.5.	Motion	Artifact

InteL
Highlight

InteL
Highlight

Motion	can	introduce	errors	in	many	ways.	According	to	Faraday’s	Law,	a	conducting
wire	that	moves	in	a	magnetic	field	will	induce	an	EMF.	This	voltage	error	is	proportional
to	the	strength	of	the	magnetic	field,	the	length	of	the	wire	that	is	moving,	the	velocity	of
the	motion,	and	the	angle	between	the	velocity	and	the	field.	Another	problem	occurring
with	moving	cables	is	the	connector	impedance	may	change	or	disconnect.	Acceleration	of
the	transducer	will	induce	forces	inside	the	device	often	affecting	its	response.

	

10.5.6.	Electromagnetic	field	induction
Usually,	the	largest	source	of	noise	is	caused	by	electromagnetic	field	induction.
According	to	Faraday’s	Law,	changing	magnetic	fields	can	induce	a	voltage	into	our
circuits.	The	changing	magnetic	field	must	pass	through	a	wire	loop,	drawn	as	the	shaded
area	in	Figure	10.20.	This	voltage	noise	(Vm)	is	proportional	to,	the	strength	of	the
magnetic	field,	B	(wb/m2),	the	area	of	the	loop	S(m2),		and	a	geometric	factor,	K
(volts/wb.)	The	drawing	on	the	left	of	Figure	10.20	illustrates	the	physical	situation
causing	magnetic	field	pickup.	A	typical	situation	causing	magnetic	field	noise	occurs
when	AC	power	being	delivered	to	a	low-impedance	load,	such	as	a	motor.	The	voltage	V1
is	the	120	VAC	60	Hz	power	line,	and	Vs	is	a	signal	in	our	instrument.	The	alternating
current	(I1)	will	create	a	magnetic	field,	B.	This	magnetic	field	(B)	also	alternates	as	it
flows	through	the	loop	area	(S)	formed	by	the	wires	in	our	circuit	(such	as	the	lead	wires
between	the	transducer	and	the	instrument	box.)		This	will	induce	a	current	(Im)	along	the
wire,	causing	a	voltage	error	(Vm).		We	can	test	for	the	presence	of	magnetic	field	pickup
by	deliberately	changing	the	loop	area	and	observing	the	magnitude	of	the	noise	as	a
function	of	the	loop	area.	The	drawing	on	the	right	of	Figure	10.20	illustrates	an
equivalent	circuit	we	can	use	to	model	magnetic	field	pickup.	Basically,	we	can	model
magnetic	field	induced	noise	as	a	mutual	inductance	between	an	AC	current	flow	and	our
electronics.

Figure	10.20.	Magnetic	field	noise	pickup	can	be	modeled	as	a
transformer.

InteL
Highlight

InteL
Highlight

The	second	way	EM	fields	can	couple	into	our	circuits	is	via	the	electric	field.	Changing
electric	fields	will	capacitively	couple	into	the	lead	wires.	The	drawing	on	the	left	of
Figure	10.21	illustrates	the	physical	situation	causing	electric	field	pickup.	The	alternating
voltage	(V1)	will	create	an	electric	field.	This	electric	field	also	traverses	near	the	wires	in
our	circuit	(such	as	the	lead	wires	between	the	transducer	and	the	instrument	box.)		This
will	induce	a	displacement	current	(Id)	along	the	wire.		We	can	test	for	the	presence	of
electric	field	pickup	by	placing	a	shield	separating	our	electronics	from	the	source	of	the
field	and	observing	the	magnitude	of	the	noise.	The	drawing	on	the	right	of	Figure	10.21
illustrates	an	equivalent	circuit	we	can	use	to	model	electric	field	pickup.	Basically,	we
can	model	electric	field	induced	noise	as	a	stray	capacitance	between	an	AC	voltage	and
our	electronics.

	

Figure	10.21.	Electric	field	noise	pickup	can	be	modeled	as	a	stray
capacitance.
Observation:	Sometimes	the	EM	fields	originate	from	inside	the	instrument	box,	such	as
high	frequency	digital	clocks	and	switching	power	supplies.

10.5.7.	Techniques	to	Measure	Noise
There	are	two	objectives	when	measuring	noise.	The	first	objective	is	to	classify	the	type
of	noise.	In	particular,	we	wish	to	know	if	the	noise	is	broadband	(i.e.,	all	frequencies,	like
white	noise)	or	does	the	noise	certain	specific	frequencies	(e.g.,	60,	120,	180	Hz,…	like	60
Hz	EM	field	pickup).	The	type	of	noise	is	of	great	importance	when	determining	where
the	noise	is	coming	from.	Classifying	the	noise	type	is	essential	in	developing	a	strategy
for	reducing	the	effect	of	the	noise.	The	second	objective	is	to	quantify	the	magnitude	of
the	noise.	Quantifying	the	noise	is	helpful	in	determining	if	a	change	to	the	system	design
has	increased	or	decreased	the	noise.		The	measurement	resolution	of	many	data
acquisition	systems	is	limited	by	noise	rather	than	by	ADC	precision	and	software
algorithms.	For	these	systems,	quantitative	noise	measurements	are	an	important
performance	parameter	of	the	instrument.

InteL
Highlight

InteL
Highlight

Digital	voltmeter	(DVM)	in	AC	mode.	Root-mean-squared	(RMS)	is	defined	the	square
root	of	the	time-average	of	the	voltage	squared	(Figure	10.19).	If	you	remove	the	input
signal,	the	output	of	the	system	contains	just	noise.	Because	the	resistance	load	is	usually
constant,	squaring	the	voltage	results	in	a	signal	proportional	to	noise	power.	The
averaging	calculation	gives	a	measure	related	to	average	power,	and	the	square	root
produces	a	result	with	units	in	volts.	RMS	noise	of	a	signal	can	be	measured	with	a	DVM
using	AC	mode.		Most	DVMs	in	AC	mode	perform	a	direct	measurement	of	RMS;	hence
this	method	is	the	most	precise.	For	example,	a	3½	digit	DVM	has	a	precision	of	about	11
bits.	A	calibrated	voltmeter	in	AC	mode	will	be	the	most	accurate	quantitative	method	to
measure	noise.

	

Analog	oscilloscope.	The	second	method	is	to	connect	the	signal	to	an	oscilloscope	and
measure	the	peak-to-peak	noise	amplitude,	as	illustrated	in	Figure	10.22.	The	crest	factor
is	the	ratio	of	peak	value	divided	by	RMS.		The	peak	value	is	½	of	the	peak-to-peak
amplitude,	and	can	be	estimated	from	the	scope	tracing.	From	Table	10.8,	we	see	for	white
noise	that	the	crest	factor	is	about	4,	so	we	can	approximate	the	RMS	noise	amplitude	by
dividing	the	peak-to-peak	noise	by	8.	Because	the	quantitative	assessment	of	noise	with	a
scope	requires	visual	observation,	this	method	can	only	be	used	to	approximate	the
quantitative	level	of	noise.	One	the	other	hand,	oscilloscope	have	very	high	bandwidth,
and	therefore	they	are	good	for	classifying	high	frequency	noise.	White	noise	and	1/f	noise
look	random,	like	left	graph	in	Figure	10.22.	For	white	and	1/f	noise,	the	scope	trigger	will
not	be	able	to	capture	a	repeating	waveform.	Noise	from	EM	fields	on	the	other	hand	are
repeating	and	can	be	triggered	by	the	scope.	In	fact	the	line-trigger	setting	on	the	scope
can	be	used	specifically	to	see	if	the	noise	is	correlated	to	the	60	Hz	120VAC	power	line.
In	particular,	60	Hz	noise	will	trigger	when	using	the	line-trigger	setting	of	the	scope.	The
shape	of	the	noise	varies	depending	on	the	relative	strengths	of	the	fundamental	and
harmonic	frequencies.	The	graph	on	the	right	is	a	periodic	wave	with	a	fundamental	plus	a
50%	strength	first	harmonic.

Figure	10.22.	Quantifying	noise	my	measuring	peak-to-peak	amplitude.
	

InteL
Highlight

InteL
Highlight

Figure	10.23.	Classifying	noise	my	measuring	the	amplitude	versus
frequency	with	a	spectrum	analyzer.
Spectrum	analyzer.	The	third	method	uses	a	spectrum	analyzer,	which	combines	a
computer,	high-speed	ADC	sampling	and	the	Fast-Fourier-Transform	(FFT),	as	illustrated
in	Figure	10.23.		Being	able	to	see	the	noise	in	the	frequency	domain	is	particularly	useful
to	classify	the	type	of	noise.	Both	1/f	and	white	noise	components	exist	in	a	typical	analog
amplifier,	but	the	amplitude	is	usually	small	compared	to	EM	field	noise.		The	1/f	and
white	noise	levels	occurring	in	electronics	can	be	reduced	by	dropping	the	temperature	or
spending	more	money	buying	a	better	components.	Typically,	we	see	the	fundamental	and
multiple	harmonics	for	EM	field	noise.	For	example,	60	Hz	noise	also	includes
components	at	120,	180,	240	Hz	etc.

10.5.8.	Techniques	to	Reduce	Noise
It	is	much	simpler	to	reduce	noise	early	in	the	design	process.	Conversely,	it	can	be	quite
expensive	to	eliminate	noise	after	an	instrument	has	been	built.	Therefore,	it	is	important
to	consider	noise	at	every	stage	of	the	development	cycle.	We	can	divide	noise	reduction
techniques	into	three	categories.	The	first	category	involves	reducing	noise	from	the
source.	You	can	enclose	noisy	sources	in	a	grounded	metal	box.	If	a	cable	contains	a	high
frequency	noise	signal,	then	that	signal	could	be	filtered.	Magnetic	and	electric	field
strength	depends	on	dI/dt	and	dV/dt.	So	whenever	possible,	you	should	limit	the	rise/fall
times	of	noisy	signals,	as	shown	in	Figure	10.24.	For	example,	the	square	wave	on	the	left
will	radiate	more	noise	than	the	smooth	signal	on	the	right.	When	operating	a	GPIO	output
pin	in	8mA	drive	mode,	we	can	set	the	corresponding	bit	in	the	SLR	register	to	limit	the
slew	rate	on	the	output.

Figure	10.24.	Limiting	rise/fall	times	can	reduce	radiated	noise.

InteL
Highlight

InteL
Highlight

Motors	have	coils	to	create	electromagnets,	and	noise	can	be	reduced	by	limiting	the	dI/dt
in	the	coil.	Cables	with	noisy	signals	should	be	twisted	together,	so	the	radiated	magnetic
fields	will	cancel.	These	cables	should	also	be	shielded	to	reduce	electric	field	radiation,
and	this	shield	should	be	grounded	on	both	sides.

The	second	category	of	noise	reduction	involves	limiting	the	coupling	between	the	noise
source	and	your	instrument.	Whenever	possible	maximize	the	distance	between	the	noisy
source	and	the	delicate	electronics.	All	transducer	cables	should	use	twisted	wire,	as
shown	in	Figure	10.25.

Figure	10.25.	Proper	cabling	can	reduce	noise	when	connecting	a	remote
transducer	or	when	connecting	two	instruments.
For	situations	where	a	remote	sensor	is	attached	to	an	instrument,	the	ground	shield	should
be	connected	only	on	the	instrument	side.		If	the	cable	is	connected	between	two
instruments,	then	connect	the	ground	shield	on	both	instruments.		For	high	frequency
signals	coaxial	cable	is	required.	The	shield	should	be	electrically	insulated	to	eliminate
direct	electrical	connection	to	other	devices.	If	noisy	signals	must	exist	in	the	same	cable
as	low-level	signals,	then	separate	the	two	with	a	ground	wire	in	between.		Whenever
possible	reduce	the	length	of	a	cable.	Similarly	minimize	the	length	of	leads	that	extend
beyond	the	ground	shield.		Place	the	delicate	electronics	in	a	grounded	case.	You	can	use
optical	or	transformer	isolation	circuits	to	separate	the	noisy	ground	from	the	ground	of
the	delicate	electronics.

InteL
Highlight

InteL
Highlight

The	last	category	involves	techniques	that	reduce	noise	at	the	receiver.	The	bandwidth	of
the	system	should	be	as	small	as	possible.	In	particular,	you	can	use	an	analog	low	pass
filter	to	reduce	the	bandwidth,	which	will	also	reduce	the	noise.	You	can	add	frequency-
reject	digital	filters	to	reduce	specific	noise	frequencies	like	60,	120,	180	Hz.		You	should
use	power	supply	decoupling	capacitors	on	each	chip	to	reduce	the	noise	coupling	from
the	power	supply	to	the	electronics.	Figure	10.26	illustrates	how	EM	field	noise	will	affect
our	instrument.	If	the	cable	has	twisted	wires	then	Id1	should	equal	Id2.	The	input
impedance	of	the	amplifier	is	usually	much	larger	than	the	source	impedance	of	the	signal.
Thus,	V1-V2	=	Rs1	Id1	-	Rs2	Id2.			

	

Figure	10.26.	Capacitively	coupled	displacement	currents.
Some	capacitors	have	a	foil	wrap	surrounding	its	cylindrical	shape.	This	foil	should	be
grounded.	For	more	information	about	noise	refer	to	Henry	Ott,	Noise	Reduction
Techniques	in	Electronic	Systems,	Wiley,	1988	or	Ralph	Morrison,	Grounding	and
Shielding	Techniques,	Wiley,	1998.

InteL
Highlight

10.6.	Data	Acquisition	Case	Studies
We	introduced	the	design	process	back	in	Chapter	1.	In	this	section,	we	will	present	the
designs	of	four	data	acquisition	systems.	The	first	example	is	a	quantitative	measurement
of	temperature,	the	second	example	is	a	qualitative	measurement	of	electrocardiogram
signals,	and	the	third	example	compares	measurements	made	with	the	ADC	versus	timing
measurements	using	input	capture.	The	last	example	inputs	from	a	microphone	and
outputs	to	a	speaker.	In	the	analysis	phase,	we	determine	the	requirements	and	constraints
for	our	proposed	system.	In	the	high-level	design	phase,	we	define	our	input/output,	break
the	system	in	modules,	and	show	the	interconnection	using	data	flow	graphs.	In	the
engineering	design	phase	we	design	the	hardware/software	subcomponents	using
techniques	such	as	simulation,	mechanical	mockups,	and	call	graphs.	We	define	specific
I/O	signals,	analog	circuits,	power	sources,	noise	filters,	software	algorithms,	data
structures,	and	testing	procedures.	During	the	implementation	and	testing	phases	we
build	and	test	the	modules.	Modularity	allows	for	concurrent	development.

	
Example	10.1.	Design	an	instrument	that	measures	temperature	with	a	range	of	30	to
40˚C,	and	a	resolution	is	0.01˚C.	The	frequency	range	of	interest	is	0	to	20	Hz.
	

Solution:	The	first	decision	to	make	is	the	choice	of	transducer.	The	RTD	has	a	linear
resistance	versus	temperature	response.	RTDs	are	expensive,	but	a	good	choice	for	ease	of
calibration,	interchangeability,	and	accuracy.	Thermocouples	are	inexpensive	and	a	good
choice	for	large	temperature	ranges,	harsh	measurement	conditions,	fast	response	time,
interchangeability,	and	large	temperature	ranges.	Interchangeability	means	we	can	buy
multiple	transducers	and	they	will	all	have	similar	temperature	curves.	Thermistors	will	be
used	in	this	design	because	they	are	inexpensive	and	have	better	sensitivity	than	RTDs	and
thermocouples.	A	thermometer	built	using	a	thermistor	will	be	harder	to	mass-produce
because	each	transducer	must	be	separately	calibrated	in	order	to	create	an	accurate
measurement.		From	a	first	glance,	we	might	expect	a	10-bit	ADC	will	generate	a
temperature	resolution	of	0.01	˚C.	Recall	that	range	equals	resolution	times	precision.	On
the	other	hand,	because	the	thermistor	is	nonlinear,	we	will	need	to	verify	the	resolution
specification	is	met.	Figure	10.27	shows	the	block	diagram	of	the	instrument,	which	also
illustrates	the	data	flow	in	our	system.
	

Figure	10.27.	Data	flow	graph	of	a	temperature	measurement	system	using
a	thermistor.

InteL
Highlight

	

The	resistance	bridge	is	a	classic	means	to	convert	resistance	to	voltage.	Table	10.10	is
used	during	the	design	phase	to	show	the	signal	values	as	they	transverse	the	electronics.	
A	+2.50	V	reference	drives	the	bridge.	The	value	of	resistor	R1	is	chosen	to	eliminate
errors	due	to	self-heating	the	thermistor	(100	kΩ).	The	first	two	columns	of	Table	10.10
give	the	thermistor	calibration.	Since	we	will	be	using	rail-to-rail	electronics,	we	need	to
have	all	voltages	between	the	0	to	+3.3	V	range.	We	can	make	the	bridge	output	(V1-V2)
positive	by	selecting	the	value	of	resistor	R2	less	than	the	thermistor	resistance	at	the
maximum	temperature	(18.3	kΩ).	For	this	thermistor,	R2	is	selected	at	18k � 	because	it	is
a	standard	resistor	less	than	18.3	kΩ.	Next,	we	choose	the	gain	of	the	amplifier	to	map	the
minimum	temperature	into	the	+3V	limit	of	the	ADC	(17.5).	Using	an	INA122	or	AD627,
a	gain	resistor	of	16	k � 	creates	the	desired	gain	of	17.5.	Since	the	thermistor	is
nonlinear,	we	will	tabulate	explicit	values	to	determine	the	ADC	precision	required	(Table
10.10).	There	are	two	possible	approaches	to	the	design	of	the	amplifier.	If	we	use	an
instrumentation	amp,	the	input	impedance	will	be	large	enough	not	to	affect	the	bridge.	If
we	use	a	single	op	amp	differential	amp,	then	the	amplifier	will	load	the	bridge	and	affect
the	bridge	response.	In	this	system,	the	instrumentation	amp	will	be	used.	The	first	two
columns	of	Table	10.10	show	the	resistance	temperature	calibration	of	the	thermistor.	The
third	column,	V1,	is	the	voltage	across	the	thermistor.	The	fourth	column	is	the	output	of
the	bridge,	V1-V2.	Vout,	the	output	of	the	instrumentation	amp,	is	shown	in	the	fifth	column.
The	ADC	value	gives	the	digital	output	of	a	10-bit	converter,	and	the	last	column	will	be
calculated	by	our	software	as	a	decimal	fixed-point	with	resolution	0.01	˚C.	We	use	this
table	in	two	ways.	Initially,	we	use	theoretical	values	to	design	the	electronics	and
software.	During	the	implementation	phase,	we	substitute	resistors	with	standard	values	to
bring	down	the	cost.	During	the	testing	phase,	we	measure	actual	values	to	verify	proper
operation.	Measured	values	for	the	last	two	columns	will	be	stored	in	software	as	a
calibration	table.	To	measure	temperature,	the	software	measures	the	ADC	value,	and	then
uses	a	table	look-up	and	linear	interpolation	to	get	the	decimal	fixed-point	temperature
(last	column).	The	fixed-point	number	is	output	to	an	OLED	display.
	

Observation:	There	is	an	Excel	worksheet	named	Therm10.xls	that	was	used	to	create
this	design.	You	can	find	it	on	the	book	web	site.
	

T	(°C) Rt	(kΩ) V1	(V) V1-V2	(V) Vout	(V) ADC T	(0.01˚C)

30.0 28.241 0.551 0.169 2.961 1009 3000

32.0 25.837 0.513 0.132 2.309 787 3200

34.0 23.665 0.478 0.097 1.698 579 3400

36.0 21.700 0.446 0.064 1.127 384 3600

38.0 19.921 0.415 0.034 0.594 202 3800

40.0 18.307 0.387 0.005 0.096 32 4000

Table	10.10.		Signals	as	they	pass	through	the	temperature	data	acquisition	system.		
	

In	order	to	prevent	noise	in	the	ADC	samples,	the	noise	must	be	less	than	the	resolution.
The	resolution	of	V1-V2	is	its	range	(0.169V)	divided	by	its	precision	(1024),	which	is
about	0.1	mV.	Again	a	safety	factor	of	1/2	is	included.	Thus	in	the	frequency	range	0	to	20
Hz,	the	maximum	allowable	noise	referred	to	the	input	of	the	differential	amp	should	be
	

amplifier	noise	≤	=	50	V
	

A	two-pole	low	pass	analog	filter	(Figure	8.25)	is	used	to	pass	the	temperature	signal
having	frequencies	from	0	to	20	Hz,	reject	noise	having	frequencies	above	½fs.	In	order	to
prevent	aliasing,	Z	must	be	less	than	the	ADC	resolution	for	all	frequencies	larger	than	or
equal	to	½fs.		As	an	extra	measure	of	safety,	we	make	the	amplitude	less	than	0.5	∆z	for
frequencies	above	½fs	.Thus,
	

|	Z	|	<	0.5	∆z	=	3/2048		≈	1	mV
	

The	effective	output	impedance	of	the	bridge	is	18k � .	The	input	impedance	of	the
differential	amp	must	be	high	enough	to	not	affect	the	ADC	conversion.
	

Zin	>	18k � 	•	2n+1	=	36M

Figure	10.28.	Amplifier	and	low	pass	filter.
	

To	determine	the	resolution	we	work	backwards,	as	illustrated	in	Table	10.11.	The	basic
approach	to	verifying	the	temperature	resolution	is	to	work	backwards	through	the	circuit,
showing	that	a	change	in	ADC	value	of	1	corresponds	to	a	temperature	change	of	0.01	˚C.
	

ADC V3	(V) V1-V2	(V) V1	(V) RT	(kΩ) T	(°C) ∆T	(˚C)

1023 2.997 0.1713 0.5526 28.3774 29.892 	

1022 2.994 0.1711 0.5524 28.3664 29.901 0.0087

512 1.500 0.0857 0.4671 22.9752 34.679 	

511 1.497 0.0855 0.4669 22.9651 34.690 0.0102

1 0.003 0.0002 0.3815 18.0093 40.391 	

0 0.000 0.0000 0.3814 18.0000 40.404 0.0124

Table	10.11.		Equations	calculated	in	reverse	to	show	that	the	resolution	meets	the
design	specification.		
	

There	are	three	possible	approaches	to	converting	ADC	sample	to	temperature	(the	last
two	columns	of	Table	10.10).	First,	we	could	fit	the	transfer	function	to	a	polynomial
equation,	and	save	the	coefficients	of	that	equation	as	the	calibration	file.	This	approach
performs	well	for	simple	situations.	A	plot	of	this	data	is	shown	as	Figure	10.29.	Second,
we	could	calculate	the	temperature	output	for	each	possible	ADC	and	save	it	in	a	1024-
entry	lookup	table.	This	conversion	is	fast	because	we	just	need	to	use	the	ADC	data	to
index	into	the	big	table.	This	method	is	fast,	but	requires	a	lot	of	ROM.	The	third
approach,	shown	in	Program	10.1,	uses	a	table	of	paired	(ADC,T)	data.	These	points	are
determined	from	experimental	calibration.	To	find	the	corresponding	temperature	for	a
given	ADC	value,	the	program	first	searches	the	table	for	a	pair	of	ADC-values	that
surround	the	input.	Extra	entries	were	added	at	the	beginning	and	end	of	the	table	to
guarantee	the	search	step	will	always	be	successful.	Then,	it	uses	linear	interpolation	to
calculate	the	temperature,	given	the	53	entries	in	the	table	and	the	ADC	input.	The	output
result	is	a	fixed-point	number	with	a	resolution	of		0.01	˚C.

	

Typically,	the	resolution	of	this	thermometer	will	depend	on	analog	noise	rather	than	ADC
resolution.	The	accuracy	will	depend	on	both	resolution	and	calibration	drift.	Drift	is
defined	as	a	change	over	time	of	the	data	in	Figure	10.29	and	the	numbers	in	Program
10.1.

InteL
Highlight

InteL
Highlight

InteL
Highlight

Figure	10.29.	Transfer	function	between	sampled	10-bit	ADC	and	fixed-
point	temperature.
	

The	calibration	data	in ADCdata and Tdata 	are	stored	in	EEPROM.	In	general,	we
perform	time-critical	tasks	like	ADC	sampling	in	the	background,	and	noncritical
functions	like	conversion	to	temperature	and	OLED	output	in	the	foreground.	Therefore,
the	interrupt	service	routine	passes	the	measured	temperature	to	the	foreground	through	a
FIFO	queue,	and	the	main	program	has	the	responsibility	of	outputting	the	result	to	the
OLED.	The	completion	of	this	system	is	left	as	a	laboratory	exercise.
	

//	table	of	multiple	unsigned	(x,y),	piece-wise	linear	function

uint16_t	const	ADCdata[53]={0,32,49,65,82,99,116,133,150,167,184,

202,220,237,255,273,291,310,328,346,365,

384,403,422,441,460,480,499,519,539,559,

579,599,619,640,660,681,702,723,744,765,

787,808,830,852,874,896,918,941,964,986,1009,1024

};

uint16_t	const	Tdata[53]={4000,4000,3980,3960,3940,3920,3900,3880,

3860,3840,3820,3800,3780,3760,3740,3720,3700,3680,3660,3640,3620,

3600,3580,3560,3540,3520,3500,3480,3460,3440,3420,

3400,3380,3360,3340,3320,3300,3280,3260,3240,3220,

3200,3180,3160,3140,3120,3100,3080,3060,3040,3020,3000,3000

};

Program	10.1.		Calibration	data	for	thermistor.	

	
Checkpoint	10.3:	What	would	be	the	temperature	resolution	if	the	ADC	precision	were
decreased	from	10	to	8	bits?	

To	measure	temperature	resolution,	we	use	the	student’s	t-test	to	determine	if	the	system	is
able	to	detect	the	change.	To	use	the	student’s	t	test	we	need	to	make	the	following
assumptions:

1)	Errors	in	one	data	set	are	independent,	not	correlated	to	errors	in	the	other	data	set;

2)	Errors	in	each	data	sample	are	independent,	not	correlated	to	errors	within	that	set;

3)	Errors	are	normally	distributed;

4)	Variance	is	unknown;

5)	Variances	in	the	two	sets	are	equal.

If	a	random	variable,	X,	is	normally	distributed	with	a	mean	is � 	and	a	standard	deviation
of	σ,	then	the	probability	that	it	falls	between	±1	σ	is	68	%.	I.e.,

P(� -σ	<	X< � +σ)	=	0.68

Similarly,

P(� -1.96σ	<	X< � +1.96σ)	=	0.95

P(� -2σ						<	X< � +2σ)						=	0.954

P(� -2.58σ	<	X< � +2.58σ)	=	0.99

P(� -3σ						<	X	<	+3σ)						=	0.9997

The	square	of	the	standard	deviation	is	called	variance,	σ2.	In	most	situations,	we	do	not
know	the	mean	and	standard	deviation,	so	we	collect	data	and	estimate	them.	In	particular,
we	take	multiple	measurements	assuming	the	temperature	is	constant.	Let	Xi	be	repeated
measurements	under	the	same	conditions,	and	N	is	the	number	of	measurements	(e.g.,	N	=
10).

																												

The	N-1	term	is	used	in	the	calculation	of	S	because	there	are	N-1	degrees	of	freedom.
These	expressions	are	unbiased	estimates	of � 	and	σ,	meaning	as	the	sample	size
increases	the	estimates	approach	truth.	Formally,	we	say	the	expected	value	of	 is � ,	or
E()	=	.	Similarly,	the	expected	value	of	S2	is	σ2,	or	E(S2)	=  σ2.	For	example,	we	collect
two	sets	of	data	(e.g.,	10	measurements	in	each	set,	N	=	10),	and	we	want	to	know	if	the
means	of	two	sample	sets	are	different.	Consider	the	measurements	in	the	two	data	sets	as
the	sum	of	the	true	value	plus	an	error:

X01= � 0	+	e0i
Xi1= � 1	+	e1i
Assumption	1	states	that	e0i	are	not	correlated	to	e1i.	Assumption	2	states	that	e0i	are	not
correlated	to	e0j	and	e1i	are	not	correlated	to	e1j.	Thermal	noise	will	satisfy	these
assumptions.	We	employ	a	test	statistic	to	test	the	hypothesis	H0:	µ0=µ1.	First,	we	estimate
the	means	and	variances	of	the	data	(assuming	equal	sized	samples)

														

																												

	

From	these,	we	calculate	the	test	statistic	t:

	

The	two	sets	of	data,	together,	have	2N-2	degrees	of	freedom.	The	student’s	t	table,	shown
as	Table	10.12,	has	two	dimensions.	In	the	vertical	direction,	we	specify	the	degrees	of
freedom,	df.	For	example,	if	there	are	10	data	points	in	each	data	set,	then	df	equals	18.	In
the	horizontal	direction	we	select	the	probability	of	being	correct.	For	example,	if	we	wish
to	be	99%	sure	of	the	test,	then	we	select	the	99%	column.	Selecting	the	row	and	the
column	allows	us	to	pick	a	number	threshold.	For	example,	the	number	in	the	df=18	row,
confidence=99%	column	is	2.878.

This	means	if	H0	is	true,	then	the	probability	of	t	<	-2.878	=	0.005		and	the	probability	of	t
>	2.878	=	0.005.

	

Therefore,	the	probability	of		-2.878	<	t	<	2.878	=	0.99		(confidence	interval	of
99%)													

	

If	we	collect	data	and	calculate	t	such	that	the	test	statistic	t	is	greater	than	2.878	or	less
than	‑2.878,	then	we	claim	“we	reject	the	hypothesis	H0”.		If	the	test	statistic	t	is	between
-2.878	and	2.878	we	do	not	claim	the	hypothesis	to	be	true.	In	other	words	we	have	not
proven	the	means	to	be	equal.	Rather,	we	say	“we	do	not	reject	the	hypothesis	H0”.

	

confidence 80% 90% 98% 99% 99.8% 99.9%

df										
p=

0.10 0.05 0.01 0.005 0.001 0.0005

8 1.397 1.860 2.896 3.355 4.501 5.041

9 1.383 1.833 2.821 3.250 4.297 4.781

10 1.372 1.812 2.764 3.169 4.144 4.587

11 1.363 1.796 2.718 3.106 4.025 4.437

12 1.356 1.782 2.681 3.055 3.930 4.318

13 1.350 1.771 2.650 3.012 3.852 4.221

14 1.345 1.761 2.624 2.977 3.787 4.140

15 1.341 1.753 2.602 2.947 3.733 4.073

16 1.337 1.746 2.583 2.921 3.686 4.015

17 1.333 1.740 2.567 2.898 3.646 3.965

18 1.330 1.734 2.552 2.878 3.610 3.922

19 1.328 1.729 2.539 2.861 3.579 3.883

20 1.325 1.725 2.528 2.845 3.552 3.850

21 1.323 1.721 2.518 2.831 3.527 3.819

22 1.321 1.717 2.508 2.819 3.505 3.792

23 1.319 1.714 2.500 2.807 3.485 3.767

24 1.318 1.711 2.492 2.797 3.467 3.745

25 1.316 1.708 2.485 2.787 3.450 3.725

26 1.315 1.706 2.479 2.779 3.435 3.707

27 1.314 1.703 2.473 2.771 3.421 3.690

28 1.313 1.701 2.467 2.763 3.408 3.674

29 1.311 1.699 2.462 2.756 3.396 3.659

30 1.310 1.697 2.457 2.750 3.385 3.646

40 1.303 1.684 2.423 2.704 3.307 3.551

50 1.299 1.676 2.403 2.678 3.261 3.496

60 1.296 1.671 2.390 2.660 3.232 3.460

80 1.292 1.664 2.374 2.639 3.195 3.416

100 1.290 1.660 2.364 2.626 3.174 3.390

120 1.289 1.658 2.358 2.617 3.160 3.373

∞ 1.282 1.645 2.326 2.576 3.090 3.291

Table	10.12.	Student’s	t	distribution	table.

	

Figure	10.30.	Resolution	means	if	the	temperature	increases	by�T,	the
system	will	probably	notice.
	

	
Example	10.2.	Design	a	system	to	measure	the	electrical	activity	in	the	heart.	In
particular,	we	wish	to	measure	heart	rate.
	

Solution:	Biopotentials	are	important	measurements	in	many	research	and	clinical
situations.	Biopotentials	are	electric	voltages	produced	by	individual	cells	and	can	be
measured	on	the	skin	surface.	The	status	of	the	heart,	brain,	muscles,	and	nerves	can	be
studied	by	measuring	biopotentials.	Electrodes,	which	are	attached	to	the	skin,	interface
the	machine	to	the	body.	Electronic	instrumentation	amplifies	and	filters	the	signal.	For
example,	Figure	10.31	shows	a	normal	Lead	II	electrocardiogram,	or	EKG,	which	is
measured	with	the	positive	terminal	attached	to	the	left	arm,	the	negative	terminal	attached
to	the	right	arm,	and	ground	connected	to	the	right	leg.	Each	wave	represents	one
heartbeat,	and	the	shape	and	rhythm	of	this	wave	contains	a	lot	of	information	about	the
health	and	status	of	the	heart.
	

Figure	10.31.	Normal	II-lead	electrocardiogram.
	

There	are	two	types	of	electrodes	used	to	record	biopotentials.	Nonpolarizable	electrodes
like	silver/silver	chloride	involve	the	following	chemical	reaction	in	the	electrode	at	the
electrode/tissue	interface:
	

AgCl	+	e-		↔		Ag	+	Cl-

	

A	nonpolarizable	electrode	has	a	low	electrical	impedance	because	electrons	can	freely
pass	the	electrode/tissue	interface.	In	the	electrode,	current	flows	by	moving	electrons,	but
in	the	tissue	current	flows	by	physical	motion	of	charged	ions	(e.g.,	Na+,	K+	and	Cl-).	A
silver/silver	chloride	electrode	does	include	a	half-cell	potential	of	0.223	V,	but	since

biopotentials	are	always	measured	with	two	electrodes,	these	half-cell	potentials	cancel.
On	the	other	hand,	if	you	tried	to	use	these	electrodes	to	measure	DC	voltages,	then	the
above	chemical	reaction	would	saturate	and	fail.	Fortunately,	biopotentials	measured
produced	by	muscles	and	nerves	are	AC	only	and	have	no	DC	component.

Polarizable	electrodes,	made	from	metals	like	platinum	gold	or	silver,	have	a	high
electrical	impedance	because	electrons	cannot	freely	pass	the	electrode/tissue	interface.
Charge	can	develop	at	the	electrode/tissue	interface	effectively	creating	a	capacitive
barrier.	Displacement	current	can	flow	across	the	capacitor,	allowing	the	AC	biopotentials
to	be	measured	by	the	electronics.		The	metallic	electrodes	also	include	a	half-cell
potential,	but	again,	these	potentials	will	cancel.
	

Ag+	+	e-		↔		Ag
	

The	graphical	display	of	EKG	versus	time	is	an	example	of	a	qualitative	data	acquisition
system.	The	measurement	of	heart	rate	is	quantitative.	The	parameters	of	an	EKG
amplifier	include:	high	input	impedance	(larger	than	1	M �),	high	gain,	0.05	to	100	Hz
bandpass	filter	and	good	common	mode	rejection	ratio.	The	EKG	signal	is	about	±1	mV,
so	an	overall	gain	of	about	2000	will	produce	a	range	of	0	to	+3V	on	V3.	The	data	flow
graph	of	this	system	is	similar	to	Figure	10.27.	This	EKG	amp	(Figure	10.32)	begins	with
a	preamp	stage	having	a	good	CMRR,	high	input	impedance,	and	a	gain	of	10.	If	the
system	is	battery	operated,	then	it	does	not	need	a	third	or	ground	electrode.	Pin	5	of	the
AD627	is	the	analog	ground,	which	in	this	circuit	is	the	1.233	V	reference	voltage.	The
AD627	is	rail-to-rail.	A	0.05	Hz	passive	high	pass	filter	is	created	by	R4	and	C4.	Low-
leakage	capacitors	for	C1,	C2,	and	C4	are	critical	for	elimination	of	DC	offset	drift.	A
polypropylene	or	polystyrene	would	be	a	good	choice,	but	a	C0G	ceramic	is	acceptable.
The	remaining	gain	is	performed	with	a	noninverting	amplifier	(U2a).	The	LPF	is
implemented	as	a	2-pole	Butterworth	LPF.	The	153	Hz	cutoff	was	chosen	because	it	is
greater	than	100Hz	and	can	be	implemented	with	standard	components.	If	the	signal	V1
saturates,	you	can	reduce	the	gain	of	the	preamp	and	increase	the	gain	of	the	amp.
	

	

Figure	10.32.		A	battery-power	EKG	instrument.
Program	10.2	shows	the	real-time	data	acquisition	and	60	Hz	digital	notch	filter.	The
design	of	digital	filters	will	be	presented	in	the	second	volume	of	this	book.		The	ADC
sampling	occurs	in	the	background	and	the	data	are	passed	to	the	foreground	using	a	FIFO
queue.	The	large	pulse	in	the	EKG,	originating	from	the	contraction	of	the	ventricles,	is
called	the	R-wave	and	it	occurs	once	a	heartbeat.	Program	10.3shows	the	foreground
process,	where	there	are	four	calculation	steps	performed	on	the	EKG	data.	A	low	pass
filter	followed	by	a	high	pass	filter	capture	a	narrow	band	of	information	around	8	Hz.	The
square	function	calculates	power	and	the	200	ms	wide	moving	average	gives	an	output
very	specific	for	the	R-wave.	Hysteresis	is	implemented	with	two	thresholds.	A	heartbeat
is	counted	(RCount++)	when	the	moving	average	goes	below	the LOW threshold,	then
above	the HIGH threshold.	This	software	uses	a	combined	frequency-period	method	to
calculate	heart	rate.	The	algorithm	to	measure	heart	rate	searches	for	R-waves	in	a	5-
second	interval. Rfirst is	the	time	(in	1/120	sec	units)	of	the	first	R-wave	and Rlast is	the
time	(also	in	1/120	sec	units)	of	the	last	R-wave.	(RCount-1)	is	the	number	of	beat-to-
beat	intervals	between Rfirst and Rlast .	The	number	7200	is	the	conversion	between	the
sample	period	(1/120	sec)	and	one	minute.	For	example	at	72	BPM,	there	will	be	6	R-
waves	detected	in	the	5-second	interval,	making	(Rcount-1) equal	to	5	and	the
difference Rlast-Rfirst 	will	be	500.	For	more	information	on	EKG	systems,	see
Webster’s	book	Medical	Instrumentation,	published	by	Wiley	1997,	or	Pan	and	Tompkins,
“A	Real-Time	QRS	Detection	Algorithm,”	IEEE	Transactions	on	Biomedical	Engineering,
pp.	230-236,	March	1985.

	

Warning:	If	you	are	going	to	build	an	EKG,	please	have	a	trained	engineer	verify	the
safety	of	your	hardware	and	software	before	you	attach	people	to	your	machine.

	

void	ADC3_Handler(void){	int16_t	data;

		ADC_ISC_R	=	0x08;										//	acknowledge	ADC	sequence	3

		data	=	ADC_SSFIFO3_R	-512;		//	twos	complement

		Fifo_Put(data);													//	pass	to	foreground

}

Program	10.2.		Real-time	sampling	of	EKG	(see	program	8.8),	sampled	at
120	Hz.		
	

int16_t	Data;				//	ADC	sample,	-512	to	+512,	10-bit	signed	ADC	sample

int16_t	x[50];			//	sampled	EKG,	120Hz

int16_t	y[50];			//	low	pass	filter,	120Hz

int16_t	z[50];			//	high	pass	filter,	120Hz

int16_t	w[50];			//	squared	result,	R-wave	power,	120Hz

int16_t	Rwav;				//	moving	average	of	R-wave	power,	energy

uint16_t	n=25;			//	25,26,	…,	49

uint16_t	Trigger;

#define	HIGH	100			//	trigger	when	over	this

#define	LOW	20					//	reset	when	under	this

uint16_t	Rcount;					//	number	of	R-waves

uint16_t	Rfirst;					//	time	of	first	R-wave

uint16_t	Rlast;						//	time	of	last	R-wave

uint16_t	HeartRate;		//	units	bpm

void	main(void)	{	uint16_t	time;			//	units	1/120sec

int16_t	lpfSum=0,hpfSum=0,RwavSum=0;								//	uses	Program	8.8

		ADC_InitTimer0ATriggerSeq3(0,49,8332);	//	120	Hz	sampling

		Fifo_Init();

		Trigger	=0;					//	looking	for	HIGH

		for(;;)	{

Rcount	=	0;

Rlast	=	0;

for(time=0;time<600;time++){		//	120	Hz,	every	5	second

while(Fifo_Get(&Data)){};			//	Get	data	from	background	thread

Plot(Data);																//	draw	voltage	versus	time	plot

n++;	if(n==50)	n=25;				

x[n]	=	x[n-25]	=	Data;											//	new	data

lpfSum		=	lpfSum+x[n]-x[n-4];

y[n]	=	y[n-25]	=	lpfSum/4;							//	Low	Pass	Filter

hpfSum		=	hpfSum+y[n]-y[n-10];

z[n]	=	z[n-25]	=	y[n]-hpfSum/10;	//	High	Pass	Filter

w[n]	=	w[n-25]	=	(z[n]*z[n])/10;	//	Power	calculation

RwavSum	=	RwavSum+w[n]-w[n-24];		//	200ms	wide	moving	average

Rwav	=	RwavSum/24;

if(Trigger){

if(Rpow<LOW){

Trigger	=	0;						//	found	low

}

}	else{

if((Rpow>HIGH)&&((time-Rlast)>30)){	//	max	HR=	240bpm

Trigger	=	1;					//	found	high

if(Rcount){

Rlast	=	time;		//	mark	time	of	last	R-wave,	units	1/120sec

}	else{

Rfirst	=	time;	//	mark	time	of	first	R-wave

}

Rcount++;

}

}

}

if(Rcount>=2){

HeartRate	=	(7200*(int32_t)(Rcount-1))/(int32_t)(Rlast-Rfirst);

}	else{

HeartRate	=	0;

}

Output(HeartRate);		//	display	results

		}

}

Program	10.3.		Measurement	of	heart	rate.		

	
Checkpoint	10.4:	What	is	the	theoretical	heart	rate	resolution	of	this	approach	when	the
HR	is	60	BPM?	

Common	error:	There	are	two	reasons	for	EKG	circuits	to	fail.	The	first	poor	contact
between	the	skin	and	electrode	causing	a	reduction	in	CMRR,	and	second	is	resistive
leakage	in	capacitor	C4.	Clean	the	skin	well,	use	new	electrodes	and	select	a	high	quality
C4.	

	
Example	10.3.	Design	a	system	to	measure	position.	The	range	is	0	to	2	cm	and	the
resolution	at	least	0.01	cm.	
	

Solution:	A	Bourns	SSHA20B20300	potentiometer	can	be	used	to	convert	position	into
resistance,	see	Figure	10.33.	In	this	particular	transducer	the	resistance	between	pins	1	and
3	is	fixed	at	20	kΩ,	while	the	resistance	between	pins	2	and	3	(Rout)	varies	from	0	to	20
kΩ.
	

Rout	=	5•x
	

where	the	units	of	Rout	and	x	are	in	k � 	and	cm	respectively.	To	interface	this	transducer	to
the	microcontroller	we	drive	the	potentiometer	with	a	stable	DC	voltage	using	a	precision
voltage	reference.	If	we	were	to	drive	the	circuit	with	the	+3.3V	power,	then	any	noise
ripple	in	the	power	line	would	couple	directly	into	the	measurement.	Rather,	we
implement	the	3.00V	with	a	precision	reference.	The	ADC	produces	a	digital	output
dependent	on	its	analog	input.		The	position	resolution	is	2cm/1024,	which	is	about
0.002cm.

	

Figure	10.33.	Potentiometer	interface	using	an	ADC.
	

Another	approach	to	interface	this	transducer	to	the	microcontroller	would	be	to	use
astable	multivibrator.	The	period	of	a	555	timer	is	0.693•CT•(RA+2RB).	In	our	circuit,	RA	is
Rout,	RB	is	1kΩ,	and	CT	is	2.2µF.	Given	a	fixed	RB,	CT,	the	period	of	the	square	wave,	Pout,
is	a	linear	function	of	Rout.	Our	microcontrollers	have	a	rich	set	of	mechanisms	to	measure
frequency,	pulse	width	or	period.		To	change	the	slope	and	offset	of	the	conversion
between	Rout	and	Pout,	the	values	of	RB	and	CT	can	be	adjusted.	Even	though	the	period
does	not	include	zero,	the	precision	of	this	measurement	is	over	3000	alternatives	or	more
than	11	bits.	The	precision	can	be	improved	by	increasing	the	capacitor,	CT,	or	decreasing
the	period	on	the	measurement	clock.	The	position	resolution	is	2cm/3049,	which	is	about
0.001cm.	The	actual	resolution	will	probably	be	dominated	by	noise	and	not	period
measurement	resolution.

Figure	10.34.	Potentiometer	interface	using	input	capture.

	
	

Example	10.4.	Design	a	system	that	can	input	and	output	sound.		
	

Solution:	The	electret	microphone	was	described	previously	in	Figure	10.11	as	a	low-cost,
small-size	transducer	capable	of	converting	sound	into	voltage.	Many	electret	data	sheets
suggest	an	R1of	2	k � ,	but	signal-to-noise	ratio	can	be	improved	by	using	a	10	k �
resistor.	Because	the	output	of	a	HPF	would	normally	include	positive	and	negative
voltages,	we	will	need	a	way	to	offset	the	circuit	so	all	voltages	exist	from	0	to	+3.3	V,
allowing	the	use	of	a	single	supply	and	rail-to-rail	op	amps.	R2	and	R3	provide	an	offset
for	the	HPF,	so	the	signal	V2	will	be	the	sound	signal	plus	1.65	V.	The	effective
impedance	from	V2to	ground	is	11	k � ,	so	the	HPF	cutoff	is	1/(2 � *1 � F*11k �)	=	14
Hz.	The	gain	of	the	system	is	1+R6/R5,	which	will	be	101.	The	capacitor	C2	will	make	the
signal	V3	be	the	amplified	sound	plus	1.65	V.	The	gain	is	selected	so	the	V3	signal	is	1.65
±1	V	for	the	sounds	we	wish	to	record.	The	capacitor	C3provides	a	little	low	pass	filtering,
causing	the	amplifier	gain	to	drop	to	one	for	frequencies	above	1/(2 � *220pF*100k �)	=
7.2	kHz.	A	better	LPF	would	be	to	add	an	active	LPF.	The	LPF	would	need	a	1.65	V	offset
like	the	one	in	Figure	10.35.	If	we	wish	to	process	sound	with	frequency	components	from
100	to	5	kHz,	then	we	should	sample	at	or	above	10	kHz.	If	we	sampled	sound	with	a	12-
bit	ADC,	we	should	select	a	12-bit	DAC	to	output	the	sound.	We	could	improve	signal	to
noise	by	replacing	the	+3.3	V	connected	to	R1	and	R2	in	Figure	10.35	with	a	LM4041
adjustable	reference	and	create	a	low	noise	3.0V	voltage.

Figure	10.35.	An	electret	microphone	can	be	used	to	record	sound	(PD3
on	TM4C123).
	

The	LM4041CILP	is	a	shunt	reference	used	to	make	the	analog	reference	required	by	the
MAX5353	12-bit	DAC.	This	DAC	was	previously	interfaced	in	Example	7.2.	The
MC34119	audio	amp,	first	shown	in	Figure	9.2,	can	be	used	to	amplify	the	DAC	output
providing	the	current	needed	to	drive	a	typical	8 � 	speaker.	The	gain	of	the	audio
amplifier	is	2*R11/R10,	which	for	this	circuit	will	be	one.	This	means	a	2-V	peak-to-peak
signal	out	of	the	DAC	will	translate	to	a	2-V	peak-to-peak	signal	on	the	speaker.	The
maximum	power	that	the	MC34119	can	deliver	to	the	speaker	is	250	mW,	so	the	software
should	limit	the	sound	signal	below	1.4	Vrmswhen	driving	an	8 � 	speaker.	The	quality	of
sound	can	be	increased	by	selecting	a	better	speaker	and	placing	the	speaker	into	an
enclosure.	For	more	information	on	how	to	design	a	speaker	box,	perform	a	web	search	on
“speaker	enclosure”.
	

Software	in	Program	7.2	can	be	used	to	interface	the	MAX5353	12-bit	DAC.			Program
10.4	performs	the	sound	input	and	output.	The	sampling	rate	is	10	kHz.	The	ADC	code
was	previously	shown	as	Program	8.8.

void	ADC0Seq3_Handler(void){	int32_t	data;

		ADC0_ISC_R	=	0x08;												//	acknowledge	ADC	sequence	3

		data	=	ADC0_SSFIFO3_R	-	2048;		//	sound,	-2048	to	+2047

//	process,	filter,	record	etc.

		DAC_Out(data);																	//	output,	Program	7.2			

}

void	main(void){	PLL_Init();												//	80	MHz	TM4C123

		ADC0_InitTimer0ATriggerSeq3PD3(7999);	//	sample	at	10	kHz

		DAC_Init(2048);																							//	Program	7.2	

		while(1){

WaitForInterrupt();

		}

}

Program	10.4.		Real-time	sound	output	input/output.	

Figure	10.36.	A	12-bit	DAC	and	an	audio	amplifier	allow	the
microcontroller	to	output	sound.
	

10.7.	Exercises
10.1	For	each	term	give	a	definition	in	16	words	or	less.

a)	Measurand																												b)	Transducer																																										c)	Hysteresis

d)	Saturation																												e)	Breakdown																																										f)	Bang	bang

g)	Deadzone																																										h)	Phantom	bias																																										i)
Prevalence

j)	Triple	point																												k)	Positive	predictive	value														l)	Negative	predictive
value

m)	Impedance	loading														n)	Crest	factor

	

10.2	For	each	transducer	parameter	give	a	definition	in	16	words	or	less.

a)	Accuracy														b)	Linearity														c)	Sensitivity														d)	Specificity															e)
Input	impedance

f)	Drift														g)	First	order															h)	Slew	rate															i)	Second	order															j)
Frequency	response

	

10.3	For	each	instrument	parameter	give	a	definition	in	16	words	or	less.

a)	Accuracy																																																								b)	Maximum	error

c)	Resolution																																										d)	Precision

e)	Reproducibility																																										f)	Signal	to	noise	ratio

	

10.4	For	each	transducer	give	its	measurand.

a)	Thermistor																																										b)	LVDT

c)	Electret																																																								d)	Strain	gauge

e)	Thermocouple																																										f)	Ultrasonic	crystal

g)	Shaft	encoder																																										h)	RTD

i)	ADXL202																																										j)	Ag-AgCl	electrode

	

10.5	For	each	concept	give	a	definition	in	16	words	or	less.

a)	Nyquist	Theory																																										b)	Aliasing

c)	Voltage	quantization																												d)	Time	quantization

e)	Time	jitter																																											f)	Sampling	rate

	

10.6	For	type	of	noise	give	a	definition	in	16	words	or	less.	Also	give	one	way	to	reduce
the	effect	of	this	noise

a)	White	noise																																										b)	1/f	noise

c)	Magnetic	field	noise																												d)	Electric	field	noise

	

10.7	Give	a	short	answer	in	16	words	or	less.

a)	How	do	we	choose	the	sampling	rate?

b)	How	do	we	choose	the	gain	of	our	amplifier?

c)	When	do	we	need	a	S/H	module?

d)	When	does	a	data	acquisition	system	have	aliasing?

	

10.8	The	following	input/output	data	was	collected	for	a	distance	transducer	(0,5),	(1,7),
(2,8),	(3,11),	(4,14),	where	the	first	number	is	distance	in	cm,	and	the	second	number	is
resistance	in	k � .	Calculate	average	linearity	of	reading	(percent)	and	average	linearity	of
full	scale	(percent).	Calculate	the	sensitivity	of	this	transducer.	Is	this	transducer
monotonic	or	nonmonotonic?

	

10.9	The	following	input/output	data	was	collected	for	a	distance	transducer	(0,10),	(1,12),
(2,14),	(3,12),	(4,10),	where	the	first	number	is	distance	in	cm,	and	the	second	number	is
resistance	in	k � .	Calculate	average	linearity	of	reading	(percent)	and	average	linearity	of
full	scale	(percent).	Calculate	the	sensitivity	of	this	transducer.	Is	this	transducer
monotonic	or	nonmonotonic?

	

10.9b	Explain	how	an	ultrasonic	distance	transducer	is	temperature	sensitive.

	

10.10	Let	x(n)	be	a	sampled	data	representing	the	angular	position	of	a	shaft.	It	is	stored	as
a	0.01	radian	decimal	fixed-point	number.	E.g.	x(n)	ranges	from	0	to	628.	This	data	is
sampled	every	10	ms.	Derive	equations	for	angular	velocity	and	angular	acceleration.

	

10.11	Consider	the	nonlinear	transducer	y	=	x2.	The	range	of	x	is	1	≤	x	≤	2.	Thus,	the	range
of	y	is	1	≤	y	≤	4.	Let	the	desired	resolution	be	∆x=0.01.	nx	=	rx/∆x	=	100	alternatives	or
about	7	bits.	How	many	ADC	bits	will	be	needed?

10.12	Consider	the	linear	transducer	y	=	2x+1.	The	range	of	x	is	0	≤	x	≤	1.	Thus,	the	range
of	y	is	1	≤	y	≤	3.	Let	the	desired	resolution	be	∆x=0.01.	nx	=	rx/∆x	=	100	alternatives	or
about	7	bits.	How	many	ADC	bits	will	be	needed?

	

10.13	What	is	the	resolution	of	a	13-bit	ADC	in	dBFS?

	

10.14	How	much	white	noise	in	a	10	M � 	resistor	if	the	system	bandwidth	is	100	kHz?

	

10.15	How	much	white	noise	in	a	100	M � 	resistor	if	the	system	bandwidth	is	10	MHz?

	

10.16	How	can	you	experimentally	differentiate	between	white	noise	and	pink	noise?

	

10.17	What	do	you	see	if	you	touch	the	measurement	probe	of	an	oscilloscope?	Explain.

	

D10.18	Design	a	computer	based	data	acquisition	system	that	measures	pressure.	The
pressure	transducer	is	built	with	four	resistive	strain	gauges	placed	in	a	DC	bridge.	When
the	pressure	is	zero,	each	gauge	has	a	120	Ω	resistance	making	the	bridge	output,	y,	zero.
When	pressure	is	applied	to	the	transducer	two	gauges	are	compressed	(which	lowers	their
resistance)	and	two	are	expanded	(which	increases	their	resistance.)	At	full	scale	pressure
(p	=	±100	dynes/cm2),	each	resistor	changes	by	±2 � .	The	transducer/bridge	output
impedance	is	therefore	120	Ω.	You	may	assume	the	transducer	is	linear.	The	desired
pressure	resolution	is	1	dyne/cm2.	The	frequencies	of	interest	are	0	to	100	Hz,	and	the	2
pole	Butterworth	analog	low	pass	filter	will	have	a	cutoff	(gain=0.707)	frequency	of	100
Hz	(you	will	design	it	in	b).	In	terms	of	choosing	a	sampling	rate,	you	may	assume	the
LPF	removes	all	signals	above	100	Hz.

	

D10.19		Design	a	temperature	acquisition	system	using	a	type-T	thermocouple.	The	range
is	1	≤	T	≤	200	˚C.	The	desired	resolution	is	∆T=1	˚C.	The	frequencies	of	interest	are	DC	to
5	Hz.	Show	the	analog	interface	and	data	acquisition	software.

	

D10.20		One	of	the	difficulties	in	mass	producing	a	transducer	is	to	create	multiple	copies
that	can	be	used	interchangeably.	In	this	pressure	measurement	device,	the	R3	node	is	the
transducer	that	is	sensitive	to	pressure.	Assume	R3equals	100 � (1+mP+ T),	where	100m
is	the	pressure	sensitivity,	and	p	is	the	input	pressure.	The	R4	node	is	a	dummy	device	but
is	not	affected	by	pressure.	R4	equals	100 � (1+ T).	Both	R1	and	R4	have	equal
temperature	sensitivity, � R3/ �T	= � R4/ �T	=	100 .	Assume	the	INA	gain	is	10.	The
resistors	R1	and	R2	are	the	other	part	of	the	bridge.

a)	Assume	R1	and	R2	are	not	temperature	dependent		Show	that	the	output	is	much	less
sensitive	to	temperature	than	if	R4	were	a	fixed	value.

b)	If	R2	is	replaced	with	a	potentiometer	we	can	adjust	the	offset.	Derive	an	equation	of
showing	the	output	voltage	as	a	function	of	p	and	R2.

c)	If	R1	is	replaced	with	a	potentiometer	we	can	adjust	the	sensitivity.	Derive	an	equation
of	showing	the	output	voltage	as	a	function	of	p	and	R1.

	
D10.21		This	problem	deals	with	the	classification	and	reduction	of	noise.

a)	Describe	a	single	experimental	procedure	(measurement)	which	could	identify	(or
differentiate)	the	type(s)	of	noise	existing	on	the	circuit.

b)	For	each	of	these	three	types	of	noise	(white	noise,	60	Hz	noise,	or	1/f	noise),	give	a
typical	outcome	of	the	experimental	procedure.

c)	Give	one	approach	(other	than	analog	or	digital	filtering)	which	will	reduce	white	noise.

d)	Give	one	approach	(other	than	analog	or	digital	filtering)	which	will	reduce	60	Hz
noise.

e)	Give	one	approach	(other	than	analog	or	digital	filtering)	which	will	reduce	1/f	noise.

	

D10.22	A	temperature	transducer	has	the	following	relationship

R	=	200+10T															where	R	is	in	Ω	and	T	is	in	˚C.

The	problem	specifications	are	range	is	30≤T≤50˚C.	The															resolution	should	be
0.01˚C.	The	frequencies	of	interest	are	0	to	100	Hz.	The	transducer	dissipation	constant	is
20mW/˚C.	The	ADC	range	is	0	to	+3	volts	and	the	sampling	rate	is	1000	Hz.

a)	How	many	ADC	bits	are	required?

b)	What	is	the	maximum	allowable	noise	at	the	amp	output?

c)	Design	the	analog	amplifier/filter.

	

D10.23	Design	a	wind	direction	measurement	instrument.	You	are	given	a	transducer	that
has	a	resistance	that	is	linearly	related	to	the	wind	direction.	As	the	wind	direction	varies
from	0	to	360	degrees,	the	transducer	resistance	varies	from	0	to	1000	Ω.	The	frequencies
of	interest	are	0	to	0.5	Hz,	and	the	sampling	rate	will	be	1	Hz.	

a)	Show	the	analog	interface	between	the	transducer	and	the	ADC.	Only	the	+3.3	V	supply
can	be	used.	Show	how	the	analog	components	are	powered.	Give	chip	numbers	but	not
pin	numbers.	Specify	the	type	and	tolerance	of	resistors	and	capacitors.

b)	Write	the	initialization	and	function	that	measures	the	wind	direction	and	returns	a	16-
bit	unsigned	result	with	units	of	degrees.	I.e.,	the	value	varies	from	0	to	359.	You	do	not
have	to	write	software	that	samples	at	1	Hz,	simply	a	function	that	measures	wind
direction	once.

	

10.8.	Lab	Assignments
Lab	10.1.	This	experiment	will	use	a	thermistor	and	the	ADC	to	construct	a	digital
thermometer.	The	temperature	range	should	be	20	to	40	˚C.	If	the	current	temperature	is
above	the	upper	limit	in	the	specified	range,	a	red	LED	should	be	turned	on.	You	can	test
this	feature	by	shorting	the	thermistor	leads	together	(zero	resistance.)	If	it	is	below	the
lower	limit	of	the	specified	range,	a	yellow	LED	should	be	turned	on.	Similarly,	you	can
test	this	feature	by	disconnecting	one	wire	of	the	thermistor	(infinite	resistance.)
Otherwise,	a	green	LED	will	stay	on	indicating	the	temperature	is	within	the	specified
range.	The	temperature	measurements	will	be	displayed	as	fixed-point	numbers	on	an
LCD	or	OLED.	Design	your	system	with	the	best	possible	resolution.	The	temperature
component	is	0	to	1	Hz.	Experimentally	verify	noise	level,	time-constant,	and	accuracy	of
your	system.

Lab	10.2.	The	objective	of	this	lab	is	to	build	a	digital	sound	recorder	for	human	speech.
You	will	first	need	to	interface	an	external	RAM	to	store	the	data.	Next,	you	will	need	to
design	an	analog	circuit	that	interfaces	a	microphone	to	the	ADC	of	the	microcontroller.
Investigate	the	frequency	components	of	human	speech	and	design	your	system	to	pass
these	frequencies.	You	will	also	need	a	mechanism	to	playback	the	recorded	sound,	so
design	an	audio	amplifier	that	interfaces	a	DAC	to	a	speaker.	Your	human	interface	should
include	a	buttons	to	trigger	sound	recording,	stop	recording,	start	playback,	and	stop
playback.

Lab	10.3.	Design	a	thermocouple-based	thermometer	with	a	range	of	0	to	50	˚C.	You	can
use	an	ice	bucket	for	the	reference,	or	you	could	design	the	thermistor-based	thermometer
of	Lab	10.1	and	use	it	to	compensate	for	the	cold	junction	of	the	thermocouple.	Design
your	system	with	the	best	possible	resolution.	The	temperature	measurements	will	be
displayed	as	fixed-point	numbers	on	an	LCD	or	OLED.	The	temperature	component	is	0
to	1	Hz.	Experimentally	verify	noise	level,	time-constant,	and	accuracy	of	your	system.

Lab	10.4.	Design	a	digital	scale	using	a	strain	gauge	force	transducer.	Select	the	range	of
the	scale	to	match	the	linear	range	of	your	force	transducer.	You	can	build	a	force
transducer	using	a	slide	pot	and	a	spring.	Design	your	system	with	the	best	possible
resolution.	The	force	measurements	will	be	displayed	as	fixed-point	numbers	on	an	LCD
or	OLED.	Experimentally	verify	noise	level,	time-constant,	and	accuracy	of	your	system.

Lab	10.5.	Design	two	digital	position	measurement	systems	using	a	slide	potentiometer	as
the	transducer.	Select	the	range	of	the	scale	to	match	the	linear	range	of	your	transducer.
The	position	measurements	will	be	displayed	as	fixed-point	numbers	on	an	LCD.	The	first
system	will	use	the	ADC,	and	the	second	system	will	use	an	astable	multivibrator
(TLC555)	and	input	capture.	Design	your	systems	with	the	best	possible	resolution.
Experimentally	verify	noise	level,	time-constant,	and	accuracy	of	both	systems.

Lab	10.6.	Design	an	autoranging	voltmeter.	The	three	ranges	are	0	to	2V,	0	to	0.2V,	and	0
to	0.02V.	The	hardware/software	system	automatically	adjusts	the	range	providing	the	best
possible	measurement	resolution.	Display	both	the	numerical	and	graphical	results	on	an
LCD	or	OLED	display.	Write	a	graphical	device	driver	for	the	LCD	or	OLED	and	use	it	to
graph	the	time-varying	voltage	in	real	time.		Experimentally	determine	the	measurement
resolution	for	each	range	and	compare	it	to	the	expected	theoretical	resolution.			Analyze
the	various	sources	of	measurement	error	in	your	system.

	

Lab	10.7.	Design	a	data	acquisition	system	using	an	IR	distance	sensor.	See	Figure	10.8.
Design	a	system	for	static	measurement	of	tilt	and	a	dynamic	measurement	of	motion.

Lab	10.8.	Design	a	data	acquisition	system	using	an	accelerometer.	If	the	sensor	is	not
moving,	it	response	to	the	earth’s	gravity	and	can	be	used	to	determine	the	tilt	angle.	If	the
sensor	is	moving	it	responses	to	both	gravity	and	the	acceleration	of	the	sensor.	Design	a
system	for	static	measurement	of	tilt	and	a	dynamic	measurement	of	motion.

Lab	10.9.	Design	a	data	acquisition	system	using	a	force	sensing	resistor	(FSR).	The
sensor	resistance	depends	on	the	pressure	being	applied	to	the	sensing	area.	When	no
pressure	is	applied	to	the	FSR	its	resistance	will	be	larger	than	1MΩ.	Design	a	static
measurement	of	pressure	and	test	it	with	standard	weights.

		

11.	Introduction	to	Communication	Systems
Chapter	11	objectives	are	to:
•	Introduce	basic	concepts	of	networks

•	Present	master/slave,	ring	and	multidrop	networks	based	on	UARTs

•	Introduce	the	concept	of	wireless	communications

	
The	goal	of	this	chapter	is	to	provide	a	brief	introduction	to	communication	systems.
Communication	theory	is	a	richly	developed	discipline,	and	much	of	the	communication
theory	is	beyond	the	scope	of	this	book.	Nevertheless,	the	trend	in	embedded	systems	is	to
employ	multiple	intelligent	devices,	therefore	the	interconnection	will	be	a	strategic	factor
in	the	performance	of	the	system.	These	devices	will	be	developed	by	different
manufacturers,	thus	the	interconnection	network	must	be	flexible,	robust,	and	reliable.
Consequently,	this	chapter	focuses	on	implementing	communication	systems	appropriate
for	embedded	systems.	The	components	of	an	embedded	system	typically	combined	to
solve	a	common	objective,	thus	the	nodes	on	the	communication	network	will	cooperate
towards	that	shared	goal.	In	particular,	requirements	of	an	embedded	system,	in	general,
involve	relatively	low	bandwidth,	static	configuration,	and	a	low	probability	of	corrupted
data.	We	will	introduce	the	internet	of	things	(IoT)	by	designing	a	two	systems	that
connect	to	the	internet,	one	wired	and	one	wireless.

																																			

11.1.	Fundamentals
In	the	serial	interfacing	chapter,	we	considered	the	hardware	interfaces	between
computers.	In	this	chapter,	we	will	build	on	those	ideas	and	introduce	the	concepts	of
networks	by	investigating	a	couple	of	simple	networks.	A	communication	network
includes	both	the	physical	channel	(hardware)	and	the	logical	procedures	(software)	that
allow	users	or	software	processes	to	communicate	with	each	other.	The	network	provides
the	transfer	of	information	as	well	as	the	mechanisms	for	process	synchronization.	It	is
convenient	to	visualize	the	network	in	a	hierarchical	fashion	as	shown	in	Figure	11.1.

	

Figure	11.1.	A	layered	approach	to	communication	systems.
The	International	Standards	Organization	(ISO)	defines	a	7-layer	model	called	the	Open
Systems	Interconnection	(OSI),	described	in	Chapter	9	of	Volume	3.	Figure	11.1	shows	a
simple	3-layer	model.

At	the	lowest	level,	frames	are	transferred	between	I/O	ports	of	the	two	(or	more)
computers	along	the	physical	link	or	hardware	channel.	At	the	next	logical	level,	the
operating	system	(OS)	of	one	computer	sends	messages	or	packets	to	the	OS	on	the	other
computer.	The	message	protocol	will	specify	the	types	and	formats	of	these	messages.
Typically,	error	detection	and	correction	is	handled	at	this	level.	Messages	typically
contain	four	fields:

1)	Address	information	field

physical	address	specifying	the	destination/source	computers

logical	address	specifying	the	destination/source	processes

2)	Synchronization	or	handshake	field

Physical	synchronization	like	shared	clock,	start	and	stop	bits

OS	synchronization	like	request	connection	or	acknowledge

Process	synchronization	like	semaphores

3)	Data	field

ASCII	text	(raw	or	compressed)

Binary	(raw	or	compressed)

4)	Error	detection	and	correction	field

Vertical	and	horizontal	parity

Checksum

Block	correction	codes	(BCC)
	

Observation:	Communication	systems	often	specify	bandwidth	in	total	bits/sec,	but	the
important	parameter	is	the	data	transfer	rate.	

Observation:	Often	the	bandwidth	is	limited	by	the	software	and	not	the	hardware
channel.	

At	the	highest	level,	we	consider	communication	between	users	or	tasks.	A	process	is	a
complete	software	task	that	has	a	well-defined	goal.	For	example,	when	a	file	is	to	be
printed	on	a	network	printer,	the	OS	creates	a	process	that

1)	establishes	connection	with	the	remote	printer,

2)	reads	blocks	from	the	hard	disk	drive	and	sends	the	data	to	the	printer

may	have	to	manipulate	graphics/colors	for	the	specific	printer

network	driver	will	break	the	data	into	message	packets,

3)	disconnect	the	printer.

	
Many	embedded	systems	require	the	communication	of	command	or	data	information	to
other	modules	at	either	a	near	or	a	remote	location.	Because	the	focus	of	this	book	is
embedded	systems,	we	will	limit	our	discussion	with	communication	with	devices	within
the	same	room.	A	full	duplex	channel	allows	data	to	transfer	in	both	directions	at	the	same
time.	In	a	half	duplex	system,	data	can	transfer	in	both	directions	but	only	in	one	direction
at	a	time.	Half	duplex	is	popular	because	it	is	less	expensive	(2	wires)	and	allows	the
addition	of	more	devices	on	the	channel	without	change	to	the	existing	nodes.

Information,	such	as	text,	sound,	pictures	and	movies,	can	be	encoded	in	digital	form	and
transmitted	across	a	channel,	as	shown	in	Figure	11.2.	The	channel	will	have	a	maximum
information	per	second	it	can	transmit,	called	channel	capacity.	In	order	to	improve	the
effective	bandwidth	many	communication	systems	will	compress	the	information	at	the
source,	transmit	the	compressed	version,	and	then	decompress	the	data	at	the	destination.
Compression	essentially	removes	redundant	information	in	such	a	way	that	the
decompressed	data	is	identical	(lossless)	or	slightly	altered	but	similar	enough	(lossy).	For
example,	a	400	pixels/inch	photo	compressed	using	the	JPEG	algorithm	will	be	5	to	30
times	smaller	than	the	original.	A	guided	medium	focuses	the	transmission	energy	into	a
well-defined	path,	such	as	current	flowing	along	copper	wire	of	a	twisted	pair	cable,	or
light	traveling	along	a	fiber	optic	cable.		Conversely,	an	unguided	medium	has	no	focus,
and	the	energy	field	diffuses	as	in	propagates,	such	as	sound	or	EM	fields	in	air	or	water.
In	general,	for	communication	to	occur,	the	transmitter	must	encode	information	as
energy,	the	channel	must	allow	the	energy	to	move	from	transmitter	to	receiver,	and	the
receiver	must	decode	the	energy	back	into	the	information,	see	Figure	11.2.	In	an	analog
communication	system,	energy	can	vary	continuously	in	amplitude	and	time.	A	digital
communication	signal	exists	at	a	finite	number	of	energy	levels	for	discrete	amounts	of
time.	Along	the	way,	the	energy	may	be	lost	due	to	attenuation.	For	example,	a	simple
V=I*R	voltage	drop	is	in	actuality	a	loss	of	energy	as	electrical	energy	converted	to
thermal	energy.	A	second	example	of	attenuation	is	an	RF	cable	splitter.	For	each	splitter,
there	will	be	50%	attenuation,	where	half	the	energy	goes	left	and	the	other	half	goes	right
through	the	splitter.		Unguided	media	will	have	attenuation	as	the	energy	propagates	in
multiple	directions.	Attenuation	causes	the	received	energy	to	be	lower	in	amplitude	than
the	transmitted	energy.	A	second	problem	is	distortion.	The	transfer	gain	and	phase	in	the
channel	may	be	function	of	frequency,	time,	or	amplitude.	Distortion	causes	the	received
energy	to	be	different	shape	than	the	transmitted	energy.	A	third	problem	is	noise.	The
noise	energy	is	combined	with	the	information	energy	to	create	a	new	signal.	White	noise
and	EM	field	noise	were	discussed	in	Chapter	10.	Crosstalk	is	a	problem	where	energy	in
one	wire	causes	noise	in	an	adjacent	wire.		We	quantify	noise	with	signal-to-noise	ratio
(SNR),	which	is	the	ratio	of	the	information	signal	power	to	noise	power.

													

	

Checkpoint	11.1:	Why	do	we	measure	SNR	as	power	and	not	voltage?

	

Figure	11.2.	Information	is	encoded	as	energy,	but	errors	can	occur
during	transmission.
We	can	make	an	interesting	analogy	between	time	and	space.	A	communication	system
allows	us	transfer	information	from	position	A	to	position	B.	A	digital	storage	system
allows	us	transfer	information	from	time	A	to	time	B.	Many	of	the	concepts
(encoding/decoding	information	as	energy,	noise,	error	detection/correction,	security,	and
compression)	apply	in	an	analogous	manner	to	both	types	of	systems.

Checkpoint	11.2:	We	measure	the	performance	of	a	communication	system	as	bandwidth
in	bits/sec.	What	is	the	analogous	performance	measure	of	a	digital	storage	system?		

Errors	can	occur	when	communicating	through	a	channel	with	attenuation,	distortion	and
added	noise.	If	the	receiver	detects	an	error,	it	can	send	a	negative	acknowledgement	so
the	transmitter	will	retransmit	the	data.	The	CAN	and	ZigBee	protocols	handle	this
detection-retransmission	process	automatically.	Networks	based	on	the	UART	port	will
need	to	define	and	implement	error	detection.	I.e.,	we	can	add	an	additional	bit	to	the
serial	frame	for	the	purpose	of	detecting	errors.	With	even	parity,	the	sum	of	the	data	bits
plus	the	parity	bit	will	be	an	even	number.	The	framing	error	in	the	UART	can	also	be
used	to	signify	the	data	may	be	corrupted.	The	CAN	network	sends	a	longitudinal
redundancy	check,	LRC,	which	is	the	exclusive	or	of	the	bytes	in	the	frame.	The	ZigBee
network	adds	a	checksum,	which	is	the	sum	of	all	the	data.

There	are	many	ways	to	improve	transmission	in	the	channel,	reducing	the	probability	of
errors.	The	first	design	choice	is	the	selection	of	the	interface	driver.	For	example	RS422
is	less	likely	to	exhibit	errors	than	RS232.	Of	course	having	a	driver	will	be	more	reliable
than	not	having	a	driver.	The	second	consideration	is	the	cable.	Proper	shielding	can
improve	SNR.	For	example,	Cat6	Ethernet	cables	have	a	separator	between	the	four	pairs
of	twisted	wire,	which	reduce	the	crosstalk	between	lines	as	compared	to	Cat5e	cable.	If
we	can	separate	or	eliminate	the	source	of	added	noise,	the	SNR	will	improve.	Reducing
the	distance	and	reducing	the	bandwidth	often	will	reduce	the	probability	of	error.	If	we
must	transmit	long	distances,	we	can	use	a	repeater,	which	accepts	the	input	and
retransmits	the	data	again.

Error	correcting	codes	are	beyond	the	scope	of	this	book.	However,	we	can	present	two
simple	error	correcting	codes.	The	first	error	correcting	code	involves	sending	three	copies
of	each	data.	The	receiver	will	compare	the	three	versions	received	and	majority	vote	will
decide	which	value	to	use.	A	second	error	correcting	code	uses	both	parity	and	LRC.	For
example,	assume	we	wished	to	send	the	message	“Ciao”.	Encoded	as	ASCII	characters	the
data	are	0x43,	0x69,	0x61,	and	0x6F.	The	first	step	is	to	display	the	binary	data	in	2-D.

	

	 Byte	0 Byte	1 Byte	2 Byte	3

Bit	7 0 0 0 0

Bit	6 1 1 1 1

Bit	5 0 1 1 1

Bit	4 0 0 0 0

Bit	3 0 1 0 1

Bit	2 0 0 0 1

Bit	1 1 0 0 1

Bit	0 1 1 1 1

	

The	second	step	is	to	add	an	even	parity	to	each	byte	and	add	a	LRC	at	the	end.	Notice
that	the	even	parity	is	the	exclusive	OR	of	each	bit	in	the	vertical	column	and	the	LRC	is
the	exclusive	OR	of	each	bit	in	the	horizontal	row.	The	parity	bit	for	the	LRC	(or	the	LRC
bit	for	the	parity)	will	be	the	exclusive	OR	of	all	the	data	bits.

	 Byte	0 Byte	1 Byte	2 Byte	3 LRC

Parity 1 0 1 0 0

Bit	7 0 0 0 0 0

Bit	6 1 1 1 1 0

Bit	5 0 1 1 1 1

Bit	4 0 0 0 0 0

Bit	3 0 1 0 1 0

Bit	2 0 0 0 1 1

Bit	1 1 0 0 1 0

Bit	0 1 1 1 1 0

	

Now,	if	any	one	bit	in	this	9-row	by	5-column	matrix	is	flipped,	we	can	determine	which
byte	is	in	error	by	the	parity	and	which	bit	is	in	error	by	the	LRC.	Rather	than	asking	for
retransmission,	we	simply	correct	the	error.	These	are	very	simple	error	correcting	codes,
but	they	illustrate	that	we	can	send	more	bits	than	the	minimum	and	use	those	extra	bits	in
a	creative	way	to	either	detect	or	correct	errors.

11.2.	Communication	Systems	Based	on	the	UARTs
In	this	section,	we	will	present	three	communication	systems	that	utilize	the	UART	port.	If
the	distances	are	short,	half	duplex	can	be	implemented	with	simple	open	collector	or
open-drain	digital-level	logic.	Open	drainlogic	has	two	output	states:	low	and	off.	In	the
off	state	the	output	is	not	driven	high	or	low,	it	just	floats.	The	10	k � 	pull-up	resistor	will
passively	make	the	signal	high	if	none	of	the	open	drain	outputs	are	low.	The
microcontroller	can	make	its	TxD	serial	outputs	be	open	drain	(ODE	on	the
LM3S/LM4F/TM4C).	This	mode	allows	a	half	duplex	network	to	be	created	without	any
external	logic	(although	pull-up	resistors	are	often	used).	Three	factors	will	limit	the
implementation	of	this	simple	half	duplex	network:	1)	the	number	nodes	on	the	network,
2)	the	distance	between	nodes;	and	3)	presence	of	corrupting	noise.	In	these	situations	a
half	duplex	RS485	driver	chip	like	the	SP483	made	by	Sipex	or	Maxim	can	be	used.

The	first	communication	system	is	master-slave	configuration,	where	the	master	transmit
output	is	connected	to	all	slave	receive	inputs,	as	shown	in	Figure	11.3.	This	provides	for
broadcast	of	commands	from	the	master.	All	slave	transmit	outputs	are	connected	together
using	wire-or	open	drain	logic,	allowing	for	the	slaves	to	respond	one	at	a	time.		The
ODE		(Open	Drain	Enable)	in	the	slaves	should	be	set	to	activate	open	drain	mode	on
transmitters.	The	low-level	device	driver	for	this	communication	system	is	identical	to	the
UART	driver	developed	in	Program	5.9.	When	the	master	performs	UART	output	it	is
broadcast	to	all	the	slaves.	There	can	be	no	conflict	when	the	master	transmits,	because	a
single	output	is	connected	to	multiple	inputs.	When	a	slave	receives	input,	it	knows	it	is	a
command	from	the	master.	In	the	other	direction,	however,	a	potential	problem	exists
because	multiple	slave	transmitters	are	connected	to	the	same	wire.	If	the	slaves	only
transmit	after	specifically	being	triggered	by	the	master,	no	collisions	can	occur.

Figure	11.3.	A	master-slave	network	implemented	with	multiple
microcontrollers.

Checkpoint	11.3:	What	voltage	level	will	the	master	RxD	observe	if	two	slaves
simultaneously	transmit,	one	making	it	a	logic	high	and	the	other	a	logic	low?

The	next	communication	system	is	a	ring	network.	This	is	the	simplest	distributed	system
to	design,	because	it	can	be	constructed	using	standard	serial	ports.	In	fact,	we	can	build	a
ring	network	simply	by	chaining	the	transmit	and	receive	lines	together	in	a	circle,	as
shown	in	Figure	11.4.	Building	a	ring	network	is	a	matter	as	simple	as	soldering	a	RS232
cable	in	a	circle	with	one	DB9	connector	for	each	node.	Messages	will	include	source
address,	destination	address	and	information.	If	computer	A	wishes	to	send	information	to
computer	C,	it	sends	the	message	to	B.	The	software	in	computer	B	receives	the	message,
notices	it	is	not	for	itself,	and	it	resends	the	message	to	C.	The	software	in	computer	C
receives	the	message,	notices	it	is	for	itself,	and	it	keeps	the	message.	Although	simple	to
build,	this	system	has	slow	performance	(response	time	and	bandwidth),	and	it	is	difficult
to	add/subtract	nodes.

Figure	11.4.	A	ring	network	implemented	with	three	microcontrollers.
Checkpoint	11.4:	Assume	the	ring	network	has	10	nodes,	the	baud	rate	is	100,000
bits/sec,	and	there	are	10	bits/frame.	What	is	average	time	it	takes	to	send	a	10	byte
message	from	one	computer	to	another?

The	third	communication	system	is	a	very	common	approach	to	distributed	embedded
systems,	called	multi-drop,	as	shown	in	Figure	11.5.	To	transmit	a	byte	to	the	other
computers,	the	software	activates	the	SP483	driver	and	outputs	the	frame.	Since	it	is	half
duplex,	the	frame	is	also	sent	to	the	receiver	of	the	computer	that	sent	it.	This	echo	can	be
checked	to	see	if	a	collision	occurred	(two	devices	simultaneously	outputting.)	If	more
than	two	computers	exist	on	the	network,	we	usually	send	address	information	first,	so
that	the	proper	device	receives	the	data.	Many	collisions	can	be	avoided	looking	to	see	if
the	receiver	is	active	before	transmitting.

Figure	11.5.	A	multidrop	network	is	created	using	a	half	duplex	serial
channel	implemented	with	open	drain	logic	or	with	RS485	drivers.
Checkpoint	11.5:	How	can	the	transmitter	detect	a	collision	had	corrupted	its	output?

Checkpoint	11.6:	How	can	the	receiver	detect	a	collision	had	corrupted	its	input?

There	are	many	ways	to	check	for	transmission	errors.	You	could	use	a	longitudinal
redundancy	check	(LRC)	or	horizontal	even	parity.	The	error	check	byte	is	simply	the
exclusive-OR	of	all	the	message	bytes	(except	the	LRC	itself).	The	receiver	also	performs
an	exclusive-OR	on	the	message	as	well	as	the	error	check	byte.	The	result	will	equal	zero
if	the	block	has	been	transmitted	successfully.	Another	popular	method	is	checksum,
which	is	simply	the	modulo256	(8-bit)	or	modulo65536	(16-bit)	sum	of	the	data	packet.		In
addition,	each	byte	could	have	(but	doesn’t	have	to)	include	even	parity.	

There	are	two	mechanisms	that	allow	the	transmission	of	variable	amounts	of	data.	Some
protocols	use	start	(STX=0x02)	and	stop	(ETX=0x03)	characters	to	surround	a	variable
amount	of	data.	The	disadvantage	of	this	“termination	code”	method	is	that	binary	data
cannot	be	sent	because	a	data	byte	might	match	the	termination	character	(ETX).
Therefore,	this	protocol	is	appropriate	for	sending	ASCII	characters.	Another	possibility	is
to	use	a	byte	count	to	specify	the	length	of	a	message.	Many	protocols	use	a	byte	count.
The	ZigBee	frames,	for	example,	have	a	byte	count	in	each	frame.

11.3.	Wireless	Communication
The	details	of	how	wireless	communication	operates	are	beyond	the	scope	of	this	book.
Nevertheless,	the	interfacing	techniques	presented	in	this	book	are	sufficient	to	implement
wireless	communication	by	selecting	a	wireless	module	and	interfacing	it	to	the
microcontroller.	In	general,	one	considers	bandwidth,	distance,	topology	and	security
when	designing	a	wireless	link.	Bandwidth	is	the	fundamental	performance	measure	for	a
communication	system.	In	this	book,	we	define	bandwidth	of	the	system	as	the
information	transfer	rate.	However,	when	characterizing	the	physical	channel,	bandwidth
can	have	many	definitions.	In	general,	the	bandwidth	of	a	channel	is	the	range	of
frequencies	passed	by	the	channel	(Communication	Networks	by	Leon-Garcia).	Let	Gx(f)
be	the	gain	versus	frequency	of	the	channel.	When	considering	EM	fields	transmitted
across	space,	we	can	define	absolute	bandwidth	as	the	frequency	interval	that	contains
all	of	the	signal’s	frequencies.	Half-power	bandwidth	is	the	interval	between	frequencies
at	which	Gx(f)	has	dropped	to	half	power	(‑3dB).	Let	fc	be	the	carrier	frequency,	and	Px	be
the	total	signal	power	over	all	frequencies.	The	equivalent	rectangular	bandwidth	is
Px/Gx(fc).	The	null-to-null	bandwidth	is	the	frequency	interval	between	first	two	nulls	of
Gx(f).	The	FCC	defines	fractional	power	containment	bandwidth	as	the	bandwidth	with
0.5%	of	signal	power	above	and	below	the	band.	The	bounded	power	spectral	density	is
the	band	defined	so	that	everywhere	outside	Gx(f)	must	have	fallen	to	a	given	level.	The
purpose	of	this	list	is	to	demonstrate	to	the	reader	that,	when	quoting	performance	data,	we
must	give	both	definition	of	the	parameter	and	the	data.	If	we	know	the	channel	bandwidth
W	in	Hz	and	the	SNR,	we	can	use	the	Shannon–Hartley	Channel	Capacity	Theorem	to
estimate	the	maximum	data	transfer	rate	C	in	bits/s:

For	example,	consider	a	telephone	line	with	a	bandwidth	W	of	3.4	kHz	and	SNR	of	38	dB.
The	dimensionless	SNR	=	10(38/10)	=	6310.	Using	the	Channel	Capacity	Theorem,	we
calculate	C	=	3.4	kHz	*	log2(1	+	6310)	=	43	kbits/s.

One	of	the	simplest	modules	we	can	use	for	wireless	embedded	systems	is	the	Chipcon
CC2500,	which	is	a	low-power	2.4-GHz	RF	transceiver	with	a	SPI	interface.	The	CC2500
is	intended	for	2400	to	2483.5	MHz	Industrial,	Scientific	and	Medical	(ISM)	applications.
The	computer	interface	uses	a	SPI	protocol,	the	clock	circuit	is	based	on	an	external
crystal,	and	the	antenna	circuit	must	be	tuned	for	the	2.4	GHz	frequency.	The	eZ430-
RF2500	from	Texas	Instruments	is	a	low-cost	development	tool	based	around	the	MSP430
and	the	Chipcon	CC2500	low-power	transceiver.	The	CC430	microcontroller	includes
both	an	MSP430	and	RF.

	
Example	11.1.	Design	a	system	that	can	communicate	at	1000	bytes/sec	between	two
microcontrollers	within	the	same	room	without	security.

Solution:	This	low	bandwidth	can	be	solved	with	a	radio-frequency	(RF)	link	without	the
complexities	necessary	to	support	Bluetooth	or	802.11.	This	short	distance	is	classified	as
a	Short	Range	Device	(SRD).	There	are	many	RF	communication	modules	that	could	have
been	used.	As	illustrated	in	Figure	11.6,	the	CC2500	interface	has	three	parts.	The	system
will	operate	up	to	500	Kbits/sec,	and	the	chip	implements	dual	64-bit	FIFOs	for	transmit
and	receive.	Basically,	the	microcontroller	on	the	left	transmits	data	via	its	SPI,	and	the
microcontroller	on	the	right	receives	the	data	with	its	SPI.	It	is	a	transceiver,	meaning	data
can	flow	across	the	link	in	both	directions.

Figure	11.6.		Block	diagram	of	a	wireless	link	between	two
microcontroller	systems.

	
ZigBee	is	another	low-cost	wireless	solution	for	embedded	systems.	The	name	is	derived
from	the	behavior	of	honey	bees.	Honey	bees	distributed	across	a	large	open	field
implement	a	mesh	network	in	order	to	communicate	information	to	their	hive.	They	do
this	by	message	relaying.	A	bee	distant	from	the	hive	will	fly	a	particular	zigzag	pattern
that	represents	the	information.	A	second	bee	nearer	the	hive	will	repeat	the	pattern.	The
relay	continues	until	the	information	reaches	the	hive.	ZigBee	is	a	standard	that	defines	a
set	of	communication	protocols	for	low-data-rate,	very	low-power,	short-range	wireless
networking.	It	can	operate	under	battery	power,	and	last	for	years	because	there	are
multiple	types	of	low-power	sleep	modes.	It	is	an	appropriate	solution	for	sensor
networks,	meter	reading,	industrial	automation,	security	systems,	and	patient	monitoring.
ZigBee	is	an	extension	of	the	IEEE	802.15.4b	standard.	It	is	lower	cost	and	lower
performance	than	Bluetooth	or	IEEE	801.11b,	as	shown	in	Table	11.1.	The	range	values	in
this	table	represent	performance	indoors–outdoors.	ZigBee	modules	come	in	a	variety	of
power	versus	performance	models.	In	other	words,	you	can	run	at	lower	power	if	you	are
willing	to	sacrifice	distance	and	data	rate.

	 Data	rate Range Wireless
applications

ZigBee 20	to	250
Kbps

10–100m Sensor	Networks

Bluetooth 1	to	3	Mbps 2–10m Headset,	mouse

IEEE	802.11b 1	to	11	Mbps 38–140m Internet
connection

IEEE	802.11g 1	to	54	Mbps 38–140m

Internet
connection

IEEE	802.11n 1	to	72	Mbps 70–250m Internet
connection

Table	11.1.		Comparison	of	wireless	protocols.

	

The	ZigBee	protocol	is	layered.	The	top	layer	is	the	application	layer,	implemented	as	the
user	program.	At	this	layer	software	in	one	node	sends	messages	to	another	node.	This
section	will	focus	on	this	layer,	because	we	will	purchase	a	ZigBee	module	that	performs
the	lower	layers	automatically.	The	second	layer	is	the	application	support	sublayer	(APS).
Below	the	APS	is	the	network	layer	(NWK).	Below	the	NWK	is	the	media	access	control
(MAC)	layer.	Below	the	MAC	is	the	physical	layer,	which	includes	the	RF	transmitter	and
receiver.	For	more	information	about	how	ZigBee	works,	see	http://www.zigbee.org/.	You
also	could	do	a	web	search	on	XBee,	which	is	a	low-cost	implementation	of	ZigBee.

ZigBee	is	a	personal	area	network	(PAN),	as	shown	in	Figure	11.7.	There	can	be	a
coordinator,	devices	that	support	all	functions,	or	devices	that	support	some	functions.	A
typical	application	of	ZigBee	is	a	remote	sensor	network.	Consider	each	of	the	nodes	in
Figure	11.7	is	capable	of	collecting	sensor	data.	The	sensor	database	can	be	centralized	at
the	PAN	coordinator	or	distributed	across	the	entire	system.

	

Figure	11.7.		ZigBee	used	to	create	a	remote	sensor	network.
One	low-cost	implementation	of	ZigBee	is	the	XBee	module	from	Digi	(formally
MaxStream).	These	modules	take	ZigBee	and	wrap	it	into	a	simple-to-use	serial	command
set,	called	AT	commands.	These	modules	allow	a	very	reliable	and	simple	communication
between	microcontrollers	with	a	serial	port.	Both	point-to-point	and	multi-point	networks
are	supported.	The	hardware	involves	interfacing	3.3	V	full	duplex	serial	channel	to	the
XBee	module,	as	shown	in	Figure	11.8.

Figure	11.8.		Circuit	diagram	for	a	2-node	ZigBee	network.	Power	and
grounds	are	shared	between	the	microcontroller	and	its	XBee	but	not
between	XBees.
The	full	software	solution	to	this	network	will	be	left	as	Lab	11.2.	In	this	simple
configuration,	there	can	be	up	to	256	nodes	on	the	network.	The	initialization	software
must	establish	the	baud	rate	at	9600	bits/sec.	The	system	bandwidth	therefore	will	be	on
the	order	of	960	bytes/sec.	The	<CR>	symbol	refers	to	the	carriage	return,	character	13,
existing	as	one	8-bit	ASCII	character.	To	place	the	XBee	in	AT	command	mode,	we
execute	steps	1	to	5	over	and	over	until	we	get	an	OK	response.

1.	Send	a	dummy	character	like	‘X’.

2.	Wait	1.1	second	(greater	than	the	one	second	guard	time).

3.	Output		“+++”.

4.	Wait	1.1	second	(greater	than	the	one	second	guard	time).

5.	Wait	for	response,	should	be	OK<CR>.

Each	node	must	establish	its	address	(called	my)	and	the	destination	address.	For	example,
if	this	computer	is	at	address	0x01	and	wishes	to	send	packets	to	the	computer	at	address
0x02,	then	this	computer	executes	these	AT	commands.	The	software	should	wait	20	ms
after	each	AT	command.		When	an	AT	command	is	executed	correctly,	the	XBee	responds
with	OK<CR>.	One	of	the	simplest	modes	is	Application	Programming	Interface
(API)	mode	1,	which	allows	the	nodes	to	send	and	receive	packets:

ATDL02<CR>																														Sets	destination	address	to	2	(number	given	in
hexadecimal)

ATDH0<CR>																												Sets	destination	high	address	to	0

ATMY01<CR>																													Sets	my	address	to	1	(number	given	in	hexadecimal)

ATAP1<CR>																														Sets	API	mode	1	(packets)

ATCN<CR>																													Ends	command	mode

	

The	other	node	in	the	point-to-point	connection	performs	a	similar	initialization,	but
obviously	with	the	my	and	destination	addresses	reversed.	Using	the	API	mode	simplifies
the	application	software,	because	all	message	routing,	error	detection/retransmission,	and
message	acknowledgement	occurs	at	lower	levels	automatically.	A	data	transmission
frame	has	the	following	format:

0x7E,	LengthHi,	LengthLo,	0x01,	ID,	DestHi,	DestLo,	0x00,	b1,	…,	bn,	Chksum

	

All	API	mode	1	frames	begin	with	0x7E.	The	next	two	bytes	are	the	length	of	the
message,	which	will	be	the	number	of	bytes	after	the	length	and	before	the	checksum.	The
length	does	not	include	the	four	bytes	comprising	the	0x7E,	which	is	the	length	itself	and
the	checksum.	The	fourth	byte	0x01	signifies	this	is	a	transmit	data	packet.	The	ID	should
be	used	as	a	message	sequence	number.	I.e.,	as	this	computer	sends	packets	to	the
destination	computer,	the	ID	is	sequenced	as	1,	2,	…	255,	1,	2,	…	An	ID	of	0	is	not	used.
This	sequence	number	guarantees	the	packets	arrive	at	the	destination	in	the	same	order	as
they	were	sent.

The	two	bytes	DestHi,DestLo	specify	the	destination	node	address.	The	high	byte	should
be	zero	for	this	configuration.	The	next	byte	provides	options	for	the	frame,	which	should
be	0.	Bytes	b1	through	bn	are	the	data	to	be	transmitted.	Because	there	is	a	frame	length,
this	data	can	be	formatted	however	you	wish.	The	last	byte	of	the	frame	will	be	a
checksum.	Let	sum	be	the	8-bit	addition	of	all	bytes	not	including	0x7E	delimiter	and	the
length.	We	calculate	Chksum	as	0xFF-sum.	In	this	way	the	receiver	can	add	up	all	the
bytes	after	the	length	and	including	the	Chksum	in	order	to	get	the	result	0xFF.

For	example,	assume	we	wish	to	send	the	message	“He”	to	node	2.	Also	assume	this	is	the
254th	frame	sent,	so	the	ID	will	be	0xFD.	The	message	has	a	length	of	7.	The	checksum	is
calculated	as

0xFF‑(0x01+0xFD+0x00+0x02+0x00+0x48+0x65)	=	0x52.
The	oscilloscope	recording	for	this	frame	is	shown	in	Figure	11.9.

	

Figure	11.9.		API	transmit	frame	measured	on	the	Din	pin	of	the	XBee
module.
When	the	transmitted	frame	is	properly	delivered,	the	XBee	sends	an	acknowledgment	to
the	transmitter.	The	length	is	always	3	bytes.	The	API	code	is	0x89.	The	ID	matches	the
corresponding	value	of	the	transmitted	frame.	The	next	byte	is	a	status	field,	and	0x00
means	success.	A	status	of	0x01	means	no	acknowledgement	received,	which	may	mean
the	destination	node	does	not	exist	or	is	turned	off.	A	status	of	0x02	means	CCA	failure
and	0x03	means	the	message	was	purged.	The	Chksum	byte	is	calculated	in	the	same
manner	as	all	the	API	frames.

0x7E,	0x00,	0x03,	0x89,	ID,	0x00,	Chksum

	

Figure	11.10	shows	a	scope	trace	when	an	acknowledge	frame	was	reported	to	the
transmitter.	The	ID	of	this	frame	is	0xC1.	The	checksum	for	this	frame	is	0xFF-
(0x89+0xC1+0x00)	=	0xB5.

Figure	11.10.		API	acknowledge	frame	measured	on	the	Dout	pin	of	the
XBee	module.
The	receiver	with	a	my	address	matching	the	destination	address	of	the	transmitted	frame
will	be	given	that	frame	as	an	API	packet	type	0x81.	A	data	receive	frame	has	the
following	format:

	

0x7E,	LengthHi,	LengthLo,	0x81,	SourceHi,	SourceLo,	RSSI,	0x00,	b1,	…,	bn,
Chksum

	

The	source	field	identifies	the	node	that	sent	the	message.	The	RSSI	(received	signal
strength	indictor)	is	the	decimal	equivalent	measure	of	the	signal.	For	example	0x3A
means	the	received	signal	strength	is	58	dBm.		The	option	field	should	be	zero.	Bytes	b1
through	bn	contains	the	data.	Figure	11.11	shows	a	scope	trace	of	the	received	message
corresponding	to	the	transmitted	message	in	Figure	11.9

Figure	11.11.		API	receive	frame	measured	on	the	Dout	pin	of	the	XBee
module.

11.4.	Internet	of	Things

11.4.1.	Basic	Concepts
With	the	proliferation	of	embedded	systems	and	the	pervasiveness	of	the	internet,	it	is
only	natural	to	connect	the	two.	The	internet	of	things	(IoT)	is	the	combination	of
embedded	systems,	which	have	sensors	to	collect	data	and	actuators	to	affect	the
surrounding,	and	the	internet,	which	provides	for	ubiquitous	remote	and	secure
communication.	This	section	will	not	describe	how	the	internet	works,	but	rather	we	will
discuss	both	the	general	and	specific	approaches	for	connecting	embedded	systems	to	the
internet.		For	an	excellent	description	of	the	TCP/IP	(Transmission	Control
Protocol/Internet	Protocol)	protocol	the	reader	is	referred	to	W.	Richard	Stevens,	TCP/IP
Illustrated,	Volume	1:	The	Protocols.	For	a	general	description	of	the	internet	of	things,
see	Vasseur	and	Dunkels,	Interconnecting	Smart	Objects	with	IP.	These	two	books
provides	good	overviews	of	network	technologies	used	for	connecting		devices.

Figure	11.12	illustrates	the	distributed	approach	taken	with	the	internet	of	things.	A
distributed	solution	deploys	multiple	sensors	and	actuators	connected	by	the	internet.
Another	name	given	for	an	embedded	system	connected	to	the	internet	is	smart	object.
Smart	objects	include	sensors	to	collect	data,	processing	to	detect	events	and	make
decisions,	and	actuators	to	manipulate	the	local	environment.	There	are	many	reasons	to
consider	a	distributed	solution	(network)	over	a	centralized	solution.	Often	multiple
simple	microcontrollers	can	provide	a	higher	performance	at	lower	cost	compared	to	one
computer	powerful	enough	to	run	the	entire	system.	Some	embedded	applications	require
input/output	activities	that	are	physically	distributed.	For	real-time	operation	there	may
not	be	enough	time	to	allow	communication	between	a	remote	sensor	and	a	central
computer.	Another	advantage	of	distributed	system	is	improved	debugging.	For	example,
we	could	use	one	node	in	a	network	to	monitor	and	debug	the	others.	Often,	we	do	not
know	the	level	of	complexity	of	our	problem	at	design	time.	Similarly,	over	time	the
complexity	may	increase	or	decrease.	A	distributed	system	can	often	be	deployed	that	can
be	scaled.	For	example,	as	the	complexity	increases	more	nodes	can	be	added,	and	if	the
complexity	were	to	decrease	nodes	could	be	removed.	Table	11.2	lists	some	existing
applications	and	the	things	they	sense	or	control.

Figure	11.12.		The	internet	of	things	places	input,	output	and	processing

at	multiple	locations	connected	together	over	the	internet.
Industrial	Automation														Factories,	machines,	shipping

Environment																												Weather,	pollution,	public	safety

Smart	Grid																												Electric	power,	energy	delivery

Smart	Cities																												Transportation,	hazards,	public	services

Social	Networks																												Ideas,	politics,	sales,	and	communication

Home	Networks																												Lighting,	heat,	security,	information

Building	Networks														Energy,	hazards,	security,	maintenance

Structural	Monitors														Bridges,	roads,	building

Health	Care																												Heart	function,	medical	data,	remote	care

Law	enforcement														Crime,	public	safety
Table	11.2.		Applications	of	smart	objects.

Challenges.	On	a	local	scale,	the	design	of	smart	objects	faces	the	same	challenges
existing	in	all	embedded	systems:	power,	size,	reliability,	longevity,	and	cost.	Luckily	the
deployment	of	billions	of	microcontrollers	into	the	market	has	created	a	technology	race	to
reduce	power,	size	and	cost	while	increasing	the	performance.	At	the	microcontroller	level
things	are	getting	smaller,	but	at	the	network	level,	complexity	is	increasing	and	protocols
are	constantly	changing	as	the	world’s	thirst	for	information	and	communication	rapidly
grows.

Standardization.	The	existence	of	standards	allows	for	a	wide	variety	of	objects	to
communicate	with	each	other.	Adhering	to	a	standard	will	increase	the	acceptance	of	our
device	by	customers,	and	allow	our	customers	to	apply	our	device	to	solve	problems	we
never	envisioned.	uIP	is	a	light-weight	implementation	of	the	IP	stack	specifically
designed	to	operate	with	the	available	memory	resources	of	smart	objects.	In	this	section
we	will	start	with	a	microcontroller	with	the	hardware	and	software	to	implement	TCP/IP
protocols,	and	build	our	application	on	top	of	this	standard.

Interoperability	means	our	device	can	function	with	a	wide	range	of	other	devices	made
with	different	technologies,	sold	by	different	vendors,	and	produced	by	different
companies.

Evolution	is	process	of	how	new	technologies	are	introduced	into	the	market.	If	there	is
one	constant	in	this	world,	it	is	that	things	will	change.	Every	thousand	years,	one	big
discovery	fundamently	changes	how	we	operate	(fire,	language,	metal	tools).	More
frequently,	change	is	introduced	gradually	such	that	those	technologies	that	give	us	a
competitive	advantage	survive.	If	we	build	our	business	model	on	the	premise
evolutionary	change,	then	we	can	be	nimble	to	deploy	new	technology	when	it	provides
lower	cost	and/or	better	performance.

Stability.	Even	though	technology	will	advance,	our	customers	demand	products	that
work	reliably,	for	a	long	time,	and	in	a	manner	with	which	they	are	comfortable.	Over	the
last	50	years	automotive	technology	has	drastically	improved,	but	the	driving	experience,
how	we	drive,	has	remained	almost	constant.

Abstraction.	You	will	notice	the	approach	in	this	section	differs	widely	from	the	other
examples	in	this	book.	The	rest	of	the	book	deploys	a	bottom	up	approach.	With	bottom-
up	education,	the	details	are	first	explained,	so	there	is	no	magic,	and	then	abstraction
occurs	by	encapsulating	that	we	fully	understand.	In	this	section	we	will	purchase
hardware	and	software	with	capabilities	to	communicate	with	the	internet,	and	use	this
abstraction	without	fully	understanding	how	some	of	the	lower	levels	operate.

Scalability.	ARM	reports	over	50	million	devices	with	an	ARM	core	have	been	shipped
from	1993	to	2013,	and	predicts	another	50	billion	before	the	end	of	this	decade.	In	order
to	be	effective	and	profitable,	we	need	to	develop	systems	that	can	scale.

Security.	Because	embedded	systems	are	deployed	in	life-critical	situations,	and	because
the	quality	of	service	affect	our	profits,	we	must	protect	the	system	from	a	determined
adversary.	A	chain	is	only	as	strong	as	its	weakest	link.	Security	can	not	be	obtained
simply	by	operating	in	secret,	because	once	the	secret	is	out,	the	system	will	be	extremely
vulnerable.	“Security	by	obscurity”	is	a	very	poor	design	method.	Security	involves	more
than	encrypting	the	data.	The	first	aspect	of	security	is	confidentiality.	We	must	decide
what	it	means	to	view/change	the	data	and	who	has	the	right	to	read/write.	Authentication
is	the	means	to	ensure	the	identity	of	the	sender	is	correct.	Confidentiality	will	require
both	logical	and	physical	measures	to	protect	again	an	attack.	Encryption	makes	it	harder
for	an	unauthorized	party	to	view	a	message.	The	second	aspect	is	data	integrity.	For	most
of	the	applications	listed	in	Table	11.2	it	is	important	that	data	reach	the	rightful	recipient
in	an	unaltered	fashion.	To	support	network	integrity	we	need	techniques	that	support	both
detection	and	prevention.	The	third	aspect	is	availability.	A	secure	communication	not
only	requires	the	correct	data	arrive	at	the	correct	place,	but	also	at	the	correct	time.	A
Denial	of	Service	(DoS)	attack	attempts	to	breach	the	availability	of	the	network.	For
wired	networks,	we	can	reroute	traffic	along	multiple	paths.	With	wireless	networks,	we
can	channel	hop	by	switching	channels	on	a	pseudorandom	fashion,	making	it	harder	for
an	attacker	to	jam.	For	more	information	on	security,	see	Frank	Stajano,	Security	for
Ubiquitous	Computing.

11.4.2.	Layered	Model

Most	networks	provide	an	abstraction	that	hides	low-level	details	from	high-level
operations.	This	abstraction	is	often	described	as	layers.		The	International	Standards
Organization	(ISO)	defines	a	7-layer	model	called	the	Open	Systems	Interconnection
(OSI),	as	shown	on	the	left	of	Figure	11.13.	It	provides	a	standard	way	to	classify	network
components	and	operations.	The	Physical	layer	includes	connectors,	bit	formats,	and	a
means	to	transfer	energy.	Examples	include	RS232,	controller	area	network	(CAN),
modem	V.35,	T1,	10BASE-T,	100BASE-TX,	DSL,	and	802.11a/b/g/n	PHY.	The	Data	link
layer	includes	error	detection	and	control	across	a	single	link	(single	hop).	Examples
include	802.3	(Ethernet),	802.11a/b/g/n	MAC/LLC,	PPP,	and	Token	Ring.	The	Network
layer	defines	end-to-end	multi-hop	data	communication.	The	Transport	layer	provides
connections	and	may	optimize	network	resources.	The	Session	layer	provides	services	for
end-user	applications	such	as	data	grouping	and	check	points.	The	Presentation	layer
includes	data	formats,	transformation	services.	The	Application	layer	provides	an
interface	between	network	and	end-user	programs.

Figure	11.13.	The	TCP/IP	model	has	four	layers.
The	TCP/IP	model	of	the	Internet	does	not	adhere	to	such	a	strict	layered	structure,	but
does	recognize	four	broad	layers:	scope	of	the	software	application;	the	end-to-end
transport	connection;	the	internetworking	range;	and	the	direct	links	as	shown	on	the	right
of	Figure	11.13.	Examples	of	applications	include	Telnet,	FTP	(File	Transfer	Protocol),
and	SMTP	(Simple	Mail	Transfer	Protocol).	Examples	of	transport	include	TCP
(Transmission	Control	Protocol)	and	UDP	(User	Datagram	Protocol).	TCP	provides
reliable,	ordered	delivery	of	data	from	a	software	task	on	one	computer	to	another
software	task	running	on	another	computer.	For	applications	that	do	not	require	reliable
data	stream	service	UDP	can	be	used.	UDP	provides	a	datagram	service	that	emphasizes
reduced	latency	over	reliability.	Examples	of	network	include	IP	(Internet	Protocol),	ICMP
(Internet	Control	Message	Protocol)	and	IGMP	(Internet	Group	Management	Protocol).
Ethernet	is	the	physical	link	explored	later	in	this	section.	In	this	section	we	will	develop
projects	at	the	application	layer.	The	communication	of	bits	happen	at	the	physical	layer,
frames	at	the	data	link	layer,	packets	or	datagrams	at	the	network	layer,	segments	at	the
transport	layer,	and	messages	at	the	application	layer.

11.4.3.	Message	Protocols
The	layered	format	can	be	seen	in	the	message	packet	formats,	as	overviewed	in	Figure
11.14.	At	the	lowest	level	are	physical	frames.	Ethernet	frames	contain	a	header,	46	to
1500	bytes	of	payload,	and	a	trailer.	The	header	includes	address,	type	and	length
information.	If	the	there	is	less	than	46	bytes	of	Ethernet	data,	zeros	are	added	(padding)
to	make	the	Ethernet	payload	at	least	46	bytes.	The	trailer	includes	error	checking	(CRC).
At	the	IP	level,	packets	include	a	header	and	payload.	The	header	of	an	IP	packet	includes
a	32-bit	destination	IP	address,	typically	shown	as	four	8-bit	numbers	(e.g.,	176.31.244.1).
Some	of	these	IP	addresses	are	reserved	for	communicating	within	nodes	on	a	local
network.	The	Domain	Name	System	(DNS)	host	can	be	used	to	translate	domain	names	to
IP	addresses.	Computers	that	communicate	only	with	each	other	via	TCP/IP,	but	are	not
connected	to	the	Internet,	need	not	have	globally	unique	IP	addresses.	IP	addresses	for
private	networks	are	listed	in	Table	11.3.	These	IP	addresses	could	be	used	for	embedded
systems	that	use	TCP/IP	to	communicate,	but	are	not	connected	to	the	internet.

Start End Number	of
addresses

10.0.0.0 10.255.255.255 224

172.16.0.0 172.31.255.255 220

192.168.0.0 192.168.255.255 216

Table	11.3.	Private	IP	addresses.

Because	of	the	growth	of	the	internet,	the	32-bit	IP	address	(IPv4)	is	being	replaced	with	a
128-bit	address	(IPv6),	which	will	provide	for	about	3∙1038	addresses.	The	IP	header	is	20
to	40	bytes	and	contains	the	source	IP	address,	destination	IP	address,	and	length.

The	UDP	header	is	8	bytes	and	contains	the	source	port,	destination	port,	length,	and
checksum,	see	Table	11.4.	The	IP	address	specifies	the	node,	and	ports	are	addresses
within	the	source	and	destination	nodes.

Source	port:	16-bit	number	of	the	process	that	sent	the	packet,	could	be	zero

Destination	port:	16-bit	number	of	the	process	to	receive	the	packet.

Length:	16-bit	number	specifying	the	size	in	bytes	of	the	data	to	follow

Checksum:	16-bit	modulo	addition	of	all	data,	UDP	header,	and	IP	header
Table	11.4.	UDP	header	format.

The	TCP	header	is	20	bytes	with	the	possibility	of	additional	and	optional	information,	see
Table	11.5.	The	sequence	and	acknowledgment	numbers	allow	the	receiver	to	properly
sort	segments	of	data	that	were	received	out	of	order.	The	flags	specify	different	modes	of
the	TCP	communication.	The	SYN	flag	means	the	first	of	a	sequence	of	packets,	and	the
FIN	flag	means	the	last.	The	RST	flag	terminates	a	connection.	The	URG	flag	means	the
urgent	pointer	specifies	a	piece	of	data	the	application	urgently	needs.

Figure	11.14.	Overview	of	message	packets	used	at	various	layers.

Source	port:	16-bit	number	of	the	process	that	sent	the	packet,	could	be	zero

Destination	port:	16-bit	number	of	the	process	to	receive	the	packet.

Sequence	number:	32-bit	number	defining	the	position	of	this	data

Acknowledgement:	32-bit	number	of	the	next	data	expected	to	be	received

Hlen:	4-bit	field	of	the	header	size	(including	options)	divided	by	4

Flags:	6-bit	field	with	FIN,	SYN,	RST,	PSH,	ACK,	and	URG

Window:	16-bit	number	specifying	the	number	of	bytes	the	receiver	can
accept

Checksum:	16-bit	modulo	addition	of	all	data,	TCP	header,	and	IP	header

Urgent	pointer:	16-bit	field	pointing	to	a	place	in	the	stream	urgently	needed
Table	11.5.	TCP	header	format.

11.4.4.	Web	server

This	first	application	creates	a	web	server	that	maintains	a	web	page	displaying	local	data,
see	Figures	11.15	and	11.16.	The	components	of	the	system	are	a	sensor	and	sensor
interface	(Figure	10.28	and	Program	10.1),	an	EK-TM4C1294XL	LaunchPad,	Texas
Instruments	Tivaware,	and	a	router	connected	to	the	Internet.	The	Dynamic	Host
Configuration	Protocol	server	provides	an	IP	address,	and	is	typically	initiated	via	a	DHCP
broadcast,	when	it	connects.	DHCP	provided	the	address	192.168.0.107,	a	local	address	on
its	network.	This	example	was	built	on	top	of	the	uIP	stack	delivered	as	part	of	Tivaware.
First,	you	need	to	download	Tivaware.	I	first	ran	the	enet_uipexample	found	in
the TivaWare_C_Series-2.1.0.12573\examples\boards\ek-tm4c1294xl\enet_uip 	folder.
I	copied	this	example,	and	changed	the	web	server	as	shown	in	Program	11.1.

	

Figure	11.15.	The	thermistor	measures	temperature	and	the	LaunchPad
serves	pages	to	the	internet.

Figure	11.15.	The	thermistor	measures	temperature	and	the	LaunchPad
serves	pages	to	the	internet.

Program	11.1	shows	the	code	you	need	to	modify	to	create	your	own	remote	sensor	smart
object.	When	another	node	sends	a	request	to	this	server,	this	node	will	respond	with	html
code	to	render	the	page.	The	page	is	divided	into	three	parts.	The	firstpart
(default_page_buf1of3)	and	last	part	(default_page_buf3of3)	are	fixed.	The
application	callback	function, httpd_appcall ,	is	invoked	when	the	web	page	is	requested.
This	callback	function	calls	ourapplication	function Board_Update 	which	collects	sensor
data	from	the	thermistor	and	rebuilds	the	middle	part	of	the	html	code
(default_page_buf2of3).	The	meta	code	automatically	refreshes	every	5	seconds.
const	char	default_page_buf1of3[]	=

		“HTTP/1.0	200	OK\r\n”

		“Server:	UIP/1.0	(http://www.sics.se/~adam/uip/)\r\n”

		“Content-type:	text/html\r\n\r\n”

		“<!DOCTYPE	HTML	PUBLIC	\”-//W3C//DTD	HTML	4.01	Transitional//EN”

		“http://www.w3.org/TR/html4/loose.dtd\”>”

		“<html>	<head>”

		“<meta	http-equiv=\“refresh\”	content=\“5\”>”

		“<title>Embedded	Systems</title></head>”

		“<body>	<center>”

		“<h1>Embedded	Systems:	Real-Time	Interfacing”

		“to	ARM	Cortex	M	Microcontrollers</h1>”

		“<p>This	is	an	example	from	the	book,	Section	11.4	Internet	of	Things</p>”

		“<p>	For	more	information	see	“

		“”

		“the	book	web	site	.”

		“<hr	width=\“75%\”>”

		“<p>A	thermistor	is	configured	for	temperature	measurement,	“

		“with	a	range	from	0	to	50C.	“

		“For	details	of	analog	circuit	see	the	book	Figure	10.28.	“

		“The	analog	signal	is	sampled	on	PE3/Ain0.		“

		“The	12-bit	digital	sample	is	converted	to	temperature	using	table	lookup	“

		“and	linear	interpolation.</p>		“

		“<p>The	temperature	is	“;

uint32_t	const	buf1of3_Size	=	(sizeof(default_page_buf1of3)	-	1);

char	default_page_buf2of3[]	=	“12.01”;

uint32_t	buf2of3_Size	=	(sizeof(default_page_buf2of3)	-	1);

const	char	default_page_buf3of3[]	=

		”	C.</p>”

		“<hr	width=\“75%\”>”

		“<p>This	web	page	is	served	by	a	small	web	server	running	on	top	of	“

		“the	µIP	embedded	TCP/IP	“

		“stack.</center>	</body>	</html>”;

uint32_t	const	buf3of3_Size	=	(sizeof(default_page_buf3of3)	-	1);

void	Board_Update(void){uint32_t	data,temperature;

		data	=	ADC0_InSeq3();																						//	12-bit	ADC,	0	to	4095

		temperature	=	ADC2Temperature(data);							//	temperature,	0.01C

		Fix2Str(temperature,default_page_buf2of3);	//	5	ASCII	characters

		buf2of3_Size	=	5;	//	in	this	case	it	is	fixed	size	(but	it	could	vary)

}

Program	11.1.	The	thermistor	measures	temperature	and	the	LaunchPad
serves	pages	to	the	internet.
To	run	the	internet	examples	described	in	this	section	download	and	unzip	the	IoT
examples	into	examples\boards	so	the	directory	path	looks	like	this

TivaWare_C_Series-2.1.0.12573

examples

boards

CC31xxxx

ek-tm4c1294xl-enet_uip_temperature

ek-tm4c123gxl-boost-cc3100_basic_wifi_UDP

ek-tm4c123gxl-boost-cc3100_starter

ek-tm4c1294xl-boost-cc3100_starter

11.4.5.	UDP	communication	over	wifi
The	approach	for	implementing	a	smart	object	over	wifi	is	to	begin	with	a
hardware/software	platform	that	implements	IEEE801.11	wifi.	The	CC3100BOOST	is	a
boosterpack	that	can	be	used	with	the	MSP430	LaunchPad,	the	TM4C123	LaunchPad,	the
TM4C1294	LaunchPad,	or	with	a	CC31XXEMUBOOST	emulation	module,	see	Figure
11.16.	The	emulation	module	can	be	used	early	in	a	project	to	develop	wireless
applications	using	a	“generic”	microcontroller.	After	a	prototype	is	configured,	the	project
can	select	a	microcontroller	and	design	the	actual	smart	object.	In	this	design	we	will	use
either	of	the	two	TM4C	LaunchPads	and	develop	a	solution	that	transmits	UDP	packets
from	one	smart	object	to	another.	UDP	is	simpler	than	TCP	and	appropriate	for
applications	requiring	simplicity	and	speed.	Furthermore,	to	use	UDP	the	application	must
tolerate	lost	or	out	of	order	packets.	UDP	provides	a	best-effort	datagram	delivery	service.

Figure	11.16.		The	CC3100	booster	packet	provides	IEEE802.11	wireless
connectivity.
The	actual	TCP/IP	software	stack	resides	in	firmware	on	the	booster	pack	itself.	Therefore,
when	using	any	of	the	wireless	booster	packs	the	first	step	is	to	upgrade	the	firmware.	One
way	to	upgrade	the	firmware	is	to	use	the	CC31XXEMUBOOST	emulation	module.	The
examples	of	this	section	ran	on	version	3.3	booster	packs	without	needing	to	upgrade	the
firmare.

Program	11.2	shows	the	client	software,	which	samples	the	ADC	and	sends	UDP	packets.
Line	1	specifies	the	name	of	the	access	point	(AP)	to	which	the	node	will	connect.	There
is	a	mechanism	using	SmartConfig	to	automate	this	discovery,	but	in	this	example	I	named
the	AP	Valvano	so	I	used	a	manual	method	to	define	the	connection	between	the	node	and
AP.	The	UDP	payload	will	have	a	type	field,	which	is	defined	in	line	2.	The	destination	IP
address	is	hard-coded	in	line	3.	For	this	application,	the	server	was	at	IP	address	address
192.168.0.101,	which	in	hex	is	C0.A8.00.65.	The	port	number,	which	is	a	16-bit	value
defining	which	process	in	the	server	should	receive	the	data,	is	specified	in	line	4.	There
are	a	long	list	of	registered	port	numbers	that	have	special	purposes,	so	I	chose	a	port
number	larger	than	1024	to	avoid	selecting	any	of	these	special	purpose	port	numbers.
Lines	5	and	6	define	the	payload	for	the	UDP	packet.	Line	15	sets	the	bus	clock	to	50
MHz.	The	PLL	needs	to	be	active	for	the	ADC	to	operate.	Line	16	initializes	the	ADC
channel	7	using	PD0.	Line	17	initializes	the	CC3100.	After	executing	line	18	we	will	be
connected	and	have	IP	address.	Line	19	will	return	the	network	configuration.		Lines	21-
24	define	the	address	and	port	to	which	the	USP	packet	will	be	sent.	Line	25	defines	and
opens	a	socket.	In	this	example	we	leave	the	socket	open,	but	it	is	ok	to	close	the	socket,
go	into	low-power	mode,	and	reopen	the	connection	after	sleeping.	Lines	26-29	will
sample	the	ADC	and	create	a	new	message.	Line	30	sends	the	UDP	packet	through	the
open	socket.	The	wait	in	line	32	defines	the	rate	at	which	packets	are	sent.	Each	of	the	wifi
functions	will	return	a	success	flag	(error	code).	In	this	simple	program	we	ignored	the
return	values,	assuming	it	was	ok.	In	the	version	on	the	web,	the	process	is	restarted	on
error.

#define	SSID_NAME		“Valvano”			//	AP	to	connect	to																1

#define	ATYPE						‘a’									//	analog	data	type																2

#define	IP_ADDR					0xC0A80065		//	server	IP																							3

#define	PORT_NUM				5001						//	Port	number	to	be	used										4

#define	BUF_SIZE				12										//																																	5														

UINT8	uBuf[BUF_SIZE];											//	UDP	packet	payload													6

int	main(void){

		UINT8													IsDHCP	=	0;

		_NetCfgIpV4Args_t	ipV4;

		SlSockAddrIn_t				Addr;

		UINT16												AddrSize	=	0;

		INT16													SockID	=	0;

		UINT32												data;

		unsigned	char					len	=	sizeof(_NetCfgIpV4Args_t);

		initClk();									//	PLL	50	MHz,	ADC	needs	PPL	active										15

		ADC0_InitSWTriggerSeq3(7);		//	Ain7	is	on	PD0																			16

		sl_Start(0,	0,	0);	//	Initializing	the	CC3100	device												17

		WlanConnect();					//	connect	to	AP																													18

		sl_NetCfgGet(SL_IPV4_STA_P2P_CL_GET_INFO,&IsDHCP,&len,							//	19

(unsigned	char	*)&ipV4);																								//	20

		Addr.sin_family	=	SL_AF_INET;																							//										21

		Addr.sin_port	=	sl_Htons((UINT16)PORT_NUM);									//										22

		Addr.sin_addr.s_addr	=	sl_Htonl((UINT32)IP_ADDR);			//										23

		AddrSize	=	sizeof(SlSockAddrIn_t);																		//										24

		SockID	=	sl_Socket(SL_AF_INET,SL_SOCK_DGRAM,	0);				//										25

		while(1){

uBuf[0]	=	ATYPE;						//	analog	data	type																					26

uBuf[1]	=	‘=’;								//																																						27

data	=	ADC0_InSeq3();	//	0	to	4095,	Ain7	is	on	PD0												28

Int2Str(data,(char*)&uBuf[2]);	//	6	digit	number														29

sl_SendTo(SockID,	uBuf,	BUF_SIZE,	0,								//																30

(SlSockAddr_t	*)&Addr,	AddrSize);	//					31

ROM_SysCtlDelay(ROM_SysCtlClockGet()	/	25);	//	40ms											32

		}

}

Program	11.2.	Client	software	that	measures	ADC	data	and	sends	UDP
packets.
Program	11.3	shows	the	server	software,	which	accepts	UDP	packets	and	plots	the	data	on
an	ST7735	graphics	LCD.	Line	1	specifies	the	name	of	the	access	point	(AP)	to	which	the
node	will	connect.	The	client	and	server	use	the	same	AP,	which	I	named	Valvano,	so	I
used	the	manual	method	to	define	the	connection	between	the	node	and	AP.	The	UDP
payload	will	have	a	type	field,	which	is	defined	in	line	2.	Lines	16,	22-25	configure	the
wifi	connection	in	a	similar	way	as	the	client.	Lines	17-20	initialize	the	ST7735	LCD	and
output	a	welcome	message.	Line	21	configures	the	LCD	graphics	routines	specifying	the
range	on	the	y-axis	of	the	plot.	Raw	ADC	data	will	be	plotted	versus	time.	Lines	26-29
define	an	IP	address	and	port	to	use.	Line	31	defines	and	opens	a	socket,	and	lines	32-33
bind	the	port	to	that	socket.	Lines	34-35	receive	a	UDP	packet.	Just	like	the	client,	we
leave	the	socket	open.	If	we	wished	to	save	power,	we	could	close	the	socket,	go	into	low-
power	mode,	and	reopen	the	connection	after	sleeping.	Lines	36-51	decode	the	packet	and
plot	the	data	on	the	LCD.

#define	SSID_NAME			“Valvano”			//	AP	to	connect	to																1

#define	ATYPE							‘a’									//	analog	data	type																2

#define	IP_ADDR					0xC0A80065		//	server	IP																							3

#define	PORT_NUM				5001								//	Port	number	to	be	used										4

#define	BUF_SIZE				12										//																																	5														

UINT8	uBuf[BUF_SIZE];											//	UDP	packet	payload														6

int	main(void){

		UINT8													IsDHCP	=	0;

		_NetCfgIpV4Args_t	ipV4;

		SlSockAddrIn_t				Addr,	LocalAddr;

		UINT16												AddrSize	=	0;

		INT16													SockID	=	0;

		INT16													Status	=	1;		//	ok

		UINT32												data;

		unsigned	char					len	=	sizeof(_NetCfgIpV4Args_t);

		initClk();								//	PLL	50	MHz,	ADC	needs	PPL	active											16

		ST7735_InitR(INITR_REDTAB);																		//	Initialize						17

		ST7735_OutString(“Internet	of	Things\n”);				//																	18

		ST7735_OutString(“Embedded	Systems\n”);						//																	19

		ST7735_OutString(“Vol.	2,	Valvano”);									//																	20

		ST7735_PlotClear(0,4095);		//	range	from	0	to	4095														21

		sl_Start(0,	0,	0);	//	Initializing	the	CC3100	device												22

		WlanConnect();					//	connect	to	AP																													23

		sl_NetCfgGet(SL_IPV4_STA_P2P_CL_GET_INFO,&IsDHCP,&len,			//					24

(unsigned	char	*)&ipV4);																				//					25

		LocalAddr.sin_family	=	SL_AF_INET;																							//					26

		LocalAddr.sin_port	=	sl_Htons((UINT16)PORT_NUM);									//					27

		LocalAddr.sin_addr.s_addr	=	0;																											//					28

		AddrSize	=	sizeof(SlSockAddrIn_t);																							//					29

		while(1){

		SockID	=	sl_Socket(SL_AF_INET,SL_SOCK_DGRAM,	0);							//					31		

Status	=	sl_Bind(SockID,	(SlSockAddr_t	*)&LocalAddr,			//					32

AddrSize);																										//					33

Status	=	sl_RecvFrom(SockID,	uBuf,	BUF_SIZE,	0,								//					34

(SlSockAddr_t	*)&Addr,	(SlSocklen_t*)&AddrSize);//					35

if((uBuf[0]==ATYPE)&&(uBuf[1]==	‘=’)){																	//					36

int	i,bOk;	uint32_t	place;																											//					37

data	=	0;	bOk	=	1;																																			//					38

i=4;		//	ignore	possible	negative	sign																						39

for(place	=	1000;	place;	place	=	place/10){										//					40

if((uBuf[i]&0xF0)==0x30){	//	ignore	spaces																41

data	+=	place*(uBuf[i]-0x30);																				//					42

}else{																																													//					43

if((uBuf[i]&0xF0)!=	‘	‘){																								//					44

bOk	=	0;																																							//					45

}																																																//					46

}																																																		//					47

i++;																																															//					48

}																																																				//					49

if(bOk){																																													//					50

ST7735_PlotLine(data);																													//					51

ST7735_PlotNextErase();																												//					51

}

}

		}

}

Program	11.3.	Server	software	that	receives	UDP	packets	and	plots	results
on	the	LCD.
Since	UDP	transmission	is	“best	effort”	we	could	loose	packets	or	receive	packets	out	of
order.	In	this	simple	example	we	will	not	know	if	either	of	these	errors	were	to	occur.	If
we	wished	to	have	a	more	reliable	transmission,	we	could	have	used	TCP.Program	11.2
line	25	would	have	specified	a	socket	stream	instead	of	a	datagram.	To	create	a	TCP
communication,	use	the	example	software	in	the tcp_socket 	folder.

		SockID	=	sl_Socket(SL_AF_INET,SL_SOCK_STREAM,	0);				//		TCP	socket

	

11.4.6.	Other	CC3100	Applications
This	section	lists	the	sample	applications	are	also	provided	for	MSP430F5739,
TM4C123GH6PM	and	SimpleLink	Studio.	The	source	code	for	these	examples	can	be
found	in	the	examples	directory	after	downloading	CC3100SDK,	the	SimpleLink	Wi-Fi
CC3100	Software	Development	Kit	(SDK)	from	the	TI	website.	For	more	details	on	each
example,	see	the	docs	folder	included	in	the	CC3100SDK	download.	The	CC3100	comes
preloaded	with	CC3100	BoosterPack	comes	preloaded	with	Out	of	Box	HTML	pages.	Out
of	box	demo	highlights	the	following	features:	Simple	WLAN	Connection	Using	Smart
Config,	and	easy	access	to	CC3100	using	mDNS	and	HTTP	Server.

Antenna	Selection.	This	is	a	reference	implementation	for	antenna-selection	scheme
running	on	the	host	MCU,	to	enable	improved	radio	performance	inside	buildings

Connection	Policies.	This	application	demonstrates	the	usage	of	the	CC3100	profiles	and
connection-policies.

Send	Email.	This	application	sends	an	email	using	SMTP	to	a	user-configurable	email
address	at	the	push	of	a	button.

Enterprise	Network	Connection.	This	application	demonstrates	the	procedure	for
connecting	the	CC3100	to	an	enterprise	network.

File	Download.	This	application	demonstrates	file	download	from	a	cloud	server	to	the	on
board	serial	Flash.

File	System.	This	application	demonstrates	the	use	of	the	file	system	API	to	read	and
write	files	from	the	serial	Flash.

Get	Time.	This	application	connects	to	an	SNTP	cloud	server	and	receives	the	accurate
time.

Get	Weather.	This	application	connects	to	‘Open	Weather	Map’	cloud	service	and
receives	weather	data.

Getting	Started	in	AP	Mode.	This	application	configures	the	CC3100	in	AP	mode.	It
verifies	the	connection	by	pinging	the	connected	client.

Getting	Started	in	Station	Mode.	This	application	configures	the	CC3100	in	STA	mode.
It	verifies	the	connection	by	pinging	the	connected	Access	Point.

HTTP	Server.	This	application	demonstrates	using	the	on-chip	HTTP	Server	APIs	to
enable	static	and	dynamic	web	page	content.

IP	Configuration.	This	application	demonstrates	how	to	enable	static	IP	configuration
instead	of	using	DHCP.

mDNS.	This	application	registers	the	mDNS	service	for	broadcasting	and	attempts	to	get
the	service	by	the	name	broadcasted	by	another	device.

Mode	Configuration.	This	application	demonstrates	switching	between	STA	and	AP
modes.

NWP	Filters.	This	application	demonstrates	the	configuration	of	Rx-filtering	to	reduce
the	amount	of	traffic	transferred	to	the	host,	and	to	achieve	lower	power	consumption.

NWP	Power	Policy.	This	application	shows	how	to	enable	different	power	policies	to
reduce	power	consumption	based	on	use	case	in	the	station	mode.

P2P	(Wi-Fi	Direct).	This	application	configures	the	device	in	P2P	(Wi-Fi	Direct)	mode
and	demonstrates	how	to	communicate	with	a	remote	peer	device.

Provisioning	AP.	This	application	demonstrates	the	use	of	the	on	Chip	HTTP	server	for
Wi-Fi	provisioning	in	AP	Mode,	building	upon	example	application	7.8	above.

Provisioning	with	SmartConfig.	This	application	demonstrates	the	usage	of	TI’s
SmartConfig™	Wi-Fi	provisioning	technology.	The	Wi-Fi	Starter	Application	for	iOS	and
Android	is	required	to	use	this	application.	It	can	be	downloaded	from	following	link:
http://www.ti.com/tool/wifistarter	or	from	the	Apple	App	store	and	Google	Play.

Provisioning	with	WPS.	This	application	demonstrates	the	usage	of	WPS	Wi-Fi
provisioning	with	CC3100.

Scan	Policy.	The	application	demonstrates	the	scan-policy	settings	in	CC3100.

SPI	Diagnostics	Tool.	This	is	a	diagnostics	application	for	troubleshooting	the	host	SPI
configuration.

SSL/TLS.	The	application	demonstrates	the	usage	of	certificates	with	SSL/TLS	for
application	traffic	privacy	and	device	or	user	authentication

TCP	Socket.	The	application	demonstrates	simple	connection	with	TCP	traffic.

Transceiver	Mode.	The	application	demonstrates	the	CC3100	transceiver	mode	of
operation.

UDP	Socket.	The	application	demonstrates	simple	connection	with	UDP	traffic.

XMPP	Client.	The	application	demonstrates	instant	messaging	using	a	cloud	based
XMPP	server.

These	were	the	steps	I	used	to	create	the	UDP	communication	example	in	Section	11.4.5.
Ibegan	with	the	starter	application, ek-tm4c123gxl-boost-cc3100_starter .	Ifirst
changed SSID_NAME 	to	match	our	access	point

#define	SSID_NAME			“Valvano”			//	AP	to	connect	to

	

Next,	I	compiled,	downloaded	and	ran	this	application	onto	two	LaunchPad+CC3100
systems,	observing	the	operating	on	PuTTy.	The	interpreter	output	should	show	it	has
connected	and	shows	the	IP	assigned	to	these	two	nodes	by	the	AP.	I	could	run	the	ping
command	to	check	the	wifi	connection	to	my	AP.

Once	I	was	sure	my	two	LaunchPad+CC3100	systems	could	communicate	with	my	AP,	I
made	a	copy	of	the	starter	application	by	copy-pasting	the	entire	folder.	Irenamed	this	new
folder	to ek-tm4c123gxl-boost-cc3100_basic_wifi_UDP .	I	opened	the	new	project	in	the
compiler	IDE	and	opened	the	main.cfrom	the udp_socket 	example	folder.	I	added	and/or
merged	the	source	code	from	main.cof udp_socket 	into	starter.cof	the	new	project.	The
event	handlers	and	the	main	project	needed	merging,	but
the BsdUdpClient and BsdUdpServer 	functions	were	simply	added.	I	changed	the	IP
address	to	match	the	address	given	to	the	server.

#define	IP_ADDR									0xC0A80068	
	

I	then	loaded	a	version	that	called	the	client	(send	UDP)	on	one	system

while(1){	BsdUdpClient(PORT_NUM)};	
	

and	loaded	a	version	that	called	the	server	(receive	UDP)	on	the	other	system

while(1){	BsdUdpServer(PORT_NUM)};	

	

I	ran	the	two	systems	in	the	debugger	to	see	that	packets	were	being	sent.	I	did	not	use
SmartConfig,	because	I	knew	the	name	of	the	AP.	The	last	step	was	to	modify	the	client
and	server	so	the	client	collects	data	and	the	server	displays	it.

	

11.5.	Exercises
11.1	For	each	term	give	a	definition	in	32	words	or	less.

a)	Master-slave																																																								b)	Multidrop

c)	Channel	capacity																																																								d)	Ring	network

e)	Lossy	compression																																										f)	Crosstalk

g)	Stuff	bits																																																																						h)	Frequency	shift	key

i)	Phase	encoding																																																									j)	Compression

	

11.2	For	each	pair	of	terms	compare	and	contrast	in	32	words	or	less.

a)	Full	duplex	versus	half	duplex

b)	Lossless	versus	lossy	compression

c)	Guided	versus	unguided	media

d)	LRC	versus	checksum

e)	Originate	versus	answer

	

11.3	What	fundamental	property	is	used	to	transmit	information	through	a	channel?

	

11.4	Consider	a	telephone	line	with	a	channel	bandwidth	of	2	kHz	and	SNR	of	40	dB.
What	is	the	maximum	data	rate	possible?

	

11.5	Consider	a	telephone	line	with	a	channel	bandwidth	of	4	kHz	and	SNR	of	30	dB.
What	is	the	maximum	data	rate	possible?

	

11.6	Assume	node	0x31	wishes	to	send	the	message	“Hello”	to	node	0x32.	Let	ID	=	0.	Let
RSSI	=	0x3A.

a)	Give	the	API	mode	1	frame	node	0x31	sends	to	its	XBee	module.	Include	the	entire
message	from	0x7E	up	to	and	including	the	checksum.

b)	Give	the	API	mode	1	frame	0x32	will	receive	from	its	XBee	module.

	

11.7	Assume	node	0x41	wishes	to	send	the	message	“Ciao”	to	node	0x42.	Let	ID	=	0x12.
Let	RSSI	=	0x3A.

a)	Give	the	API	mode	1	frame	node	0x41	sends	to	its	XBee	module.	Include	the	entire
message	from	0x7E	up	to	and	including	the	checksum.

b)	Give	the	API	mode	1	frame	0x42	will	receive	from	its	XBee	module.

	

D11.8.		The	objective	of	this	problem	is	to	design	a	communication	network	using	four
single	chip	microcontrollers	placed	in	a	ring.	Develop	a	message	protocol	that	supports
addressing	and	variable	length	data.	Perform	the	I/O	in	the	background	using	interrupt
synchronization.

	

11.6.	Lab	Assignments
Lab	11.1.	The	overall	goal	of	this	lab	is	to	design,	implement	and	test	a	peer-to-peer
communication	system.	Peer-to-peer	means	people	on	two	computers	communicate
without	the	people	on	the	other	computers	seeing	the	information.	The	system	must	use	a
ring-connected	RS232	serial	channel	(Figure	11.3),	must	use	interrupt-driven	I/O,	and
must	have	a	layered	software	configuration.	The	lowest-level	software	performs	serial	I/O.
The	middle-level	software	sends	message	packets	from	one	computer	to	another.	The
highest	level	software	interfaces	with	the	human	operator	(keypad/LCD)	and	provides	a
mechanism	to	create	a	peer-to-peer	connection.	In	a	layered	system,	software	in	one	layer
can	only	call	routines	within	that	layer	or	the	layer	immediately	below	it.	You	need	a	way
to	see	who	is	on	the	network,	and	a	way	to	request/accept/terminate	connection	between
two	operators.	Local	operator	input/output	will	occur	via	a	keypad	and	LCD.	You	may
assume	all	nodes	on	the	system	are	willing	to	cooperate	and	not	perform	malicious
activity.	On	the	other	hand	it	is	possible	that	another	computer	on	the	network	may	not	be
plugged	in,	or	the	network	connection	may	be	broken.

	

The	communication	system	between	two	or	more	microcontrollers	will	be	designed	in
three	layers.	The	first	layer,	the	physical	layer	is	implemented	by	the	UART	hardware	and
the	interrupt-driven	device	driver.	The	second	layer	may	consist	of	a	simplified	binary
synchronous	communication	protocol	(BSC).	At	this	level	message	packets	will	be
transmitted	between	the	two	machines.	The	highest	level	will	be	a	keypad	interpreter	and
an	LCD	display.	The	LCD	should	show	interactive	feedback	to	the	operator	creates
messages	to	be	sent	and	displays	messages	received.

	

Lab	11.2.	The	objective	of	this	lab	is	to	design	a	point-to-point	ZigBee	network	using	the
XBee	module.	Each	microcontroller	will	have	a	keypad	and	a	two-line	LCD	display.
When	the	operator	types	on	the	keypad,	characters	are	displayed	on	one	line	of	the	LCD.
When	the	operator	hits	the	send	key,	those	characters	are	sent	and	eventually	displayed	on
the	second	line	of	the	LCD	of	the	other	microcontroller.	Debug	the	system	in	a	bottom-up
manner.	Write	simple	main	programs	in	the	Rx	and	Tx	systems	to	test	the	low-level
functionality	of	the	interface.	Add	appropriate	debugging	instruments,	such	as	profiles	and
dumps.	Connect	unused	pins	from	both	devices	to	a	single	logic	analyzer	and	record	a
thread	profile	(which	program	runs	when)	as	a	stream	of	data	is	passed	from	the	Tx
system	to	the	Rx	system.	Write	a	main	program	to	measure	maximum	bandwidth	of	your
channel	without	using	hardware	flow	control.	Furthermore,	you	should	determine	which
component	limits	bandwidth.	Modify	the	transmitter	so	it	outputs	pseudo	data	as	fast	as
possible.	Modify	the	receiver	so	it	does	not	display	data	on	the	LCD.	Rather,	the	receiver
will	check	for	this	pattern	of	characters	and	count	the	number	of	errors.	Add	minimally
intrusive	debugging	instruments	to	determine	if	and	where	data	is	lost.	Measure	the
maximum	range	of	your	system.	In	particular,	find	the	maximum	distance	where	the
system	performs	reliable	communication.

	

	

	

Appendix	1.	Glossary
1/f	noise	A	fundamental	noise	in	resistive	devices	arising	from	fluctuating	conductivity.
Same	as	pink	noise.

2’s	complement	(see	two’s	complement).

60	Hz	noise	An	added	noise	from	electromagnetic	fields	caused	by	either	magnetic	field
induction	or	capacitive	coupling.

accumulator	High-speed	memory	located	in	the	processor	used	to	perform	arithmetic	or
logical	functions.	Any	of	the	registers	R0	to	R12	on	the	ARM	Cortex-M	processor	can	be
used	as	accumulators.

accuracy	A	measure	of	how	close	our	instrument	measures	the	desired	parameter	referred
to	the	NIST.

acknowledge	Clearing	the	interrupt	flag	bit	that	requested	the	interrupt.

active	thread		A	thread	that	is	in	the	ready-to-run	circular	linked	list.	It	is	either	running
or	is	ready	to	run.

actuator	Electro-mechanical	or	electro-chemical	device	that	allows	computer	commands
to	affect	the	external	world.

ADC		Analog	to	digital	converter,	an	electronic	device	that	converts	analog	signals	(e.g.,
voltage)	into	digital	form	(i.e.,	integers).

address	bus	A	set	of	digital	signals	that	connect	the	CPU,	memory	and	I/O	devices,
specifying	the	location	to	read	or	write	for	each	bus	cycle.		See	also	control	bus	and	data
bus.

address	decoder		A	digital	circuit	having	the	address	lines	as	input	and	a	select	line	as
output	(see	select	signal)

aging		A	technique	used	in	priority	schedulers	that	temporarily	increases	the	priority	of
low	priority	treads	so	they	are	run	occasionally.	(See	starvation)

aliasing	When	digital	values	sampled	at	fs	contain	frequency	components	above	½	fs,
then	the	apparent	frequency	of	the	data	is	shifted	into	the	0	to	½	fs	range.	See	Nyquist
Theory.

alternatives	The	total	number	of	possibilities.	E.g.,	an	8-bit	number	scheme	can	represent
256	different	numbers.		An	8-bit	digital	to	analog	converter	(DAC)	can	generate	256
different	analog	outputs.

anode	The	positive	side	of	a	diode.	Current	enters	the	anode	side	of	a	diode.	Contrast	with
cathode.

answer	modem	The	device	that	receives	the	telephone	call.

anti-reset-windup	Establishing	an	upper	bound	on	the	magnitude	of	the	integral	term	in	a
PID	controller,	so	this	term	will	not	dominate,	when	the	errors	are	large.

arithmetic	logic	unit	(ALU)	Component	of	the	processor	that	performs	arithmetic	and
logic	operations.

arm	Activate	so	that	interrupts	are	requested.	Trigger	flags	that	can	request	interrupts	will
have	a	corresponding	arm	bit	to	allow	or	disallow	that	flag	to	request	interrupts.	Contrast
to	enable.

armature		The	moving	structure	in	a	relay,	the	part	that	moves	when	the	relay	is	activated.
Contrast	to	frame.

ASCII	American	Standard	Code	for	Information	Interchange,	a	code	for	representing
characters,	symbols,	and	synchronization	messages	as	7	bit,	8-bit	or	16-bit	binary	values.

assembler		System	software	that	converts	an	assembly	language	program	(human
readable	format)	into	object	code		(machine	readable	format).

assembly	directive	Operations	included	in	the	program	that	are	not	executed	by	the
computer	at	run	time,	but	rather	are	interpreted	by	the	assembler	during	the	assembly
process.	Same	as	pseudo-op.

assembly	listing	Information	generated	by	the	assembler	in	human	readable	format,
typically	showing	the	object	code,	the	original	source	code,	assembly	errors,	and	the
symbol	table.

asynchronous	bus	A	communication	protocol	without	a	central	clock	where	is	the	data	is
transferred	using	two	or	three	control	lines	implementing	a	handshaked	interaction
between	the	memory	and	the	computer.

asynchronous	protocol	A	protocol	where	the	two	devices	have	separate	and	distinct
clocks

atomic		Software	execution	that	cannot	be	divided	or	interrupted.	Once	started,	an	atomic
operation	will	run	to	its	completion	without	interruption.	On	most	computers	the	assembly
language	instructions	are	atomic.	All	instructions	on	the	ARM®	Cortex-Mprocessor	are
atomic	except	store	and	load	multiple, STM	LDM .

autoinitialization	The	process	of	automatically	reloading	the	address	registers	and	block
size	counters	at	the	end	of	a	previous	block	transfer,	so	that	DMA	transfer	can	occur
indefinitely	without	software	interaction.

availability	The	portion	of	the	total	time	that	the	system	is	working.	MTBF	is	the	mean
time	between	failures,	MTTR	is	the	mean	time	to	repair,	and	availability	is
MTBF/(MTBF+MTTR).

bandwidth		In	communication	systems,	the	information	transfer	rate,	the	amount	of	data
transferred	per	second.	Same	as	throughput.	In	analog	circuits,	the	frequency	at	which	the
gain	drops	to	0.707	of	the	normal	value.	For	a	low	pass	system,	the	frequency	response
ranges	from	0	to	a	maximum	value.		For	a	high	pass	system,	the	frequency	response
ranges	from	a	minimum	value	to	infinity.	For	a	bandpass	system,	the	frequency	response
ranges	from	a	minimum	to	a	maximum	value.	Compare	to	frequency	response.

bandwidth	coupling	Module	A	is	connected	to	Module	B,	because	data	flows	from	A	to
B.

bang-bang	A	control	system	where	the	actuator	has	only	two	states,	and	the	system
“bangs”	all	the	way	in	one	direction	or	“bangs”	all	the	way	in	the	other,	same	as	binary
controller.

bank-switched	memory	A	memory	module	with	two	banks	that	interfaces	to	two	separate
address/data	buses.	At	any	given	time	one	memory	bank	is	attached	to	one	address/data
bus	the	other	bank	is	attached	to	the	other	bus,	but	this	attachment	can	be	switched.

basis		Subset	from	which	linear	combinations	can	be	used	to	reconstruct	the	entire	set.

baud	rate	In	general,	the	baud	rate	is	the	total	number	of	bits	(information,	overhead,	and
idle)	per	time	that	are	transmitted.	In	a	modem	application	it	is	the	total	number	of	sounds
per	time	are	transmitted

bi-directional	Digital	signals	that	can	be	either	input	or	output.

biendian	The	ability	to	process	numbers	in	both	big	and	little-endian	formats.

big	endian	Mechanism	for	storing	multiple	byte	numbers	such	that	the	most	significant
byte	exists	first	(in	the	smallest	memory	address).		See	also	little	endian.

binary	A	system	that	has	two	states,	on	and	off.

binary	controller	Same	as	bang-bang.

binary	recursion	A	recursive	technique	that	makes	two	calls	to	itself	during	the	execution
of	the	function.	See	also	recursion,	linear	recursion,	and	tail	recursion.

binary	semaphore		A	semaphore	that	can	have	two	values.	The	value=1	means	OK	and
the	value=0	means	busy.	Compare	to	counting	semaphore.

bipolar	transistor	Either	a	NPN	or	PNP	transistor.

bipolar	stepper	motor	A	stepper	motor	where	the	current	flows	in	both	directions	(in/out)
along	the	interface	wires;	a	stepper	with	four	interface	wires.	Contrast	to	unipolar	stepper
motor.

bit	Basic	unit	of	digital	information	taking	on	the	value	of	either	0	or	1.

bit	rate	The	information	transfer	rate,	given	in	bits	per	second.	Same	as	bandwidth	and
throughput.

bit	time	The	basic	unit	of	time	used	in	serial	communication.	With	serial	channel	bit	time
is	1/baud	rate.

blind-cycle		A	software/hardware	synchronization	method	where	the	software	waits	a
specified	amount	of	time	for	the	hardware	operation	to	complete.	The	software	has	no
direct	information	(blind)	about	the	status	of	the	hardware.

block	correction	code	(BCC)	A	code	(e.g.,	horizontal	parity)	attached	to	the	end	of	a
message	used	to	detect	and	correct	transmission	errors.

blocked	thread		A	thread	that	is	not	scheduled	for	running	because	it	is	waiting	on	an
external	event.

blocking	semaphore		A	semaphore	where	the	threads	will	block	(so	other	threads	can
perform	useful	functions)	when	they	execute	wait	on	a	busy	semaphore.	Contrast	to
spinlock	semaphore.

Board	Support	Package	(BSP)	A	set	of	software	routines	that	abstract	the	I/O	hardware
such	that	the	same	high-level	code	can	run	on	multiple	computers.

borrow	During	subtraction,	if	the	difference	is	too	small,	then	we	use	a	borrow	to	pass	the
excess	information	into	the	next	higher	place.	For	example,	in	decimal	subtraction	36-27
requires	a	borrow	from	the	ones	to	tens	place	because	6-7	is	too	small	to	fit	into	the	0	to	9
range	of	decimal	numbers.

bounded	waiting	The	condition	where	once	a	thread	begins	to	wait	on	a	resource,	there
are	a	finite	number	of	threads	that	will	be	allowed	to	proceed	before	this	thread	is	allowed
to	proceed.

break-before-make	In	a	double-throw	relay	or	double-throw	switch,	there	is	one	common
contact	and	two	separate	contacts.	Break-before-make	means	as	the	common	contact
moves	from	one	of	separate	contacts	to	another,	it	will	break	off	(finish	bouncing	and	no
longer	touch)	the	first	contact	before	it	makes	(begins	to	bounce	and	starts	to	touch)	the
other	contact.	A	form	C	relay	has	a	break-before-make	operation.

break	or	trap		A	break	or	a	trap	is	a	debugging	instrument	that	halts	the	processor.	With	a
resident	debugger,	the	break	is	created	by	replacing	specific	op	code	with	a	software
interrupt	instruction.	When	encountered	it	will	stop	your	program	and	jump	into	the
debugger.	Therefore,	a	break	halts	the	software.		The	condition	of	being	in	this	state	is	also
referred	to	as	a	break.

breakdown	A	transducer	that	stops	functioning	when	its	input	goes	above	a	maximum
value	or	below	a	minimum	value.	Contrast	to	dead	zone.

breakpoint		The	place	where	a	break	is	inserted,	the	time	when	a	break	is	encountered,	or
the	time	period	when	a	break	is	active.

brushed	DC	motor		A	motor	where	the	current	reversals	are	produced	with	brushes
between	the	stator	and	rotor.	They	are	less	expensive	than	brushless	DC	motors.

brushless	DC	motor	(BLDC)	A	motor	where	the	current	reversals	are	produced	with
shaft	sensors	and	an	electronic	controller.	They	are	faster	and	more	reliable	than	brushed
DC	motors.

buffered	I/O		A	FIFO	queue	is	placed	in	between	the	hardware	and	software	in	an	attempt
to	increase	bandwidth	by	allowing	both	hardware	and	software	to	run	in	parallel.

burn	The	process	of	programming	a	ROM,	PROM	or	EEPROM.

burst	DMA	An	I/O	synchronization	scheme	that	transfers	an	entire	block	of	data	all	at
once	directly	from	an	input	device	into	memory,	or	directly	from	memory	to	an	output
device.

bus	A	set	of	digital	signals	that	connect	the	CPU,	memory	and	I/O	devices,	consisting	of
address	signals,	data	signals	and	control	signals.	See	also	address	bus,	control	bus	and	data
bus.

bus	bandwidth	The	number	of	bytes	transferred	per	second	between	the	processor	and
memory.

bus	interface	unit	(BIU)	Component	of	the	processor	that	reads	and	writes	data	from	the
bus.	The	BIU	drives	the	address	and	control	buses.

busy-wait	synchronization		A	software/hardware	synchronization	method	where	the
software	continuously	reads	the	hardware	status	waiting	for	the	hardware	operation	to
complete.	The	software	usually	performs	no	work	while	waiting	for	the	hardware.	Same	as
gadfly.

byte	Digital	information	containing	eight	bits.

calibration	drift	A	change	occurring	over	time	in	the	transfer	function	used	to	calculate
the	measured	variable	from	the	raw	measurements.	For	example,	assume	we	have	a
voltmeter	that	uses	the	equation	V	=	C1*n/1024+C2	to	calculate	voltage	V	in	mV	from	a
raw	ADC	value	n.	C1	and	C2	are	calibration	constants	determined	by	measurements	on
known	voltages.	Calibration	drift	occurs	when	the	correct	values	for	C1	and	C2	vary	over
time.

carrier	frequency		the	average	or	midvalue	sound	frequency	in	the	modem.

carry	During	addition,	if	the	sum	is	too	large,	then	we	use	a	carry	to	pass	the	excess
information	into	the	next	higher	place.	For	example,	in	decimal	addition	36+27	requires	a
carry	from	the	ones	to	tens	place	because	6+7	is	too	big	to	fit	into	the	0	to	9	range	of
decimal	numbers.

cathode	The	negative	side	of	a	diode.	Current	exits	the	cathode	side	of	a	diode.	Contrast
to	anode.

cathode	ray	tube	(CRT)	terminal	An	I/O	device	used	to	input	data	from	a	keyboard	and
output	character	data	to	a	screen.	The	electrical	interface	is	usually	asynchronous	serial.

causal	The	property	where	the	output	depends	on	the	present	and	past	inputs,	but	not	on
any	future	inputs.

ceiling	Establishing	an	upper	bound	on	the	result	of	an	operation.	See	also	floor.

certification	A	process	where	a	governing	body	(e.g.,	FDA,	NASA,	FCC,	DOD	etc.)
gives	approval	for	the	use	of	the	device.	It	usually	involves	demonstrating	the	device
meets	or	exceeds	safety	and	performance	criteria.

channel	The	hardware	that	allows	communication	to	occur.

checksum	The	simple	sum	of	the	data,	usually	in	finite	precision	(e.g.,	8,	16,	24	bits).

closed	loop	control	system	A	control	system	that	includes	sensors	to	measure	the	current
state	variables.	These	inputs	are	used	to	drive	the	system	to	the	desired	state.

CMOS	A	digital	logic	system	called	complementary	metal	oxide	semiconductor.	It	has
properties	of	low	power	and	small	size.	Its	power	is	a	function	of	the	number	of	transitions
per	second.	Its	speed	is	often	limited	by	capacitive	loading.

cohesion	A	cohesive	module	is	one	such	that	all	parts	of	the	module	are	related	to	each
other	to	satisfy	a	common	objective.

command	signals	The	lines	that	specify	general	information	about	the	current	cycle;
signals	that	specify	whether	or	not	to	activate	during	this	cycle;	the	specific	times	for	the
rise	and	fall	edges	are	uncertain.	Contrast	to	timing	signals.

common	anode	LED	display		A	display	with	multiple	LEDs,	configured	with	all	of	the
LED	anodes	connected	together,	there	are	separate	connections	to	the	cathodes	(current
flows	in	the	common	anode	and	out	the	individual	cathodes).

common	cathode	LED	display		A	display	with	multiple	LEDs,	configured	with	all	of	the
LED	cathodes	connected	together,	there	are	separate	connections	to	the	anodes	(current
flows	in	the	individual	anodes	and	out	the	common	cathode).

common	mode	For	a	system	with	differential	inputs,	the	common	mode	properties	are
defined	as	signals	applied	to	both	inputs	simultaneously.		Contrast	to	differential	mode.

common	mode	input	impedance	Common	mode	input	voltage	divided	by	common	mode
input	current.

common	mode	rejection	ratio	For	a	differential	amplifier,	CMRR	is	the	ratio	of	the
common	mode	gain	divided	by	the	differential	mode	gain.	A	perfect	CMRR	would	be
zero.

compiler	System	software	that	converts	a	high-level	language	program	(human	readable
format)	into	object	code		(machine	readable	format).

complex	instruction	set	computer	(CISC)	A	computer	with	many	instructions,
instructions	that	have	varying	lengths,	instructions	that	execute	in	varying	times,	many
instructions	can	access	memory,	instructions	that	can	read	and	write	memory	in	the	same
bus	cycle,	fewer	and	more	specialized	registers,	and	many	different	types	of	addressing
modes.	Contrast	to	RISC.

compression	ratio	The	ratio	of	the	number	of	original	bytes	to	the	number	of	compressed
bytes.

concurrent	programming	A	software	system	that	supports	two	tasks	to	be	active	at	the
same	time.	A	computer	with	interrupts	implements	concurrent	programming.

condition	code	register	(CCR)	Register	in	the	processor	that	contains	the	status	of	the
previous	ALU	operation,	as	well	as	some	operating	mode	flags	such	as	the	interrupt
enable	bit.

control	bus	A	set	of	digital	signals	that	connect	the	CPU,	memory	and	I/O	devices,
specifying	when	to	read	or	write	for	each	bus	cycle.		See	also	address	bus	and	data	bus.

control	coupling	Module	A	is	connected	to	Module	B,	because	actions	in	A	affect	the
control	path	in	B.

control	unit	(CU)	Component	of	the	processor	that	determines	the	sequence	of
operations.

cooperative	multi-tasking		A	scheduler	that	cannot	suspend	execution	of	a	thread	without
the	thread’s	permission.	The	thread	must	cooperate	and	suspend	itself.	Same	as
nonpreemptive	scheduler.

counting	semaphore		A	semaphore	that	can	have	any	signed	integer	value.	The	value>0	
means	OK	and	the	value≤0	means	busy.	Compare	to	binary	semaphore.

CPU	bound		A	situation	where	the	input	or	output	device	is	faster	than	the	software.	In
other	words	it	takes	less	time	for	the	I/O	device	to	process	data,	than	for	the	software	to
process	data.	Contrast	to	I/O	bound.

CPU	cycle	A	memory	bus	cycle	where	the	address	and	R/W	are	controlled	by	the
processor.	On	microcontrollers	without	DMA,	all	cycles	are	CPU	cycles.	Contrast	to	DMA
cycle.

crisp	inputAn	input	parameter	to	the	fuzzy	logic	system,	usually	with	units	like	cm,
cm/sec, � C	etc.

crisp	output	An	output	parameter	from	the	fuzzy	logic	system,	usually	with	units	like
dynes,	watts	etc.

critical	section		Locations	within	a	software	module,	which	if	an	interrupt	were	to	occur
at	one	of	these	locations,	then	an	error	could	occur	(e.g.,	data	lost,	corrupted	data,	program
crash,	etc.)		Same	as	vulnerable	window.

cross-assembler		An	assembler	that	runs	on	one	computer	but	creates	object	code	for	a
different	computer.

cross-compiler	A	compiler	that	runs	on	one	computer	but	creates	object	code	for	a
different	computer.

cycle	steal	DMA	An	I/O	synchronization	scheme	that	transfers	data	one	byte	at	a	time
directly	from	an	input	device	into	memory,	or	directly	from	memory	to	an	output	device.

cycle	stretch	The	action	where	some	memory	cycles	are	longer	allowing	time	for
communication	with	slower	memories,	sometimes	the	memory	itself	requests	the
additional	time	and	sometimes	the	computer	has	a	preprogrammed	cycle	stretch	for	certain
memory	addresses

DAC		Digital	to	analog	converter,	an	electronic	device	that	converts	digital	signals	(i.e.,
integers)	to	analog	form	(e.g.,	voltage).

data	acquisition	system	A	system	that	collects	information,	same	as	instrument.

data	bus	A	set	of	digital	signals	that	connect	the	CPU,	memory	and	I/O	devices,
specifying	the	value	that	is	being	read	or	written	for	each	bus	cycle.		See	also	address	bus
and	control	bus.

data	communication	equipment	(DCE)	A	modem	or	printer	connected	a	serial
communication	network.

data	terminal	equipment	(DTE)	A	computer	or	a	terminal	connected	a	serial
communication	network.

dead	zone	A	condition	of	a	transducer	when	a	large	change	in	the	input	causes	little	or	no
change	in	the	output.	Contrast	to	breakdown.

deadlock		A	scenario	that	occurs	when	two	or	more	threads	are	all	blocked	each	waiting
for	the	other	with	no	hope	of	recovery.

decibel	A	measure	of	the	relative	amplitude	of	two	voltages:	dB	=	20	log10(V1/V2).	It	is
also	refers	to	the	relative	amplitude	of	two	powers:	dB	=	10	log10(P1/P2).

defuzzification	Conversion	from	the	fuzzy	logic	output	variables	to	the	crisp	outputs.

desk	checking	or	dry	run		We	perform	a	desk	check	(or	dry	run)	by	determining	in
advance,	either	by	analytical	algorithm	or	explicit	calculations,	the	expected	outputs	of
strategic	intermediate	stages	and	final	results	for	a	set	of	typical	inputs.	We	then	run	our
program	can	compare	the	actual	outputs	with	this	template	of	expected	results.

device	driver		A	collection	of	software	routines	that	perform	I/O	functions.

differential	mode	For	a	system	with	differential	inputs,	the	differential	mode	properties
are	defined	as	signals	applied	as	a	difference	between	the	two	inputs.		Contrast	to	common
mode.

differential	mode	input	impedance	Differential	mode	input	voltage	divided	by
differential	mode	input	current.

digital	signal	processing	Processing	of	data	with	digital	hardware	or	software	after	the
signal	has	been	sampled	by	the	ADC,	e.g.,	filters,	detection	and
compression/decompression.

direct	memory	access	(DMA)	the	ability	to	transfer	data	between	two	modules	on	the
bus,	this	transfer	is	usually	initiated	by	the	hardware	(device	needs	service)	and	the
software	configures	the	communication,	but	the	data	is	transferred	without	explicit
software	action	for	each	individual	piece	of	data

direction	register	Specifies	whether	a	bi-directional	I/O	pin	is	an	input	or	an	output.	We
set	a	direction	register	bit	to	0	(or	1)	to	specify	the	corresponding	I/O	pin	to	be	input	(or
output.)

disarm	Deactivate	so	that	interrupts	are	not	requested,	performed	by	clearing	the	arm	bit.

Discrete	Fourier	Transform	(DFT)	A	technique	to	convert	data	in	the	time	domain	to
data	in	the	frequency	domain.	N	data	points	are	sampled	at	fs.	The	resulting	frequency
resolution	is	fs	/N.

DMA		Direct	Memory	Access	is	a	software/hardware	synchronization	method	where	the
hardware	itself	causes	a	data	transfer	between	the	I/O	device	and	memory	at	the
appropriate	time	when	data	needs	to	be	transferred.	The	software	usually	can	perform
other	work	while	waiting	for	the	hardware.	No	software	action	is	required	for	each
individual	byte.

DMA	cycle	A	memory	bus	cycle	where	the	address	and	R/W	are	controlled	by	the	DMA
controller.	Contrast	to	CPU	cycle.

double	byte		Two	bytes	containing	16	bits.	Same	as	halfword.

double-pole	relay	Two	separate	and	complete	relays,	which	are	activated	together.
Contrast	to	single	pole.

double-pole	switch	Two	separate	and	complete	switches.	The	two	switches	are
electrically	separate,	but	mechanically	connected.	Such	that	both	switches	are	activated
together.	Contrast	to	single	pole.

double-throw	relay	A	relay	with	three	contact	connections,	one	common	and	two	throws.
The	common	will	be	connected	to	exactly	of	one	the	two	throws	(see	single-throw).

double-throw	switch	A	switch	with	three	contact	connections.	The	center	contact	will	be
connected	exactly	one	of	the	other	two	contacts.		Contrast	with	single-throw.

double	word		Two	words	containing	64	bits.

download	The	process	of	transferring	object	code	from	the	host	(e.g.,	the	PC)	to	the	target
microcontroller.

drop-out	An	error	that	occurs	after	a	right	shift	or	a	divide,	and	the	consequence	is	that	an
intermediate	result	loses	its	ability	to	represent	all	of	the	values.	E.g.,	I=100*(N/51)	can
only	result	in	the	values	0,	100,	or	200,	whereas	I=(100*N)/51	properly	calculates	the
desired	result.

dual	address	DMA	Direct	memory	access	that	requires	two	bus	cycles	to	transfer	data
from	an	input	device	into	memory,	or	from	memory	to	an	output	device.

dual	port	memory	A	memory	module	that	interfaces	to	two	separate	address/data	buses,
and	allows	both	systems	read/write	access	the	data.

duty	cycle	For	a	periodic	digital	wave,	it	is	the	percentage	of	time	the	signal	is	high.
When	an	LED	display	is	scanned,	it	is	the	percentage	of	time	each	LED	is	active.	A	motor
interfaced	using	pulse-width-modulation	allows	the	computer	to	control	delivered	power
by	adjusting	the	duty	cycle.

dynamic	allocation		Data	structures	like	the	TCB	that	are	created	at	runtime	by	calling
malloc()	and	exist	until	the	software	releases	the	memory	block	back	to	the	heap	by
calling	free().	Contrast	to	static	allocation.

dynamic	RAM	Volatile	read/write	storage	built	from	a	capacitor	and	a	single	transistor
having	a	low	cost,	but	requiring	refresh.	Contrast	with	static	RAM.

EEPROM	Electrically	erasable	programmable	read	only	memory	that	is	nonvolatile	and
easy	to	reprogram.		EEPROM	can	be	erased	and	reprogrammed	multiple	times.

embedded	computer	system	A	system	that	performs	a	specific	dedicated	operation	where
the	computer	is	hidden	or	embedded	inside	the	machine.		

emulator		An	in-circuit	emulator	is	an	expensive	debugging	hardware	tool	that	mimics	the
processor	pin	outs.	To	debug	with	an	emulator,	you	would	remove	the	processor	chip	and
attach	the	emulator	cable	into	the	processor	socket.	The	emulator	would	sense	the
processor	input	signals	and	recreate	the	processor	outputs	signals	on	the	socket	as	if	an
actual	processor	were	actually	there,	running	at	full	speed.	Inside	the	emulator	you	have
internal	read/write	access	to	the	registers	and	processor	state.	Most	emulators	allow	you	to
visualize/record	strategic	information	in	real-time	without	halting	the	program	execution.
You	can	also	remove	ROM	chips	and	insert	the	connector	of	a	ROM-emulator.	This	type
of	emulator	is	less	expensive,	and	it	allows	you	to	debug	ROM-based	software	systems.

EPROM	Same	as	PROM.	Electrically	programmable	read	only	memory	that	is
nonvolatile	and	requires	external	devices	to	erase	and	reprogram.	It	is	usually	erased	using
UV	light.

erase	The	process	of	clearing	the	information	in	a	PROM	or	EEPROM,	using	electricity
or	UV	light.	The	information	bits	are	usually	all	set	to	logic	1.

EVB	Evaluation	Board,	a	board-level	product	used	to	develop	microcontroller	systems.

even	parity		A	communication	protocol	where	the	number	of	ones	in	the	data	plus	a	parity
bit	is	an	even	number.	Contrast	with	odd	parity.

external	fragmentation	A	condition	when	the	largest	file	or	memory	block	that	can	be
allocated	is	less	than	the	total	amount	of	free	space	on	the	disk	or	memory.

fan	out		The	number	of	inputs	that	a	single	output	can	drive	if	the	devices	are	all	in	the
same	logic	family.

Fast	Fourier	Transform	(FFT)	A	fast	technique	to	convert	data	in	the	time	domain	to
data	in	the	frequency	domain.	N	data	points	are	sampled	at	fs.	The	resulting	frequency
resolution	is	fs	/N.	Mathematically,	the	FFT	is	the	same	as	the	DFT,	just	faster.

FET	Field	effect	transistor,	also	JFET.

filter	In	the	debugging	context,	a	filter	is	a	Boolean	function	or	conditional	test	used	to
make	run-time	decisions.	For	example,	if	we	print	information	only	if	two	variables	x,y
are	equal,	then	the	conditional	(x==y)	is	a	filter.	Filters	can	involve	hardware	status	as
well.

finite	impulse	response	filter	(FIR)	A	digital	filter	where	the	output	is	a	function	of	a
finite	number	of	current	and	past	data	samples,	but	not	a	function	of	previous	filter
outputs.

Finite	State	Machine	(FSM)	An	abstract	design	method	to	build	a	machine	with	inputs
and	outputs.	The	machine	can	be	in	one	of	a	finite	number	of	states.	Which	state	the
system	is	in	represents	memory	of	previous	inputs.	The	output	and	next	state	are	a
function	of	the	input.	There	may	be	time	delays	as	well.

fixed-point	A	technique	where	calculations	involving	nonintegers	are	performed	using	a
sequence	of	integer	operations.	E.g.,	0.123*x	is	performed	in	decimal	fixed-point	as
(123*x)/1000	or	in	binary	fixed-point	as	(126*x)>>10.

flash	EEPROM	Electrically	erasable	programmable	read	only	memory	that	is	nonvolatile
and	easy	to	reprogram.	Flash	EEPROMs	are	typically	larger	than	regular	EEPROM.

floating	A	logic	state	where	the	output	device	does	not	drive	high	or	pull	low.	The	outputs
of	open	collector	and	tristate	devices	can	be	in	the	floating	state.	Same	as	HiZ.

floor	Establishing	a	lower	bound	on	the	result	of	an	operation.	See	also	ceiling.

follower	An	analog	circuit	with	gain	equal	to	1,	large	input	impedance	and	small	output
impedance.	Same	as	voltage	follower.

frame		A	complete	and	distinct	packet	of	bits	occurring	in	a	serial	communication
channel.

frame		The	fixed	structure	in	a	relay	or	transducer.	Contrast	to	armature.

framing	error	An	error	when	the	receiver	expects	a	stop	bit	(1)	and	the	input	is	0.

frequency	response	The	frequency	at	which	the	gain	drops	to	0.707	of	the	normal	value.
For	a	low	pass	system,	the	frequency	response	ranges	from	0	to	a	maximum	value.		For	a
high	pass	system,	the	frequency	response	ranges	from	a	minimum	value	to	infinity.	For	a
bandpass	system,	the	frequency	response	ranges	from	a	minimum	to	a	maximum	value.
Same	as	bandwidth.

frequency	shift	key	(FSK)	A	modem	that	modulates	the	digital	signals	into	frequency
encoded	sine	waves.

friendly	Friendly	software	modifies	just	the	bits	that	need	to	be	modified,	leaving	the
other	bits	unchanged,	making	to	easier	to	combine	modules.

full	duplex	channel	Hardware	that	allows	bits	(information,	error	checking,
synchronization	or	overhead)	to	transfer	simultaneously	in	both	directions.	Contrast	with
simplex	and	half	duplex	channels.

full	duplex	communication	A	system	that	allows	information	(data,	characters)	to
transfer	simultaneously	in	both	directions.

functional	debugging		The	process	of	detecting,	locating,	or	correcting	functional	and
logical	errors	in	a	program,	typically	not	involving	time.	The	process	of	instrumenting	a
program	for	such	purposes	is	called	functional	debugging	or	often	simply	debugging.

fuzzification	Conversion	from	the	crisp	inputs	to	the	fuzzy	logic	input	variables.

fuzzy	logic	Boolean	logic	(true/false)	that	can	take	on	a	range	of	values	from	true	(255)	to
false	(0).	Fuzzy	logic	and	is	calculated	as	the	minimum.	Fuzzy	logic	or	is	the	maximum.

gadfly		A	software/hardware	synchronization	method	where	the	software	continuously
reads	the	hardware	status	waiting	for	the	hardware	operation	to	complete.	The	software
usually	performs	no	work	while	waiting	for	the	hardware.	Same	as	busy	wait.

gauge	factor	The	sensitivity	of	a	strain	gauge	transducer,	i.e.,	slope	of	the	resistance
versus	displacement	response.

gibibyte	(GiB)	230	or	1,073,741,824	bytes.	Compare	to	gigabyte,	which	is	1,000,000,000
bytes.

half	duplex	channel	Hardware	that	allows	bits	(information,	error	checking,
synchronization	or	overhead)	to	transfer	in	both	directions,	but	in	only	one	direction	at	a
time.	Contrast	with	simplex	and	full	duplex	channels.

half	duplex	communication	A	system	that	allows	information	to	transfer	in	both
directions,	but	in	only	one	direction	at	a	time.

halfword		Two	bytes	containing	16	bits.	Same	as	double	byte.

handshake	A	software/hardware	synchronization	method	where	control	and	status	signals
go	both	directions	between	the	transmitter	and	receiver.	The	communication	is	interlocked
meaning	each	device	will	wait	for	the	other.

hard	real-time	A	system	that	can	guarantee	that	a	process	will	complete	a	critical	task
within	a	certain	specified	range.	In	data	acquisition	systems,	hard	real-time	means	there	is
an	upper	bound	on	the	latency	between	when	a	sample	is	supposed	to	be	taken	(every	1/fs)
and	when	the	ADC	is	actually	started.	Hard	real-time	also	implies	that	no	ADC	samples
are	missed.

heartbeat	A	debugging	monitor,	such	as	a	flashing	LED,	we	add	for	the	purpose	of	seeing
if	our	program	is	running.

hexadecimal		A	number	system	that	uses	base	16.

HiZ	A	logic	state	where	the	output	device	does	not	drive	high	or	pull	low.	The	outputs	of
open	collector	and	tristate	devices	can	be	in	the	floating	state.	Same	as	floating.

hold	time		When	latching	data	into	a	device	with	a	rising	or	falling	edge	of	a	clock,	the
hold	time	is	the	time	after	the	active	edge	of	the	clock	that	the	data	must	continue	to	be
valid.	See	setup	time.

hook	An	indirect	function	call	added	to	a	software	system	that	allows	the	user	to	attach
their	programs	to	run	at	strategic	times.	These	attachments	are	created	at	run	time	and	do
not	require	recompiling.

hysteresis	A	condition	when	the	output	of	a	system	depends	not	only	on	the	input,	but	also
on	the	previous	outputs,	e.g.,	a	transducer	that	follows	a	different	response	curve	when	the
input	is	increasing	than	when	the	input	is	decreasing.

I/O	bound		A	situation	where	the	input	or	output	device	is	slower	than	the	software.	In
other	words	it	takes	longer	for	the	I/O	device	to	process	data,	than	for	the	software	to
process	data.	Contrast	to	CPU	bound.

I/O	device	Hardware	and	software	components	capable	of	bringing	information	from	the
external	environment	into	the	computer	(input	device),	or	sending	data	out	from	the
computer	to	the	external	environment	(output	device.)

I/O	port		A	hardware	device	that	connects	the	internal	software	with	external	hardware.

IIH		Input	current	when	the	signal	is	high.

IIL		Input	current	when	the	signal	is	low.

immediate		An	addressing	mode	where	the	operand	is	a	fixed	data	or	address	value.

impedance	loading	A	condition	when	the	input	of	stage	n+1	of	an	analog	system	affects
the	output	of	stage	n,	because	the	input	impedance	of	stage	n+1	is	too	small	and	the	output
impedance	of	stage	n	is	too	large.

impedance	The	ratio	of	the	effort	(voltage,	force,	pressure)	divided	by	the	flow	(current,
velocity,	flow).

incremental	control	system	A	control	system	where	the	actuator	has	many	possible
states,	and	the	system	increments	or	decrements	the	actuator	value	depending	on	either	in
error	is	positive	or	negative.

indexed		An	addressing	mode	where	the	data	or	address	value	for	the	instruction	is	located
in	memory	pointed	to	by	an	index	register.

infinite	impulse	response	filter	(IIR)	A	digital	filter	where	the	output	is	a	function	of	an
infinite	number	of	past	data	samples,	usually	by	making	the	filter	output	a	function	of
previous	filter	outputs.

input	bias	current	Difference	between	currents	of	the	two	op	amp	inputs.

input	capture	A	mechanism	to	set	a	flag	and	capture	the	current	time	(TCNT	value)	on
the	rising,	falling	or	rising&falling	edge	of	an	external	signal.	The	input	capture	event	can
also	request	an	interrupt.

input	impedance	Input	voltage	divided	by	input	current.

input	noise	current	Current	noise	refereed	to	the	op	amp	inputs.

input	noise	voltage	Voltage	noise	refereed	to	the	op	amp	inputs.

input	offset	current	Average	current	into	the	two	op	amp	inputs.

input	offset	voltage	Voltage	difference	between	the	two	op	amp	inputs	that	makes	the
output	zero.

instruction	register	(IR)	Register	in	the	control	unit	that	contains	the	op	code	for	the
current	instruction.

instrument		An	instrument	is	the	code	injected	into	a	program	for	debugging	or	profiling.	
This	code	is	usually	extraneous	to	the	normal	function	of	a	program	and	may	be	temporary
or	permanent.		A	print	statement	added	to	your	source	code	is	an	example	of	a	permanent
instrument,	because	removal	requires	editing	and	recompiling.

instrument	A	embedded	system	that	collects	information,	same	as	data	acquisition
system.

instrumentation		The	debugging	process	of	injecting	or	inserting	an	instrument.

instrumentation	amp	A	differential	amplifier	analog	circuit,	which	can	have	large	gain,
large	input	impedance,	small	output	impedance,	and	a	good	common	mode	rejection
ration.

internal	fragmentation	Storage	that	is	allocated	for	the	convenience	of	the	operating
system	but	contains	no	information.	This	space	is	wasted.

interrupt		A	software/hardware	synchronization	method	where	the	hardware	causes	a
special	software	program	(interrupt	handler)	to	execute	when	its	operation	to	complete.
The	software	usually	can	perform	other	work	while	waiting	for	the	hardware.

interrupt	flag	A	status	bit	that	is	set	by	the	timer	hardware	to	signify	an	external	event	has
occurred.

interrupt	mask	A	control	bit	that,	if	programmed	to	1,	will	cause	an	interrupt	request
when	the	associated	flag	is	set.	Same	as	arm.

interrupt	service	routine	(ISR)	Program	that	runs	as	a	result	of	an	interrupt.

interrupt	vector	32-bit	values	in	ROM	specifying	where	the	software	should	execute
after	an	interrupt	request.	There	is	a	unique	interrupt	vector	for	each	type	of	interrupt
including	reset.

intrusive	The	debugger	itself	affects	the	program	being	tested.			See	nonintrusive.

Inverse	Discrete	Fourier	Transform	(IDFT)	A	technique	to	convert	data	in	the
frequency	domain	to	data	in	the	time	domain.	There	are	N	data	points	and	the	sampling
rate	is	fs.	The	resulting	frequency	resolution	is	fs	/N.

invocation	coupling	Module	A	is	connected	to	Module	B,	because	A	calls	B.

IOH		Output	current	when	the	signal	is	high.	This	is	the	maximum	current	that	has	a
voltage	above	VOH.

IOL		Output	current	when	the	signal	is	low.	This	is	the	maximum	current	that	has	a	voltage
below	VOL.

isolated	I/O	A	configuration	where	the	I/O	devices	are	interfaced	to	the	computer	in	a
manner	different	than	the	way	memories	are	connected.

jerk		The	change	in	acceleration;	the	derivative	of	the	acceleration.	Third	derivative	of
shaft	angle.

Johnson	noise	A	fundamental	noise	in	resistive	devices	arising	from	the	uncertainty	about
the	position	and	velocity	of	individual	molecules.	Same	as	thermal	noise	and	white	noise.

Karnaugh	map	tabular	representation	of	the	input/output	relationship	for	a	combinational
digital	function,	the	inputs	possibilities	are	placed	in	the	row	and	column	labels,	and	the
output	values	are	placed	inside	the	table

kibibyte	(KiB)	210	or	1024	bytes.	Compare	to	kilobyte,	which	is	1000	bytes.

latch	As	a	noun,	it	means	a	register.	As	a	verb,	it	means	to	store	data	into	the	register.

latched	input	port		An	input	port	where	the	signals	are	latched	(saved)	on	an	edge	of	an
associated	strobe	signal.

latency		In	this	book	latency	usually	refers	to	the	response	time	of	the	computer	to
external	events.	For	example,	the	time	between	new	input	becoming	available	and	the	time
the	input	is	read	by	the	computer.	For	example,	the	time	between	an	output	device
becoming	idle	and	the	time	the	input	is	the	computer	writes	new	data	to	it.	There	can	also
be	a	latency	for	an	I/O	device,	which	is	the	response	time	of	the	external	I/O	device
hardware	to	a	software	command.

LCD		Liquid	Crystal	Display,	where	the	computer	controls	the	reflectance	or
transmittance	of	the	liquid	crystal,	characterized	by	its	flexible	display	patterns,	low
power,	and	slow	speed.

LED		Light	Emitting	Diode,	where	the	computer	controls	the	electrical	power	to	the
diode,	characterized	by	its	simple	display	patterns,	medium	power,	and	high	speed.

light-weight	process		Same	as	a	thread.	

linear	filter	A	filter	where	the	output	is	a	linear	combination	of	its	inputs.

linear	recursion	A	recursive	technique	that	makes	only	one	call	to	itself	during	the
execution	of	the	function.	Linear	recursive	functions	are	easier	to	implement	iteratively.
We	draw	the	execution	pattern	as	a	straight	or	linear	path.	See	also	recursion,	binary
recursion,	and	tail	recursion.

linear	variable	differential	transformer	(LVDT)	A	transducer	that	converts	position	into
electric	voltage.

little	endian	Mechanism	for	storing	multiple	byte	numbers	such	that	the	least	significant
byte	exists	first	(in	the	smallest	memory	address).	Contrast	with	big	endian.

loader		System	software	that	places	the	object	code	into	the	microcontroller’s	memory.	If
the	object	code	is	stored	in	EPROM,	the	loader	is	also	called	a	EPROM	programmer.

Local	Area	Network	(LAN)	A	connection	between	computers	confined	to	a	small	space,
such	as	a	room	or	a	building.

logic	analyzer		A	hardware	debugging	tool	that	allows	you	to	visualize	many	digital	logic
signals	versus	time.	Real	logic	analyzers	have	at	least	32	channels	and	can	have	up	to	200
channels,	with	sophisticated	techniques	for	triggering,	saving	and	analyzing	the	real-time
data.

LSB		The	least	significant	bit	in	a	number	system	is	the	bit	with	the	smallest	significance,
usually	the	right-most	bit.	With	signed	or	unsigned	integers	the	significance	of	the	LSB	is
1.

maintenance		Process	of	verifying,	changing,	correcting,	enhancing,	and	extending	a
system.

make	before	break	in	a	double-throw	relay	or	double-throw	switch,	there	is	one	common
contact	and	two	separate	contacts.	Make	before	break	means	as	the	common	contact
moves	from	one	of	separate	contacts	to	another,	it	will	make	(finishing	bouncing)	the
second	contact	before	it	breaks	off	(start	bouncing)	the	first	contact.	A	form	D	relay	has	a
make	before	break	operation.

mailbox	A	formal	communication	structure,	similar	to	a	FIFO	queue,	where	the	source
task	puts	data	into	the	mailbox	and	the	sink	task	gets	data	from	the	mailbox.	The	mailbox
can	hold	at	most	one	piece	of	data	at	a	time,	and	has	two	states:	mailbox	has	valid	data	or
mailbox	is	empty.

mark	A	digital	value	of	true	or	logic	1.	Contrast	with	space.

mask		As	a	verb,	mask	is	the	operation	that	selects	certain	bits	out	of	many	bits,	using	the
logical	and	operation.	The	bits	that	are	not	being	selected	will	be	cleared	to	zero.	When
used	as	a	noun,	mask	refers	to	the	specific	bits	that	are	being	selected.

Mealy	FSM	A	FSM	where	the	both	the	output	and	next	state	are	a	function	of	the	input
and	state

measurand	A	signal	measured	by	a	data	acquisition	system.

mebibyte	(MiB)	220	or	1,048,576	bytes.	Compare	to	megabyte,	which	is	1,000,000	bytes.

membership	sets	Fuzzy	logic	variables	that	can	take	on	a	range	of	values	from	true	(255)
to	false	(0).

memory	A	computer	component	capable	of	storing	and	recalling	information.

memory-mapped	I/O	A	configuration	where	the	I/O	devices	are	interfaced	to	the
computer	in	a	manner	identical	to	the	way	memories	are	connected.

microcomputer	A	small	electronic	device	capable	of	performing	input/output	functions
containing	a	microprocessor,	memory,	and	I/O	devices,	where	small	means	you	can	carry
it.

microcontroller	A	single	chip	microcomputer	like	the	TI	MSP430,	Freescale	9S12,	Intel
8051,	PIC16,	or	the	Texas	Instruments	TM4C123.

mnemonicThe	symbolic	name	of	an	operation	code,	likemov	str	push .

modem	An	electronic	device	that	MOdulates	and	DEModulates	a	communication	signal.
Used	in	serial	communication	across	telephone	lines.

monitor	A	monitor	is	a	debugger	feature	that	allows	us	to	passively	view	strategic
software	parameters	during	the	real-time	execution	of	our	program.	An	effective	monitor
is	one	that	has	minimal	effect	on	the	performance	of	the	system.	When	debugging
software	on	a	windows-based	machine,	we	can	often	set	up	a	debugger	window	that
displays	the	current	value	of	certain	software	variables.

Moore	FSM	A	FSM	where	the	both	the	output	is	only	a	function	of	the	state	and	the	next
state	is	a	function	of	the	input	and	state

MOSFET	Metal	oxide	semiconductor	field	effect	transistor.

MSB	The	most	significant	bit	in	a	number	system	is	the	bit	with	the	greatest	significance,
usually	the	left-most	bit.	If	the	number	system	is	signed,	then	the	MSB	signifies	positive
(0)	or	negative	(1).

multiple	access	circular	queue	MACQ	A	data	structure	used	in	data	acquisition	systems
to	hold	the	current	sample	and	a	finite	number	of	previous	samples.	It	is	always	full	and
new	data	overwrites	the	oldest.

multi-threaded		A	system	with	multiple	threads	(e.g.,	main	program	and	interrupt	service
routines)	that	cooperate	towards	a	common	overall	goal.	

mutual	exclusion	or	mutex		Thread	synchronization	where	at	most	one	thread	at	a	time	is
allowed	to	enter.	

negative	feedback	An	analog	system	with	negative	gain	feedback	paths.	These	systems
are	often	stable.

negative	logic	A	signal	where	the	true	value	has	a	lower	voltage	than	the	false	value,	in
digital	logic	true	is	0	and	false	is	1,	in	TTL	logic	true	is	less	than	0.7	volts	and	false	is
greater	than	2	volts,	in	RS232	protocol	true	is	-12	volts	and	false	is	+12	volts.	Contrast
with	positive	logic.

nibble		4	binary	bits	or	1	hexadecimal	digit.

nonatomic		Software	execution	that	can	be	divided	or	interrupted.	Most	lines	of	C	code
require	multiple	assembly	language	instructions	to	execute,	therefore	an	interrupt	may
occur	in	the	middle	of	a	line	of	C	code.	The	instuctionsstore	and	load	multiple, STM
LDM ,	are	nonatomic.

nonintrusive	A	characteristic	when	the	presence	of	the	collection	of	information	itself
does	not	affect	the	parameters	being	measured.			Nonintrusiveness	is	the	characteristic	or
quality	of	a	debugger	that	allows	the	software/hardware	system	to	operate	normally	as	if
the	debugger	did	not	exist.	Intrusiveness	is	used	as	a	measure	of	the	degree	of	perturbation
caused	in	program	performance	by	an	instrument.	For	example,	a	print	statement	added	to
your	source	code	and	single-stepping	are	very	intrusive	because	they	significantly	affect
the	real-time	interaction	of	the	hardware	and	software.	When	a	program	interacts	with
real-time	events,	the	performance	is	significantly	altered.	On	the	other	hand,	an	instrument
that	toggles	an	LED	on	and	off	(requiring	just	1	µs	to	execute)	is	much	less	intrusive.	A
logic	analyzer	that	passively	monitors	the	address	and	data	by	is	completely	nonintrusive.	
An	in-circuit	emulator	is	also	non-intrusive	because	the	software	input/output
relationships	will	be	the	same	with	and	without	the	debugging	tool.

nonlinear	filter	A	filter	where	the	output	is	not	a	linear	combination	of	its	inputs.	E.g.,
median,	minimum,	maximum	are	examples	of	nonlinear	filters.	Contrast	to	linear	filter.

nonpreemptive	scheduler		A	scheduler	that	cannot	suspend	execution	of	a	thread	without
the	thread’s	permission.	The	thread	must	cooperate	and	suspend	itself.	Same	as
cooperative	multi-tasking.

nonreentrant		A	software	module	which	once	started	by	one	thread,	should	not	be
interrupted	and	executed	by	a	second	thread.	A	nonreentrant	modules	usually	involve
nonatomic	accesses	to	global	variables	or	I/O	ports:	read	modify	write,	write	followed	by
read,	or	a	multistep	write.

nonvolatile	A	condition	where	information	is	not	lost	when	power	is	removed.	When
power	is	restored,	then	the	information	is	in	the	state	that	occurred	when	the	power	was
removed.

Nyquist	Theorem	If	a	input	signal	is	captured	by	an	ADC	at	the	regular	rate	of	fs
samples/sec,	then	the	digital	sequence	can	accurately	represent	the	0	to	½	fs	frequency
components	of	the	original	signal.

object	code		Programs	in	machine	readable	format	created	by	the	compiler	or	assembler.
The	S19	records	contain	object	code.

odd	parity	A	communication	protocol	where	the	number	of	ones	in	the	data	plus	a	parity
bit	is	an	odd	number.	Contrast	with	even	parity.

op	amp	An	integrated	analog	component	with	two	inputs,	(V2,V1)	and	an	output	(Vout),
where	Vout=K•(V2-V1).	The	amp	has	a	very	large	gain,	K.	Same	as	operational	amplifier.

op	code,	opcode,	or	operation	codeA	specific	instruction	executed	by	the	computer.	The
op	code	along	with	the	operand	completely	specifies	the	function	to	be	performed.	In
assembly	language	programming,	the	op	code	is	represented	by	its	mnemonic,	like LDR .
During	execution,	the	op	code	is	stored	as	a	machine	code	loaded	in	memory.

open	collector		A	digital	logic	output	that	has	two	states	low	and	HiZ.	Same	as	open	drain
and	wire-or-mode.

open	drain		A	digital	logic	output	that	has	two	states	low	and	HiZ.	Same	as	open	collector
and	wire-or-mode.

open	loop	control	system	A	control	system	that	does	not	include	sensors	to	measure	the
current	state	variables.	An	analog	system	with	no	feedback	paths.

operand	The	second	part	of	an	instruction	that	specifies	either	the	data	or	the	address	for
that	instruction.	An	assembly	instruction	typically	has	an	op	code	and	an	operand	(e.g.,
#55).	Instructions	that	use	inherent	addressing	mode	have	no	operand	field.

operating	system	System	software	for	managing	computer	resources	and	facilitating
common	functions	like	input/output,	memory	management,	and	file	system.

originate	modem	the	device	that	places	the	telephone	call.

oscilloscope		A	hardware	debugging	tool	that	allows	you	to	visualize	one	or	two	analog
signals	versus	time.

output	compare	A	mechanism	to	cause	a	flag	to	be	set	and	an	output	pin	to	change	when
the	timer	matches	a	preset	value.	The	output	compare	event	can	also	request	an	interrupt.

output	impedance	Open	circuit	output	voltage	divided	by	short	circuit	output	current.

overflow	An	error	that	occurs	when	the	result	of	a	calculation	exceeds	the	range	of	the
number	system.	For	example,	with	8-bit	unsigned	integers,	200+57	will	yield	the	incorrect
result	of	1.

overrun	error	An	error	that	occurs	when	the	receiver	gets	a	new	frame	but	the	receive
FIFO	and	shift	register	already	have	information.

parallel	port		A	port	where	all	signals	are	available	simultaneously.	E.g.,	Port	A	is	an	8-
bit	parallel	port.

parallel	programming	A	software	system	that	supports	two	or	more	programs	being
executed	at	the	same	time.	A	computer	with	multiple	cores	implements	parallel
programming.

partially	asynchronous	bus		a	communication	protocol	that	has	a	central	clock	but	the
memory	module	can	dynamically	extend	the	length	of	a	bus	cycle	(cycle	stretch)	if	it
needs	more	time

path	expression	A	software	technique	to	guarantee	subfunctions	within	a	module	are
executed	in	a	proper	sequence.	For	example,	it	forces	the	user	to	initialize	I/O	device
before	attempting	to	perform	I/O.

PC-relative	addressing	An	addressing	mode	where	the	effective	address	is	calculated	by
its	position	relative	to	the	current	value	of	the	program	counter.

performance	debugging	or	profiling		The	process	of	acquiring	or	modifying	timing
characteristics	and	execution	patterns	of	a	program	and	the	process	of	instrumenting	a
program	for	such	purposes	is	called	performance	debugging	or	profiling.

periodic	polling		A	software/hardware	synchronization	method	that	is	a	combination	of
interrupts	and	busy	wait.	An	interrupt	occurs	at	a	regular	rate	(periodic)	independent	of	the
hardware	status.	The	interrupt	handler	checks	the	hardware	device	(polls)	to	determine	if
its	operation	is	complete.	The	software	usually	can	perform	other	work	while	waiting	for
the	hardware.

Personal	Area	Network	(PAN)	A	connection	between	computers	controlled	by	a	single
person	or	all	working	toward	for	a	well-defined	single	task.

phase	shift	key	(PSK)	a	protocol	that	encodes	the	information	as	phase	changes	between
the	sounds.

photosensor	A	transducer	that	converts	reflected	or	transmitted	light	into	electric	current.

physical	plant	The	physical	device	being	controlled.

PID	controller	A	control	system	where	the	actuator	output	depends	on	a	linear
combination	of	the	current	error	(P),	the	integral	of	the	error	(I)	and	the	derivative	of	the
error	(D).

pink	noise	A	fundamental	noise	in	resistive	devices	arising	from	fluctuating	conductivity.
Same	as	1/f	noise.

pole	A	place	in	the	frequency	domain	where	the	filter	gain	is	infinite.

polling	A	software	function	to	look	and	see	which	of	the	potential	sources	requested	the
interrupt.

port	External	pins	through	which	the	microcontroller	can	perform	input/output.	Same	as
I/O	port.

positive	feedback	An	analog	system	with	positive	gain	feedback	paths.	These	systems
will	saturate.

positive	logic	a	signal	where	the	true	value	has	a	higher	voltage	than	the	false	value,	in
digital	logic	true	is	1	and	false	is	0,	in	TTL	logic	true	is	greater	than	2	volts	and	false	is
less	than	0.7	volts,	in	RS232	protocol	true	is	+12	volts	and	false	is	-12	volts.	Contrast	with
negative	logic.

potentiometer	A	transducer	that	converts	position	into	electric	resistance.

precision	A	term	specifying	the	degrees	of	freedom	from	random	errors.	For	an	input
signal,	it	is	the	number	of	distinguishable	input	signals	that	can	be	reliably	detected	by	the
measurement.	For	an	output	signal,	it	is	the	number	of	different	output	parameters	that	can
be	produced	by	the	system.	For	a	number	system,	precision	is	the	number	of	distinct	or
different	values	of	a	number	system	in	units	of	“alternatives”.	The	precision	of	a	number
system	is	also	the	number	of	binary	digits	required	to	represent	all	its	numbers	in	units	of
“bits”.

preemptive	scheduler		A	scheduler	that	has	the	power	to	suspend	execution	of	a	thread
without	the	thread’s	permission.

priority		When	two	requests	for	service	are	made	simultaneously,	priority	determines
which	order	to	process	them.

private		Can	be	accessed	only	by	software	modules	in	that	local	group.

private	variable	A	variable	that	is	used	by	a	single	thread,	and	not	shared	with	other
threads.

process		The	execution	of	software	that	does	not	necessarily	cooperate	with	other
processes.	

producer-consumer	A	multithreaded	system	where	the	producers	generate	new	data,	and
the	consumers	process	or	output	the	data.

profiling		See	performance	debugging.	

program	counter	(PC)	A	register	in	the	processor	that	points	to	the	memory	containing
the	instruction	to	execute	next.

PROM	Same	as	EPROM.	Programmable	read	only	memory	that	is	nonvolatile	and
requires	external	devices	to	erase	and	reprogram.	It	is	usually	erased	using	UV	light.

promotion	Increasing	the	precision	of	a	number	for	convenience	or	to	avoid	overflow
errors	during	calculations.

pseudo	interrupt	vector	A	secondary	place	for	the	interrupt	vectors	for	the	convenience
of	the	debugger,	because	the	debugger	cannot	or	does	not	want	the	user	to	modify	the	real
interrupt	vectors.	They	provide	flexibility	for	debugging	but	incur	a	run	time	delay	during
execution.

pseudo	op	Operations	included	in	the	program	that	are	not	executed	by	the	computer	at
run	time,	but	rather	are	interpreted	by	the	assembler	during	the	assembly	process.	Same	as
assembly	directive.

pseudo-code	A	shorthand	for	describing	a	software	algorithm.	The	exact	format	is	not
defined,	but	many	programmers	use	their	favorite	high-level	language	syntax	(like	C)
without	paying	rigorous	attention	to	the	punctuation.

public		Can	be	accessed	by	any	software	module.

public	variable	A	global	variable	that	is	shared	by	multiple	programs	or	threads.

pulse	width	modulation	A	technique	to	deliver	a	variable	signal	(voltage,	power,	energy)
using	an	on/off	signal	with	a	variable	percentage	of	time	the	signal	is	on	(duty	cycle).
Same	as	variable	duty	cycle.

Q	The	Q	of	a	bandpass	filter	(passes	fmin	to	fmax)	is	the	center	pass	frequency	(fo=
(fmax+fmin)/2)	divided	by	the	width	of	the	pass	region,	Q=fo/(fmax-fmin).	The	Q	of	a	bandreject
filter	(rejects	fmin	to	fmax)	is	the	center	reject	frequency	(fo=(fmax+fmin)/2)	divided	by	the
width	of	the	reject	region,	Q=fo/(fmax-fmin).

quadrature	amplitude	modem	(QAM)	a	protocol	that	used	both	the	phase	and	amplitude
to	encode	up	to	6	bits	onto	each	baud.

qualitative	DAS	A	DAS	that	collects	information	not	in	the	form	of	numerical	values,	but
rather	in	the	form	of	the	qualitative	senses,	e.g.,	sight,	hearing,	smell,	taste	and	touch.	A
qualitative	DAS	may	also	detect	the	presence	or	absence	of	conditions.

quantitative	DAS	A	DAS	that	collects	information	in	the	form	of	numerical	values.

RAM	Random	Access	Memory,	a	type	of	memory	where	is	the	information	can	be	stored
and	retrieved	easily	and	quickly.	Since	it	is	volatile	the	information	is	lost	when	power	is
removed.

range	Includes	both	the	smallest	possible	and	the	largest	possible	signal	(input	or	output).
The	difference	between	the	largest	and	smallest	input	that	can	be	measured	by	the
instrument.	The	units	are	in	the	units	of	the	measurand.	When	precision	is	in	alternatives,
range=precision•resolution.		Same	as	span

read	cycle	data	flows	from	the	memory	or	input	device	to	the	processor,	the	address	bus
specifies	the	memory	or	input	device	location	and	the	data	bus	contains	the	information	at
that	address

read	data	available	The	time	interval	(start,end)	during	which	the	data	will	be	valid
during	a	read	cycle,	determined	by	the	memory	module

real-time	A	characteristic	of	a	system	that	can	guarantee	an	upper	bound	(worst	case)	on
latency.

real-time	system	A	system	where	time-critical	operations	occur	when	needed.

recursion	A	programming	technique	where	a	function	calls	itself.

reduced	instruction	set	computer	(RISC)	A	computer	with	a	few	instructions,
instructions	with	fixed	lengths,	instructions	that	execute	in	1	or	2	bus	cycles,	only	load	and
store	can	access	memory,	instructions	that	cannot	read	and	write	memory	in	the	same	bus
cycle,	many	identical	general	purpose	registers,	and	a	limited	number	of	addressing
modes.		Contrast	to	CISC.

reentrant		A	software	module	that	can	be	started	by	one	thread,	interrupted	and	executed
by	a	second	thread.	A	reentrant	module	allow	both	threads	to	properly	execute	the	desired
function.		Contrast	with	non-reentrant.

registers	High-speed	memory	located	in	the	processor.	The	registers	in	the	ARM ®
Cortex-M	include	R0	through	R15.

relay		A	mechanical	switch	that	can	be	turned	on	and	off	by	the	computer.

reliability		The	ability	of	a	system	to	operate	within	specified	parameters	for	a	stated
period	of	time.	Given	in	terms	of	mean	time	between	failures	(MTBF).

reproducibility	(or	repeatability)	A	parameter	specifying	how	consistent	over	time	the
measurement	is	when	the	input	remains	fixed.

requirements	document	A	formal	description	of	what	the	system	will	do	in	a	very
complete	way,	but	not	including	how	it	will	be	done.	It	should	be	unambiguous,	complete,
verifiable,	and	modifiable.

reset	vector	The	32-bit	value	at	memory	locations	0x0000.0004	specifying	where	the
software	should	start	after	power	is	turned	on	or	after	a	hardware	reset.

resistance	temperature	device	(RTD)	A	linear	transducer	that	converts	temperature	into
electric	resistance.

resolution	For	an	input	signal,	it	is	the	smallest	change	in	the	input	parameter	that	can	be
reliably	detected	by	the	measurement.	For	an	output	signal,	it	is	the	smallest	change	in	the
output	parameter	that	can	be	produced	by	the	system,	range	equals	precision	times
resolution.		The	units	are	in	the	units	of	the	measurand.	When	precision	is	in	alternatives,
range=precision•resolution.

response	time		Similar	to	latency,	it	is	the	delay	between	when	the	time	an	event	occurs
and	the	time	the	software	responds	to	the	event.

ritual		Software,	usually	executed	once	at	the	beginning	of	the	program,	that	defines	the
operational	modes	of	the	I/O	ports.

ROM	Read	Only	Memory,	a	type	of	memory	where	is	the	information	is	programmed	into
the	device	once,	but	can	be	accessed	quickly.	It	is	low	cost,	must	be	purchased	in	high
volume	and	can	be	programmed	only	once.	See	also	EPROM,	EEPROM,	and	flash
EEPROM.

rotor	The	part	of	a	motor	that	rotates.

round	robin	scheduler		A	scheduler	that	runs	each	active	thread	equally.

roundoff	The	error	that	occurs	in	a	fixed-point	or	floating-point	calculation	when	the	least
significant	bits	of	an	intermediate	calculation	are	discarded	so	the	result	can	fit	into	the
finite	precision.

RTD	Resistance	temperature	device,	a	sensor	used	to	measure	temperature,	usually	made
from	platinum

sample	and	hold	A	circuit	used	to	latch	a	rapidly	changing	analog	signal,	capturing	its
input	value	and	holding	its	output	constant.

sampling	rate	The	rate	at	which	data	is	collected	in	a	data	acquisition	system.

saturation	A	device	that	is	no	longer	sensitive	to	its	inputs	when	its	input	goes	above	a
maximum	value	or	below	a	minimum	value.

scan	or	scanpoint		Any	instrument	used	to	produce	a	side	effect	without	causing	a	break
(halt)	is	a	scan.		Therefore,	a	scan	may	be	used	to	gather	data	passively	or	to	modify
functions	of	a	program.	Examples	include	software	added	to	your	source	code	that	simply
outputs	or	modifies	a	global	variable	without	halting.	A	scanpoint	is	triggered	in	a	manner
similar	to	a	breakpoint	but	a	scanpoint	simply	records	data	at	that	time	without	halting
execution.

scheduler		System	software	that	suspends	and	launches	threads.

Schmitt	Trigger		A	digital	interface	with	hysteresis	making	it	less	susceptible	to	noise.

scope		A	logic	analyzer	or	an	oscilloscope,	hardware	debugging	tools	that	allows	you	to
visualize	multiple	digital	or	analog	signals	versus	time.

SCSI		Small	Computer	Systems	Interface,	a	high	speed	handshaking	parallel	I/O	standard.

select	signal	The	output	of	the	address	decoder	(each	module	on	the	bus	has	a	separate
address	decoder);	a	Boolean	(true/false)	signal	specifying	whether	or	not	the	current
address	of	the	bus	matches	the	device	address

semaphore	A	system	function	with	two	operations	(wait	and	signal)	that	provide	for
thread	synchronization	and	resource	sharing.

sensitivity	The	sensitivity	of	a	transducer	is	the	slope	of	the	output	versus	input	response.
The	sensitivity	of	a	qualitative	DAS	that	detects	events	is	the	percentage	of	actual	events
that	are	properly	recognized	by	the	system.

serial	communication	A	process	where	information	is	transmitted	one	bit	at	a	time.

serial	communications	interface	(SCI)	A	Freescale	term	for	a	device	to	transmit	data
with	asynchronous	serial	communication	protocol	(same	as	UART	and	ACIA.)

serial	peripheral	interface	(SPI)	A	device	to	transmit	data	with	synchronous	serial
communication	protocol.	Same	as	SSI.

serial	port	An	I/O	port	with	which	the	bits	are	input	or	output	one	at	a	time.

servo	A	DC	motor	with	built	in	controller.	The	microcontroller	specifies	desired	position
and	the	servo	adds/subtracts	power	to	move	the	shaft	to	that	position.

setup	time	When	latching	data	into	a	register	with	a	clock,	it	is	the	time	before	an	edge
the	input	must	be	valid.	Contrast	with	hold	time.

shot	noise	A	fundamental	noise	that	occurs	in	devices	that	count	discrete	events.

signed	two’s	complement	binary	A	mechanism	to	represent	signed	integers	where	1
followed	by	all	0’s	is	the	most	negative	number,	all	1’s	represents	the	value	-1,	all	0’s
represents	the	value	0,	and	0	followed	by	all	1’s	is	the	largest	positive	number.

sign-magnitude	binary	A	mechanism	to	represent	signed	integers	where	the	most
significant	bit	is	set	if	the	number	is	negative,	and	the	remaining	bits	represent	the
magnitude	as	an	unsigned	binary.

simplex	channel	Hardware	that	allows	bits	(information,	error	checking,	synchronization
or	overhead)	to	transfer	only	in	one	direction.	Contrast	with	half	duplex	and	full	duplex
channels.

simplex	communication	A	system	that	allows	information	to	transfer	only	in	one
direction.

simulator		A	simulator	is	a	software	application	that	simulates	or	mimics	the	operation	of
a	processor	or	computer	system.	Most	simulators	recreate	only	simple	I/O	ports	and	often
do	not	effectively	duplicate	the	real-time	interactions	of	the	software/hardware	interface.
On	the	other	hand,	they	do	provide	a	simple	and	interactive	mechanism	to	test	software.

single	address	DMA	Direct	memory	access	that	requires	only	one	bus	cycle	to	transfer
data	from	an	input	device	into	memory,	or	from	memory	to	an	output	device.

single-pole	relay	A	simple	relay	with	only	one	copy	of	the	switch	mechanism.	Contrast
with	double	pole.

single-pole	switch	A	simple	switch	with	only	one	copy	of	the	switch	mechanism.	One
switch	that	acts	independent	from	other	switches	in	the	system.	Contrast	with	double-pole.

single-throw	switch	A	switch	with	two	contact	connections.	The	two	contacts	may	be
connected	or	disconnected.		Contrast	with	double-throw.

slew	rate	The	maximum	slope	of	a	signal.	If	the	time-varying	signal	V(t)	is	in	volts,	the
slew	rate	is	the	maximum	dV/dt	in	volts/s.

software	interrupt	See	trap.

software	maintenance	Process	of	verifying,	changing,	correcting,	enhancing,	and
extending	software.

solenoid		A	discrete	motion	device	(on/off)	that	can	be	controlled	by	the	computer	usually
by	activating	an	electromagnet.	For	example,	electronic	door	locks	on	automobiles.

source	code		Programs	in	human	readable	format	created	with	an	editor.

space	A	digital	value	of	false	or	logic	0.	Contrast	with	mark.

span		Same	as	range.

spatial	resolution	The	volume	over	which	the	DAS	collects	information	about	the
measurand.

specificity	The	specificity	of	a	transducer	is	the	relative	sensitivity	of	the	device	to	the
signal	of	interest	versus	the	sensitivity	of	the	device	to	other	unwanted	signals.	The
sensitivity	of	a	qualitative	DAS	that	detects	events	is	the	percentage	of	events	detected	by
the	system	that	are	actually	true	events.

spinlock	semaphore		A	semaphore	where	the	threads	will	spin	(run	but	do	no	useful
function)	when	they	execute	wait	on	a	busy	semaphore.	Contrast	to	blocking	semaphore.

stabilize		The	debugging	process	of	stabilizing	a	software	system	involves	specifying	all
its	inputs.	When	a	system	is	stabilized,	the	output	results	are	consistently	repeatable.
Stabilizing	a	system	with	multiple	real-time	events,	like	input	devices	and	time-dependent
conditions,	can	be	difficult	to	accomplish.	It	often	involves	replacing	input	hardware	with
sequential	reads	from	an	array	or	disk	file.

stack	Last	in	first	out	data	structure	located	in	RAM	and	used	to	temporarily	save
information.

stack	pointer	(SP)	A	register	in	the	processor	that	points	to	the	RAM	location	of	the
stack.

start	bit	An	overhead	bit(s)	specifying	the	beginning	of	the	frame,	used	in	serial
communication	to	synchronize	the	receiver	shift	register	with	the	transmitter	clock.		See
also	stop	bit,	even	parity	and	odd	parity.

starvation		A	condition	that	occurs	with	a	priority	scheduler	where	low	priority	threads
are	never	run.

static	allocation		Data	structures	such	as	an	FSM	or	TCB	that	are	defined	at	assembly	or
compile	time	and	exist	throughout	the	life	of	the	software.	Contrast	to	dynamic	allocation.

static	RAM	Volatile	read/write	storage	built	from	three	transistors	having	fast	speed,	and
not	requiring	refresh.	Contrast	with	dynamic	RAM.

stator	The	part	of	a	motor	that	remains	stationary.	Same	as	frame.

stepper	motor		A	motor	that	moves	in	discrete	steps.

stop	bit		An	overhead	bit(s)	specifying	the	end	of	the	frame,	used	in	serial	communication
to	separate	one	frame	from	the	next.	See	also	start	bit,	even	parity	and	odd	parity.

strain	gauge	A	transducer	that	converts	displacement	into	electric	resistance.	It	can	also
be	used	to	measure	force	or	pressure.

string	A	sequence	of	ASCII	characters,	usually	terminated	with	a	zero.

symbol	table	A	mapping	from	a	symbolic	name	to	its	corresponding	16-bit	address,
generated	by	the	assembler	in	pass	one	and	displayed	in	the	listing	file.

synchronous	bus	a	communication	protocol	that	has	a	central	clock;	there	is	no	feedback
from	the	memory	to	the	processor,	so	every	memory	cycle	takes	exactly	the	same	time;
data	transfers	(put	data	on	bus,	take	data	off	bus)	are	synchronized	to	the	central	clock

synchronous	protocol	a	system	where	the	two	devices	share	the	same	clock.

synchronous	serial	interface	(SSI)	A	device	to	transmit	data	with	synchronous	serial
communication	protocol.	Same	as	SPI.

tachometer	a	sensor	that	measures	the	revolutions	per	second	of	a	rotating	shaft.

tail	recursion	A	technique	where	the	recursive	call	occurs	as	the	last	action	taken	by	the
function.	See	also	recursion,	binary	recursion,	and	linear	recursion.

thermal	noise	A	fundamental	noise	in	resistive	devices	arising	from	the	uncertainty	about
the	position	and	velocity	of	individual	molecules.	Same	as	Johnson	noise	and	white	noise.

thermistor	A	nonlinear	transducer	that	converts	temperature	into	electric	resistance.

thermocouple	A	transducer	that	converts	temperature	into	electric	voltage.

thread		The	execution	of	software	that	cooperates	with	other	threads.	A	thread	embodies
the	action	of	the	software.	One	concept	describes	a	thread	as	the	sequence	of	operations
including	the	input	and	output	data.

thread	control	block	TCB		Information	about	each	thread.	

three-pole	relay	Three	separate	and	complete	relays,	which	are	activated	together	(see
single	pole).

three-pole	switch		Three	separate	and	complete	switches.	The	switches	are	electrically
separate,	but	mechanically	connected.	The	three	switches	turned	on	and	off	together	(see
single	pole).

throughput		The	information	transfer	rate,	the	amount	of	data	transferred	per	second.
Same	as	bandwidth.

time	constant	The	time	to	reach	63.2%	of	the	final	output	after	the	input	is
instantaneously	increased.

time	profile	and	execution	profile		Time	profile	refers	to	the	timing	characteristic	of	a
program	and	execution	profile	refers	to	the	execution	pattern	of	a	program.

timing	signals	The	lines	used	to	clock	data	onto	or	off	of	the	bus;	signals	that	specify
when	to	activate	during	this	cycle;	the	specific	times	for	the	rise	and	fall	edges	are
synchronized	to	a	clock.	Contrast	to	command	signals.

tolerance		The	maximum	deviation	of	a	parameter	from	a	specified	value.

total	harmonic	distortion	(THD)	A	measure	of	the	harmonic	distortion	present	and	is
defined	as	the	ratio	of	the	sum	of	the	powers	of	all	harmonic	components	to	the	power	of
the	fundamental	frequency.

transducer	A	device	that	converts	one	type	of	signal	into	another	type.

trap	A	trap	is	similar	to	a	regular	or	hardware	interrupt:	there	is	a	trigger	that	invokes	the
execution	of	an	ISR.	On	the	Cortex-M,	there	are	two	software	interrupts:	supervisor	call
and	PendSV.	Hardware	interrupts	are	triggered	by	hardware	events,	while	software
interrupts	are	triggered	explicitly	by	software.	To	invoke	a	PendSV,	the	software	sets	bit
28	of	the	NVIC_INT_CTRL_R	register.	Same	as	software	interrupt.

tristate		The	state	of	a	tristate	logic	output	when	off	or	not	driven.

tristate	logic		A	digital	logic	device	that	has	three	output	states	low,	high,	and	off	(HiZ).

truncation	The	act	of	discarding	bits	as	a	number	is	converted	from	one	format	to
another.

two’s	complement	A	number	system	used	to	define	signed	integers.	The	MSB	defines
whether	the	number	is	negative	(1)	or	positive	(0).	To	negate	a	two’s	complement	number,
one	first	complements	(flip	from	0	to	1	or	from	1	to	0)	each	bit,	then	add	1	to	the	number.

two-pole	relay	two	separate	and	complete	relays,	which	are	activated	together	(same	as
double	pole).

two-pole	switch	Two	separate	and	complete	switches.	The	switches	are	electrically
separate,	but	mechanically	connected.	The	two	switches	turned	on	and	off	together	which
are	activated	together,	same	as	double-pole.

ultrasound	A	sound	with	a	frequency	too	high	to	be	heard	by	humans,	typically	40	kHz	to
100	MHz.

unbuffered	I/O		The	hardware	and	software	are	tightly	coupled	so	that	both	wait	for	each
other	during	the	transmission	of	data.

unipolar	stepper	motor	A	stepper	motor	where	the	current	flows	in	only	one	direction
(on/off)	along	the	interface	wires;	a	stepper	with	5	or	6	interface	wires.

universal	asynchronous	receiver/transmitter	(UART)	A	device	to	transmit	data	with
asynchronous	serial	communication	protocol.

unsigned	binary	A	mechanism	to	represent	unsigned	integers	where	all	0’s	represents	the
value	0,	and	all	1’s	represents	is	the	largest	positive	number.

vector	A	32-bit	address	in	ROM	containing	the	location	of	the	interrupt	service	routines.
See	also	reset	vector	and	interrupt	vector.

velocity	factor	(VF)	The	ratio	of	the	speed	at	which	information	travels	relative	to	the
speed	of	light.

vertical	parity		the	normal	parity	bit	calculated	on	each	individual	frame,	can	be	even	or
odd	parity

VOH		The	smallest	possible	output	voltage	when	the	signal	is	high,	and	the	current	is	less
than	IOH.

VOL		The	largest	possible	output	voltage	when	the	signal	is	low,	and	the	current	is	less	than
IOL.

volatile	A	condition	where	information	is	lost	when	power	is	removed.

volatile	A	property	of	a	variable	in	C,	such	that	the	value	of	the	variable	can	change
outside	the	immediate	scope	of	the	software	accessing	the	variable.

voltage	follower	An	analog	circuit	with	gain	equal	to	1,	large	input	impedance	and	small
output	impedance.	Same	as	follower.

vulnerable	window		Locations	within	a	software	module,	which	if	an	interrupt	were	to
occur	at	one	of	these	locations,	then	an	error	could	occur	(e.g.,	data	lost,	corrupted	data,
program	crash,	etc.)		Same	as	critical	section.

white	noise	A	fundamental	noise	in	resistive	devices	arising	from	the	uncertainty	about
the	position	and	velocity	of	individual	molecules.	Same	as	Johnson	noise	and	thermal
noise.

wire-or-mode	A	digital	logic	output	that	has	two	states	low	and	HiZ.	Same	as	open
collector.

word	Four	bytes	containing	32	bits.

workstation	A	powerful	general	purpose	computer	system	having	a	price	in	the	$3K	to
50K	range	and	used	for	handling	large	amounts	of	data	and	performing	many	calculations.

write	cycle	data	is	sent	from	the	processor	to	the	memory	or	output	device,	the	address
bus	specifies	the	memory	or	output	device	location	and	the	data	bus	contains	the
information

write	data	available	time	interval	(start,end)	during	which	the	data	will	be	valid	during	a
write	cycle,	determined	by	the	processor

write	data	required		time	interval	(start,end)	during	which	the	data	should	be	valid
during	a	write	cycle,	determined	by	the	memory	module

XON/XOFF	A	protocol	used	by	printers	to	feedback	the	printer	status	to	the	computer.
XOFF	is	sent	from	the	printer	to	the	computer	in	order	to	stop	data	transfer,	and	XON	is
sent	from	the	printer	to	the	computer	in	order	to	resume	data	transfer.

Z	Transform	A	transform	equation	converting	a	digital	time-domain	sequence	into	the
frequency	domain.	In	both	the	time	and	frequency	domain	it	is	assumed	the	signal	is	band
limited	to	0	to	½fs.

zero	A	place	in	the	frequency	domain	where	the	filter	gain	is	zero.

	

Appendix	2.	Solutions	to	Checkpoints
Checkpoint	1.1:	A	microcomputer	is	a	small	computer	that	includes	a	processor,	memory,
and	input/output.	A	microprocessor	is	a	small	processor	that	includes	registers,	ALU,
control	unit	and	a	bus	interface	unit.	A	microcontroller	is	a	single	chip	microcomputer.

Checkpoint	1.2:	Flash	ROM	is	higher	density	because	it	requires	fewer	transistors	per	bit.

Checkpoint	1.3:	An	input	port	is	hardware	that	is	part	of	the	computer,	and	it	is	the
channel	through	which	information	enters	into	the	computer.	An	input	interface	includes
hardware	components	external	to	the	computer,	the	input	port,	and	software,	which	all
together	perform	the	input	function.

Checkpoint	1.4:	Typical	input	devices	include	the	keys	on	the	keyboard,	mouse	and	its
buttons,	touch	pad,	DVD	reader,	and	microphone.	USB	drives,	Ethernet,	and	wireless	can
be	used	for	input	and	output.

Checkpoint	1.5:	Typical	output	devices	include	the	LEDs	on	the	keyboard,	monitor,
speaker,	printer,	CD	burner,	and	speaker.		The	floppy	disk	can	be	used	for	input	and
output.

Checkpoint	1.6:	CU	(control	unit)	BIU	(bus	interface	unit)	and	ALU	(arithmetic	logic
unit)	are	all	part	of	the	processor.	DMA	stands	for	direct	memory	access,	which	is	a	high-
speed	mechanism	to	move	data	directly	from	input	to	memory,	or	move	data	directly	from
memory	to	output.

Checkpoint	1.7:	An	embedded	system	is	a	microcomputer	with	mechanical,	chemical	and
electrical	devices	attached	to	it,	programmed	for	a	specific	dedicated	purpose,	and
packaged	up	as	a	complete	system.

Checkpoint	1.8:	We	store	temporary	information	like	pictures,	sound	recordings,	and	text
messages.

Checkpoint	1.9:	We	store	nonvolatile	information	like	programs,	address	book,	music,
and	calendar.

Checkpoint	1.10:	The	software	in	the	alarm	clock	must	maintain	time	using	a	real-time
clock,	output	the	current	time	on	the	display,	respond	to	button	pushes	updating
parameters	as	required,	check	and	see	if	the	current	time	matches	the	alarm	time.

Checkpoint	1.11:	A	requirement	is	a	detailed	performance	parameter	that	the	system	must
satisfy,	generally	derived	from	the	overall	objective	of	the	system.	A	constraint	is	a
condition	defining	how	the	system	will	be	developed,	generally	restricting	the	range	of
solutions	from	which	the	system	will	be	built.

Checkpoint	1.12:	If	two	modules	output	to	the	same	port,	then	the	second	module	will
undo	the	function	of	the	first	one.	For	example	if	one	module	says	“go”	and	the	other	one
says	“stop”,	then	the	order	of	execution	determines	the	resulting	function.	A	similar	error
can	occur	for	input	ports.

Checkpoint	1.13:	When	I	start	the	wait,	I	observe	the	current	time.	Next,	I	add	t	to	this
time,	calling	it	endTime.	Lastly,	I	wait	for	the	time	on	the	wait	to	pass	endTime.

Checkpoint	1.14:	0	and	1V	are	considered	low	because	they	are	less	the	VIL.	2,	3,	4,	and
5V	are	considered	high	because	they	are	more	than	VIH.	LM3S/LM4F/TM4C	inputs	are
5V	tolerant.

Checkpoint	1.15:	We	must	check	four	inequalities.	Yes,	VOL(0.5V)	is	less	than	VIL(0.8V),
VOH(4.4V)	is	greater	than	VIH(2V),	IOH(4mA)	is	greater	than	IIH(20µA),	and	IOL(4mA)	is
greater	than	IIL(0.4mA).

Checkpoint	1.16:	No,	only	three	of	the	four	inequalities	are	true.	VOL(0.4V)	is	less	than
VIL(1.5V),	VOH(2.4V)	is	NOT	greater	than	VIH(3.5V),	IOH(0.4mA)	is	greater	than
IIH(1µA),	and	IOL(4mA)	is	greater	than	IIL(1 � A).

Checkpoint	1.17:	The	correct	resistor	value	is	(3.3-2-0.5V)/20mA	=	40 � .

Checkpoint	1.18:	2½	decimal	digits	is	200	alternatives,	which	is	about	8	bits.

Checkpoint	1.19:	10	binary	bits	is	1024	alternatives,	which	is	about	3	decimal	digits.

Checkpoint	1.20:	6½	decimal	digits	is	2,000,000	alternatives,	which	is	about	21	bits.

Checkpoint	1.21:		The	rule	of	thumb	says	260is	about	1018,	which	is	18	decimal	digits.	24is
16,	which	is	about	1½	decimal	digits.	Together,	we	have	19½	decimal	digits.

Checkpoint	1.22:		First,	break	into	nibbles	1110,	1110,	1011,	then	convert	each,	0xEEB.

Checkpoint	1.23:		First,	convert	each	hex	digit	one	at	a	time	0011	1000	0000	0000,	then
combine	to	get	2_0011100000000000.

Checkpoint	1.24:		Each	hex	digit	needs	4	bits,	so	a	total	of	20	bits	will	be	required

Checkpoint	1.25:		2_01101010	equals	64+32+8+2=106.

Checkpoint	1.26:		0x23	equals	2*16+3	=	35.

Checkpoint	1.27:		37	equals	32+4+1	=	2_00100101	=	0x25.

Checkpoint	1.28:		202	equals	128+64+8+2	=	2_11001010	=	0xCA.

Checkpoint	1.29:		They	are	the	same,	both	equally	53	(3*16+5=.48+5​)

Checkpoint	1.30:		-31	equals	–128+64+32+1	=	2_11100001	=	0xE1.

Checkpoint	1.31:		The	character	‘0’	is	represented	in	ASCII	as	0x30.

Checkpoint	1.32:		Converting	each	character	to	ASCII	yields
“48656C6C6F20576F726C6400”

Checkpoint	1.33:	The	integer	part	ranges	from	-32768	to	+32767,	so	the	value	of	the
fixed-point	number	ranges	from	-32.768	to	+32.767.

Checkpoint	1.34:	� 	is	about	3142,	with	a	resolution	of	0.001.

Checkpoint	1.35:	� 	is	about	804,	with	a	resolution	of	1/256.

Checkpoint	1.36:	Using	a	calculator,	we	find � 5-(161/72)	is	-0.000043. � 5-(682/305)	is
0.000002.

Checkpoint	1.37:		y	=	(1000•x‑53•x1+1000•x2+51•y1-903•y2)/1000.

Checkpoint	2.1:	0x2200.0000	+	32*n	+	4*b=0x2200.0000	+	32*0x1003	+4*5
=0x2200.0000	+0x20060	+	0x14	=	0x2202.0074.

Checkpoint	2.2:	0x2200.0000	+	32*n	+	4*b=0x2200.0000	+	32*0x1000+4*20
=0x2200.0000	+0x20000	+	0x50	=	0x2202.0050.

Checkpoint	2.3:	0x4200.0000	+	32*n	+	4*b=0x4200.0000	+	32*3	+4*2	=0x4200.0000
+0x00060	+	0x08	=	0x4200.0068.

Checkpoint	2.4:		The	addressing	mode	specifies	where	the	instruction	will	read	or	write
data.

Checkpoint	2.5:		It	will	access	the	32-bit	value	at	0x2000.0008.	R3	is	not	updated.

Checkpoint	2.6:		It	will	access	the	32-bit	value	at	0x2000.0000,	then	R3	is	updated	to
0x2000.0008.

Checkpoint	2.7:		In	C,	change	the int32_t to int16_t .	In	assembly,	change	40	to	20,
and LSL	#2 to LSL	#1 .

Checkpoint	2.8:

Checkpoint	2.9:		The	sum	of	two	unsigned	32-bit	numbers	is	a	33-bit	unsigned	number.
Consider	smallest	and	largest	values.	0+0=0,	and	(232-1)+(232-1)	=	(233-2).

Checkpoint	2.10:		The	sum	of	two	signed	32-bit	numbers	is	a	33-bit	signed	number.
Consider	smallest	and	largest	values.	(-231)+(-231)	=	(-232),	and	(231-1)+(231-1)	=	(232-2).

Checkpoint	2.11:		The	discontinuity	is	between	-128	and	+127,	which	are	adjacent	on	the
wheel.

Checkpoint	2.12:		The	product	of	two	unsigned	32-bit	numbers	is	a	64-bit	unsigned
number.	Consider	smallest	and	largest	values.	0*0=0,	and	(232-1)*(232-1)	=	(264-233+1).

Checkpoint	2.13:		The	product	of	two	signed	32-bit	numbers	is	a	64-bit	signed	number.
Consider	smallest	and	largest	products.	(-231)*	(231-1)	=	(-262-232),	and	(-231)*(-231)	=	(262).
(262)	will	not	fit	into	a	signed	63-bit	number.

Checkpoint	2.14:		No,	because	the	product	goes	into	64	bits.	See	Checkpoints	2.12	and
2.13.

Checkpoint	2.15:		The	conditional BHS is	used	with	unsigned	comparisons	and BGE
with	signed.

Checkpoint	2.16:		Nothing	happens	if	the	software	writes	to	an	input	port.

Checkpoint	2.17:		If	the	software	reads	this	output	port	it	gets	the	values	on	the	pins.	For
example,	if	the	user	mistakenly	grounded	the	output	pin	(very	bad	thing	to	do),	and	the
software	writes	a	‘1’;	when	it	reads	it	will	get	‘0’.

Checkpoint	2.18:		Since	there	are	8	bits	in	a	port	and	8	bits	in	the	direction	register,	each
bit	can	be	individually	programmed	as	input	or	output.

Checkpoint	2.19:		The	alternative	function	for	PD5	on	a	LM3S811	is	Timer	1A
Capture/Compare.

Checkpoint	2.20:		Nothing	happens.	Since	none	of	the	address	bits	are	selected,	none	of
the	port	bits	are	affected.

Checkpoint	2.21:	The	base	address	for	Port	D	is	0x4000.7000.
#define	PD72		(*((volatile	uint32_t	*)0x40007210))

PD72	=	0x84;	//	sets	PD7	PD2,	other	6	bits	are	not	affected

Checkpoint	2.22:	The	base	address	for	Port	B	is	0x4000.5000.
#define	PB650	(*((volatile	uint32_t	*)0x40005184))

PB650	=	0x61;	//	sets	PB6	PB5	PB0,	other	5	bits	are	not	affected

Checkpoint	2.23:		It	will	still	operate	according	to	specifications,	but	it	may	be	more
expensive	to	build	or	it	may	be	harder	to	order	components	to	build	it.

Checkpoint	2.24:		It	will	no	longer	operate	according	to	specifications.

Checkpoint	2.25:		Change	the	specification	from	6	MHz	to	8	MHz.	Change	the	line

		SYSCTL_RCC_R	+=		0x00000540;			//	10101,	configure	for	16	MHz	crystal

to

		SYSCTL_RCC_R	+=	0x00000380;			//	01110,	configure	for	8	MHz	crystal

Change	the	line	(400/8	is	50	MHz,	so	SYSDIV2	is	7)

		SYSCTL_RCC2_R	+=	(4<<22);						//	configure	for	80	MHz	clock

to

		SYSCTL_RCC2_R	+=	(7<<22);						//	configure	for	50	MHz	clock

Checkpoint	2.26:		Change	60000	to	80000.

Checkpoint	3.1:		The	policy	rewards	bad	behavior.	A	better	policy	would	be	to	reward
good	behavior.

Checkpoint	3.2:		A	private	function	has	no	underline	in	the	name(e.g., OutNibble).	A
public	function	has	the	module	name,	underline,	then	operation	in	the
name(e.g., FIFO_Put).

Checkpoint	3.3:		A	local	variable	begins	with	a	lower	case	letter.	A	global	variable	begins
with	an	upper	case	letter.

Checkpoint	3.4:		A	local	variable	is	created	by	defining	it	after	an	open	brace { but	before
any	executable	code.	E.g.,	this	routine	as	three	local	variables littleVar	mediumVar
largeVar

void	Process(void){

		int8_t	littleVar;

		int16_t	mediumVar;

		int32_t	largeVar;

Checkpoint	3.5:		A	global	variable	is	created	by	defining	it	outside	the	function.	E.g.,	this
program	as	three	global	variables LittleVar	MediumVar	LargeVar

		int8_t	LittleVar;

		int16_t	MediumVar;

		int32_t	LargeVar;

void	Process(void){

You	can	also	define	global	variables	inside	the	function	using static .	The	scope	of	static
variables	is	restricted	to	the	function.	E.g.,

void	Process(void){

		static	int8_t	LittleVar;

		static	int16_t	MediumVar;

		static	int32_t	LargeVar;

Checkpoint	3.6:	 static changes	a	local	variable	from	temporary	to	permanent
allocation. static does	not	change	the	scope	of	a	local	variable. static 	changes	a	global
variable	from	public	to	private	scope	(this	file	only). static does	not	change	the	allocation
of	a	global	variable. static 	changes	a	function	from	public	to	private	scope	(this	file	only).
It	does	not	change	how	the	function	runs	or	how	it	is	stored.

Checkpoint	3.7:	 const 	changes	a	global	variable	from	RAM	allocation	to	ROM
allocation. const does	not	change	the	scope	of	a	variable.

Checkpoint	3.8:	In	a	Moore	FSM,	the	output	depends	only	on	the	state.	In	a	Mealy	FSM,
the	output	depends	on	the	state	and	the	input.

Checkpoint	3.9:	Redefine	these	parameters

#define	BSP_InPort											GPIO_PORTA_DATA_R

#define	BSP_InPort_DIR							GPIO_PORTA_DIR_R

#define	BSP_InPort_DEN							GPIO_PORTA_DEN_R

#define	BSP_OutPort										GPIO_PORTB_DATA_R

#define	BSP_OutPort_DIR						GPIO_PORTB_DIR_R

#define	BSP_OutPort_DEN						GPIO_PORTB_DEN_R

#define	BSP_GPIO_EN										SYSCTL_RCGCGPIO_R

#define	BSP_InPort_Mask						0x00000001		//	bit	mask	for	Port	A

#define	BSP_In_M												0x00000030		//	bit	mask	for	pins	5,4

#define	BSP_In_Shift								0x00000004		//	shift	value	for	Input	pins

#define	BSP_OutPort_Mask					0x00000002		//	bit	mask	for	Port	B

#define	BSP_Out_M											0x0000006E		//	bit	mask	for	pins	6-1

#define	BSP_Out_Shift							0x00000001		//	shift	value	for	Output	pins

Checkpoint	3.10:	It	will	first	sit	up,	then	it	will	stand	up.

Checkpoint	3.11:														 AddIndexFifo(CAN1,	100,	char,	0,	1)
AddIndexFifo(CAN2,	100,	char,	0,	1)
AddIndexFifo(CAN3,	100,	char,	0,	1)
Checkpoint	3.12:														 AddIndexFifo(F1,	256,	int16_t,	0,	1)
AddIndexFifo(F2,	256,	int16_t,	0,	1)
Checkpoint	3.13:	Search	the	free	list	to	see	if	the	address&Heap[SIZE*i] 	is	free.

Checkpoint	3.14:	Ignore	size	parameter,	return	100	bytes	regardless	of	the	request.

Checkpoint	3.15:	A	runtime	flag	can	be	turned	on	during	a	checkup	procedure	while	the
device	is	in	service.	A	compile	time	flag	removes	all	debugging	so	the	software	system	is
faster	and	smaller.

Checkpoint	3.16:	There	are	three	advantages	of	leaving	the	instruments.	First,	the	system
was	tested	with	the	instruments	and	works	to	specification	with	the	instruments.	There	is
no	guarantee	the	system	will	still	work	if	the	instruments	are	removed.	Second,	the
instruments	could	provide	run	time	checks	to	catch	failures	during	operation.	Third,	the
instruments	could	be	used	during	system	checkup	(recalibration,	diagnostic	checkup	etc.)

Checkpoint	3.17:	The	existence	of	the	instrument	has	a	small	but	inconsequential	effect
on	the	system	performance.	The	time	to	execute	the	instrument	is	small	compared	to	the
time	between	executions	of	the	instrument.

Checkpoint	3.18:	The	base	address	of	Port	A	is	0x4000.0000.			4*23	=	0x20.

#define	GPIO_PORTA3	(*((volatile	uint32_t	*)0x40000020))

#define	Debug_HeartBeat()	(GPIO_PORTA3	^=	0x08)

Checkpoint	3.19:	Each	output	is	about	3	instructions,	so	I	expect	it	to	be	4	to	6	bus	cycles
wide.	This	time	delay	explains	why	Program	3.18	had	a	measurement	value	6	cycles	larger
than	Program	3.17	(244-238).

Checkpoint	4.1:	Each	output	is	about	3	instructions,	so	I	expect	it	to	be	4	to	6	bus	cycles
wide.

Checkpoint	4.2:	Negative	logic	means	when	we	touch	the	switch	the	voltage	goes	to	0
(low).	Formally,	negative	logic	means	the	true	voltage	is	lower	than	the	false	voltage.
Positive	logic	means	when	we	touch	the	switch	the	voltage	goes	to	+3.3	(high).	Formally,
positive	logic	means	the	true	voltage	is	higher	than	the	false	voltage.

Checkpoint	4.3:	For	PA2,	we	need	input	with	pull-up.	DIR	bit	2	is	low	(input),	AFSEL
bit	2	is	low	(not	alternate),	PUE	bit	2	high	(pull-up)	and	PDE	bit	2	low	(not	pull-down).
For	PA3,	we	need	input	with	pull-down.	DIR	bit	3	is	low	(input),	AFSEL	bit	3	is	low	(not
alternate),	PUE	bit	3	low	(no	pull-up)	and	PDE	bit	3	high	(pull-down).

Checkpoint	4.4:	Increasing	voltage	will	increase	torque.	To	increase	current	you	would
have	to	replace	the	motor	with	a	motor	having	lower	resistance.

Checkpoint	4.5:	No,	if	you	know	the	initial	position,	you	step	slow	enough,	and	the
system	does	not	load	the	motor.	Yes	if	the	you	do	not	know	initial	position,	you	step	too
fast,	or	if	you	load	the	motor.

Checkpoint	4.6:	If	Out	goes	first,	Out	goes	1,	2,	3,	and	waits	on	5,	In	goes	2,	3.	Now	both
are	running	(Out	runs	6,	and	In	runs		4,	5,	and	waits	on	6).	After	Out	runs	6,	In	finishes	6.

If	In	goes	first,	In	waits	on	2.	Then	the	steps	are	the	same	as	above.

Checkpoint	4.7:	There	is	1	byte	of	data	per	10	bits	of	transmission.	So,	there	are	960
bytes/sec.

Checkpoint	4.8:	divider	=	1010.0101002.	or	10	and	20/64	=	10.3125.	The	baud	rate	is
6MHz/10.3125/16	which	is	36.36	kHz.

Checkpoint	4.9:	50,000,000/38400/16	is	81.3802,	which	is	similar	to	81and
24/64. UART0_IBRD_R is	81 UART0_FBRD_R 	is	24.	The	baud	rate	is
50MHz/(81+24/64)/16	which	is	38402	bits/sec.

Checkpoint	4.10:	RXFE	is	set	and	cleared	by	hardware.	It	means	receive	FIFO	empty.		To
make	it	0	means	to	put	data	into	the	FIFO.	Software	cannot	clear	this	flag.	An	incoming
UART	frame	will	clear	RXFE.

Checkpoint	4.11:	TXFF	is	set	and	cleared	by	hardware.	It	means	transmit	FIFO	full.		To
make	it	0	means	to	get	data	from	the	FIFO.	Software	cannot	clear	this	flag.	An	outgoing
UART	frame	will	clear	TXFF.

Checkpoint	4.12:	The	data	will	be	received	in	error	(values	will	not	be	correct).	The
receiver	could	appear	to	get	two	input	frames	for	every	one	frame	transmitted.	It	will
probably	cause	framing	errors	(FE).	It	would	cause	parity	errors	if	active.

Checkpoint	4.13:	The	data	will	be	received	in	error	(values	will	not	be	correct).	The
receiver	will	appear	to	get	one	input	frame	for	every	one	frame	transmitted.	It	will
probably	not	cause	framing	errors	(FE).	It	would	cause	parity	errors	if	active.

Checkpoint	5.1:	Trigger	flag	set	by	hardware;	the	device	is	armed	by	software;	the	device
is	enabled	for	interrupts	in	the	NVIC;	the	processor	is	enabled	for	interrupts	(PRIMASK	I
bit	is	clear).

Checkpoint	5.2:	The	processor	is	enabled	for	interrupts	by	clearing	the	I	bit	in	the
PRIMASK.	Execute

CPSIE		I

Checkpoint	5.3:	Instruction	is	finished;	registers	R0–R3,	R12,	LR,	PC,	and	PSR	are
pushed;	PC	is	set	with	interrupt	vector	address;	LR	=	0xFFFFFFF9.	The	last	two	steps	can
occur	in	either	order.

Checkpoint	5.4:	No,	if	the	average	producer	rate	exceeds	the	average	consumer	rate,	the
FIFO	will	always	fill	regardless	of	size.	However,	if	the	average	producer	rate	is	less	than
the	average	consumer	rate,	the	FIFO	full	errors	can	be	eliminated	by	increasing	size.

Checkpoint	5.5:	At	the	end	of	the	inner	nested	program,	interrupts	would	be	enabled.	So,
the	last	part	of	the	outer	section	would	be	running	with	interrupts	enabled.	In	this
example Stuff2B 	runs	with	interrupts	enabled.

Critical1																																																								Critical2

		Disable																																																										Disable

		Stuff1A																																																										Stuff2A

		Call	Critical2																																												Enable

		Stuff1B																																																										return

		Enable

		return

Checkpoint	5.6:	The	RxFifo	is	empty	when	there	is	no	input	data.	Software	is	waiting	for
hardware.

Checkpoint	5.7:	The	TxFifo	is	empty	when	there	is	no	output	data.	Hardware	is	waiting
for	software.

Checkpoint	6.1:	An	input	capture	event	occurs	on	the	selected	edge	on	an	input	pin.

Checkpoint	6.2:	Timer	value	is	copied	into	the	input	capture	latch,	the	flag	is	set,	and	if
armed	an	interrupt	is	requested.

Checkpoint	6.3:	Switching	microcontrollers	means	changing	the	I/O	pin.

void	TimerCapture_Init(void){

		SYSCTL_RCGCTIMER_R	|=	0x0001;				//	activate	timer0

		SYSCTL_RCGCGPIO_R	|=	0x0002;			//	activate	port	B

		Count	=	0;																							//	allow	time	to	finish	activating

		GPIO_PORTB_DEN_R	|=	0x01;								//	enable	digital	I/O	on	PB0

		GPIO_PORTB_AFSEL_R	|=	0x01;						//	enable	alt	funct	on	PB0

		TIMER0_CTL_R	&=	~0x00000001;					//	disable	timer0A	during	setup

		TIMER0_CFG_R	=	0x00000004;							//	configure	for	16-bit	timer	mode

		TIMER0_TAMR_R	=	0x00000007;						//	configure	for	input	capture	mode

		TIMER0_CTL_R	&=	~(0x000C);							//	TAEVENT	is	rising	edge

		TIMER0_TAILR_R	=	0x0000FFFF;					//	start	value

		TIMER0_IMR_R	|=	0x00000004;						//	enable	capture	match	interrupt

		TIMER0_ICR_R	=	0x00000004;							//	clear	timer0A	capture	flag

		TIMER0_CTL_R	|=	0x00000001;						//	enable	timer0A

		NVIC_PRI4_R	=(NVIC_PRI4_R&0x00FFFFFF)|0x40000000;	//	Timer0A=priority	2

		NVIC_EN0_R	=	0x00080000;								//	enable	interrupt	19	in	NVIC

		EnableInterrupts();}

void	Timer0A_Handler(void){

		TIMER0_ICR_R	=	TIMER_ICR_CAECINT;//	acknowledge	timer0A	capture	match

		Count	=	Count	+	1;}

Checkpoint	6.4:	Switching	timers	means	changing	the	I/O	pin	and	the	timer.

void	TimerCapture_Init(void){

		SYSCTL_RCGCTIMER_R	|=	0x0002;				//	activate	timer1

		SYSCTL_RCGCGPIO_R	|=	0x0008;			//	activate	port	D

		Count	=	0;																							//	allow	time	to	finish	activating

		GPIO_PORTD_DEN_R	|=	0x20;								//	enable	digital	I/O	on	PD5

		GPIO_PORTD_AFSEL_R	|=	0x20;						//	enable	alt	funct	on	PD5

		TIMER1_CTL_R	&=	~0x00000001;					//	disable	timer1A	during	setup

		TIMER1_CFG_R	=	0x00000004;							//	configure	for	16-bit	timer	mode

TIMER1_TAMR_R	=	0x00000007;						//	configure	for	input	capture	mode

		TIMER1_CTL_R	&=	~(0x000C);							//	TAEVENT	is	rising	edge

		TIMER1_TAILR_R	=	0x0000FFFF;					//	start	value

		TIMER1_IMR_R	|=	0x00000004;						//	enable	capture	match	interrupt

		TIMER1_ICR_R	=	0x00000004;							//	clear	timer0A	capture	flag

		TIMER1_CTL_R	|=	0x00000001;						//	enable	timer0A

		NVIC_PRI5_R	=(NVIC_PRI5_R&0xFFFF00FF)|0x00004000;	//	Timer1A=priority	2

		NVIC_EN0_R	=	0x00200000;								//	enable	interrupt	21	in	NVIC

		EnableInterrupts();}

void	Timer1A_Handler(void){

		TIMER1_ICR_R	=	TIMER_ICR_CAECINT;//	acknowledge	timer1A	capture	match

		Count	=	Count	+	1;}

Checkpoint	6.5: TIMER1_ICR_R	=	TIMER_ICR_CBECINT;	//	bit10	=0x0400

Checkpoint	6.6:	One-shot/periodic:	on	the	cycle	when	the	timer	counts	down	to	0.

Checkpoint	6.7:	One-shot/periodic:	TnTORIS	bit	is	set,	interrupt	may	be	requested,	the
output	pin	is	toggled,	and	ADC	conversion	may	be	triggered.

Checkpoint	6.8:	PWM:	on	the	cycle	when	the	timer	equals	the	value	in	the	Match
Register	or	the	Interval	Load	Register.

Checkpoint	6.9:	PWM:	output	pin	cleared	(set	if	inverting	mode)	on	match	or	set	(cleared
if	inverting	mode)	on	reload.

Checkpoint	6.10:	The	VOL	of	the	7406	at	40	mA	will	be	0.7V.	This	means	there	will	be
4.3V	across	the	coil.

Checkpoint	7.1:	There	is	always	1	start	bit.	So	with	8	data	bits	and	one	stop,	there	will	be
10	total	bits.

Checkpoint	7.2:	Full	duplex	is	both	directions	at	the	same	time,	while	half	duplex	is	both
directions,	but	only	one	direction	at	a	time.

Checkpoint	7.3:	With	synchronous	serial	(SSI),	the	transmitter	and	receiver	operate	on
the	same	clock,	which	is	included	in	the	cable.	With	asynchronous	serial	(UART),	the
transmitter	and	receiver	operate	with	clocks	of	similar	frequencies,	and	the	receiver	uses
transitions	in	the	data	to	synchronize	with	the	transmitter.

Checkpoint	7.4:	The	MAX3232	allows	the	signal	to	travel	farther	and	be	less	sensitive	to
noise.

Checkpoint	7.5:	Capacitance	reduces	the	slew	rate	of	the	signals	causing	a	reduction	in
the	maximum	possible	baud	rate.	The	end	result	is	capacitance	reduces	the	bandwidth	of
the	channel.

Checkpoint	7.6:	Setup	time	is	the	time	before	a	clock	edge	the	input	data	must	be	valid.
Hold	time	is	the	time	after	a	clock	edge	the	data	must	continue	to	be	valid.

Checkpoint	7.7:	Change SSI0_CPSR_R 	from	a	2	to	a	6.

Checkpoint	7.8:	The	lower	the	resistance	the	higher	the	IOH.	The	higher	the	current	the
faster	the	rise	time.	A	faster	rise	time	means	the	bus	operates	faster.

Checkpoint	7.9:	Open	drain	is	the	same	as	open	collector.	There	are	two	output	states
float	and	low.	Formally,	open	drain	means	the	drain	pin	of	the	N-channel	MOS	transistor
is	open.	See	Figure	1.20.

Checkpoint	7.10:	If	no	device	sends	an	acknowledgement,	the	SDA	signal	will	float	high,
generating	a	negative	acknowledgement.

Checkpoint	7.11:	Half	duplex	because	communication	goes	both	directions,	but	only	one
way	at	a	time.

Checkpoint	7.12:	Master	2	wins	because	the	0	in	address	bit	4	dominates	over		the	1.

Checkpoint	7.13:	If	they	both	send	the	same	address	and	the	same	sequence	of	data	bits,
both	will	finish	without	getting	a	lost-arbitration	error.	If	they	both	send	the	same	address
and	but	different	data	values,	an	arbitration	will	occur	during	the	data	transfer,	and	the
master	with	the	smaller	data	value	will	win	arbitration.

Checkpoint	8.1:	Speed	requires	power.	The	power	goes	up	as	bandwidth	increases.

Checkpoint	8.2:	Output	impedance	is	open	circuit	voltage	divided	by	short	circuit
current.	5V/30mA	is	167 � .

Checkpoint	8.3:	The	offset	voltage	is	0.5	mV.	The	error	will	be	0.5	mV	times	100,	which
will	be	50	mV.

Checkpoint	8.4:	The	offset	voltage	is	3	mV.	The	error	is	3	mV	times	1000,	which	would
be	3	V.

Checkpoint	8.5.	The	gain-bandwidth	product	of	the	MAX494	is	500	kHz.	The	bandwidth
of	the	circuit	will	be	500	kHz	divided	by	the	gain,	which	will	be	5	kHz.	The	noise	density
of	the	MAX494	is	25	nV/√Hz.	The	noise	will	be	25	nV*sqrt(5000),	which	is	about
1.8 � V.

Checkpoint	8.6.	The	input	impedance	of	the	op	amp	determines	the	input	impedance	of	a
noninverting	amplifier,	which	for	the	OPA227	is	10	M � .

Checkpoint	8.7.	LM3S:	1*1024/3	=	341	or	1*1023/3	=	341.	LM4F/TM4C:	1*4096/3	=
1365	or	1*4095/3	=	1365.

Checkpoint	9.1:	This	is	a	one	dimensional	search	of	at	most	24	possibilities.	Choose	C	=
1.6nF,	so	1/(2 � *100e3*1.6e-9)	=	995	Hz..

Checkpoint	9.2:	This	is	a	two	dimensional	search	of	at	most	½	242	possibilities.	Choose
R1=	47	k � 	and	R2	=	82	k � .

Checkpoint	9.3:	A	switching	or	buck-boost	regulator	can	increase	voltage,	e.g.,
TPS63002.

Checkpoint	9.4:	Average	current	is	500mA-hr/5years*(1day/24hour)*(1year/365days)	=
20 � A.

Checkpoint	9.5:	Energy	storage	is	20 � A*1year*(24hour/1day)*	(365days/1year)	=	175
mA-hr.	So,	choose	the	GM041842	that	has	250	mA-hr.

Checkpoint	9.6:	There	is	a	JTAG	debugger	interface,	a	logic	analyzer	interface,	and	there
are	test	points.

Checkpoint	10.1:	Set	10=1000/2k,	so	k=50.	For	every	ADC	sample,	calculate	the	average
of	the	previous	50	samples.

Checkpoint	10.2:	If	the	system	is	linear,	the	precisions	are	equal.

Checkpoint	10.3:	Since	the	response	in	Figure	10.29	is	approximately	linear,	the
resolution	will	be	10˚C/256,	which	is	about	0.04	˚C.

Checkpoint	10.4:	At	60	BPM,	the Rcount will	be	4	and	the	difference Rlast-Rfirst 	will
be	480.	If	the	heart	rate	increases	a	little,	then	the	difference	will	reduce	to	479,	giving	a
measurement	of	60.13.	Thus	the	inherent	measurement	resolution	is	about	0.12	BPM.
Because	integer	math	is	used,	the	system	will	have	a	resolution	of	1	BPM.

Checkpoint	11.1:	Since	information	is	encoded	as	energy,	and	data	is	transferred	at	a
fixed	rate,	each	energy	packet	will	exist	for	a	finite	time.	Energy	per	time	is	power.

Checkpoint	11.2:	The	performance	measure	for	a	storage	system	is	information	density	in
bits/cm3.

Checkpoint	11.3:		With	open	collector	outputs,	the	low	will	dominate	over	HiZ.	The
signal	will	be	low.	

Checkpoint	11.4:		On	average,	it	will	take	N/2	transmissions	for	the	message	to	go	from
one	computer	to	another.	There	are	10	bits/frame,	so	there	are	10,000	bytes/sec.	Because
there	are	10	bytes/message,	it	takes	1ms	to	transmit	a	message.	Because	it	has	to	be	sent	5
times,	it	takes	5ms	on	average.	

Checkpoint	11.5:		The	frame	sent	by	a	transmitter	is	echoed	to	its	own	receiver.	If	the
data	does	not	match,	or	if	there	are	any	framing	or	noise	errors	then	a	collision	occurred.

Checkpoint	11.6:		Parity	could	be	used	to	detect	collisions.	Also	the	message	could	have
checksum	added.	Framing	or	noise	errors	can	also	indicate	a	collision.	

	

	

	

	

Reference	Material

Vector	address Number IRQ ISR	name	in	Startup.s NVIC Priority	bits

0x00000038 14 -2 PendSV_Handler 	 	

0x0000003C 15 -1 SysTick_Handler 	 	

0x00000040 16 0 GPIOPortA_Handler NVIC_PRI0_R 7	–	5

0x00000044 17 1 GPIOPortB_Handler NVIC_PRI0_R 15	–	13

0x00000048 18 2 GPIOPortC_Handler NVIC_PRI0_R 23	–	21

0x0000004C 19 3 GPIOPortD_Handler NVIC_PRI0_R 31	–	29

0x00000050 20 4 GPIOPortE_Handler NVIC_PRI1_R 7	–	5

0x00000054 21 5 UART0_Handler NVIC_PRI1_R 15	–	13

0x00000058 22 6 UART1_Handler NVIC_PRI1_R 23	–	21

0x0000005C 23 7 SSI0_Handler NVIC_PRI1_R 31	–	29

0x00000060 24 8 I2C0_Handler NVIC_PRI2_R 7	–	5

0x00000064 25 9 PWMFault_Handler NVIC_PRI2_R 15	–	13

0x00000068 26 10 PWM0_Handler NVIC_PRI2_R 23	–	21

0x0000006C 27 11 PWM1_Handler NVIC_PRI2_R 31	–	29

0x00000070 28 12 PWM2_Handler NVIC_PRI3_R 7	–	5

0x00000074 29 13 Quadrature0_Handler NVIC_PRI3_R 15	–	13

0x00000078 30 14 ADC0_Handler NVIC_PRI3_R 23	–	21

0x0000007C 31 15 ADC1_Handler NVIC_PRI3_R 31	–	29

0x00000080 32 16 ADC2_Handler NVIC_PRI4_R 7	–	5

0x00000084 33 17 ADC3_Handler NVIC_PRI4_R 15	–	13

0x00000088 34 18 WDT_Handler NVIC_PRI4_R 23	–	21

0x0000008C 35 19 Timer0A_Handler NVIC_PRI4_R 31	–	29

0x00000090 36 20 Timer0B_Handler NVIC_PRI5_R 7	–	5

0x00000094 37 21 Timer1A_Handler NVIC_PRI5_R 15	–	13

0x00000098 38 22 Timer1B_Handler NVIC_PRI5_R 23	–	21

0x0000009C 39 23 Timer2A_Handler NVIC_PRI5_R 31	–	29

0x000000A0 40 24 Timer2B_Handler NVIC_PRI6_R 7	–	5

0x000000A4 41 25 Comp0_Handler NVIC_PRI6_R 15	–	13

0x000000A8 42 26 Comp1_Handler NVIC_PRI6_R 23	–	21

0x000000AC 43 27 Comp2_Handler NVIC_PRI6_R 31	–	29

0x000000B0 44 28 SysCtl_Handler NVIC_PRI7_R 7	–	5

0x000000B4 45 29 FlashCtl_Handler NVIC_PRI7_R 15	–	13

0x000000B8 46 30 GPIOPortF_Handler NVIC_PRI7_R 23	–	21

0x000000BC 47 31 GPIOPortG_Handler NVIC_PRI7_R 31	–	29

0x000000C0 48 32 GPIOPortH_Handler NVIC_PRI8_R 7	–	5

0x000000C4 49 33 UART2_Handler NVIC_PRI8_R 15	–	13

0x000000C8 50 34 SSI1_Handler NVIC_PRI8_R 23	–	21

0x000000CC 51 35 Timer3A_Handler NVIC_PRI8_R 31	–	29

0x000000D0 52 36 Timer3B_Handler NVIC_PRI9_R 7	–	5

0x000000D4 53 37 I2C1_Handler NVIC_PRI9_R 15	–	13

0x000000D8 54 38 Quadrature1_Handler NVIC_PRI9_R 23	–	21

0x000000DC 55 39 CAN0_Handler NVIC_PRI9_R 31	–	29

0x000000E0 56 40 CAN1_Handler NVIC_PRI10_R 7	–	5

0x000000E4 57 41 CAN2_Handler NVIC_PRI10_R 15	–	13

0x000000E8 58 42 Ethernet_Handler NVIC_PRI10_R 23	–	21

0x000000EC 59 43 Hibernate_Handler NVIC_PRI10_R 31	–	29

0x000000F0 60 44 USB0_Handler NVIC_PRI11_R 7	–	5

0x000000F4 61 45 PWM3_Handler NVIC_PRI11_R 15	–	13

0x000000F8 62 46 uDMA_Handler NVIC_PRI11_R 23	–	21

0x000000FC 63 47 uDMA_Error NVIC_PRI11_R 31	–	29

Table	5.1.	Some	of	the	interrupt	vectors	for	the	LM3S/TM4C.

C	Data	type C99	Data	type Precision Range

unsigned
char

uint8_t 8-bit	unsigned 0	to	+255

signed	char int8_t 8-bit	signed -128	to	+127

char char 8-bit ASCII	characters

unsigned	int unsigned	int compiler-
dependent

	

int int compiler-
dependent

	

unsigned
short

uint16_t 16-bit	unsigned 0	to	+65535

short int16_t 16-bit	signed -32768	to	+32767

unsigned	long uint32_t unsigned	32-bit 0	to	4294967295L

long int32_t signed	32-bit -2147483648L	to
2147483647L

float float 32-bit	float ±10-38	to	±10+38

double double 64-bit	float ±10-308	to	±10+308

Data	types	in	C(1 some	compilers	treat	char	as	unsigned,	some	treat	char	as	signed)

	

	 						BITS	4	to	6

	 	 0 1 2 3 4 5 6 7

	 0 NUL DLE SP 0 @ P ` p

B 1 SOH XON ! 1 A Q a q

I 2 STX DC2 “ 2 B R b r

T 3 ETX XOFF # 3 C S c s

S 4 EOT DC4 $ 4 D T d t

	 5 ENQNAK % 5 E U e u

0 6 ACKSYN & 6 F V f v

	 7 BEL ETB ‘ 7 G W g w

T 8 BS CAN (8 H X h x

O 9 HT EM) 9 I Y i y

	 A LF SUB * : J Z j z

3 B VT ESC + ; K [k {

	 C FF FS , < L \ l |

	 D CR GS - = M] m }

	 E SO RS . > N ^ n ~

	 F SI US / ? O _ o DEL 	

Table	1.10.	Standard	7-bit	ASCII.

	

	

	

Parameter

PN2222
(IC=150mA)

PN2907
(IC=150mA)

2N2222
(IC=500mA)

2N2907
(IC=500mA)

TIP120
(IC=3A)

TIP125
(IC=3A)

hfe 100 40 1000

VBEsat 0.6 2 2.5	V

VCE	at
saturation

0.3 1 2	V

Design	parameters	for	the	2N2222	and	TIP120.

	

Chip Current Comment

MC3479 0.35	A Stepper	driver

L293D 0.6	A Dual,	diodes

L293 1	A Dual

TPIC0107 3	A Direction,	fault
status

L6203 5	A Dual

H-bridge	drivers

Family Example IOH IOL IIH IIL fan
out

Standard	TTL 7404 0.4	mA 16	mA 40	µA 1.6
mA

10

Schottky	TTL 74S04 1	mA 20	mA 50	µA 2	mA 10

Low	Power
Schottky

74LS04 0.4	mA 4	mA 20	µA 0.4
mA

10

High	speed
CMOS

74HC04 4	mA 4	mA 1	µA 1	µA 	

LM3S/TM4C
2mA-drive

TM4C 2	mA 2	mA 2	µA 2	µA 	

LM3S/	TM4C
4mA-drive

TM4C 4	mA 4	mA 2	µA 2	µA 	

LM3S/	TM4C
8mA-drive

TM4C 8	mA 8	mA 2	µA 2	µA 	

Table	1.4.	The	input	and	output	currents	of	various	digital	logic	families	and
microcontrollers.

Figure	1.15.	Voltage	thresholds	for	various	digital	logic	families.
Memory	access	instructions

LDR			Rd,	[Rn]							;	load	32-bit	number	at	[Rn]	to	Rd

LDR			Rd,	[Rn,#off]	;	load	32-bit	number	at	[Rn+off]	to	Rd

LDR			Rd,	[Rn,#off]!	;	load	32-bit	number	at	[Rn+off]	to	Rd,	preindex

LDR			Rd,	[Rn],#off		;	load	32-bit	number	at	[Rn]	to	Rd,	postindex

LDRT		Rd,	[Rn,#off]	;	load	32-bit	number	unprivileged

LDR			Rd,	=value				;	set	Rd	equal	to	any	32-bit	value	(PC	rel)

LDRH		Rd,	[Rn]							;	load	unsigned	16-bit	at	[Rn]	to	Rd

LDRH		Rd,	[Rn,#off]	;	load	unsigned	16-bit	at	[Rn+off]	to	Rd

LDRH		Rd,	[Rn,#off]!	;	load	unsigned	16-bit	at	[Rn+off]	to	Rd,	pre

LDRH		Rd,	[Rn],#off	;	load	unsigned	16-bit	at	[Rn]	to	Rd,	postindex

LDRHT	Rd,	[Rn,#off]	;	load	unsigned	16-bit	unprivileged

LDRSH	Rd,	[Rn]							;	load	signed	16-bit	at	[Rn]	to	Rd

LDRSH	Rd,	[Rn,#off]	;	load	signed	16-bit	at	[Rn+off]	to	Rd

LDRSH	Rd,	[Rn,#off]!	;	load	signed	16-bit	at	[Rn+off]	to	Rd,	pre

LDRSH	Rd,	[Rn],#off	;	load	signed	16-bit	at	[Rn]	to	Rd,	postindex

LDRSHT	Rd,	[Rn,#off]	;	load	signed	16-bit	unprivileged

LDRB		Rd,	[Rn]							;	load	unsigned	8-bit	at	[Rn]	to	Rd

LDRB		Rd,	[Rn,#off]	;	load	unsigned	8-bit	at	[Rn+off]	to	Rd

LDRB		Rd,	[Rn,#off]!	;	load	unsigned	8-bit	at	[Rn+off]	to	Rd,	pre

LDRB		Rd,	[Rn],#off	;	load	unsigned	8-bit	at	[Rn]	to	Rd,	postindex

LDRBT	Rd,	[Rn,#off]	;	load	unsigned	8-bit	unprivileged

LDRSB	Rd,	[Rn]							;	load	signed	8-bit	at	[Rn]	to	Rd

LDRSB	Rd,	[Rn,#off]	;	load	signed	8-bit	at	[Rn+off]	to	Rd

LDRSB	Rd,	[Rn,#off]!	;	load	signed	8-bit	at	[Rn+off]	to	Rd,	pre

LDRSB	Rd,	[Rn],#off	;	load	signed	8-bit	at	[Rn]	to	Rd,	postindex

LDRSBT	Rd,	[Rn,#off]	;	load	signed	8-bit	unprivileged

		LDRD	Rd,Rd2,[Rn,#off]	;	load	64-bit	at	[Rn+off]	to	Rd,Rd2

		LDRD	Rd,Rd2,[Rn,#off]!;	load	64-bit	at	[Rn+off]	to	Rd,Rd2,pre

		LDRD	Rd,Rd2,[Rn],#off	;	load	64-bit	at	[Rn]	to	Rd,Rd2,	postindex

LDMFD		Rn{!},	Reglist	;	load	reg	from	list	at	Rn(inc),	!update	Rn

LDMIA	Rn{!},	Reglist	;	load	reg	from	list	at	Rn(inc),	!update	Rn

LDMDB	Rn{!},	Reglist	;	load	reg	from	list	at	Rn(dec),	!update	Rn

STMIA	Rn{!},	Reglist	;	store	reg	from	list	to	Rn(inc),	!update	Rn

STMFD		Rn{!},	Reglist	;	store	reg	from	list	to	Rn(dec),	!update	Rn

STMDB	Rn{!},	Reglist	;	store	reg	from	list	to	Rn(dec),	!update	Rn

STR			Rt,	[Rn]							;	store	32-bit	Rt	to	[Rn]

STR		Rt,	[Rn,#off]	;	store	32-bit	Rt	to	[Rn+off]

STR		Rt,	[Rn,#off]!	;	store	32-bit	Rt	to	[Rn+off],	pre

STR		Rt,	[Rn],#off	;	store	32-bit	Rt	to	[Rn],	postindex

STRT	Rt,	[Rn,#off]	;	store	32-bit	Rt	to	[Rn+off]	unprivileged

STRH	Rt,	[Rn]							;	store	least	sig.	16-bit	Rt	to	[Rn]

STRH		Rt,	[Rn,#off]	;	store	least	sig.	16-bit	Rt	to	[Rn+off]

STRH		Rt,	[Rn,#off]!	;	store	least	sig.	16-bit	Rt	to	[Rn+off],	pre

STRH		Rt,	[Rn],#off	;	store	least	sig.	16-bit	Rt	to	[Rn],	postindex

STRHT	Rt,	[Rn,#off]	;	store	least	sig.	16-bit	unprivileged

STRB		Rt,	[Rn]							;	store	least	sig.	8-bit	Rt	to	[Rn]

STRB		Rt,	[Rn,#off]	;	store	least	sig.	8-bit	Rt	to	[Rn+off]

STRB		Rt,	[Rn,#off]!	;	store	least	sig.	8-bit	Rt	to	[Rn+off],pre

STRB		Rt,	[Rn],#off	;	store	least	sig.	8-bit	Rt	to	[Rn],	postindex

STRBT	Rt,	[Rn,#off]	;	store	least	sig.	unprivileged

		STRD	Rd,Rd2,[Rn,#off]	;	store	64-bit	Rd,Rd2	to	[Rn+off]

		STRD	Rd,Rd2,[Rn,#off]!;	store	64-bit	Rd,Rd2	to	[Rn+off],	pre

		STRD	Rd,Rd2,[Rn],#off	;	store	64-bit	Rd,Rd2	to	[Rn],	postindex

		PUSH		Reglist						;	push	32-bit	registers	onto	stack

POP			Reglist							;	pop	32-bit	numbers	from	stack	into	registers

ADR			Rd,	label						;	set	Rd	equal	to	the	address	at	label

MOV{S}	Rd,	<op2>						;	set	Rd	equal	to	op2

MOV				Rd,	#im16						;	set	Rd	equal	to	im16,	im16	is	0	to	65535			

MOVT			Rd,	#im16						;	set	Rd	bits	31-16	equal	to	im16			

MVN{S}	Rd,	<op2>						;	set	Rd	equal	to	-op2

	

Branch	instructions

B				label			;	branch	to	label				Always

BEQ		label			;	branch	if	Z	==	1			Equal

BNE		label			;	branch	if	Z	==	0			Not	equal

BCS		label			;	branch	if	C	==	1			Higher	or	same,	unsigned	≥

BHS		label			;	branch	if	C	==	1			Higher	or	same,	unsigned	≥

BCC		label			;	branch	if	C	==	0			Lower,	unsigned	<

BLO		label			;	branch	if	C	==	0			Lower,	unsigned	<

BMI		label			;	branch	if	N	==	1			Negative

BPL		label			;	branch	if	N	==	0			Positive	or	zero

BVS		label			;	branch	if	V	==	1			Overflow

BVC		label			;	branch	if	V	==	0			No	overflow

BHI		label			;	branch	if	C==1	and	Z==0		Higher,	unsigned	>

BLS		label			;	branch	if	C==0	or		Z==1		Lower	or	same,	unsigned	≤

BGE		label			;	branch	if	N	==	V			Greater	than	or	equal,	signed	≥

BLT		label			;	branch	if	N	!=	V			Less	than,	signed	<

BGT		label			;	branch	if	Z==0	and	N==V		Greater	than,	signed	>

BLE		label			;	branch	if	Z==1	or	N!=V		Less	than	or	equal,	signed	≤								

BX	Rm						;	branch	indirect	to	location	specified	by	Rm

BL		label			;	branch	to	subroutine	at	label									

BLX	Rm						;	branch	to	subroutine	indirect	specified	by	Rm										

CBNZ	Rn,label									;	branch	if	Rn	not	zero

CBZ	Rn,label										;	branch	if	Rn	zero

IT{x{y{z}}}cond							;	if	then	block	with	x,y,z	T(true)	or	F(false)

TBB	[Rn,	Rm]										;	table	branch	byte

TBH	[Rn,	Rm,	LSL	#1]	;	table	branch	halfword

	

Mutual	exclusive	instructions

CLREX																													;	clear	exclusive

LDREX{cond}		Rt,[Rn{,#offset}]				;	load	32-bit	exclusive

STREX{cond}		Rd,Rt,[Rn{,#offset}]	;	store	32-bit	exclusive

LDREXB{cond}	Rt,[Rn]														;	load	8-bit	exclusive

STREXB{cond}	Rd,Rt,[Rn]											;	store	8-bit	exclusive

LDREXH{cond}	Rt,[Rn]														;	load	16-bit	exclusive

STREXH{cond}	Rd,Rt,[Rn]											;	store	16-bit	exclusive

	

	

Miscellaneous	instructions

BKPT			#imm					;	execute	breakpoint,	debug	state	0	to	255

CPSIE	F								;	clear	faultmask	F=0

CPSIE	I								;	enable	interrupts		(I=0)

CPSID	F								;	set	faultmask	F=1

CPSID	I							;	disable	interrupts	(I=1)

DMB												;	data	memory	barrier,	memory	access	to	finish

DSB												;	data	synchronization	barrier,	instructions	to	finish

ISB												;	instruction	synchronization	barrier,	finish	pipeline

MRS	Rd,SpecReg		;	move	special	register	to	Rd

MSR	Rd,SpecReg		;	move	Rd	to	special	register

NOP													;	no	operation

SEV													;	Send	Event

SVC	#im8								;	supervisor	call	(0	to	255)

WFE													;	wait	for	event

WFI													;	wait	for	interrupt

	

Logical	instructions

AND{S}	{Rd,}	Rn,	<op2>	;	Rd=Rn&op2				(op2	is	32	bits)								

BFC		Rd,#lsb,#width				;	clear	bits	in	Rn								

BFI		Rd,Rn,#lsb,#width	;	bit	field	insert,	Rn	into	Rd							

ORR{S}	{Rd,}	Rn,	<op2>	;	Rd=Rn|op2				(op2	is	32	bits)

EOR{S}	{Rd,}	Rn,	<op2>	;	Rd=Rn^op2				(op2	is	32	bits)									

BIC{S}	{Rd,}	Rn,	<op2>	;	Rd=Rn&(~op2)	(op2	is	32	bits)

ORN{S}	{Rd,}	Rn,	<op2>	;	Rd=Rn|(~op2)	(op2	is	32	bits)

TST				Rn,	<op2>							;	Rn&op2				(op2	is	32	bits)

TEQ				Rn,	<op2>							;	Rn^op2				(op2	is	32	bits)

LSR{S}	Rd,	Rm,	Rs						;	logical	shift	right	Rd=Rm>>Rs		(unsigned)

LSR{S}	Rd,	Rm,	#n						;	logical	shift	right	Rd=Rm>>n			(unsigned)

ASR{S}	Rd,	Rm,	Rs						;	arithmetic	shift	right	Rd=Rm>>Rs	(signed)

ASR{S}	Rd,	Rm,	#n						;	arithmetic	shift	right	Rd=Rm>>n	(signed)

LSL{S}	Rd,	Rm,	Rs						;	shift	left	Rd=Rm<<Rs	(signed,	unsigned)

LSL{S}	Rd,	Rm,	#n						;	shift	left	Rd=Rm<<n		(signed,	unsigned)

REV		Rd,	Rn										;	Reverse	byte	order	in	a	word

REV16	Rd,	Rn										;	Reverse	byte	order	in	each	halfword

REVSH	Rd,	Rn										;	Reverse	byte	order	in	the	bottom	halfword,

;	and	sign	extends	to	32	bits

RBIT		Rd,	Rn											;	Reverse	the	bit	order	in	a	32-bit	word

SBFX	Rd,Rn,#lsb,#width	;	signed	bit	field	and	extract

UBFX	Rd,Rn,#lsb,#width	;	unsigned	bit	field	and	extract

SXTB	{Rd,}Rm{,ROR	#n}		;	Sign	extend	byte

SXTH	{Rd,}Rm{,ROR	#n}		;	Sign	extend	halfword

UXTB	{Rd,}Rm{,ROR	#n}		;	Zero	extend	byte

UXTH	{Rd,}Rm{,ROR	#n}		;	Zero	extend	halfword

	

	

	

	

Arithmetic	instructions

ADD{S}	{Rd,}	Rn,	<op2>	;	Rd	=	Rn	+	op2										

ADD{S}	{Rd,}	Rn,	#im12	;	Rd	=	Rn	+	im12,	im12	is	0	to	4095

CLZ				Rd,	Rm										;	Rd	=	number	of	leading	zeros	in	Rm

SUB{S}	{Rd,}	Rn,	<op2>	;	Rd	=	Rn	-	op2										

SUB{S}	{Rd,}	Rn,	#im12	;	Rd	=	Rn	-	im12,	im12	is	0	to	4095

RSB{S}	{Rd,}	Rn,	<op2>	;	Rd	=	op2	-	Rn																																

RSB{S}	{Rd,}	Rn,	#im12	;	Rd	=	im12	–	Rn

CMP				Rn,	<op2>							;	Rn	–	op2						sets	the	NZVC	bits

CMN				Rn,	<op2>							;	Rn	-	(-op2)			sets	the	NZVC	bits

MUL{S}	{Rd,}	Rn,	Rm				;	Rd	=	Rn	*	Rm							signed	or	unsigned								

MLA				Rd,	Rn,	Rm,	Ra		;	Rd	=	Ra	+	Rn*Rm				signed	or	unsigned

MLS				Rd,	Rn,	Rm,	Ra		;	Rd	=	Ra	-	Rn*Rm				signed	or	unsigned										

UDIV			{Rd,}	Rn,	Rm				;	Rd	=	Rn/Rm									unsigned

SDIV			{Rd,}	Rn,	Rm				;	Rd	=	Rn/Rm									signed

UMULL		RdLo,RdHi,Rn,Rm	;	Unsigned	long	multiply	32by32	into	64

UMLAL		RdLo,RdHi,Rn,Rm	;	Unsigned	long	multiply,	with	accumulate

SMULL		RdLo,RdHi,Rn,Rm	;	Signed	long	multiply	32by32	into	64

SMLAL		RdLo,RdHi,Rn,Rm	;	Signed	long	multiply,	with	accumulate

SSAT		Rd,#n,Rm{,shift	#s}	;	signed	saturation	to	n	bits

USAT		Rd,#n,Rm{,shift	#s}	;	unsigned	saturation	to	n	bits

	

Notes 	Ra	Rd	Rm	Rn	Rt	represent	32-bit	registers

value			any	32-bit	value:	signed,	unsigned,	or	address				

{S}					if	S	is	present,	instruction	will	set	condition	codes										

#im8				any	value	from	0	to	255				

#im12			any	value	from	0	to	4095				

#im16			any	value	from	0	to	65535

{Rd,}		if	Rd	is	present	Rd	is	destination,	otherwise	Rn						

#n						any	value	from	0	to	31							

#off				any	value	from	-255	to	4095				

label			any	address	within	the	ROM	of	the	microcontroller

SpecReg		APSR,IPSR,EPSR,IEPSR,IAPSR,EAPSR,PSR,MSP,PSP,

PRIMASK,BASEPRI,BASEPRI_MAX,FAULTMASK,	or	CONTROL.

Reglist	is	a	list	of	registers.	E.g.,	{R1,R3,R12}

op2					the	value	generated	by	<op2>				

	

Examples	of	flexible	operand 	<op2> 	creating	the	32-bit	number.	E.g., 	Rd	=	Rn+op2

ADD	Rd,	Rn,	Rm									;	op2	=	Rm											

ADD	Rd,	Rn,	Rm,	LSL	#n	;	op2	=	Rm<<n	Rm	is	signed,	unsigned				

ADD	Rd,	Rn,	Rm,	LSR	#n	;	op2	=	Rm>>n		Rm	is	unsigned							

ADD	Rd,	Rn,	Rm,	ASR	#n	;	op2	=	Rm>>n		Rm	is	signed							

ADD	Rd,	Rn,	#constant		;	op2	=	constant , where 	X 	and 	Y 	are	hexadecimal	digits:

																																																								produced	by	shifting	an	8-bit	unsigned	value	left	by	any	number	of
bits

																																																								in	the	form 0x00XY00XY
																																																								in	the	form 0xXY00XY00
																																																								in	the	form 0xXYXYXYXY

	

	Preface to Third Edition
	Preface to Fourth Edition
	Preface
	Acknowledgements
	1. Introduction to Embedded Systems
	1.1. Computer Architecture
	1.2. Embedded Systems
	1.3. The Design Process
	1.4. Digital Logic and Open Collector
	1.5. Digital Representation of Numbers
	1.6. Ethics
	1.7. Exercises
	1.8. Lab Assignments
	2. ARM Cortex-M Processor
	2.1. CortexTM-M Architecture
	2.2. Texas Instruments LM3S and TM4C I/O pins
	2.3. ARM CortexTM-M Assembly Language
	2.4. Parallel I/O ports
	2.5. Phase-Lock-Loop
	2.6. SysTick Timer
	2.7. Choosing a Microcontroller
	2.8. Exercises
	2.9. Lab Assignments
	3. Software Design
	3.1. Attitude
	3.2. Quality Programming
	3.3. Software Style Guidelines
	3.4. Modular Software
	3.5. Finite State Machines
	3.6. Threads
	3.7. First In First Out Queue
	3.8. Memory Management and the Heap
	3.9. Introduction to Debugging
	3.10. Exercises
	3.11. Lab Assignments
	4. Hardware-Software Synchronization
	4.1. Introduction
	4.2. Timing
	4.3. Petri Nets
	4.4. Kahn Process Networks
	4.5. Edge-triggered Interfacing
	4.6. Configuring Digital Output Pins
	4.7. Blind-cycle Interfacing
	4.8. Busy-Wait Synchronization
	4.9. UART Interface
	4.10. Keyboard Interface
	4.11. Exercises
	4.12. Lab Assignments
	5. Interrupt Synchronization
	5.1. Multithreading
	5.2. Interthread Communication and Synchronization
	5.3. Critical Sections
	5.4. NVIC on the ARM Cortex-M Processor
	5.5. Edge-triggered Interrupts
	5.6. Interrupt-Driven UART
	5.7. Periodic Interrupts using SysTick
	5.8. Low-Power Design
	5.9. Debugging Profile
	5.10. Exercises
	5.11. Lab Assignments
	6. Time Interfacing
	6.1. Input Capture or Input Edge Time Mode
	6.2. Output Compare or Periodic Timer
	6.3. Pulse Width Modulation
	6.4. Frequency Measurement
	6.5. Binary Actuators
	6.6. Integral Control of a DC Motor
	6.7. Exercises
	6.8. Lab Assignments
	7. Serial Interfacing
	7.1. Introduction to Serial Communication
	7.2. RS232 Interfacing
	7.3. RS422/USB/RS423/RS485 Balanced Differential Lines
	7.4. Logic Level Conversion
	7.5. Synchronous Transmission and Receiving using the SSI
	7.6. Inter-Integrated Circuit (I2C) Interface
	7.7. Introduction to Universal Serial Bus (USB)
	7.8. Exercises
	7.9. Lab Assignments
	8. Analog Interfacing
	8.1. Resistors and Capacitors
	8.2. Op Amps
	8.3. Analog Filters
	8.4. Digital to Analog Converters
	8.5. Analog to Digital Converters
	8.6. Exercises
	8.7. Lab Assignments
	9. System-Level Design
	9.1. Design for Manufacturability
	9.2. Power
	9.3 Tolerance
	9.4. Design for Testability
	9.5. Printed Circuit Board Layout and Enclosures
	9.6. Exercises
	9.7. Lab Assignments
	10. Data Acquisition Systems
	10.1. Introduction
	10.2. Transducers
	10.3. Discrete Calculus
	10.4. Data Acquisition System Design
	10.5. Analysis of Noise
	10.6. Data Acquisition Case Studies
	10.7. Exercises
	10.8. Lab Assignments
	11. Introduction to Communication Systems
	11.1. Fundamentals
	11.2. Communication Systems Based on the UARTs
	11.3. Wireless Communication
	11.4. Internet of Things
	11.5. Exercises
	11.6. Lab Assignments
	Appendix 1. Glossary
	Appendix 2. Solutions to Checkpoints
	Reference Material

