Gravitational and Central
Force




6.1 Newton's Law of Universal Gravitation:

((Every particle in the universe attracts every
other particle with a force whose magnitude is
proportional to the product of the masses of the
two particles and inversely proportional to the
square of the distance between them. The
direction of the force lies along the straight line

connecting the two particles.))
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F;; is the force on particle i of mass m,; exerted by

particle j of mass m;.

* The vectorr;; 1s the directed line segment running

4 Figure 6.1.1 Action and reaction in Newton’s law of

from particle 1 to particle j, gravity,



6.2 Gravitational Force between a Uniform Sphere
and a Particle:

Consider first a thin uniform shell of mass M and radius R. Let r be the distance from the
centre O to a test particle P of mass m (Fig. 6.2.1). We assume that r > R. We shall divide
the shell into circular rings of width R A 6. Where, as shown 1n the figure, the angle

d(Aag )

i The angle POQ is denoted by 0, O being a point on the ring.

i Where S is the distance PQ (the distance from the

particle P to the ring) as shown 1n above Figure.
i we can write the force between a shell and the particle

as .

Mm

F=-G Y r i The gravitational force on a particle located inside a

e, : 1s the radial vector from origin O. uniform spherical shell is zero.



6.3 Kepler's Laws of Planetary Motion:

I. Law of Ellipses (1609)

The orbit of each planetis an ellipse, with the Sun located at

one of its foci (3, 3)
I1. Law of Equal Areas (1609)

A line drawn between the Sun and the planet sweeps out

equal areas in equal times as the planet orbits the Sun.

I11. Harmonic Law (1618)
The square of the sidereal period 4l 3 5illof a planet (the time it takes a planet to complete one revolution
about the Sun relative to the stars) is directly proportional to the cube of the semi-major axis of the planet's

orbit.



6.4 Kepler's Second Law: Equal Areas:

L=rxp
7z 75
dL d(‘l”)(p) 'd’l‘ ‘\ d’p ‘\
— = = —Xp.+1rX4— :
dt ~  dt  -dc 57774,
/ T NG
i But % = v ,so the first term in right became
vXp = vxmv = m(vxv) = m(vv sinf) = d
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dL
E = rXF (64)

N = rx F : moment of force, or torque, on the

particle about the origin of the coordinate system.

* Ifr andF are collinear, this cross product vanishes and so does L(i.e. dL/dt=0), so , the

angular momentum L, in such cases, is a constant of the motion.



Angular Momentum and Areal Velocity of a
Particle Moving in a Central Field

L any particle :COHSGI'Ved

moving in a central

field of force

» we first calculate the magnitude of the angular momentum of a
particle moving in a central field.

* We use polar coordinates to describe the motion

* The velocity of the particleis

v=eT+eg 0 In the Polar coordinates(see Chapter 1)



So, the magnitude will be: L = |T><mv| » L = |7‘8r Xm(e,:i” + 897‘@)'

ST L = mr260 =constant ase xe =0ande xe, =1

Now, we calculate the "areal velocity," 4, of the particle. Figure 6.4.1(b) shows the triangular area, dA, swept out by the
radius vector r as a planet moves a VGCtOI distance dr in a time dt along its trajectory relative to the origin of the central
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Thus, the areal velocity, A, of a particle moving in a central field is directly proportional to its angular momentum

and, therefore, is also a constant of the motion, exactly as Kepler discovered for planets moving in the central

gravitational field of the Sun.



Example (1)
Let a particle be subject to an attractive central force of the from () , where r i1s the distance between the particle and the
centre of the force. Find f (r) if all circular orbits are to have identical areal velocities, A.

Solution:

Because the orbits are circular, the acceleration,r, has no transverse component and is entirely in the radial direction. In

polar coordinates, the acceleration is given by:

a=+—r02
Thus,

ma, = —mr8? = f(r) x(:—z)

Because the orbits are circular, the acceleration, i.e.7 =0 ,



6.5 Kepler's First Law: Equal Areas:

To prove Kepler's first law, we develop a general differential equationforthe orbit of a particlein any
central, isotropicfield of force. Then we solve the orbital equation for the specific case of an inverse-square
law of force.

The equation of motion in polar coordinates is mr = f (7”) €,
Where f () is the central, isotropic force that acts on the particle of mass m.

acceleration vector in polar coordinates

a=7i=(¥- 7"9.2)6,” + (76 + 270 )eg

So, . f f
m(# —162)e, = f(r) mmme SN (16 + 270)eqg = 0

No component toward 6 direction



(TZH) =0 Or Tzé = constant = 1 ‘ Where [ is the angular
l momentum per unit mass:
L
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m

rdt

Given a certain radial force function f (r), we could, in theory, solve the pair of differential equations (Equations 6.10a and
b) to obtain r and 8 as functions of t. Often one is interested only in the path in space (the orbit) without regard to the time

t. To find the equation of the orbit, we use the variable u defined by
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As we employed the fact | = Gu? So the above equation can be written as:
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do d02

Substituting the values found for r, 6, and # into Equation 6.10a, we obtain

a=7#=(¥- rH.Z)er + (76 + 270 )eg
t

M(F —102)er = f(I) mmmmmu e (76 +270)eg = 0

Differential equation of the orbit of a

2
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particle moving under a central force.



Example (2):
A particle in a central field moves in the spiral orbit r = c6? DPetermine the force function.

Solution:
11 1 du 2 1
Wehaveu=-=— and 0 = — | > =
roocb Veu T E
dzu _ 61 _ 2
a6z~ cgs - Ocu
Now, eq. 6.17 will applied - o - e e o d?*u .
- O EEE s .. — tu=- u
: d6? mlzuzf( )
2 _ _ -1 6c 1
6cu”+u mlzuzf(u )::_ —_ f(r) = —ml* F_I_F) asu=1/r
f (u_l) = —ml2(6cu2 + u3) Thus, the force 1s a combination of an inverse cube and inverse-

fourth power law






f(r) = =567

—_ — 2 A
f(r)= mrg as L =mr<0
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4mA2 . L
r)= — as A = —
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latter
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