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Chapter 6

Gravitational and Central 
Force



6.1	Newton's	Law	of	Universal	Gravitation:

(1)

(2)

(3)

((Every particle in the universe attracts every 

other particle with a force whose magnitude is 

proportional to the product of the masses of the 

two particles and inversely proportional to the 

square of the distance between them. The 

direction of the force lies along the straight line 

connecting the two particles. ))
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• 𝐹"# is the force on particle 𝑖 of mass m1 exerted by 

particle 𝑗 of mass m𝑗. 
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• The vector 𝑟"# is the directed line segment running 

from particle i to particle j, 



6.2	Gravitational	Force	between	a	Uniform	Sphere	
and	a	Particle:
Consider first a thin uniform shell of mass M and radius R. Let r be the distance from the 
centre O to a test particle P of mass m (Fig. 6.2.1). We assume that r > R. We shall divide 
the shell into circular rings of width  𝑅	∆	𝜃. Where, as shown in the figure, the angle

Sin 𝜃≈ 𝜃	=D(شریحة)	
E· The angle POQ is denoted by θ, Q being a point on the ring. 

· Where S is the distance PQ (the distance from the 

particle P to the ring) as shown in above Figure.

· we can write the force between a shell and the particle 

as :

𝐹 = −𝐺	
𝑀𝑚
𝑟I 	𝑒)

𝑒) : is the radial vector from origin O.
· The gravitational force on a particle located inside a

uniform spherical shell is zero.



6.3	Kepler's	Laws	of	Planetary	Motion:

I. Law of Ellipses (1609)

The orbit of each planet is an ellipse, with the Sun located at 

one of its foci (   البؤرة  ( 
II. Law of Equal Areas (1609)

A line drawn between the Sun and the planet sweeps out 

equal areas in equal times as the planet orbits the Sun.

III. Harmonic Law (1618)

The square of the sidereal period of  الفلكیة الفترة a planet (the time it takes a planet to complete one revolution

about the Sun relative to the stars) is directly proportional to the cube of the semi-major axis of the planet's

orbit.



6.4	Kepler's	Second	Law:	Equal	Areas:

L = r x p

𝑑𝐿
𝑑𝑡 =

𝑑(𝑟×𝑝)
𝑑𝑡 =

𝑑𝑟
𝑑𝑡 ×𝑝 + 𝑟×

𝑑𝑝
𝑑𝑡

· But   		D)DP = 𝑣	 , so the first term in right became
𝑣×𝑝 = 𝑣×𝑚𝑣 = 𝑚 𝑣×𝑣 = 𝑚 𝑣𝑣	𝑠𝑖𝑛𝜃 =

0				𝑎𝑠	𝜃 = 0	 ·And DUDP = 𝐹 from 2nd law of Newton, 

DV
DP = 𝑟×𝐹 (6.4)



DV
DP = 𝑟×𝐹 (6.4)

• 𝑁	 = 	𝑟	𝑥	𝐹  : moment of force, or torque, on the 

particle about the origin of the coordinate system. 

• If r and F are collinear, this cross product vanishes and so does L(i.e. dL/dt=0), so , the 

angular momentum L, in such cases, is a constant of the motion.



Angular	Momentum	and	Areal	Velocity	of	a	
Particle	Moving	in	a	Central	Field

L any particle 
moving in a central 

field of force

=conserved

• we first calculate the magnitude of the angular momentum of a 
particle moving in a central field.

• We use polar coordinates to describe the motion

• The velocity of the particle is

𝑣 = 𝑒)𝑟̇ + 𝑒Z𝑟𝜃̇ In the Polar coordinates(see Chapter 1)

𝐿 = 𝑟×𝑝And we have :



So, the magnitude will be: 𝐿 = |𝑟×𝑚𝑣| 𝐿 = |𝑟𝑒)×𝑚(𝑒)𝑟̇ + 𝑒Z𝑟𝜃̇)|

𝐿 = 𝑚𝑟I𝜃̇	=constant                                                          𝒂𝒔	𝒆
𝒓
×𝒆

𝒓
= 𝟎	𝒂𝒏𝒅	𝒆

𝒓
×𝒆

𝜽
= 𝟏

Now, we calculate the "areal velocity," 𝐴̇, of the particle. Figure 6.4.l(b) shows the triangular area, dA, swept out by the 
radius vector r as a planet moves a vector distance dr in a time dt along its trajectory relative to the origin of the central 
field

𝐴 =
1
2	 𝑟×𝑑𝑟 =

1
2	 𝑟𝑒)× 𝑒)𝑑𝑟 + 𝑒Z𝑟𝑑𝜃 =

1
2 	𝑟	(𝑟𝑑𝜃)f

𝑑𝐴
𝑑𝑡 = 𝐴̇ =

1
2		𝑟

I𝜃̇ =
𝐿
2𝑚

𝑑𝐴
𝑑𝑡 = 𝐴̇ =

𝐿
2𝑚 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

Thus, the areal velocity, A, of a particle moving in a central field is directly proportional to its angular momentum

and, therefore, is also a constant of the motion, exactly as Kepler discovered for planets moving in the central

gravitational field of the Sun.



Let a particle be subject to an attractive central force of the from (𝑟) , where 𝑟	is the distance between the particle and the

centre of the force. Find 𝑓	(𝑟) if all circular orbits are to have identical areal velocities, 𝐴̇.

Thus,

𝑚𝑎) = −𝑚𝑟𝜃̇I = 𝑓(𝑟) ×(𝒓
𝟑

𝒓𝟑)

Example (1)

Solution:

Because the orbits are circular, the acceleration,𝑟, has no transverse component and is entirely in the radial direction. In

polar coordinates, the acceleration is given by:

𝑎 = 𝑟̈ − 𝑟𝜃̇I

Because the orbits are circular, the acceleration,			𝑖. 𝑒. 𝑟̈ = 0 ,



6.5	Kepler's	First	Law:	Equal	Areas:
To	prove	Kepler's	first	law,	we	develop	a	general	differential	equation	for	the	orbit	of	a	particle	in	any	
central,	isotropic	field	of	force.	Then	we	solve	the	orbital	equation	for	the	specific	case	of	an	inverse-square	
law	of	force.	

The equation of motion in polar coordinates is 𝑚𝑟̈ = 𝑓 𝑟 𝑒)
Where 𝑓(𝑟) is the central, isotropic force that acts on the particle of mass	𝑚.

acceleration vector in polar coordinates 

𝑎 = 𝑟̈ = 𝑟̈ − 𝑟𝜃İ 𝑒) + 𝑟𝜃̈ + 2𝑟̇𝜃̇ 𝑒Z
So, 

𝑚 𝑟̈ − 𝑟𝜃İ 𝑒) = 𝑓(𝑟) 𝑟𝜃̈ + 2𝑟̇𝜃̇ 𝑒Z = 0	

No component toward θ direction



𝑚
𝑟
𝑑
𝑑𝑡 𝑟I𝜃̇ = 0	 𝑟I𝜃̇ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝑙Or Where	𝑙 is the angular 

momentum per unit mass:

𝑙 =
𝐿
𝑚 = 𝑟×𝑣 	

Given a certain radial force function f (r), we could, in theory, solve the pair of differential equations (Equations 6.10a and

b) to obtain 𝑟 and 𝜃 as functions of 𝑡. Often one is interested only in the path in space (the orbit) without regard to the time

𝑡. To find the equation of the orbit, we use the variable 𝒖 defined by

𝑟 = :
n or  𝑢 = :

) And  𝑙 = 𝑟I𝜃̇ = :
n* 	𝜃̇

𝑑𝑟 = 𝑟̇ = 9:
n* 𝑢̇ =

9:
n* 			

Dn
DZ

DZ
Dn =

9:
n* 			𝜃̇

Dn
DZ = −		𝑙	 DnDZ



𝑑𝑟 = 𝑟̇ = 9:
n* 𝑢̇ =

9:
n* 			

Dn
DZ

DZ
Dn =

9:
n* 			𝜃̇

Dn
DZ = −		𝑙	 DnDZ

As we employed the fact 𝑙 = 𝜃̇𝑢I So the above equation can be written as:

𝑟̇ = −		𝑙	
𝑑𝑢
𝑑𝜃 𝑟̈ = −		𝑙I𝑢I	

𝑑I𝑢
𝑑𝜃I

Substituting the values found for	𝑟, 𝜃̇, and 𝑟̈ into Equation 6.10a, we obtain

H.W

𝑎 = 𝑟̈ = 𝑟̈ − 𝑟𝜃İ 𝑒) + 𝑟𝜃̈ + 2𝑟̇𝜃̇ 𝑒Z

𝑚 𝑟̈ − 𝑟𝜃İ 𝑒) = 𝑓(𝑟) 𝑟𝜃̈ + 2𝑟̇𝜃̇ 𝑒Z = 0	

	
𝑑I𝑢
𝑑𝜃I + 𝑢 = −

1
𝑚𝑙I𝑢I𝑓(𝑢

9:)
Differential equation of the orbit of a 

particle moving under a central force.



Example	(2):
A	particle	in	a	central	field	moves	in	the	spiral	orbit 𝑟 = 𝑐𝜃I Determine the force function. 

Solution: 

We have 𝑢 = :
) =

:
pZ* and 𝜃 = :

pn	
𝑑𝑢
𝑑𝜃 = −

2
𝑐
1
𝜃q

D*n
DZ* = − r

p
:
Zs = 6	𝑐𝑢I

Now, eq. 6.17 will applied 
	
𝑑I𝑢
𝑑𝜃I + 𝑢 = −

1
𝑚𝑙I𝑢I𝑓(𝑢

9:)

6	𝑐𝑢I + 𝑢 = −
1

𝑚𝑙I𝑢I 	𝑓 𝑢9:

𝑓 𝑢9: = −𝑚𝑙I 6𝑐𝑢I + 𝑢q
𝑓 𝑟 = −𝑚𝑙I(	rp)s +

:
)t	) as 𝑢 = 1/𝑟

Thus, the force is a combination of an inverse cube and inverse-

fourth power law





𝑓(𝑟) = −
𝑚𝑟v

𝑟q 𝜃̇I

𝑓(𝑟) = − V*

&)t
as 𝐿 = 𝑚𝑟I𝜃̇

OR

𝑓(𝑟) = −v&ẇ*

)t
as	𝐴̇ = V

I& As we don’t have component toward 

latter equation it follows that:

Or 

Where	


