Chapter One

Introduction

-Methods of heat transfer

Heat transfer: is transit energy between the bodies of materials due to the

temperature difference’, and its measured by (W=J/s)
1-Conduction heat transfer

Conduction: is heat transfer (energy) from the higher particles activity to lower
activity due to the temperature difference, and this phenomenon replay to random
motion, translational motion, rotational motion and internal vibrational motion of

particles.

-Fourier’s law

Heat will flow from the higher temperature to the lower temperature

O ¢ A ar
dx )
) T>T,
dT(x)
q, =—k A I (W) heat transfer rate
T

o O |:>\ T,

o =k dzf(x) (W /m?) heat flux

| —>
Where L

A: the area m’
T(x): the temperature distribution K or °C

X: the distance m



k: the thermal conductivity W/m.K

the minus sign is a consequence of the second law of thermodynamics, which
requires that heat must flow from higher to lower temperature. As illustrated
below;

\ <— A —> A
Direction of heat flow T Direction of heat flow T
(a)Positive (;I—T) X (b)Negative ((;—T) X (c) General
X X

For three dimension bodies there are three components for heat transfer

dT dT aT
=k A —, -k A —, q,=-kA —
Oy A o b Va9 A, ™

a=iq,+]j g, +kq, o =/a% +q2 +q?

The temperature gradients can be expressed as

dT _T,-T,
dx L

And then the heat flux becomes:

X

L L L



Examplel: plane wall has thickness 100mm and thermal conductivity
k=100W/m.K, and the steady state conditions occurs at T;=400K, T,=600K.

. dT
Calculate the heat flux gy and temperature gradient — ?

dx
Sol.
_ _ I
dT _T,=T, _600-400 oo/ e 1]
dx L 0.1 T ;
Q7 =100 x 2000 = —20 kW /m’ ,-"
4—};

v

Example2: Find (:j—T and thermal conductivity of the following figure?
X

T(x)=300(1-2x—-x*) K
A(X)=(1-x) m?
q = 6000 W

Sol.

dT(x)
dx

Qy =—k A (\N)
dT(x)

v 300(—2 —3x*)=-300(2+3x*) K/m
X




— 6000

20

K(X) =

T (1-%)x300(2+3x%)  (1—X)(2+3x2)

For example at x=0, k=10, A=1and dT/dx=-600
g=-10x1x(—600) =6000 W

Thermal Conductivities

Thermal conductivity is transitional property which its defined as

o

0T /6x|
qy :the heat flux per unit area normal to the surface.

For many materials, the thermal conductivity can be approximated as
a linear function of temperature over limited temperature ranges:

k(T) =ko L+ fT)

P empirical constant

Ko :the value of conductivity at a reference temperature.
Material Thermal conductivity | Material Thermal conductivity
W/m.K W/m.K
Silver 410 Lead 35
Copper 385 Water 0.556
Aluminum 202 Air 0.024
Nickel 93 Ice 2.22
Iron 73 Saw dust 0.059
Carbon steel | 43 Glass 0.78




Thermal diffusivity

The thermal diffusivity represents how fast heat diffuses through a
material. Appears in the transient heat conduction analysis. A
material that has a high thermal conductivity or a low heat capacity
will have a large thermal diffusivity. The larger the thermal
diffusivity, the faster the propagation of heat into the medium.

_ Heatconducted  k

a= = (m?/s)

Heat stored pC,

Convection

Convection is the mode of energy transfer between a solid surface
and the adjacent liquid or gas that is in motion.

Convection is commonly classified into three sub-modes:

— Forced convection,

— Natural (or free) convection,
— Change of phase (liquid/vapor, solid/liquid, etc.)

Forced Natural
convection convection
Air

ZL1 XX

A \ 7 X
it hot epo B \ /@\ /




The rate of convection heat transfer is expressed by Newton’s law of

cooling as
Qm:wchlz--u = hA (T, — T,__,}

2

h is the convection heat transfer coefficient in W/m °C.

h depends on variables such as the surface geometry, the nature of

fluid motion, the properties of the fluid, and the bulk fluid velocity.

Convection with phase change
(condensation and boiling)

Mode h W/m?.K
Free convection 5-25
Forced convection
Gases 25-250
Liquids 50-20000

2500-100000

Radiation

Radiation is the energy emitted by matter in the form of electromagnetic
waves (or photons) as a result of the changes in the electronic configurations
of the atoms or molecules. Heat transfer by radiation does not require the
presence of an intervening medium. In heat transfer studies we are interested

in thermal radiation (radiation emitted by bodies because of their

temperature).

Radiation — Emission




The maximum rate of radiation that can be emitted from a surface at a

thermodynamic temperature T (in K or R) is given by the Stefan-
S
Boltzmann law
< 4
Qemit,max - GASTS (W)
8 2 4
0=5.670X10 W/m -K is the Stefan—Boltzmann constant.

The idealized surface that emits radiation at this maximum rate is called a
blackbody. The radiation emitted by all real surfaces is less than the
radiation emitted by a blackbody at the same temperature, and is expressed

as .

Qemit,max = go_AsTs4 (W)
0<e<1 ¢ 1s the emissivity of the surface.

Radiation - Absorption

The fraction of the radiation energy incident on a surface that is absorbed by
the surface is termed the absorptivity «. Both & and o of a surface depend
on the

temperature and the wavelength of the radiation.
Qincident
Qref =(l- Qincidem

0<a<l

I Qubs = Qincidcnl
Example

A 10 cm diameter copper ball is to be heated from 100°C to an average

temperature of 150°C in 30 minutes . Taking the average density and



specific heat of copper in this temperature range to be p=8950 kg/m*® and
C,=0.395 kJ/kg°C ,respectively . Determine (a) the total amount of heat
transfer to the copper ball
(b) the average rate rate of heat transfer to the ball and (c) the average heat
flux .

Ans: a) 926kl  b)514W  c) 1636 W/m®

Properties The average density and specific heat of copper are given to be
p = 8950 kg/m? and C, = 0.395 kJ/kg - °C.

Analysis (a3) The amount of heat transferred to the copper ball is simply the
change in its internal energy, and is determined from

Energy transfer to the system = Energy increase of the system
Q=AU=mC__(T,—T)

where

m=pV= gpn‘ = §<8950 kg/m*)(0.1 m)’ = 4.69 kg

Substituting,
O = (4.69 kg)0.395 kJ/kg - °C)(150 — 100)°C = 92.6 k]

Therefore, 92.6 kJ of heat needs to be transferred to the copper ball to heat it
from 100°C to 150°C.

(b) The rate of heat transfer normally changes during a process with time. How-
ever, we can determine the average rate of heat transfer by dividing the total
amount of heat transfer by the time interval. Therefore,

_ 0 96k

Que = X1~ 18005

{c) Heat flux is defined as the heat transfer per unit time per unit area, or the

rate of heat transfer per unit area. Therefore, the average heat flux in this
case is

= 00514 k)/s =514 W

_Oue _ O _ S14W

I.ue - i 3 = 1636 W/ 1
q A ¢ w01 my -



Example
1.2 kg of liquid water initially at 15°C is to be heat to 95°C in a teapot

equipped with a 1200 W electric heating element inside . The teapot is 0.5
kg and has an average specific heat of 0.7 kJ/kg °C .Taking the specific heat
of water to be 4.18 kJ/kg ° C and disregarding any heat loss from the teapot,

determine how long it will take for the water to be heated

ANns: 6 min

Froperties The average specific heats are given to be 0.7 klikg - °C for the

teapot and 4.18 kl/ke - °C for water.
E, = (mCAT )yyier + (mCAT )yeapor

= (1.2 kg4.18 kl/kg - "CH95 — 15)°C + (0.5 kgy0.7 kl/kg - °C)

(95 — 15)°C
= 429.3k] ! o »
Total energy transferred E, 4793 kI ~ . N
Af= Rate of energy transfer E"___“,L,r 12K 388 = &l min Electric ]
LLL.M 1200 W _J
Example

5 m long section of an air heating system of a house passess through an
unheated space in the basement . The cross section of the rectangular duct of
the heating system is 20 cm x 25 cm . Hot air enters the duct at 100 kPa and
60°C at an average velocity of 5 m/s . The temperature of the air in the duct
drops to 54°C as a result of heat loss to the cool space in the basement .

Determine the rate of heat loss from the air in the duct to the basement under

steady condition .

Properties The constant pressure specific heat of air at the average tempera-
ture of (54 + 602 = 57°C is 1.007 kJ/kg - °C (Table A-15).

i = pVA_ = (1.046 kg/m*)(5 m/s)0.05 m?) = 0.2615 kg/s
QI.I-:- = "".”:llirn - T-.-ml 5 —_

= {0.2615 kg/s) 1.007 klfkg - "C)(60 — 54)°C |*_____
= 1.580 kJ/s

Hot air [

100 kPa —
o°C
5 m's

)




i Rate of heat loss {Unit cost of energy input)

Cost of heat loss = : — :
Fumace ef ficlency

(5688 kI/h)i50. h[',lhhtrnﬂ 1 therm |
(.80 I'[:I‘v 500 kI

= 50,040/

Example
The roof of an electrically heated home is 6 m long 8 m wide and 0.25 m

thick , and is made of a flat layer of concrete whose thermal conductivity is
k=0.8 W/m °C . The temperatures of the inner and the outer surfaces of the
roof one night are measured to be 15 °C and 4°C respectively for a period of
10 hours . Determine (a) the rate of heat loss through the roof that night and
(b) the cost of the heat loss to the home owner if the cost of electricity is $
0.08 /kWh .

)~k s wim-coas my 2= PC 1600 w = 169 kW
[} = K I = (.2 m - “C)(48 m%) 05 m i = 1.b
=0 At = (LG KW)(10 h) = 16.9 kWh
Cost = (Amount of energy i Unit cost of energy) Concrete roof -

= (169 kWh){$0.08/kWh) = $1.35

Example
2m long 0.3 diameter electrical wire extends across a room at 15°C . Heat is

generated in the wire as a result of resistance heat ing , and the surface
temperature of the wire is measured to be 152°C in steady operation Also the
voltage drop and electric current through the wire are measured to be60 V

and 1.5 A respectively . Disregarding any heat transfer by radiation



.determine the convection heat transfer Coefficient for heat transfer between

the outer surface of the wire and the air in the room

Q = Eﬂunuumd = vi = (60 V]' 1.5 A) = a0 W
A, = woL = w(0.003 m)2 m) = 0.01885 m*

Q. =hA (T, — T.)

O com 90 W o
= = = MI9Wm--°C
h= AT, — T, (001885 m3152 — 157C 39 Wim™-°C

Example
Consider a person standing in a breezy room at 20°C . Determine the total

rate of heat transfer from this person if the exposed area and the average
outer surface temperature of the person are 1.6 m* and 29°C respectively

and the convection heat transfer coefficient is 6 W/m?°C .

O ooy = hA (T; — T)
= (6 W/m® - °C){1.6 m*)(29 — 20)°C
= 864 W
Q”d = EiTA, ET_.'I - T;t_.,]
= (0.95)(5.67 * 10 * W/m? - K*)(1.6 m?)
* [(29 + 273 — (20 + 273 K*

=8LTW
QIU’.J = Qn-m T Qru.l = (864 + BL.7)W = 168.1 W

Example
Consider steady heat transfer between two large parallel plates at constant

temperature of T;=300 K and T,=200 K that are L =1m apart .Assuming the
surfaces to be black ( e=1) , determine the rate of heat transfer between the

plates when filled with atmospheric air . Take kg, = 0.026 W/m . C°

Properties The thermal conductivity at the average temperature of 250 K is
k= 0.0219 W/m - °C for air (Table A-11), 0.026 W/m - "C for urethane insula-
tion (Table A-&), and 0.00002 W/m - “C for the superinsulation.



; — -2 300K .
Qm=kAT' T Tz:(0.0219WIm-°C)(lm3)%“(:1.;)uC=ZI9W Ty=30K R T,=20K
' —
and
L —L=1cm =
Qra = e0A(T} — T)
= -8 2 gt 2 4 4 — [ TEe=1T
= (IN5.67 x 107" W/m" - K*)(1 m*)[(300 K)* — (200 K)*] = 368 W |
Therefore,

Ot = Qeona + Qag = 219 + 368 = 58T W
the voids in the insulating material. The rate of heat transfer through the ure-
thane insulation is

Y A ,,(300 — 200)°C

0ot = Ocong = kA ———= = (0.026 W/m - °C)(1 m2) ol

7 =260 W




Chapter Two
Introduction to Conduction heat transfer

-Heat diffusion equation in wall plane

rate of heat conduction into control volume+ rate of heat generation inside
control volume=rate of heat conduction out of control volume +rate of

energy storage inside control volume.

- 0
qx +qy +QZ +qudde - qx+dx +qy+dy +qz+dz +a(p dV C T)

Q_r:—afr — g_r + %d\-

cx
J Cartesian Coordinates:
aq T, v, 2) Geva
— y ! Ay + dy
qy+dy o qy + ay dy '/";\\ ,1——--L---7’f“,1

aq
=(,+—=dz
qz+dz qz 82

t: time sec

p:density Kg/m®
c:specific heat J/kg.K

g:the rate of heat generation per unit volume inside the control volume;
W/m®.

0
_ % gy - My gy~ e 7 4 gdv = p dv e -
x oy ot
Cge=L] kv axLlar
&x &x |, &x )



Where p ,c & dV constant with time.

k —

a(k a—Tjdv 9 ka—T dv +

OX\  OX oy oL\ 0z

0 oT oT 0 oT . oT
o (R A PR P PR
ox\ ox) oy\ oy ) oz 0z ot
oT for unsteady state

'

for steady state
ot

a(aTj G(GTJ a( j g
—| — +=—| — [+—| — |+—=0
ox\ ox) oy\oy) oz\oz) k

Without heat generation
O°T 0T 82T
2 + 2 =0
ox:  oy?  az®
Laplace equation

V2T =0

2 2 2

v? =§ >+ Syz + aa Laplace operator
X Z

d°T
dx2 =0 one dimension

0 [ aTjdV +qg dV = pcdv%—I



Cvlindirical coordinates

Cylindrical Coordinates:

For T(r), steady state and q=0

i(rd_-rj:o
dr\ dr

—dT =g T=ClInr+C2 and

dr r

g=q" A(r) =—E 2zrL = constant
.

Spherical coordinates

1 0( ,0T 1 o(. 0T 1 0T q 10T
— T +—— siné@ +t—— >+
r<or or ) resind o6 00) r°sin“do¢g° k a ot

Spherical Coordinates: 9 +do

For T(r) and g=0

i(rzd—Tj:O
dr dr




d—T=C—21 = T=—E+C2 and q”=—kE
dr r r r

Specified Boundary Condition

1- Constant surface temperature.

T (01 t) = Ts T(x, t)

2- Specified Heat Flux Boundary Condition

The heat flux in the positive x-direction anywhere in the medium,
including the boundaries, can be expressed by Fourier’s law of heat

conduction as

Heat
flux | Conduction
C de _|  Heat fluxi _ AT, 1)
g=-K—= eat flux in the qy=—k =
dx positive x- Heat
direction Conduction| flux
)
. e X

0 —




The sign of the specified heat flux is determined by inspection: positive if

the heat flux is in the positive direction of the coordinate axis, and negative

if it is in the opposite direction.

3-Adiabatic boundary conditions

‘ oT(0,t) 0 oT (0,t)
OX OX

=0

4- Thermal symmetry

8T(%,t) .

OX -

5-Convection Boundary Condition

ICLCLIPYC NI

aT(o ) R [T,-TO)

/,—b

Insulation

s
T(x, 1) 60°C
L X
d7(0, 1) B _
o

T(L, 1) =60°C

— Temperature
d distribution
(symmetric
about center
plane)

— Center plar
!‘/ enter plane
i
i
1

0

Conveclion

112
e 2

(T, - T,

]

IT(L/2, 1)

- =0
ox

Conduction

aT(0, 1) o

= ox

Conduction | Convection

s e

KOLLD T,
ox 2 2

‘L}



At the interface the requirements are:

(1) two bodies in contact must have the same temperature at the area of

contact,
(2) an interface (which is a surface) cannot store any energy,

heat flux on the two sides of an interface must be the same.

and thus the

Interface

Material / Material
I A B
7:4(X0, t) 7-'B(XO’ t) T {63 0= Thfi )
’m TH(:Y' 0
_k aTA(XO’t) _ _k 6-l-B (XO’t) Conduction | Conduction
A - B
OX OX e O T 0
4 e 1_ By
0
[%
Variable Thermal Conductivity for One-Dimensional Cases
: thermal potential differance
Thermal resistance =
heat flow
R _AT_Tl—Tz_L:R_\L
t,cond — - - - -
q q KA I r
Plane wall
For variable k KT)=ky(1 +BD)
B>0
{ p=0

SN

p<0

<

i(kd_Tj:o, kt)=k, @+ T)
dx\ dx 0
dT




q=—-k,@+pT)ALL
dx
L T2
—j dx = —k, j(1+ﬂ T)dT
L

g
a’_ N
K - ko(Tl _T2)|:1+ E(Tl +T2):|

k., =Kk, [1+ g Ty, +T32)}

q :kavATsl_Tsz , R:&
L k

av

Example : The resistance wire of a 1200-W ironis 80 cm long and has a
diameter of 0.3 cm. Determine the rate of heat generation in the wire per

unit volume, in W/cm?®, and the heat flux on the outer surface of the wire as

a result of this heat generation.

L 6__ G _ 1200 W ——
* Ve (mD¥HL  [w(03 cm)4)B0cm)

G _ G _ 1200 W

' = = = 15.9 W/em?
9 Apie TOL  7{0.3 cm )80 cm) 15 i

Example : Consider a large plane wall of thickness L = 02 m,
thermal conductivity k = 1.2 W/m - °C, and surface area A = 15 m?. The left
side of the wall is maintained at a constant temperature of T1 = 120 °C
while the right side loses heat by convection to the surrounding air at T, =

50 °C. Determine (a) the variation of temperature in the wall and the value

Plane
wall



of temperature at x=0.1 m and (c) the rate of heat transfer through the

wall.
d*T
de? 0
with boundary conditions
SRS T(0) =T, = 120°C
,—T — T. — &°
Tix) = -L e+ T, NL)y=T,=50"C
{50 — 120)°C
0.1 m) = %[[}.] m) + 120°C = 85°C
T” - (120 — 50y"C
0 =kA—F— = (1.2W/m - "CN15 m?) ——55—— = 6300 W

Example : Consider the base plate of an 1200 W household iron with a
thickness of L= 0.5 cm, base area of A=300 cm2, and thermal conductivity
of k = 15 W/m - °C. The inner surface of the base plate is subjected to
uniform heat flux generated by the resistance heaters inside. When steady
operating conditions are reached, the outer surface losses heat to the
surrounding at T,, = 20 °C by convection . Taking h= 80 W/m? °C and
disregarding the heat loss by radiation (a) obtain a relation for the variation

of temperature in the base plate by solving the differential equation, and (b)

evaluate the inner and the outer surface temperature. Resisance hester o
20X , .~ Base plate
Insulation - l
Qu 1200 W 1 - 300 cm?
fo = = = = 40,000 W/m? -~ Hoem
™ A 0030 : o
ﬂ- _ U T_=M"C
dxv* h
arip
- k= ) — i, = 40,000 W/m?
dTiL) '
— kS = iy - 1

dv
dT

dy !



Tixi=Cix + C;

dT0)

; II-_F.ll
I:Ill-_'._ = I:f:| — _|':.C| = |'.;|. — [—'| = — g

Kk

dT(L)
—A'T =hNL—T.] = —kC=hi{CL+ Cs)—T.]

C,=T.+2+3y

M =1. + (J'III:L%:L T Tl”ll

TO)=T. + go| £ + ]

= 20°C + (40,000 "r‘n"a'm:J[. ]-.::.'-E-]fr:: m'l:' N &0 ‘ﬁ'.-'l 2. °C S
- ’ e /
and
\ 40,000 W/m?
MLy=T_+ .;l,i,,[_n:l + %J = 20°C + m = 5M°C

Example : Consider a large plan wall of thickness L=0.06 m and thermal
conductivity k=1.2 W/m °C in space . The wall is covered with white
porcelain tiles that have an emissivity of € = 0.85 and a solar absorptivity of
a =0.26 . The inner surface of the wall is maintained at T;=300 K at all
times , while the outer surface is exposed to solar radiation that is incident at
a rate of g s = 800 W/m? . The outer surface is also losing heat by radiation
to deep space at 0 K . Determine the temperature of the outer surface of the
wall and the rate of heat transfer through the wall when steady operating _ ﬁ@%

Plane wall

Conduction




conditions are reached . What would you response be if no solar radiation

was incident on the surface .

d’T _

=10
dx

with boundary conditions
TMH=T,=30K

ML
. ‘—1\_' - EU[T(L)J - Ts{m'c] - “q.‘“‘ﬂ'
. g

where T.... = O. The general solution of the differential equation is again ob-
tained by two successive integrations to be
Tx)=Cx + G (a)

where C; and C, are arbitrary constants. Applying the first boundary condition
yields

T(()) - Cl X 0+ C: - C: — T;

Noting that dT/dx = C, and T(L) = C,L + C, = C,L + T,, the application of
the second boundary conditions gives

T
—k - d“L' =golLyY —afy, — —kC,=ea(C.L+ T - af,,
ITiL
—k % = eoTILY — afy, — —kC, =eoT} — ag .,
0 ooy — OTH
i) = 2l Lx+T,
k
T, =2927K
To — T, (300 — 292 K
g=k——=(1.2W/m-K = 146 W/m?
1 L ‘ ' T 0.06m

Example : Consider a steam pipe of length L =20 m, inner radius r;=6 cm ,
outer radius r,= 8 cm , and thermal conductivity k=20 W/m °C . The inner
and outer surfaces of the pipe are maintained at average temperature of T, =
150 °C and T, = 60 °C respectively . obtain a general relation for the
temperature distribution inside the pipe under steady conditions , and
determine the rate of heat loss from the steam through the pipe .

d | dT
T(T)_D

with boundary conditions



Tir)=C;Inr + G, (a)

We now apply both boundary conditions by replacing all occurrences of r and
T(r) in Eq. (a) with the specified values at the boundaries. We get

T{J'L] = T| —> C| In F + C: = Tl
T{J':J = Tl — C| In ¥ + C: = T:

which are two equations in two unknowns, C; and C.. Solving them simultane-
ously gives

c—Tz_T' d C=T Tl_T'l
1 In(rsfry) o 2~ In{ry/r) mh

Substituting them into Eqg. (a) and rearranging, the variation of temperature
within the pipe is determined to be

lnmﬁ,])
T“J = (].ﬂ{}'l.l'rj'| [Tl T|} T| {2'55}
,Q = —,I;,qd—T= —.iuc{""m*.'t}5 = —2mkLC, = 2mkL — _ L
cylinder dr - F - A In(rs/r,
) = 2m(20 Wim - °C)(20 m) e °0°C _ 206 kW
Q = 2m(20 Wim - "C)(20 m) 16 6870.06)

Example :Consider spherical container of inner radius r;=8 cm , outer radius
r,=10 cm and the thermal conductivity k=45 W/m °C . The inner and outer
surfaces of the container are maintained temperature of T,=200°C and T,
=80 °C ,respectively as a result of some chemical reactions occurring inside .
Obtain a general relation for the temperature distribution inside the shell
under steady conditions and determine the rate of heat loss from the

container .

d .:ff_T)_
a’r(i dr =9

with boundary conditions

T e & —m T — "uYOM



C'l
T=——-+C, (a)

We now apply both boundary conditions by replacing all occurrences of r and
T(r) in the relation above by the specified values at the boundaries. We get

G
=17, - _r_|+C2=Tl
C,

which are two equations in two unknowns, C; and C. . Solving them simultane-
ously gives

_nn _nT, —nT,
C = —H(Tl - T and Cy= e

Substituting into Eq. (&), the variation of temperature within the spherical shell
is determined to be
I - Nty = nd,
Tir) = oy —— (T — ) + —5, =7, (2-80)

The rate of heat loss from the container is simply the total rate of heat conduc-
tion through the container wall and is determined from Fourier's law

s . dl 3 C, - - I — T
O shere = —kA ar —k(4r ]ﬁ = —4wkC, = 4wkrr, I (2-61)

The numerical value of the rate of heat conduction through the wall is deter-
mined by substituting the given values to be

(200 — 80)*C
(0.10 — 0.08) m

0 = 4mw(45 W/m - °C)(0.08 m)(0.10 m) = 27,140 W




