Shearing Forces and Bending Moments in Beams Dr. Alaa & Dr. Ahid

Shearing Forces and Bending Moments in Beams

A beam is a structural member that carries loads transversely, that is,
perpendicular to its long axis.

When analyzing a beam to determine reactions, internal shearing
forces, and internal bending moments, it is helpful to classify the
manner of loading, the type of supports, and the type of beam.

Beams are subjected to a variety of loading patterns, including:

e Normal concentrated loads
¢ Inclined concentrated loads
e Uniformly distributed loads
e Varying distributed loads

e Concentrated moments

Support types include:

e Simple, roller-type support
e Pinned support
e Fixed support

Beam types include

e Simply supported beams or simple beams
¢ Overhanging beams

e Cantilever beams or cantilevers

e Compound beams

e Continuous beams

(1)
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Example of linearly varying distributed load on a simple beam
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R
Ty General shape of deflected beam

Ry

Concentrated moment on a beam

Type of Supports

e Simple Support or Roller Support
A simple support is one that can resist only forces acting perpendicular to
the beam.

e Pinned Support
An example of a pinned support is a hinge that can resist forces in any
direction but which allows rotation about the axis of the pin in the hinge.

e Fixed Support
A fixed support is one that is held solidly such that it resists forces in any
direction and also prohibits rotation of the beam at the support.

=, e,

(a) (b) ! (c) 2

Examples of simple supports: (a) beam on two rollers, (b) beam with
pinned support and one roller, and (c) free-body diagram for (a) or (b).
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. _~Deflection
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curve

(a)

(b) (d)

Beams with fixed supports: fixed support for a cantilever and
representation of beam with two fixed supports.

Beams Type
e Simply Supported Beams

(@) (b) I Ry (© 1 k

e Overhanging Beams

2

1 Overhanging
beam
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e Cantilever Beam

Fixed support

(:’ Beam
M I I
R Load

L] ]
1

e Supported (Propped) Cantilever Beam

=
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Reactions at Supports

The first step in analyzing a beam to determine its safety under a given
loading arrangement is to show completely the loads and support reactions
on a free-body diagram.

It is very important to be able to construct free-body diagrams from the
physical picture or description of the loaded beam.

Guidelines for Solving for Reactions

1. Draw the free-body diagram.

2. Use the equilibrium equation M = 0 by summing moments about the
point of application of one support reaction. The resulting equation
can then be solved for the other reaction.

3. Use zM = 0 by summing moments about the point of application of
the second reaction to find the first reaction.

4. Use 2F = 0 to check the accuracy of your calculations.

Example (1): Compute the reaction forces in the supports

4.3 kN 1.2 kN
3.5kN 2.8kN

f A B C D E F

Dimensions
in mm

400 400 400 300 300

Ry R
| 1800 mim

(6)
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Solution:
To find the reaction Ry, sum moments about point A:

XM =0=35 (400)+4.3[80{])+ 1 .2(120{])+ 2.3{]500)— Ry (180{])

Note that all forces are in kN and distances in mm. Each moment term has the units of
kKN -mm. Now solve for R;:

3.5(400)+4.3(800)+1.2(1200) +2.8(1500) [N - mm
1800 mm

=582 kN

F

Now, to find R,. sum moments about point F:

XM, =0= 2.8(3DO)+ 1.2 (600)+4.3(]000)+3.5{]400)— R, (] 8{]0)

Ry = [2.8(300)+1.2(600) +4.3(1000)+3.5(1400) [N - mm

=598 kN
1800 mm

Now use X F = 0 for the vertical direction as a check:
Downward forces: (3.5 +43+1.2+28)kKN=11.8kN
Upward reactions: (5.82 + 5.98) kN = 11.8 kN (check)

The left reaction is: R, = 5.98 kN
The right reaction is: R, = 5.82 kN

Example (2): Compute the reactions on the beam shown.

Uniformly distributed load

33 kN/m

A4 B AcC

e 1 1 | i ———

- 4m

Ry Re

Solution:

99 kN resultant of

i distributed load
le— 1.5 m—=

(7) - 4m ————-
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By summing forces in the vertical direction, we obtain
R, =60 kN +4 kN =64 kN

Summing moments about point A yields

M,=60kN(1.0m)+4kN(25m)=70kN-m

Example (3): Compute the reactions for the cantilever beam

30 kN/m l

A ‘B ‘C

[ 20m ————*

25m

Solution:
60 kN

- 1.0m ‘: 1
HAf/ A *
B C

*f _ 25m |

By summing forces in the vertical direction, we obtain
Ra=60 kN + 4 kN =64 kN

Summing moments about point A yields

Ma =60 kN(1.0 m) + 4 kN(2.5 m) = 70 kNxm

(8)
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Shearing Forces:
Shearing forces are internal forces developed in the material of a beam to balance
externally applied forces in order to secure equilibrium of all parts of the beam.

The magnitude of the shearing force in any part of a beam is equal to the
algebraic sum of all external forces acting to the left (or right) of the section of
interest.

Sign Convention

Positive S.F. Negative S.F.

Notes:

e On any segment of a beam where no loads are applied, the value of
the shearing force remains constant.

e A concentrated load (or reaction) on a beam causes an abrupt
change in the shearing force in the beam by an amount equal to the
magnitude of the load and in the direction of the load.

Bending Moments
Bending moments are internal moments developed in the material of a beam to
balance the tendency for external forces to cause rotation of any part of the beam.

The magnitude of the bending moment in any part of a beam is equal to the
algebraic sum of the moment of forces acting to the left (or right) of the section
of interest.

(9)



Shearing Forces and Bending Moments in Beams Dr. Alaa & Dr. Ahid

Sign Convention

RS &

Positive Bending Moment Negative Bending Moment
[ Sagging :| ( Hogging }

Example (4): For the beam shown, find the shearing force and bending
moment at section a-a.

4|(Nl a f kN
A ‘ B

g s 2

2Zm
| 2m 2m | _‘

Solution
>M.=0 4 kNl r kN

Rx6—4x4-8x2=0 ‘

. .
F.B.D

RA =5.33 kN
Va-a=RA-4
=1.33 kN +ve.

4 kN
Ma-a=RA x3—-4x1=12kN.m +ve (sagging)

5.33 kNT - \IDM

>
3m

Section a-a
(10)
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Shear Force and Bending Moment Diagrams

Diagrams, which illustrate the variation in the shear force and bending
moment values along the length of the beam under the action of certain
loading condition.

Example (5): Draw the shear and moment diagrams for the beam shown

1600 N/m

SOLUTION: The total load on the beam is 6400 N, and from symmetry each
of the end reactions is 3200 N.

We shall now consider any cross section of the beam at a distance x from
the left end. The shearing force at this section is given by the algebraic sum
of the forces to the left of this section and these forces consist of the 3200
N reaction and the distributed load of 1600 N/m extending over a length x.
The shearing force at x is then given by:

T

V(X) = 3200 - 1600x i 1600 41“| '1‘ 1600 N/m
Y A x
¥ —_—
»?». oz
3
3200N 3200 N

Since there are no concentrated loads acting on the beam, this equation is
valid at all points along its length. The variation of shearing force along the
length of the bar may then be represented by a straight line connecting the
two end-point values. The shear is zero at the center of the beam.

Vi

L— r=2m
V(x)=0 3200 N]: ——I
—l "

3200-1600x =0 ) | _l_wm N

—————— =4 m ——

\ =+
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X=2m

The bending moment at the section x is given by the algebraic sum of the
moments of the 3200-N reaction and the distributed load of 1600x about
an axis through A,

M = 3200x — 1600{%]

= 3200x — 800x"
From the above equation, it is evident that the bending moment is
represented by a parabola along the length of the beam.
Since the bar is simply supported, the moment is zero at either end and,
because of the symmetry of loading, the bending moment must be a

maximum at the center of the beam where x =2 m. The maximum bending
moment is

y 2
M, =3200(2)—800(2)" = 3200 N - m

30 kN 50 kN

4

Solution: 1
YMe=0
S5Rp + 1(30) = 3(50)
Rp =24 kN

YMp=0 (12)
5Rg = 2(50) + 6(30)
Ry =56 kN
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30 kN
Segment AB: l
Vag = -30 kN N

Mae = -30x kN-m e ol

X

Segment BC: 30.kN |
Vec =-30 + 56 - ’
=26 kN Al 7, 5
Mzc = -30x + 56(x - 1) ng
= 26x - 56 kN-m
1m
Rg = 56 kN
Segment CD:
Ve =-30 + 56 - 50
=-24kN

Mcp = -30x + 56(x - 1) - 50(x - 4)
= _30x + 56x - 56 — 50x + 200

=-24x + 144
X »|
30 kN 50 kN ‘
- - ¢ 3
{1 m 3im | -|

Ra = 56 kN

(13)
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To draw the Shear Diagram:

(1) In segment AB, the shear is
uniformly distributed over the
segment at a magnitude of —30
kN.

(2) In segment BC, the shear is
uniformly distributed at a
maagnitude of 26 kN.

(3) In segment CD, the shear is
uniformly distributed at a
magnitude of —-24 kN.

To draw the Moment Diagram:

(1) The equation My = -30x is
linear, at x = 0, Myz = 0 and at
x =1m, My =-30 kN-m.

(2) Mgz = 26x — 56 is also linear.
At x = 1 m, Mg = -30 kN-m; at
X =4m, Mg =48 kN.-m. When
Msc = 0, x = 2.154 m, thus the
moment s zero at 1.154 m
from B.

(3) My = —24x + 144 is again
linear. At x =4 m, Mep = 48
kN-m; atx =6 m, Mg = 0.

30 kN 50 kN
Y 8 ‘ C D
Load A [ .
Diagram Eé Ej ‘
.: i1m :l‘ 3m T 2m :l
| Rg=56kN - Rg = 24 kN
I ' ' ]
; : 26 kN 5 i
] ]
Shear i :
Diagram

Moment
Diagram

(14)
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Example (7): Draw the shear and moment diagrams for the beam shown

Solution:

80 kN

2My=0
10R. = 2(80) + 5[10(10)]
Rc =66 kN

Segment AB:

Vap=114 - 10x kN

Map = 114x - 10x(x/2)
=114x - 5x2kN-m

Segment BC:

Vec=114-80 - 10x

=34 -10x kN A;

Mp-=114x - 80(x - 2) - 10x(x/2)
=160 + 34x - 5x2

2Mc=0
10R 4 = 8(80) + 5[10(10)]
Ri=114kN

80 kN
B 10 kN/m

W N AN

X ———

To draw the Shear Diagram:

(1) For segment AB, Ve = 114 — 10x
is linear; at x = 0, Vag = 14 kN; at
x=2m, Ve = 94 kN.

(2) Ve = 34 — 10x for segment BC is
linear; at x = 2 m, Vge = 14 kN; at
x = 10 m, Vec = —66 kN. When Vec
=0, x = 3.4 m thus Vg = 0 at 1.4
m from B.

To draw the Moment Diagram:

(1) Mg = 114x - 5x* is a second
degree curve for segment AB; at x
=0, Mg=0atx=2m, Mg =
208 kN-m.

(2) The moment diagram is also a
second degree curve for segment
BC given by Mg = 160 + 34x -
5x% at x = 2 m, Mg = 208 kN-m;
atx=10m, Mg = 0.

(3) Note that the maximum moment
occurs at point of zero shear.
Thus, at x = 3.4 m, Mg = 217.8
kN-m.

(15)

A

RA =114 kN

Ry = 114 kN
80 kN

1 10 kN/m

B C 4
t-Zm ;||: 8m

114 kN |

: 194 kN
14 kN

P mmm e

Re = 66 kN

Load
Diagram

Shear
Diagram

Moment
Diagram
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Example (8): Draw the shear and moment diagrams for the beam shown

Solution
vy _ w,
X L
w L
V= _0'\. F. 3 X "]
E 0 REEENE e i
X f ¥
L Y
1 { w, | | L-x
=—X —X| X oo
2 \L )
_ w, >
2L
Shear equation:
V= i ) x?
2L
Moment equation:
1 (w )
A/I=-4_.,L.1'F,=-—xif < »‘«v
3 \ 2L | . e
% v = v
= _ u,O xs L ..Dad
6L < L Diagram
s |
To draw the Shear Diagram: ,
W '
V =-—2x" is a second degree curve; : :I_rear
2L : tagram
atx=0,V=0;atx=1LV=-Lwl i
To draw the Moment Diagram: :
w
M=-—2x" is athird degree curve; at Moment
6L Diagram
x=0,M=0;atx=0L M=-3wsl®
(16) - w2
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Example (9): Draw the shear and moment diagrams for the beam shown

4 kNj’m

EJJ

Solution ‘-s— 2m

Segment AB: 2 kN/m
V’.;B:—..Ikl\’ ‘],
g K Map = -2x(x/2) Ab——
i ’ l6— X —>
., Fs ’jl X k.\Im
2 kN g O
Ll B L £ 1 5“ Segment BC:
A LY HB 2 kN/m y =3
e— 2 M —e— X— 2 > x-2 3
e—— X Y= %’(1—2)
F1 =2
F3= %(‘( -2)_/
=3(x-2[3(x-2)]
=$(x-2)7
Veac=-F1-F

=-2x-+(x-2)?
Mec=-(x/2)F1- £ (x -2)F2

=-(x/2)(2x) - +(x-2)[$(x-2)]

=x2- §(x-2p

(17)



Shearing Forces and Bending Moments in Beams

Dr. Alaa & Dr. Ahid

To draw the Shear Diagram:
(1) Vig=-2xislinear; at x =0, Vig = 0; at x = 2 m, Vg
= —4 kN.

(2) Vee =—2x - 4 (x - 2)* is a second degree curve; at x
=2m, Vgc=—4kN; at x = 5m; Vac =-13 kN.
To draw the Moment Diagram:

(1) My = = is a second degree curve; at x = 0, My = 0;
atx=2m, Mg =— kN-m.

(2) Mg = —x* = % (x—2)" is a third degree curve; at x =
2m, Mg = —4 kN-m; at x = 5 m, Mg = =28 kN-m.

(18)

-28 kN-m
Moment Diagram
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Relationship between Load, Shear, and Moment

The vertical shear at C in the figure shown

; 5\ ¢— X y i
Ve= (EF.). =Ry - wx ol
AI‘wvwlL]llvw‘!'wvvlB
where R; = R, = wL/2
R

7 T wx Ra
Vo= — = W,

YD

w &S
M-=(EM)=—=2 - Wil —
wlxy  wx?

2 2

If we differentiate M with respect to x:

dM _wlL dx w, . dx
dx 2 dx 2 dx
dM wL
= - wx = shear
dx 2
thus, dM

e N
dx

Thus, the rate of change of the bending moment with respect to x is equal to
the shearing force, or the slope of the moment diagram at the given point is

the shear at that point.

Differentiate V with respect to x gives:

(1)
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T
dV

=0 -w = load

dx
dV

= Load

dx

Thus, the rate of change of the shearing force with respect to x is equal to the load
or the slope of the shear diagram at a given point equals the load at that point.

PROPERTIES OF SHEAR AND MOMENT DIAGRAMS

The following are some important properties of shear and moment
diagrams:

1. The area of the shear diagram to the left or to the right of the section
is equal to the moment at that section.

2. The slope of the moment diagram at a given point is the shear at that
point.

3. The slope of the shear diagram at a given point equals the load at that
point.

4. The maximum moment occurs at the point of zero shears. This is in
reference to property number 2, that when the shear (also the slope of
the moment diagram) is zero, the tangent drawn to the moment diagram
is horizontal.

5. When the shear diagram is increasing, the moment diagram s
concave upward.

6. When the shear diagram is decreasing, the moment diagram is
concave downward.

Examples:

(2)
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Without writing shear and moment equations, draw the shear and moment diagrams
for the beams specified in the following problems.

Example (1):

2m '|‘ 4m "'1 m"

>M.=0

6R. = 2(60) + 7(30)
J 60 kN 30 kN R.=55kN
B

|
Solution: !.

=

| c]_| IMe-o

| = ITm 6R; + 1(30) = 4(60)
35 kN R, = 55 kN B:=35kN

To draw the Shear Diagram:
(1) Va=R1=35kN

35 kN

130 kN (2) Ve = Vs + Area in load diagram — 60 kN
Ve=35+0-60=-25kN

(3) V.=V + area in load diagram + R,
Ve=-25+0+55=30kN

(4) Vi, =V + Ar=a in load diagram — 30 kN
Vp=304+0-30=0

| —25 kN To draw the Moment Diagram:

1
1
i
i Shear Diagram ] (1) M,=0 _ _

i ! (2) My = M, + Area in shear diagram
- Mg =0+ 35(2) = 70 kN-m

i (3) M: = Mp + Area in shear diagram
! M: = 70 — 25(4) = =30 kN.m

i (4) My = M- + Area in shear diagram

1
i
|
70 kN-m i
i
i M, =—-30+30{1)=0

N 4

M t Di
oment Diagram.

(3)
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Example (2):

£ 3

Solution:
5 kN/m

To draw the Shear Diagram

(1) a=0

(2) Vg =V, + Area in load diagram
V' =0- 5(2)
Ve =-10 kN

(3) Ve =Vp + Area in load diagram
Vc =-10+0

—10 kN

Ve + Area in load diagram

Vo=-10+0

Vo =-10 kN

o~
o

To draw the Moment Diagram

(1) MA =0

(2) Mg =M, + Area in shear diagram
Me = 0— %2 (2)(10)

Ms =-10 kN-m

(3) Mc = M, + Area in shear diagram
M = —10 — 10(2)
Mc = -30 kN-m

Mo =-30+M=-30+60 =30 kN-m
(4) Mp = Mg + Area in shear diagram

Mp = 30 — 10(1)

Mg = 20 kN-m

e

-10 kN-m
1* deg

Moment Diagram

-30 kN'm

(4)
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Example (3):
P ( ) 10 kNfm
25 kN-m
"\ LA R AR AR B EEE S RN ¥ v Y ¥ L4 L4

[ + | 1

l 3 S+ :i *

| im 1 im I Zm

Solution: s b
ZAMD =0
oR, =30(0.5) + 25
10 kN/m SO0k Ry =10kN
25 kN-m
A | Yy LA Yy LA ) Y Y
? i >M.=0
) B ¢ 0.5 mlesf D | 5R.+25=50(45)
im ! 1im 3m | 2m R.=40kN
Ry = 10 kN i Rz = 40 kN
I '

i : | Load Diagram | To draw the Shear Diagram
: : : ; (1) Vo =R, = 10kN
| | : : (2) Vg =V, + Area in load diagram
i i OlkN ! (3) Ve =V, + Area in load diagram

20 kN

—15 kN-m

-20 kN-m
Moment Diagram

(5)

V.=10+0=10kN

(4) Vb = V¢ + Area in load diagram
Vo =10-10(3) =-20 kN
Vm =-20 + R; =20 kN

{(5) Ve = Vy, + Area in load diagram
Ve=20-10(2) =0

(6) Solving for x:

x/10=(3-x)/ 20

20x = 30 — 10x
x=1m
To draw the Moment Diagram
(1) Mi=0

(2) Mg = M, + Area in shear diagram
Mg = 0 + 1(10) = 10 kNm
Mg; = 10 - 25 =-15 kN-m

(3) M. = M, + Area in shear diagram
M; =-15+ 1(10) = -5 kN-m

(4) M, = Mc + Area in shear diagram
M, =—5 + %2 {1)(10) =0

(5) My, =M, + Area in shear diagram
My = 0— %2 (2)(20) = —20 kN-m

(6) Mg = M, + Area in shear diagram
Mg =-20+ Y2 (2)(20) =0
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50 kN 20 kNfm 40 kN

Example (4): I it
o 10 kN/m

F W F 5 W

ARRRANF AR RA A NRRR Y
Solution: " 7m :'~— 3m —

>Mp=0
7R, + 40(3) = 5(50) + 10(10)(2)
At + 20(4)(2)
sokn | _— | ok R: =70 kN
2m ‘1 m 20 kN/m AT l
B C v ¥ v v ¥ m ZA/L_\ =0
N lllJlle YV VYV YYVYY LlJllll 7R2= 50(2) + 10(10)(5) + 20(4)(5)
A + 40(10)
- - 3m -|<2m4< 3m~> B~ = 200 1b
R, = 70 kN R, =200 -
: : Load Diagram :
E?OkN : 5 : 40 kN E To draw the Shear Diagram

(1) Va=R; =70 kN

(2) Vs = Va + Area in load diagram
Ve = 70 — 10(2) = 50 kN
Ve =50—-50=0

(3) Vc = V2 + Area in load diagram

=0-—10{(1) = —-10 kN

(4) VD = V. + Area in load diagram
Vo = —10—30(4) = —130 kN
Vo2 =—130 + R
Vpz = —130 + 200 = 70 kN

(5) Ve = Vi + Area in load diagram
Ve = 70— 10(3) = 40 kN
Ve =40—-490=0

l\i 70 kN

To draw the Moment Diagram
(1) Ma=0
(2) Mgz = M, + Area in shear diagram
Mg =0+ %2 (70 + 50)(2) = 120 kN-m
(3) M. = Mg + Area in shear diagram
Me = 120 — %2 (1){(10) = 115 kN-m
(4) Mg = Mc + Area in shear diagram
Mo = 115 — %2 (10 + 130)(4)
(5) Mg = M, + Area in shear diagram
M =—165 + =2 (70 -+ 20)(3) =0
{(6) Moment curves AB, CD and DE are
downward parabolas with vertices at
A', 8" and C', respectively. A", B’

—165 kN-m and C" are corresponding zero shear
Py Diag'am/ points of segments A3, CD and DE.

(7) Solving for point of zero moment: Mg = 115 kN-m Another way to sclve the
aji0=(a+4)/ 130 Mieo = Mc + Area in shear location of zero moment
130z = 10a + 40 0=115—12 {10 + y)x is by the sqguared
a=1/3m (10 + y)x = 230 property of parabola (s=e

(10 + 30x + 10)x = 230 Problem 434). This point
y/(x+a)=130/(4 + a) 30x* + 20x—230=0 is the appropriate location
y=130{x + 1/3) /(4 + 1/3) 3x* +2x—23 =0 for construction joint of
y = 30x + 10 X =2496m concrete structures.

zero moment is at 2.46 m from C

(6)
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Example (5):
60 kN
40 kN/m
‘ \ M = 120 kN-m
YV YV YYYYYYY D\
L o
" ® c ﬂe
im 3m Im'1lm
R, = 132 kN =43 kN
Load Diagram

S E s s R s T

e

Moment Diagram

(7)

RN 40 kNJm
l | | || M=120knm
! 5 AAELE L EEEEEE -'\.
Iflrn‘r Jm 3 Irnhljlm'l
Ry - R Rz
>M:=0
SR, + 120 = 6(60) + 40(3)(3.5)
R; =132 kN
>Mz=0
5R> + 60(1) = 40(3)(1.5) + 120
R:=48 kN
To draw the Shear Diagram
(1) Va=—60kN

(2) Vg =V, + Area in load diagram
Vg =60 + 0 =—60 kN
Ve =V +Ry=-60+ 132 =72 kN
(3) Vi = Vp: + Area in load diagram
Ve = 72 — 3(40) = —48 kN
(4) Vp =V + Area in load diagram
Vo=—48+0=—48kN
(5) Ve =Vp + Area in load diagram
Ve =—48 + 0 = —48 kN
V52=Vg+R2=—48+48=0
(6) Solving for x:
x/72=(3-x)/48
48x = 216 - 72x
x=18m

To draw the Moment Diagram

(1) M\=0

(2) Mg = My + Area in shear diagram
Me = 0 —60(1) = —60 kN-m

(3) M, =My + Area in shear diagram
My =—60 + %2 (1.8)(72) = 4.8 kN-m

(4) M. = M, + Area in shear diagram
Mc = 4.8 — ¥ (3 — 1.8)(48) = —24 kN-m

(5) Mp = Mc + Area in shear diagram
Mp = —24 -2 (24 + 72)(1) = -72 kN-m
Mp; =72 + 120 =48 kN-m

(6) Mg = My, + Area in shear diagram
M =48—-48(1)=0

(7) The location of zerc moment on
segment BC can be determined using
the squared property of parabola. Ses
the solution of Problem 434.



Shearing Forces and Bending Moments in Beams

Dr. Alaa C. Galeb

Example (6):
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—40 kN-m

—40 kN-m

Moment Diagram

60 kM
20 kN/m
l M = 120 kN-m
W i AL L EE f‘.‘
[ Y J |
. sl ﬁ':— 1
2m 2m 2m 2m
>M:=0
6R; + 120 = 20(4)(6) + 60(4)
R:=100 kN
>Mz=0
6R> = 20(4)(0) + 60(2) + 120
R>=40 kN
To draw the Shear Diagram
(1) VA =0

(2) Vg =V, + Area in load diagram
Vs =0-20(2) =—40kN
Vaz = Ve + Ry =—40 + 100 = 60 kN
(3) Ve = Vg, + Areain load diagram
Ve =60-20{2) = 20 kN
Ve =Ve—-60=20-60=-40kN
(4) Vp = Vg, + Area in load diagram
Vp =—40 + 0 = —40 kN
(5) Ve =Vp + Area in load diagram
Ve=—40+ 0 = 40 kN
VQ=VE+R2=—40+40=0

To draw the Moment Diagram

(1) Ma=0

(2) My = M, + Area in shear diagram
Mg = 0 — ¥2 (40)(2) = —30 kN-m

(3) M. = M, + Area in shear diagram
M: =—40 + V2 (60 + 20)(2) = 40 kN-m

(4) My = Mc + Area in shear diagram
M, = 40 — 40(2) = —40 kN-m
Mg, = Mp + M =—30 + 120 = 80 kN-m

(5) Mg = Mg, + Area in shear diagram
M:=80-40(2)=0

(6) Moment curve BC is a downward parabola
with vertex at C'. C is the location of zero
shear for segment BC.

(7) Location of zere moment at segment BC:

By squared property of parabola:
(3-x)*/50=3"/(50 + 40)
3-x=2.236
x = 0.764 m from B

(8)



Deflection of Beams

The deformation of a beam is expressed in terms of the deflection of
the beam from its original unloaded position. The deflection is
measured from the original neutral surface to the neutral surface of
the deformed beam. The configuration assumed by the deformed
neutral surface is known as the elastic curve of the beam.

Figure 1 represents the beam in its original undeformed state and
Fig.2 represents the beam in the deformed configuration it has

assumed under the action of the load.

——— r — \uxrt-ml;__:] HHHHHH lf____;@“

. S

Undeformed position of a beam. Deformed position of the beam.

Figure 1 Figure 2

The displacement y is defined as the deflection of the beam. Often
it will be necessary to determine the deflection y for every value of x
along the beam. This relation is the elastic curve or deflection curve

of the beam.



Differential Equation of the Elastic Curve
An expression for the curvature at any point along the curve
representing the deformed beam is readily available from differential

calculus. It is:

1 dzy;’dxz

P 1+ (dy/dx)’ T

In this expression, dy/dx represents the slope of the curve at any
point; and for small beam deflections this quantity and in particular
its square are small in comparison to unity and may reasonably be
neglected. This assumption of small deflections simplifies the

expression for curvature into

Hence for small deflections

d™y

El— =M
dx”

This is the differential equation of the deflection curve of a beam
loaded by lateral forces. It is called the Euler-Bernoulli equation of
bending of a beam. In any problem it is necessary to integrate this
equation to obtain an algebraic relationship between the deflection

y and the coordinate x along the length of the beam.



Deflection by Integration

The double-integration method for calculating deflections of beams
merely consists of integrating the above Equation.

The first integration yields the slope dy/dx at any point in the beam
and the second integration gives the deflection y for any value of x.
The bending moment M must, of course, be expressed as a function

of the coordinate x before the equation can be integrated.

Deflections Using Singularity Functions

The quantity (x — a) vanishes if x < a but is equal to (x — a) if x > a.
There are several possible approaches for using singularity
functions for the determination of beam deflections.

Perhaps the simplest is to employ the approach which the bending
moment is written in terms of singularity functions in the form of one
equation valid along the entire length of the beam. Two integrations
lead to the equation for the deflected beam in terms of two constants
of integration which must be determined from boundary conditions.
Integration of the singularity functions proceeds directly and in the
same manner as simple power functions. Thus, the approach is
direct and avoids the problem of the determination of a pair of
constants corresponding to each region of the beam (between

loads), as in the case of double integration.



Deflections Using Superposition

The equations that describe the deflection of a beam and the

stresses due to the applied loads are all linear (i.e., if a load is

doubled, the stresses and deflections are also doubled). Thus, we

are able to superpose the contributions from each separate load to

obtain the resultant effect of several loads. The contributions of each

separate load are typically available from previous work for

deflections and stresses. If only the maximum deflection is of

interest, as is often the case, the results of several simple beams

are presented in Table (1) for quick reference.

Table 1. Beam Deflection Formulas
1.
Max Shear Max Moment Max Deflection Max Beam Slope
1 PR PL}4 P [4BE] PI? j16EI
2 w2 wlL/8 Swi [AB4ET wil’ J24E]
3 P PL P J3EI PI?j2E]
4 0 M MI:2E] ML/ET
s wl. wiin2 wi [BEI wi J6El
o ra Pab L O e A . (e )
I L Yo ST o mrEL N 3 ien =TT GIE]
PHLE — 467 Pa(l? — a*)
¥oenier = — q®ET Erlgh.l: =~ ®IEl
3
M IML® L ML
7 - M ¥ ="',,I'_—. at x= — 8. =——
[3 max — ~3TE] 3 left BET
oM g M
Yeemter = TGE]T right — f]
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EXAMPLE (1):

The cantilever beam shown is 3 m long and loaded by an end force
of 20 kN. The cross section has | =60.7x10-% m*. Find the maximum
deflection and slope of the beam. Take E = 200 GPa. Neglect the
weight of the beam.

r

BN

T=
=
o

|
T
i |
| B"

4
PL( T

I 4

M =—-PL + Px

The differential equation of the bent beam is then

dl
EI=2 =_PL+ Px
dx

This equation is readily integrated once to yield

3
n‘}-‘__ Px~
EIE_ PLx+T+C]



which represents the equation of the slope, where C1 denotes a
constant of integration. This constant may be evaluated by use of
the condition that the slope dy/dx of the beam at the wall is zero
since the beam is rigidly clamped there. Equation above is true for
all values of x and y, and if the condition x = 0 is substituted we
obtain0=0+0+ClorC1l=0.

Next, integration of the equation yields:

2 3

Ely :—PL% +‘r%+ c,

where C2 is a second constant of integration. Again, the condition at

the supporting wall will determine this constant. At x = 0, the

deflection y is zero since the bar is rigidly clamped. Then
0=0+0+C2o0rC2=0.

The deflection is maximum at the right end of the beam (x = L), under

the load P,

-PL’
Efymax = 3
max 3E]
pr’ (20000)(3)°

= 0.0148m or 14.8 mm

Amax = 37 = 3200 % 10°)(60.7 % 107%)



At the free end, x=L, and

The slope at the end is thus

2 2
(QJ L —20900 % 3 = —0.00741 or — 0.425°
-

. 2EI " 2200 %10%)(60.7 x 10°%)

MNote: dyfdx = tanf = 6 since the slope of beams is very small.

Example (2):

Determine the deflection curve of a cantilever beam subject to the

uniformly distributed load w, shown
Y

seesTRnaEnee e g

iy,




Solution:

The force due to the distributed load w is w(L —x). This force acts at the midpoint of this length of beam
to the right of x and thus its moment arm from x is —%—{L — x). The bending moment at the section x is thus
given by

M:-%{L—xf

the negative sign being necessary since downward loads produce negative bending.
The differential equation describing the bent beam is thus
d’y _

EIF_—%(L—I}E (1)

The first integration yields

dy _w (L—x)

Efdx_i 3

+C, @)

The constant may be evaluated by using (dy/dx),_, =0. We find C, = _wL>/6. We thus have

dy w 3 wi?
EIE—E(L—I) —T (3)
The next integration yields
4 3
_ w (L-x) wl®
Ely = 5 1 ——g *t C, (4
At the clamped end, the deflection is zero so that
4 4
—wl wL
0= a1 +C, or C, = -1
The final form of the deflection curve of the beam is thus
3 4
_ W Y wil; wi,
Ely = ﬁ(L X) TI-'_W (5)

The deflection is maximum at the right end of the bar (x = L) and there we have from Eq. (5)

4 4 4
wlL wlL wl
Elynex =6+t 724 =73

where the negative value denotes that this point on the deflection curve lies below the x-axis. The magnitude

of the maximum deflection is

_ wi’

max RE] (6}



Example (3):

A simply supported beam is loaded by a couple M as shown. The
beam is 2 m long and of square cross section 50 mm on a side. If
the maximum permissible deflection in the beam is 5 mm, and the
allowable bending stress is 150 MPa, find the maximum allowable
moment M. Use E = 200 GPa.

Y
T M
./(_T—n- I
r —- % ’
- I |
Solution:
RL = RR = % and thus M} = %x

The differential equation describing the bent beam is thus

dy M
El —=—x (1)
dx’ L
Integrating twice
A g -
We may now determine the two constants of integration through use of the fact that the beam deflection
is zero at each end. When x =0, y =0, so from Eq. (3) we have

0=0+0+C, C,=0
Next, when x =L, y =0, so we have from Eq. (3)

ML ML

{}:T‘l—ClL :.Cl:_?

The desired equation of the deflection curve and the equation for the slope is

Mx®  MLx
Ey=2r""6 @

dy _ Mx® ML

and El I 3T &

)
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The point of peak deflection occurs when the slope given by Eq. (3) is zero. This provides

= L (6)

3

Returning to Eq. (4), the maximum deflection is

M {LT ML[LJ:_MLEﬁ -

Imax = GIEI|\ J3 | ~ GEI|\ /3 27EI

Let us now consider that the maximum deflection in the beam is 5 mm. According to Eq. (7), we have

M(2)*3

0.005 = ; ;
27(200 x 10°)[(0.05) (0.05)*/12]

or M=2030N-m (8)

We shall now assume that the allowable bending stress of 150 MPa is set up in the outer fibers of the
beam at the section of maximum bending moment. The maximum bending moment occurs at the right end
with magnitude M. There

o = Mc 150 x 106 — _M(0-025)

ax 2 or M=3125N-m (9
I (0.05)(0.05)° /12

Thus the maximum allowable moment is given by Eq. (8) and is 2030 N - m.
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Example (4):

Determine the deflection curve of a cantilever beam subject to the

uniformly distributed load w, shown

g

L 3 i i 3
REEBREEREEEEEEREN _—
S
= L

T
M=-Z(L-x)

v

the negative sign being necessary since downward loads produce negative bending.
The differential equation describing the bent beam is thus

dl}i _

B1= 5 = —%(L _x)?

The first integration yields

dy _w (L - x)
B =352

The constant may be evaluated by using (dy/dx),_, = 0. We find C, = —wL’/6. We thus have

wi’
6

dy _w 3

The next integration yields

w (L—x}"' wil?
6 4 6

Ely = x+C,

(1)

(2)

(3)

4
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At the clamped end, the deflection is zero so that

—H-"Ld wil
D = ? + CE ar CE = —

The final form of the deflection curve of the beam is thus

W s wl wL®
EI}'=—E|:L—I:| —T.T-FH ES}

The deflection is maximum at the right end of the bar (x = L) and there we have from Eq. (5)

o wr'  wL? _ wi
Epes =5+ 31 =3

where the negative value denotes that this point on the deflection curve lies below the x-axis. The magnitude
of the maximum deflection is

_ wi*
max — RE] )

EXAMPLE (5):
Using singularity functions, determine the deflection curve of the

cantilever beam subject to the loads shown

L. |
M =-P{x)' - 2P {1 - E} (1)
i
P 2P g
.-{' Y E € Q €T
- L 3L ‘%
7 T \




dz_'};' B | L 1

The first integration vields

L 2

_I__

dy _ o {x) ( 4)
plt=—pS _opd 1 i (3)

where (| is a constant of integration. The next integration leads to
I\
I JE—

i)
2(3) + Ci{xy+ G, (4)

ok
Efy:—% {’”3} — 2P

where C; is a second constant of integration. These two constants may be determined from the two bound-

ary conditions.
When x = L, dy/dx= 0, so from Eq. (3):

pI 3L Y
Whenx =L, y=0, so from Eq. {4):
e} p(3LY
0=-— _T[T] +CL+C, (6)
Solving Egs. (3) and (6},
17 2 145 5
G = EPL C, = —ﬁPL (7)
The desired deflection curve is thus
P,z P L 17 145
=——= e P - 8
Ely =-gtx 3(“: 4} 16 PL () 192"" ®)

For example, the deflection at point B where x = L/4 is found from Eq. (§) to be

3 3
_ P(L 17 _2fL) 145 _ 1 . _94.5PL
EN]iorps —_3[3) 0+ 16 FL [4 ) IQ_ZFL ) O2ET
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Example (6):

Using superposition and the formulas of Table 1, calculate the

maximum deflection of the beam shown. Use E = 200 GPa and

| = 3500 cm4.
|2 kN/m
}-—1 m 3m I m—=] i
Solution:
12 kN/m
1.5m I m -

observe that the beam is loaded symmetrically about its center
where the slope is zero. So, the center of the beam can be
considered to be the end of a cantilever beam. The right half of the
beam is then composed of the two beams shown. Using

superposition and Table 1, we have

A =%—-N"%

3 4 3
PLl WLI “ILE:{ L

~3Er T REI  GEI 2

(200 x 10°)(3500 x 107%) 3 B 8 N 6

1 [91]{}[}:»:1.53 12000 1.5 12000%1.5° :{I]
=0.00465m or 4.65 mm

This displacement is upward but we know the right end does not deflect. Hence, this is the downward dis-
placement of the center of the beam.



Buckling of Columns

Introduction:

Columns : are long, slender structural members loaded
axially in compression.

Buckling : Is a type of failure that occurs in Load —carrying
structures.

Note : In this chapter, the buckling of columns will consider

specifically.



Buckling of Columns

D

o
T

(a) ()

e When a compression member is relatively slender, it may
deflect laterally and fail by bending rather than failing by
direct compression of the material.



Buckling of Columns

Buckling and Stability

Consider the idealized structure, or buckling model,
shown in Fig. below Fl

Note : The two rigid bars AB and BC quﬁ —

are joined at B by a pin connection Rﬂ%idh L

and held in a vertical position E Br |°

by a rotational spring having @

stiffness B Rgg;ﬂ_ L

ViN



Buckling of Columns

Under the compressive load P, the structure is disturbed.

The disturbance of structure is represented by the movement of
pin B by a small distance laterally.

The movement of B cause :

1. the rigid bars to rotate
through small angles 6;

2. and a moment to
develop in the spring
( Restoring Moment).




Buckling of Columns

Notes :

1. The direction of restoring moment is such that it tends to
return the structure to its original straight position.

2. Thus, the axial compressive load and restoring moment
have opposite effects—the restoring moment tends to
decrease the displacement and the axial force tends to
increase it.

3. If the axial force P is relatively small, the action of the

restoring moment will predominate over the action of the
axial force and the structure will return to its initial straight
position. So, the structure is said to be stable.



Buckling of Columns

4. If the axial force P is large, the lateral displacement of point
B will increase and the bars will rotate through larger and

larger angles until the structure collapses. Here, the
structure is unstable and fails by lateral buckling.

Critical Load

Critical load is a special value of the axial load at which the

transition between the stable and unstable condition will
OCCuUTr.

Critical load is denoted by P_, .



Buckling of Columns

Consider the disturbed buckling model:
M;=B:.20=20f,;

The lateral displacement of B = (L/2) tan 6
Since 0 is very small; then

The lateral displacement of B= 0 L/2
XM;=0 M;-P(6L/2)=0
Oor;, 20B.-P(6L/2)=0
[2B;-(PL/2)]0=0




Buckling of Columns

[2B;—-(PL/2)]6=0

Either 0=0 the structure is in equilibrium

Or 2B;—-(PL/2)=0 ‘ 2B:—-(P, L/2)=0
P,=4 BR/ L

Notes:

1. At the critical value of the load the structure is in
equilibrium regardless of the magnitude of the angle O ( at
any value of disturbance, 8 remains small).



Buckling of Columns

2. The critical load is the only load for which the structure will
be in equilibrium in the disturbed position.

3. The critical load represents the boundary between the
stable and unstable conditions.

4. If the axial load is less than P_, the effect of the moment in
the spring predominates and the structure returns to the
vertical position after a slight disturbance; if the axial load
is larger than P, , the effect of the axial force
predominates and the structure buckles:

If P<P_, thestructureis stable;

If P>P_, thestructureis unstable.



Buckling of Columns

Stable, Neutral and Unstable Equilibrium

Consider the diagram shown below: p
“,,fUnsl:II}]E equilibrium

1. O<P<P,

The equilibrium of structure is stable. The il -

structure is in equilibrium only when it is Neutral equilibrium

Perfectly straight (6 = 0). ,

) >~ Stable equilibrium
2. P>P,
The equilibrium of structure is unstable 0 0

and cannot be maintained. The slightest disturbance
will cause the structure to buckle.



Buckling of Columns

3.P=P_

The structure is neither stable nor unstable — it is at the
boundary between stability and instability. This condition is
referred to as neutral equilibrium.

P
f--UTLSlEII}]E' equilibrium

"
Meutral equilibrium

" Stable equilibrium

F__.-' o)



Buckling of Columns

To explain the above three equilibrium conditions; Consider the
following :

1. If the surface is concave upward, like the inside \"--___--""’
of a dish, the equilibrium is stable and the ball p—

always returns to the low point when disturbed.

2. If the surface is convex upward, like a dome, '. :j-
the ball can theoretically be in equilibrium f_/_,_,—-——_,\\
on top of the surface, but the equilibrium
is unstable and in reality the ball rolls away.

3. Ifthe surface is perfectly flat, the ball is in
neutral equilibrium and remains wherever it is
placed.




Buckling of Columns

Definitions and Assumptions

1. A compression member is generally considered to be a
column when its unsupported length is more than 10
times its least dimension.

P

L>10Db B

[& ]

C:H__




Buckling of Columns

2. Columns are usually divided into :
a. long column : fail by buckling or excessive
lateral bending;
b. intermediate column : fail by a combination of crushing
and buckling;
c. short column ( short compression blocks) : fail by crushing.

3. Anideal column is assumed to be a homogeneous member of
constant cross section that is initially straight and is subjected
to axial compressive loads.



Buckling of Columns

Long Columns by Euler’s Formula

Figure below shows the center line
of a column in equilibrium under
the action of its critical load P.

The column is assumed to have
hinged ends restrained against
lateral movement.

The maximum deflection 6 is so small
that there is no appreciable
difference between the original
length of the column and its
projection on a vertical plane

(i.e. the slope dy/dx is so small).




Buckling of Columns

The differential equation of the elastic curve of a beam:

El(d’y/dx?)=M=P(-y)=-Py ...... (1)
Note : 1. The above — ve sign is for deflection ( y) not for
moment.
2. If the deflection is in the +ve direction, the result is
still -ve because the moment become -ve.
3. Eq. (1) cannot be integrated directly because M is
not a function of x.



Buckling of Columns

Rewrite Eq. (1) in the form :
El(d/dx)(dy/dx)=-Py ... (2)
Multiply Eq.(2) by 2dy vyields:
2EI(d)(dy/dx)?=-2Pydy ... (3)
Integrate Eq. (3):
2El(dy/dx)?=-Py?+C, or;

El(dy/dx)?=-Py?+C; ..(4) [ the constants becomes within C, ]



Buckling of Columns

y=06 when dy/dx=0 substituting in Eq. (4):

0=-P&°+C C,=P &’
So;

El (dy /dx )?2=-Py?+P &2

El(dy /dx )2=P (62-y%) ... (5)
Or;

Ez E\{SE_ 2
dx ~ |EI Y




Buckling of Columns

dy [P =
o = |E V&Y
And; —
@y  _ | (6)

Integrating of Eq. (6) yields:

[ _1}:r P
L_x |—+ C
sinTh S =X e 5




Buckling of Columns

At x=0 mm) y=0 mm) C,=0

So;

Eq. (7) indicates that the shape of a sine curve.
Substituting y=0 at x=L into Eq. (7) yields:



Buckling of Columns

Or;

P
(LH ﬁ) =nn (n=0123......)

From which;

, Elm?

P=n -




Buckling of Columns

2
Bl (8)

LE

(b) n=2; (b) n=3;
midpoint Third point
bracing bracing



Buckling of Columns

Notes: 1. The value n=0 is meaningless because then P=0.
2. For any value of n ( except n =0) the column bends

into the shapes shown above.

3. The most important case is in Fig. (a); while the
others occur with larger P and are possible only if
the column is braced at the middle or third points
respectively.

4. Bracing reduces the effective length from L at case
ato (L/2) and (L/3) at cases b and c respectively.



Buckling of Columns

The critical load for a hinged ended column is therefore:
Elm?
Critical Load for different end conditions:

The critical load for columns with different end conditions
can be expressed in terms of the critical load for a hinged
column, which is taken as the fundamental case.

1. Column with Fixed ends :

Due to symmetry, the inflection points at the quarter
points of its unsupported length. This case is equivalent to
a hinged column having (L, =L/2).




Buckling of Columns

So;
Elm? EIH E'J"ﬂr2

2 2
. (2) -

Therefore; the buckling
Strength of the fixed ends
column is 4 times that of

P:

the hinged ends column.




Buckling of Columns

Fig. b above shown the case of a column built in at one end
and free at the other ( flagpole column).

AEIm?  4EIn? 1 Eln?
L.2  (4L)?2 4 [7?

=

Therefore; the buckling strength of the flagpole column is
one quarter that of the hinged ends column.



Buckling of Columns

2. Column hinged at one end and fixed at the other

Bl Eln®  _Elm®
2 (0713 ° I

Therefore; all the above conditions
are expressed in terms of the
critical load of the hinged ends
column multiplied by a factor N.




Buckling of Columns

Limitations of Euler’s Formula

In order for Euler’'s Formula to be applicable, the stress
accompanying the bending which occurs during buckling must not
exceed the proportional limit : So; for hinged ends column :

Elm? I
P= ¥ since : I'_\/; - I=Ar’

EAr® P Em

So; P or =

DT A Ly




Buckling of Columns

Where : r = least radius of gyration P E m°

A = cross — sectional area. A - (L)E

I'
P/A = average stress in column when carrying its

critical load = critical stress <K stress at proportional limit.

L / r =slenderness ratio of the column

Ex: for a steel section has E= 200 GPa and proportional limit of
200 MPa

(L/r)2= (200x10°x72) /(200 x 105 ) = 10000



Buckling of Columns

So; L/r=100 e A0l

1. Below this value ( dashed :‘E \\
Line), Euler’s unit load Exceeds \\
the proportional Limit. 200 MPa :

, ) 1.
(i.e. for L/r < 100; Euler’s Formula P
is not valid and the P. L. is taken

as the critical stress)

Lir

2. Also; from the curve; the critical or allowable stress

decreases rapidly as (L/r) increases, and for good design
choose (L/r) as small as possible.



(a) Pinned-pinned column

Buckling of Columns

Summary

(b) Fixed-free column c) Fixed-fixed column {d) Fixed-pinned column
7l El w2 El ArtEl 2.046 72 EI
Fa=— Fa= 2 Fa=—p Fa=—7—
, 1 | |
I, ',II :-:.r I,"I
.' L |
| I \[ L L
Illl I|I ’_Iulﬁl
I'-, |I I'.I
) iy _'.l___ II
L =L =2L L.=05L L =0.699L




Buckling of Columns

Ex.1 . A viewing platform in a wild-animal park (Fig. a below) is

supported by a row of aluminum pipe columns having length ( L =
3.25 m) and outer diameter ( d = 100 mm). The bases of the
columns are set in concrete footings and the tops of the columns
are supported laterally by the platform. The columns are being
designed to support compressive loads ( P = 100 kN ).

Determine the minimum required thickness t of the columns (Fig. b
below) if a factor of safety ( S.F.= 3 ) is required with respect to Euler
buckling. (For the aluminum, use 72 GPa for the modulus of
elasticity and use 480 MPa for the proportional limit.)



Buckling of Columns

Ex. 1 ( Continued)




Buckling of Columns

Ex. 2: A long, slender column ABC is pin-supported at the ends
and compressed by an axial load P (Fig. below). Lateral
support is provided at the midpoint B in the plane of the
figure, while that perpendicular to the plane of the figure is
provided at the support only.

The column is constructed of a steel wide-flange section
(W 8 x 28) having modulus of elasticity ( E = 2 x 10° MPa)
and proportional limit ( o,, = 290 MPa ). The total length of
the columnis (L =7.6 m). Determine the allowable load
P, Using a factor of safety ( S.F. = 2.5 ) with respect to
Euler buckling of the column. Using I, = 40.8 x 10° mm* and
l,=9.0 x 10° mm*, A =5323 mm?.




Buckling of Columns

Ex. 2 ( Continued)
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Buckling of Columns

Ex. 3: A horizontal beam AB is pin-supported at end A and carries a
load Q at end B, as shown in the figure. The beam is supported at C
by a pinned-end column. The column is a solid steel bar ( E = 200
GPa) of square cross section having length ( L = 1.8 m ) and side
dimensions ( b = 60 mm ). Based

A C i

upon the critical load of the column, |>@ P S
determine the allowable load Q if LF da|<—2d

the factor of safety with respect to 0
buckling is ( S.F. = 2.0). 4" L L

X |
]



Buckling of Columns

Ex: ( Prob. 1102, Singer Page 450)

A 50 mm by 100 mm timber is used as a
column with fixed ends. Determine the minimum
length at which the Euler’s formula can be used if
E = 10 GPa and the proportional limit is 30 MPa.
What central load can be carried with a factor of
safety of 2 if the length is 2.5m?



Buckling of Columns

Solution: L1424
A =50x 100 =5 x 103 mm?
ly=100x503/12=1.042 x 10° mm?*
P,=0p, xA=30x5x10% =15x 10*N

EI 1 7777
P.= 4 For Fixed Ends —
[2 AY
10x10° x1.042x 10° x °
15 x 10%= 4 .
L. S _
S > X
S
L., =1.656m —

50 mm



Buckling of Columns

b o_ 4 10X10%x1.042x10°x n* CEa18 N — 65 918 KN
o 25007 - e
Puorking ©F Psare =P, /2=65.818/2=32.9 kN



Buckling of Columns

Ex: ( Prob. 1109 Singer Page 451)

Select the lightest section that will act as a
column 12m long with fixed ends and support an
axial load of 700 kN with a factor of safety of 2.0.
Assume that the proportional limit is 200 MPa
and E = 200 GPa.



Buckling of Columns

Solution:
El

P.=4 For Fixed Ends

2
1. If the critical load is govern:
P.=700x2=1400 kN

200X 10° X I X 1’

120002
| = 25.532 x 10® mm?*

1400 x 10° = 4



Buckling of Columns

E:x:’n: 2{]{] }{1{]3::{11
g ‘ 200
PL — ( ]2 I:F)E
12000
—}198?‘3**%’ g7 = 604mm

Choose a section of atleast [ >25.532 x 10° mm* and at
least T <60.4 mm. Say W1.

2.1fop,
A_. =P, /o, =1400x10% / 200 = 7000 mm?




Buckling of Columns

Choose a section of atleast A = 7000 mm? and
atleast T =60.4 mm. Say W2.

Choose the lightest one between W1 and W2.
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