Fundamental Principles

e Definitions

Mechanics of Materials © Is the branch of applied

mechanics that deals with internal behavior of variously

loaded solid bodies.

| Deals with the relationship between the external loads (

forces and moments ) and the internal forces and

deformations induced in the body |.



Fundamental Principles

Strength : measure the ability of the member to resist
permanent deformation or fracture;

Stiffness : measure the ability of the member to resist
deflection;

Stability : measure the ability of the member to retain its
equilibrium configuration.

Failure : Is any action that results in an inability on the part
of the structure to function in the manner intended.



Fundamental Principles

External Forces: All forces acting on a body, including the
reactive forces caused by supports.

Body Forces :
acts on a volumetric element
and is attributable to fields such as
gravity and magnetism.

Surface Forces :
Concentrated acts at a point; or
Distributed over a finite area



Fundamental Principles

Internal Forces : The forces of interaction between the
constituent material particles of the body.

Load Classification :

Concentrated Load : Any Force applied to an area is
relatively small compared with the size of the loaded
structural member. Draw as l and measured usually by N
or kN.




Fundamental Principles

Distributed Load : A load distributed over a considerable
length ( or area) within the loaded structural member. Draw

ST AN
AT

and measure usually by N/m or kN/m .




Fundamental Principles

Couples or Moments : Any load try to bend or twist the

structural member. Draw as D and measure by N.m or
kKN.m.

Loads also classified as :
Static Load : A load slowly and steadily applied.
Impact Load : A rapidly applied load .

Repeated Load : Multiple application and removals of load,
usually measured in thousands of episodes or more.



Support Reactions

TABLE 1-1
Reaction

Type of connection

Reaction

Type of connection

i 9 ] AE,
: _— F
-
Cable One unknown: F External pin Two unknowns: F,, F,
AF,
| F.
g

h

Two unknowns: F,, F,

Roller One unknown: F Internal pin
~ | P
N ¢ i F, 4—(—T|
B g
o/ \
Fixed support Three unknowns: F,, F,, M

Smooth support

One unknown: F




Equations of Equilibrium. Equilibrium of a body requires both
a balance of forces, to prevent the body from translating or having
accelerated motion along a straight or curved path, and a balance of
moments, to prevent the body from rotating. These conditions can be

expressed mathematically by two vector equations

2F=0 |
SM, = 0 (1-1)

In case of three dimensions, the equilibrium equations will be

3F,=0 3F,=0 3F=0 (12
3M, =0 3M,=0 3IM,=0 =)

In case of two dimensions, the equilibrium equations will be

2F,
S —

(1-3)

|
© o o




Fundamental Principles

Ex. Find the reactions for the beam shown. 10 kN/m

20kN_ /\
. .M
Solution: A 1 by 5

m m
¢

SMp=0  +ve) AN am 7\

R,x7 — 20x6 + 5- 0.5x4x10x2= 0 /ﬂ\
R, = 22.143 kN T T l D

2M,=0 +ve D R, R,
-Rpx7 + 20x1 + 5+ 0.5%x4x10%5= 0 F.B.D
R,=17.857kN | Check: 3F,=0

Ry, +R,—20-0.5x4x10=0

22.143 +17.857-20-20=0 O.K.




Fundamental Principles

Analysis of Internal Forces : Method of Sections




Fundamental Principles

Components of Internal — Force Resultants

Fig. (a) :
A statically equivalent set of

force vector and moments or

couples vector acting at the

centroid C of the cross section.
X-axis : the length of the member;

Y-axis :upward axis (e.x. thickness);
Z-axis: normal to reader (e.x. width). (@)



Fundamental Principles

The internal forces and moments can be defined according
to their effects on the member:

Axial Force F, tends to elongate ( or contract) the member
and is often identified by the letter P. If the force acts away
from the cut, it is termed as axial tension; if toward the cut,
it is called axial compression.

The shear forces F, and F, tend to shear one part of the
member relative to the adjacent part and are often
designatedasV ,V, or V.



Fundamental Principles

The twisting moment or torque M, is responsible for
twisting the member about its axis and is identified as T.

The bending moments M, and M, cause the member to
bend and are often designated as M.

Note : A structural member may subject to any combination
of or all of these four modes of force. The modes are
usually treated separately and the results are combined to
obtain the final results.



Fundamental Principles

For a components in two dimensions ( xy plane):

Fig. (b):

- Positive direction (+ve)
when directed with
+ve coordinate system

and vice versa.

Positive
plane

(b)

- Axial forces, shear forces, and bending moments acting on the faces
(planes ) at a cut section are equal and opposite.



Normal force, N. This force acts perpendicular to the area. It is
developed whenever the external loads tend to push or pull on the two
segments of the body.

Shear force, V. The shear force lies in the plane of the area, and it is
developed when the external loads tend to cause the two segments of the

body to slide over one another.

Torsional moment or torque, T. This effect is developed when the
external loads tend to twist one segment of the body with respect to the
other about an axis perpendicular to the area.

Bending moment, M. The bending moment is caused by the
external loads that tend to bend the body about an axis lying within the
plane of the area.



Concept of Stress

2-1 . Simple Stress

The unit strength of a material is usually defines as the
stress in the material; O

oc=P /A [P=AppliedLoad; A =Cross-sectional Area]

[ Units : Pa=N/m2, MPa=N/mm? or MN/m?]

[o also called Normal Stress since P is normal to A ]




Concept of Stress

Ex: L L L7 7 /
Bar 1:
o, =500 N /10 mm? Bar 1 Bar 2
A =10 mm? A = 1000 mm?
= 50 N/ mm?2 =50 MPa
or ;
6, =500 N/10 mm? 500 N 5000 N

=500 N/ 10 x10° m? =50 x 10° N/m?2 =50 MN/m?
Bar 2: 0,=5000 N /1000 mm2= 5N/ mm? =5 MPa
o, =5000 N /1000 x 10® m?=5x 10° N/m2=5

MN/m?2



Concept of Stress

2-2 . Average Shear Stress

Shearing stress occur whenever the applied forces
cause one section of a body to tend to slide past its

adjacent section.
Ex. A clevis A, Bracket B and
a pin C;
Pin is in double shear;
Shear occur over an area parallel
to the applied load ( direct Shear).

V=P/2




Concept of Stress

Ex: Single Shear of a rivet

Two platesAandBare  p_ | ' O .
joined by a rivet. |
The rivet is in single shear. . ed

V=P P<—4JT-\A B
7 ——P

T =P/ (m.d?/4)
T, =V/(md?/4) P !}—I




Concept of Stress

2-3 . Bearing Stress

Is the contact pressure between separate bodies.
Bracket : o, = P/t d

clevis : o, = P/2td

P/2td

W

i

P/t, d




Concept of Stress

Bearing stress
o, = P/td

Note:
For normal Stress

- At a section through the hole
c=P/[ t(b-d)]
- At any other section

o=P/(th)




Single Shear Double Shear




Stress In Two Force Members

 Axial forces on a two force
member result i only normal
stresses on a plane cut
perpendicular to the member axis.

 Transverse forces on bolts and
pins result 1 only shear stresses
on the plane perpendicular to bolt
or pin axis.

» Will show that either axial or
transverse forces may produce both
normal and shear stresses with respect
to a plane other than one cut
perpendicular to the member axis.




Stress on an Oblique Plane

* Pass a section through the member forming

g P an angle @ with the normal plane.

* From equilibrium conditions, the
(a) distributed forces (stresses) on the plane
must be equivalent to the force P

|

* Resolve P into components normal and
tangential to the oblique section,
F = Pcos@ V =Psin0

* The average normal and shear stresses on
the oblique plane are

F Pcosé P
o= y — 4COS = y 00529
4g <0 4Q
_ cos
V Psm & P
= _ Sy sin 6 cos@
;49 ‘40 ;’110

cosd




Maximum Stresses

r,.= PI2A,
(¢) Stresses for @ = 45°
T = Jrl-'.lz"lll”

i

<
o'= PRA,

() Stresses for # = —45°

Normal and shearing stresses on an oblique

plane

o= in::sf)s2 6 1= isim‘fa?tc:msffa’

The maximum normal stress occurs when the
reference plane 1s perpendicular to the member
axis,

The maximum shear stress occurs for a plane at
+ 45° with respect to the axis,

Tm zisinﬂrﬁ cos45 = . o'




Stress Under General Loadings

iy

AF

P

Il

* A member subjected to a general
combination of loads 1s cut into
two segments by a plane passing
through O

 The distribution of internal stress
components may be defined as,

. AF”
iy

. AYY . AV
A A T A

» For equilibrium, an equal and
opposite internal force and stress
distribution must be exerted on
the other segment of the member.




State of Stress

Y

a AA

|

_..;“Aﬂ

rrt_\.'l i
A _\i | r}T_\..-\

+ﬁyiﬂ

|0, AA

Stress components are defined for the planes
cut parallel to the x, y and z axes. For
equilibrium, equal and opposite stresses are
exerted on the hidden planes.

The combination of forces generated by the
stresses must satisty the conditions for
equilibrium:

ZETZZF}-':ZFZZU
ZMI:ZM_}’ =2.M,; =0

Consider the moments about the z axis:
>M,=0=(r,Ad)a—(r,,Ad)a

Ty = Ty

' o

similarly, =

yz =Tz and Tyz = Tay

It follows that only 6 components of stress are
required to define the complete state of stress



Factor of Safety

Structural members or machines
must be designed such that the
working stresses are less than the
ultimate strength of the material.

FS§ = Factor of safety

o} ultimate stress
FS=—%

Tall  allowable stress

Factor of safety considerations:

*

*

uncertainty in material properties
uncertainty of loadings
uncertainty of analyses

number of loading cycles

types of falure

maintenance requirements and
detertoration effects

importance of member to structures
integrity

risk to life and property
influence on machine function




Simple stress and strains

e Introduction

- In the preceding chapters, the strength of the

material was discussed, i.e., the relations between
load, area and stress.

- In this chapter, deformations is the major concern.

- Deformation is the change in shape that
accompany a loading.

- Axially loaded bodies will only be studied.



Simple stress and strains

e Elasticity

- when a force (or a system of forces) acts on a body, it
undergoes some deformations and the molecules offer
some resistance to the deformations.

- When the external force is removed, the force of
resistance also vanishes; and the body returns to its
original shape only when the deformation is within a
certain limit. Such limit is called elastic limit.

- Elastic limit is the stress beyond which the material will
not return to its original shape when unloaded but will
retain a permanent deformation.



Simple stress and strains

Elasticity is the property of certain materials of returning back
to their original position, after removing the external force.

Perfectly elastic body is that body which returns back
completely to its original shape and size, after the removal of
external forces.

Partially elastic body is that body which does not return back
completely to its original shape and size, after the removal of
external forces ( When the force causes deformation within
the elastic limit).

Note: Beyond the elastic limit ( When the force causes
deformation beyond the elastic limit), the body will not
return to its original shape and size ( the body gets into the
plastic stage), and some residual deformation to the body will
remain permanently.




Simple stress and strains

e Stress

Is the resistance (of molecules of the body) per unit
area to deformation.

Mathematically stress is the force per unit area. i.e.

c=P/A

Where P=Load or force acting on the body, and
A= Cross sectional area of the body.

In S.l. system, the unit of stress is Pascal (Pa) (Pa=1
N/m2). Bigger units is ( MPa = N/mm2) and (GPa=
kN/mm2)




Simple stress and strains

e Strain
Is the deformation per unit length.

Mathematically €= 6L/ L
Where 6L = Change in length of the body, and
L = Original length of the body.

Notes:

1. When a body is subjected to two opposite tensile forces, the
length of the body will increase. The induced stress is called a
tensile stress and the corresponding strain is called tensile strain.

2. When a body is subjected to two opposite compressive forces, the
length of the body will decrease. The induced stress is called a
compressive stress and the corresponding strain is called
compressive strain.



Simple stress and strains

e Hook’s Law

It states, “ when a material is loaded, within its elastic
limit, the stress is proportional to the strain”’.
Mathematically,

(stress / strain)= E = constant
or; cocmmm) c=FEc¢

and E = (o / €)= A constant of proportionality Known
as modulus of elasticity or Young’s modulus.
Numerically, it is the tensile stress, which when applied
to a uniform bar will increase its length to double the
original length if the material of the bar could remain
perfectly elastic throughout such an excessive strain.




Hooke's Law: Modulus of Elasticity

ﬂ;:ched, tempered
alloy steel (A709) * Below the vield stress
c=Fe
I-Iigllrstrength, low-alloy L = Youngs Modulus 0? '
steel (A992) Modulus of Elasticity
Carbon steel (A36) » Strength is affected by alloying,
Pure iron heat treating, and manufacturing
r/ & process but stiffness (Modulus of
. Elasticity) 1s not.

Fig. 2.16 Stress-strain diagrams for
iron and different grades of steel.




Elastic vs. Plastic Behavior

o If the stramn disappears when the
Rupture stress 18 removed, the material 1s
said to behave elastically.

o The largest stress for which this

occurs 18 called the elastic limit.

e When the stramn does not return
to zero after the stress 18

removed, the material 1s said to
behave plastically.

Fig. 2.18




Simple stress and strains




Simple stress and strains

. . X Act
* Stress Strain Diagram s
A standard specimen (a = Stes Ultimate strength __,*
. x P X-"\
mild  steel bar) is ¢ \
subjected to a gradually Rupture
increasing pull (as applied Yield point Siengih
by  universal  testing = .
mac h | ne ) ] . ~—Elastic limit

in di : rtional limit
e Stress-strain diagram is a Proportional li

straight line between O
and the point of
proportional Ilimit, i.e.,
the stress is proportional
to strain.

— errer— O E———

Strain €=

F-
[ o L=28



Simple stress and strains

e The proportional limit 'FACTS.L;“;;W&
is important because all = suess Ultimate strengtxh_<
subsequent theory .
involving the behaviour . g iﬁfﬁ‘;ﬁﬁ
of elastic bodies is
based upon a stress- {imasticnmu
strain proportionality. Proportional limit

e Beyond the point of
proportional limit, the
stress is no longer

proportional to strain. uf St ek

B |y

Ll (=25



Simple stress and strains

Elastic limit is the stress
beyond which the
material will not return to
its original shape when
unloaded but will retain a
permanent deformation.

Yield Point is the point at
which  there is an
appreciable elongation or
yielding of the material
without any
corresponding increase of
load.

i Actual "Upture

/ Strength,
Stress Ultimate strength ’,’
P Xz
r=7 -\x
Rupture
Yield point strength
Yo o
x ~— Elastic limit
Proportional limit
&l Strain e=%
s



e The

Simple stress and strains

phenomenon of

vielding is peculiar to
structural steel; other
grades and steel alloys
or other materials do

not possess it.
For materials with no

Stress

vield point, the vyield
strength is determined

by the offset method.

High carbon steel

Cast iron

Aluminum

Concrete

Strain




Simple stress and strains

* Offset Method

Consist of drawing a
line parallel to the initial
tangent of the stress—
strain  curve, at an
arbitrary offset strain,
usually of 0.2% or 0.002
m/m. The intersection
of this line with the
stress—strain curve is
called yield strength.




Simple stress and strains

Ultimate stress or ultimate
strength is the highest
ordinate on the stress-strain
curve.

Rupture strength or the
stress at failure; is usually
lower than the ultimate
strength  because it s
obtained by dividing the
rupture load by the original
cross-sectional area, which is
incorrect. This is caused by a
phenomenon known as
necking.

Stress

Ultimate strength .

X Actua) TUptyrg

/ Strength,
/

-

P X
7= Z‘ \x
Rupture
Yield point strength
o Ghat .
% ¥ Elastic limit
Proportional limit
h' L0 Strain €= %



Simple stress and strains

 Necking Phenomenon

As failure occurs, the material stretches very rapidly
and simultaneously narrows down, so that the
rapture load is actually distributed over a smaller
area. If the rupture area is measured after failure
occurs, and divided into the rupture load, the result
is a true value of the actual failure stress.

Note: the ultimate strength is commonly taken as the
maximum stress of the material.

e s 17




Stress-Strain Test

e

Fig. 2.7 This machine is used to test tensile test specimens, such as those
shown in this chapter. Fig. 2.8 Test specimen with tensile load.




Stress-Strain Diagram: Ductile Materials

(93 ____________________ : Rupture 0'69 _______________ Rupture
i Pt Y
| | I
= 40~ I f = 40 i
RS AT | ! 2 oy :
201 | i i 20 H! |
| I
B i > | I
*IYieldE Strain-hardening Necking I E
I | : | € I 1 €
o 0.02 02 025 f 0.2
0.0012 0.004

(a) (b) (a) Low-carbon steel (b) Aluminum alloy




Poisson’s Ratio

When a deformable body is subjected to an axial tensile force, not only
does it elongate but it also contracts laterally. For example, if a rubber
band is stretched, it can be noted that both the thickness and width of the
band are decreased. Likewise, a compressive force acting on a body causes
it to contract in the direction of the force and yet its sides expand laterally.

Consider a bar having an original radius r and length L. and subjected to
the tensile force P in Figure .This force elongates the bar by an amount
o, and its radius contracts by an amount 8’. Strains in the longitudinal or
axial direction and in the lateral or radial direction are, respectively,

o o'

€long — E and € = —

Tension

Fig.




In the early 1800s, the French scientist S. D. Poisson realized that within the
elastic range the ratio of these strains i1s a constant, since the deformations
o and &’ are proportional. This constant is referred to as Poisson’s ratio,
v (nu), and it has a numerical value that is unique for a particular material
that is both homogeneous and isotropic. Stated mathematically it is

€ lat

r = — (3-9)

Elnng

The negative sign is included here since longitudinal elongation (positive
strain) causes lateral contraction (negative strain), and vice versa. Notice
that these strains are caused only by the axial or longitudinal force F;
1.e., no force or stress acts in a lateral direction in order to strain the
material in this direction.

Poisson’s ratio i1s a dimensionless quantity, and for most nonporous
solids it has a value that is generally between j and 3. Typical values of v
for common engineering materials are listed on the inside back cover.
For an “ideal material” having no lateral deformation when it is stretched
or compressed, Poisson’s ratio will be 0. Furthermore, it will be shown in

Sec. 10.6 that the maximum possible value for Poisson’s ratio i1s 0.5.
Therefore 0 = v = 0.5.



Simple stress and strains

 Working Stress and Safety Factor
working stress: is the actual stress the material has when
under load.
allowable stress : Is the maximum safe stress a material
may carry.
working stress = allowable stress = o,
o, is obtained by dividing the yield stress or the ultimate
stress by a suitable number N, called the safety factor.

o,=0,, /N, or o,=0y/ Ny

o IS the safety factor against yielding, and N, is the
safety factor against ultimate stress.




Axially Loaded Members

CHAPTER OBJECTIVES

B In Chapter 1, we developed the method for finding the normal
stress in axially loaded members. In this chapter we will discuss
how to determine the deformation of these members, and we
will also develop a method for finding the support reactions
when these reactions cannot be determined strictly from the
equations of equilibrium. An analysis of the effects of thermal
stress, stress concentrations, inelastic deformations, and residual
stress will also be discussed.



Saint-Venant's Principle

In the previous chapters, we have developed the concept of stress as a
means of measuring the force distribution within a body and sfrain as a
means of measuring a body’s deformation. We have also shown that the
mathematical relationship between stress and strain depends on the type
of material from which the body i1s made. In particular, if the material
behaves in a linear elastic manner, then Hooke’s law applies, and there 1s
a proportional relationship between stress and strain.

P

- _ Load distorts lines
"'fr B\ " located near load

. a
b— i b

[ ]
|

—— Lines located away
from the load and support
remain straight

-

Oavp = E

Tavg =

il

section a-a section b-h section ¢—¢ section ¢

Load distorts lines b (c)
(b)
located near support

|~

Fig. 4-1 (cont.)

(a)
Fig. 4-1



Elastic Deformation of an Axially

Loaded Member

Using Hooke’s law and the definitions of stress and strain., we will now
develop an equation that can be used to determine the elastic displacement
of a member subjected to axial loads. To generalize the development, consider
the bar shown in Fig. 42a, which has a cross-sectional area that gradually
varies along its length .. The bar i1s subjected to concentrated loads at its ends
and a variable external load distributed along its length. This distributed load
could, for example, represent the weight of the bar if it i1s in the vertical
position, or [riction forces acting on the bar’s surface. Here we wish to find
the relative displacement & (delta) of one end of the bar with respect to the
other end as caused by this loading. We will neglecr the localized deformations
that occur at points of concentrated loading and where the cross section
suddenly changes. From Saint-Venant’s principle, these effects occur within
small regions of the bar’s length and will therefore have only a slight effect
on the final result. For the most part, the bar will deform uniformly, so the
normal stress will be uniformly distributed over the cross section.

Using the method of sections, a differential element (or wafer) of length
dx and cross-sectional arca A(x) is isolated from the bar at the arbitrary
position x. The free-body diagram of this element i1s shown 1n Fig. 4-25b.
The resultant internal axial force will be a function of x since the external
distributed loading will cause it to vary along the length of the bar. This
load, P(x).will deform the element into the shape indicated by the dashed
outline. and therefore the displacement of one end of the element with
respect to the other end 1s d6. The stress and strain in the element are



X I E de Sy .
: I | __""I
Pl-q——l-—l-—l-—l-ii—l-——l-—h—l- —t—th P(x) - 3 P(x)
17} I' |
p— dkds
L S | d.t’—- e
(a) (b)
Fig. 4-2
P(x) do
o = and € = —
A(x) dx

Provided the stress does not exceed the proportional limit, we can apply
Hooke’s law; i.e.,

o = E(x)e

A(x) dx
~ P(x)dx
 AWEW)




L g
e P(x)dx (4-1)
o AX)E(x)

where
8 = displacement of one point on the bar relative to the other point
L = original length of bar
P(x) = internal axial force at the section. located a distance x from
one end
A(x) = cross-sectional area of the bar expressed as a function of x
E(x) = modulus of elasticity for the material expressed as a function of x.

Constant Load and Cross-Sectional Area. In many cases
the bar will have a constant cross-sectional area A: and the material will
be homogeneous, so E is constant. Furthermore, if a constant external
force is applied at each end, Fig. 4-3, then the internal force P throughout
the length of the bar is also constant. As a result, Eq.4-1 can be integrated
to yield

PL
8§ =— 4-2




Constant Load and Cross-Sectional Area. In many cases
the bar will have a constant cross-sectional area A: and the material will
be homogeneous, so E 1s constant. Furthermore. 1f a constant external
force i1s applied at each end, Fig. 4-3, then the internal force P throughout
the length of the bar i1s also constant. As a result, Eq. 4—1 can be integrated
to yield

PL
5§ =—— (4-2)
AE

If the bar 1s subjected to several different axial forces along its length,
or the cross-sectional area or modulus of elasticity changes abruptly
from one region of the bar to the next, the above equation can be applied
to each segrent of the bar where these quantities remain constant. The
displacement of one end of the bar with respect to the other is then
found from the algebraic addition of the relative displacements of the
ends of each segment. For this general case,

PL
_ 4-3
S e (4-3)

x
I I




Sign Convention. In order to apply Eq. 4-3, we must develop a
sien convention for the internal axial force and the displacement of one
end of the bar with respect to the other end. To do so, we will consider both
the force and displacement to be positive 1f they cause fension and
elongation, respectively, Fig. 4-4; whereas a negative force and displacement
will cause compression and contraction, respectively.

;
¥ 5

Positive sign convention for P and é



Principle of Superposition

The principle of superposition is often used to determine the stress or
displacement at a point in a member when the member 1s subjected
to a complicated loading. By subdividing the loading into components,
the principle of superposition states that the resultant stress or
displacement at the point can be determined by algebraically summing
the stress or displacement caused by each load component applied
separately to the member.

The following two conditions must be satisfied if the principle of
superposition is to be applied.

1. The loading musr be linearly relared ro the stress or displacement
that is ro be determined. For example, the equations o = P/A and
6 = PL/AFE imvolve a linear relationship between P and o or .

2. The loading must not significantly change the original geomertry
or configuration of the member. If significant changes do occur, the
direction and location of the applied forces and their moment arms
will change. For example, consider the slender rod shown in Fig. 4-9a,
which is subjected to the load P. In Fig. 4956, P is replaced by two
of its components, P = P, + P,. If P causes the rod to deflect a large
amount, as shown, the moment of the load about its support. Pd,
will not equal the sum of the moments of its component loads,
Pd = P,d, + P>d-. because d, = d, #= d.



This principle will be used throughout this text whenever we assume
Hooke’s law applies and also, the bodies that are considered will be such

that the loading will produce deformations that are so small that the
change n position and direction of the loading will be msignificant and
can be neglected.

P
N#_—
- d,

d s i d,
(a) (b)

Fig. 4-9

I
1l -
+



Procedure for Analysis

The support reactions for statically indeterminate problems are
determined by satisfyving equilibrium., compatibility, and force-
displacement requirements for the member.

Equilibrium.

e Draw a free-body diagram of the member in order to identify all
the forces that act on it.

e The problem can be classified as statically indeterminate if the
number of unknown reactions on the free-body diagram is
greater than the number of available equations of equilibrium.

e Write the equations of equilibrium for the member.

Compatibility.
e Consider drawing a displacement diagram in order to investigate

the way the member will elongate or contract when subjected to
the external loads.

e Expressthe compatibility conditions in terms of the displacements
caused by the loading.

Load-Displacement.

e Use a load—displacement relation, such as 8 = PL/AE. to relate
the unknown displacements to the reactions.

e Solve the equations for the reactions. If any of the results has a
negative numerical value. 1t indicates that this force acts in the
opposite sense of direction to that indicated on the free-body
diagram.




Simple stress and strains

 Axial Deformation
From Hooke’slaw; E=c/ ¢

P ')
or,0=E£—>§=Ez e

PL ol

ifE [

o

This Eqg. is use only when :
1. The load must be axial

2. The bar must have a constant cross section and be
homogenous.

3. The stress must not exceed the proportional limit.



Deformations Under Axial Loading

From Hooke’s Law:

P
c=F¢ &= o_
E AE
 From the defmition of strain:
o
£=—
L
* Equating and solving for the deformation,
PL
0 =—o
AE

With variations m loading, cross-section or
Fia. 2.22 material properties,

P.L.
CS‘: 11
%A-E-

11




Simple stress and strains

e Shearing Deformation

Shearing forces causes a shearing deformation. An element

subjected to shear undergoes change in shape from a
rectangle to parallelogram, as shown in Fig. below.

o

The average shearing strain = tany = — P < s

_ _ » E—— d
since is usually very small, tany =y 7 ST

O / /

then, y=— / / W
e = (+ 4 Ayl L
By Hooke’s law; T = Gy o A |
Where; G= modulus of elasticity in / o jor #

shear, or modulus of rigidity. P S



Simple stress and strains

T

. 9
So, ¥ G—L

T
G



Simple stress and strains

Summary
Axial Loading: o=P /A e€=6L/L o=E¢

O+
Shear Loading T = V/A (— Gy Y = r
. | . PL ol
Axial Deformation: ¢ =
AE E
VL

Shear Deformation: 0, =

A.G



Simple stress and strains

e Statically Indeterminate Members

Axially Loaded members in which the equations of
equilibrium are not sufficient for the solution.
Two general principles may be followed:

1. To a FBD of the structure, or a part of it, apply the equations
of static equilibrium.

2. Obtain additional equations from the geometric relations
between the elastic deformations produced by the loads.



Static Indeterminacy

e Structures for which internal forces and reactions

A

A=250mm:__ [/ 150 i cannot be determined from statics alone are said

4& to be statically indeterminate.
300 kN | &1 150 mm
i m dOrtE . * o A gtructure will be statically indeterminate
A=4 mmH 150 mm o -
: whenever 1t 18 held by more supports than are
600 kN 150 mm - M . 1 1o lihr

8 required to maintain its equilibrium.

* Redundant reactions are replaced with
unknown loads which along with the other
loads must produce compatible deformations.

e Deformations due to actual loads and redundant

. reactions are determined separately and then added

5.1

or superposed.
o= CSL + §R =0

b




Example 2.04

Determine the reactions at 4 and B for the steel
— bar and loading shown, assuming a close fit at
150 mm .
both supports betore the loads are applied.

oot A
A= LD """-—-—._._‘__‘_‘

300 kN
G

A =400 mm"j-___h_

150 mm

=== SOLUTION:

150 mm
S ) « Consider the reaction at B as redundant, release
150
o the bar from that support, and solve for the
displacement at B due to the applied loads.

600 kN

 Solve for the displacement at 5 due to the
redundant reaction at 5.

» Require that the displacements due to the loads
and due to the redundant reaction be compatible,
1.¢., require that thewr sum be zero.

* Solve for the reaction at 4 due to applied loads
and the reaction found at 5.




Example 2.04

f‘i _-.'L 2

D |-a-
300 kN

600 kN

|3

150 mm

150 mm

150 mm

150 mm

B

I

i

SOLUTION:

 Solve for the displacement at 5 due to the applied
loads with the redundant constraint released,

B =0 Py=Py=600x10°N P, =900x10°N
A =4, =400x10°m? 43 = 4, =250x10 °m?
Ll :L2 :L3 :L4 =0.150m

9
5 v AL 112510

= AE; E

* Solve for the displacement at 5 due to the redundant
constraint,

h =P =-Rp
A =400x10%m? 45 =250%x107%m?
L =1, =0.300m

o -5 Bl (1.95x10% Ry
[ AE; E




Example 2.04

* Require that the displacements due to the loads and due to

R, the redundant reaction be compatible,
o= 5L +5R =0
A
5 1125x10° [1.95x10° ]R, 0
E E
300 kN
_ Rg =577x10°N = 577kN
C B4t .::f"_'-
' saalles Find the reaction at A due to the loads and the reaction at 5
) 9!
+1YF,=0=R4—300KkN-600kN +577 kN
5 )
R, =323kN
R

R, =323kN
Rp =577kN




Simple Stress

Thin Wall Cylinders




Thin Wall Cylinders

* In engineering field, cylindrical tank containing fluids
such as tanks, boilers, compressed air receivers etc.

e These tanks, when empty, are subjected to
atmospheric pressure internally as well as externally.
In such a case, the resultant pressure on the wall of
the shell is zero.

e But whenever a cylinder is subjected to internal
pressure ( due to stream, compressed air etc.) its
wall are subjected to tensile stresses.



Thin Wall Cylinders

e For thin wall cylinders, the wall thickness (t) is less
than (1/20) of the inner diameter.

e When the tensile stresses exceed the permissible
limit, the cylinder is likely to fail in any of the

following two ways:
1. It may split up into two troughs, and

2. It may split up into two cylinders.



Thin Wall Cylinders

Two Troughs

Two Cylinders



Thin Wall Cylinders

e Thin cylinders under internal pressure

The wall of the cylindrical shell will be subjected
to the following two types of tensile stresses:

1. Circumferential stress (hoop or tangential
stress), and

2. Longitudinal stress.



Thin Wall Cylinders




Thin Wall Cylinders

e Hoop Stress

The lower half of the P

cylinder is occupied by ,.(§§\§\\

a fluid as shown in fig. Z
(a). . //////

A 4
A F.B.D of the half — U

cylinder isolated by the om
cutting plane A-A is
shown in Fig. (b).



Thin Wall Cylinders

e Let 7P =internal pressure;
F = bursting force ;

P = Force acting on each cut surface of the
cylinder wall;

o, = hoop stress
Then; F=P.D.L
P=o,.t.L
SFy =0 mmsss) 2P =F mmmm) 2 0,.t.L=P.D.L s
o, = P.D/ 2t



Thin Wall Cylinders

* Longitudinal Stress

Consider the F.B.D of a transverse
section :

Mean circumference = (D+t). t

In thin wall cylinders t is very small
compared to D, therefore;

Mean circumference =D. 1t

So, area of Transverse section can be
closely approximated by ( 1t.D.t)




Thin Wall Cylinders

Then; F = bursting force =P (t D%/4);
o, = Longitudinal stress;
P= resultant of the tearing forces = o, 1t.Dt
Since , F =P mmmm) P (1t D?/4) = 0, U.Dt o)
o, =P.D /4t
Since o, = P.D /2t
Then: o, =0, /2



Thin Wall Cylinders

e Hoop and Longitudinal Strains

e ¢ =Strain = (change in dimension / original dimension);
v = Poisson’s ratio; o = Stress;

E = Modulus of Elasticity.

V= ELateraI / ELongitudinaI

ELateraI =V. ELongitudinaI

E=g/cmmmm) c=g/E
g, = (o, /E)—v (o, /E) === ¢ = (1/E) (0, —V 0,)
e = (o, /E)—v (o, /E) ====) ¢ =(1/E)(0,—V0,)



Thin Wall Cylinders

Summary

Stresses

1. Hoop Stress : o, =2?

PD

2. Longitudinal Stress : o, = e

Strains
1. Hoop Strain : g, = (1/E) (0,,—v o))
2. Longitudinal Strain : €, = (1/E) (o,—v 6,)




Plane Stress Analvsis

Plane Stress Analysis ( Two Dimensional Stress Analysis)

A two dimensional stress analysis is one in which the stresses at any pointin a body act
in the same plane.

P, Q, R and S are stresses Y,
P
In the x — y plane. /

S, .
] T Ne




The perpendicular components
introduce direct stresses, and
the tangential components

introduce shearing stresses.

Rx




Stress at a Point

The stress acting at a point is represented by the stresses acting on the faces of a
differential element enclosing the point. The element is usually represented by four

sides.

>
Q

X
General Tow — Dimensional State
of Stress at a point.



ox: Normal stress ( direct stress ) acting on a plane perpendicular to the x —
axis ( X — face);

oy : Normal stress ( direct stress ) acting on a plane perpendicular to the y —
axis ( Y —face);

Txy: Shearing stress acting on a plane perpendicular to the x — axis ( X — face)
and directed parallel to the y - axis; and

Tys - Shearing stress acting on a plane perpendicular to the y — axis ( Y —face)

and directed parallel to the x — axis.

L] —_— \ & “. i) * A g i) * . * d * A * * +
Note: Txy = Tys (Shearing stresses on perpendicular planes are equal).

SMy=0



Variation of stress at a point

The stresses on an element (point) vary with the orientation of the element.

TP TP P
a \ a a 7 a

| AT
o ‘

Stresses on an inclined plane

To find the stresses acting on an inclined plane, two methods may be used:

1. Analytical method;

2. Graphical method (Mohr’s circle).



1. Analytical Method
In determining the stress variation analytically, a plane is passed that cuts the
original element into two parts and the condition of equilibrium are applied to

either part.
v

( a) Original State of stress ( b) Stresses acting on Wedge

Note: If A is the area of the inclined plane;



Area of Wedge face N
taken as A A
G o A \\\B\[- ;‘”W; A
Try . A. COSO Gx . A. cose L)
' ol Tyx A. sine
oy . A. cose \- e A
1:‘I . A. sine T
. AV
Y Gy . A. sine oy. A’sine

(c) F.B.D of Forces on Wedge ( d ) Point Diagram of Forces



YEN=10

6.A+ 1. A cos0. SIN6 + 1y; . A. sin6 . cose = \ N
6. A. €086 . cos0 + 6y . A sin6 . sin6 \\BF 6. A
. . 6x. A. cose ~ e
A 1s cancelled form both sides; ) oL~ Tyr A. sine
4 T.A
—r . 0 x
Txyy = Tyxs ! N
then T
AV
Gy . A'sine

G = 6. c0s’0 T 6y. sin’0 - 2 Tyy. 036 . sine
(.d ) Point Diagram of Forces
This equation may be written more conveniently;

’ 1+ cos 28 . 3 1- cos26 q .
cos 0= T ) sSIn“e = T , 4sin®. cosé = sinle
1+ cos 260 1-cos26 .
6=6;. ——— T 6,.———— - Ty. Sin2o
oX oX oy oy

6=— +— c¢o0s20 + — - — 0520 - Ty. Sinle



6X— Oy

C0820 - Tyy. SIN20 ... (1)

Fr=10
7. A+ 1. A sin6. SIn6 + 6y. A. sin0. €086 = Ty . A. c050. €080 + 65 . A. €080 . sin6
T = (65 - Gy) sino. c0sO *+ Ty (cos’0 - sin’6 )

Since , cos’e - sin’e = cos20, then;

0X— Oy

= sin2 @ + Tyy. C0S20 ... (2)



Principle Stresses

The maximum and minimum normal stresses are known as Principle
Stresses. The planes defining maximum and minimum normal stresses are
found by differentiating Kq. 1 _with respect to 6 and setting the derivative

equal to zero.

60X+ O 0X—0 .
6= — L Y cos2e - Tyy. SIN20 ... (1)
do o, — Oy ] 3
—= 0+ (T) (—25in26) — 2 1,, c0s26 = 0
( ) i ag > 26 sin26 2 T,,
o,— 0,)sin20 = -2 1,, cos > @ —= -
o Y cos 20 0, — O,
27T
tan 26 = 2 (3)
Oy — 0O,

Since; tan@ = tan(@ + 180° ) then;



((Tx — Jy) sin20 = -2 1,, cos26
-27T

tan 20 = Y (3)
Oy — O,

Since; tan@ = tan(0 + 180° ) then;

—2 1Ty

20 = tan‘l( ) + n.180°

0y — 0y

Where: n=0,1,2,3,4.......

—_—

sin20 B
cos20

2Ty,

0,— O

y



1"? principle plane

2™ principle plane

—2 Ty, x
tan20 = ——— ... ... .. ( 3) L*
O, — O'y -2 Ty
220 ‘
Gx— Gy
From Eq. 1,
OoX+ O O0X— 0O .
= — Y+ = cos2e - Tyy. SIn2e
60X+ © 0X— O Ox— O -2t
— 2Y+ zyx (92— ay) - Tyy X Xy

+ J(arx— ary)z+ 4 Tyy? + J(o'x— a'y)2+ 4 Tyy?



_ 0xX+ oy + 0X— Oy (ﬂ'x— a'y) T X — 2 Tyy

2 2 n J(Ux_ Oy) + 4 Tyy + J(a'x— :ry)2+ 4 Tyy
__ 06X+ oy 1 2 2
=— [(O‘x— 0,) + 41, ]

__ 06X+ oy 1 2
01,2 = 5 T 5 \/[(O’x— O'y) + 4‘1‘x},2]
Ol2=—— % ( . ) + Ty e (4)

Note : 1. 61 and o; are principle stresses.

2. +vesign for o; and -ve sign for o, .



Maximum Shearinge Stress

0X— Gy
2

T = sin2 @ + Txy. C0s20 e (2)

Differentiate with respect to o and set the result equal to zero;

dt (a'x — o,

—5= > ) (2c0526) — 21, sin26 = 0

sin26 Oy — Oy ;
— 2
cos 26 2 T,y T J(ax - 0)) + 41,
% Ox — Oy
Ox— O 226
tan 20’ = L, (5) 2 Ty
2 Tyy
1 Oy— O
0 = (=) tan~1| —X Y1+ noooc ... (5")
2 2 Tyy



Substituting in Eq, 2;

OX— 0y (:rx— n'y) — 2 T4y

T=

T Tyy X

2 + J(ﬂ'x— u'y)z+ 4 Tyy)? + J(u'x— :ry)2+ 4 Tyy?

= £ [[(%52) 4 7] o)




Planes of Zero Shear Stress

0X— 0 .
T= Y sin2 0 + Tyy. €0s26
—27
tan 20 = e (7)
0y — O,

Eq. (7) is similar to Eq. (3), and this means that, on planes on which maximum

normal stresses act, there are no shearing stresses.

Notes:
—2T
tan 20 = = (3)
0, — 0y
. Oy— Oy
tan20 = ——— ......... 5
an > (5)

Xy



Oy— O,
......... (5)
2T,y

tan 260’ =

So;  tan2e=-cof2e' ....... (a)
Since; fan([f+90°) =-cotf}  Engineering identical

Then; tan(2e'+90°)=-cot2e' ....... (b)

From Eqs. (a) and (b) :> tan2e = tan( 26' + 90°)

So; 26 =20' + 90° —:> 0=0'+45°

This mean that the angles that locate the planes of maximum or minimum

shearing stress form angles of 45° with the planes of the principle stresses.



Sign Convention

Tension +ve

€

T

Compression -

o : anfi — clockwise +ve
T : +ve 1f its moment about the

centre of the element is clockwise.




2. Graphical Method ( Mohr’s Circle)

¢ The Equations developed in the Analytical method may be used for
any case of two — dimensional stress;

e In 1882 the German engineer Otto Mohr devised a visual
interpretation for analytical equations.
This interpretation eliminates the necessity for remembering the
analytical equations.
In this interpretation a circle is used, and the construction is called
Mohr’s Circle.
If this circle is plotted to a scale, the results can be obtained
sraphically.
We have:



We have:

oX+ O OX— 0 . o
6= — LA Y cos2e - Tyy. SIN20 ... (1)
can be written as :

oX+ O OX— 0 . .
c- —, Y = Y cos2e - Tyy. SIn2e ... (1"
Also;
. 0X— Oy r L
T = sin2 @ + Tyy. cos2e.... .... (2)

By squaring both these equations (1' & 2), adding the results and

simplifying, we obtain:

oX+ oy
2

OX— {ry

(O - )* + 1 =( )2+ (Txy)?..... (8)



Notes: 1. Ox , Oy and Txy are known constants defining the specified state of
stress, whereas ¢ and T are variables.

X+ oy
2

= conctant = C

3

3. (? ) + (Txy )* = constant = R?

Eq. (8) can be written as: (6 —C [2 + 12 = R?

Comparing with the equation of the circle of the form (Xx — C [2 + }-’2 = R?

AV AT

(X.,V) (G, T)

N N

C C

- [




Procedure for drawing Mohr’s Circle

1. On rectangular 6 — T axes, plot points having the coordinates (Gx , Txy)

and (Gy , Tyx). The above sign convention will be used in plotting these

oints.

p x4 Gx .
- >
i |
; O, + 0y :
iﬂl 2 = :
E |
i i
i
ot

D, R S

Mohr's Circle for General State of Stress



2. Join the points just plotted by a straight line. This line is the diameter of a

circle whose center i1s on the ¢ — axis then:
0 — 0y O, — 0y Oy + 0y

(1D = 2 0(1= Oy + 2 = 2

R=J(JI;JJ?)2 +rxy2

OH=0C +R = ”x+”3’+\l(g-x—g}’}z+rxyz = 01

OF=0C-R="] "’—J(”"’;”J’) +Ty? =6



3. The radius of the circle to any point on its circumference represents the
axis directed normal to the plane whose stress components are given by
the coordinates of that plane.

4. The angle between the radii to selected points on Mohr’s circle is twice
the angle between the normal to the actual planes represented by these
points, i.e., if the N axis is actually at a counterclockwise angle 6 from
the X axis, then on Mohr’s circle the N radius is laid off at a

counterclockwise angle 26 from the X radius.

x!
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