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Engineering Mechanics

Chapter One

Introduction

 Dynamics is a branch of the physical sciences that is
concerned with the state of motion of bodies
subjected to the action of forces.

 Dynamics, deals with the accelerated motion of a
body.
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 The subject of dynamics will be presented in two parts:

1. Kinematics : treats only the geometric aspects of the
motion, or deals with the motion of particles, lines,
and bodies without consideration of the forces
required to produce or maintain the motion.

Note: Knowledge of the relationships between position,

time, velocity, acceleration, displacement, and distance
traveled for particles, lines, and bodies is essential to
the study of the effects of unbalanced force systems on
bodies.
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2. Kinetics : deals with the force system that
produce accelerated motion of bodies, the
inertial properties of the bodies, and the
resulting motion of the bodies.
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Definitions:

Length (Space): Length is used to locate the
position of a point in a space and thereby
describe the size of a physical system;

Time: measure of succession of events ™ basic
guantity in Dynamics;

Mass: quantity of matter in a body that is used to
compare the action of one body with that of
another. Provides a measure of inertia of a body
(its resistance to change in velocity);
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* Force: represents the action of one body on
another m) characterized by its magnitude,
direction of its action, and its point of
application, it’s a vector quantity.

e Notes:

1. Length, Time, and Mass are absolute
concepts independent of each other;
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2. Force is a derived concept

not independent of the other fundamental
concepts. Force acting on a body is related to
the mass of the body and the variation of its
velocity with time.

3. Mass is a property of matter that does not
change from one location to another.
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3. Weight refers to the gravitational attraction
of the earth on a body or quantity of mass. Its
magnitude depends upon the elevation at
which the mass is located;

Weight of a body is the gravitational force
acting on it.
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Idealization:

Particle: A body with mass but with dimensions
that can be neglected.

Size of earth is insignificant
compared to the size of its
orbit. Earth can be
modeled
as a particle when studying
its

& Friadrich A. Lohmiller, 2006 0 r b it a I m ot i o n .
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Newton’s Three Laws of Motion

First Law: A particle originally at rest, or
moving in a straight line with constant
velocity, tends to remain in this state provided
the particle is not subjected to an unbalanced

force. F, F,
First law contains the principle of \?/ "
the equilibrium of forces 2 main

topic of concern in Statics '

Equilibrium
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 Second Law: A particle of mass “m” acted upon
by an unbalanced force “F” experiences an
acceleration “a” that has the same direction as
the force and a magnitude that is

directly proportional to the force.

F—»@ i F=ma

Accelerated motion

Second Law forms the basis for most of the
analysis in Dynamics
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Third Law: The mutual forces of action and reaction
between two particles are equal, opposite, and
collinear. _ ‘

force of A on B

)

A b R“fm'ce of 5on A
Action — reaction
Third law is basic to our understanding of force.

Forces always occur in pairs of equal and opposite
forces.
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* Weight of a body (gravitational force acting on
a body) is required to be computed in Statics
as well as Dynamics.

This law governs the gravitational attraction
between any two particles.

my
F F Mg
(D
- -
= r -
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F = mutual force of attraction between two
particles;

G = universal constant of gravitation
Experiments G = 6.673x1011 m3/(kg.s?);
Rotation of Earth is not taken into account;
m1, m2 = masses of two particles;

r = distance between two particles.
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 Weight of a Body: If a particle is located at or
near the surface of the earth, the only
significant gravitational force is that between

the earth and the particle;
Weight of a particle having massml1=m:

Assuming earth to be a nonrotating sphere of
constant density and having mass m2 = Me
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- r = distance between the earth’s
center and the particle

Let g =G M, /r* = acceleration due to gravity

(9.81m/s?)
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Four Fundamental Quantities

Quantity Dimensional SI UNIT
Symbol Unit Symbol

—
Mass M Kilogram Ke Basic Unit
Length L Meter l—-—-m—"'"/
Time T Second s
==
Force F Mewton N

- N =kg.m/s?

1 Newton is the force
required to give a mass of 1

- kg an acceleration of 1 m/s?

- N =kg.m/s?
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Exponential Form Prefix S| Symbol

Multiple

1 000 000 000 10° giga G

[ 000 000 106 mega M

[ 000 10° kilo k
Submultiple

0.001 10~ milli m
0.000 001 (" Micro L

0.000 000 001 1077 nano n
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Engineering Mechanics: Dynamics
Chapter Two

2.1 Rectilinear Kinematics: Continuous Motion

This chapter deals with the kinematics of a
particle that moves along a rectilinear or
straight line path.

Rockets, Projectiles, or vehicles can be
considered as a particle.

Any rotation of the body is neglected.
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Rectilinear Kinematics. The kinematics of a particle is
characterized by specifying, at any given instant, the particle's
position, velocity, and acceleration.

(a) Position:

- The position of paritcle P at any time t is expressed in terms of
its distance x from origin O on the x axis. It’s a vector quantity.
Units : millimetre (mm), centimetre (cm), and meter (m).

0
O >
S I

-ve < > +ve

S - axis
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(b) Displacement: The displacement of the particle P is
defined as the change in its position.

For example, if the particle moves from one point to
another, the displacement is:

s=As=s,—5 P P
O S *As |
|As|
S1 ,
-Ve < > +ve
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Chapter Two

As : +ve if [ s,> s ] [ i.e. the particle's final
position is to the right of its initial position |;

As : -ve if [ s,< s ] [ i.e. the particle’s final
position is to the left of its initial position ];

Note: distance traveled is a positive scalar that
represents the total length of path over
which the particle travels, [ i.e. Total distance
travel, s"=s + As ]
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(c) The average velocity v_, of a particle P during
the time interval t and t+At during which its

position changes from s to s+As is :

AX=s,—5 O < As |
At=t, -t j ;I

1
v,, = Ax / At
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(d) The instantaneous velocity v of a particle P at time t is the
limit of the average velocity as the increment time At

apbproaches zero as a limit.

I As (—_I—’) ds
_— = —
atsonr 7" dt

Speed : is the magnitude of the velocity.

Average Speed : always a positive scalar and is defined as the
total distance traveled by a particle, s; divided by the
elapsed time At,

St
( Fs*p)m*e - E
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Example : the particle in Fig. below travels along
the path of length s in a time At

ST - ﬁS

v

|
(t?sp]aua = Ae g = E f

(e) The average acceleration a_, of a particle P
during the time interval t and t+At during
which its velocity changes from v to v+Av is :
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Chapter Two
Av=v,—v PP
O S " AX )
a,=A0v /At ;[/ ;1
S, !

(f) The instantaneous acceleration a of a
particle P at time t is the limit of the average
acceleration as the increment time At

approaches zero as a limit.



Engineering Mechanics
Dynamics
Chapter Two
o= lim 2o _ 4= (+)
A0 At dt dt-
d (ds\ d’s
dt (dt) -

Also; = (¥)

Notes:

1. Both average and instantaneous acceleration can be either
+ve or -ve.

2. when the particle is slowing down, or its speed is
decreasing, the particle is said to be decelerating, [ i.e. v,
<v, and a is negative and in opposite sense to v |.
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Vv V1
Deceleration

3. when the velocity is constant, the acceleration is zero since
Av=v,—v=0.

4. Units of acceleration are m / s 2or ft / s2.
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Dynamics
Chapter Two
Important Relations
1. Since  ds ds and
v=— 3»>» di=—
dt v
dv dv :
a= — »»» dt=— 1herefore;
dt a

ds dv
—=— = ads=vdy
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(g) For constant acceleration let:a=a_
1. Velocity as a function of time; Assume v =v_ when t =0

Since; a.=dv /dt ‘ dv=a,_.dt #fpdu = r“c dt
g 0
V=, tat | (+)

2. Position as a function of time; Assume s =s_ whent =0

Since; v=ds/dt mm) ds=v.dt=(v,+a_t)dt

Then:
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5 t
Then; fds= f (v, + a,t)dt
5 0

0

s=s85,T v, tT0.5a. 2 (+)

3. Velocity as a function of position; Assumev=v_ ands=s,
whent=0;

& 15'
Since: a_.ds =v dv ‘ j a.ds = f v dv
L v

Then; ’ ° + 2 a. (s—Sy) (?'j)
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Chapter Two

Ex: A point P moves along a straight line according to
the equation x = 4t3 + 2t + 5; where x is in meters, t
in seconds. Determine the displacement, velocity,
and acceleration when t= 3 s. What is the average
acceleration during the fourth second?

Solution:

X (35)=43+2t+5 = 4(33+2(3)+5 = 119 m
v=dx/dt=12t%2 + 2

Vi35 =12 (3)2+2=110 m/s
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a=dv/dt=241t
a35)=24(3)=72m/s?

Vias) = 12 (4)>+2=194 m/s
At=4-3=1sec

AV =V 49 -V(35=194-110=84 m/s
So ;

a,, =Av/At=84/1=84m/[s?
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EX: The magnitude of the linear acceleration of a point
moving along a vertical path is given by the equation
a= 6t — 24; where aisin m/s?2 and t is in second. The
acceleration is upward when t = 5 sec, the point is
4m below the origin when t=0 and 23 m above the
origin when t=3 sec. Determine (a) the velocity when
t=3 sec; (b) the displacement during the time interval
from t=0 to t= 4 sec; (c) the total distance travelled
during the time interval t=0 to t=4 sec.
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Solution:
Given: a=6t—-24
aisupward att =5 sec
sis -dmat t=0
sis 23mat t=3 sec
(3) V(3seq) 77
a(55ec) = 6 (5) —24 =+ 6 m/s?

a=dv/dt mm) dv=adt
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And v=[adt=](6t—24)dt=3t2-24t+C,
Also; v=ds/dt 3p ds=vdt

s=[vdt=(3t2— 24t +C, )dt

=t3-12t°+C,. t+ C,
Sit=0~4=0-0+0+C, » C,=-4
Sie3sec) = 23 = (3)3—12(3)2+C, (3) -4 W) C,=36
So; v=3t2—24t +36
s=t3—-12t2+36t-4
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Vit= 3 seq) = 3(3)°—24(3) +36=-9m /s
=9m/s (l) downward
(b) As during t=0 to t=4 sec
Si=0) = 4 m downward (given)
Sicaseq = (43 —12(4)2 +36 (4) =4 =12 m
As= 12 — (-4) = 16 m upward (])
(c) The total distance travelled during t=0 to t= 4 sec:

To determine the total distance travelled, its important to
know the actual path traversed during time.
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Chapter Two
v=3t2-24t+36 =3 (t—6)(t — 2)
Therefore;
Vie=0) =36 M/s upward
V(t= 2 sec) =0

Vit= 4sec) =12 m/s  downward

Vi=6se) =0 (ignored since the required interval
between t=0 and t=4sec);

Si=0) = -4m downward (given)

S(t=2 sec) = =(2)3-12(2)?+36(2)—4 =28 m upward
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Sit=a sec) = (4)° —12(4)* + 36 (4) —4 =12 m upward
Therefore;
Total distance =4 + 28 + 16=48 m

\

I |
C o-CT

t=2s,s=28m
A

t=4 s, s= 12mT

|

t=0, s=-4m

<€
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Solution 2: Use the a-t, v-t, and s-t curves.

T a= ot — 24
. -+t sec

20

a m/s?

40 20

\' ——f——f——=—1 Sec

v = 3t?— 24t +36 ' '

sS=t3-12t>+ 36t -4 —t—
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Ex: The magnitude of the acceleration of a point
moving along a horizontal straight line varies
according to the equation a= 12 s¥/2 , where a is in
m/s? and s is the distance of the point from the origin
in meter. When the time t is 2 sec, the point is 16 m
to the right of the origin and has a velocity of 32 m/s
to the right and an acceleration of 48 m/s? to the
right. Determine the velocity and acceleration of the
point when the time is 3 sec.
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Solution:

Given: a= 12 s'/2

att=2sec 3 s=16 m to the right
3 v=32m/s to the right
3 a=48 m/s? to the right
P

O— {
s=16m/s =2 sec

V=32m/s
a =48 m/s?
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Solution:

a =V (dv/ds)

ads=vdv » 12 s1/2 ds = v dv
832 =(v2/2)+C,

When s=16 m, v=32 m/s, then
8(16)%2=(322/2)+C, M) C,=0
So : v2= 16 s3/2 » v =4 s3/4

But: v = (ds/dt) = 4534 W) (ds/s¥4) = 4 dt )
45V = 4t + C,
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When s= 16 m/s, t= 2 sec, then

4(16)¥4=4(2)+C, M) C,=0

So; 4s1/4 = 4t
s =t » S(t=3sec) = (3)* = 81 m to the right
v =443 » Vit=3seo)= 4 (3)° = 108 m/s to the right
a =12t » 3(1=3 se)= 12 (3)*= 108 m/s to the right



Ex: A particle falls from an elevator that is moving up with a
velocity of 3 m/sec. If the particle reaches the bottom in 2 sec,
how high above the bottom was the elevator when the particle

started falling?
Solution:

Free falling
i.e. Constant acceleration
a=g=-9.81 m/sec?

Y=Y, +Vyt+0.5at?
O=h+3x2+0.5x%x(-9.81) x 22

h=13.62m Ans.

Ty

Vi = +3 m/sec?

A

_—

A 4




Ex: An automobile accelerators uniformly from rest on a straight
level road. A second automobile starting from the same point 6
sec later with zero initial velocity and accelerates at 6 m/sec? to
overtake the first automobile 400 m from the starting point.
What is the acceleration of the first automobile.

Solution:

If the 1 automobile need a time t to reach 400 m from the
starting point, the 2" automobile need a time ( t — 6) to reach
the same point. (i.e. Difference in time)

Y=Y, +Vyt+0.5at?

2"d automobile v,=0 So=0 s=400 m
400=0+0+0.5x6x(t—6)2 t =17.547 sec
15 automobile vo,=0 So=0 s= 400 m

400 = 0+0+ 0.5 x a x 17.5472 a=2.598 m/sec? Ans.
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2.2 Rectilinear Kinematics: Erratic Motion

When a particle has erratic or changing motion then its
position, velocity, and acceleration cannot be described by
a single continuous mathematical function along the entire
path. Instead, a series of functions will be required to
specify the motion at different intervals. For this reason, it
is convenient to represent the motion as a graph. If a graph
of the motion that relates any two of the variables s, v, a, t
can be drawn, then this graph can be used to construct
subsequent graphs relating two other variables since the
variables are related by the differential relationships v =

ds/dt, or a ds = v dv.
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Thes-t, v-t anda -t Graphs.

Used to

Given : s —t curve ‘ v—tcurve

Construct

das
17 =
dt

Slope of s — 7 graph = Velocity
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Used to

Given : v —t curve ‘ a -t curve

Construct

duv
dt

=

Slope of v —t graph = Acceleration

Note : If s — t curve is parabolic ( 2" degree curve) ; the v — t
graph will be a sloping line ( 1stdegree curve), and the a — t
graph will be a constant or a horizontal line ( zero degree
curve).




_d { o
v _dv
G ="dgrlt=0 """ diln %

\ ly =‘—;T" 1‘) 93 dr |ty

v
]
o f
I & I3
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Used to

—

Construct

Av = Jadt

Change in velocity = area under a -t graph

Given : a -t curve v —tcurve
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Used to
Given : v —tcurve ‘ s—tcurve
Construct

As = fvdt

Change in velocity = area under a -t graph
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Notes:

1. The area above t axis is +ve ( an increase in a or v ); and the
area below the t axis is —ve ( a decrease ina orv ),

2. If the initial velocity is v, v, =V + Av (algebraic sum);
3. If the initial distance is s, s,=s,+ As (algebraic sum)
4. If a—tislinear ( 15t degree curve) v—tcurveisa

parabolic ( 2" degree curve) » s —t curve is cubic ( 3™
degree curve).



(b} (b)



The v-sand a —s Graphs. jiuduz J 1[IdS

(1 0

vV —s curve - % 07— 1) - fma .

5p

Used to

Given : a — s curve
Construct

area under a —s
graph

d v

“_,11 i.‘;]j) o,

Do

(b)



ads =vdv

a—s curve av
- [I=T?(E:|

Acceleration = Velocity x slope of v — § graph

Used to

Given : v—-s curve

Construct

(i

od

f't|

a = wdv/ds)

5

(a) (b)



Ex. Hibbeler Pag.22 Ex.12.6

A bicycle moves along a straight road such that 1ts position 1s
described by the graph shown in Fig. 12-13a. Construct the v—t and

a—tgraphs for 0 = t = 30s.

5 (fr)

LIS



o b | 11

u(ftjs) v-t Graph. Since v = ds/dt, the v-f graph can be determined by

differentiating the equations defining the s+ graph, Fig. 12-13a. We have
v=l _ [
0l oo 0=1<10s: §= (1) I ¢‘=E={?EHI/5
|
l
Ds<i=Xs  s=00-1000 1= E = 01
0 w8 The results are plotted in Fig. 12-13b. We can also obtain specific
values of v by measuring the slope of the st graph at a given instant
For example,at 1 = 20s, the slope of the s-rgraph 1s determined from
(b) o |
the straight lme from 10§ 10 305, 1.e.,
As 3001t - 100ft
(=05 p=—= = 20f1s

At s - 10s



I 3
y
iy 11

a-t Graph, Since a = du/di, the o graph can be determined by
lferentrating the equations defmmg the lmes of the v-f graph.

Thas yrelds
0 £ ]Uh, = (2[)[[/5 (1= fll:.} — 2[[/;

D<r<s o=k n=dlf=0
(

The results are plotied m Fg 12-13¢

NOTE: Show that a = 215" when £ = 55 by measuring the slope of
lhe -+ graph.
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The car in Fig. 12-14a starts from rest and travels along a straght
track such that it accelerates ai 10 m/s" for 105, and then decelerates
at 2m/s". Draw the v~ and s~ graphs and determine the time '
needed 10 stop the car. How far has the car traveled?

SOLUTION

w-tGraph, Since dv = a1, the v graphisdelermined by integrating
Lhe straight-line segments of the a~f graph. Using the initial condition
U= 0whent = 0, we have

il [
0=t< 105 a=(10)m/s /n‘zr: /l{]dr. b= 101
l J

When 1=10s, v=10(10) = 100m/s. Using ths as the initial
condition for the next time period, we have

i

10

1
s

(m,-‘s!}




Solution:

0s<t=t" a=(-2)m/s" f [—2{ v=(=21+120) m/s
lIHJm;q il v(mf)
When ¢ = 1 we require v = 0. This yields, Fig. 12-14b, |

(" =60s Ans.
A more direct solution for ' 15 possible by realizing that the area
under the a- graph 1s equal to the change in the car’s velocity. We
require Av = 0 = A, + A,, Fig 12-14a. Thus

= [0m/s’(108) + (=2 m/s")(t' - 105)

(' =60s Ans,
st Graph. Since ds = v dt, integrating the equations of the v-¢
graph yields the corresponding equations of the s graph. Using the
iitial condition s = 0 when ¢ = (), we have

5 {
0=r=10s v=(10)m/s [ﬂ‘s = [IU! dt,  s=(m
Ji Ji

Whent =105 = 5|[1£J)E = 500 m. Using this iitral condition,

v= 1

100
p==2+ 120
|

/

=5
1= 6l

ib)



¥

[
105515h03u=(-2r+120)m/s,] ds=/(—?!+12{])dr
Im li]s

5 s(m)
5= 500 = =+ 1200 - [(10)" + 120(10)) o
§= (- + 1200 - 600 m
When 1 = 60's, the position i

§==(60) + 120(60) - 600 = 000m  Ans

S0

Thes-tgraph s shownn Fig, 12-14c

NOTE: A direct solution for s 1s possible when £ = 60, smce the
friangular area under the v-1 graph would yield the displacement
As=s-0fromt=0tof =605 Hence, Fig, 12-14

As = 5(605)(100m)s) = 00m A,
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Engineering Mechanics: Dynamics
Chapter Three

3.1 Coplanar Angular Motion of a Line

A line has angular motion when the angle
between it and a fixed reference line changes.

Particles are dimensionless, and any angular
motion they might have cannot be measured
or described, therefore, angular motion will
be considered a property restricted to lines
and bodies.
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In Fig. below, the angle between the fixed x axis and the
moving line OP varies with time and completely defines the
angular position of OP at any instant.

U is the angular position function and is a scalar function of
time.

+ve sense is often with clockwise direction unless it described.

Angular displacement of a line during any time interval is the
change of angular position of the line during that time
interval.
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B P

when the line OP turns from OA to The angular displacementis ¢ ( counter clockwise).

OB during a certain time interval. The total angle turned is @ .

when the line OP turns from to OC The angular displacementis ¢ ( counter

and then back to position OB during clockwise).

atime interval o The total angle turned is ¢, + ¢, .
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Chapter Two
Notes:

1. For motion involving more than one
revolution, values of ¢ and 0 will continue to
increase, [ i.e. for two revolutions 8 will be 2n
and is not zero.

2. Units for angular measurements are radians
(rad), revolutions (rev) and degrees.



Engineering Mechanics: Dynamics
Chapter Three

Notes:

1. For motion involving more than one revolution, values of
¢ and O will continue to increase, [ i.e. for two revolutions
O will be 2n and is not zero.

2. Units for angular measurements are radians (rad),
revolutions (rev) and degrees.

The angular velocity, w, of a line is the time rate of
change of the angular position of the line.
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The angular velocity, w, of a line is the time
rate of change of the angular position of the
line.

AG
mw - Units:
4 ."I_“.-Il.l.- rad per sec,
rev per min. (rpm)
AG do
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The angular acceleration, o, of a line is the
time rate of change of the angular velocity of
the line.

o ﬂmzdm _ d*8
at-0 At dt dt?

Units:

rad per sec?,

m .
ﬂdﬂ:—dﬂ:—dmz mdm rev per min per sec. (rpm per sec)




Engineering Mechanics
Dynamics
Chapter Two

Constant Angular Acceleration When a=a

Rectilinear M otion Angular Motion
v=v,+a..t w=w,+a..t
s=§+V,.t+05a,.t? 0=0,+wn,.t+05a,.t?
¥=vy2+2a.(s-§) We=wy+2a0.(0-6,)
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Note : If P is a point travels along a circular path of radius r
with a centre at O

Velocity
The velocity vector is always tangent to the path.

V==w.r ¢+

Acceleration
a=0.r J+ Tangential component

a =m’.r /+\ Normal component

az\jaf+a$l {4
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Ex. A line rotates in a vertical plane according to the law
0= t3 - 2t> — 2; where 0 gives the angular position of the line
in radians and t is the time in seconds. The line is turning
clockwise when t=1 sec. Determine

(a) the angular acceleration when t = 2 sec;

(b) the value of t when the angular velocity is zero;

(c) the total angle turned through the time t=1sec to t=3 sec.
Solution:

Check the +ve direction;

O (15e9=1>—2(1%)-2=-3rad clockwise;

So the +ve direction is counterclockwise.



(a) w=doe /dt=3t2-4t
ao=dw/dt=6t-4
o=6(2)—4=8rad/sec? counterclockwise /¥

(b) w=3t2-4t=0 t=0 or t=1.333sec

t =0 is the initial condition
(c) Find t whenw =0 t=1.333 sec from (b)
Oy (15eq) = -3 rad/ O, (1.333sec) = -3-185 rad /[~ O\

O3 (356 =7rad /+
Total angle turned = ( 3.185 - 3)+(3.185+7) = 10.37 rad

t:3§%

A 0,
0, =1 sec
t =1.333 sec




Ex: A cord is wrapped around a wheel in Fig. Below which is
initially at rest when 0=0. If a force is applied to the cord
and gives it an acceleration a = 4t m/s?, where t is in
seconds. Determine as a function of time:

1. the angular velocity of the wheel, and
2. The angular position of the line OP in radians.

Solution: Since P onthe cord and
under the force P which tangent to the wheel

(tangential component).

1. (ap)t=a.r»4t=0.2a » a = 20t

a = dw/dt » dw = a dt = 20t dt » w=1012+C,

Att=0 g w=0 B =0



So, w=10t2 /+)\

2. w=d6/dt mp 6=(10/3)t3+C,

at t=0 » 6=0

0=(10/3) t3 rad.

C,=0

N



Ex: Prob. 16.37 Hibbler Page 333

The scaffold S is raised by moving the roller at A toward the pin
at B. If A isapproaching B with a speed of 1.5 ft/s,
determine the speed at which the platform rises as a function
of 8. The 4ft links are pin connected at their midpoint.




CosO=x/4

X=4Cos 6

dx//dt = -4 sin® (d6/dt) b &y
v, =-4sinB . w ¢
w=-v,/4sin8 .. (1) ST AN
sinB=y/4
y=4sin0

Q
dy//dt = 4 cos 6 (dB/dt) ™
vy=4cose LWL (2) A
Sub. (1) into (2); X

vy=4cose (v, /4sinB) =- v, cotO
So, Speed=v,cotO® =1.5cotB



Ex: A line rotate in a plane with a constant angular acceleration
of 2 rad/sec?. During a certain interval, the line has an angular
displacement of 2 rad clockwise while turning through a total
angle of 10rad. Determine

1. The angular velocity 0.5 sec after the beginning of the time
interval;

2. The length of the time interval.

Solution: Assume t,=0 6,=0 w,=0
the +ve direction is clockwise with the direction
of acceleration,
Displacement : AB=2=06,-0, 0,=0, +2
Total angle turned: 6;=10=0,+6, 10=0, +2+0,
0, =4rad 6, =6rad /\



For constant angular acceleration :
0=0,+w,.t+05aq,.t
4=0+0+05x%x2xt?
t,=2sec

6=0+0+05x2xt,? t, = 2.449 sec

l. w=w,+a .t
=0+2(2+0.5)=5 rad/sec

2. T=2+2.449 = 4.449 sec



Engineering Mechanics: Dynamics
Chapter Three

Coplanar Curvilinear Motion of a Particle Using Rectanqular
Components

Curvilinear motion occurs when a particle moves along a curved
path.

When a particle moves along a curved path in space, its position
at any instance is completely determined by its rectangular
coordinates when they are given as a function of time.



In fig. below, the position of the particle as it moves in the xy
plane is given by its x and y coordinates expressed as a

function of time.

s=f(x,y) x=f(t) y=f(t)

y

//\— Ay




The linear displacement of the particle P in fig. above as it
moves from position A to B is the vector from A to B,

which can be expressed in term of the change inthe x and y
coordinates of P as:

As = As, +As, = [ (Ax)* + ( Ay )*]V/?

y
X |

\
//\—P — iy




The total distance travel s;, in curvilinear motion is the total
accumulated length of path traversed.

The linear velocity of the particle P in fig. is a vector quantity,
is the vector sum of the time rates of change of its coordinates.

The x component of velocity = v, = dx / dt

The y component of velocity = v, = dy / dt

The curvilinear velocity = v = [(v,)? +(v, )* [¥2



The linear acceleration of the particle P in fig. is a
vector quantity, is the vector sum of the time rates
of change of its velocities.

The x component of acceleration = a,=dv_ / dt

The y component of acceleration = a = dvy/ dt

The curvilinear acceleration = a = [(a,)* +(a,)*]"/?



Notes:

1. in curvilinear motion, always As< s..

2. Curvilinear motion can cause changes in both the
magnitude and direction of the position, velocity, and
acceleration vectors.

3. The velocity vector is always directed tangent to the path.

4. If the motion is described using rectangular coordinates,
then the components along each of the axes do not change
direction, only their magnitude and sense (algebraic sign)
will change.



Example: If the x & y components of a particle’s
velocity are v, = 32t and v, =8, where v in
m/sec, determine the equation of the path y =
f(x). Note x=0, y=0 when t=0.

Solution:

v,= dx/dt=32t Bp dx=32t.dt

x =16t° +C,

At t=0 x=0 C,=0

So; x =16t ... (1)

v,= dy/dt=8 mp dy=8.dt B v= 8t+C,
At t=0 y=0 C,=0

So; y= 8t .. (2)



y= 8t

From Equ. (2) » t=y/8

Sub. Equ. (3) into Eq.(1)
x=16 (y/8)

X =16 y?/64 and
y2 = 4x

.. (3)



Example: A particle moves from point A to point B in 3
sec. The x and vy coordinates ( in meters) of point A
are (10,19), and those of point B are (22,10). The
velocity of the particle at A is 39 m/sec with a slope of
12 to the right and 5 upward; at B the velocity is 12
m/sec vertically down.

(a) Determine the average velocity of the particle as it
moves from A to B.

(b) Determine the average acceleration of the particle as it
moves from A to B.



V,,. = As/ At

At = 3 sec
As, =22-10=12m —

As,=10-19=-9m l

b= 12 4 (9)F =15m N\

V. =15/ 3 =5 m/sec

Y (m) A= 524 12 =13

(10,19), v, =39 m/sec

A. 5'\
12
B
()
(22,10), vV, =-12 m/sec

X (m)

Ov = tan™ (As, / As, )= tan'(9/12) = 36.896° Ans.

a,. =4v / At

Vo, =39 % (12/13) =36 m/sec —

Vay =39 % (5/13) = 15 m/sec l



Vex =0 <ummmmmmm) velocity of B is downward only

Vg, = 12 m/sec l

V, =V, +V;, =36+0 =36 m/sec — 3
B A (2 4s il

V, =V, + Vg, = 15412 = 27 m/sec l (Sl ) oAl ek

Av = Jvﬁ + v5 = /362 +27% = 45 m/sec \

Av 45
Qgpg, = — == 15 m/sec’
At 3




Example: the block A and B shown below are
pinned together and while block B slides on the
rotating arm OC, block A slides along the curved
rod having the shape Ox =y?:

1. Write an expression for the x coordinate of
the position of the pin as a function of the
angle 0O, and an expression for the x
component of velocity.

2. Using the result of (1), determine the x
component of the linear velocity of the when of
the pin when the arm OC has a slope of 3
vertical to 4 horizontal and an angular velocity
of 3 rad/sec clockwise.



Block A

O
Solution:



The pin is a point on the line OC and the curve
and its coordinate x and y can be obtained

from equation of line or equation of the curve.

Y (m)




(1) 9x=y? y=3x

tanO = y/x tanf = 3f: j_
3 o d6/dt = w
Ve tan6 X7 tan?e
2
dx  —18sec‘0 do o = —18 sec“6
dt ~ *"  tan®0 dt x tan30
3 :
(2) 6= tan 10-=36.869 \
< 5
3
~18 sec*(36.869) m —

- X3=-200— «
T T an3(36.869) e




Dynamic Engineering Mechanics

Motion of Projectiles



Motion of Projectiles

- The motion of a projectile in flight can usually be considered
as curvilinear motion of a particle.

- When air resistance is neglected, the only force acting
on the projectile is its weight.

- The horizontal component of acceleration is zero, and
the vertical component of acceleration due to the
weight of the body is approximately 9.81m/sec? or
32.2 ft/sec? directed vertically downward ( constant
acceleration).



Consider the projectile shown in Fig. below;




By Application of constant acceleration equations:

Horizontal motion : a,=a.=0;
(i’) =1t a; 0, = (1),
' | 2 .
(i) X=Xyt yf (0l X=X (f-'[])ll'

(_-l:)) “'l — J]E} i 2”{'(']; a I[ﬁl); Uy = ('ul)).l

The first and last equations indicate that the horizontal
components of velocity always remains constant
during the motion.



= )f[] | “(f}
| )
J= 0t 2(1[1“

=)




EX.1: An airplane flying 400 km/hr horizontally
accidentally losses a rivet when it is 1800 m above
the ground. Determine the location where the rivet

will land if air resistance is neglected.

Rivet
I R
I So
= ! b
~
| N
o l N
o I N
o0 l N
A I \
[ \
I \
v \
< >




Solution :

Choose the location of origin

Rivet
A ’ ““““““
1 T~
I S o
S N
g 3
(o 0] lY \\\
o | \\
\ X) \\A
T),
<« -




At point A:

A:? Ya =

Y=Y+ V,, .t+0.5gt?

H.W. Resolve by
choosing the origin

0=1800+0.t-0.5x9.81 x t2

t=19.157 sec

X=X, +V,, . 1
x=0+111.111 x 19.157
X=2128.553 m

at the Rivet.
Rivet
A ’ ~~~~~~
I T~
I So
I N
| N
I N
Y M
\
\
\\
v _I )(> \A
O
< >



EX.2: A ball thrown horizontally from the top of a
50 m high building hits the horizontal ground
20 m from the base of the building. What was
the initial velocity of the ball.

Solution:

Ground

20m




Choose the origin at the
top of the building

Y
X
A > —
H.W. Resolve by
: S
choosing the o
origin at A. 1
¥ Ground A
<€ >

20 m
Xo=Yo=0 Vox ZVx Vg =0
At point A: x,=20m Yo=-50m
Y=Y+ V,, .t+0.5gt?
50=0+0.t-05x9.81xt2 MP  t=3.193sec

»

X=X,+v, .t 20=0+v_, x 3.193

v, =6.264 m/sec v,= |tht1= 62642 4+ 0 = 6264m/ sec horizontal



EX.3: A ball is thrown with a speed of 12 m/sec at
an angle of 60° with the building and strike the
ground 11.3 m horizontally from the foot of the
building. Determine the height of the building.

V,=12 m/sec

11.3m



Solution : Choose the origin at the top of building

V_=12 m/sec

11.3 m
At origin:  x,=Yy,=0

v, =V, =12sin 60° m/sec

Vo, = -12 cos 60° m/sec



At Point A:
X,=11.3m

X=X,+v,, .t

11.3=0+12sin60" x t
t=1.087 sec

Y=Yot+V,, . t+05gt

V_=12 m/sec

11.3 m

-h=0-12cos60°xt-0.5x9.81 x 1.0872

h=12.318 m
H.W.

1. Resolve with the origin at the top of the building with y—axis

downward.

2. Resolve with the origin at the lower corner of the building.



EX.4: The dive bomber in Fig. below traveling at a velocity of
268 mile/sec has a flight angle of 60° when sighting on
target. Determine the target lead L , which the pilot must
allow when releasing a bomb from an altitude of 600 m.

Dive Bomber




Solution: Choose the origin on the ground;

L=X, - X Dive Bomber

X, =600 / tan60° =346.41 m

V, = 268 cos60° = 134 mps «— =V,
V, = 268 sin60° = 232.1 mps |

Vv
To Find X: For Point B: A //">60°'
V2y=vzoy_2g(y'yo) 2/
232.1°=V %, —2x9.81x (600 - 0)
V,, = 256.208 mps <

V,=V, -g.t Hp 232.1=256.208-99.81 x t Mt =2.457 sec
X=X, +Vo Xt W x=0 +134 x2.457 =329.238 m

L=X;—-X=346.41-329.238=17.172 m



Problem 1: A toy launcher projects a missile with an
initial speed of 20 m/sec. If the missile lands 12 m
away at the same elevation, what must have been
the angle of elevation of the launcher?

Problem 2: A ball is projected from A with a speed of
3 m/sec at an angle of 25° as shown below.
Determine the coordinates of point B at which the
ball will hit the plane which is 25° below the
horizontal. AY




Problem 3: A ball thrown with an initial velocity of 30
m/sec as shown below, just clears the edges A and
B of building 36m away. Determine the height h,
and the width b, of the building.




CHAPTER FOUR
Kinetics of Rigid Body

4.1 Planar Kinetics Equation of Motion
Consider an arbitrary rigid body of Fig. shown below. Here

the inertial frame of reference x, y, z has its origin
coincident with the arbitrary point P in the body. By
definition, these axes do not rotate and are either fixed or
translate with constant velocity.




Equation of Translational Motion:

The external forces acting on the body in Fig. below represent the
effect of different types of forces between adjacent bodies. So:

2F =m.ag

The translational equation of
motion for the mass center of a
rigid body: It states that the
sum of all the external forces
acting on the body is equal to
the body's mass times the
acceleration of its mass center
G.




For motion of the body in the x-y plane, the translational
equation of motion may be written in the form of two
independent scalar equations, namely,

>F. =m.(ag), 2F, =m.(ag),

4.2 Equations of Motion: Translation

If a rigid body in Fig. below, has a motion of translation, the
resultant of the external forces applied on the body must pass
through its mass center and, therefore, the resultant moment of
the external forces about the mass center must be zero. That is:

Z(MG)X = O Z(MG)y = O Z(MG)Z = 0
>(Mg), = the moment of a force about an axis through the mass
center in the x direction;

Z(MG)y = the moment of a force about an axis through the mass
center in the y direction;

>(M;), = the moment of a force about an axis through the mass
center in the z direction;



4.2.1 Rectilinear Translation
Consider the rigid body shown below:

If the mass center moves in the xy planes, then:

>F, =m(ag), 2F, =m (ag), S(Mg), =0



4.2.2 Curvilinear Translation

When a rigid body is subjected to curvilinear translation, all
the particles of the body will travel along parallel curved
paths. For analysis, its often convenient to use an internal
coordinate system having an origin which coincides with
the body's mass center at the instant considered, and axes
which are oriented in the normal and tangential directions
to the path of motion, Fig. below. The three scalar
equations of motion are then



>F.=m (ag),
ZMG=
Note ,
(al})n — E: mzr
dv
(ag ) = — =

(8 )y dsg = vy dv

(8 )y =ar




Ex.1: A horizontal force P=70 N is exerted on mass
A=16kg as shown in Fig. below. The coefficient of
friction between mass A and the horizontal
plane is 0.25. B has amass of 4 kg and the
coefficient of friction between it and the plane is
0.5. the cord between the two masses makes an
angle of 10° with the horizontal. What is the
tension in the cord.

B




Solution:

B

Draw the F.B.D

m,.a
Mg.a,s A* “xA
— ’
| T Y “10° > 16Kk
ke | —10° Af Bl 70N
B X T —>
FB
INB Fa TN
F.B.D of B A

sz=mB'ayB » N;—4x9.81+Tsin1l0°=4x0

N, = 39.245 - T sin10° » Fg = 0.5 Ny = 0.5 (39.24 - T sin10°)



M, . a,n

Mg . A)p —>
——
| T [v 155 1eke
4lkg _— 10_0_ ~ A 70 N
B X T
FB
INB Fa TN
A

T cos10°- 0.5 (39.24 - Tsin10°) =4 a ,
ag=0268T-4905 ... (1)

F.B.D of A
5F,=m,.a, P N,-16x9.81-Tsin10°=16x0

N, =156.96 + T sin10°
Fo=0.25 N, = 0.25 (156.96 + T sin10°)




2F,=my.a,, » 70 — F, — T.cos10°= 16 a_,
70 — 0.25 (156.96 + T sin10°) — T.cos10°= 16 a ,

a,=1923-0.06437T ... (2)

axA = axB

1.923-0.0643T=0.268 T —-4.905

T=20.548 N Ans. m,.a,
10— 16ke] gop




Ex.2: Fig. below indicates a particle of mass m
which can move in a circular path about the vy
axis. The plane of the circular path is horizontal
and perpendicular to the y-axis. As the angular
velocity w increases, however, the rises, which
means that the radius r of its circular path also
increases. Derive the relationship between 0 and
w for constant angular velocity, and find the

frequency in terms of 0.
L > s o L
TAL -
0 /\\




Solution:
Draw the F.B.D for The particle L

Y 1: 3 O LA
|
m.a, N !
X —_— \\i-“-—”/
m.g
7 / //7 77 7/
r=1Lsin@
- - i — 2
a, = a, = hormal acceleration = w*.r W4
a,=a,=a.r=0 ( constant w)
—0

2F.=m.a,
T.sin@B=m.a,=m.w?.r =m. w?.LsinO

T=m.w?.L




2F,=m.a,
T.cosO—-m.g=0 » T=m.g/cos® ... (2)
Equating eg.1 and eq.2

mw?.L=m.g/cos®6 ... (1)

o= [ 2
L.cos@

J Hz

L .cos@




Ex.3: In the system below of pulleys and weights shown. Let x,,
X, , X; be the position of the 0.5, 1.0, 1.5 kg masses
respectively during any phase of the motion after the system
is released. Neglect the masses of the pulleys and the cords,

and assume no friction. Determine the tensions in the cords.
L L L L L s L L L/

T




Solution: Draw F.B.D. for the pulleys

T2t /‘\
TZ
-
o T1v TZ
Pulley 1 Pulley 2
Pulley 1

2F,=m.a » 2F,=0 ( Mass is Neglected)




F.B.D of masses 0.5, 1.0 and 1.5 kg

1;1 1;1 l T2
mlla1 mzla2 Mj . a;
0.5 kg 1 kg 1.5 kg
2F,=m.a

0.5x9.81 -T,=m,.a, MPO0.5x9.81 -T,=05a,
1x9.81-T,=m,.a, » 9.81 -T,=a,

1.5x9.81 -T,=m;.a; M 1.5x9.81 -T,=15a,

Length of cord 1 remains constant.
(X, - X) +(x,—x) =K, » X, +X,—2x =K,

V,+Vv,—2v=0 » a,+a,-2a=0 ... (5)



Length of cord 2 remains constant.
(x - c) +(x3—c) =K,
X+Xx3—2c=K,
v+v; =0
a+a;=0 veees (6)

By solving the above 6 egs.

T,=6.92 N

T,=13.85 N



Problem 4: Two masses of 14 kg and 7 kg connected by a
flexible inextensible cord rest on inclined plane shown
below. When the masses are released what will be the
tension T in the cord? Assume the coefficient of friction
between the plane and the 14 kg mass is 0.25 and
between the plane and 7 kg mass is 0.375.

&

45°




Ex. 5: The 130 N block A of fig. below has a velocity of 30
m/sec up the plane. the coefficient of friction between
the block and the plane is 0.1. Determine how far up the
plane the block will slide before it stops.

Solution: e
Draw F.B.D /
m = 190/9.81 = 13.252 kg

2F,=m.a, ys

N-130(2/13)=0 » N=120N 2




. Ox
ZFx=m.ax y’

-F-130(5/13) = 13.252 a,
-0.1 x 120 —130 (5/13) = 13.252 a,

a, =-4.679 m/sec? decceleration

The x-component of the weight is constant, so, a, is constant.
If the body slide till stop, v=0.

v=v, +a .t » 0=30 -4.679xt » t=6.412 sec

x=x, +v,.t+0.5a,.t?

X=0 +30x 6.412 + 0.5 (-4.679) x (6.412)2 » X =96.174 m



Problem.6: Block A of Fig. below weighs 100 N and B
weighs 150 N. The coefficient of friction between A
and the inclined plane is 0.2. Determine the
acceleration of body A when it is moving up the
plane.

Smooth




Ex.7: A 22.5 kg homogenous door is supported on
frictionless rollers A and B resting on horizontal track,
as shown below. A constant force P of 45 N is
applied. What will be the velocity of the door 5 sec

after starting from rest? What are the reactions of
the rollers?

A B

/X /N

1200 mm | 1200 mm P=45N
GO 300 mm




Solution:

A

F.B.D. of door:

1200 mm = 1200 mm

\K////// \///

P=45N
>

300 mm

GO

" "

3




Eq.(1) 45=22.5a, » a, =2 mfsec? —
Eq.(2) RA+RB-W =0 » RA+RB-225x9.81=0 ..(4)

Eq.(3) -RAx0.12+RBx0.12-45x0.3 =0 .. (5)
Solve Egs. (4) & (5) » RA = 104.75 N, RA=116 N
TRA TRB
M-8 P=45N

[ 1.




V,=V,+a, .t

v,=0+2x5=10m/sec ——



Problem 7: The homogenous 10 kg body A of Fig.
below is moving to the right with a velocity of 6
m/sec. Determine the max. weight of body B may
have without causing A to tip.

Smooth

| 1.4m <
O

3m A

AN
v




Smooth

Solution:
1.4 m
3m A
7 7 7 7 7 7
p=0.2
F.B.D of A
2F,=m.a, m.a,
N-10x9.81=0 ’

N=98.1N | Y
Fz=02N=19.62N «—— X

Since body A may tip about point O, so,
maximum value of x before tippingis 0.7 m

SMc=0 mp Tx15+ Fx 1.5-Nx0.7=0

o

_“\[ ’
- - _(H_
> 4 o
—
2 oQ
o

]



o

T=26.16 N

ZFX= m. ax m.a, A
T-F=10xa, Y Glmk
a, =0.654 m/sec? —— [ X | go
F.B.D of B o ‘N
a,=a, =0.654 m/sec? D

F
z ay N
W, - T = (W /9.81) x 0.654
W; =28.029 N m .rx B

L B aial) ¢ijgl dash ual We lv

A sl QIR G Y !



Chapter Five

Work and Energy



Work and Energy
1. The Work of a Force

A force F will do work on a particle only when the particle
undergoes a displacement in the direction of the force.

AF

Figure 1




For example, if the force F in Fig. 1 below causes the particle to
move along the path s from position r to a new position r’,
the displacement is then dr = v - r. The magnitude of dr is ds,
the length of the differential segment along the path.

If the angle between the tails of
dr and F is © then the work
done by F is a scalar quantity,

defined by:
dU = F ds cosO

For : 0° < B <90° dU is +ve.

i.e. the force component and the displacement
have the same sense.

For : 90° < B < 180° du is -ve.

i.e. the force component and the displacement
have opposite sense.

AF




For : © = 90° » dU is zero

i.e. the force is perpendicular to displacement, since cos 90° = 0, or
if the force is applied at a fixed point, in which case the
displacement is zero.

Notes:
1. Work done by a one - newton force when it moves through a
distance of one meter in the direction of the force (1J =1 N. m).

2. work is measured in units of foot-pounds (ft. Ib), which is the
work done by a one-pound force acting through a distance of one
foot in the direction of the force.



Work of a Variable Force. If the particle acted upon by the force F
undergoes a finite displacement along its path from rl to r2 or
sl to s2, Fig. 2a, the work of force F[ U, is the total work done
by force F] is determined by integration. Provided F and 6 can
be expressed as a function of position, then

Fa Lh]
Uy_y = [ F-dr = f F cos 8 ds 1
of T ¥

fll.:'ll'*; ]

Figure 2 (b)

(a)




Work of a Constant Force Moving Along a Straight Line.

If the force F_ has a constant magnitude and acts at a
constant angle © from its straight-line path, Fig.33,
then the component of F_ in the direction of
displacement is always F_ .cos 6. The work done by F_
when the particle is displaced from sl to s2 is
determined from Eq. 1, in which case:

I cos #

j F.cos g
i
; — *

(3 Figure 3 (b)




Ui, =F cnsﬂ/‘ds

Or

Uy = F, cosbls; = 5) 2

Here the work of Fc represents the area of the rectangle
in Fig. 3b.



Work of a Weight. Consider a particle of weight W, which moves
up along the path s shown in Fig. 4 from position s1 to position
s2 . At an intermediate point, the displacement
dr = dxi + dyj + dzk. Since W = -Wj , applying Eq.1 we have

Iz
Ui-> = /F-dr = f (—Wj)- (dxi + dyj + dzk)
. r

¥ ¥
= / —Wdy = —W(»w — »)
Or ~ ¥

z Figure 4




Thus, the work is independent of the path and is equal to the
magnitude of the particle’s weight times its vertical
displacement. In the case shown in Fig.4 the work is negative,
since W is downward and Ay is upward.

Note, however, that if the particle is displaced downward ( -Ay), the
work of the weight is positive.

L'r|_: — -—w Ij}- 3

#4

Figure 4




Work of a Spring Force. If an elastic spring is elongated a distance
ds, Fig.5a, then the work done by the force that acts on the
attached particle is dU = -F_ ds = -k . s ds. The work is negative
since F, acts in the opposite sense to ds. If the particle displaces
from s1 to s2, the work of Fs is then

Unstretched
PUHH{JH_ s=1

Fa Ihl{.lnl II
1] [

ﬂa: NI =0

; _...-*""--
[-nrcL on : |
¥ I|I] h:
Particle

i hi

Figure 5




Unstretched

position. s = 0

(a)

p

Force on
Particle

" 4

(b)

This work
represents the
trapezoidal area
under the line Fs
= k.s, Fig.5b.



Note: A mistake in sign can be avoided when applying this equation if
one simply notes the direction of the spring force acting on the
particle and compares it with the sense of direction of displacement
of the particle if both are in the same sense, positive work results; if
they are opposite to one another, the work is negative.

The forces acting on the cart,
as it is pulled a distance up
the incline, are shown on its
free-body  diagram. The 1.
constant towing force T does '«
positive work of
UT = (T cos @).s, the weight |
does negative work of |-
UW = -(W sin 0).s, and the
normal force N does no work = \§
since there is no
displacement of this force
along its line of action




Ex.1: The |0 kg block shown in Fig. 6 rests on the smooth incline. If
the spring is originally stretched 0.5 m, determine the total work
done by all the forces acting on the block when a horizontal
force P =400 N pushes the block up the plane s=2 m.

[nitial
~._  position of spring

25m 30" m

T oo P m

Fisure 5




Solution:

98.1 N30
. 2s5m 30" m
fi ks P=400N

/ \{}’

+=2m .
i [nitial

_position of spring
P =400 N>

Ng

2 s W m

Horizontal Force P: 30
Horizontal Force P. Since this force is constant, the work is determined using Eq. 2.
The result can be calculated as the force times the component of displacement in
the direction of the force; i.e., U,,=F_cosB (s,-s,)

Up = 400N (2mcos 30°) = 692.8)
Or the displacement times the component of force in the
direction of displacement, i.e.,

Up = 400N cos 30°(2 m) = 692.8)



Spring Force Fs:

In the initial position the spring is stretched S, = 0.5 m and in
the final position it is stretched S, = 0.5 m + 2 m = 2.5 m. We
require the work to be negative since the force and
displacement are opposite to each other. The work of Fs is thus

U, = _}{3[]1"«',.-"'111]{2..‘1m]j %{M]I\'_.-"]ﬂ]{[l.ﬁm]j-- 00 ]
Weight W:

Since the weight acts in the opposite sense to its vertical
displacement, the work is negative; i.e.,

Uyw = =(9.IN) (2msm30°) = -98.1)
Or it is also possible to consider the component of weight in
the direction of displacement; i.e.,

Uy = =(%.Isin30° N) (2m) = =981 )



Normal Force Ng:

This force does no work since it is always perpendicular to the
displacement.

Total Work. The work of all the forces when the block is
displaced 2 m is therefore

[ =0928] = W] - 981) =] Ans



2. Principle of Work and Energy

If the particle has a mass m ( Fig.7) and is subjected to a system
of external forces represented by the resultant F; = 3F, then the
equation of motion for the particle in the tangential direction is
>F. = m. a,. Applying the kinematic equation a, =vdv/ds and
integrating both sides, assuming initially that the particle has a
position s = s, and a speed v =v, ,and laterats=s,,v=v,, we
have

#RY H
: 2 _E

; e
- i FJ 1 E
- ' o
5 :

\
(!
EI*',i = F, =2F

" Figure 7




e Yk "I'-:'
. I|I B . - ] : J .
> | Fds= / mv dv » E] F,ds = 5mv; — 5 mvj 5
..-'IS'| of T .'l'l

From Fig. 7, note that >F. = >F cosB, and since work is defined
from Eq. 1, the final result can be written as:

2U -5 = %HH'% %‘_.I'FH'% 6

This equation represents the principle of work and energy for the
Particle:




2U_q = %HH'% %‘_HH'% 6

Left side = the sum of the work done by all the forces acting on the
particle as the particle moves from point 1 to point 2

Right side: | = ,]‘.g I t'z ; the particle's final and initial kinetic energy

Like work, kinetic energy is a scalar and has units of joules (J);

Unlike work, which can be either positive or negative, the kinetic

energy is always positive, regardless of the direction of motion of
the particle.

Tr| -+ EUE_E — }.43 6

which states that the particle's initial kinetic energy plus the work
done by all the forces acting on the particle as it moves from its
initial to its final position is equal to the particle's final kinetic
energy.




Procedure for Analysis

Work (Free-Body Diagram).

Establish the inertial coordinate system and draw a free-body
diagram of the particle in order to account for all the forces that
do work on the particle as it moves along its path.

Principle of Work and Energy.
1. Apply the principle of work and energy, T, +3 U,,=T,.

2. The kinetic energy at the initial and final points is always
positive, since it involves the speed squared (T = 0.5 mv?).

3. A force does work when it moves through a displacement in the
direction of the force.

4. Work is positive when the force component is in the same sense
of direction as its displacement, otherwise it is negative.

4. Forces that are functions of displacement must be integrated to
obtain the work. Graphically, the work is equal to the area under
the force-displacement curve.



5. The work of a weight is the product of the weight magnitude
and the vertical displacement, U, = £ W.y. It is positive when the
weight moves downwards.

6. The work of a spring is of the form U, = 0.5 k s?, where k is the
spring stiffness and s is the stretch or compression of the spring.



3. Principle of Work a n d Energy for a System of Particles.

The principle of work and energy can be extended to include a
system of particles isolated within an enclosed region of space

as shown in Fig.8. s,
The arbitrary ith particle, having —
a mass m, , is subjected to a L A _.,-'“*}H
resultant external force F, and a #,r‘fx f’/ E‘.,
resultant internal force f. which all i O & f; d
the other particles exert on the ith ol r s
i Q 7
particle. = Q /
Apply the principle of work and X R

energy to this and each of the other
particles in the system, then since
work and energy are scalar
guantities, the equations can be

summed algebraically: 5T +3U,,=3T, ... (8)

Inertial coordinate system

Figure 8




le + z Ul_z - ZTZ oooooo (8)
The initial kinetic energy of the system plus the work done by all
the external and internal forces acting on the system is equal to

the final kinetic energy of the system.
Work of Friction Caused by Sliding. These problems involve cases
where a body slides over the surface of another body in the
presence of friction. Consider, for example, a block which is
translating a distance s over a rough surface as shown in Fig.9a. If
the applied force P just balances the resultant frictional force p, N,
Fig.9b, then due to equilibrium a constant velocity v is
maintained, and one would expect Eq. 8 to be applied as follows:

7 | 2
smv® + Ps — wNs = smv’

v v W

—— —_—
—_— — | l —_—

¢ _| F=muN
Figure 9 | b

N

|




Ex.2: The 3500-Ib automobile shown in Fig. 10a travels down the
10° inclined road at a speed of 20 ft/s. If the driver jams on the
brakes, causing his wheels to lock, determine how far s the
tires skid on the road. The coefficient of kinetic friction

between the wheels and the road is p, = 0.5.
Solution

This problem can b e solved

using the principle of work L
and energy, since it involves
force, velocity, and
displacement.

20 ft/s
| =™

Toe

Figsure 10

(a)

Work (Free-Body Diagram). As shown in Fig. 10b, the normal force N,
does no work since it never undergoes displacement along its line of
action. The weight, 3500 Ib, is displaced s.sin10° and does positive
work. Why? The frictional force F, does both external and internal
work when it undergoes a displacement s. This work is negative since it
is in the opposite sense of direction to the displacement.



Applying the equation of

equilibrium normal to the T 11,3500 1b

road, we have: " ——
: > F,

+NZF, = 0; *,t"'* !

N, Figure 10
(b)

N4 — 3500 cos 107 1Ib = 0

M= et » Fa=pm N, =05(344681b) = 172341
Principle of Work and Energy.
I+ 22U, =1

1/ 3500 Ib
( 2)[20 ft/s)® + 3500 Ib(ssin 10°) — (1723.41b)s = 0
2 \32.2 ft/s . .
H.W. Solve using equation of
7= 1951 Ans motion ( force and

acceleration0O



Ex.3: For a short time the crane in Fig. 11 lifts the 2.50 Mg beam
with a force of F = (28 + 3 s?) kN. Determine the speed of the
beam when it has risen s = 3 m. Also, how much time does it take
to attain this height starting from rest?

Solution

Note that ats =0,
F =28(103)N > W = 2.50(103)(9.81)N,
so motion will occur.

Work (Free-Body Diagram).

As shown on the free-body diagram,
the lifting force F does positive work,
which must be determined by -4
integration since this force is a
variable. Also, the weight is constant
and will do negative work since the E
displacement is upwards. it i

Figsure 11

F.B.D
) e |
= S {10£W1} L]




Principles of Work and Energy. ¥

nh+at,=1,

}

2.50 (10P)(9.81) N

] —

0+ /F{za + 310 ds — (2.50)(10°)(9.81)s = 5(2.50)(10%)?
28(10%)s + (10°)s* = 24.525(10%)s = 1.25(10°}p?

» = (2785 + 0.85%):

When s = 3 m, » = 547 mj.'llﬁ



Kinematics.

Since we were able to express the velocity as a function of
displacement, the time can be determined using v = dsldt. In

this case,

= (2,785 + 0.85%):

a5 _ (2.78s + 085°) » j
pry 2785 + 085

= 1.79s

H.W. Find the acceleration :

1. By Applying the Kinematics;
2. By Using Force and acceleration.



Ex.4: The platform P, shown in Fig. 12a, has negligible mass and is
tied down so that the 0.4 m long cords keep a 1 m long spring
compressed 0.6 m when nothing is on the platform. If a 2 kg
block is placed on the platform and released from rest after
the platform is pushed down 0.1 m, Fig. 112b, determine the
maximum height h the block rises in the air, measured from
the ground .

Fisure 12




Solution:

Work (Free-Body Diagram).

Since the block is released from rest and later reaches its
maximum height, the initial and final velocities are zero.

The free-body diagram of the block when it is still in
contact with the platform is shown below

1962 N
Note that the weight does negative work and the 1
spring force does positive work. e
The initial compression in the spring is T
s =06m+01m=07m F

Due to the cords, the spring's final compression is
52 = 06 m (after the block leaves the platform)

The bottom of the block rises from a height of :

(04m = 01m) =03 mtoa fnal height i



Principle of Work and Energy:

1962 N i
1 k = 200N/m
bt

B

T] + EUI—E — T1

%mu% + {—(iks% = ﬁ.’ ) W I:I_}'} ;”m%

0 + {~ 3(200N/m)(0.6 m)? — }(200N/m)(0.7m)*| = (1962N)[h - (03 m l} 0

h =093 m Ans,



Ex.5: The 40 kg boy in Fig. 13 slides down the smooth water slide. If
he starts from rest at A, determine his speed when he reaches B and
the normal reaction the slide exerts on the boy at this position.

A

y = 0.075x




Solution:

Work (Free-Body Diagram).

A s shown o n the free-body diagram, there are two forces
acting on the boy as he goes down the slide. Note that the
normal force does no work.

Principle of Work and Energy. '
CA9.81) N
T-‘I + EU.‘I g = TE 'H_l
0 + (40(9.81)N)(7.5m) = 5(40 kg)vp J,\_i
vg = 1213 m/s = 12.1 m/s Ans ™,

Equation of Motion.

Referring to the free-body diagram of the boy when he is at B, Fig.
below, the normal reaction N; can now be obtained by applying the
equation of motion along the n axis. Here the radius of curvature of
the path is



dy \2 P~ "
{1 + (dx) l 1+ (0.15x) ]

=y |d*y/dx’| g 015} x=0 - ooorm PRSI
‘ﬂ-—:"i.l!-l'-... #
i 1
+1EF, = ma,:
Ng

N — 40(9.81)N = 40k A58y

g~ 40081)N = 40 kg ——cccm

% !

Ny =12753N = 1.28kN Ans.



Ex.6: Blocks A and B shown in Fig. 14 have a mass of 10 kg and 100
kg, respectively. Determine the distance B travels when it is released
from rest to the point where its speed becomes 2 m/s.

Datum




Solution:

Work (Free-Body Diagram).

As shown on the free-body diagram of the system, the cable force T
and reactions R, and R, do no work, since these forces represent
the reactions at the supports and consequently they do not move
while the blocks are displaced. The weights both do positive work if
we assume both move downward, in the positive sense of direction

of S,and §S;.
Principle of Work and Energy. Tk .
Realizing the blocks are released T 1 4
from rest, we have |
ET[ T EU| ., ET} /4

e Tl - il - 1
{_ﬂm (v ,::? + m gl ."_.-.;}?JL + {W, Asy + Wy Asp) 081 N

.-"1
{_, Malla)s +3mpllp)ay S



. T
{0+ 0} + {98.1N (Asy) + 981 N (Asp)} = f ? Fi

{i[l[]kgﬁ:[a',,}ﬂ+l[l[][]kgﬁ:[2m/’5)1} (1)
Kinematics. Iz
Using the methods of kinematics it may I
be seen from Fig. that the total length L of 98I N
all the vertical segments of cable 1
may be expressed in terms of the position 98.1 N

coordinates S, and S; as

sq4+ dsp =1 » U 4 g ‘
.ji,"l- A + '-I' .ji,"l-_lr.l' [.:l

Asa = —4 Asp Uy = ~40p = =4(2m/s) = -8 m/s

Asp = 0.883m |




4. Power and Efficiency

Power. The term "power" provides a useful basis for choosing the
type of motor or machine which is required to do a certain
amount of work in a given time.

For example, two pumps may each be able to empty a reservoir if
given enough time; however, the pump having the larger power

will complete the job sooner.

The power generated by a machine or engine that performs an
amount of work dU within the time interval dt is therefore:

dl/
dt

[f the work dU 1s expressed as dU = F+dr, then

dlf F - dr ar
P = = = F - 2
dt dt (dt ‘ ¢

|
mry

o



Hence, power is a scalar, where in this formulation v represents the
velocity of the particle which is acted upon by the force F.

The basic units of power used in the S| and FPS systems are the

watt (W) and horsepower (hp), respectively. These units are
defined as

|W=1J/s=1N'm/s L hp = 5501t+Ib/s

For conversion between the two systems of units, | hp = 746 W,

Efficiency. The mechanical efficiency of a machine is defined as
the ratio of the output of useful power produced by the machine
to the input of power supplied to the machine. Hence,

power output

€ — .
powcr lllplll



If energy supplied to the machine occurs during the same time
interval at which it is drawn, then the efficiency may also be
expressed in terms of the ratio:

energy output

energy input

Note: Since machines consist of a series of moving parts,
frictional forces will always be developed within the machine, and
as a result, extra energy or power is needed to overcome these
forces. Consequently, power output will be less than power input
and so the efficiency of a machine is always less than 1.




Procedure for Analysis

o First determine the external force F acting on the body which
causes the motion. This force 1s usually developed by a machine
or engine placed either within or external to the body.

o If the body 1s accelerating, it may be necessary to draw its free-
body diagram and apply the equation of motion (ZF = ma) to
determine F.

® Once F and the velocity v of the particle where F 1s apphied have
been found, the power is determined by multiplying the force
magnitude with the component of velocity acting in the direction
of F,(i.e., P = F-v = Fvcos#).

® In some problems the power may be found by calculating the
work done by F per unit of time (F,,, = AU/At,).




Ex.7: The man in Fig. below pushes on the 50 kg crate with a force

of F = 150 N. Determine the power supplied by the man when
t = 4 s. The coefficient of kinetic friction between the floor and the

crate is p, = 0.2. Initially the create is at rest .




Solution: The free-body diagram of the crate is

Applying the equation

$
of motion,

—_—a

+1 2F, = may;

N - [2J150N - S9SN =0

N =305N

) . [ ¥ _..JUL-'...J i . ) '2
L2Fy = ma » £J150N - 02(5805N) = (0 ke » 0= 008 mj

The velocity of the crate when t =4 s is therefore

v=1v tald » v =10+ (0078 m/s’)(45) = 0.312 m/s



The power supplied to the crate by the man when t = 4 s is
therefore

P=F-v=Fo= [ 10N)0312m/s) =374 W



Chapter Six

Impulse and Momentum



6.1 Principle of Linear Impulse
and Momentum

Using kinematics, the equation of motion for a article
of mass m can be written as:

d
>F = ma = m'—v
dt

I Va
2 2 ty
E/I Fdr = f”/ dv or 2/ Fdt = mv, — mv,
1 Vi
I

This equation is referred to as the princip/e of linear
impulse and momentum.




Linear Momentum Unit

Since m is a positive scalar, the linear-
momentum vector has the same direction as
v, and its magnitude mv has units of mass
times velocity, e.g.:

kg.m/s



Linear Impulse

The integral of force in time domain is writen:

[ = 'fF,.:dr = F.(t, — 1;)

and referred to as the linear impulse. This term is a vector
guantity which measures the effect of a force during the
time the force acts. Since time is a positive scalar, the
impulse acts in the same direction as the force, and its
magnitude has units of force times time, e.g.:

N.s

Note:

Although the units for impulse and momentum are defined
differently, it can be shown is dimensionally homogeneous.




Graphical of Linear Impulse

F

f,.--' [ = FC(_TQ = Il)
Constant Force

f
I 5]

= J"f F(1)dt

Variable Force

t

I I



Principle of Linear Impulse and Momentum

153
oy + 3 [ Fedt = miwy,
h
5}
m(vy); + 2/ Fy dt = m(vy),
I

I
m(v,); + Zf F, dt = m(v,),
I

s . a_

Initial Impulse Final
momentum diagram momentum
diagram diagram




Principle of Linear Impulse and
Momentum for a System of Particles

States that the initial linear momentum of the
system plus the impulses of all the external
forces acting on the system from tl to t2 is
equal to the system’s final linear momentum.

i
EH'II(VE)I s 2/ Fi'(ff - 2”‘1,‘(1’,‘)2
J 1,



Procedure for Analysis (1-2)
Free-Body Diagram.

e Establish the x, y, z inertial frame of reference and draw the
particle’s free-body diagram in order to account for all the forces
that produce impulses on the particle.

¢ The direction and sense of the particle’s initial and final velocities
should be established.

e [f a vector 1s unknown, assume that the sense of its components is
in the direction of the positive inertial coordinate(s).

e As an alternative procedure, draw the impulse and momentum
diagrams for the particle



Procedure for Analysis (2-2)

Principle of Impulse and Momentum.

e In accordance with the established coordinate system, apply the
principle of linearimpulse and momentum, mv, + X, :::EF dt = mv,.
If motion occurs in the x—y plane, the two scalar component
equations can be formulated by either resolving the vector
components of F from the free-body diagram, or by using the
data on the impulse and momentum diagrams.

e Realize that every force acting on the particle’s free-body diagram
will create an impulse, even though some of these forces will do
no work.

e Forces that are functions of time must be integrated to obtain the
impulse. Graphically, the impulse is equal to the area under the
force—time curve.



EXAMPLE | 15.1

The 10i-kg crate shown in Fig. 15-5a is originally at rest on the smooth
horizontal surface. If a towing force of 200 N, acting at an angle of 45, is
applied for 10 s, determine the final velocity and the normal force which
the surface exerts on the crate during this time interval.

SOLUTION

This problem can be solved using the principle of impulse and
momentum since it involves force, velocity, and time.

Free-Body Diagram. See Fig. 15-5b. Since all the forces acting are
constant, the impulses are simply the product of the force magnitude
and 10s[I=F.it, — 1)

Principle of Impulse and Momentum.

2
(%) m(v,), +% f Fydt = m(v,),

hy

0 + 200N cos 45710 s) = (100 kg)v,
= 14.1m/s Ans.

i
(+1) mivy)y + Ef Fydt = m(vyh

h

0+ NA10s) — 981 N(10s) + 200 N sin 45°(10s) = 0
Fig.15-5 Ny = 840N Ans.




15-6.

A train consists of a 50-Mg engine and three cars, each
having a mass of 30 Mg. If it takes 80 s for the train to
increase its speed uniformly to 40 km/h, starting from rest,
determine the force 7 developed at the coupling between
the engine E and the first car A. The wheels of the engine
provide a resultant frictional tractive force F which gives
the train forward motion, whereas the car wheels roll freely.
Also, determine F acting on the engine wheels.

SOLUTION

(vy); = 40 km/h = 11.11 m/s

Entire train:

(j'») m(ve)y + X f Fydt = m(v,),

0 + F(80) = [50 + 3(30)](10°)(11.11)

F = 194kN Ans. —_— V

Three cars:

(i) m(v,); + 2 f F.dt = m(v,),

0 + T(80) = 3(30)(10°)(11.11) T = 125kN Ans.




15-9.

The 200-kg crate rests on the ground for which the
coefficients of static and kinetic friction are p, = 0.5 and
i = 0.4, respectively. The winch delivers a horizontal
towing force T to its cable at A which varies as shown in the
graph. Determine the speed of the crate when =4 s
Originally the tension in the cable is zero. Hint: First
determine the force needed to begin moving the crate.

SOLUTION

Equilibrium. The time required to move the crate can be determined by
considering the equilibrium of the crate. Since the crate is required to be on the
verge of sliding, Fy = u,N = 0.5 N. Referring to the FBD of the crate. Fig. a.

+1 3F=0; N-2000981)=0 N=1962N
T OSE =0; 2(4002) — 05(1962) = 0 ¢ = 1.5037 s

Principle of Impulse and Momentum. Since the crate is sliding,
Fr= N = 0.4(1962) = 784.8 N. Referring to the FBD of the crate, Fig. a

() m(vy), + 2/ Fodt = m(vy),

4s .
0+ 2/ 400z dt — T84.8(4 — 1.5037) = 200w
1

5037 s

v =062l m/s = 6.62m/s Ans.

T(N)
800
T = 400 /2
4
g B




Problems

F15-4. The wheels of the 1.5-Mg car generate the traction  15-10, The 50-kg crate is pulled by the constant force P. If

force F described by the graph. If the car starts from rest,  the crate starts from rest and achieves a speed of 10 m/s in

determine its speed whent = 6s. 5 s, determine the magnitude of P. The coefficient of kinetic
friction between the crate and the ground is g, = 0.2.

F (kN)
oo
—_
F
6 kN
‘ —1(s)
2 6
Prob. F15-4

Prob. F15-1
Prob. 15-10



15-25. The balloon has a total mass of 400 kg includ
the passengers and ballast. The balloon is rising at a const:
velocity of 18 km/h when & = 10 m. If the man drops
40-kg sand bag, determine the velocity of the balloon wk
the bag strikes the ground. Neglect air resistance.

]vA = 18 km/h




6.2 Conservation of Linear Momentum

When the sum of the external impulses acting on a system of
particles is zero, Linear Momentum equation reduces to a
simplified form:

Smi(v); = Zmi(vy),

This equation is referred to as the conservation of linear
momentum. It states that:

The total linear momentum for a system of particles remains
constant during the time period t1 to t2

Substituting mv, = 2m,v, to previous Eq. gives
(veh1 = (Vo)
which indicates that the velocity (v;) of the mass center for the

system of particles does not change if no external impulses
are applied to the system



Application

The conservation of linear momentum is often applied when
particles collide or interact. For application, a careful study of
the free-body diagram for the entire system of particles
should be made in order to identify the forces which create
either external or internal impulses and thereby determine in
what direction(s) linear momentum is conserved.

Non-impulsive forces are forces causing negligible impulses
if the time period over which the motion is studied is very short,
these external impulses may be neglected or considered
approximately equal to zero such as the weight of body

Impulsive forces are forces which are very large and act for a
very short period of time produce a significant change in
momentum and these normally occur due to an explosion or the
striking of one body against another




Example

The effect of striking a tennis ball with

a racket as shown in the photo.

During the very short time of interaction,
the force of the racket on the ball is
impulsive since it changes the ball’s

momentum drastically. By comparison, the ball’'s weight will have
a negligible effect on the change in momentum, and therefore it is
nonimpulsive. Consequently, it can be neglected from an impulse—
momentum analysis during this time. If an impulse-momentum
analysis is considered during the much longer time of flight after
the racket—ball interaction, then the impulse of the ball’s weight is
important since it, along with air resistance, causes the change in
the momentum of the ball.




Procedure for Analysis (1-2)

Free-Body Diagram.

e Establish the x, y, z inertial frame of reference and draw the free-
body diagram for each particle of the system in order to identify
the internal and external forces.

e The conservation of linear momentum applies to the system in a
direction which either has no external forces or the forces can be
considered nonimpulsive.

e Establish the direction and sense of the particles” initial and final
velocities. If the sense i1s unknown, assume it is along a positive
inertial coordinate axis.

e As an alternative procedure, draw the impulse and momentum
diagrams for each particle of the system.



Procedure for Analysis (2-2)

Momentum Equations.

e Apply the principle of linear impulse and momentum or the
conservation of linear momentum in the appropriate directions.

e [f it is necessary to determine the internal impulse f F dt acting
on only one particle of a system, then the particle must be isolated
(free-body diagram), and the principle of linear impulse and
momentum must be applied to this particle.

e After the impulse is calculated, and provided the time Ar for
which the impulse acts i1s known, then the average impulsive force

Fye can be determined from F,,, = f Fdt/At.



WH]

Problem

The 15-Mg boxcar A is coasting at 1.5m/s on the horizontal track
when it encounters a 12-Mg tank car B coasting at 0.75 m/s toward it
as shown in Fig. 15-8a. If the cars collide and couple together,
determine (a) the speed of both cars just after the coupling, and
(b) the average force between them if the coupling takes place in 0.8 s.

1.5m/s 0.75
4 MEDALTES m/s
(a)

SOLUTION

Part (a) Free-Body Diagram.* Here we have considered both cars
as a single system, Fig. 15-8b. By inspection, momentum is conserved
in the x direction since the coupling force F is internal to the system
and will therefore cancel out. It is assumed both cars, when coupled,
move at v, in the positive x direction.



Conservation of Linear Momentum.
(5) mp(vy)y + mp(vg)y = (my + mp)v,
(15000 kg)(1.5 m/s) — 12 000 kg(0.75 m/s) = (27 000 kg)v,

v, = 05m/s— Ans.

Part (b). The average (impulsive) coupling force, F,,. can be
determined by applying the principle of linear momentum to either one
of the cars.

Free-Body Diagram. Asshown in Fig. 15-8¢, by isolating the boxcar
the coupling force is external to the car.

Principle of Impulse and Momentum. Since der = Fyyg Al
= Fyy,(0.8 5), we have

(i;,) mA(T}A)l + E/Fdf = M4V
(15 000 kg)(1.5 m/s) — Fyg(0.8's) = (15 000 kg)(0.5 m/s)

Faye = 18.8 kN Ans.



EXAMPLE | 15.7

The 80-kg man can throw the 20-kg box horizontally at 4 m/s when
standing on the ground. If instead he firmly stands in the 120-kg boat
and throws the box, as shown in the photo, determine how far the boat
will move in three seconds. Neglect water resistance.

SOLUTION

Free-Body Diagram. If the man. boat, and box are considered as a
single system, the horizontal forces between the man and the boat and
the man and the box become internal to the system, Fig. 15-114a, and so
linear momentum will be conserved along the x axis.

Conservation of Momentum. When writing the conservation of
momentum equation, it is important that the velocities be measured
from the same inertial coordinate system, assumed here to be fixed.
From this coordinate system, we will assume that the boat and man go
to the right while the box goes to the left, as shown in Fig. 15-11b.

Applying the conservation of linear momentum to the man, boat,
box system,

{i;.) 0+0+0:(mm+mb)vb_mbovaox
0=(80 kg + 120 kg) vp — (20 kg) Vpox
Vpox = 10 v, (1)

Vhox

(b)
Fig. 15-11




Kinematics. Since the velocity of the box relative to the man (and
boat). Vpoxp. is known, then v, can also be related to vy, using the

relative velocity equation.

(5) Vbhox = Vb T Vhox/b

—Vpox = Vp — 4 m/s (2)
Solving Eqgs. (1) and (2).
Vpox = 3-64 M/s «—
vp = 0.3636 m/s —
The displacement of the boat in three seconds is therefore

sp=vpt = (0.3636 m/s)(3s)=1.09m Ans.



15-35. The 5-Mg bus B is traveling to the right at 20 m /s. Meanwhile
a 2-Mg car A is traveling at 15 m/s to the right. If the
vehicles crash and become entangled, determine their
common velocity just after the collision. Assume that the
vehicles are free to roll during collision.

vﬂﬂ
: e E}%HH&
MOXC
SOLUTION

Conservation of Linear Momentum.
(5) Mmav, + mpog = (my + mg)v
15(10%) ](20) + [2(10%) |(15) = [5(10°) + 2(10°) |v
v = 1857m/s = 186 m/s —



The 50-kg boy jumps on the 5-kg skateboard with a hori-

#15=36. zontal velocity of 5 m/s. Determine the distance s the boy
reaches up the inclined plane before momentarily coming
to rest. Neglect the skateboard’s rolling resistance.

SOLUTION

Free-Body Diagram:

Wy=Z0(981) N

N hg= 3 Sin3e’=055
(&) (b)



Conservation of Linear Momentum: Since the resultant of the impulsive force along
the x axis is zero, the linear momentum of the system is conserved along the x axis.

(L) my(vp)y + Mgp(Vep)y = (Mp + M)V
50(5) + 5(0) = (50 + 5)w

v = 4545 m/s

Conservation of Energy: With reference to the datum set in Fig. b, the

gravitational potential energy of the boy and skateboard at positions A and B are
(Ve)a = (my + mg)ghy =0 and (Vg )z = (my, + mg)ghg = (50 + 5)(9.81)(s sin 30%)
= 269.775s.

TA + VA = TB + VB
1 2 1 2
E(mb + mg)v, T+ (Vg)A = E(mb + mg)vg© + (Vg)B

1
> (50 + 5)(4.545%) + 0 = 0 + 269.775s

s =211m Ans.



A railroad car having a mass of 15 Mg is coasting at 1.5 m/s
on a horizontal track. At the same time another car having
a mass of 12 Mg is coasting at 0.75 m/s in the opposite

15-38. direction. If the cars meet and couple together, determine
the speed of both cars just after the coupling. Find the
difference between the total kinetic energy before and
after coupling has occurred, and explain qualitatively what
happened to this energy.

SOLUTION
(5) Smv, = Smv, 15000(1.5) — 12 000(0.75) = 27 000(v,)

v, = 05m/s
Ans.
I, = %('15 []{](})(1.5}2 + %(12 [](]'U)([].T*'S)2 = 20.25kJ
1
I = 5(2? []{](})({).5}2 = 3375k]
Ans.

AT=T,-T, =3375-2025= —-169Kkl]

This energy is dissipated as noise, shock, and heat during the coupling.



15-39.

A ballistic pendulum consists of a 4-kg wooden block
originally at rest, & = 0°. When a 2-g bullet strikes and
becomes embedded in it, it is observed that the block swings

upward to a maximum angle of 8 = 6°. Estimate the speed
of the bullet.

SOLUTION

Just after impact:

Datum at lowest point.

T2+V2:T3+V3 =

1
(4 +0.002) (vp)3 + 0= 0 + (4 + 0.002)(981)(125)(1 ~ cos &)

(vg)r = 0.3665m/s

For the system of bullet and block:

(%) Imu; = Zmuv,

0.002(vg), = (4 + 0.002)(0.3665)  (v)1 = 733m/s Ans.



Problems

3-37.

[he 2.5-Mg pickup truck is towing the 1.5-Mg car using a
:able as shown. If the car is initially at rest and the truck is
-oasting with a velocity of 30 km/h when the cable is slack.
letermine the common velocity of the truck and the car just
ifter the cable becomes taut. Also, find the loss of energy.

*15-44.

A toboggan having a mass of 10 kg starts from rest at A and
carries a girl and boy having a mass of 40 kg and 45 kg,
respectively. When the toboggan reaches the bottom of the
slope at B, the boy is pushed off from the back with a
horizontal velocity of vy, = 2m/s, measured relative to
the toboggan. Determine the velocity of the toboggan
afterwards. Neglect friction in the calculation.

15-43.

The 20-g bullet is traveling at 400 m/s when it becomes
embedded in the 2-kg stationary block. Determine the
distance the block will slide before it stops. The coefficient
of kinetic friction between the block and the plane is
e = 0.2.

400 m/s




6.3 Impact

Impact occurs when two bodies collide with each other during a
very short period of time, causing relatively large (impulsive)
forces to be exerted between the bodies. The striking of a
hammer on a nail, or a golf club on a ball, are common
examples of impact loadings.

line of impact

A line passing through the mass centers of the particles which is
perpendicular to the plane of contact.

Types of Impact
Central impact and oblique impact




Types of Impact
1-Central impact

Occurs when the direction of motion of the mass centers of the two

colliding particles is along a line passing through the mass centers
of the particles.

2-obligue impact

Occurs when the motion of one or both of the particles make an
angle with the line of impact.

Plane of contact Plane of contact

Vg Line of impact

Line of impact

'Central impact V4

Oblique impact (



Central impact Analysis 1-3

ma(Vah mB("B)l
O O ‘,
Require “
A (v > (vp)y B A B
'Before impact 'Maximum deformation|
(2) (c)
The particles have the initial momen
Provided (v,4); = (vp);
/R al“;fl( dt
4 A I.\
EffectofAon B  Effectof Bon A

7 t | Restitution impulse |

EffectofAonB  Effectof Bon A
|Def0rmati0n impulse‘ (d)
(b)
During the collision the particles must be m"% M5(V5)o

thought of as deformable or nonrigid.

that they exert an equal but opposite A @n>Wan B

After impact
()

deformation impulse /P dr on

each other.

Only at the instant of maximum deformation

will both particles move with a common velocity v,

since their relative motion 1s zero.

Afterward a period of restitution occurs,
in which case the particles will either return
to their original shape or remain permanently

deformed. The equal but opposite
restitution impulse [Rdr pushes the particles

apart from one another

Just after separation the particles will have

the final momenta where (vg)h > (Vp).



Central impact Analyses 2-3

1- momentum for the system of particles is conserved before and after
impact:

(L) ma(ay + mpvgh = mp(va) + mpglvgh
2- Apply the principle of impulse and momentum to each particle such

that during the deformation phase for particle A and for the restitution
phase, the following two equation are obtained:

(L) ma(vq) — /Pdi‘ = M4

(+5) MAV — /R dt = ma(vah

3- The ratio of the restitution impulse to the deformation impulse is
called the coefficient of restitution, e. From the above equations, this
value for particle A is:

/R dt - .0

{3 pu— pu—
f P dt (ah — v




Central impact Analyses 3-3

4- In a similar manner, we can establish e by considering particle B:

R d
_ / “ _(vgh — @
/P dt v — (1’13)1

5- If the unknown v is eliminated from the above two equations, the
coefficient of restitution can be expressed in terms of the particles’
initial and final velocities as

. (VB — (Va)2
(v — (vp)

(L)




Coefficient of Restitution

is equal to the ratio of the relative velocity of the particles’ separation
just after impact, (vB) 2 - (vA) 2, to the relative velocity of the
particles’ approach just before impact, (vA)1 - (vB)1 .

Elastic Impact (e = 1). If the collision between the two particles
1s perfectly elastic, the deformation impulse (der) is equal and opposite
to the restitution impulse (fR.:‘fr). Although in reality this can never be
achieved, e = 1 for an elastic collision.

Plastic Impact (e = 0). Theimpactis said to be inelastic or plastic
when e = 0. In this case there is no restitution impulse ( [Rdt = 0), so
that after collision both particles couple or stick fogether and move with
a common velocity.



Procedure for Analysis (Central Impact)

In most cases the final velocities of two smooth particles are to be
determined just after they are subjected to direct central impact.
Provided the coefficient of restitution, the mass of each particle, and
each particle’s initial velocity just before impact are known, the
solution to this problem can be obtained using the following two
equations:

e The conservation of momentum applies to the system of particles,
val — Emvz.

e Thecoefficientof restitution,e = [(vg)s — (v4)2]/[(v4) 1 — (V) 4],
relates the relative velocities of the particles along the line of
impact, just before and just after collision.

When applying these two equations, the sense of an unknown
velocity can be assumed. If the solution yields a negative magnitude,
the velocity acts in the opposite sense.




Obligue impact Analysis 1-2

mA("Ay)z

M4(V 401 @ :;ider iy VAx

2 Line of impact MmA(Va,)1 T

X

\1 TmB("By)z
(Vp)1 ”?B "Bx [Fai ( i mB M)

T”TB("By)l

b

Plane of contact

(a)




Obligue impact Analysis 2-2

Procedure for Analysis (Oblique Impact)

If the y axis is established within the plane of contact and the x axis along the line of impact, the impulsive
forces of deformation and restitution act only in the x direction, Fig. b, . By resolving the velocity or
momentum vectors into components along the x and y axes, Fig. b, it is then possible to write four
independent scalar equations in order to determine (v4y)7, (v4y)2. (vpy)2. and (vgy),.

o Momentum of the system is conserved along the line of impact, x axis, so that 2m(v,) 1 = Zm(vy).

o The coefficient of restitution, e = [(vg,), — (Vax)2)/[(vax)1 — (vBy)1], relates the relative-velocity
components of the particles along the line of impact (x axis).

e [f these two equations are solved simultaneously, we obtain (v 4, ), and (vg,) .

¢ Momentum of particle A is conserved along the y axis, perpendicular to the line of impact, since no impulse
acts on particle A in this direction. As a result my(v4y)1 = m4(V4y)2 0T (V4y)1 = (V4y)2

¢ Momentum of particle B is conserved along the y axis, perpendicular to the line of impact, since no impulse
acts on particle B in this direction. Consequently (vg,) = (vgy)7-




ExavpLe (180

Ball B shown in Fig. 15-17a has a mass of 1.5 kg and 1s suspended from
the ceiling by a 1-m-long elastic cord. If the cord is sfretched downward Datum @ ©)
0.25 m and the ball 1s released from rest, determine how far the cord

stretches after the ball rebounds from the ceiling. The stiffness of the k=800N/m| y=1
cord is k = 800 N/m, and the coefficient of restitution between the

ball and ceiling is ¢ = 0.8. The ball makes a central impact with the B

ceiling.
) ®
SOLUTION
First we must obtain the velocity of the ball just before it strikes the
ceiling using energy methods, then consider the impulse and

momentum between the ball and ceiling, and finally again use energy
methods to determine the stretch in the cord.

+0.25)m

(a)

Conservation of Energy. With the datum located as shown in
Fig. 15-17a, realizing that initially y = yp = (1 + 0.25) m = 1.25 m,
we have
TO + VQ - Tl + Vl
1 2 _ 1,02 1 2
smvpy — Weyy + 3ks= = sm(vp + 0
0 — 1.5(9.81)N(1.25 m) + (800 N/m)(0.25 m)> = (1.5 kg)(vg)}
(IUB)I = 2.968 m/s T

The interaction of the ball with the ceiling will now be considered

using the principles of impact.* Since an unknown portion of the mass

of the ceiling is involved in the impact, the conservation of momentum (VB)ll l RehEat s
for the ball-ceiling system will not be written. The “velocity” of this

portion of ceiling is zero since it (or the earth) are assumed to remain (b)

at rest both before and after impact.




Coefficient of Restitution. Fig. 15-17b.
- -0
+1) o= (Vg — (VA 08 = (vp)

Wy — (vpy’ © 0 —2.968m/s

(vg) = ~2374m/s = 2.374m/s |

Conservation of Energy. The maximum stretch s in the cord can
be determined by again applying the conservation of energy equation
to the ball just after collision. Assuming that y = y3 = (1 + s3)m,

Fig. 15-17¢, then
Tz + V2 — T3 + V3

%m(vg)% +0= ;—.m(’ug)% - Wpys + %ks%

H1.5kg)237m/s)> = 0 = 981(1.5)N(I m + s3) + 3800 N/m)s3

400s% — 14.7155; — 18.94 = 0

Solving this quadratic equation for the positive root yields
53 = 0.237m = 237 mm

*The weight of the ball is considered a nonimpulsive force.

Ans.

——— | —Datum
7




Example 15.11

Two smooth disks A and B, having a mass of 1 kg and 2 kg, respectively,

(vgh =1 m/s collide with the velocities shown in Fig. 15-18a. If the coefficient of
restitution for the disks is ¢ = 0.75, determine the x and y components
NG =45 of the final velocity of each disk just after collision.
— X
6, = 30°, " Line of impact
/ i SOLUTION
(V4 =3m/s Plane of contact This problem involves oblique impact. Why? In order to solve it, we
have established the x and y axes along the line of impact and the
(a) plane of contact, respectively, Fig. 15-18a.
Resolving each of the initial velocities into x and y components, we
have

(V4x)1 = 3 cos30° = 2.598 m/s (Vay)1 = 3sin 30° = .50 m/s

(o) = —1¢c0s45°=—0.707I m/s  (vgy); = —15sin45°=—-0.7071 m/s
The four unknown velocity components after collision are assumed to
act in the positive directions, Fig. 15-18b. Since the impact occurs in the

MA(Yach —[Fdt mA(‘Ax)Z x direction (line of impact), the conservation of momentum for both
" @ @ disks can be applied in this direction. Why?

Conservation of “x” Momentum. In reference to the momentum
diagrams, we have

mA("Ay)lT mﬂ("A.v)Et

(%) my(Va )y + mp(vg); = ma(Va,)y + mp(vpy)r
| ke(2.598 m/s) + 2 ke(—0.707 m/s) = | ke(vy,), + 2 ke(vp,),

(Vax)2 + 2(vpy)r = 1.184 (1)



ma("s}r)l

mp(Vph JFdt
.+

(b)

Mp(Vpe)2
—

mp(Vpy)2

)
(v4), = 1.96 m/s
92:5;.\ AJiE
! x
\QZ 30.1°

(vg), =141 m/s

()
Fig. 15-18

Coefficient of Restitution (x).

_ (Upy)y — (Vay)y _ (Vg2 — (Va2
( i ) B s -
(V)1 — (Vg 2598 m/s — (—0.7071 m/s)
(Vpy)y — (Vg0 = 2482 (2)

Solving Eqs. 1 and 2 for (v, ), and (vg,), yields

(Vp)y = —1.26m/s = 126 m/s<— (vp,), = 1.22m/s — Ans.

Conservation of “y” Momentum. The momentum of each disk is
conserved in the y direction (plane of contact), since the disks are
smooth and therefore no external impulse acts in this direction. From
Fig. 15-18b,

(+T) mA(vA_v)l

+h mp(Vpy) = mpVpy,):

= HIA('UA},)z; (vA}')Z = 1.50 m/s T Ans.

(vgy); = —0.707 m/s = 0.707 m/s | Ans

NOTE: Show that when the velocity components are summed vectorially,
one obtains the results shown in Fig. 15-18c.



15-58. Disk A has a mass of 250 g and is sliding on a smooth
horizontal surface with an initial velocity (v4); = 2 m/s.
It makes a direct collision with disk B, which has a mass of
175 g and is originally at rest. If both disks are of the same
size and the collision 1s perfectly elastic (¢ = 1),determine
the velocity of each disk just after collision. Show that the
kinetic energy of the disks before and after collision is the
same.

SOLUTION
(5)  (0250)(2) + 0 = (0.250)(v4), + (0.175)(vp),

(i..) 821:(33)2_(%&)2

5 -0 Solving
(v4), = 0353 m/s (vg), = 2.35m/s Ans.
1
I = 5(0.25)(2)2 = 0.5] Ans.
T, = %(0-25)(0.353)2 + %(0.175)(2.35)2 =05] Ans.

=1, QED



15-59.

The 5-Mg truck and 2-Mg car are traveling with the free-
rolling velocities shown just before they collide. After the
collision, the car moves with a velocity of 15km/h to the
right relative to the truck. Determine the coefficient of
restitution between the truck and car and the loss of energy
due to the collision.

SOLUTION

30 km/h

—

E 10 km/h

Conservation of Linear Momentum: The linecar momentum of the system is

conserved along the x axis (line of impact).

1h
3600 s

The initial speeds of the truck and car are (v,); = {30(]03) %](

. 1h
and (v); = {10(103) H(%oos) = 2778 m/s.

By referring to Fig. a.
(=) mleds+ mdods = mlw)s = mlw)s
5000(8.333) + 2000(2.778) = 5000(w,), + 2000(v, ),

5(v)y + 2(v.), = 47.22

) = 8333 m/s

iy e Y

r Jmpact
(&)

@




Coefficient of Restitution: Here, (v,;) = {15(10%“(,,;02 ) = 4.167 m/s —.
J 5

Applying the relative velocity equation,

(Ve)2 = (V)2 + ("c;r)z
(__t)) (v.)2 = (vy), + 4.167

(v:)2 — () = 4.167 (2)

Applying the coefficient of restitution equation,

_‘t) _ (ﬂc)z _ {’UI}Z
(%) (01 — (v0);




Two smooth disks A and B each have a mass of 0.5 kg. If

15-73. both disks are moving with the velocities shown when they
collide, determine their final velocities just after collision.
The coefficient of restitution is e = (0.75.

SOLUTION
(B) Zmv, = ESmuv,
9.5(4}(21 — 0.5(6) = 0.5(vg)ax + 0.5(va)2e

. — (va)y — (vp)s (w4 — (vp)a
(veh — (va) 075 = 4(3) - (~6)

(5)

(va)or = 1.35m/s — (vp)y = 4.95m/s —

(+T} mw = Hiwg
4
1‘.].5(3]{4] = 0.5(vg)2,

(vg)y = 320m/s | vy = 135m/s —

vg = \/{4.59}1 + (3.20)* = 589 m/s f = tan! % =329

y
(vah =6m/s
-
D I
P, L
b} 4 A
B 3
(vgh =4mfs




Two smooth disks A and B each have a mass of 0.5 kg. If
both disks are moving with the velocities shown when they

15-74. collide, determine the coefficient of restitution between the
disks if after collision B travels along a line, 30° Y
counterclockwise from the y axis. (4); = 6 m/s
.,‘_
N
NN . .
o !
SOLUTION g /3
}:mm_ = Emvg O/
(vp)y =4m/s
3 -
() 05(4)3) = 05(6) = ~0.5(vp)y + 0-5(va)a
—3.60 = —(vg) + (va)ue
_o 4
(+1) n.a{4)(§) = 0.5(vp)yy
(vp)yy = 3.20m/s | (Bl r_, 3.20 mf
(vg)ae = 3.20 tan 30° = 1.8475 m/s — i\% 30
(va)e = —1.752m/s = 1.752 m/s « [‘U‘B)v

.- (va)2 — (vp)2
(v — (vah

—1.752—(—1.8475)
e = = 0.0113

4(2)—(—6)
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