CHAPTER 1
Introduction

»Definitions
»International System of Units
»Newton’s laws of motion

»Force Systems



Mechanics is the branch of physical sciences

1-rigid body mechanics,
2-deformable body mechanics

3- fluid mechanics



Rigid body mechanics

1- Statics

deals with equilibrium of bodies under action of forces
(bodies may be either at rest or move with a constant




Rigid-body Mechanics
2-Dynamic

deals with motion of bodies (accelerated motion)

g




Fundamental Concepts
1-Length (Space):

needed to locate position of a point in space, & describe size of the
physical system.( Distances, Geometric Properties)

2-Time
measure of succession of events. basic quantity in Dynamics.
3-Mass

quantity of matter in a body. measure of inertia of a body (its
resistance to change in velocity)

4- Force

represents the action of one body on another. characterized by its
magnitude, direction of its action, and its point of application

Note : Force is a Vector quantity.



Fundamental Concepts
Newtonian Mechanics

»Length, Time, and Mass are absolute concepts independent
of each other.

»Force is a derived concept not independent of the other
fundamental concepts.

»Force acting on a body is related to the mass of the body and
the variation of its velocity with time.

»Force can also occur between bodies that are physically
separated (Ex: gravitational, electrical, and magnetic forces)



Fundamental Concepts
Remember:

»Mass 1s a property of matter that does not change from
one location to another.

»\Weight refers to the gravitational attraction of the earth
on a body or gquantity of mass. Its magnitude depends
upon the elevation at which the mass is located

>\Weight of a body is the gravitational force acting on it.



Idealizations

Particle: A body with mass but with dimensions that can be
neglected

Rigid Body: A combination of large number of particles in which all
particles remain at a fixed distance (practically) from one another
before and after applying a load.

»Material properties of a rigid body are not required to be
considered when analyzing the forces acting on the body.

>In most cases, actual deformations occurring in structures,
machines, mechanisms, etc. are relatively small, and rigid body
assumption is suitable for analysis



Idealizations

Concentrated Force: Effect of a loading which is assumed
to act at a point (CG) on a body.

»Provided the area over which the load is applied is very
small compared to the overall size of the body.

Ex: Contact Force

between a whee|
and ground.




Force Systems

Force: Magnitude (P), direction (arrow) and point of application (point A) is
important

Change in any of the three specifications will alter the effect on the bracket.

Force is a Fixed Vector

In case of rigid bodies, line of action of force is important (not its point of
application if we are interested in only the resultant external effects of the

force), we will treat most forces as
External effect: Forces applied (applied

I | force); Forces exerted by bracket, bolts,
| A ' Foundation (reactive force)

Internal effect: Deformation, strain
pattern — permanent strain; depends on
material properties of bracket, bolts, etc.

‘ Cable Tension P



Force System
A system of forces is simply a particular set of forces.
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Fig.. 1.5

(a) Concurrent forces.
(b) Parallel forces. (a) (b)



Moment of Force

When a force is applied to a body it will produce a
tendency for the body to rotate about a point that is
not on the line of action of the force. This tendency
to rotate is sometimes called a torque, but most
often it is called the moment of a force or simply
the moment

The magnitude of M, is

,-*’T"x Mg
M, = Fd P 1l




Scalars

only magnitude is associated.

Ex: time, volume, density, speed, energy, mass
Vectors

possess direction as well as magnitude, and must obey the
parallelogram law of addition (and the triangle law).

Ex: displacement, velocity, acceleration, force, moment, momentum.
Equivalent Vector: V=V, + V, (Vector Sum)
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Vectors ﬂLﬁ%

Free Vector: whose action is not confined to or /j‘ f/
associated with a unique line in space f ff]
Ex: Movement of a body without rotation. / f

Sliding Vector: has a unique line of

action in space but not a unique / y
point of application ; o /
Ex: External force on a rigid body / :

—> Principle of Transmissibility
= Imp in Rigid Body Mechanics

= g

Fixed Vector: for which a unique point of

application is specified /_—) p
Ex: Action of a force on deformable body




Newton’s Law of Gravitational Attraction

»Weight of a body (gravitational force acting on a body) is
required to be computed in Statics as well as Dynamics.

»\Weight of a Body: If a particle is located at or near the surface
of the earth, the only significant gravitational force is that between
the earth and the particle

m

W=m.g

Where
m= mass of the body
g= acceleration due to gravity W=mg

G




Free Body Diagram (FBD)

This diagram is a sketch of the outlined shape of the body, which represents it
as being isolated or “free” from its surroundings, i.e., a “free body.” On this
sketch it is necessary to show all the forces and couple moments that the
surroundings exert on the body so that these effects can be accounted for

when the equations of equilibrium are applied.




Newton’s Three Laws of Motion
Basis of formulation of rigid body mechanics.

First Law: A particle originally at rest, or moving in a straight line
with constant velocity, tends to remain in this state provided the
particle is not subjected to an unbalanced force.

F, F,
A4
First law contains the principle of —
the equilibrium of forces 2 main
topic of concern in Statics 0
3

Equilibrium



Newton’s Three Laws of Motion

Second Law: A particle of mass “m” acted upon by an
unbalanced force “F” experiences an acceleration “a” that
has the same direction as the force and a magnitude that is
directly proportional to the force.

F —(m) L F

Accelerated motion

ma

Second Law forms the basis for most of
the analysis in Dynamics



Newton’s Three Laws of Motion

Third Law: The mutual forces of action and reaction between
two particles are equal, opposite, and collinear.

force of A on B

@
A B £

orceof Bon A

Action — reaction

Third law is basic to our understanding of Force = Forces always
occur in pairs of equal and opposite forces.



International System of Units

Quantity Dimensional S| units U.S. customary units
symbol Unit Symbol Unit Symbol
mass M Kilogram kg Slug -
length L Meter m Foot ft
time T Second S Second sec
force F Newton N pound Ib
Trigonometry
sin@ = ¥
S
cos@ ==
hY
v ¢]
tan 6 = -
X




Table 1.1 The common prefixes used in
SI units and the multiples they represent.

Prefix Abbreviation Multiple
nano- n 1077
micro- M 10°°
milli- m 10
kilo- k 10°
mega- M 10°

giga- G 107




Table 1.3  Unit conversions.

Time | minute =  60seconds

1 hour = 60 minutes

1 day = 24 hours
Mass 1 slug = 14.59 kilograms
Force 1pound =  4.448 newtons

Length 1 foot =
| mile -
1 inch
| foot -

Angle 27 radians =

12 inches
5280 feet

25.4 millimeters
0.3048 meters

360 degrees




1-1.

What is the weight i newtons of an object that has a mass
of (a) 8 kg, (b) 0.04 kg, and (c) 760 Mg?

SOLUTION
(a) W=0981(8)=785N Ans.
(b) W =981(0.04)(107%) = 3.92(10*) N = 0.392 mN Ans.

() W =0981(760)(10°) = 7.46(10°) N = 7.46 MN Ans.



1-2.

Represent each of the following combinations of units
the correct SI form: (a) /KN/ps, (b) Mg/mN, and

(c) MN/(kg* ms).

SOLUTION

(@) kN/ps=10°N/(107°)s = GN/s Ans.
(b)  Mg/mN = 10%/107°N = Gg/N Ans.

(¢)  MN/(kg-ms) = 10°N/kg(107%s) = GN/(kg*s) Ans.



1-5.

Represent each of the following as a number between 0.1
and 1000 using an appropriate prefix: (a) 45320 kN,
(b) 568(10°) mm, and (c) 0.00563 mg.

SOLUTION
(a)  45320kN = 453 MN Ans.
(b)  568(10°) mm = 56.8 km Ans.

(c)  0.00563 mg = 5.63 pg Ans.



1-19.

A concrete column has a diameter of 350 mm and a length of
2 m. If the density (mass/volume) of concrete is 2.45 Mg/m”,
determine the weight of the column in pounds.

SOLUTION

V=marth=mn %m)z (2m) = 0.1924 m*

2.45(10%)kg .
m=pV = |——=5—(0.1924 m*) = 471.44 kg

m
W = mg = (471.44 kg)(9.81 m/s?) = 4.6248(10°) N

11b

2 )= 1k
4M&N) 04 kip

W = [4.6248(10°) N](

Ans.



CHAPTER TWO
RESULTANT OF FORCES SYSTEM

2.1 General

A force may be defined as the action of one body on another body which changes or
tends to change the motion of the body acted on. Because of the inertia possessed by
all material bodies, they react or oppose any force which acts on them (Newton's third
law).

Notel: Forces may be considered as localized vectors and they cannot be defined unless all
the following characteristics mentioned: ;

1- Magnitude,

2- Direction (sense and slope),

3- Location of any point on its line of action.

Sense of
Direction

Point of

Action Direction

%
BN g
J«P 12N 60° y

Cable tension

P
Note2: The third characteristic shows that if two forces have the same direction, they will
produce the same external effect on a rigid body. This fact leads to the principle of
transmissibility which states that the external effect of a force on a rigid body is independent
of the point of application of the force along its line of action.

Line of _ _
7 action / /ﬂ /
A A A
p —*¢ AT P 5 > 5 T
l

equivalent l




2.2 System of Forces

When several forces act in a given situation, they are called system of forces or force system.
Force systems in 2D can be classified according to the arrangement of the lines of action of
the forces of the system as follows:

1- Concurrent, Coplanar: The action lines of all the forces of the system are in the
same plane and intersect at a common point.

150 N

y
F;=650N 800N 400N
/ X NG
4 .l
60
200 N o 4 :
— \ 6 \\d") 45
= 45° ‘? -
o \ p—" "f P/
\ 55 - \

\— 7/
> —X
b F] =000 N 450N

v

2- Parallel, Coplanar: The action lines of all the forces of the system are parallel and
lie in the same plane.

I kN
500 N 500N 500N

AY \ Y Y Y

3- Nonconcurrent, Nonparallel, Coplanar: The action lines of all the forces of the
system are in the same plane, but they are not all parallel and they do not intersect at a
common point.

<—0.65—><—0.65—




2.3 Composition and resolution of forces
e Resolution of forces: The process of replacing a force by its components. Acomponent of a
force is any one of two or more forces having the given forces as a resultant. So the term
"component™ is used to mean either one of two coplanar concurrent forces or any one of three
noncoplanar concurrent forces having the given force as a resultant.
e Composition of forces: The process of replacing a force system by its resultant.

2.3.1 Resolution and Composition of Two Concurrent, Coplanar forces

1- Parallelogram law of forces
If two forces act simultaneously on a particle, the parallelogram law states that the resultant is equal to

the diagonal of the parallelogram formed on the vectors of these forces.

R=1/(F)* +(F)* - 2(R).(F,) cos®

The angle the resultant makes with either force can be determined by the law of sines:

F, F R

sinff sina sin@



Example 1: The screw in Figure (a) is subjected to two forces, F1 and F2. Determine the
magnitude and direction of the resultant force.

10°

-

F,= 150N A

‘. F,=100N
o~ ¥ )
:A "‘-'/15:

W’_ : ;

——

| 3600 -2657)_ .,

(S

(b)
Solution: By parallelogram. the resultant Fz is:

F,. = Jmoz +150% —2(100)(150)cos115°
= /10000 + 22500 — 30000(—0.4226)
=2126N=213N

Applying the law of sines to determine 6,

150  212.6
sin@ sinlls®

. 150 .
— gsind =—(sinl115°
212.6( )
8 =39.8°
Thus. the direction ¢ of Fg. measured from the horizontal, is

¢=39.8°+15.0°=54.8°

Example 2: Resolve the horizontal 600-N force in Figure (a) into components acting along u and v
axes and determine the magnitude of these components.

(a) (b) (©



Solution: Applying the law of sines,

F G600
— L = — — F,=1030N
sinl120°  sin30°
F 600
v = — F,=600 N
sin30°  sin30°

Note: The result for F,, shows that sometimes a component can have a greater
magnitude than the resultant.

Example 3: Determine the magnitude of the components force F in Figure (a) and the
magnitude of the resultant force FR if FR is directed along the positive y-axis.

y

(a)

(b) (c)

Solution: The magnitude of Fr and F can be determined by applying the law of
sines.

F 200
= = F=245N
sin60® sin45°
F 200
—R = — Fr=273N
sin 75° sin 45°

Example 4: It is required that the resultant force acting on the eyebolt in Figure (a) be
directed along the positive x-axis and that F2 has a minimum magnitude. Determine
this magnitude, the angle 6, and the corresponding resultant force.



V‘w }'h

(b) (c)

(a)
Solution: The magnitude of F; 1s a minimum or the shortest length when its line
of action is perpendicular to the line of action of Fg. that is. when.
8= 90

Since the vector addition now forms a right triangle, the two unknown

magnitudes can be obtained by trigonometry.
Fr = 800 cos 60° =400 N
F> =800 sin 60° =693 N

2- Rectangular components

When a force is resolved into two components along x and y axes, the components are then called
rectangular components.

F_—Fcoa@ F=JF2+F?

F —_—124
Fj,stinH § =tan 1 —

——— X
i
Instead of using the angle 0, however, the direction of F can also be defined using a small "slope™

triangle. Since this triangle and the larger triangle are similar, the proportlonal length of the sides
gives.

* Horizontal component Fx=F (%)

F,=F sin0
P
I
I
I
I
I
I

. b |
* Vertical component Fy =F(-) |

¢ S - e x
F.=F cos@



B R
F_=Fsin g F.=-Fcosf F_ =Fsin(r - f) F_=F cos(f - a)
Fy=Foosﬂ F,=-Fsin f F,=—F cos(z - f) Fy=Fsin(ﬂ—a)

*Resultant of two Concurrent forces can be obtained by

YEFx = Flx + F2x
JFy =Fly + F2y

F= JZFx2+ZFy2




Example
The link in Fig. 2-19a is subjected to two forces F; and F,. Determine

the magnitude and direction of the resultant force .
y y

F; =400N Fy =600N F> =400N F, =600N

SOLUTION |
Scalar Notation. First we resolve each force into its x and y
components, Fig. 2-19b, then we sum these components algebraically.

5 (Fp), = SF:  (Fg), = 600 cos 30° N — 400 sin 45° N
= 236.8 N —

+1(Fp)y = XF,;  (Fg), = 600sin 30° N + 400 cos 45° N
= 582.8N'

The resultant force, shown in Fig. 2-19¢, has a magnitude of

Fp = V(236.8 N)2 + (582.8 N)?
= 629N Ans.

From the vector addition.

H = tan"(582'8 N) = 67.9° Ans.
236.8 N

will show that Cartesian vector analysis is very beneficial for solving
three-dimensional problems.




2.3.2 Resolution and Composition of three or more Concurrent, Coplanar forces

In determination of the resultant of several forces (more than two forces), using the rectangular
component is more convenient than using the parallelogram rule more than once. Consider three
forces as shown in figure below. So the resultant of these coplanar forces may be determined by the
following steps:

1. Resolve each force into x and y components.

2. Add the respective using scalar algebra since they are collinear

FRx = YFx = Flx + F2x + F3x + ---
FRy =XFy=Fly+ F2y + F3y + -

3. The resultant force is then computed by using Pythagorean theorem,

F = \/Z'Fx2+ZFy2

And the angle 0, which specifies the direction of resultant, is determined from trigonometry:

. Q_FRy
MY = TRy

_}J




Example y

If F=35 kN and # = 30° determine the magnitude of 4kN F
the resultant force and its direction., measured counter-
clockwise from the positive x axis.

SOLUTION

Scalar Notation. Summing the force components along x and v axes algebraically
by referring to Fig. a,

5 (Fp)e = SF: (Fg)e = 5sin30° + 6 — 4sin 15° = 7.465 kN —
+1(Fr)y, = SE; (Fp), = 4cos 15° + 5cos 30° = 8.194 kN 1

By referring to Fig. b, the magnitude of the resultant force is

Fr = V(Fp)? + (Fg)? = V7.465% + 8.194> = 11.08 kN = 11.1 kN Ans.

And its directional angle # measured counterclockwise from the positive

X axis is
':FR}'J.?} 8.194
0=t _'[ =1 _'(—) = 47.67° = 47.7T° Ans
an Fo)x an 465 ns.

Example Determine the x and y components of each force
acting on the gusset plate of a bridge truss. Show that the
resultant force is zero. y




Exa mpfe If the magnitude of the resultant force acting on the bracket
is to be 450 N directed along the positive u axis, determine
the magnitude of Fl and its direction .

SOLUTION

Rectangular Components: By referring to Fig. a. the x and y components of F,, F,.
F;, and Fj can be written as

(Fi), = Fisind (Fi)y = Ficos &
(F2), = 200 N (F)y =10
5 12
(F3), = Zﬁﬂ(ﬁ) = 100N (Fy), = Eﬁﬂ(ﬁ) =240 N
(Fr)y = 450 cos 30° = 389.71 N {FR]}, = 450sin 30° = 225N

Resultant Force: Summing the force components algebraically along the x and y axes,
5 3(Fr)y = SF: 38971 = Fysing + 200 + 100

Fisin ¢ = 89.71 (1)
+13(Fp)y = XF,; 225 = Ficos¢ — 240

Fjcosdp = 465 (2)

Solving Egs. (1) and (2), yields

b = 10.9° F| = 474 N Ans.



2.4 Concept of moment

=
_—
2.4.1 Moment about Point ;
»
@
M=F.d :
F: the magnitude of the force, ‘
d: the perpendicular distance from the "’j
axis to the line of action of the force.
(a)
0
|
|
Direction. The direction of MO is defined by its moment J—) F <

axis, which is perpendicular to the plane that contains the
force F and its moment arm d. The right-hand rule is used to

establish the sense of direction of MO.

(e)




2.3.2 Varignon’s Theorem
One of the most useful principles of mechanics is Varignon’s theorem, which states that the
moment of a force about any point is equal to the sum of the moments of the components of

the force about the same point.

M=M,+M,=(F *d)+(F,*d,)

F F

2.3.3 Resultant Moment
The resultant moment (MR )O about point O (the z axis) can be determined by finding the algebraic

sum of the moments caused by all the forces in the system

C +(/‘/[R) = Y Fd; (vle)o — Fldl o Fz(l'z = F3d3

0



Example _ o _
For each case illustrated in Fig. 4-4, determine the moment of the

force about point O.

solution
Fig. 4-4a M, = (100N)2m) = 200N-m ) Ans.
Fig. 4-4b My = (SON)0.75m) = 37.5N-m) Ans.
Fig. 4-4c Mo = (40 N)(4m + 2 cos 30°m) = 229 N-m ) Ans.
Fig. 4-4d My = (60 N)(1sin45°ft) = 424 N-m O Ans.
Fig. 44e Mo = (TKkN)4m — Im)=21.0kN-m > Ans.
100 N

50N

2 ft | 3 |
N\ \ | |
O. 2 ® 307/ 40N A f
I © 1fit 1 sin 45° £
| | | 50 1sin t
| 4 ft 1 '\ *P
2 cos 30° ft 60 N
(c)
4m




Example

Calculate the magnitude of the moment about the base point O of the
600-N force in five different ways.

Solution. (I) The moment arm to the 600-N force is
d=4cos40° + 25in40° = 435 m
By M = Fd the moment is clockwise and has the magnitude
M, = 600(4.35) = 2610 N-m Ans.
(II) Replace the force by its rectangular components at A,
F;=600cos 40° = 460N,  F, =600 sin 40° = 386 N
By Varignon's theorem, the moment becomes
M, = 460(4) + 386(2) = 2610 N-m Ans.
(III) By the principle of transmissibility, move the 600-N force along its
line of action to point B, which eliminates the moment of the component F;. The
moment arm of F; becomes
dy=4+2tan40° = 568 m
and the moment is

M, = 460(5.68) = 2610 N-m Ans,

(IV) Moving the force to point C eliminates the moment of the component
F,. The moment arm of F, becomes

dy=2+4cot40°=6.7Tm

and the moment is

M, = 386(6.77) = 2610 N-m Ans.




Example

An experimental device imparts a force of magni-
tude F = 225 N to the front edge of the rim at A to
simulate the effect of a slam dunk. Determine the
moments of the force F about point O and about
point B. Finally, locate, from the base at O, a point C
on the ground where the force imparts zero moment.

Example

The 30-N force P is applied perpendicular to the
portion BC of the bent bar. Determine the moment
of P about point B and about point A.

1.6m




2.4.2 Couple

A couple consists of two forces which have equal
magnitudes and parallel but opposite in sense. The
moment of the couple is the algebraic sum of the
moments of its forces about any axis perpendicular
to the plane of the couple.

M= Fla +d) — Fa

M = Fd

Note : Because the total force exerted by a

couple is zero, a couple is often represented by T

the moment it exerts. When the lines of action CIS>M
of the forces of a couple lie in the x y plane,

the couple can be represented by its magnitude

and a circular arrow that indicates its direction

(e)
Counterclockwise Clockwise
couple couple

(d)



2.4.3 Equivalent couple
If two couples produce a moment with the same magnitude and direction, then these two couples are
equivalent

" M M M
Ci}) -F c:iﬁ cj} > ¥
|2 F | | | 9F
= = P =
_F ] d . -
(P=F)

2.4.4 Force —couple system

When a force is moved to another point P that is not on its line of action, it will create the same
external effects on the body if a couple moment is also applied to the body. The couple moment is
determined by taking the moment of the force about point P.

e
. L

Example

Replace the horizontal 400-N force acting on the lever by an equivalent sys-
tem consisting of a force at O and a couple.

Solution. We apply two equal and opposite 400-N forces at O and identify the
counterclockwise couple

M = Fd] M = 400(0.200 sin 60°) = 69.3 N-m Ans.

/ Thus, the original force is equivalent to the 400-N force at O and the 69.3-N-m
couple as shown in the third of the three equivalent figures.



400 N 400 N

400 N 400 N 400N

69.3 N-m

Example _
Determine the resultant couple moment of the three couples acting

on the plate in Fig. 4-30.

F,=450N A}

Fig. 4-30 o
F, =450 N
Fy=200N| Fy=300N
SOLUTION
As shown the perpendicular distances between each pair of couple forces
are dy = 4m, d, = 3m, and d; = 5m. Considering counterclockwise

couple moments as positive, we have

Q+MR:ZM; MR:_F1d]+F2d2_F3d3
= —(200 N4 m) + (450 N3 m) — (300 NS5 m
= —9501b-ft = 950 N-m ) Ans.

The negative sign indicates that Mg has a clockwise rotational sense.



Example

Given: Two couples act on the beam
with the geometry shown.

Find: The magnitude of F so that
the resultant couple
moment is 1.5 kN-m

clockwise.
Solution:
The net moment is equal to:
(+ TM=-F (0.9)+(2)(0.3)
=—09F+06
-15kNm =-09F+06 F=233kN

Example

The device shown is a part of an automobile seat-
back-release mechanism. The part is subjected to
the 4-N force exerted at A and a 300-N-mm restor-
ing moment exerted by a hidden torsional spring.
Determine the y-intercept of the line of action of the
single equivalent force.




2.5 - Resultant of Parallel, Coplanar forces

Parallel forces can be in the same or in opposite directions. The sign of the direction can be chosen arbitrarily,
meaning, taking one direction as positive makes the opposite direction negative. The complete definition of the
resultant is according to its magnitude, direction, and line of action.

= 90N to the right

Z 4 g0
P : 10N<—-—> 30N

) % g = 20N to the right
. Xa M

R=SF=F+FR+F+t...
Rd = ¥Fz = lel +F2$2—|—F3$3—|—...

Example
R=FE4BiELE . R
R =150 — 600 + 100 — 250 = —600 N <l

150 N 600 N 100N 250 N
Rd=F1dl+F2d2+F3d3+F4d4 L ‘ ‘

A EEaT e B
d=313m

1.6 m === 12m ~f 2m .

*Two parallel equal forces act in opposite direction
Two parallel forces that are equal in magnitude, opposite in direction, and not colinear will create a

rotation effect. This type of pair is called a Couple. The placement of a couple in the plane is
immaterial, meaning, its rotational effect to the body is not a function of its placement. The
magnitude of the couple is given by




2.6 Resultant of Distributed Loads
The resultant of a distributed load is equal to the area of the load diagram. It is acting at the
centroid of that area as indicated. The figure below shows the three common distributed

loads namely; rectangular load, triangular load, and trapezoidal load.

[' U2 —sf— U2 1 /3 -{ y3 1
R I a R
111 )
k L . l L g
Rectangular Load Trian%ular Load
R=w,L R = sw,L
R=F+F
W
War =
k L ) Resolution of trapezoidal load into
rectangular and triangular loads
Trapezoidal Load

R = wolL ¥ %(wo2 = wol)L

Example
w= IOkNIm FR =50kN

| Sm ! I——— X =25m—-




2.7 Resultant of Nonconcurrent, Nonparallel, Coplanar forces

The resultant of a force system is the simplest force system which can replace the original system
without changing its external effect on a rigid body. The resultant of a force system can be:

1- a single force,

2- a pair of parallel forces having the same magnitudes but opposite sense (called a couple),or

3- a force and a couple.
If the resultant is a force and a couple, the force will not be parallel to the plane containing the

couple.

(@) ' (®)

() (d)

This process is summarized in equation form by

-
R=Z%2F
M, = M = 3(Fd)
R{i:Mﬂ




Sample Problem 2/9

Determine the resultant of the four forces and one couple which act on the
plate shown.

|
50 N :
A ~
[ R=1483N 45°
I i
&) \63 90 2m : r ="
1600m /1 5 i | soN
) 2m
lEﬁr——Ji—x -mN_'_;..J____—_—Q' 30°
< l-;‘j'B 1m

-

()
(ax)

R, = SF)) R, = 40 + 80 cos 30° — 60 cos 45° = 66.9 N
[R, = 3F,) R, = 50 + 80 sin 30° + 60 cos 45° = 132.4 N
R=JR?+Rj R = J(66.9) + (132.4)2 = 148.3N
R 132.4
= =1 _)’ = et == 2
[0 tan R,] f# = tan 66.9 63.2
M, = S(Fd)) M, = 140 — 50(5) + 60 cos 45°(4) — 60 sin 45°(7)
= =237 N-'m
[Rd = |My|] 148.3d = 237 d = 1.600 m
237
R,b = |My| and b= = 1.792 m



Example
Replace the loading acting on the beam by a single resultant
force. Specity where the force acts, measured from end A.

}-—?.m ! 4m I Im ! 1300 N-m
SOLUTION
B Fp = 3F.:  Fg = 4350c0s60° — 700sin30° = —125N = 125N <
+1Fp, = SF,:  Fp,= —450sin60° = 700 cos 30° — 300 = —1296N = 1296 N |
F = V(-125)% + (—1296)> = 1302 N Ans.
1296
— tan"! — Q450
f# = tan ( 125) 84.5 & Ans.

CH+Mga= XM,  1296(x) = 450sin 60°(2) + 300(6) + 700 cos 30°(9) + 1500

x=736m Ans.

2/86 If the resultant of the loads shown passes through
point B, determine the equivalent force—couple
system at O.

45 kN 54 kN

12m‘-‘—09m——1<—09m




Example
Replace the force and couple moment system acting on the beam in

Fig. 4-44a by an equivalent resultant force, and find where its line of
action intersects the beam, measured from point O.

SOLUTION
Force Summation. Summing the force compé.ﬁentsq

5 (Fp), = SF.: (Fp)y = 8kN(Z) = 4.80 kN —

+ 1 (Fr)y = ZFy: (Fg)y = —4 kN + 8kN(3) = 2.40kN1

From Fig. 4-44b, the magnitude of Fg is

Fr = V(4.80 kN)? + (2.40 kN)? = 5.37 kN Ans.
The angle 6 is
2.40 kN
0 = tan | ———— | = 26.6° Ans.
4.80 kN

Moment Summation. We must equate the moment of Fi about
point O in Fig. 4-44bH to the sum of the moments of the force and
couple moment system about point O in Fig. 4-44a. Since the line of
action of (Fg), acts through point O, only (Fg), produces a moment
about this point. Thus, '

C+ Mp)o = ZMy: 240 kN(d) = —(4 kKN)(1.5m) — I5kN-m
—[8kN(2)]0.5m) + [8kN(2)]@.5m)

d = 225m Ans.



Example
Replace the force system acting on the post by a resultant
force, and specify where its line of action intersects the post

AB measured from point A.

SOLUTION

Equivalent Resultant Force: Forces F; and F, are resolved into their x and y
components, Fig. 4. Summing these force components algebraically along the x and
y axes,

SR, =SF (Rl = zsu(%) ~ 500cos 30° - 300 = 533,01 N = 53301 N«
3
+1(Fg)y = 3Fy;  (Fg), = 500sin30° - 250(5) = 10N 1

The magnitude of the resultant force F, is given by

Fy= V(Fp)," + (F), ' = VS330E + 1007 = 54231 N = 52N Ans, FRy=100

The angle # of F, i
C&Hg& (1) RIS FRx=533
(Fr)y 100
f = tan ! = t -1[—]:10.63%10& S Ans
- [{FRLr 550 "

Location of the Resultant Force: Applying the principle of moments, Figs. a and b,
and summing the moments of the force components algebraically about point A,

C+(Mp) = SMy  53301(d) = 500 cos 30°(2) — 500 sin 30°(0.2) — 250(%)(0.5) - 250(%)(3) +300(1)

d = 0.8274mm = 8§27 mm Ans.



2/88 If the resultant of the forces shown passes through
point A, determine the magnitude of the unknown
tension T'; which acts on the braked pulley.

1600 N

2/87 If the resultant of the two forces and couple M passes RO
through point O, determine M. e

320N

M, =M-400x0.15c0s30-320x0.3=0 L
160 400 N
M =148 Nm CCW mm

Example : Replace the three forces acting on the bent beam by a single equivalent
force R. Specify the distance x from the point O in which the line of action of R
passes.

Y
I
I
I
I
I
|
|

= 250 mm -“" 250 mm i 'k:‘

240 N — 125 mm




CHAPTER THREE
EQUILIBRIUM

3.1 General
the term "equilibrium" or, more specifically, "static equilibrium™ is used to describe an
object at rest. To maintain equilibrium, it is necessary to satisfy Newton's first law of
motion, which requires the resultant force acting on a particle to be equal to zero. This
condition may be stated mathematically as:
""When a body is in equilibrium, the resultant of all forces acting on it is zero™ which
leads to:

(Summation of internal and external forces and moments equals to zero)

3.2 Free Body diagram (F.B.D)

To apply the equation of equilibrium, we must account for all the known and unknown forces (F)
which act on the body. The best way to do this is to think of the body as isolated and “free” from its
surroundings .A drawing that shows the particle with all the forces that act on it is called a free-body
diagram (FBD)

Before presenting a formal procedure as to how to draw a free-body diagram, we will first consider
three types of supports often encountered in particle equilibrium problems.

1-Spring

F=kx

k = stiffness of spring ( N/m)
x = distance measured from its unloaded position (m)

2-Smooth Contact

If an object rests on a smooth surface, then the
surface will exert a force on the object that is
normal to the surface at the point of contact.




Effect of B acting on 4

Effect of sloped
blade acting on A

Effect of sloped

Effect of gravity F  fork acting on A

(weight) acting on A

(e)

3-Cables and Pulleys. Unless otherwise stated throughout this book, except in Sec. 7.4, all
cables (or cords) will be assumed to have negligible weight and they cannot stretch. Also, a cable
can support only a tension or “pulling” force, and this force always acts in the direction of the
cable. The tension force developed in a continuous cable which passes over a frictionless pulley
must have a constant magnitude to keep the cable in equilibrium. Hence, for an angle 6, shown in
figure, the cable is subjected to a constant tension T throughout its length.

800 N 800 N

A B\ Hb

800 N 800N
\{




(b)

Example: Determine the value of P, if the load W= 800 N.




3.2.1 Modeling the Action of Forces in 2D Analysis

MODELING THE ACTION OF FORCES IN TWO-DIMENSIONAL ANALYSIS

Type of Contact and Force Origin Action on Body to Be Isolated
1. Flexible cable, belt,
chain, or rope S P _1‘_0 B Force exerted by
Weight of cable *)\/‘ B a flexible cable is
negligible | T always a tension away
s o from the body in the
Weight of cable - 0! > 6 direction of the cable.
not negligible
T
2. Smooth surfaces <
il Contact force is
" N compressive and is
) N ~  normal to the surface.
3. Rough surfaces Rough surfaces sre
Fu. capable of supporting a
' P tangential component F'
- R ™~ (frictional force) as well
~ \/ as a normal component
N N of the resultant
contact force R.

4. Roller support

€ £

Roller, rocker, or ball
support transmits a
compressive force
normal to the

supporting surface.

ib\ i
5. Freely sliding guide
== @

Collar or slider free to
move along smooth
guides; can support
force normal to guide
only.




MODELING THE ACTION OF FORCES IN TWO-DIMENSIONAL ANALYSIS (cont.)

Type of Contact and Force Origin

Action on Body to Be Isolated

6. Pin connection

\)
/

Pin free to turn A freely hinged pin
connection is capable
L of supporting a force
R \ B> in any direction in the
* R plane normal to the
R, pin axis. We may
either show two
components R, and
R ora mag'mtude R
and direction 6. A pin
not free to turn also
supports a couple M.

7. Built-in or fixed support

A
or

A

| S

vy

- Weld

A built-in or fixed
support is capable of
supporting an axial
force F, a transverse
force V (shear force),
and a couple M
(bending moment) to
prevent rotation.

8. Gravitational attraction

Cm
i

The resultant of
gravitational
attraction on all
elements of a body of
mass m is the weight
W = mg and acts
toward the center of
the earth through the
center of gravity G.

W =mg

9. Spring action

Neutral
posmon

Linear Nonlinear

F
I Hardemng

|
E’-Mvw-—» / %enmg
—x - —x

Spring force is tensile if
the spring is stretched
and compressive if
compressed. For a
linearly elastic spring
the stiffness k is the
force required to deform
the spring a unit
distance.

10. Torsional spring action

A P
M -
kr b“.',

Neutral position

For a linear torsional
spring, the applied
moment M is
proportional to the
angular deflection 6
from the neutral
position. The stiffness
kyp is the moment
required to deform the
spring one radian.

)




CONSTRUCTION OF FREe-Bobpy DIAGRAMS

The full procedure for drawing a free-body diagram which isolates a
body or system consists of the following steps.

Step 1. Decide which system to isolate. The system chosen should
usually involve one or more of the desired unknown quantities.

Step 2. Next isolate the chosen system by drawing a diagram which
represents its complete external boundary. This boundary defines the
isolation of the system from all other attracting or contacting bodies,
which are considered removed. This step is often the most crucial of all.
Make certain that you have completely isolated the system before pro-
ceeding with the next step.

Step 3. Identify all forces which act on the isolated system as ap-
plied by the removed contacting and attracting bodies, and represent
them in their proper positions on the diagram of the isolated system.
Make a systematic traverse of the entire boundary to identify all con-
tact forces. Include body forces such as weights, where appreciable.
Represent all known forces by vector arrows, each with its proper mag-
nitude, direction, and sense indicated. Each unknown force should be
represented by a vector arrow with the unknown magnitude or direc-
tion indicated by symbol. If the sense of the vector is also unknown,
you must arbitrarily assign a sense. The subsequent calculations with
the equilibrium equations will yield a positive quantity if the correct
sense was assumed and a negative quantity if the incorrect sense was
assumed. It is necessary to be consistent with the assigned characteris-
tics of unknown forces throughout all of the calculations. If you are
consistent, the solution of the equilibrium equations will reveal the cor-
rect senses.

Step 4. Show the choice of coordinate axes directly on the diagram.
Pertinent dimensions may also be represented for convenience. Note,
however, that the free-body diagram serves the purpose of focusing at-
tention on the action of the external forces, and therefore the diagram
should not be cluttered with excessive extraneous information. Clearly
distinguish force arrows from arrows representing quantities other than
forces. For this purpose a colored pencil may be used.




3.2.3 Examples of F.B.D

SAMPLE FREE-BODY DIAGRAMS
Mechanical System Free-Body Diagram of Isolated Body
1. Plane truss
Weight of truss P
assumed negligible P
compared with P y
|
I
A, —€ L — —5
i4 s,
2. Cantilever beam v
Fy Rl R \1:3 Fnl Fy
ré —
A Mass m M * |
W= '
me
3. Beam
o 1\
Smooth surface , \//\ M M
contact at A.
Mass m N Y
|
P P— / l |
\ B, W=mg |
B,
4, Rigid system of interconnected bodies
analyzed as a single unit )I'
P <=3,  Weight of mechanism [P s |
L——x
R W i mg
B




«complete FBD

1. Bell crank
supporting mass
m with pin support
atA.

T o
Ha
Ra

2. Control lever

applying torque
to shaft at 0.

Ho P

N

3. Boom OA, of
negligible mass
compared with
mass m. Boom
hinged at O and

supported by
hoisting cable at B.

'r/ mg

Ho

4. Uniform crate of
mass m leaning
against smooth
vertical wall and
supported on a
rough horizontal
surface.

5. Loaded bracket
supported by pin
connection at A and
fixed pin in smooth
slot at B.




Wrong or Incomplete FBD

W=mg

1. Lawn roller of
mass m being
pushed up
incline 6.

2. Prybar lifting
body A having
smooth horizontal
surface. Bar rests
on horizontal
rough surface.

3. Uniform pole of
mass m being
hoisted into posi-
tion by winch.
Horizontal sup-
porting surface
notched to prevent

slipping of pole.

4. Supporting angle
bracket for frame;

pin joints.

5. Bent rod welded to
support at A and
subjected to two
forces and couple.




3.3 Equilibrium conditions

we defined equilibrium as the condition in which the re-
sultant of all forces and moments acting on a body is zero. Stated in
another way, a body is in equilibrium if all forces and moments applied
to it are in balance. These requirements are contained in the vector
equations of equilibrium in two dimensions may be written in scalar
form as

[EF,={} SF,=0 EMﬂ=uJ

3.3.1 Categories of Equilibrium

CATEGORIES OF EQUILIBRIUM IN TWO DIMENSIONS

Force System Free-Body Diagram Independent Equations

1. Collinear $F.=0

2. Concurrent LF,=0

at a point

LF,=0

3. Parallel IF,=0 XIM,=0

4. General IF,=0 IM,=0
2Fy =0




3.3.2 Two- and Three-Force Member

+» Two-Force Members.

for any two-force member to be in equilibrium, the two forces acting on the member must have the
same magnitude, act in opposite directions, and have the same line of action, directed along the line
joining the two points where these forces act.

** Three-Force Members.

If a member is subjected to only three forces, it is called a three-force member. Moment equilibrium
can be satisfied only if the three forces form a concurrent or parallel force system

Two-force members

(b) Closed polygon
satisfies ZF =0

(a) “ (b)

Three-force member



% The FPD of pin between two members

%P
. P
M
M \"
Ay C,
. e b o\u Ax
A C
¥ ¥
(a)
Examplel
T=50(981)N
D,=4905N
FBC
D,
800
800 N
Fge




3.3.3 Alternative equilibrium Equations
In addition to the three general equilibrium equation there are two other ways to express general
conditions for the equilibrium of forces in two ways dimensions. If XMA = O0and ZMB = 0, where B
is any point such that the line AB is not perpendicular to the x-direction, we see that R must be zero,
and thus the body is in equilibrium. Therefore, an alternative set of equilibrium equations is

% Casel

2F,. =0 ZMy =0 ZMg =0

where the two points A and B must not lie on a line perpendicular to the x-direction.

<% Case 2
EMAZG EMB:I‘J EMCZG

where A, B, and C are any three points not on the same straight line.




3.4 Constrains and Statical Determinacy

The equilibrium equations developed in this article are both necessary and sufficient conditions to
establish the equilibrium of a body However; they do not necessarily provide all the information
required to calculate all the unknown forces which may act on a body in equilibrium. Whether the
equations are adequate to determine all the unknowns depends on the characteristics of the
constraints against possible movement of the body provided by its supports. By constraint we mean
the restriction of movement.

We must be aware of the nature of the constraints before we attempt to solve an equilibrium roblem.
A body can be recognized as statically indeterminate when there are more unknown external
reactions than there are available independent equilibrium equations for the force system involved. It
is always well to count the number of unknown variables on a given body and to be certain that an
equal number of independent equations can be written; otherwise, effort might be wasted in
attempting an impossible solution with the aid of the equilibrium equations only. The unknown
variables may be forces, couples, distances, or angles.

1000N
80 N/m
e [T
A
R p—
" 2m - 33— 1.5m “
4m >
) 1000N
80 N/m

e [

A,
¥y .
y AT 4m |
Unknowns No. of Equilibrium Eas No. of Equilibrium
Unknowns 9 qs. Egs.
AX ZFx=0
AY 3 ZFy=0 3
MA ZMa=0




APPROACH TO SoLvING PROBLEMS

The sample problems at the end of this article illustrate the application
of free-body diagrams and the equations of equilibrium to typical statics
problems. These solutions should be studied thoroughly. In the problem
work of this chapter and throughout mechanics, it is important to de-
velop a logical and systematic approach which includes the following
steps:

1.
2.

2.

Identify clearly the quantities which are known and unknown.

Make an unambiguous choice of the body (or system of connected
bodies treated as a single body) to be isolated and draw its complete
free-body diagram, labeling all external known and unknown but
identifiable forces and couples which act on it.

Choose a convenient set of reference axes, always using right-
handed axes when vector cross products are employed. Choose mo-
ment centers with a view to simplifying the calculations. Generally
the best choice is one through which as many unknown forces pass
as possible. Simultaneous solutions of equilibrium equations are
frequently necessary, but can be minimized or avoided by a careful
choice of reference axes and moment centers.

Identify and state the applicable force and moment principles or
equations which govern the equilibrium conditions of the problem.
In the following sample problems these relations are shown in
brackets and precede each major calculation.

Match the number of independent equations with the number of
unknowns in each problem.

Carry out the solution and check the results. In many problems en-
gineering judgment can be developed by first making a reasonable
guess or estimate of the result prior to the calculation and then
comparing the estimate with the calculated value.



Procedure for Analysis

Coplanar force equilibrium problems for a rigid body can be solved
using the following procedure.

Free-Body Diagram.

e Establish the x, y coordinate axes in any suitable orientation.
e Remove all supports and draw an outlined shape of the body.
e Show all the forces and couple moments acting on the body.

e Label all the loadings and specify their directions relative to the x
or y axis. The sense of a force or couple moment having an
unknown magnitude but known line of action can be assumed.

e Indicate the dimensions of the body necessary for computing the
moments of forces.

Equations of Equilibrium.

e Apply the moment equation of equilibrium, 3M, = 0, about a
point (O) that lies at the intersection of the lines of action of two
unknown forces. In this way, the moments of these unknowns are
zero about O, and a direct solution for the third unknown can be
determined.

e When applying the force equilibrium equations, XF, = 0 and
2 F = 0, orient the x and y axes along lines that will provide the
simplest resolution of the forces into their x and y components.

e [f the solution of the equilibrium equations yields a negative
scalar for a force or couple moment magnitude, this indicates that
the sense is opposite to that which was assumed on the free-body
diagram.




Example
Determine the support reactions at the rollerat 4 and the pin at B. Neglect the

weight and size of the beam. 400N

solution
There are 3 unknowns and 3 equilibrium Eqgs. Therefore, the problem can be solved
400 N
60°
A B o3
Y x
‘ x J
4 fi X 4 ft
E, B,
> F, =400 -cos60°+B, =0 (7. =173N
ZF‘. =F,—400-s1n60°+B =0 €Bx =—ZOOD
> My =-F,-8+400-sin60°-4 =0 B, =TT3N
400 N
60°

200 N

173 N 173N



Example
Determine the support reactions at the fixed support, 4. Neglect the weight and size of
the beam. 1000N

SON/m
200 N'm |||||| y

A 3
2m ’r 1.5m
4m

Solution
There are 3 unknowns and 3 equilibrium Egs. That means the problem can be solved

Free body diagram (FBD)

(80-1.5)N
M, 200 N-m /s

A \
A, %
A 4
g <—— (2+0.75m) — ‘
‘ X Ay 4 m |

1000N

Y F, =4, -3 1000N =0 (4 =600 N
2.5 =A3-—80-1.5N—i-1000N=0 S Ry =oakN
. M, =3730N-m

> M, =M ,-200N-m-80-1.5N-2.75m

—?-1000N~4m=0



Example
Determine the support reactions at the smooth collarat 4, rocker at B and cableat C.

Neglect the weight and size of member ABC.

Solution

S F, =F, -cos45°+ T, -cos 30° =0 Fs

Fy
T.=0.924kN

-

D F,=F, -sin45°=3kN+ F, + T, -sin 30°=0

D M, =-F, -sin45°-4m+F, -sin 45°-1.5m
+3kN-2m —-8kN-m =0

0.924 kN
3 kN ~130°
2m 2m
1.5m
45° 8 kKN-m




Determine the support reactions on the member in Fig. 5-19a. The
collar at A is fixed to the member and can slide vertically along the

vertical shaft.
Q00 N

Solution)

500N -m

Free-Body Diagram. Removing the supports, the free-body diagram
of the member is shown in Fig. 5-19b. The collar exerts a horizontal
force A, and moment M, on the member. The reaction Ny of the roller
on the member is vertical.

Equations of Equilibrium. The forces A, and N can be determined
directly from the force equations of equilibrium.

i*EFI = 0; A, =0 Ans.
+13F, = 0; Np — 900N = 0
Np = 900N Ans.

The moment M, can be determined by summing moments either
about point A or point B.

M, —900N(1.5m) — 500N-m + 900N [3m + (I m)cos 45°] = 0
M, = —1486 N-m = 1.49KkN-m) Ans.
or

C+IMp=0; M, +900N[1.5m + (1 m)cos45°] — SOON:-m = 0
M, = —1486 N-m = 1.49kN -m) Ans.

The negative sign indicates that My has the opposite sense of rotation
to that shown on the free-bodyv diagram.

——1.5m 1.5m .
, ya
}

1m
N\

45° /

B



The lever ABC is pin supported at A and connected to a short link BD
as shown in Fig. 5-22a. If the weight of the members is negligible,

determine the force of the pin on the lever at A. C
ik .
SOLUTION I O
400 N
C iy o
45°
45° 02
02 m =
"
_IF— —l— .
D
0.4 m— 0.1 m
F, : (a)

Equations of Equilibrium. By requiring the force system to be
concurrent at O, since M, = 0, the angle 6 which defines the line of
action of F4 can be determined from trigonometry,

0.7
= tan"(a) =160.3°

Using the x, y axes and applying the force equilibrium equations,

5 SF, =0, F,cos60.3° — Fcos45° + 400N = 0

+13F, = 0; F, sin 60.3° — Fsin45° = 0
Solving, we get

Fy, = 1.OTkN Ans.
F = 132kN

NOTE: We can also solve this problem by representing the force at A
by its two components A, and A, and applying SM, = 0, ZF, = 0,
3 F, = 0 to the lever. Once A, and A, are determined. we can get F,
and 6.



FExample

e 30-N uniform rod has a length of / = 1 m.If s = 1.5 m,
determine the distance h of placement at the end A along the
smooth wall for equilibrium.

[SOLUTION

Equations of Equilibrium: Referring to the FBD of the rod shown in Fig. a, write
the moment equation of equilibrium about point A.

C+IM, =0 Tsin ¢(1) — 3sin 8(0.5) = 0
T- 1.5.sin9
sin ¢

Using this result to write the force equation of equilibrium along y axis,

(155in9
sin ¢
[inbcos(® - ¢) - 2sind = 0] .. (1)

+12F, =0, )cos(@—da)—3=0

Geometry: Applying the sine law with sin (180° — #) = sin 6 by referring to Fig. b,

sing  sinf B ( h ) .
¢ _snb (M npl (2)
p 5 sin f T sin @

Substituting Eq. (2) into (1) yields
4
sin f[cos (6 — ¢) — Ek] =10 C

since sin @ # 0, then

cos (0 — &) — (4/3)h [cos (6 — &) = (4/3)h —(3)

Again, applying law of cosine by referring to Fig. b,

P =h+ 1.5 - 2(h)(15)cos (6 — )

B+ 125
[CDS - -2 )
3h
Equating Egs. (3) and (4) yields

4 K +125

_k —

3 3h

30 = 1.25

| h=0645m Ans.




ExamplejThe man has a weight W and stands at the center of
the plank. If the planes at A and B are smooth, determine
the tension in the cord in terms of W and 6.

------------

s = -

S U

RA
[SOLUTION]
L w
C+EMg = 0 W(ECDSc#)—NA(Lcosqb):U NA:T
= IF, = 0; Tcos@—Ngsing =0  ———— (1)
: W >
+TXF, = 0; Tsin 0+Npcos 6 +——W=0 2)
Solving Eqgs. (1) and (2) yields:
T = Esinﬁ' Ans.
2
Ng = %msﬁl

HW

A uniform glass rod having a length L is placed in the smooth
hemispherical bowl having a radius . Determine the angle of
inclination 6 for equilibrium.

Note: By observation ¢ = 6.



The frame in Fig. 6-33a supports the 50-kg cylinder. Determine the
horizontal and vertical components of reaction at A and the force at C.

12m |

SOLUTION

Free-Body Diagrams. The free-body diagram of pulley D, along
with the cylinder and a portion of the cord (a system), is shown in
Fig. 6-33b. Member BC is a two-force member as indicated by its free-
body diagram. The free-body diagram of member ABD is also shown.

Equations of Equilibrium.  We will begin by analyzing the equilibrium
of the pulley. The moment equation of equilibrium is automatically
satisfied with 7 = 50(9.81) N, and so

L3F,=0; D, -5008)N=0 D,=4%05N

+13F,=0; D, - 50098)N=10 D,=4905N Ans.

Using these results, Fp can be determined by summing moments

about point A on member ABD.

G+3IM, = 0; Fye (0.6 m) + 490.5N(0.9 m) — 490.5N(1.20m) = 0
Fge = 24525 N Ans.

Now A, and Ay can be determined by summing forces.
o SF,=0; A, —24525N -4905N=0 A, =T736N Ans,
+13F, =0, A, - 4905N=0 A =4905N Ans



Example
Determine the horizontal and vertical components of force at pins B and C.

The suspended cylinder has a mass of 75 kg

T5%(9.81) 0.3m
1.5m
75%(9.81)
05m J am 5o 03m

| SOLUTION I

Free Body Diagram. The solution will be very much simplified if one realizes that
member AB is a two force member. Also, the tension in the cable is equal to the
weight of the cylinder and is constant throughout the cable.

Equations of Equilibrium. Consider the equilibrium of member BC by referring to
its FBD. Fig. a,

C+IMp = 0; F,,B@){z) + 75(9.81)(0.3) — 75(9.81)(2.8) = 0

Fig = 153281 N
C+3Mp=0;  C,(2) + 75(9.81)(0.3) — 75(9.81)(0.8) = 0
C, = 183.94N = 184N Ans.

4
£3F, = 0; 1532.31(5) — 75(9.81) — C, = 0

C,=4905N Ans.
Thus.
r
Fp = Fqp = 153281 N
4
B, = 5(1532.81) = 1226.25N = 1.23kN Ans.
3
By = 5(1532.81) = 919.69N = 920kN Ans.
e —



Example
Determine the horizontal and vertical components of force

which pin C exerts on member CDE. The 600-N load is
applied to the pin.

SOLUTION

Free Body Diagram. The solution will be very much simplified if one determines
the support reactions first and then considers the equilibrium of two of its three
members after they are dismembered. The FBDs of the entire assembly, member
DBF and member ABC are shown in Figs. a. b and c, respectively.

Equations of Equilibrium. Consider the equilibrium of the entire assembly, Fig. a,
C+IMp=0;  N43) — 300(4.5) — 600(4) =0 N, = 1250N

Next, write the moment equation of equilibrium about point D for member DBF,
Fig. b.

C+XZMp =0; By(15) -300(3) =0 B,= 600N

Finally, consider the equilibrium of member ABC, Fig. ¢
IL3F=0; 1250-600-C,=0 C,=650N Ans.
C+EMp=0; C,=0 Ans.
1: 4m

Fo 300N




Example)

The beam 4BC is loaded via a 500 N.m couple and a 600 N force as shown. The
beam is connected to the rest of the system by a pin joint at B and a roller support at
C. Determine the magnitude of the reaction forces on the beam at the supports.

l

600 N

’1‘ S00 N.m
+— 300 —e— 500 ——> =
Ans.
Dimensions in mm RC=1700 N
RBx=1597.5 N
RBy=1181.4 N

Example:Determine the force P needed to lift the load. Also, ’-70.9 m;—‘
determine the proper placement x of the hook for

equilibrium. Neglect the weight of the beam.
100 mm J@

6 kN

HW
The uniform rod of length L and weight W is supported on
the smooth planes. Determine its position f for equilibrium.
Neglect the thickness of the rod.

Ans. f = tan_l(l cotdr — l cot tf?)

2 2




HW

Determine the resultant force at pins A, B, and C on the
three-member frame.

Ans:

A, = 61.88N

A= SO0N o

BI = 338.12N FA = 572N

B}, = 338.12ZN FE = 478N
C, = 46188 N

, = —338.12N

HW.

Determine the horizontal and vertical components of force
atpins A and D.
D

Ans:

A, = 240kN
A, = 120kN 7m
D, = 180kN 0.3 m
D, =240kN

1.5m

__':Uﬁf

12kN



CHAPTER FOUR
FRICTION

4.1 Introduction

In the previous sections, we assumed that surfaces in contact are either frictionless or rough. If they
are frictionless, the force each surface exerts on the other is normal to the surfaces, and the two
surfaces can move freely with respect to each other. If they are rough, tangential forces can develop
that prevent the motion of one surface with respect to the other.

Friction is a force that resists the movement of two contacting surfaces that slide relative to one
another. This force always acts tangent to the surface at the points of contact and is directed so as to
oppose the possible or existing motion between the surfaces.

There are two types of friction: dry friction, sometimes called Coulomb friction, and fluid friction or
viscosity. Fluid friction develops between layers of fluid moving at different velocities.

4.2 Theory of Dry Friction

The theory of dry friction can be explained by considering the effects caused by pulling horizontally
on a block of uniform weight W which is resting on a rough horizontal surface that is non rigid or
deformable as show in fig. below where:

W= block of uniform weight, ANn = Distributed normal force
AFn =Distributed frictional force , P = Horizontal applied force
N= X ANn= normal force 2y=0 N=w

F=X AFn= frictional force 2x=0 F=P

The effect of the distributed normal and frictional loadings is indicated by their resultants N and F
on the free-body diagram, Fig. 8-1d. Notice that N acts a distance x to the right of the line of action
of W, Fig. 8-1d. This location, which coincides with the centroid or geometric center of the normal
force distribution in Fig. 8-1b, is necessary in order to balance the “tipping effect” caused by P. For
example, if P is applied at a height h from the surface, Fig. 8-1d, then moment equilibrium about
point O is satisfied if Wx = Ph or x = Ph>W.

e T—
h

F

I -

| o
= - |

(a) AN, e X \[
Resultant normal
(b) (c) and frictional forces

(d)



4.3 The static and kinetic friction forces

It was found that, as the magnitude F of the friction force increases from 0 to Fm, the point of
application A of the resultant N of the normal forces of contact moves to the right. In this way, the
couples formed by P and F and by W and N, respectively, remain balanced. If N reaches B before F
reaches its maximum value Fm, the block starts to tip about B before it can start sliding.

Impending
motion
w w /
F'| Equilibrium ;|  Motion
|
P FJH |
A B A | F
k
F |
|
N N | 2
(a) (b) (c)

Fig. 4.11 (a) Block on a horizontal plane, friction force is zero; (b) a horizontally applied force P
produces an opposing friction force F; (c) graph of F with increasing P.

4.5 Coefficients of Friction

Experimental evidence shows that the maximum value Fm of the static friction force is proportional
to the normal component N of the reaction of the surface. We have Static friction

Fn=us N (4.8)
where ps is a constant called the coefficient of static friction. Similarly, we can express the
magnitude Fk of the kinetic-friction force in the form Kinetic friction

Fv« = N 4.9
where u is a constant called the coefficient of kinetic friction. The coefficients of friction us and wk
do not depend upon the area of the surfaces in contact. Both coefficients, however, depend strongly
on the nature of the surfaces in contact.
From this discussion, it appears that four different situations can occur when a rigid body is in
contact with a horizontal surface:
1. The forces applied to the body do not tend to move it along the surface of contact; there is no
friction force (Fig. 4.12a).
2. The applied forces tend to move the body along the surface of contact but are not large enough to
set it in motion. We can find the static- friction force F that has developed by solving the equations
of equilibrium for the body. Since there is no evidence that F has reached its maximum value, the
equation Fm = usN cannot be used to determine the friction force (Fig. 4.12b).
3. The applied forces are such that the body is just about to slide. We say that motion is impending.
The friction force F has reached its maximum value Fm and, together with the normal force N,
balances the applied forces. Both the equations of equilibrium and the equation Fm = us N can be
used. Note that the friction force has a sense opposite to the sense of impending motion (Fig. 4.12c).



4. The body is sliding under the action of the applied forces, and the equations of equilibrium no
longer apply. However, F is now equal to Fk, and we can use the equation Fx = ux N. The sense of Fx
is opposite to the sense of motion (Fig. 4.12d).

'le

P "
PyN
P,
<
F=0 F
F=P,
N=P+W F < p,N

N
(a) No friction (P, = 0)

N NZPJ,-FW

(b) No motion (P, <F,,)

I
P”N e
P, P,
# *
Fm Fk
F,=P, Fi <P,
Fy = psN Fir = N

N N=P,+W

(c) Motion impending —— (P, = F,,)

Fig. 4.12

(a) Applied force is vertical, friction force is zero;

NEN=P +W
(d) Motion ——(P, > F})

(b) Horizontal component of applied force is less than Fm, no motion occurs;
(c) Horizontal component of applied force equals Fm, motion is impending;
(d) Horizontal component of applied force is greater than Fk, forces are unbalanced and motion

continues.



4.4 Angles of Friction
It is sometimes convenient to replace the normal force N and the friction force F by their resultant R.

Let’s see what happens when we do that.
Angle of static friction

! N N
tan ¢, = p,
Angle of kinetic friction
Fp N
tan gy = — = ——
N N
tan ¢y = pu
P¢ N
P
W p NP W py\ W P |W
yl I Pl
|_ ‘ [ ¥ ;
— P L=
x x P,
R=N
P <@,
(@) No friction
(b) No motion (c) Motion impending —— (d) Motion
W
|
N =Wcos #
- A )N = Wcos 6 "‘/Q/@
=2 < 6\ “Fpy = Wsin 8 0= ¢, R\F, <wsin 6
R ¢ RLE _wane o=

¢, = angle of repose /
(a) No friction (b) No motion (c) Motion impending / (d) Motion



4.5 Problems Involving Dry Friction

Most problems involving friction fall into one of the
following three groups.

1. AIll applied forces are given, and we know the
coefficients of friction; we are to determine whether the
body being considered remains at rest or slides. The friction
force F required to maintain equilibrium is unknown (its
magnitude is not equal to usN) and needs to be determined,
together with the normal force N, by drawing a free-body
diagram and solving the equations of equilibrium (Fig.
4.15a). We then compare the value found for the magnitude
F of the friction force with the maximum value Fm = us N.
If F is smaller than or equal to Fm, the body remains at rest.
If the value found for F is larger than Fm, equilibrium
cannot be maintained and motion takes place; the actual
magnitude of the friction force is then Fk=pkN.

2. All applied forces are given, and we know the motion is
impending; we are to determine the value of the coefficient
of static friction. Here again, we determine the friction force
and the normal force by drawing a free body diagram and
solving the equations of equilibrium (Fig. 4.15b). Since we
know that the value found for F is the maximum value Fm,
we determine the coefficient of friction by solving the
equation Fm = psN.

3. The coefficient of static friction is given, and we know
that the motion is impending in a given direction; we are to
determine the magnitude or the direction of one of the
applied forces. The friction force should be shown in the
free-body diagram with a sense opposite to that of the
impending motion and with a magnitude Fm 5 usN (Fig.
4.15c). We can then write the equations of equilibrium and
determine the desired force. As noted previously, when only
three forces are involved, it may be more convenient to
represent the reaction of the surface by a single force R and
to solve the problem by drawing a force triangle.

W

.
(a)
\"\Y%
\\\
7 > / /i ¥ 1 > “\\-
(b)
Scl,
R 2 )50
Ill]pendi, of
W € mog,
P 4
\_\\



4.6 Procedure for Analysis

Equilibrium problems involving dry friction can be solved using the following

procedure:

Draw the necessary free-body diagrams, and unless it is stated in the problem that
impending motion or slipping occurs, always show the frictional forces as unknowns
(i.e., do not assume F = uN).

Determine the number of unknowns and compare this with the number of available
equilibrium equations.

If there are more unknowns than equations of equilibrium, it will be necessary to
apply the frictional equation at some, if not all, points of contact to obtain the extra
equations needed for a complete solution.

If the equation F = pu N is to be used, it will be necessary to show F acting in the

correct sense of direction on the free-body diagram.

Apply the equations of equilibrium and the necessary frictional equations (or

conditional equations if tipping is possible) and solve for the unknowns.



Example : A 100 N force acts as shown on a 300-N crate placed on an inclined plane. The
coefficients of friction between the crate and the plane are ps 0.25 and pk 0.20. Determine whether
the crate is in equilibrium, and find the value of the friction force.
STRATEGY: This is a friction problem of the first type:

you know the forces and the friction coefficients and want

to determine if the crate moves. You also want to find the
friction force.

MODELING and ANALYSIS

Force Required for Equilibrium. First determine the value of the
friction force required to maintain equilibrium. Assuming that F is

directed down and to the left, draw the free-body diagram of the 300
crate (Fig. 1) and solve the equilibrium equations: 3 ix
5 7
\\) 4< o
3 N . ///
SFx = 100 —= (300) —F =0 % <
5 A // < S
= —80 AN
F=80N / 100 M_» N\
SFy =0 N—§(300)=0

Fig. 1 Free-body diagram of
crate showing assumed
direction of friction force.

The force F required to maintain equilibrium is an 80-Ib 300 B8 ‘y

force directed up and to the right; the tendency of the crate is
thus to move down the plane. Maximum Friction Force. The
magnitude of the maximum friction force that may be developed
between the crate and the plane is

N = 240N X

100 1b

" F=43M

Fm= usN = 0.25(240) = 60N \ N = 240 g

Since the value of the force required maintaining equilibrium F19- 2 hFre_e'bOdy d'langarT‘ at
(80 N) is larger than the maximum value that may be obtained ]f:)arzi showing actual friction
(60 N), equilibrium is not maintained and the crate will slide '

down the plane.

Actual Value of Friction Force. The magnitude of the actual

friction force is

Factual = F, = yN = 0.20(240) = 48N
The sense of this force is opposite to the sense of motion; the force is thus directed up and to the
right (Fig. 2) Factual =48 N ¥
Note that the forces acting on the crate are not balanced. Their resultant is
% (300) — 100 — 48 = 32 N &~
REFLECT and THINK: This is a typical friction problem of the first type. Note that you used the

coefficient of static friction to determine if the crate moves, but once you found that it does move,
you needed the coefficient of kinetic friction to determine the friction force.



Example: A 100 N force acts as shown on a 100-N crate placed on an inclined plane. The
coefficients of friction between the crate and the plane are ps 0.25 and pk 0.20. Determine whether
the crate is in equilibrium, and find the value of the friction force.

q N
3
IFx =0 100 — = (100) — F = 0 34 o
) 1 5
F=40N / X 4< -
\ ‘ A 7
4 \\ 7 vd
JFy =0 N -3 (100) =0 \ //
N=80N X . N g
100 u/ N
Fm = ugN = 0.25(80) = 20N < F=40N
Equilibrium is not maintained and the crate will slide up
the plane. 1@ N
Factual = F, = u,N = 0.20(80) = 16 NY v
The sense of this force is opposite to the sense of ‘ :; X
motion; the force is thus directed down and to the left \\y
Note that the forces acting on the crate are not 4
balanced. Their resultant is \\
100 —g (100) —16 = 32N ;
100 M7 -

Example: A 100 N force acts as shown on a 200-N crate placed on an inclined plane. The
coefficients of friction between the crate and the plane are ps 0.25 and pk 0.20. Determine whether
the crate is in equilibrium, and find the value of the friction force.

SFx =0 100—%(200)—1::0
F= —20
F=20n /
SFy =0 N—§(200):0
N=160N X

Fm= u,N = 0.25(160) = 40N< F=20N

Equilibrium is maintained and the crate will be at rest.



Example A support block is acted upon by two forces as shown. Knowing that the coefficients of
friction between the block and the incline are us = 0.35 and u = 0.25, determine the force P required
to (a) start the block moving up the incline; (b) keep it moving up; (c) prevent it from sliding down.

a. Force P to Start Block Moving Up.

P
_ 250 r_
YEx =0 F + (800) sin(25)-Pcos(25) =0 ——-—1 '
JEy =10 N + (800) cos(25)-Psin(25) =0 ——-—2
Due to motion is impending up the incline, thus
F= pusN= 035N ———-3 00N

By solving eq.s (1),(2) and (3)
P=780N

b. Force P to Keep Block Moving Up

JFx =0 F + (800)sin(25)-P cos(25) =0 ———1 800 N
JFy =0 N + (800) cos(25)-Psin(25) =0 ———2 " P
To keep it moving up the incline F / .

F=puyN= 025N  —————— 3 1
By solving eq.s (1),(2) and (3) B \

P =694 N

C. Force P to Prevent Block from Sliding Down

JFx =0 — F 4+ (800)sin(25)-Pcos(25) =0 ——-—1 800 N
JFy =0 N + (800) cos(25)-P sin(25) =0 ———2
Due to motion is impending up the incline, thus

F=puN= 025N -—--3

By solving eq.s (1),(2) and (3)

P=80.0N
"/ E



800 N

800 N

P
//l\ ‘a"¢s s 800 N
¢s_1929° 4
/ﬁ 25° + 19.29° = 44.29°
()

"25°
Fig. 1 Free-body diagram of block and its force
triangle—motion impending up incline.

800N

P
1\."- P tan ¢, = pu, 800N
/ ) =0.25

./ o
¢} "x._‘j‘ (pl' = 14.04 R
25° + 14.04° = 39.04°
R

250
Fig. 2 Free-body diagram of block and its force
triangle—motion continuing up incline.

800 N
¢y =19.29°
/ N p 257 1929°=571° -
-—
) N
- 800N | R
&
25R

Fig. 3 Free-body diagram of block and its force
triangle—motion prevented down the slope.

N\

Sample Problem 4.12

A support block is acted upon by two forces as shown. Knowing
that the coefficients of friction between the block and the
incline are p, = 0.35 and p; = 0.25, determine the force P
required to (a) start the block moving up the incline; (b) er:ep
it moving up; (c) prevent it from sliding down.

STRATEGY: This problem involves practical variations of
the third type of friction problem. You can approach the solu-
tions through the concept of the angles of friction.

MODELING:

Free-Body Diagram. For each part of the problem, draw
a free-body diagram of the block and a force triangle including
the 800-N vertical force, the horizontal force P, and the force
R exerted on the block by the incline. You must determine the
direction of R in each separate case. Note that, since P is per-
pendicular to the 800-N force, the force triangle is a right tri-
angle, which easily can be solved for P. In most other problems,
however, the force triangle will be an oblique triangle and
should be solved by applying the law of sines.

ANALYSIS:

a. Force P to Start Block Moving Up. In this case,
motion is impending up the incline, so the resultant is directed
at the angle of static friction (Fig. 1). Note that the resultant is
oriented to the left of the normal such that its friction compo-
nent (not shown) is directed opposite the direction of impending
motion.

= (800 N) tan 44.29° P = 780 N

b. Force P to Keep Block Moving Up. Motion is
continuing, so the resultant is directed at the angle of kinetic
friction (Fig. 2). Again, the resultant is oriented to the left of
the normal such that its friction component is directed opposite
the direction of motion.

= (800 N) tan 39.04° P = 649 N

c. Force Pto Prevent Block from SlidingDown. Here,
motion is impending down the incline, so the resultant is
directed at the angle of static friction (Fig. 3). Note that the
resultant is oriented to the right of the normal such that its
friction component is directed opposite the direction of impend-
ing motion.

= (800 N) tan 5.71° P = 800 N

REFLECT and THINK: As expected, considerably more
force is required to begin moving the block up the slope than
is necessary to restrain it from sliding down the slope.




Example: The uniform thin pole has a weight of 50 N and a length of 6m. If it is placed against the
smooth wall and on the rough floor in the position d = 2 m, the coefficient of static friction is 0.3.

1- Will it remain in this position when it is released?

2- Determine the maximum distance d it can be placed from the smooth wall and not slip

Solution

1- No motion B

IMA=0 50(1)—N,(5.66) =0
N, =881N

SFx=0 N,= F, =881N &t

JFy=0  N;= 50 N

to check the motion

Fm; = uygN; = 03*50= 15N >F;, =881N O.K

The pole remains in this position.

A
2- Impending motion at point A SRR SR
F1:Fm1: ‘u.lez 03N1 (I |
SFy=0 N,= 50 N
F, =03%50 = 15N B
—+ N2
JFx =0 N,= F, =15N :
d i
IMA =0 50 (E) —15(5.66) =0 i
i
d=3.4m 1
6 m
5.66 m
!
i
i 50N
i
i A
- F1
224



Fyc = 05774P

P ExamB!@‘) Blocks A and B have a mass of 3 kg and 9 kg, respectively, and are

_—

/Z' c Fype
sl

3981)N

! 0% Fyc = 1155P

—_—

.

A

—

9(9.81)N

Fp
N3

(b)
Fig. 811

connected to the weightless links shown in Fig. 8-11a. Determine the
largest vertical force P that can be applied at the pin C without causing
any movement. The coefficient of static friction between the blocks
and the contacting surfaces is u, = 0.3.

SOLUTION

Free-Body Diagram. The links are two-force members and so the
free-body diagrams of pin C and blocks A and B are shown in Fig. 8-11b.
Since the horizontal component of F, - tends to move block A to the
left, F4 must act to the right. Similarly, Fz must act to the left to oppose
the tendency of motion of block B to the right, caused by Fp.. There
are seven unknowns and six available force equilibrium equations, two
for the pin and two for each block, so that only one frictional
equation is needed.

Equations of Equilibrium and Friction. The force in links AC and
BC can be related to P by considering the equilibrium of pin C.

+13F, = 0; Fypcos30°— P =0, Fye = 1.155P
=5 EFI =0; 1.155P sin 30° — F = 0; Fge = 0.5774P
Using the result for F, ., for block A,

L3F, =0. F,—1155Psin30° =0, F, =0.5774P (1)
+13F, =0; Ny —1.155Pcos 30° — 3(9.81 N) =

N, =P+2943N (2)
Using the result for Fyc, for block B,
S3F =0, (0.5774P) — Fz = 0;
-I-TZF,. =0; - 9(9.81)N = 0;

F, =05714P (3
Ny = 88.29N

Movement of the system may be caused by the initial slipping of either
block A or block B. If we assume that block A slips first, then
Fy = Ny = 03N, 4)
Substituting Eqgs. 1 and 2 into Eq. 4,
0.5774P = 0.3(P + 29.43)
P=318N Ans.

Substituting this result into Eq. 3, we obtain F; = 18.4 N. Since the
maximum static frictional force at B is (Fp),, = mNg =
0.3(88.29 N) = 26.5N = Fp, block B will not slip. Thus, the above
assumption is correct. Notice that if the inequality were not satisfied,

we would have to assume slipping of block B and then solve for P.
- -




Example: Determine the max. value which P may have before any sliping takes place
Solution
Case 1: The body (50kg) slips only

F,=Fmy = us N, = 03N,

F,=Fm, = usN, = 0.4 N,

F.B.D. of Block (30kg)

YFy=0 N;+ (30%9.81)cos(30°) =0
N, = 225N

F, = 0.30(225) = 765N

Y 309.8)N 7

F.B.D. of Block (50kg) X l//\/

SFy =0 N, — (50 % 9.81) cos(30°) — 225 = 0 300
//, ﬁl
N, = 680N / "\\//ﬂ
F, = 0.4 (680) = 272 N x” N,
SFx=0 P —76.5— 272 + (50 * 9.81) sin(30°) = 0
P= 103.1N A\
50(9.81) N
. . o A,
Case2: body (50kg) and body (40kg) slip as unit F /
F1 = U N1 = 0.3 N1 ’/\// N,
F3 = ”S N3 = 0.4‘5 N3
F.B.D. of Block (30kg) " case 1
JEFy=0 N;+(30%9.81)cos(30°) =0
N, = 225N Y 3098)N 7
F, = 0.30(225) = 76.5N o )L -
. /
F.B.D. of Block (50kg) and body (40kg) (/ 27,
JFy=0  N;—(50%9.81)cos(30°) — (40%9.81) —225=0 _~ \//N&
£ 1
Ny = 1019 N i  §
F; = 0.45 (1019) = 495 N T
_ 40¢9. 81)\:

JFx=0 P —76.5—495+ ((50 + 40) * 9.81) sin(30°) = 0 F /\
P=93.8N l/

P /i >

P= 938N 7 ‘/F/a{ S

case 2



Example: Determine the smallest couple moment that can be applied to the 180N wheel that will
cause impending motion. The uniform concrete block has a weight of 232N. The coefficient of static
friction is 0.4 at all contacting surfaces.
Solution

There are two possibilities

Case 1: the wheel slips first

bs oesae

F, = Fmy = N, = 04N, . m:ﬂ

F, = Fm, = u N, = 0.4 N, 5000

0008

'g'( 5‘-’:‘,‘!

F.B.D. of the wheel ot Dost

SFy=0 N1+F, =232 2000

N1+ 0.4 N, = 232 ——(1) -g?ég,éog-; ‘

SFx=0 N,= F, B it

N,= 04%xN, ————(2) S

N, = 200N N, = 80N —
F,= 80N F, = 32N A

SMo=0 F, *015+F, x.015—M =0
80  0.15 + 32 %.015— M = 0
M=16.8 N.m

Case 2: The block slips first

F, =Fmy; = pusN, = 0.4 N, o
F;=Fmg= ugNy = 0.4 N, :
So.050

F.B.D. of the block SR ee aoe
SFy=0 N3—F, =180 0220 Gozs
N3+ 0.4 N, = 180 --@ [ FBY

SFx=0 N,= F, P
Ny= 04xN; ————2) |+ o

By solving eq.s (1) and (2) f:?f:&.% ?;fj'cf’j
N; = 2143N N, = 857N PN AN

F; = 857N F, = 343N
F.B.D. of the wheel
JFx=0 F, = N, =857N

SMo=0 F,x015+F, *.015—M =0
85.72 % 0.15 + 34.29 % .015 — M = 0
M =469 N.m

s~ Usesmaller M=46.9 N.M



Examgle Blocks A and B have a mass of 40 N and 50 N,
respectively. Using the coefficients of static friction indicated,
determine the largest force P which can be applied to the cord

without causing motion. There are pulleys at C and D.

Solution
Casel : Block A slips first
Fl = le = ﬂle = 0.4N1
JFy=0 N, =40
F, = 04%40 =16
JFx =0 F,=P
P=16N

Case 2: Block A and Block B slip as a unit

F,=Fmy,= ugN, = 04N,

SFy=0 N,—50—40=0

N, = 90

F, = 0.3%90 =27

SFx=0 F,—10—-P= 0
P=17N

Case 3 Block A tips about Point O
IMo=0 40%x4—-20P=0

P=8N

. Use smallest valueof P = 8 N

10N,

=

10N 5\?0 B

F2




H.W. A cable is attached to the 20-kg plate B,

passes over a fixed peg at C, and is attached to the
block at A. Using the coefficients of static friction
shown, determine the smallest mass of block A so
that it will prevent sliding motion of B down the
plane.

H.W Blocks A and B have a mass of 7 kg and 10 kg,
respectively. Using the coefficients of static friction
indicated, determine the largest vertical force P which
can be applied to the cord without causing motion.

H.W The uniform thin pole has a weight of 50 N and a
length of 26m. If it is placed against the rough wall and
on the rough box in the positiond =10 m,

ps = 0.3 at points A, Band C

P=150 N

Box weight =100 N

Determine the distance x when the motion of the pole
impend

H.W.

Determine the horizontal force P required to cause
slippage to occur. The friction coefficients for the
three pairs of mating surfaces are indicated. The top
block is free to move vertically.

O (3
g lm kg 5
2 (o)

300 mm
T D
_ 04 B 400 mm
g " I P
A C
| (,u‘d=f]1
X -
B l
P
26
A
—— b
gl 2
.‘s = 1 :.~".':|£H2-".-~"":
d




4.7 Wedges

A wedge is a simple machine that is often used to transform an applied force into much larger forces,
directed at approximately right angles to the applied force. Wedges also can be used to slightly move
or adjust heavy loads.

Consider, for example, the wedge shown in Fig. 8-12a, which is used to lift the block by applying a
force to the wedge. Free-body diagrams of the block and wedge are shown in Fig. 8-12b. Here we
have excluded the weight of the wedge since it is usually small compared to the weight W of the
block. Also, note that the frictional forces F1 and F2 must oppose the motion of the wedge.
Likewise, the frictional force F3 of the wall on the block must act downward so as to oppose the
block’s upward motion.

The locations of the resultant normal forces are not important in the force analysis since neither the
block nor wedge will “tip.” Hence the moment equilibrium equations will not be considered. There
are seven unknowns, consisting of the applied force P, needed to cause motion of the wedge, and six
normal and frictional forces. The seven available equations consist of four force equilibrium
equations, XFx = 0, XFy = 0 applied to the wedge and block, and three frictional equations, F = uN
applied at each surface of contact.

If the block is to be lowered, then the frictional forces will all act in a sense opposite to that shown in
Fig. 8-12b. Provided the coefficient of friction is very small or the wedge angle u is large, then the
applied force P must act to the right to hold the block. Otherwise, P may have a reverse sense of
direction in order to pull on the wedge to remove it. If P is not applied and friction forces hold the
block in place, then the wedge is referred to as self-locking.

W F
|
l e N
F, ¢
<y '
P — [.: —
e e
r
[Impending l
T N, N,

motion

(a) (b)

Fig. 8-12



The answer by using the friction resultant and friction angle

(a)

Forees to raise load



Example)

The uniform stone in Fig. 8-13a has a mass of 500 kg and is held in the
horizontal position using a wedge at B. If the coefficient of static
friction is u, = 0.3 at the surfaces of contact, determine the minimum
force P needed to remove the wedge. Assume that the stone does not

slip at A. 4905 N

~05m—-~05m-—
| |

’ im i _!'_ el 03N,
\50“““ doou.a,bo A F:‘l{
‘s‘nn‘; n"gvﬁqﬂ%vﬂ ----- Rby A 4
AR B S
B TIW c-r‘!Q A LAY [¢]
; : »> P N, 7 Ny
C
?o NB 7° '?0
, i
(a) Fie. 8-13 (b) ’\’;"‘ =% Impending
1. -1 03Np de——» ————>
-—p— p  motion
0.3N,
SOLUTION N
N

The minimum force P requires F = u N at the surfaces of contact with
the wedge. The free-body diagrams of the stone and wedge are shown
in Fig. 8~13bh. On the wedge the friction force opposes the impending
motion,and on the stone at A, F, = u/N,, since slipping does not occur
there. There are five unknowns. Three equilibrium equations for the
stone and two for the wedge are available for solution. From the
free-body diagram of the stone,

C+3IM, = 0: —4905N(0.5m) + (Ngcos 7°N)(1 m)

+ (0.3Ngsin 7°N)(I m) = 0
Ny = 2383.1 N

Using this result for the wedge, we have

LISE, =0,  Ne— 2383.1cos °N — 0.3(2383.1 sin 7°N) = 0
| Ne = 24525 N
£3F, =0, 2383.1sin7°N — 0.3(2383.1 co 7° N) +
P — 03(24525N) = 0
P =11549N = LI5kN Ans.

NOTE: Since P is positive, indeed the wedge must be pulled out. If P
were zero, the wedge would remain in place (self-locking) and the
frictional forces developed at B and C would satisfy Fgz < uNg and

< psNe



Example

Determine the smallest values of forces P 1 and P 2 required to rise block A while preventing A
from moving horizontally. The coefficient of static friction for all surfaces of contact is 0.3, and the
weight of wedges B and C is negligible compared to the weight of block A.

2kN

F.B.D. of block A

%
y
Nag=2 kN
e P
] w —x
The friction force fpe™—— -
from block C ” T—— .
it L Impending motion
opposes the relative .
motion of block B. Ngcl 8 of lower surface of
block B relative to
block C.
Solution F.B.D. od block B
1 — Equations of equilibrium for block A
JFx =0 fAB =0
JFy=20 NAB = 2 kN
2 — Equations of equilibrium for block B
JFx =0 fBC sin(7°) + NBC cos(7°) — P, =0 -——=-1
JEy =10 — fBCcos(7°) + NBC sin(7°) —2 =0 ——=2

Slip impends between blocks B and C

fBC = pugNgc = 0.3 Ngc - —=—-3
By Solving Egs. 1, 2, and 3 we obtained
Ngc = 2.09 kN fBC = 0.628 kN P, = 0.878kN



2 — Equations of equilibrium for block C ¥

0="71 Ngc=2.092kN, -~
-~
/
~
//

7e ,

. __._______ch _
C e

P
- — ——
The friction forece - fe

from the floor
opposes the relative N
motion of block B. c

2EFx =0
JFy =20

— fBC scosin(7°) — 2.09sin(7) + P, — fc =0
— fBCsin(7°) + 2.09 cos(7°) + N =0

Slip impends between blocks C and floor

fe = usNe =03 N

Solving Egs. 1, 2, and 3

Nc= 2.09kN fc= 0.628 kN

P1=

Example:

If P = 250 N, determine the required minimum
Weight for block B so that the wedge will not
move to the right. Neglect the weight of A. The
coefficient of static friction for all contacting

The friction force fpe from

-~ block B opposes the relative

motion of block C.

Impending motion of upper

_ - surface of C relative to B

X

Impending motion of lower

surface of C relative to the floor

F.B.D. of block C

0.878 kN

O
O

(@]
(@]

surfaces is ps = 0.35. Neglect friction at the
rollers.

Solution

1 — Equations of equilibrium for block A
Slip impends between blocks A and floor
F,= pugN, =0.35N,
Slip impends between blocks A and B
F, = usN; =0.35N,
JEy =10 N, cos(10°) — (0.35 N,) sin(10°) = N; =0
2Fx =0 P — (0.4 N,) cos(10°) + N, sin(10°) — 0.4(N,) =0
N1 = kN
2 — Equations of equilibrium for block B
Slip impends between blocks A and B

N1

JFy =20 WB = N1 = kN




Example : Find P1 need to raise the column A and the minimum P2 to hold the wedge B
stationary. The coefficient of static friction for all contacting surfaces is ps = 0.4. The weight of
wedges B and C is negligible compared to the weight of block A

y
| D
Nas=8 kN
I 8 kN O
fAB 5
10° I\BJ‘_Z S O
_ P,
The friction force foe ST— —1 D—_-[ L B ————
- % Y. i LETYSY P ‘—\_‘__1_____*
from block C Tewa L E— c
opposes the relative ) Impending motion )
motion of block B. Npc[ 0 of lower surface of
block B relative to 7
block C.

F.B.D. od block B

1 — Equations of equilibrium for block A

Slip impends between blocks A and B A =
fAB = psNyp = 0.4 Nyp 8kN -
2Fy =20 NAB = 8 kN ]

fAB = 0.4 (8) =3.2kN -
2 — Equations of equilibrium for block B _"}'ﬂ

Slip impends between blocks B and C N

fBC = g Ngc = 0.3 Np, F.B.D. of block A

JEy =0 Ngc cos(10°) — (0.4 Ng¢) sin(10°) —8 =10
Nyc = 8.74 kN
JFx =0 (0.4 Ng¢) cos(10°) + N sin(10°) — 0.4(Ng:) — P, =0
P, = 1.76 kN

2 — Equations of equilibrium for block C
Slip impends between blocks C and floor
fe = usNe =04 N,

JFy =0 (0.4 Ng; sin(10°) 4+ Ng¢ cos(10°) — (Ng) =0

Ne= 8kN

JFx =0 P1 — 0.4 Ny *cos(10°) — Ny sin(10°) — 0.4 N, =0 o
P, = 0.878KkN y

The friction force fg from
° .~ block B opposes the relative

10 Npc PR motion of block C.
i g
P . .
T ~ Impending motion of upper

--.._._____fEC _~ " surface of C relative to B
I's e .-"
P1 X
A — —_————
The friction force f fe Impending motion of lower
from the floor surface of C relative to the floor
opposes the relative -

meotion of block B. N F.B.D. of block C



Sample Problem 6/6

The horizontal pesition of the 500-kg rectangular block of concrete is ad-
justed by the 5° wedge under the action of the force P. If the coefficient of static
friction for both wedge surfaces is 0.30 and if the coefficient of static friction
between the block and the horizontal surface is 0.60, determine the least force P
required to move the block.

Solution. The free-body diagrams of the wedge and the block are drawn with
the reactions R, R,, and R, inclined with respect to their normals by the

| amount of the friction angles for impending motion. The friction angle for limit-

ing static friction is given by & = tan™ p. Each of the two friction angles is com-
puted and shown on the diagram,

We start our vector diagram expressing the equilibrium of the block at a
convenient point A and draw the anly knovwn vector, the weight W of the block.
Next we add Ry, whose 31.0° inclination from the vertical is now known. The
veetor — Ry, whose 16.70° inclination from the horizontal is also known, must
close the polygon for equilibrium. Thus, point B on the lower polygon is deter-
mined by the intersection of the known directions of R; and —R,, and their mag-
nitudes hecome known.

For the wedge we draw R, which is now known, and add R,, whose direc-
tion is known. The directions of R; and P intersect at C, thus giving us the solu-
tion for the magnitude of P.

Algebraic solution. The simplest choice of reference axes for calculation
purposes is, for the block, in the direction a-a normal to Ry and, for the wedge, in
the direction b-b normal to R;. The angle between R, and the a-direction is
16.70° + 31.0° = 47.7°, Thus, for the block

[3F, = 0] 500(9.81) sin 81.0° — Ry cos 47.7 = 0
R, = 3750 N

For the wedge the angle between R, and the b-direction is 90° - (2¢; +
5°) = 51.6°, and the angle between P and the b-direction is ¢, + 5 = 21.7°. Thus,

[ZF, = 0] 3750 cos 51.6° - Pcos 21.7° = 0
P =2500N Ans.

Graphical solution. The accuracy of a graphical solution is well within the
uncertainty of the friction coefficients and provides a simple and direct result. By
laying off the vectors to a reasonable scale following the sequence described, we
obtain the magnitudes of P and the R's easily by scaling them directly from the

diagrams.

P

Rl |‘_ T~ -
9;= tan™! 0.30 a”
= 16.70° Py Ra
dy=tan~" 0.6
=31.0°

Helpful Hints

®

) Be certain to note that the reactions

are inclined from their normals in
the direction to oppose the motion,
Also, we note the equal and opposite
reactions R, and —R..

) It should be evident that we avoid

simultaneous equations by eliminat-
ing reference to R; for the block and
R, for the wedge



CHAPTER FIVE
TRUSSES

5.1 Introduction

In the preceding chapters, we studied the equilibrium of a single rigid body, where all forces
involved were external to the rigid body. We now consider the equilibrium of structures made of
several connected parts. This situation calls for determining not only the external forces acting on the
structure, but also the forces that hold together the various parts of the structure. From the point of
view of the structure as a whole, these forces are internal forces.

The internal forces holding the various parts of the crane together do not appear in the free-body
diagram. If, however, we dismember the crane and draw a free-body diagram for each of its
component parts, we can see the forces holding the three beams together; since these forces are
external forces from the point of view of each component part (see Fig. below).

There are many types of structural elements. If an element has pins or hinge supports at both ends
and carries no load in-between, it is called a two-force member. These elements can only have two
forces acting upon them at their hinges. If only two forces act on a body that is in equilibrium, then
they must be equal in magnitude, co-linear and opposite in sense. This is known as the two-force
principle. These members generally are used in truss structures.

A member acted upon by three or more forces that, in general, are not directed along the member, it
is called a multi-force member. The directions of these forces are unknown; therefore, we need to
represent them by two unknown components. Frames are designed to support loads and are also
usually stationary, fully constrained structures. However, like the crane of Fig. below, frames always
contain at least one multi-force member.

D D p  multi:forcemember;
E T T cC E
9 ) F o 0 F cle 9 0 F
C C
1 " P-4
B<o B® W B® ) E W
W
A A ¢
X X ¥ B
G A
p A A
A, A, two:forcemember;
(a) (b) (c)
Fig. A structure in equilibrium. (a) Diagram of a crane supporting a load; (b) free-body

diagram of the crane; (c) free-body diagrams of the components of the crane.



5.2 Trusses

A truss is a structure composed of slender members joined together at their end points. The members
commonly used in construction consist of wooden struts or metal bars. In particular, planar trusses
lie in a single plane and are often used to support roofs and bridges. The truss shown in Fig. 6-1a is
an example of a typical roof-supporting truss. In this figure, the roof load is transmitted to the truss at
the joints by means of a series of purlins. Since this loading act in the same plane as the truss, Fig.
6—1b, the analysis of the forces developed in the truss members will be two-dimensional.

Trusses are designed to support loads and are usually stationary, fully constrained structures.
Trusses consist exclusively of straight members connected at joints located at the ends of each
member. Members of a truss, therefore, are two-force members, i.e., members acted upon by two
equal and opposite forces directed along the member.

& & = /// \ R
£ Y \ V2 N
Roof truss
(b)
Fig. 6-1
e N
p / R N\
\ N\
1IN 1N
//,. ) \
/./ \ \ \
\ _‘\\
" A
b b
Bridge truss

(0)

Fig, 6-2



5.2 Assumptions for Design.

To design both the members and the connections of a truss, it is necessary first to determine the force
developed in each member when the truss is subjected to a given loading. To do this we will make
two important assumptions:

1-All loadings are applied at the joints. In most situations, such as for bridge and roof trusses, this
assumption is true. Frequently the weight of the members is neglected because the force supported
by each member is usually much larger than its weight. However, if the weight is to be included in
the analysis, it is generally satisfactory to apply it as a vertical force, with half of its magnitude
applied at each end of the member.

2- The members are joined together by smooth pins. The joint connections are usually formed by
bolting or welding the ends of the members to a common plate, called a gusset plate, as shown in
Fig. 6=3a, or by simply passing a large bolt or pin through each of the members, Fig. 6-3b. We can
assume these connections act as pins provided the center lines of the joining members are
concurrent, as in Fig. 6-3.

N

plate

@ Fig. 6-3 (b)

5.4 Member Force

Because of these two assumptions, each truss member will act as a two force member, and therefore
the force acting at each end of the member will be directed along the axis of the member. If the force
tends to elongate the member, it is a tensile force (T), Fig. 6—4a; whereas if it tends to shorten the
member, it is a compressive force (C), Fig. 6-4b. In the actual design of a truss it is important to
state whether the nature of the force is tensile or compressive. Often, compression members must be
made thicker than tension members because of the buckling or column effect that occurs when a
member is in compression.



I T C
Tension Compression

(a) (b)

Fig. 6-4 A two-force member of a truss can be in tension or compression

5.5 Simple Truss.

If three members are pin connected at their ends, they form a triangular truss that will be rigid, Fig.
6-5. Attaching two more members and connecting these members to a new joint D forms a larger
truss, Fig. 6-6. This procedure can be repeated as many times as desired to form an even larger truss.
If a truss can be constructed by expanding the basic triangular truss in this way, it is called a simple
truss.

Fi g. 6-5 IIL' H—O
5.6 The Method of Joints

In order to analyze or design a truss, it is necessary to determine the force in each of its members.
One way to do this is to use the method of joints. This method is based on the fact that if the entire
truss is in equilibrium, then each of its joints is also in equilibrium. Therefore, if the free-body
diagram of each joint is drawn, the force equilibrium equations can then be used to obtain the
member forces acting on each joint. Since the members of a plane truss are straight two-force
members lying in a single plane, each joint is subjected to a force system that is coplanar and
concurrent. As a result, only XFx = 0 and XFy = 0 need to be satisfied for equilibrium.



B
e 500 N

Fpa(tension)

~  "Fpe (compression)

B
— 500 N

o
' l--45" Fpc (compression)
Fp4(tension)

(c) (b)

5.7 Procedure for Analysis

The following procedure provides a means for analyzing a truss using the method of joints.

1- Draw the free-body diagram of a joint having at least one known force and at most two unknown
forces. (If this joint is at one of the supports, then it may be necessary first to calculate the external
reactions at the support.)

2- Use one of the two methods described above for establishing the sense of an unknown force.

3- Orient the x and y axes such that the forces on the free-body diagram can be easily resolved into
their x and y components and then apply the two force equilibrium equations 2XFx = 0 and XFy = 0.
Solve for the two unknown member forces and verify their correct sense.

4- Using the calculated results, continue to analyze each of the other joints. Remember that a
member in compression “pushes” on the joint and a member in tension “pulls” on the joint. Also, be

sure to choose a joint having at most two unknowns and at least one known force.



B EJ@J]_EL@) Determine the force in each member of the truss shown i Fig. 6-8a

T S00N

Tension

;

S00N

Sm— =N

A Tension 4
S00N Y 500N 500 NA 550 N

500N
()
Fig. 6-8

and indicate whether the members are in tension or compression.

SOLUTION

Since we should have no more than two unknown forces at the joint
and at least one known force acting there, we will begin our analysis at
joint B.

Joint B.  The free-body diagram of the joint at B is shown in Fig. 6-8b.
Applying the equations of equilibrium, we have

H3F=0; 500N — Fesind® =0 Fyge=T07.IN(C) Ans
+12F, =0 Fgccosd5° — Fgy =0 Fgy =S00N(T)  Ans

Since the force in member BC has been calculated, we can proceed to
analyze joint C to determine the force in member CA and the support
reaction at the rocker.

Joint €. From the free-body diagram of joint C, Fig. 6-8¢, we have

B3F, =0, —Fgy + 7071 c0osd°N =0 Foy = S00N(T)  Ans
+13F,=0; G -7071sn4°N=0 C,=500N  Ans

Joint A. Although it is not necessary, we can determine the
components of the support reactions at joint A using the results of Fy
and Fg4. From the free-body diagram, Fig. 6-8d, we have

KIF, =0, S00N-A,=0 A, =500N
+13F, =0; S00N-A, =0 A, =500N

NOTE: The results of the analysis are summarized in Fig. 6-8e. Note
that the free-body diagram of each joint (or pin) shows the effects of
all the connected members and external forces applied to the joint,
whereas the free-body diagram of each member shows only the effects

“&7071n of the end joints on the member.



Example)

Determine the forces acting in all the members of the truss shown in
Fig. 6-9a.

SOLUTION

By inspection, there are more than two unknowns at each joint.
Consequently, the support reactions on the truss must first be determined.
Show that they have been correctly calculated on the free-body diagram
in Fig. 6-9b. We can now begin the analysis at joint C. Why?

Joint C.  From the free-body diagram, Fig. 6-9c,

53F, =0; —Fepcos30° + Fegsin45® =0
-I-TEF_V =0; 15kN + Fepsin30° = Fegcos 45° = ()

These two equations must be solved simultaneously for each of the
two unknowns. Note, however, that a direct solution for one of the
unknown forces may be obtained by applying a force summation
along an axis that is perpendicular to the direction of the other
unknown force. For example, summing forces along the y" axis, which
is perpendicular to the direction of Fep, Fig. 6-9d, yields a direct
solution for Fep.

+/7%F, =0, [.5c0s 30°kN — Fepsin 15° =0
Feg = 5.019kN = 5.02kN (C) Ans.

Then,

+\IF, = 0;
—Fep + 5.019c0s 15° — 1.5sin30° = 0; Fep = 4.10kN (T) Ans

Joint D. We can now proceed to analyze joint D. The free-body
diagram is shown in Fig. 6-Ye.

L3F =0 —Fpy cos 30° + 4.10 cos 30° kN = 0

Fpy = 410kN (T) Ans.
+12F, = 0; Fpp — 2(4.10sin 30° kN) = 0
Fpp = 410kN (T) Ans.

NOTE: The force in the last member, BA, can be obtained from joint B
or joint A. As an exercise, draw the free-body diagram of joint B, sum
the forcesin the horizontal direction,and show that Fp, = 0.776 kN (C).

1.5kN 1L5kN

Fep 5
Vs
ch
AN
30*’14 X
1.5kN

(d)

T
TFDB
X
3W0°

Fp, 410kN
(e)

Fig. 6-9



Example) Determine the force in each member of the truss shown in Fig. 6-10a.
Indicate whether the members are in tension or compression.

400 N 400N C,
3Im
Y Cy
— S C,
m 4m
— A o
600 N
6m
A,
(b)

Fig. 6-10

SOLUTION

Support Reactions. No joint can be analyzed until the support
reactions are determined, because each joint has at least three
unknown forces acting on it. A free-body diagram of the entire truss is
given in Fig. 6-10b. Applying the equations of equilibrium, we have

H3F, = 0; 600N = C, =0 C, = 600N
C+3Mc=0;  —A,(6m) + 400NG3m) + 600 N(4 m) = 0
A, = 600N
+13F, = 0; 600N — 400N — ¢, = 0 C, = 200N

The analysis can now start at either joint A or C. The choice is arbitrary

¥ . since there are one known and two unknown member forces acting on
A the pin at each of these joints.
|4
. F. Joint A, (Fig. 6-10c). As shown on the free-body diagram, Fyp is

Ao > x assumed to be compressive and F,  is tensile. Applying the equations
of equilibrium, we have

+13F,=0,  600N-%Fz=0 Fy=70N (€ Ans
(©) H3F, =0, Fp-2750N)=0 F,=450N (T)  Ans



Joint D.  (Fig. 6-10d). Using the result for F; and summing forces in
the horizontal direction, Fig. 6-10d, we have

5£3F, = 0; —450N + 3Fpy + 600N =0 Fpy = —250N

The negative sign indicates that Fpp acts in the opposite sense to that
shown in Fig. 6-10d.* Hence,

Fpg = 250 N (T) Ans
To determine Fpc. we can either correct the sense of Fpp on the free-
body diagram, and then apply 2 F, = 0, or apply this equation and
retain the negative sign for Fpp, 1.e.,

JrTZF_v =0, —Fpc— %(—250 N)=0 Fpc=200N (C) Ans
Joint C. (Fig. 6-10¢).

BIF, = 0; Fep — 600N =0 Feg = 600N (C) Ans
+12F, = 0; 200N = 200N =0 (check)

NOTE: The analysis is summarized in Fig. 6-10f, which shows the free-
body diagram for each joint and member.

400N 200N
600 N Compression 600 N
250N 200N

Y

Y
6\‘&
a9
uoissarduwo))

750N

250N 1‘200 N
/ Tension w
A e ] s o= » 600 N
D

- - -
T 450N 450N
600N

(f)
Fig. 6-10 (cont.)

*The proper sense could have been determined by inspection, prior to applying 2F, = 0.

Fpp

AN
3

Fpc

-
450N D 600N

Feg

(d)




5.8 Zero-Force Members

Zero-force members support no load; however, they are necessary for stability, and are available
when additional loadings are applied to the joints of the truss. These members can usually be
identified by inspection. They occur at joints where:

1-1f only two non-collinear members form a truss joint and no external load or support reaction is
applied to the joint, the two members must be zero-force members.(see Case No.1)

D
}r
F E o AT,
=)
\ ) .
F
A u C AB
B :EFT:D:FAﬁ:U
! HSF, = 0; Fyp=0
(a) (b)
F E
u\
omy ¢
B
+\ 2F, = 0; Fpcsin6=0; Fpc=0sincesinf #0 Y
+E/EFI:”'.F;”._'+G:U'. F.I’)E:U P
(c) (d)

Case No. 1



2-1f three members form a truss joint for which two of the members are collinear, the third member
is a zero-force member provided no external force or support reaction has a component that acts
along this member. (see Case No.2)

Fpr

I'IJL'

/N

he ¥

+¢ E."l. = {}: Fﬂﬂ =)
TNIF =0, Fpc=Fpr

T EF, =0, Fgysinf=10, Fg4=0sincesinf # 0
TNEIF =00 Fop=Fep

(c) (d)

Case No.2



' Exam ple Using the method of joints, determine all the zero-force members of
T the Fink roof truss shown in Fig Assume all joints are pin

Fc connected.
. L . SKN

Few G Fgr

s
/ Fpp !
X
SOLUTION
Look for joint geometries that have three members for which two are
me 0 collinear. We have
; . Joint G.
Fr F
+13F =10 For =10 Ans.
Realize that we could not conclude that G C is a zero-force member by
kN . considering joint C, where there are five unknowns. The fact that GC
A is a zero-force member means that the 5-kN load at C must be
J/Fuc ) supported by members CB, CH, CF, and CD.
/Bk Joint D.
Fius By
\ +/LF, =0, Fpp=10 Ans.
X
Joint F.
+13F, =0; Fpecosf =0 Sinced # 90°, Fpr=10 Ans.
¥ )
2kN NOTE: If joint B is analyzed, Fig. 6-13e,
Fuc
\. l{ +NEF =0 kN - Fpy =0 Fgy=2kN (C)
- i —1
Fiua Fuig Also, Fyyc must satisfy 2F, = 0, Fig. 6-13f, and therefore HC is not a

zero-force member.



5.9 The Method of Sections

When we need to find the force in only a few members of a truss, we can analyze the truss using the
method of sections. It is based on the principle that if the truss is in equilibrium then any segment of
the truss is also in equilibrium. For example, consider the two truss members shown on the left in
Fig. 6-14. If the forces within the members are to be determined, then an imaginary section,
indicated by the blue line, can be used to cut each member into two parts and thereby “expose” each
internal force as “external” to the free-body diagrams shown on the right. Clearly, it can be seen that
equilibrium requires that the member in tension (T) be subjected to a “pull,” whereas the member in
compression (C) is subjected to a “push.”

The method of sections can also be used to “cut” or section the members of an entire truss. If the
section passes through the truss and the free-body diagram of either of its two parts is drawn, we can
then apply the equations of equilibrium to that part to determine the member forces at the “cut
section.” Since only three independent equilibrium equations (XFx = 0, XFy = 0, Mo = 0) can be
applied to the free-body diagram of any segment, then we should try to select a section that, in
general, passes through not more than three members in which the forces are unknown.

. I
(]

T

Internal 4 T

_).
tensile ™
. forces
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| 7

2m

\.]

n
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2m l 2m |

\ 1000 N
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it () ] '

D,
rZ m C
Fpe lc Fac cF—2m
e < 3 - ni- Y
d g —-c ] P 1 )
2m S { ce Y s 2m
Za Fec /4 N /
4 450 ™ y Internal
| ///\ - . / [ ¥ compresswe*c
G d lﬂ(?F F(,‘j-' A

(G o m— T e e forces ‘

—2m— (c)

'IUU{)N . T
Compression

(b) C
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NOTE 1:

When applying the equilibrium equations, we should carefully consider ways of writing the
equations so as to yield a direct solution for each of the unknowns, rather than having to solve
simultaneous equations. For example, using the truss segment in Fig. b and summing moments about
C would yield a direct solution for Fer since Fec and Fec create zero moment about C. Likewise, Fsc
can be directly obtained by summing moments about G. Finally, Fec can be found directly from a
force summation in the vertical direction since Fer and Fsc have no vertical components. This ability
to determine directly the force in a particular truss member is one of the main advantages of using
the method of sections.

NOTEZ2:

As in the method of joints, there are two ways in which we can determine the correct sense of an
unknown member force:
 The correct sense of an unknown member force can in many cases be determined “by inspection.”
For example, Fgc is a tensile force as represented in Fig. 6-15b since moment equilibrium about G
requires that Fgc create a moment opposite to that of the 1000-N force. Also, Fac is tensile since its
vertical component must balance the 1000-N force which acts downward. In more complicated
cases, the sense of an unknown member force may be assumed. If the solution yields a negative
scalar, it indicates that the force’s sense is opposite to that shown on the free-body diagram.
» Always assume that the unknown member forces at the cut section are tensile forces, i.e., “pulling”
on the member. By doing this, the numerical solution of the equilibrium equations will yield positive
scalars for members in tension and negative scalars for members in compression.

5.10 Procedure for Analysis

The forces in the members of a truss may be determined by the method of sections using the
following procedure.

Make a decision on how to “cut” or section the truss through the members where forces are to be
determined.

Before isolating the appropriate section, it may first be necessary to determine the truss’s support
reactions. If this is done then the three equilibrium equations will be available to solve for member
forces at the section.

Draw the free-body diagram of that segment of the sectioned truss which has the least number of
forces acting on it.

Use one of the two methods described above for establishing the sense of the unknown member
forces.

Moments should be summed about a point that lies at the intersection of the lines of action of two
unknown forces, so that the third unknown force can be determined directly from the moment
equation.

If two of the unknown forces are parallel, forces may be summed perpendicular to the direction
of these unknowns to determine directly the third unknown force.
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G ¢ E
—li .- (g 400 N
im /\
lagl B ., {D

— — a —
L—4mJ74m 4m—-‘
1200 N
(2)

(©)
Fig. 6-16

Example)
Determine the force in members GE, GC, and BC of the truss shown

in Fig. 6-16a. Indicate whether the members are in tension or
compression.

SOLUTION

Section aa in Fig. 6-16a has been chosen since it cuts through the three
members whose forces are to be determined. In order to use the
method of sections, however, it is first necessary to determine
the external reactions at A or D. Why? A free-body diagram of
the entire truss is shown in Fig. 6-16b. Applying the equations of
equilibrium, we have

L3F =0 400N-A, =0 A, = 400N
C+IM,=0;  —1200N@Bm) - 40N3m) + Dy(12m) = 0

D, = 900N
+13F, = 0; Ay = 1200N + 900N = 0 A, =300N

Free-Body Diagram. For the analysis the free-body diagram of the
left portion of the sectioned truss will be used, since it involves the least
number of forces, Fig. 6-16c.

Equations of Equilibrium. Summing moments about point G
eliminates Fgp and Fj;- and yields a direct solution for Fy.

C+2M;=0; -300N@4m)—400N(3m) + Fze(3m) =0

Fye = 800N (T) Ans

[n the same manner, by summing moments about point C we obtain
a direct solution for Fgp.

(+XMc=0; —300N@Bm)+ Fze(3m) =0

Fop = 800N (C) Ans.

Since Fyand Fg; have no vertical components, summing forces in
the y direction directly yields Fj;, 1.e.,

+13F, =0; 300N - $F5c =0

Foe = 500N (T) Ans.

NOTE: Here it is possible to tell, by inspection, the proper direction for
each unknown member force. For example, XM~ = 0 requires Fy;; to
be compressive because it must balance the moment of the 300-N
force about C.



Examp

L

[e)' Determine the force in member CF of the truss shown in Fig. 6-17a.
Indicate whether the member is in tension or compression. Assume
each member is pin connected.

SKN  3kN SKN  3KN  475kN
(a) (b)
Fig. 6-17

SOLUTION

Free-Body Diagram. Section aa in Fig. 6-17a will be used since this
section will “expose” the internal force in member CF as “external” on
the free-body diagram of either the right or left portion of the truss. It
is first necessary, however, to determine the support reactions on either
the left or right side. Verify the results shown on the free-body diagram
in Fig. 6-17b.

The free-body diagram of the right portion of the truss, which 1s the
easiest to analyze, 1s shown in Fig. 6-17c. There are three unknowns,

Fg, For, and Fop.

D to O the distance must be 8 m. Fopsin45°

G
Equations of Equilibrium.  We will apply the moment equation T“‘ 2m
about point O in order to eliminate the two unknowns Fy; and F,. | VAR |
The location of point O measured from E can be determined from 6m i F?Q 4’
proportional triangles, ie., 4/(4 + x) = 6/(8 + x), x = 4m. Or, - ) . !
stated in another manner, the slope of member GF has a drop of 2 m Fercos 581 7 (00, 0
to a horizontal distance of 4 m. Since FD 1s 4 m, Fig. 6-17¢, then from 45 4};{” ' J

3KN  475kN

An easy way to determine the moment of F; about point O is to (c)
use the principle of transmissibility and slide F to point C, and
then resolve Fyy into its two rectangular components. We have

C+3Mp = 0:

~Fpsind5°(12m) + (3kN)(8m) — (475kN)(4m) = 0
Fop = 0.589KN  (C) Ans



1000 N

Example)

Determine the force in member EB of the roof truss shown in Fig. 6-18a.
Indicate whether the member is in tension or compression.

SOLUTION

Free-Body Diagrams. By the method of sections, any imaginary
section that cuts through EB, Fig. 6-18a, will also have to cut through
three other members for which the forces are unknown. For example,

section aa cuts through ED, EB, FB,and AB.If a free-body diagram of

the left side of this section is considered, Fig. 6-18b, it is possible to
obtain Fg; by summing moments about B to eliminate the other three
unknowns; however, Fgp cannot be determined from the remaining two
equilibrium equations. One possible way of obtaining Fgp is first to
determine Fpp from section aa, then use this result on section bb.
Fig. 6-18a, which is shown in Fig. 6-18c. Here the force system is
concurrent and our sectioned free-body diagram is the same as the
free-body diagram for the joint at E.

4m |

FffD sin 30°

Fig. 6-18

Equations of Equilibrium. In order to determine the moment of
Fip about point B, Fig. 6-18b, we will use the principle of transmissibility
and slide the force to point C and then resolve it into its rectangular
components as shown. Therefore,

C+IMp=10; 1000 N(4 m) + 3000 N(2 m) — 4000 N(4 m)
+ Fgpsin 30°(4m) = 0
Fgp = 3000N  (C)
Considering now the free-body diagram of section bb, Fig. 6-18c, we have

L 3F, =0: Fgpcos 30° — 3000 cos 30°N = 0
Fer = 3000N (C)
-I-TEF}_. =0; 2(3000sin30°N) — 1000N — Fgz = 0

Fgg = 2000N (T)



CHAPTER SIX
CENTER OF GRAVITY AND CENTROID

6.1 Introduction
Knowing the resultant or total weight of a body and its location is important when considering the

effect this force produces on the body. The point of location is called the center of gravity, and in this
section we will show how to find it for an irregularly shaped body. We will then extend this method
to show how to find the body’s center of mass, and its geometric center or centroid.

Center of Gravity.
w (Mg), = SMy; W = / AW

/f\’dw
X=—-
e

=|
Il
—
Y
=
I
\‘ =
Y
<
2|
S
N
=

=
=

Y

y
i
Center of Mass of a Body. In order to study the dynamic z
response or accelerated motion of a body, it becomes important to locate
the body’s center of mass C,,, Fig. 9-2. This location can be determined
by substituting dW = g dm into Eqs. 9-1. Provided g is constant, it cancels dm ¢,

out, and so
/ X dm / Y dm / Z dm

X = yi—= Z
/ dm / dm / dm =
(9-2) %

Centroid of a Volume. If the body in Fig. 9-3 is made from a z
homogeneous material, then its density p (rho) will be constant. Therefore,
a differential element of volume dV has a mass dm = p dV. Substituting
this into Eqs. 9-2 and canceling out p. we obtain formulas that locate the
centroid C or geometric center of the body: namely

/ xXdv / y dv / zdv
= 4 = v = 4
x — :\Y r— Z — y
/dV /dV /dV )
% Vv v (9-3)

|
L“’
-
21
Lo
!

o C
1dvV

=l

sl -
=t

~|




Centroid of an Area. If an area lies in the x—y plane and is
bounded by the curve y = f (x), as shown in Fig. 9-5a, then its centroid

will be in this plane and can be determined from integrals similar to
Egs. 9-3, namely,

F=A— j=A (9-4)

dyi_

T
.1 T
— |

(a) (b) (©)
Centroid for Areas Bounded by 2 Curves

__ 2=/

y .y y ry
g L~ Y2-0 1 =y" X - X
% d / 2o
1 dy &
dy I2=2
L Yy .
a b O 2 X
0 X

We extend the simple case given above. The "typical” rectangle indicated has width Az and height
Y, — ¥, s0 the total moments in the z-direction over the total area is given by:
total moments

b
/m(yz—yl)dx
T = =

total area b
f (v2 — ) de
i

For the y coordinate, we have 2 different ways we can go about it.

d
_ total moments /C y(z2 —71) dy
y frnd e

total area d
/ (2 —x1) dy




ExavipLe (g

Determine the distance ¥y measured from the x axis to the centroid of
the area of the triangle shown in Fig. 9-10.

Fig. 9-10

SOLUTION

Differential Element. Consider a rectangular element having a
thickness dy, and located in an arbitrary position so that it intersects
the boundary at (x, y), Fig. 9-10.

Area and Moment Arms. The area of the element is dA = x dy
b ) - . -
= E(h — v) dy, and its centroid is located a distance ¥ = y from the

X axis.

Integration. Applying the second of Eqgs. 94 and integrating with
respect to y yields

hTp
. /Aydﬂ - foy[g(h—y)dy} _%bhg
- - h 1
fA /Oh(h y)dy

== Ans.

NOTE: This result is valid for any shape of triangle. [t states that the
centroid is located at one-third the height, measured from the base of
the triangle.



N D

Locate the centroid of the area shown in Fig. 9-12a. y
SOLUTION |

Differential Element. A differential element of thickness dx is
shown in Fig. 9-12a. The element intersects the curve at the arbitrary
point (x,y), and so it has a height y.

Area and Moment Arms. The area of the element is dA = y dx,
and its centroid is located at ¥ = x, ¥ = y/2.

Integrations.  Applying Eqs.9—4 and integrating with respect to x yields /

/ X dA ] Xy dx Xy
~ 0250
=075m Ans.

0333 (a)
e [ f

2
/yam f(y/z)m ] ST

'm = 0333 =03 m Ans.
dA / / x?.dx y
0

SOLUTION 1I

Differential Element. The differential element of thickness dy is
shown in Fig. 9-12b. The element intersects the curve at the arbitrary
point (x,y),and so it has a length (1 — x).

Areaand Moment Arms. TheareaoftheelementisdA = (1 — x) dv, T
and its centroid is located at

y
c_ (l — x) l+x ]
= = = X
r=4x ? 5 y=Y
Integrations. Applying Egs. 94 and integrating with respect to y,
we obtain (b)
X dA 1 +x)/2)(1 - - Fig. 9-12
. / ] (1 +x)/2](1 = x)dy ] (1 —y)dy 0250
X = T =038 =075m Ans
M f (= x)dy / (1= Vy)dy
0
I'm
fydA f ¥(1 - x)dy f 0=y dy
= A 0 0 0.100
y= = = = =03m Ans.

A

NOTE: Plot these results and notice that they seem reasonable. Also,
for this problem, elements of thickness dx offer a simpler solution.



Example

Locate the centroid of the semi-elliptical area shown in Fig. 9-13a.

I

(b)

Fig. 9-13

SOLUTION |

Differential Element. The rectangular differential element parallel
to the y axis shown shaded in Fig. 9-13a will be considered. This
element has a thickness of dx and a height of y.

Area and Moment Arms. Thus, the area is dA = y dx, and its
centroid is located at X = xand y = y/2.

Integration. Since the area is symmetrical about the y axis,
x=0 Ans.

2
Applying the second of Eqs. 94 with y = 4 / = % we have

21t xz
dA /—()dx) —/ (1——)dx
2ﬁ2 21t

= =04241t Ans.

21t 21t
/dA / y dx / w/l——
21t 21t

SOLUTION Il

Differential Element. The shaded rectangular differential element
of thickness dy and width 2x, parallel to the x axis, will be considered,
Fig. 9-13b.

Area and Moment Arms. The areais dA = 2x dy, and its centroid
isatX =0andy =y.

Integration. Applying the second of Eqs. 9—4, withx = 2V 1 — y%,
we have

Ift Ift
/?dA / y(2x dy) / 4yV1-yrdy
A 0

0 _4/3

y.—_

= I = T n
/Adf‘ / 2x dy / 4V 1-ydy
0 0

= —1ft = 04241t Ans.
T



Example ¥
Locate the centroid X and y of the shaded area.
=%
100 mm 1 .o
Y=100"
X
~—100 mm—-l
SOLUTION : :
1
Area And Moment Arm. Here. y; = x and y; = ——x°. Thus the area of the

100

differential element shown shaded in Fig.ais dA = (y, — y;) dx =

and its centroid is at X = x.

Centroid. Perform the integration

100 mm
__ Ja%aa _/0 ‘(

e
100

o

1 2
(x 100\ )dx

X
fA dA 100 mm(\ X )d\‘ -
0 g 100 ’
10 - b9 -

'\‘3 | : 100 mm 0 ‘;-/ 72' yl

(.T ~ 300" ) " dx

(LZ B | ‘3) 100 mm X
2 300 0 100 mm

= 50.0 mm

Area And Moment Arm. Here.

xy = 10y'/? and x; = y. Thus, the area of the

differential element shown shaded in Fig.a is dA = (x, — x;) dy = (10y'2 — y)dy

and its centroid is at y = y.

¥

Centroid. Perform the integration,

100 mm
[a5 dA / .\"(l()_v‘/z - _\')d_v
— A 0
Yy = - 100 mm
Jaas / (l()_vl/ 2 — _\!)(l_v
0

55 ».3 100 mm
(+-5),

/00 mm

—

100 mm

Y

2

(20 32 _ )
3

= 40.0 mm

0




EXAMPLE | 9.4

Locate the centroid for the area of a quarter circle shown in Fig. 9-11.

y
}«Rdﬂ
R PR o
R {/3 ’
§==Rsin® S
6
X
—-i':%Rmsﬂa—
Fig. 9-11

SOLUTION

Differential Element. Polar coordinates will be used, since the
boundary is circular. We choose the element in the shape of a friangle.
Fig. 9-11. (Actually the shape is a circular sector; however, neglecting
higher-order differentials, the element becomes triangular.) The
element intersects the curve at point (R, 8).

Area and Moment Arms. The area of the element is

R'Z
dA = }R)R df) = b

and using the results of Example 9.3, the centroid of the (triangular)
element is located at ¥ = 3R cos 8, ¥ = 3R sin 6.

Integrations. Applying Egs. 94 and integrating with respect to 8,
we obtain

~ ™27 R? 2 /2
X dA —Rcos@ |—df —R cos @ do
A o \3 2 3 0 _ 4R

= Ans.

j p— pr—
@/2 ;o w/2 37
/ dA / R i / df
= o 2 0
w2 2 a2
2 R 2
f? dA / (—R sin @) —db (—R)/ sin 6 d6
. \3 2 3]/,

= = — Ans

__Ja _
y= dA /2 R2 /2 37
—de dae
8 o 2 0




Determine the coordinates of the centroid of the

0

Determine the y-coordinate of the centroid of the
shaded area.

S
0 2

Determine the x- and y-coordinates of the centroid of
the shaded area.

/
3 /

X
ata¥e
IRLEESy

__;__________Q
\
\

gl —— -

0 1 I

If the shaded area is revolved 360° about the y-axis,
determine the y-coordinate of the centroid of the re-
sulﬁngvolume.

—§—

—_———

Determine the x- and y-coordinates of the centroid
of the shaded area.




6.2 Centroid for Composite Areas

For composite areas, that can be decomposed to a finite number n of simpler subareas,
and provided that the centroids of these subareas are available or easy to find, then the
centroid coordinates of the entire area x. , Y. can be calculated through the following

formulas:
B D AiYes
>0 Aiei
Ye = —n 4
2 Ai

where A; is the surface area of subarea i, and @, y.; the centroid coordinates of
subarea i. The sum } " A; is equal to the total area A. The sums that appear in the two

nominators are the respective first moments of the total area: S, = E? A;y,; and

T

The above formulas impose the concept that the static moment (first moment of
area), around a given axis, for the composite area (considered as a whole), is
equivalent to the sum of the static moments of its subareas.

Steps to find the centroid of composite areas
The steps for the calculation of the centroid coordinates, x. and y., of a composite area,
are summarized to the following:

y Centroid of a
composite area

[ Ay Ay 7 A;‘ ‘

— —

\ uy x
h

Q,=XSA=3xA Q =YZA=3jA

<14 lza Fig. When calculating the centroid of
A. Semici a composite area, note that if the centroid of
| Semicircle —|+| - . .
a component area has a negative coordinate
Aj Full rectangle | +|+ | + distance relative to the origin, or if the area
As Circularhole |+ |—| — represents a hole, then the first moment is
negative.



Centroids of common shapes of areas.

Shape X ¥ Area
‘ h bh
Triangular area 3 D
Quarter-circular 4r 4r mrl
area T T 4
-2
Semicircular area 0 Ar mir
ar 2
Quarter-elliptical 4a 4b Tab
area m T 4
Semielliptical 4b Tab
D —_ —_—
area T 2
Semiparabolic 34 3h 2ah
area 8 5 3
Parabolic area 0 3h 4ah
5 3
Parabolic spandrel 3a 3h ah
4 10 3
n+1 n+l ah
o } -
General spandrel T3¢ o 2: 7
. rsina 2
Circular sector 0 ar
Ja




Locate the centroid of the plate area shown in Fig. y
y y
F—2.5 ft—
(3) | Py [
N 2t
| T (1)
2th l'f it L IFft it
¥ +
X [ X
(156t [1ft }ﬁ'FZﬂ—"—?’ﬂ—'{
SOLUTION
Segment A (ft X (f Y  ¥A(f) VA (ft)
1 13)3) = 45 1 1 4.5 4.5
2 3)3) =29 —1.5 1.5 —13.5 13.5
3 —(2)(1) = -2 —-2.5 2 5 —4
A =115 SXA=—-4 3ZIyA=14
Thus,
Fo XA _ 4 oasn A
X = EA 115 = y ANS.
s 2A_ M oo A
¥y = EA —115— . ANS.

Sample Problem 5/6

Locate the centroid of the shaded area.

Solution. The composite area is divided into the four elementary shapes
shown in the lower figure. The centroid locations of all these shapes may be ob-
tained from Table D/3. Note that the areas of the “holes” (parts 3 and 4) are
taken as negative in the following table:

A x y xA yA = o<~ 50 -
PART mm? mm mm mm?® mm?® » %0 )
Dimensions in millimeters

1 12 000 60 50 720 000 600 000

2 3000 140 100/3 420 000 100 000 ST

3 -1414 60 12.73 -84 800 -18 000

4 -800 120 40 -96 000 -32 000 " —
TOTALS 12 790 959 000 650 000 4
The area counterparts to Eqs. 5/7 are now applied and yield —_—

|
SAx 959 000 @

[X SA X= 12790 - 75.0 mm Ans.

_ Ay _ 650000
[Y— SA Y= 12790 = 50.8 mm Ans.



Sample Problem 5.1

y For the plane area shown, determine (a) the first moments with respect
120 mm to the x and y axes; (b) the location of the centroid.

//— 60 mm STRATEGY: Break up the given area into simple components, find the
— | 1 40mm centroid of each component, and then find the overall first moments and
centroid.

3 — 5 MODELING: As shown in Fig. 1, you obtain the given area by adding
a rectangle, a triangle, and a semicircle and then subtracting a circle. Using
the coordinate axes shown, find the area and the coordinates of the centroid
of each of the component areas. To keep track of the data, enter them in
a table. The area of the circle is indicated as negative because it is sub-
tracted from the other areas. The coordinate y of the centroid of the triangle
is negative for the axes shown. Compute the first moments of the compo-
nent areas with respect to the coordinate axes and enter them in your table.

4
Sl o s e
T

~20 mm 60 mm 60 mm
Component A, mm’ X, mm ¥, mm XA, mm’ yA, mm’
Rectangle (120)(80) = 9.6 X 10° 60 40 +576 x 10° +384 x 10°
Triangle 3(120)(60) = 3.6 x 10° 40 -20 +144 x 10° =72 % 10°
Semicircle 1m(60)? = 5.655 x 10° 60 105.46 +339.3 x 10° +596.4 X 10°
Circle —m(40)? = =5.027 x 10° | 60 80 -301.6 x 10° -402.2 x 10
3A = 13.828 X 10° 3xA = +751.7 X 10° YA = +506.2 X 10°

Fig. 1 Given area modeled as the combination of simple geometric shapes.

ANALYSIS:
' a. First Moments of the Area. Using Egs. (5.8), you obtain
/N Q.= ZyA = 5062 X 10°mm’  Q, = 506 X 10° mm’
,/ \-I Q,=3xA =7517 X 10°mm’ @, = 758 X 10° mm’
\_/
g } ¥ = 366mm b. Location of Centroid. Substituting the values given in the table
T x into the equations defining the centroid of a composite area yields (Fig. 2)
_a — _
. XZA = ZxA:  X(13.828 X 10° mm’) = 757.7 X 10° mm’
X = 548mm X = 54.8 mm
Fig. 2 Centroid of composite area. Y2A = ZyA: Y(13.828 X 10° mm’) = 506.2 X 10° HEHS
Y = 36.6 mm

\.




5/57 Determine the x- and y-coordinates of the centroid 5/59 Determine the x- and y-coordinates of the centroid of
of the shaded area. the shaded area.

y
|
|

L N
| 600 "

=¥

shaded area. shaded area.

Yy
|
|
|

| 140 i mm mm

5/56 Determine the y-coordinate of the centroid of the 5/61 By inspection, state the quadrant in which the cen-
shaded area. The triangle is equilateral. troid of the shaded area is located. Then determine

the coordinates of the centroid. The plate center is M.
y
|
|




(Q  Locate the centroid of the plane area shown.

x = ky? — . ,
\J -1l ' T Parabola

/ /’/ b :f - 10 n. Vertex \

=
I

Parabola

>/i'liillﬂllrmnu

240 mm I 240 mm




CHAPTER SEVEN
MOMENTS OF INERTIA

7.1 Introduction

The integral [ y2dA is sometimes referred to as the “second moment” of the area about an axis (the x
axis), but more often it is called the moment of inertia of the area. The word “inertia” is used here
since the formulation is similar to the mass moment of inertia, [ y2dm. Although for an area this
integral has no physical meaning, it often arises in formulas used in fluid mechanics, mechanics of
materials, structural mechanics, and mechanical design, and so the engineer needs to be familiar with
the methods used to determine the moment of inertia.

p=7v
v is the specific weight of the fluid.
dF the force acting on the differential area dA of the plate
dF = pdA = (yy)dA.
dM The moment of this force about the x axis
dM = v dF = yyldA
M =y [y4dA.

Moment of Inertia. By definition, the moments of inertia of a
differential area dA about the x and y axes are dl, =y?>dA and
dl, = x* dA, respectively, Fig. 7-2.For the entire area A the moments of
inertia are determined by integration: i.e.,

x*f.\-‘zdﬂ

A (7-1)
1‘.:fx2dA
’ A

| We can also formulate this quantity for dA about the “pole™ O or 7 axis,
| aa Fig. 7-2.This is referred to as the pelar moment of inertia. It is defined
as dJp = r*dA, where r is the perpendicular distance from the pole

/ (z axis) to the element dA. For the entire area the polar moment of inertia is

b
—
|

JozfﬁdA=[r+{,. «72)
A

72 This relation between Jy and I, I, is possible since r? = x? + y2,
Fig. 7-2. '

From the above formulations it is seen that I, I,, and J, will always be
positive since they involve the product of distance squared and area.
Furthermore, the units for moment of inertia involve length raised to the

fourth power. e.e.. m* mm® or ft, in.*.

Fig.



7.2 Parallel-Axis Theorem for an Area

The parallel-axis theorem can be used to find the moment of inertia of an area about any axis that is
parallel to an axis passing through the centroid and about which the moment of inertia is known. To
develop this theorem, we will consider finding the moment of inertia of the shaded area shown in
Fig. 7-3 about the x axis. To start, we choose a differential element dA located at an arbitrary
distance y’ from the centroidal x* axis. If the distance between the parallel x and x’ axis is dy, then
the moment of inertia of dA about the x axis is dIx = (y’ + dy)? dA. For the entire area,

I, = /(}." - d_\.}ldA
A

d b =/;.-’2d,4 +2d_\.f_v’dA—df/dA
v A A A

o

The first integral represents the moment of inertia of the area about the
centroidal axis. I,-. The second integral is zero since the x’ axis passes
through the area’s centroid C: i.e., f}-" dA = deA = 0 since ¥y’ = 0.
Since the third integral represents the total area A. the final result is
therefore

I, = 1. + Ad;

A similar expression can be written for [,; i.e.,

L= Ty + Ad:

And finally, for the polar moment of inertia, since J- = I» + ;_"_,.J and
d* = di + dj.we have

Jo =Jc + Ad®

The form of each of these three equations states that the moment of
inertia for an area about an axis is equal to its moment of inertia about a
parallel axis passing through the area’s centroid plus the product of the
area and the square of the perpendicular distance between the axes.



7.3 Radius of Gyration of an Area

The radius of gyration of an area about an axis has units of length and is a quantity that is often used
for the design of columns in structural mechanics. Provided the areas and moments of inertia are
known, the radii of gyration are determined from the formulas

—

k, = I*

kO:

The form of these equations is easily remembered since it is similar to that for finding the moment of
inertia for a differential area about an axis. For example, Ix = ky 2A; whereas for a differential area,
dlx = y2 dA

Important Points

® The moment of inertia is a geometric property of an area that is
used to determine the strength of a structural member or the
location of a resultant pressure force acting on a plate submerged
in a fluid. It is sometimes referred to as the second moment of the
area about an axis, because the distance from the axis to each area
element is squared.

¢ If the moment of inertia of an area is known about its centroidal
axis, then the moment of inertia about a corresponding parallel
axis can be determined using the parallel-axis theorem.




7.3 Procedure of Analysis

Procedure for Analysis

In most cases the moment of inertia can be determined using a
single integration. The following procedure shows two ways in which
this can be done.

¢ [If the curve defining the boundary of the area is expressed as
¥ = f(x), then select a rectangular differential element such that
it has a finite length and differential width.

® The element should be located so that it intersects the curve at

the arbitrary point (x, v).
T y point (x, y)

Case 1.

¢ Orient the element so that its length is parallel to the axis about
N which the moment of inertia is computed. This situation occurs
when the rectangular element shown in Fig. 10-4a is used to
determine [, for the area. Here the entire element is at a distance y

(a) from the x axis since it has a thickness dy. Thus I, = f ysz .Tofind
y I,. the element is oriented as shown in Fig. 10-4b. This element lies
at the same distance x from the y axis so that I, = fxsz.

Case 2.

® The length of the element can be oriented perpendicular to the
axis about which the moment of inertia is computed; however,
Eq. 10-1 does not apply since all points on the element will not lie
at the same moment-arm distance from the axis. For example, if
the rectangular element in Fig. 10—4a is used to determine I,. it
will first be necessary to calculate the moment of inertia of the
H element about an axis parallel to the y axis that passes through
the element’s centroid. and then determine the moment of inertia
(b) of the element about the y axis using the parallel-axis theorem.
Integration of this result will yield I;. See Examples 10.2 and 10.3.

Fig. 10-4




T T —

Determine the moment of inertia for the rectangular area shown in y
Fig. 10-5 with respect to (a) the centroidal x" axis, (b) the axis x,

passing through the base of the rectangle, and (c) the pole or z" axis ___
perpendicular to the x'—y”’ plane and passing through the centroid C.

=

-

SOLUTION (CASE 1)

Part (a). The differential element shown in Fig. 10-5 is chosen for —{— ¥
integration. Because of its location and orientation, the enfire element
is at a distance y' from the x” axis. Here it is necessary to integrate from
y' = —h/2toy" = h/2.Since dA = bdy', then

k2 h/2 a4 Xp
Ie = /y’:"dA =f y'?‘(bdy')=b/ v dy’ b b
' A —f2 —h2 2 2

_ 1 )
Iy = Ebfﬁ Ans. Fig. 10-5

[STES

Part (b). The moment of inertia about an axis passing through the
base of the rectangle can be obtained by using the above result of
part (a) and applying the parallel-axis theorem, Eq. 10-3.

I, =1, +Ad;
1 AR
= Ebfﬁ + bk(g) = gbff Ans.

Part (c). To obtain the polar moment of inertia about point C, we
must first obtain Ty-, which may be found by interchanging the
dimensions b and A in the result of part (a), L.e.,

_
I, = Emﬁ

Using Eq. 10-2. the polar moment of inertia about C is therefore

- - 1
=l +1 = Ebh(hﬁ + b Ans.



Example 2

100 mm
(a)
y
y* = 400x
f
200 mm
y . —x
¥
yY==
-+ X
—Xx— f—dx
100 mm
(b)

Determine the moment of inertia for the shaded area shown in
Fig. 10-6a about the x axis.

SOLUTION I (CASE 1)

A differential element of area that is parallel to the x axis, as shown in
Fig. 10-6a, is chosen for integration. Since this element has a thickness
dy and intersects the curve at the arbitrary point (x, y), its area is
dA = (100 — x) dy. Furthermore, the element lies at the same distance y
from the x axis. Hence, integrating with respect to y, fromy = 0 to
y = 200 mm, yields

200 mm
I, = /ysz :/ y(100 — x) dy
A 0

200 mm 2 200 mm 4
= / y2(100 - }—) dy = / (1(}[)'»‘2 - ‘—) dy
0 400 0 ’ 400

= 107(10%) mm* Ans.

SOLUTION Il (CASE 2)

A differential element parallel to the y axis, as shown in Fig. 10-6b, is
chosen for integration. It intersects the curve at the arbitrary point
(x, y). In this case, all points of the element do nor lie at the same
distance from the x axis, and therefore the parallel-axis theorem must
be used to determine the moment of inertia of the element with respect
to this axis. For a rectangle having a base b and height /1, the moment
of inertia about its centroidal axis has been determined in part (a) of
Example 10.1. There it was found that I, = {;bh’. For the differential
elementshown in Fig. 10-6h,b = dvandh = y,and thusdl,, = {5dx y*.
Since the centroid of the element is y = y/2 from the x axis, the
moment of inertia of the element about this axis is

p

T w2_ 1 3 Yy _ 1,
dl, =dl, + dA'y :dey + ydx 2 ZE}de

(This result can also be concluded from part (b) of Example 10.1.)
Integrating with respect to x, from x = 0 tox = 100 mm, yields

100 mm 100 mm
] = dl. = l 3 — l 32
T X y dx = (400x)"= dx
0 3 0 3

= 107(10%) mm* Ans.



B [ —

Determine the moment of inertia with respect to the x axis for the
circular area shown in Fig. 10-7a.

vy =d
(a)

SOLUTION I (CASE 1)
Using the differential element shown in Fig. 10-7a, since dA = 2x dy,

we have
f;=]y2dA=/y2(2x)dy
A A

= /yz(zm)dy :% Ans.

SOLUTION I (CASE 2)
When the differential element shown in Fig. 10-7b is chosen, the y
centroid for the element happens to lie on the x axis, and since
I, = 15bi’ for a rectangle, we have

1
dl. = —dx(2y)’

23
=2y dy
3

Integrating with respect to x yields

“2 a
I, = ] E(a2 — 2y = NT Ans.

NOTE: By comparison, Solution I requires much less computation.
Therefore, if an integral using a particular element appears difficult to Fig. 10-7
evaluate, try solving the problem using an element oriented in the

other direction.



7-4 Moments of Inertia for Composite Areas

A composite area consists of a series of connected “simpler” parts or shapes, such as rectangles,
triangles, and circles. Provided the moment of inertia of each of these parts is known or can be
determined about a common axis, then the moment of inertia for the composite area about this axis
equals the algebraic sum of the moments of inertia of all its parts.

Procedure for Analysis

The moment of inertia for a composite area about a reference axis
can be determined using the following procedure.

Composite Parts.

® Using a sketch, divide the area into its composite parts and
indicate the perpendicular distance from the centroid of each
part to the reference axis.

Parallel-Axis Theorem.

® If the centroidal axis for each part does not coincide with the
reference axis, the parallel-axis theorem, I = [ + Ad®, should be
used to determine the moment of inertia of the part about the
reference axis. For the calculation of 7, use the table on the inside
back cover.

Summation.

®* The moment of inertia of the entire area about the reference axis
is determined by summing the results of its composite parts about
this axis.

® [f a composite part has an empty region (hole), its moment of
inertia is found by subtracting the moment of inertia of this region
from the moment of inertia of the entire part including the region.




Geometric Properties of Line and Area Elements mess—

Centroid Location Centroid Location

Area Moment of Inertia

1 l
I,—Zr'(ﬂ—551n28)

1 -,
Iy=zr‘(8+55m 26)

Quarter and semicircle arcs

F—a— ,A=1h(a+b) y 2
T—/—\Q A="7 I
h C, |

i Y ;_’ I.= g art
VARREERNEN . "
pms— F, e Lo
Trapezoidal area Semicircular area
y
[—b—|A=3ab A=ar
T 1
P r. I,=—r
. j 3a . x g
= - 1
I,= 4—;rrr1
3b
Semiparabolic area Circular area
!
/ v _
B ) / A=Dbh |
1 ! I,=—bh’
h C X 12
I L
b—p—— L =17hb
Exparabolic area Rectangular area
|-— J—=
A= 1bh
1
—— B
i C | I, 3 ﬁbh
) 1 =R
2o — T
Parabolic area

Triangular area




ExAMPLE [ 0. R

Determine the moment of inertia of the area shown in Fig. 10-8a about
the x axis.

= 100 mm —= ~—100 mm —
25 mm 75 mm 75 rTnm 25 mm
Lo T -
75 mm 75 mm
. 1 .
(a) (b)
Fig. 10-8
SOLUTION

Composite Parts. The area can be obtained by subtracting the circle
from the rectangle shown in Fig. 10-8b. The centroid of each area is
located in the figure.

Parallel-Axis Theorem. The moments of inertia about the x axis

are determined using the parallel-axis theorem and the geometric

properties formulae for circular and rectangular areas [, = ymr:

I, = {5bk*, found on the inside back cover.

Circle
I, = I, + Ady

= %w(ﬁ)"‘ + w(25)%(75)%* = 11.4(10°) mm*

Rectangle

I, =Ty + Ad>

= 1—12(100)(150)3 + (100)(150)(75)2 = 112.5(10%) mm*

Summation. The moment of inertia for the area is therefore

I, = —11.4(10% + 112.5(10%)
= 101(10%) mm?* Ans.



Determine the moments of inertia for the cross-sectional area of the
member shown in Fig. 10-9a about the x and y centroidal axes.

SOLUTION

Composite Parts. The cross section can be subdivided into the three
rectangular areas A, B, and D shown in Fig. 10-9b. For the calculation,
the centroid of each of these rectangles is located in the figure.

—-| - 100 mm

600 mm Parallel-Axis Theorem. From the table on the inside back cover, or
(a) Example 10.1, the moment of inertia of a rectangle about its centroidal
axisis I = 1;bh*. Hence, using the parallel-axis theorem for rectangles A

and D, the calculations are as follows:

Rectangles A and D
y

100 mm | |__ I

200 mm I = Ly + Ady = 5(100)(300)" + (100)(300)(200)

T
00 mmls — = 1.425(10°) mm*
. I

e x Iy = Iy + Ady = (300)(100)* + (100)(300)(250)’

| T .

250 m = 1.90(10") mm

mﬁ o | 300 mm
200mm | D

¥y
—~ 100mm Rectangle B

(b)

1
I, = —(600)(100)* = 0.05(10°) mm*
Fig. 10-9 12

I
I, = E(100)(600)3 = 1.80(10°) mm*

Summation. The moments of inertia for the entire cross section
are thus
I, = 2[1.425(10%)] + 0.05(10%
= 2.90(10°) mm* Ans.
I, = 2[1.90(10%)] + 1.80(10°)
= 5.60(10") mm* Ans.



HIWS

A\;.e Determine the moment of inertia /, of the shaded
area about the x axis.

B_,L:J Determine the moment of inertia [, of the shaded
area about the y axis.

¥
=100 mm-l‘ 100 mm-l—f 150 mm —
150 mm
150 mm 75 mm
X
O
HEWY

fg: Determine the moment of inertia about the x axis.

B}:Determine the moment of inertia about the y axis.

mim

mim




| A= Determine the moment of inertia of the beam’s
cross-sectional area about the x axis.

Bl=  Determine the moment of inertia of the beam’s
cross-sectional area about the y axis.

(CS Determine the distance y to the centroid C of the
beam’s cross-sectional area and then compute the moment
of inertia /.- about the x" axis.

DS Determine the distance x to the centroid C of the
beam’s cross-sectional area and then compute the moment
of inertia /- about the y’ axis.

30 mm |

140

30 mm
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