
CHAPTER 1

Introduction

➢Definitions

➢International System of Units

➢Newton’s laws of motion

➢Force Systems



Mechanics is the branch of physical sciences 

1-rigid body mechanics,

2-deformable body mechanics

3- fluid mechanics



Rigid body mechanics
1- Statics

deals with equilibrium of bodies under action of forces

(bodies may be either at rest or move with a constant

velocity).



Rigid-body Mechanics

2-Dynamic

deals with motion of bodies (accelerated motion)



Fundamental Concepts
1-Length (Space):

needed to locate position of a point in space, & describe size of the

physical system.( Distances, Geometric Properties)

2-Time

measure of succession of events. basic quantity in Dynamics.

3-Mass

quantity of matter in a body. measure of inertia of a body (its

resistance to change in velocity)

4- Force

represents the action of one body on another. characterized by its

magnitude, direction of its action, and its point of application

Note : Force is a Vector quantity.



Fundamental Concepts

Newtonian Mechanics

➢Length, Time, and Mass are absolute concepts independent

of each other.

➢Force is a derived concept not independent of the other

fundamental concepts.

➢Force acting on a body is related to the mass of the body and

the variation of its velocity with time.

➢Force can also occur between bodies that are physically

separated (Ex: gravitational, electrical, and magnetic forces)



Remember:

➢Mass is a property of matter that does not change from

one location to another.

➢Weight refers to the gravitational attraction of the earth

on a body or quantity of mass. Its magnitude depends

upon the elevation at which the mass is located

➢Weight of a body is the gravitational force acting on it.

Fundamental Concepts



Rigid Body: A combination of large number of particles in which all

particles remain at a fixed distance (practically) from one another

before and after applying a load.

➢Material properties of a rigid body are not required to be

considered when analyzing the forces acting on the body.

➢In most cases, actual deformations occurring in structures,

machines, mechanisms, etc. are relatively small, and rigid body

assumption is suitable for analysis

Idealizations

Particle: A body with mass but with dimensions that can be

neglected



Concentrated Force: Effect of a loading which is assumed

to act at a point (CG) on a body.

➢Provided the area over which the load is applied is very

small compared to the overall size of the body.

Idealizations





Force System
A system of forces is simply a particular set of forces. 



Moment of Force

When a force is applied to a body it will produce a

tendency for the body to rotate about a point that is

not on the line of action of the force. This tendency

to rotate is sometimes called a torque, but most

often it is called the moment of a force or simply

the moment



13

Scalars

only magnitude is associated.

Ex: time, volume, density, speed, energy, mass

Vectors

possess direction as well as magnitude, and must obey the

parallelogram law of addition (and the triangle law).

Ex: displacement, velocity, acceleration, force, moment, momentum.





Newton’s Law of Gravitational Attraction

➢Weight of a body (gravitational force acting on a body) is

required to be computed in Statics as well as Dynamics.

➢Weight of a Body: If a particle is located at or near the surface
of the earth, the only significant gravitational force is that between

the earth and the particle

Where

m= mass of the body

g= acceleration due to gravity

W = m . g



Free Body Diagram (FBD)

This diagram is a sketch of the outlined shape of the body, which represents it

as being isolated or “free” from its surroundings, i.e., a “free body.” On this

sketch it is necessary to show all the forces and couple moments that the

surroundings exert on the body so that these effects can be accounted for

when the equations of equilibrium are applied.



Newton’s Three Laws of Motion



Newton’s Three Laws of Motion



Newton’s Three Laws of Motion



International System of Units
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CHAPTER TWO 

RESULTANT OF FORCES SYSTEM 
 

 

 

2.1 General 

A force may be defined as the action of one body on another body which changes or 

tends to change the motion of the body acted on. Because of the inertia possessed by 

all material bodies, they react or oppose any force which acts on them (Newton's third 

law).  
Note1: Forces may be considered as localized vectors and they cannot be defined unless all 

the following characteristics mentioned: 

1- Magnitude, 

2- Direction (sense and slope), 

3- Location of any point on its line of action. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note2: The third characteristic shows that if two forces have the same direction, they will 

produce the same external effect on a rigid body. This fact leads to the principle of 

transmissibility which states that the external effect of a force on a rigid body is independent 

of the point of application of the force along its line of action. 
 

 

 

 

 

 

 

 



2.2 System of Forces 

When several forces act in a given situation, they are called system of forces or force system. 

Force systems in 2D can be classified according to the arrangement of the lines of action of 

the forces of the system as follows: 

1-  Concurrent, Coplanar: The action lines of all the forces of the system are in the 

same plane and intersect at a common point. 

 

 

 

 

 

 

 

  

 

2- Parallel, Coplanar: The action lines of all the forces of the system are parallel and 

lie in the same plane. 

 

 
 

3-  Nonconcurrent, Nonparallel, Coplanar: The action lines of all the forces of the 

system are in the same plane, but they are not all parallel and they do not intersect at a 

common point. 

 

 
 



2.3 Composition and resolution of forces 

 Resolution of forces: The process of replacing a force by its components. Acomponent of a 

force is any one of two or more forces having the given forces as a resultant. So the term 

"component" is used to mean either one of two coplanar concurrent forces or any one of three 

noncoplanar concurrent forces having the given force as a resultant. 

 Composition of forces: The process of replacing a force system by its resultant. 

 

2.3.1 Resolution and Composition of Two Concurrent, Coplanar forces 

1- Parallelogram law of forces  

If two forces act simultaneously on a particle, the parallelogram law states that the resultant is equal to 

the diagonal of the parallelogram formed on the vectors of these forces. 

 

 
 

 

 
 

The angle the resultant makes with either force can be determined by the law of sines:  
 
 

 



Example 1: The screw in Figure (a) is subjected to two forces, F1 and F2. Determine the 

magnitude and direction of the resultant force. 

 

 
 

Example 2: Resolve the horizontal 600-N force in Figure (a) into components acting along u and v 

axes and determine the magnitude of these components. 

 



 
 

Example 3: Determine the magnitude of the components force F in Figure (a) and the 

magnitude of the resultant force FR if FR is directed along the positive y-axis. 

 
 

 

 
 

 

Example 4: It is required that the resultant force acting on the eyebolt in Figure (a) be 

directed along the positive x-axis and that F2 has a minimum magnitude. Determine 

this magnitude, the angle θ, and the corresponding resultant force. 

 



 
 

 
 
2- Rectangular components 
When a force is resolved into two components along x and y axes, the components are then called 

rectangular components. 

 
Instead of using the angle 0, however, the direction of F can also be defined using a small "slope" 

triangle. Since this triangle and the larger triangle are similar, the proportional length of the sides 

gives. 

 

• Horizontal component          𝐹𝑥 = 𝐹(
𝑎

𝑐
) 

• Vertical component             𝐹𝑦 = 𝐹(
𝑏

𝑐
) 

 

 



 
 

 

 

*Resultant of two Concurrent forces can be obtained by 

  

𝛴𝐹𝑥 = 𝐹1𝑥 + 𝐹2𝑥 

𝛴𝐹𝑦 = 𝐹1𝑦 + 𝐹2𝑦 

 

𝑭 = √𝜮𝑭𝒙
𝟐+𝜮𝑭𝒚

𝟐
 

 

𝑡𝑎𝑛 𝜃 =
𝛴𝐹𝑦

𝛴𝑅𝑥
 

 
 

 



 
 



2.3.2 Resolution and Composition of three or more Concurrent, Coplanar forces 

In determination of the resultant of several forces (more than two forces), using the rectangular 

component is more convenient than using the parallelogram rule more than once. Consider three 

forces as shown in figure below. So the resultant of these coplanar forces may be determined by the 

following steps: 

1. Resolve each force into x and y components. 

2. Add the respective using scalar algebra since they are collinear 

 

𝐹𝑅𝑥 = 𝛴𝐹𝑥 = 𝐹1𝑥 + 𝐹2𝑥 + 𝐹3𝑥 + ⋯ 

𝐹𝑅𝑦 = 𝛴𝐹𝑦 = 𝐹1𝑦 + 𝐹2𝑦 + 𝐹3𝑦 +⋯ 

 

3. The resultant force is then computed by using Pythagorean theorem, 

 

𝐹 = √𝛴𝐹𝑥
2+𝛴𝐹𝑦

2 

 

And the angle 0, which specifies the direction of resultant, is determined from trigonometry: 

 

tan𝜃 =
𝐹𝑅𝑦

𝐹𝑅𝑥
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 



Direction. The direction of MO is defined by its moment 

axis, which is perpendicular to the plane that contains the 

force F and its moment arm d. The right-hand rule is used to 

establish the sense of direction of MO. 

2.4 Concept of moment 
 

2.4.1 Moment about Point 

 

M=F.d 

F: the magnitude of the force, 

d: the perpendicular distance from the  

axis to the line of action of the force. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.3.3 Resultant Moment 
The resultant moment (MR )O about point O (the z axis) can be determined by finding the algebraic 

sum of the moments caused by all the forces in the system 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3.2 Varignon’s Theorem 
One of the most useful principles of mechanics is Varignon’s theorem, which states that the 

moment of a force about any point is equal to the sum of the moments of the components of 

the force about the same point. 
 



 



 
 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



Note : Because the total force exerted by a 

couple is zero, a couple is often represented by 

the moment it exerts.   When the lines of action 

of the forces of a couple lie in the x y plane, 

the couple can be represented by its magnitude 

and a circular arrow that indicates its direction 

2.4.2 Couple  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A couple consists of two forces which have equal 

magnitudes and parallel but opposite in sense. The 

moment of the couple is the algebraic sum of the 

moments of its forces about any axis perpendicular 

to the plane of the couple. 

 



2.4.3 Equivalent couple 
If two couples produce a moment with the same magnitude and direction, then these two couples are 

equivalent 

 
 

 

2.4.4 Force –couple system 
When a force is moved to another point P that is not on its line of action, it will create the same 

external effects on the body if a couple moment is also applied to the body. The couple moment is 

determined by taking the moment of the force about point P. 

 

 
 

Example  

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

Example 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2.5 - Resultant of Parallel, Coplanar forces 
Parallel forces can be in the same or in opposite directions. The sign of the direction can be chosen arbitrarily, 

meaning, taking one direction as positive makes the opposite direction negative. The complete definition of the 

resultant is according to its magnitude, direction, and line of action. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
*Two parallel equal forces act in opposite direction 

Two parallel forces that are equal in magnitude, opposite in direction, and not colinear will create a 

rotation effect. This type of pair is called a Couple. The placement of a couple in the plane is 

immaterial, meaning, its rotational effect to the body is not a function of its placement. The 

magnitude of the couple is given by 

 

 

 

 

 

 

 



2.6 Resultant of Distributed Loads 
The resultant of a distributed load is equal to the area of the load diagram. It is acting at the 

centroid of that area as indicated. The figure below shows the three common distributed 

loads namely; rectangular load, triangular load, and trapezoidal load. 

 

  

 
Example 

 



2.7 Resultant of Nonconcurrent, Nonparallel, Coplanar forces 

 
The resultant of a force system is the simplest force system which can replace the original system 

without changing its external effect on a rigid body. The resultant of a force system can be: 

1- a single force, 

2- a pair of parallel forces having the same magnitudes but opposite sense (called a couple),or 

3- a force and a couple. 

If the resultant is a force and a couple, the force will not be parallel to the plane containing the 

couple. 

 

 
 

 
 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 
 

 

 

 

 

 

 

 

Example : Replace the three forces acting on the bent beam by a single equivalent 

force R. Specify the distance x from the point O in which the line of action of R 

passes. 

 

 

 

 

 

 

 

 

 

 



CHAPTER THREE 
EQUILIBRIUM 

 
 

3.1 General  
the term "equilibrium" or, more specifically, "static equilibrium" is used to describe an 

object at rest. To maintain equilibrium, it is necessary to satisfy Newton's first law of 

motion, which requires the resultant force acting on a particle to be equal to zero. This 

condition may be stated mathematically as: 

"When a body is in equilibrium, the resultant of all forces acting on it is zero" which 

leads to:  

(Summation of internal and external forces and moments equals to zero) 

3.2 Free Body diagram (F.B.D) 
To apply the equation of equilibrium, we must account for all the known and unknown forces (F) 

which act on the body. The best way to do this is to think of the body as isolated and “free” from its 

surroundings .A drawing that shows the particle with all the forces that act on it is called a free-body 

diagram (FBD) 

Before presenting a formal procedure as to how to draw a free-body diagram, we will first consider 

three types of supports often encountered in particle equilibrium problems. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1-Spring 

 

F= k x  
 

k = stiffness of spring    ( N/m) 

x = distance measured from its unloaded position (m) 

 

2-Smooth Contact  

If an object rests on a smooth surface, then the 

surface will exert a force on the object that is 

normal to the surface at the point of contact.  

 



 
 
 
 
 
 
 
 

 

 

  

3-Cables and Pulleys. Unless otherwise stated throughout this book, except in Sec. 7.4, all 

cables (or cords) will be assumed to have negligible weight and they cannot stretch. Also, a cable 

can support only a tension or “pulling” force, and this force always acts in the direction of the 

cable. The tension force developed in a continuous cable which passes over a frictionless pulley 

must have a constant magnitude to keep the cable in equilibrium. Hence, for an angle θ, shown in 

figure, the cable is subjected to a constant tension T throughout its length.  

 



Example: Determine the value of P, if the load W= 800 N. 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3.2.1 Modeling the Action of Forces in 2D Analysis 
 

 
 



 



 



3.2.3 Examples of F.B.D 

 



 



 



3.3 Equilibrium conditions  

 

 
3.3.1 Categories of Equilibrium 

 



3.3.2 Two- and Three-Force Member 

❖ Two-Force Members. 

for any two-force member to be in equilibrium, the two forces acting on the member must have the 

same magnitude, act in opposite directions, and have the same line of action, directed along the line 

joining the two points where these forces act. 

 

❖ Three-Force Members. 

If a member is subjected to only three forces, it is called a three-force member. Moment equilibrium 

can be satisfied only if the three forces form a concurrent or parallel force system 

 
 

 
 
 
 



❖ The FPD of  pin between two members 

 
 

Example1 

 
Example 2 

 
 
 
 
 
 
 
 
 
 



3.3.3 Alternative equilibrium Equations 
In addition to the three general equilibrium equation there are two other ways to express general 

conditions for the equilibrium of forces in two ways dimensions. If 𝛴MA = 0and ΣMB = 0, where B 

is any point such that the line AB is not perpendicular to the x-direction, we see that R must be zero, 

and thus the body is in equilibrium. Therefore, an alternative set of equilibrium equations is  

 

❖ Case 1 

 

 

 

where the two points A and B must not lie on a line perpendicular to the x-direction. 

 
 

❖ Case 2 

 

 
 

 

 



3.4 Constrains and Statical Determinacy  
The equilibrium equations developed in this article are both necessary and sufficient conditions to 

establish the equilibrium of a body However; they do not necessarily provide all the information 

required to calculate all the unknown forces which may act on a body in equilibrium. Whether the 

equations are adequate to determine all the unknowns depends on the characteristics of the 

constraints against possible movement of the body provided by its supports. By constraint we mean 

the restriction of movement. 

We must be aware of the nature of the constraints before we attempt to solve an equilibrium roblem. 

A body can be recognized as statically indeterminate when there are more unknown external 

reactions than there are available independent equilibrium equations for the force system involved. It 

is always well to count the number of unknown variables on a given body and to be certain that an 

equal number of independent equations can be written; otherwise, effort might be wasted in 

attempting an impossible solution with the aid of the equilibrium equations only. The unknown 

variables may be forces, couples, distances, or angles. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Unknowns 
No. of 

Unknowns 
Equilibrium Eqs. 

No. of Equilibrium 
Eqs. 

AX 
AY 
MA 

3 
ΣFx=0 
ΣFy=0 
ΣMa=O 

3 

 
 



 



 
 
 



 

 
 

 
 
 
 
 



Example 

 
 
Solution  
There are 3 unknowns   and 3 equilibrium Eqs. That means the problem can be solved 

 

 
 
 
 
 



Example  

 
 
 
 
 
 
 
 
 
Solution 

 

 



 



 



 
 



 

 

 



 



 
 



 



 
 
 
 
 
 
 
 
 
 
 
 

 
 



 

 
 



CHAPTER FOUR 

FRICTION 
 

 

 

4.1 Introduction 

In the previous sections, we assumed that surfaces in contact are either frictionless or rough. If they 

are frictionless, the force each surface exerts on the other is normal to the surfaces, and the two 

surfaces can move freely with respect to each other. If they are rough, tangential forces can develop 

that prevent the motion of one surface with respect to the other. 

Friction is a force that resists the movement of two contacting surfaces that slide relative to one 

another. This force always acts tangent to the surface at the points of contact and is directed so as to 

oppose the possible or existing motion between the surfaces. 

There are two types of friction: dry friction, sometimes called Coulomb friction, and fluid friction or 

viscosity. Fluid friction develops between layers of fluid moving at different velocities. 

 

4.2 Theory of Dry Friction 

The theory of dry friction can be explained by considering the effects caused by pulling horizontally 

on a block of uniform weight W which is resting on a rough horizontal surface that is non rigid or 

deformable as show in fig. below where: 

 

W= block of uniform weight,                   ΔNn = Distributed normal force 

ΔFn =Distributed frictional force ,            P = Horizontal applied force 

N= Σ ΔNn= normal force                                 Σy=0      N = w 

F= Σ ΔFn= frictional force                               Σx=0       F = P 

The effect of the distributed normal and frictional loadings is indicated by their resultants N and F 

on the free-body diagram, Fig. 8–1d. Notice that N acts a distance x to the right of the line of action 

of W, Fig. 8–1d. This location, which coincides with the centroid or geometric center of the normal 

force distribution in Fig. 8–1b, is necessary in order to balance the “tipping effect” caused by P. For 

example, if P is applied at a height h from the surface, Fig. 8–1d, then moment equilibrium about 

point O is satisfied if Wx = Ph or x = Ph>W. 

 

 

 

 



4.3 The static and kinetic friction forces 

It was found that, as the magnitude F of the friction force increases from   0 to Fm, the point of 

application A of the resultant N of the normal forces of contact moves to the right. In this way, the 

couples formed by P and F and by W and N, respectively, remain balanced. If N reaches B before F 

reaches its maximum value Fm, the block starts to tip about B before it can start sliding. 

 
Fig. 4.11 (a) Block on a horizontal plane, friction force is zero; (b) a horizontally applied force P 

produces an opposing friction force F; (c) graph of F with increasing P. 

4.5 Coefficients of Friction 

Experimental evidence shows that the maximum value Fm of the static friction force is proportional 

to the normal component N of the reaction of the surface. We have Static friction 

                            Fm = μs N                                                    (4.8) 

where μs is a constant called the coefficient of static friction. Similarly, we can express the 

magnitude Fk of the kinetic-friction force in the form Kinetic friction 

                             Fk = μkN                                                      (4.9) 

where μk is a constant called the coefficient of kinetic friction. The coefficients of friction μs and μk 

do not depend upon the area of the surfaces in contact. Both coefficients, however, depend strongly 

on the nature of the surfaces in contact. 

From this discussion, it appears that four different situations can occur when a rigid body is in 

contact with a horizontal surface: 

1. The forces applied to the body do not tend to move it along the surface of contact; there is no 

friction force (Fig. 4.12a). 

2. The applied forces tend to move the body along the surface of contact but are not large enough to 

set it in motion. We can find the static- friction force F that has developed by solving the equations 

of equilibrium for the body. Since there is no evidence that F has reached its maximum value, the 

equation Fm = μsN cannot be used to determine the friction force (Fig. 4.12b). 

3. The applied forces are such that the body is just about to slide. We say that motion is impending. 

The friction force F has reached its maximum value Fm and, together with the normal force N, 

balances the applied forces. Both the equations of equilibrium and the equation Fm = μs N can be 

used. Note that the friction force has a sense opposite to the sense of impending motion (Fig. 4.12c). 



4. The body is sliding under the action of the applied forces, and the equations of equilibrium no 

longer apply. However, F is now equal to Fk, and we can use the equation Fk = μk N. The sense of Fk 

is opposite to the sense of motion (Fig. 4.12d). 

 
Fig. 4.12  

(a) Applied force is vertical, friction force is zero; 

(b) Horizontal component of applied force is less than Fm, no motion occurs; 

(c) Horizontal component of applied force equals Fm, motion is impending; 

(d) Horizontal component of applied force is greater than Fk, forces are unbalanced and motion 

continues. 

 

 

 

 

 



4.4 Angles of Friction 

It is sometimes convenient to replace the normal force N and the friction force F by their resultant R. 

Let’s see what happens when we do that. 

 

 
 

 
 

 

 

 
 

 

 



4.5 Problems Involving Dry Friction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Most problems involving friction fall into one of the 

following three groups. 

1. All applied forces are given, and we know the 

coefficients of friction; we are to determine whether the 

body being considered remains at rest or slides. The friction 

force F required to maintain equilibrium is unknown (its 

magnitude is not equal to μsN) and needs to be determined, 

together with the normal force N, by drawing a free-body 

diagram and solving the equations of equilibrium (Fig. 

4.15a). We then compare the value found for the magnitude 

F of the friction force with the maximum value Fm = μs N. 

If F is smaller than or equal to Fm, the body remains at rest. 

If the value found for F is larger than Fm, equilibrium 

cannot be maintained and motion takes place; the actual 

magnitude of the friction force is then Fk=μkN. 

 

2. All applied forces are given, and we know the motion is 

impending; we are to determine the value of the coefficient 

of static friction. Here again, we determine the friction force 

and the normal force by drawing a free body diagram and 

solving the equations of equilibrium (Fig. 4.15b). Since we 

know that the value found for F is the maximum value Fm, 

we determine the coefficient of friction by solving the 

equation Fm = μsN. 

 

3. The coefficient of static friction is given, and we know 

that the motion is impending in a given direction; we are to 

determine the magnitude or the direction of one of the 

applied forces. The friction force should be shown in the 

free-body diagram with a sense opposite to that of the 

impending motion and with a magnitude Fm 5 μsN (Fig. 

4.15c). We can then write the equations of equilibrium and 

determine the desired force. As noted previously, when only 

three forces are involved, it may be more convenient to 

represent the reaction of the surface by a single force R and 

to solve the problem by drawing a force triangle.  



4.6 Procedure for Analysis 

  

Equilibrium problems involving dry friction can be solved using the following 

procedure: 

1-Free-Body Diagrams. 

• Draw the necessary free-body diagrams, and unless it is stated in the problem that 

impending motion or slipping occurs, always show the frictional forces as unknowns 

(i.e., do not assume F = µN). 

• Determine the number of unknowns and compare this with the number of available 

equilibrium equations. 

• If there are more unknowns than equations of equilibrium, it will be necessary to 

apply the frictional equation at some, if not all, points of contact to obtain the extra 

equations needed for a complete solution. 

• If the equation F = µ N is to be used, it will be necessary to show F acting in the 

correct sense of direction on the free-body diagram. 

2-Equations of Equilibrium and Friction. 

• Apply the equations of equilibrium and the necessary frictional equations (or 

conditional equations if tipping is possible) and solve for the unknowns. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Force Required for Equilibrium. First determine the value of the 

friction force required to maintain equilibrium.  Assuming that F is 

directed down and to the left, draw the free-body diagram of the 

crate (Fig. 1) and solve the equilibrium equations : 

 

 

The force F required to maintain equilibrium is an 80-lb 

force directed up and to the right; the tendency of the crate is 

thus to move down the plane. Maximum Friction Force.  The 

magnitude of the maximum friction force that may be developed 

between the crate and the plane is 

 

Since the value of the force required maintaining equilibrium 

(80 N) is larger than the maximum value that may be obtained 

(60 N), equilibrium is not maintained and the crate will slide 

down the plane.   

Actual Value of Friction Force. The magnitude of the actual 

friction force is 

Example : A 100 N force acts as shown on a 300-N crate placed on an inclined plane. The 

coefficients of friction between the crate and the plane are µs 0.25 and µk 0.20. Determine whether 

the crate is in equilibrium, and find the value of the friction force. 

STRATEGY: This is a friction problem of the first type:  

you know the forces and the friction coefficients and want 

 to determine if the crate moves. You also want to find the  

friction force. 

MODELING and ANALYSIS 

 

 

 

 

 

𝛴𝐹𝑥 = 0                 100 −
3

5
 (300) − 𝐹 = 0 

     𝐹 =  −80            

     𝐹 = 80 𝑁  

𝛴𝐹𝑦 = 0                 𝑁 −
4

5
 (300) = 0 

  𝑁 =  240 𝑁  

 

 

 

 

  

 

 

𝐹𝑚 =  𝜇𝑠 𝑁 =  0.25(240 ) =  60𝑁 

 

 

 

 

 

 

 

                                       𝐹actual =  𝐹𝑘 =  𝜇𝑘𝑁 =  0.20(240 ) =  48 𝑁 

The sense of this force is opposite to the sense of motion; the force is thus directed up and to the 

right (Fig. 2)                                        𝐹𝑎𝑐𝑡𝑢𝑎𝑙 = 48 𝑁 

 Note that the forces acting on the crate are not balanced. Their resultant is                       

                                               
3

5
 (300) − 100 − 48 =  32 𝑁 

REFLECT and THINK: This is a typical friction problem of the first type. Note that you used the 

coefficient of static friction to determine if the crate moves, but once you found that it does move, 

you needed the coefficient of kinetic friction to determine the friction force. 



Equilibrium is not maintained and the crate will slide up 

the plane. 

     𝐹actual =  𝐹𝑘 =  𝜇𝑘𝑁 =  0.20(80 ) =  16 N  

The sense of this force is opposite to the sense of 

motion; the force is thus directed down and to the left                                          

 Note that the forces acting on the crate are not 

balanced. Their resultant is       

                        100 −
3

5
 (100) − 16 =  32 𝑁 

 

 

Example: A 100 N force acts as shown on a 100-N crate placed on an inclined plane. The 

coefficients of friction between the crate and the plane are µs 0.25 and µk 0.20. Determine whether 

the crate is in equilibrium, and find the value of the friction force. 

 

𝛴𝐹𝑥 = 0                 100 −
3

5
 (100) − 𝐹 = 0 

  𝐹 =  40 𝑁  

 

𝛴𝐹𝑦 = 0                 𝑁 −
4

5
 (100) = 0 

  𝑁 =  80 𝑁  

 

 

𝐹𝑚 =  𝜇𝑠 𝑁 =  0.25(80 ) =  20𝑁 < F=40N 

 

 

 

 

 

 

 

 

 

 

 

 

Example: A 100 N force acts as shown on a 200-N crate placed on an inclined plane. The 

coefficients of friction between the crate and the plane are µs 0.25 and µk 0.20. Determine whether 

the crate is in equilibrium, and find the value of the friction force. 

 

 

𝛴𝐹𝑥 = 0                 100 −
3

5
 (200) − 𝐹 = 0 

     𝐹 =  −20            

     𝐹 = 20 𝑁  

𝛴𝐹𝑦 = 0                 𝑁 −
4

5
 (200) = 0 

  𝑁 =  160 𝑁  

 

 

𝐹𝑚 =  𝜇𝑠 𝑁 =  0.25(160 ) =  40𝑁<     𝐹 = 20 𝑁  

 

Equilibrium is maintained and the crate will be at rest. 

 

 



Example A support block is acted upon by two forces as shown. Knowing that the coefficients of 

friction between the block and the incline are μs = 0.35 and μk = 0.25, determine the force P required 

to (a) start the block moving up the incline; (b) keep it moving up; (c) prevent it from sliding down. 

 

a. Force P to Start Block Moving Up. 

 

𝛴𝐹𝑥 = 0                 𝐹 + (800) sin(25) – 𝑃 𝑐𝑜𝑠(25) = 0     − − − 1 

 

𝛴𝐹𝑦 = 0                  𝑁 + (800) cos(25) – 𝑃 𝑠𝑖𝑛(25) = 0   − − − 2 

Due to motion is impending up the incline, thus 

                                           𝐹 =  𝜇𝑠 𝑁 =  0.35 𝑁                   − − − −3             

By solving eq.s (1),(2) and (3) 

 

                                     𝑷 = 𝟕𝟖𝟎 𝑵 

 

b. Force P to Keep Block Moving Up 

𝛴𝐹𝑥 = 0                 𝐹 + (800) sin(25) – 𝑃 𝑐𝑜𝑠(25) = 0     − − − 1 

 

𝛴𝐹𝑦 = 0                  𝑁 + (800) cos(25) – 𝑃 𝑠𝑖𝑛(25) = 0   − − − 2 

To keep it moving up the incline 

                                           𝐹 =  𝜇𝑘 𝑁 =  0.25 𝑁           − − − − − −3          

By solving eq.s (1),(2) and (3) 

                                       𝑷 = 𝟔𝟗𝟒 𝑵 

 

 

C. Force P to Prevent Block from Sliding Down 

𝛴𝐹𝑥 = 0           − 𝐹 + (800) sin(25) – 𝑃 𝑐𝑜𝑠(25) = 0     − − − 1 

 

𝛴𝐹𝑦 = 0                  𝑁 + (800) cos(25) – 𝑃 𝑠𝑖𝑛(25) = 0   − − − 2 

Due to motion is impending up the incline, thus 

                                           𝐹 =  𝜇𝑘 𝑁 =  0.25 𝑁                  − − − −3                

By solving eq.s (1),(2) and (3) 

                                        𝑷 = 𝟖𝟎. 𝟎 𝑵 

 

 

 

 

 

 

 

 

 

 



 



Example: The uniform thin pole has a weight of 50 N and a length of 6m. If it is placed against the 

smooth wall and on the rough floor in the position d = 2 m, the coefficient of static friction is 0.3. 

1- Will it remain in this position when it is released? 

2- Determine the maximum distance d it can be placed from the smooth wall and not slip  

 

Solution 

1- No motion 

 

𝛴𝑀𝐴 = 0        50(1) − 𝑁2(5.66) = 0 

                    𝑁2 = 8.81 N            

𝛴𝐹𝑥 = 0          𝑁2 =   𝐹1   = 8.81 N        

 𝛴𝐹𝑦 = 0          𝑁1 =   50  N 

to check the motion                

𝐹𝑚1 =  𝜇𝑠 𝑁1 =  0.3 ∗ 50 =   15 N > 𝐹1   = 8.81 N      O. K. 

The pole remains in this position.  

 

2- Impending motion at point A  

𝐹1 = 𝐹𝑚1 =  𝜇𝑠 𝑁1 =  0.3 𝑁1 

𝛴𝐹𝑦 = 0          𝑁1 =   50  N 

 𝐹1 = 0.3 ∗ 50 = 15 𝑁 

𝛴𝐹𝑥 = 0          𝑁2 =   𝐹1   = 15 N  

 𝛴𝑀𝐴 = 0        50 (
𝑑

2
) − 15(5.66) = 0 

    𝒅 = 𝟑. 𝟒  𝒎  

  

 

 

 

 

 

 

 

 

 

 

 



 



Example: Determine the max. value which P may have before any sliping takes place   

Solution  

Case 1: The body (50kg) slips only 

 

𝐹1 = 𝐹𝑚1 =  𝜇𝑠 𝑁1 =  0.3 𝑁1  

𝐹2 = 𝐹𝑚2 =  𝜇𝑠 𝑁2 =  0.4 𝑁2  

F.B.D. of Block (30kg)  

𝛴𝐹𝑦 = 0      𝑁1 + (30 ∗ 9.81) cos(30o) = 0        

 𝑁1 =   225 𝑁 

 𝐹1 =  0.30 (225) = 76.5 𝑁 

F.B.D. of Block (50kg)  

𝛴𝐹𝑦 = 0                 𝑁2 − (50 ∗ 9.81) cos(30o) − 225 = 0        

 𝑁2 =   680 𝑁 

𝐹2 =  0.4 (680) = 272 𝑁 

𝛴𝐹𝑥 = 0           𝑃 − 76.5 − 272 + (50 ∗ 9.81) sin(30o) = 0 

𝑷 =  𝟏𝟎𝟑. 𝟏 𝑵 

 

Case2: body (50kg) and body (40kg) slip as unit  

 

𝐹1 =  𝜇𝑠 𝑁1 =  0.3 𝑁1  

𝐹3 =  𝜇𝑠 𝑁3 =  0.45 𝑁3  

F.B.D. of Block (30kg)  

𝛴𝐹𝑦 = 0      𝑁1 + (30 ∗ 9.81) cos(30o) = 0        

 𝑁1 =   225 𝑁 

  𝐹1 =  0.30 (225) = 76.5 𝑁 

F.B.D. of Block (50kg) and body (40kg) 

𝛴𝐹𝑦 = 0         𝑁3 − (50 ∗ 9.81) cos(30o) − (40 ∗ 9.81) − 225 = 0        

 𝑁3 =   1019 𝑁 

𝐹3 = 0.45 (1019) = 495 𝑁 

𝛴𝐹𝑥 = 0        𝑃 − 76.5 − 495 + ((50 + 40) ∗ 9.81) sin(30o) = 0 

𝑷 =  𝟗𝟑. 𝟖 𝑵 

 

⸫    𝑷 =  𝟗𝟑. 𝟖 𝑵 

  

 



Example: Determine the smallest couple moment that can be applied to the 180N wheel that will 

cause impending motion. The uniform concrete block has a weight of 232N. The coefficient of static 

friction is 0.4 at all contacting surfaces. 

Solution 

There are two possibilities 

Case 1: the wheel slips first 

 

𝐹1 = 𝐹𝑚1 =  𝜇𝑠 𝑁1 =  0.4 𝑁1  

𝐹2 = 𝐹𝑚2 =  𝜇𝑠 𝑁2 =  0.4 𝑁2  

 

F.B.D. of the wheel 

𝛴𝐹𝑦 = 0        𝑁1 + 𝐹2 = 232  

                   𝑁1 + 0.4 𝑁2 = 232           − −(1)  

𝛴𝐹𝑥 = 0          𝑁2 =   𝐹1           

                         𝑁2 =   0.4 ∗ 𝑁1         − − − −(2)     

𝑁1 =   200 𝑁             𝑁2   =  80 𝑁 

𝐹1 =   80 𝑁             𝐹2   =  32 𝑁 

𝛴𝑀𝑜 = 0      𝐹1 ∗ 0.15 + 𝐹2   ∗ .015 − 𝑀 = 0  

  80 ∗ 0.15 + 32 ∗ .015 − 𝑀 = 0 

𝑴 = 𝟏𝟔. 𝟖  𝑵. 𝒎 

 

Case 2: The block slips first 

𝐹2 = 𝐹𝑚2 =  𝜇𝑠 𝑁2 =  0.4 𝑁2  

𝐹3 = 𝐹𝑚3 =  𝜇𝑠 𝑁3 =  0.4 𝑁3  

 

F.B.D. of the block 

𝛴𝐹𝑦 = 0        𝑁3 − 𝐹2 = 180 

                   𝑁3 + 0.4 𝑁2 = 180           − −(1)  

𝛴𝐹𝑥 = 0          𝑁2 =   𝐹3           

                   𝑁2 =   0.4 ∗ 𝑁3         − − − −(2)     

By solving eq.s (1) and (2)  

𝑁3 =   214.3 𝑁             𝑁2   =  85.7 𝑁 

𝐹3 =   85.7 𝑁             𝐹2   =  34.3 𝑁 

F.B.D. of the wheel 

𝛴𝐹𝑥 = 0         𝐹1  =     𝑁2   = 85.7 N    

 

𝛴𝑀𝑜 = 0      𝐹1 ∗ 0.15 + 𝐹2   ∗ .015 − 𝑀 = 0  

  85.72 ∗ 0.15 + 34.29 ∗ .015 − 𝑀 = 0 

𝑴 = 𝟒𝟔. 𝟗  𝑵. 𝒎 

 

⸫ Use smaller     M= 46.9 N.M 

 

 



Example Blocks A and B have a mass of 40 N and 50 N, 

respectively. Using the coefficients of static friction indicated, 

determine the largest force P which can be applied to the cord 

without causing motion. There are pulleys at C and D. 

 

 

 

 

 

 

 

 

 

 

 

 

Solution  
 
Case1 : Block A slips first 
 

𝐹1 = 𝐹𝑚1 =  𝜇𝑠 𝑁1 =  0.4 𝑁1  

𝛴𝐹𝑦 = 0         𝑁2 = 40              

      𝐹1 =  0.4 ∗ 40 = 16  

𝛴𝐹𝑥 = 0          𝐹2 = P  

                    P = 16 N       

 

Case 2: Block A and Block B slip as a unit 

 

𝐹2 = 𝐹𝑚2 =  𝜇𝑠 𝑁2 =  0.4 𝑁2  

𝛴𝐹𝑦 = 0       𝑁2 − 50 − 40 = 0              

       𝑁2 = 90   

      𝐹2 =  0.3 ∗ 90 = 27  

𝛴𝐹𝑥 = 0          𝐹2 − 10 − P =   0 

                    P = 17 N       

 

Case 3 Block A tips about Point O 
 

𝛴𝑀𝑜 = 0      40 ∗ 4 − 20𝑃 = 0 

 

                     P = 8 N  
  
 
⸫ 𝑼𝒔𝒆 𝒔𝒎𝒂𝒍𝒍𝒆𝒔𝒕 𝒗𝒂𝒍𝒖𝒆 𝒐𝒇      𝑷 =   𝟖   𝑵 
 
 
 
 
 
 
 
 
 



H.W. A cable is attached to the 20-kg plate B, 

passes over a fixed peg at C, and is attached to the 

block at A. Using the coefficients of static friction 

shown, determine the smallest mass of block A so 

that it will prevent sliding motion of B down the 

plane. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H.W. 

 

 

 

 

 

 

 

 

 

 

 

 

 

H.W Blocks A and B have a mass of 7 kg and 10 kg, 

respectively. Using the coefficients of static friction 

indicated, determine the largest vertical force P which 

can be applied to the cord without causing motion. 

H.W The uniform thin pole has a weight of 50 N and a 

length of 26m. If it is placed against the rough wall and 

on the rough box in the position d = 10 m,  

µs = 0.3 at points A, B and C  

P= 150 N 

Box weight = 100 N 

Determine the distance x when the motion of the pole 

impend 



 

4.7 Wedges 

A wedge is a simple machine that is often used to transform an applied force into much larger forces, 

directed at approximately right angles to the applied force. Wedges also can be used to slightly move 

or adjust heavy loads. 

Consider, for example, the wedge shown in Fig. 8–12a, which is used to lift the block by applying a 

force to the wedge. Free-body diagrams of the block and wedge are shown in Fig. 8–12b. Here we 

have excluded the weight of the wedge since it is usually small compared to the weight W of the 

block. Also, note that the frictional forces F1 and F2 must oppose the motion of the wedge. 

Likewise, the frictional force F3 of the wall on the block must act downward so as to oppose the 

block’s upward motion.  

The locations of the resultant normal forces are not important in the force analysis since  neither the 

block nor wedge will “tip.” Hence the moment equilibrium equations will not be considered. There 

are seven unknowns, consisting of the applied force P, needed to cause motion of the wedge, and six 

normal and frictional forces. The seven available equations consist of four force equilibrium 

equations, ΣFx = 0, ΣFy = 0 applied to the wedge and block, and three frictional equations, F = µN 

applied at each surface of contact. 

If the block is to be lowered, then the frictional forces will all act in a sense opposite to that shown in 

Fig. 8–12b. Provided the coefficient of friction is very small or the wedge angle u is large, then the 

applied force P must act to the right to hold the block. Otherwise, P may have a reverse sense of 

direction in order to pull on the wedge to remove it. If P is not applied and friction forces hold the 

block in place, then the wedge is referred to as self-locking. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

The answer by using the friction resultant and friction angle 

 



 



Example  

 Determine the smallest values of forces P 1 and P 2 required to rise block A while preventing A 

from moving horizontally. The coefficient of static friction for all surfaces of contact is 0.3, and the 

weight of wedges B and C is negligible compared to the weight of block A. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution  

 

1 − Equations of equilibrium for block A 

 

𝛴𝐹𝑥 = 0          𝑓𝐴𝐵 = 0           

𝛴𝐹𝑦 = 0        𝑁𝐴𝐵 = 2 kN  

2 − Equations of equilibrium for block B 

𝛴𝐹𝑥 = 0                 𝑓𝐵𝐶 𝑠𝑖𝑛(7𝑜) + 𝑁𝐵𝐶 𝑐𝑜𝑠(7𝑜) − 𝑃2 = 0                       − − − 1 

𝛴𝐹𝑦 = 0                −  𝑓𝐵𝐶 𝑐𝑜𝑠(7𝑜) + 𝑁𝐵𝐶 𝑠𝑖𝑛(7𝑜) − 2 = 0                     − − − 2 

 Slip impends between blocks B and C              

                                    𝑓𝐵𝐶 =   𝜇𝑠 𝑁𝐵𝐶 = 0.3 𝑁𝐵𝐶                                            − − − −3                                      

By Solving Eqs. 1, 2, and 3 we obtained  

𝑁𝐵𝐶 =   2.09 𝑘𝑁                     𝑓𝐵𝐶 =  0.628 𝑘𝑁                   𝑃2 =   0.878 k𝑁        

                 

 



2 − Equations of equilibrium for block C 

 

 

 

 

 

 

 

 

 

 

 

𝛴𝐹𝑥 = 0               −  𝑓𝐵𝐶 𝑠𝑐𝑜𝑠𝑖𝑛(7𝑜) − 2.09 𝑠𝑖𝑛(7) + 𝑃1 − 𝑓𝐶 = 0                         − − − 3 

𝛴𝐹𝑦 = 0                −  𝑓𝐵𝐶 𝑠𝑖𝑛(7𝑜) + 2.09 𝑐𝑜𝑠(7𝑜) + 𝑁𝐶 = 0                                      − − − 4 

 Slip impends between blocks C and floor        

𝑓𝐶 =   𝜇𝑠 𝑁𝐶 = 0.3 𝑁𝐶           

Solving Eqs. 1, 2, and 3 

𝑵𝑪 =   𝟐. 𝟎𝟗 𝒌𝑵                     𝒇𝑪 =  𝟎. 𝟔𝟐𝟖 𝒌𝑵                   𝑷𝟏 =   𝟎. 𝟖𝟕𝟖 𝐤𝑵 

 

 

 

 

 

 

 

 

 

Solution  

 

1 − Equations of equilibrium for block A 

Slip impends between blocks A and floor   

        𝐹2 =   𝜇𝑠 𝑁2 = 0.35 𝑁2          

Slip impends between blocks A and B 

          𝐹1 =   𝜇𝑠 𝑁1 = 0.35 𝑁1 

𝛴𝐹𝑦 = 0         𝑁2 𝑐𝑜𝑠(10𝑜) − (0.35 𝑁2) 𝑠𝑖𝑛(10𝑜) − 𝑁1 = 0                                 

𝛴𝐹𝑥 = 0        𝑃 − (0.4 𝑁2) 𝑐𝑜𝑠(10𝑜) + 𝑁2 𝑠𝑖𝑛(10𝑜) − 0.4( 𝑁1) = 0        

    N1 =                                         k𝑁 

2 − Equations of equilibrium for block B 

Slip impends between blocks A and B 

𝛴𝐹𝑦 = 0        𝑊𝐵 = N1 =                             kN  

Example: 

If P = 250 N, determine the required minimum 

Weight for block B so that the wedge will not 

move to the right. Neglect the weight of A. The 

coefficient of static friction for all contacting 

surfaces is µs = 0.35. Neglect friction at the 

rollers. 

 



Example : Find P1 need to raise the column A and the minimum P2 to hold the wedge B 

stationary. The coefficient of static friction for all contacting surfaces is µs = 0.4. The weight of 

wedges B and C is negligible compared to the weight of block A 

 

 

 

 

 

 

 

 

 

 

 

 

1 − Equations of equilibrium for block A 

Slip impends between blocks A and B 

𝑓𝐴𝐵 =   𝜇𝑠 𝑁𝐴𝐵 = 0.4 𝑁𝐴𝐵 

𝛴𝐹𝑦 = 0        𝑁𝐴𝐵 = 8 kN  

𝑓𝐴𝐵 =   0.4 (8) = 3.2 𝑘𝑁 

2 − Equations of equilibrium for block B 

Slip impends between blocks B and C   

         𝑓𝐵𝐶 =   𝜇𝑠 𝑁𝐵𝐶 = 0.3 𝑁𝐵𝐶           

𝛴𝐹𝑦 = 0                𝑁𝐵𝐶  𝑐𝑜𝑠(10𝑜) − (0.4 𝑁𝐵𝐶) 𝑠𝑖𝑛(10𝑜) − 8 = 0     

   𝑁𝐵𝐶 =  8.74 𝑘𝑁           

𝛴𝐹𝑥 = 0               (0.4 𝑁𝐵𝐶) 𝑐𝑜𝑠(10𝑜) + 𝑁𝐵𝐶  𝑠𝑖𝑛(10𝑜) − 0.4( 𝑁𝐵𝐶) − 𝑃2 = 0        

     𝑃2 =  1.76 k𝑁 

2 − Equations of equilibrium for block C 

Slip impends between blocks C and floor   

  𝑓𝐶 =   𝜇𝑠 𝑁𝐶 = 0.4 𝑁𝐶           

𝛴𝐹𝑦 = 0               (0.4 𝑁𝐵𝐶   𝑠𝑖𝑛(10𝑜) + 𝑁𝐵𝐶  𝑐𝑜𝑠(10𝑜) − (𝑁𝐶) = 0                         

𝑵𝑪 =   𝟖 𝒌𝑵                     

𝛴𝐹𝑥 = 0                𝑃1 −  0.4  𝑁𝐵𝐶 ∗ 𝑐𝑜𝑠(10𝑜) − 𝑁𝐵𝐶  𝑠𝑖𝑛(10𝑜) − 0.4 𝑁𝐶 = 0    

 𝑷𝟏 =   𝟎. 𝟖𝟕𝟖 𝐤𝑵                                   

 

 

 

 

 

 

 

 

 



 



In the preceding chapters, we studied the equilibrium of a single rigid body, where all forces 

involved were external to the rigid body. We now consider the equilibrium of structures made of 

several connected parts. This situation calls for determining not only the external forces acting on the 

structure, but also the forces that hold together the various parts of the structure. From the point of 

view of the structure as a whole, these forces are internal forces. 

The internal forces holding the various parts of the crane together do not appear in the free-body 

diagram. If, however, we dismember the crane and draw a free-body diagram for each of its 

component parts, we can see the forces holding the three beams together; since these forces are 

external forces from the point of view of each component part (see Fig. below). 

There are many types of structural elements. If an element has pins or hinge supports at both ends 

and carries no load in-between, it is called a two-force member. These elements can only have two 

forces acting upon them at their hinges. If only two forces act on a body that is in equilibrium, then 

they must be equal in magnitude, co-linear and opposite in sense. This is known as the two-force 

principle. These members generally are used in truss structures.   

 A member acted upon by three or more forces that, in general, are not directed along the member, it 

is called a multi-force member. The directions of these forces are unknown; therefore, we need to 

represent them by two unknown components. Frames are designed to support loads and are also 

usually stationary, fully constrained structures. However, like the crane of Fig. below, frames always 

contain at least one multi-force member. 

 

 



A truss is a structure composed of slender members joined together at their end points. The members 

commonly used in construction consist of wooden struts or metal bars. In particular, planar trusses 

lie in a single plane and are often used to support roofs and bridges. The truss shown in Fig. 6–1a is 

an example of a typical roof-supporting truss. In this figure, the roof load is transmitted to the truss at 

the joints by means of a series of purlins. Since this loading act in the same plane as the truss, Fig. 

6–1b, the analysis of the forces developed in the truss members will be two-dimensional.

Trusses are designed to support loads and are usually stationary, fully constrained structures. 

Trusses consist exclusively of straight members connected at joints located at the ends of each 

member. Members of a truss, therefore, are two-force members, i.e., members acted upon by two 

equal and opposite forces directed along the member. 



To design both the members and the connections of a truss, it is necessary first to determine the force 

developed in each member when the truss is subjected to a given loading. To do this we will make 

two important assumptions: 

1-All loadings are applied at the joints. In most situations, such as for bridge and roof trusses, this 

assumption is true. Frequently the weight of the members is neglected because the force supported 

by each member is usually much larger than its weight. However, if the weight is to be included in 

the analysis, it is generally satisfactory to apply it as a vertical force, with half of its magnitude 

applied at each end of the member. 

2- The members are joined together by smooth pins. The joint connections are usually formed by 

bolting or welding the ends of the members to a common plate, called a gusset plate, as shown in 

Fig. 6 3a, or by simply passing a large bolt or pin through each of the members, Fig. 6 3b. We can 

assume these connections act as pins provided the center lines of the joining members are 

concurrent, as in Fig. 6 3.

Because of these two assumptions, each truss member will act as a two force member, and therefore 

the force acting at each end of the member will be directed along the axis of the member. If the force 

tends to elongate the member, it is a tensile force (T), Fig. 6–4a; whereas if it tends to shorten the 

member, it is a compressive force (C), Fig. 6–4b. In the actual design of a truss it is important to 

state whether the nature of the force is tensile or compressive. Often, compression members must be 

made thicker than tension members because of the buckling or column effect that occurs when a 

member is in compression.



Fig. 6-4 A two-force member of a truss can be in tension or compression 

  

If three members are pin connected at their ends, they form a triangular truss that will be rigid, Fig. 

6–5. Attaching two more members and connecting these members to a new joint D forms a larger 

truss, Fig. 6–6. This procedure can be repeated as many times as desired to form an even larger truss. 

If a truss can be constructed by expanding the basic triangular truss in this way, it is called a simple 

truss. 

In order to analyze or design a truss, it is necessary to determine the force in each of its members. 

One way to do this is to use the method of joints. This method is based on the fact that if the entire 

truss is in equilibrium, then each of its joints is also in equilibrium. Therefore, if the free-body 

diagram of each joint is drawn, the force equilibrium equations can then be used to obtain the 

member forces acting on each joint. Since the members of a plane truss are straight two-force 

members lying in a single plane, each joint is subjected to a force system that is coplanar and 

concurrent. As a result, only ΣFx = 0 and ΣFy = 0 need to be satisfied for equilibrium. 



The following procedure provides a means for analyzing a truss using the method of joints. 

1- Draw the free-body diagram of a joint having at least one known force and at most two unknown 

forces. (If this joint is at one of the supports, then it may be necessary first to calculate the external 

reactions at the support.) 

2- Use one of the two methods described above for establishing the sense of an unknown force. 

3- Orient the x and y axes such that the forces on the free-body diagram can be easily resolved into 

their x and y components and then apply the two force equilibrium equations ΣFx = 0 and ΣFy = 0. 

Solve for the two unknown member forces and verify their correct sense. 

4- Using the calculated results, continue to analyze each of the other joints. Remember that a 

member in compression “pushes” on the joint and a member in tension “pulls” on the joint. Also, be 

sure to choose a joint having at most two unknowns and at least one known force.







 





Zero-force members support no load; however, they are necessary for stability, and are available 

when additional loadings are applied to the joints of the truss. These members can usually be 

identified by inspection. They occur at joints where: 

1-If only two non-collinear members form a truss joint and no external load or support reaction is 

applied to the joint, the two members must be zero-force members.(see Case No.1) 

 

 

 
 

Case No. 1 

 

 

 

 

 



2-If three members form a truss joint for which two of the members are collinear, the third member 

is a zero-force member provided no external force or support reaction has a component that acts 

along this member. (see Case No.2) 

 

 

 

 
 

 

Case No.2 

 

 

 

 

 

 



 



 

 

When we need to find the force in only a few members of a truss, we can analyze the truss using the 

method of sections. It is based on the principle that if the truss is in equilibrium then any segment of 

the truss is also in equilibrium. For example, consider the two truss members shown on the left in 

Fig. 6–14. If the forces within the members are to be determined, then an imaginary section, 

indicated by the blue line, can be used to cut each member into two parts and thereby “expose” each 

internal force as “external” to the free-body diagrams shown on the right. Clearly, it can be seen that 

equilibrium requires that the member in tension (T) be subjected to a “pull,” whereas the member in 

compression (C) is subjected to a “push.” 

The method of sections can also be used to “cut” or section the members of an entire truss. If the 

section passes through the truss and the free-body diagram of either of its two parts is drawn, we can 

then apply the equations of equilibrium to that part to determine the member forces at the “cut 

section.” Since only three independent equilibrium equations (ΣFx = 0, ΣFy = 0, ΣMO = 0) can be 

applied to the free-body diagram of any segment, then we should try to select a section that, in 

general, passes through not more than three members in which the forces are unknown. 
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NOTE 1: 

When applying the equilibrium equations, we should carefully consider ways of writing the 

equations so as to yield a direct solution for each of the unknowns, rather than having to solve 

simultaneous equations. For example, using the truss segment in Fig. b and summing moments about 

C would yield a direct solution for FGF since FBC and FGC create zero moment about C. Likewise, FBC 

can be directly obtained by summing moments about G. Finally, FGC can be found directly from a 

force summation in the vertical direction since FGF and FBC have no vertical components. This ability 

to determine directly the force in a particular truss member is one of the main advantages of using 

the method of sections. 

 

NOTE2: 

     As in the method of joints, there are two ways in which we can determine the correct sense of an 

unknown member force: 

• The correct sense of an unknown member force can in many cases be determined “by inspection.” 

For example, FBC is a tensile force as represented in Fig. 6–15b since moment equilibrium about G 

requires that FBC create a moment opposite to that of the 1000-N force. Also, FGC is tensile since its 

vertical component must balance the 1000-N force which acts downward. In more complicated 

cases, the sense of an unknown member force may be assumed. If the solution yields a negative 

scalar, it indicates that the force’s sense is opposite to that shown on the free-body diagram. 

• Always assume that the unknown member forces at the cut section are tensile forces, i.e., “pulling” 

on the member. By doing this, the numerical solution of the equilibrium equations will yield positive 

scalars for members in tension and negative scalars for members in compression. 

 

The forces in the members of a truss may be determined by the method of sections using the 

following procedure. 

 Make a decision on how to cut  or section the truss through the members where forces are to be 

determined. 

 Before isolating the appropriate section, it may first be necessary to determine the truss s support 

reactions. If this is done then the three equilibrium equations will be available to solve for member 

forces at the section. 

 Draw the free-body diagram of that segment of the sectioned truss which has the least number of 

forces acting on it. 

 Use one of the two methods described above for establishing the sense of the unknown member 

forces. 

 Moments should be summed about a point that lies at the intersection of the lines of action of two 

unknown forces, so that the third unknown force can be determined directly from the moment 

equation. 

 If two of the unknown forces are parallel, forces may be summed perpendicular to the direction 

of these unknowns to determine directly the third unknown force. 
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CHAPTER SIX 

CENTER OF GRAVITY AND CENTROID  

6.1 Introduction 
Knowing the resultant or total weight of a body and its location is important when considering the 

effect this force produces on the body. The point of location is called the center of gravity, and in this 

section we will show how to find it for an irregularly shaped body. We will then extend this method 

to show how to find the body’s center of mass, and its geometric center or centroid. 

 



 
 Centroid for Areas Bounded by 2 Curves 

 



 
 



 



 
 

 



 



 



 
 



6.2 Centroid for Composite Areas 
For composite areas, that can be decomposed to a finite number n of simpler subareas, 

and provided that the centroids of these subareas are available or easy to find, then the 

centroid coordinates of the entire area xc , yc can be calculated through the following 

formulas: 

 

 



Centroids of common shapes of areas. 

 
 



 
 

 



 



 

 
 

 

 

 

 



 



CHAPTER SEVEN  

MOMENTS OF INERTIA 

 

7.1 Introduction 

The integral ∫ 𝑦2𝑑𝐴 is sometimes referred to as the “second moment” of the area about an axis (the x 

axis), but more often it is called the moment of inertia of the area. The word “inertia” is used here 

since the formulation is similar to the mass moment of inertia, ∫ 𝑦2𝑑𝑚. Although for an area this 

integral has no physical meaning, it often arises in formulas used in fluid mechanics, mechanics of 

materials, structural mechanics, and mechanical design, and so the engineer needs to be familiar with 

the methods used to determine the moment of inertia. 

 
 

 

  

 



7.2 Parallel-Axis Theorem for an Area 

The parallel-axis theorem can be used to find the moment of inertia of an area about any axis that is 

parallel to an axis passing through the centroid and about which the moment of inertia is known. To 

develop this theorem, we will consider finding the moment of inertia of the shaded area shown in 

Fig. 7–3 about the x axis. To start, we choose a differential element dA located at an arbitrary 

distance y’ from the centroidal x’ axis. If the distance between the parallel x and x’ axis is dy, then 

the moment of inertia of dA about the x axis is dIx = (y’ + dy)2 dA. For the entire area, 

 

 

 
 



7.3 Radius of Gyration of an Area 

 

The radius of gyration of an area about an axis has units of length and is a quantity that is often used 

for the design of columns in structural mechanics. Provided the areas and moments of inertia are 

known, the radii of gyration are determined from the formulas 

 

 
 

The form of these equations is easily remembered since it is similar to that for finding the moment of 

inertia for a differential area about an axis. For example, Ix = kx 
2A; whereas for a differential area, 

dIx = y2 dA. 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 



7.3 Procedure of Analysis 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 



 
 



 
 



7-4 Moments of Inertia for Composite Areas 
 
A composite area consists of a series of connected “simpler” parts or shapes, such as rectangles, 

triangles, and circles. Provided the moment of inertia of each of these parts is known or can be 

determined about a common axis, then the moment of inertia for the composite area about this axis 

equals the algebraic sum of the moments of inertia of all its parts. 
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