

Optimization

Fourth Class 2020 - 2021

By

Dr. Jawad Mahmoud Jassim Dept. of Math.

Education College for Pure Sciences

University of Basrah

Iraq

Lecture 5

Example (3):

Minimize $f(x, y, z) = x^2 + y^2 + z^2 + 40x + 20y - 3000$

Subject to

$$g_1(x, y, z) \equiv (x - 50) \ge 0$$

$$g_2(x, y, z) \equiv (x + y - 100) \ge 0$$

$$g_3(x, y, z) \equiv (x + y + z - 150) \ge 0$$

Solution:

The Kuhn – Tucker conditions can be stated as

$$\frac{\partial f}{\partial x_i} + \lambda_1 \frac{\partial g_1}{\partial x_i} + \lambda_2 \frac{\partial g_2}{\partial x_i} + \lambda_3 \frac{\partial g_3}{\partial x_i} = 0, i = 1, 2, 3.$$

Then we have the following equations

Also, $\lambda_i g_i = 0$, j = 1, 2, 3. Then we have the following equations $\lambda_1(x-50)=0 \qquad (43)$ $\lambda_2(x+y-100)=0 \qquad (44)$ Also, $g_i \geq 0$, j = 1, 2, 3. Then we have the following inequalities

 $(x + y + z - 150) \ge 0 \dots (48)$

Also,

$$\lambda_j \leq 0$$
 , $j=1,2,3$.

Then we have the following inequalities

Now from (43), we have two cases either $\lambda_1 = 0$ or $x - 50 = 0 \rightarrow x = 50$. Case 1: $\lambda_1 = 0$.

 \therefore The Equations (40), (41) and (42) yields

Now, we use (52), (53), (54), (44) and (45), we have

Therefore four possible solutions of Equations (55) and (56), they are

A:
$$\lambda_2 = 0$$
 and $-180 - \lambda_2 - \frac{3}{2}\lambda_3 = 0$.

B:
$$\lambda_3 = 0$$
 and $-130 - \lambda_2 - \lambda_3 = 0$.

C:
$$\lambda_2 = 0$$
 and $\lambda_3 = 0$.

$$D: -180 - \lambda_2 - \frac{3}{2}\lambda_3 = 0 \ and -130 - \lambda_2 - \lambda_3 = 0.$$

Now, from case A, we have

$$\lambda_2 = 0$$
 , $\lambda_3 = -120$.

 \therefore From Equations (52), (53) and (54), we have

$$x = 40, y = 50, z = 60.$$

This solution is not satisfy the constraints (46) and (47).

Now take case B, we have

$$\lambda_3 = 0$$
 and $\lambda_2 = -130$.

:.From Equations (52), (53) and (54), we have

$$x = 45, y = 55, z = 0.$$

This solution is not satisfy the constraints (46) and (47).

Now take case C, we have

$$\lambda_2 = 0$$
 , $\lambda_3 = 0$.

:. From Equations (52), (53) and (54), we have

$$x = -20, y = -10, z = 0.$$

This solution is not satisfy the constraints (46) and (47).

Now take case D, we have

$$\lambda_2 = -30$$
 , $\lambda_3 = -100$.

:. From Equations (52), (53) and (54), we have

$$x = 45$$
, $y = 55$, $z = 50$.

This solution is not satisfy the constraint (46).

Case 2: x = 50.

.: The Equations (40), (41) and (42) yields

From Equations (47), (48), (57), (58) and (59) yields

Again there are four possible solutions for (60) and (61), they are:

$$A: -20-2y+2z=0$$
, $x+y+z-150=0$.

$$B: -20-2y+2z=0$$
, $-2z=0$.

C:
$$x + y - 100 = 0$$
, $-2z = 0$.

$$D: x + y - 100 = 0, x + y + z - 150 = 0.$$

Now, take case A, we have:

$$x = 50, y = 45, z = 55$$
.

This solution is not satisfy the constraint (47).

Now, take case B, we have:

$$x = 50, y = -10, z = 0.$$

This solution is not satisfy the constraints (47) and (48).

Now, take case C, we have:

$$x = 50, y = 50, z = 0.$$

This solution is not satisfy the constraint (48).

Now, take case D, we have:

$$x = 50, y = 50, z = 50.$$

This solution can be seen to satisfy all the constraints.

The values of λ_1 , λ_2 and λ_3 corresponding to this solution are

$$\lambda_1 = -20, \lambda_2 = -20 \ and \ \lambda_3 = -100.$$

Therefore the optimum solution is $x^* = 50$, $y^* = 50$ and $z^* = 50$.

<u>H.W.</u>

Maximize
$$f(x,y) = 8x + 4y + xy - x^2 - y^2$$
 subject to $g_1(x,y) \equiv 2x + 3y \le 24$ $g_2(x,y) \equiv -5x + 12y \le 24$ $g_3(x,y) \equiv y \le 5$

By applying the Kuhn – Tucker conditions.

