

Optimization Fourth Class 2020 - 2021 By

Dr. Jawad Mahmoud Jassim Dept. of Math. Education College for Pure Sciences University of Basrah Iraq

Lecture 4

Where the values of the slack variables are yet unknowns. The problem is now in a form suitable for the application of the methods discussed in the preceding section. Therefore our problem becomes

This problem can be conveniently solved by the method of Lagrange multipliers.

<u>Note (5):</u>

Equation (27) ensure that the constraints $g_j(X) \le 0$, j = 1, 2, ..., m are satisfied, while Equation (28) imply that either $\lambda_j = 0$ or $y_j = 0$. *If* $\lambda_j = 0$, it means that the constraint is **inactive** and hence it can be ignored. If $y_j = 0$, it means that the constraint is active ($g_j = 0$) at the optimum point. Consider the division of the constraints into two subsets J_1 and J_2 where $J_1 + J_2$ represent the total set of constraints.

Let the set J_1 indicate the indices of those constraints which are active at the optimum point and J_2 include the indices of all inactive constraints. Thus for $i \in J_2$ and j = 0 (constraints are active) and for $i \in J_2$ and j = 0.

Thus for $j \in J_1$, $y_j = 0$ (constraints are active) and for $j \in J_2$, $\lambda_j = 0$ (constraints are inactive) and Equation (26) can be simplified as

<u>Note (6):</u>

Equations (29), (30) and (31) represent n + p + (m - p) = n + mequations in the n + m unknowns x_i , (i = 1, 2, ..., n), λ_j $(j \in J_1)$ and y_j $(j \in J_2)$ where p denotes the number of active constraints.

Assuming that the first p constraints are active. Equation (29) can be expressed as

<u>Note (7):</u>

Equation (33), means that the negative of the gradient of the objective function can be expressed as a linear combination of the gradients of the active constraints at the optimum point.

Kuhn Tucker Conditions

The conditions to be satisfied at a constrained minimizer point X^* of the problem stated in Equations (20) and (21) can be expressed as:

$$\frac{\partial f}{\partial x_i} + \sum_{j \in J_1} \lambda_j \frac{\partial g_j}{\partial x_i} = 0, i = 1, 2, ..., n \dots$$
And
$$(34)$$

<u>Note (8):</u>

If the set of active constraints is not known, the Kuhn – Tucker conditions can be stated as follows:

$$\frac{\partial L}{\partial x_{i}} = \frac{\partial f}{\partial x_{i}} + \sum_{j=1}^{m} \lambda_{j} \frac{\partial g_{j}}{\partial x_{i}} = 0, i = 1, 2, ..., n \quad \quad (36)$$

$$\lambda_{j} g_{j} = 0, j = 1, 2, ..., m \quad \quad (37)$$

$$g_{j} \leq 0, j = 1, 2, ..., m \quad \quad (38)$$
And
$$\lambda_{j} \geq 0, j = 1, 2, ..., m \quad \quad (39)$$

<u>Note (9):</u>

If the problem is one of maximization or if the constraints are of the type $g_j \ge 0$, then λ_j have to be *non positive* in Equations (36) – (39).

