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Lecture 4



3. Multivariate Optimization with Inequality Constraints
This section iIs concerned with the solution of the following problem:

MINIMIZE F(X) cre ee e it e e et e e et e e ee e e een e vee een e vee eee e (20)
Subject to
gi(X)<0,j=1,2,. . (21)

The inequality constralnts can be transformed to equality constralnts by
adding nonnegative slack variables y] as "

giX)+y7=0,j=12,..,m

The problem is now in a form suitable for the application of the methods
discussed in the preceding section.
Therefore our problem becomes



Minimize f(X) ..

Subject to
GiXY)=g;X)+y;=0,j=1,2,.., M. ... il..
vy
Where Y = )’z is the vector of the slack variables. —
Yn.
This problem can be conveniently solved by the method of Lagrange
multipliers.
For this, we construct the Lagrange function L as
A
Where 2 = |42

is the vector of Lagrange multipliers.

A



The necessary conditions are
aL ag; B .
ax,+21 1 ]axl(X)_O;l—l,Z,...,n

ax,
=G(X,Y)=g;X)+y;=0,j=12,...m

oL
d A
oL

oy, ~ 24¥j=0,j=12..m

Note (5):

Equation (27) ensure that the constraints g;(X) <0, j=1,2,..,mare
satisfied, while Equation (28) imply that either 4; = 0 or y; = 0.

I'f 2; = 0, it means that the constraint is inactive and hence It can be
ignored. If y; = 0, It means that the constraint is active (g; = 0) at the

optimum point.




Consider the division of the constraints into two subsets J; and J, where
J1 + J, represent the total set of constraints.

Let the set J; indicate the indices of those constraints which are active at
the optimum point and J, include the indices of all inactive constraints.
Thus for j € J;,y; = 0 (constraints are active) and for j € J, ,4; = 0
(constraints are inactive) and Equation (26) can be simplified as

af 09; _
ax,+ Djej, A lax, =0,i=1,2,.

Similarly Equation (27) can be written as
g]-(X) =0 fOr JEJ{ oo oen et e et et e et e et e

And
GiX) Y2 =0 fOT J €] v eve o eet st et et vt e o




Note (6):

Equations (29), (30) and (31) representn+p+ (m—p) =n+m
equations in the n + m unknowns x; ,(i = 1,2, ...,n),4; (j € J1) and
y;j (J € J2) where p denotes the number of active constraints.

Assuming that the first p constraints are active. Equation (29) can be
expressed as <3
af — 2 91 29> a9,

S ax; Y ox;
Equation (32) can be written as

—Vf=M4Vg1+A,Vgy + -+ A,Vgy o KT

Where Vf and Vg; are the gradients of the objectlve functlon and ]th
constraint given, respectively, by:




- of - ag)
6x1 6x1
Vf=|:]| and Vg; =] : [.
9f 9g;
| dxp, |9,
Note (7):

Equation (33), means that the negative of the gradient of the objective
function can be expressed as a linear combination of the gradients of the

active constraints at the optimum point.



Kuhn Tucker Conditions
The conditions to be satisfied at a constrained minimizer point
X* of the problem stated in Equations (20) and (21) can be

expressed as: * 35

af agi
axl T Z] €J1 ] )

And
/1 S>0,J€J1 oo i e T
These are called Kuhn — Tucker condltlons and are the
necessary conditions to be satisfied at a local minimizer of f(X).

= 0,1 =

Xi




Note (8):
If the set of active constraints i1s not known, the Kuhn — Tucker
conditions can be stated as follows:

aL ag] .
= =0,i=1,2,..,n
dx; ax, +Z] 1 ] dx; ’ SR

A]g] =0,j=1,2,...m
g] < O, j= 1,2,...,m
And

A] = O, j= 1,2,...,m




Note (9):
If the problem Is one of maximization or If the constraints are

of the type g; = 0, then 4; have to be non positive In
Equations (36) — (39).




