

Optimization Fourth Class 2020 - 2021 By

Dr. Jawad Mahmoud Jassim Dept. of Math. Education College for Pure Sciences University of Basrah Iraq

Constrained Optimization

Lecture 2

Theorem (1):

A necessary condition for a function f(X) subject to the constraints $g_j(X) = 0$, j = 1, 2, ..., m to have a local minimizer at a point X^* is that the first partial derivatives of the Lagrange function defined by $L(x_1, x_2, ..., x_n, \lambda_1, \lambda_2, ..., \lambda_m)$ with respect to each of its arguments must be zero.

<u>H.W.</u>

Minimize f(x, y, z) = -xyz subject to $g_1(x, y, z) \equiv x^2 + y^2 = 1$, $g_2(x, y, z) \equiv x + z = 1$.

Theorem (2):

A sufficient condition for f(X) subject to the constraints $g_j(X) = 0$, j = 1, 2, ..., m to have a local minimizer at a point X^* is that the matrix, Q, defined by

$$Q = \frac{\partial^2 L}{\partial x_i \partial x_l} \quad , i = 1, 2, \dots, n ; l = 1, 2, \dots, n \quad (10)$$

evaluated at $X = X^*$ must be positive definite for all values for which the constraints are satisfied.

<u>Note (1):</u>

If *Q* which is defined in (10) negative definite, then X^* will be a local constrained maximizer of f(X).

<u>Note (2):</u>

It has been shown by Hancock that a necessary condition for *the matrix Q*, defined by (10) to be positive definite is that each root of the polynomial z_i defined by the following equation be positive .

Where

And

<u>Note: 3</u>

If each root of the polynomial z_i defined by the equation (11) negative then the matrix Q in Theorem (2) be negative definite. In this case the point X^* will be a local constrained maximizer of f(X).

<u>Note (4):</u>

Equation (11), on expansion, leads to (n - m)thorder polynomial in *z*.

If the some of the roots of this polynomial are positive while the others are negative, the point X^* is not an extreme point.

