

Optimization Fourth Class 2020 - 2021

By

Dr. Jawad Mahmoud Jassim Dept. of Math. Education College for Pure Sciences University of Basrah Iraq

Lecture 2

Theorem (2):

If $\{H_k\}$ is generated from Algorithm (2) then H_k is symmetric positive definite for all $k \ge 0$.

Proof:

We use the mathematical induction. We know that H_0 is symmetric positive definite by hypothesis. Suppose that H_k is symmetric positive definite for some k > 0. Then there exists a symmetric positive definite matrix M_k such that $H_k = M_k^2$.

Let $v \in \mathbb{R}^n$ be a nonzero vector and let $p = M_k v$ and $q = M_k y_k$. Then by the formula (4) H_{k+1} is symmetric since H_k , and

$$\boldsymbol{v}^T \boldsymbol{H}_{k+1} \boldsymbol{v} = \boldsymbol{v}^T \boldsymbol{H}_k \boldsymbol{v} + \frac{\boldsymbol{v}^T \boldsymbol{s}_k \boldsymbol{s}_k^T \boldsymbol{v}}{\boldsymbol{s}_k^T \boldsymbol{y}_k} - \frac{\boldsymbol{v}^T (\boldsymbol{H}_k \boldsymbol{y}_k) (\boldsymbol{H}_k \boldsymbol{y}_k)^T \boldsymbol{v}}{\boldsymbol{y}_k^T \boldsymbol{H}_k \boldsymbol{y}_k} \quad .$$

We want to prove that $v^T H_{k+1} v > 0$.

Now, we have:

$$v^{T}H_{k}y_{k} = v^{T}M_{k}M_{k}y_{k} = p^{T}q.$$

$$v^{T}H_{k}v = v^{T}M_{k}M_{k}v = p^{T}p.$$

$$y_{k}^{T}H_{k}y_{k} = y_{k}^{T}M_{k}M_{k}y_{k} = q^{T}q.$$

Therefore

$$v^{T}H_{k+1}v = v^{T}H_{k}v + \frac{v^{T}s_{k}s_{k}^{T}v}{s_{k}^{T}y_{k}} - \frac{v^{T}(H_{k}y_{k})(H_{k}y_{k})^{T}v}{y_{k}^{T}H_{k}y_{k}}$$
$$= p^{T}p + \frac{(v^{T}s_{k})^{2}}{s_{k}^{T}y_{k}} - \frac{(p^{T}q)^{2}}{q^{T}q}$$
$$= p^{T}p - \frac{(p^{T}q)^{2}}{q^{T}q} + \frac{(v^{T}s_{k})^{2}}{s_{k}^{T}y_{k}}$$
$$= \frac{(p^{T}p)(q^{T}q) - (p^{T}q)^{2}}{q^{T}q} + \frac{(v^{T}s_{k})^{2}}{s_{k}^{T}y_{k}}$$

...By Schwarz inequality and the definitions of *p* and *q*, we have

 $(p^T p)(q^T q) - (p^T q)^2 > 0,$ unless $v = \lambda y_k$ for some $\lambda \neq 0$, when $v^T s_k = \lambda y_k^T s_k$. But

 $s_k^T y_k = s_k^T g_{k+1} - s_k^T g_k = -s_k^T g_k ((because s_k perpendicular to g_{k+1})).$ Since

$$s_k = \alpha_k p_k = -\alpha_k H_k g_k$$
.
Therefore

$$s_k^T y_k = -s_k^T g_k = \alpha_k g_k^T H_k g_k.$$

Since H_k is positive definite, therefore $g_k^T H_k g_k > 0$. Also, since H_k is positive definite, therefore $-H_k g_k$ is downhill direction for f at X_k so $\alpha_k > 0$.

Therefore

$$s_k^T y_k > 0$$
, where $v^T s_k \neq 0$ if $v = \lambda y_k$.
Therefore $v^T H_{k+1} v > 0$.

 $:H_{k+1}$ is positive definite matrix and hence by induction H_k is symmetric positive definite matrix for all $k \ge 0$.

Lemma (1):

If M is an $n \times n$ matrix with n linearly independent eigenvectors u_i , $(i = 1, 2, \dots, n)$ each corresponding to eigenvalue unity. Then *M* is the $n \times n$ identity matrix *I*.

Proof:

Since u_i is eigenvectors for the matrix M.

$$\therefore Mu_i = u_i$$
 , $i = 1$, 2 , \cdots , n .

Since u_i , $i = 1, 2, \dots, n$ are linearly independent.

:. For $v \in \mathbb{R}^n$, then there exist real numbers c_i , $i = 1, 2, \dots, n$ such that $v = \sum_{i=1}^{n} c_i u_i$. $\therefore Mv = \sum_{i=1}^{n} c_i Mu_i = \sum_{i=1}^{n} c_i u_i = v.$ دکتو ر Therefore M = I.

