

Optimization Fourth Class 2020 - 2021 By

Dr. Jawad Mahmoud Jassim Dept. of Math. Education College for Pure Sciences University of Basrah Iraq

Lecture 1

1: Introduction:

Let $f: \mathbb{R}^n \to \mathbb{R}$ have continuous second partial derivatives in a convex set $D \subset \mathbb{R}^n$ and let the Hessian matrix G(X) be positive definite for all $X \in D$. Also let X^* be a critical point of f in D. Then the general quasi – Newton method for minimizing *f* which is given in the following algorithm.

Algorithm (1):

It is assumed that an estimate X_0 of a minimizer X^* of f and a matrix H_0 are given.

- 1: Set k = 0.
- 2: Compute $f(X_k)$ and $g_k = g(X_k)$, where g_k is the gradient vector of f at X_k .

لدكته ر

- **3:** Compute the search direction $p_k as: p_k = -H_k g_k$.
- 4: Compute α_k such that $f(X_k + \alpha_k p_k) = \min_{\alpha} f(X_k + \alpha p_k)$.

5: Compute
$$X_{k+1}$$
 as: $X_{k+1} = X_k + \alpha_k p_k$.

- 6: Compute $g_{k+1} = g(X_{k+1})$, $s_k = X_{k+1} X_k$ and $Y_k = g_{k+1} g_k$.
- 7: Compute H_{k+1} such that H_{k+1} = H_k + C_k, where C_k is such that H_{k+1} is positive definite and satisfy the quasi Newton equation which is defined by H_{k+1}Y_k = s_k, k ≥ 0.
 8: Set k = k + 1 and go to step 3.

<u>Note (1):</u>

In Algorithm (1), C_k is not defined precisely by the requirements listed in step 7. Therefore Algorithm (1) contains a class of methods rather than a single quasi – Newton method. Many updating formula of type $H_{k+1} = H_k + C_k$ have been proposed.

Theorem (1):

The search direction $p_k = -H_k g_k$ is downhill direction if H_k is positive definite matrix. <u>Proof: (H.W.)</u>

Some of the most first quasi – Newton methods will be described in the following sections.

2: Davidon – Fletcher – Powell Method (DFP)

It is one of the best methods for unconstrained minimization in which the gradient vector of the objective function is required. The DFP method is interesting also because it is at once a conjugate direction method and a quasi- Newton method, as will be established in this section.

As stated in section 1, H_{k+1} is not uniquely defined by the requirement that it satisfy the quasi – Newton equation.

Indeed it is easily shown that a class of updating formula for H_k every member of which satisfies the quasi – Newton equation is defined by

$$H_{k+1} = H_k + s_k u_k^T - H_k y_k v_k^T \qquad \dots \qquad (1)$$

Where u_k and v_k are any nonzero vectors such that
 $u_k^T y_k = 1 \quad and \quad v_k^T y_k = 1 \qquad (2)$
 $\therefore \quad H_{k+1} y_k = H_k y_k + s_k u_k^T y_k - H_k y_k v_k^T y_k$
 $= H_k y_k + s_k - H_k y_k = s_k$.
 \therefore The formula (1) satisfies the quasi – Newton equation.
Let

 $u_k = \frac{s_k}{s_k^T y_k}$ and $v_k = \frac{H_k y_k}{y_k^T H_k y_k}$(3) $\therefore u_k$ and v_k defined by (3) satisfy (2). Therefore the matrix H_{k+1} given by updating formula ((Equation (1)))

Now, we give the DFP Algorithm. <u>Algorithm (2):</u>

It is assumed that an estimate X_0 of a minimizer X^* of $f: \mathbb{R}^n \to \mathbb{R}$ and a symmetric positive definite matrix H_0 are known, where $H_0 = I$ is an identity matrix.

1: Set k = 0.

2: Compute g_k from $g_k = g(X_k)$. 3: Compute p_k from $p_k = -H_k g_k$. 4: Compute α_k , X_{k+1} from $f(X_k + \alpha_k p_k) = \min_{\alpha} f(X_k + \alpha p_k)$ and $X_{k+1} = X_k + \alpha_k p_k$. 5: Compute g_{k+1} from $g_{k+1} = g(X_{k+1})$. 6: Compute s_k , y_k from $s_k = \alpha_k p_k$ and $y_k = g_{k+1} - g_k$. 7: If convergence is considered to have been obtained, then go to step 11.

8: Compute
$$z_k$$
 from $z_k = H_k y_k$.

9: Compute
$$H_{k+1}$$
 from $H_{k+1} = H_k + \frac{s_k s_k^T}{s_k^T y_k} - \frac{z_k z_k^T}{y_k^T z_k}$.
10: Set $k = k + 1$ and go to step 3.
11: Set $X^* = X_{k+1}$.

12: Stop.

