

Optimization Fourth Class 2020 - 2021 By

Dr. Jawad Mahmoud Jassim Dept. of Math. Education College for Pure Sciences University of Basrah Iraq

Chapter Four

Conjugate Direction Methods

Lecture 2

Conjugate Direction Method:

Let us apply the general descent algorithm to the objective function

$$f: \mathbb{R}^n \to \mathbb{R} \ defined \ by: \ f(X) = \frac{1}{2}X^TAX + b^TX + c,$$

Where *A* is an $n \times n$ symmetric positive definite matrix, *b* is an $n \times 1$ vector and *c* is a real number.

Now *f* has a gradient vector *g* given by:

g(X) = AX + b.

If f has the strict global minimizer X^* in \mathbb{R}^n , then $g(X^*) = 0$. Suppose the descent directions p_k , $k = 0, 1, 2, \dots, n-1$, used in the general descent algorithm are A - conjugate and the α_k are determined so that

 $f(X_k + \alpha_k p_k) = \min_{\alpha} f(X_k + \alpha p_k)$ is satisfied. We then have the general conjugate direction algorithm. It is assumed that an estimate X_0 of X^* is given.

1: Compute g_0 from $g_0 = g(X_0)$, where g is the gradient vector.

- 2: Compute p_0 such that $g_0^T p_0 < 0$.
- 3: Set k = 0.
- 4: Compute α_k and X_{k+1} such that

 $f(X_k + \alpha_k p_k) = \min_{\alpha} f(X_k + \alpha p_k) \text{ and } X_{k+1} = X_k + \alpha_k p_k.$

5: Compute p_{k+1} such that $p_{k+1}^T A p_j = 0$, $j = 0, 1, 2, \cdots, k$ 6: Set k = k + 1 and go to step 4. **Example:**

Let
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 be defined by $f(X) = X^T A X - b^T X$,
where $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$, $b = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$, $X_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $p_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $p_1 = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$.
Verify that the iteration X_2 generated from general conjugate direction
method is the minimizer of f .

Solution:

We can write f(X) as follows:

$$f(X) = \begin{bmatrix} x_1, x_2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - \begin{bmatrix} 3, 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
$$= \begin{bmatrix} 2x_1 + x_2, x_1 + 2x_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - 3x_1 - 3x_2$$
$$= 2x_1^2 + x_1x_2 + x_1x_2 + 2x_2^2 - 3x_1 - 3x_2$$
$$= 2x_1^2 + 2x_1x_2 + 2x_2^2 - 3x_1 - 3x_2$$

Now, we compute the gradient vector g(X) as follows:

$$g(X) = \begin{bmatrix} \frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2} \end{bmatrix}^T = \begin{bmatrix} 4x_1 + 2x_2 - 3, \ 2x_1 + 4x_2 - 3 \end{bmatrix}^T.$$

$$\therefore g_0 = g(X_0) = \begin{bmatrix} -3, -3 \end{bmatrix}^T.$$

Now, we compute α and X_1 as follows:

 $X_1 = X_0 + \alpha p_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \alpha \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \alpha \\ 0 \end{bmatrix}.$ $f(X_1) = 2\alpha^2 - 3\alpha$ Set $\frac{df}{d\alpha} = \mathbf{0} \rightarrow 4\alpha - \mathbf{3} = \mathbf{0} \rightarrow \alpha = \frac{3}{4}$. Since $\frac{d^2 f}{d\alpha^2} = 4 > 0 \rightarrow \alpha = \frac{3}{4}$ is a minimizer of $f(X_1)$. $\therefore X_1 = \begin{bmatrix} \frac{3}{4} \\ 0 \end{bmatrix}.$

$$g(X_1) = [3 + 0 - 3, \frac{3}{2} + 0 - 3]^T = [0, -\frac{3}{2}]^T.$$

In the same way find X_2 :

$$X_2 = X_1 + \alpha p_1 = \begin{bmatrix} \frac{3}{4} \\ 0 \end{bmatrix} + \alpha \begin{bmatrix} 1 \\ -2 \end{bmatrix} = \begin{bmatrix} \frac{3}{4} + \alpha \\ -2\alpha \end{bmatrix}.$$

$$\therefore f(X_2) = 2(\frac{3}{4} + \alpha)^2 - 4(\frac{3}{4} + \alpha)\alpha + 8\alpha^2 - 3(\frac{3}{4} + \alpha) + 6\alpha = 2(\frac{9}{16} + \frac{3}{2}\alpha + \alpha^2) - 3\alpha - 4\alpha^2 + 8\alpha^2 - \frac{9}{4} - 3\alpha + 6\alpha = \frac{9}{8} + 3\alpha + 2\alpha^2 - 3\alpha - 4\alpha^2 + 8\alpha^2 - \frac{9}{4} - 3\alpha + 6\alpha = 6\alpha^2 + 3\alpha - \frac{9}{8}.$$

Set
$$\frac{df}{d\alpha} = \mathbf{0} \to \mathbf{12}\alpha + \mathbf{3} = \mathbf{0} \to \alpha = -\frac{1}{4}$$
.
Since $\frac{d^2f}{d\alpha^2} = \mathbf{12} > \mathbf{0} \to \alpha = -\frac{1}{4}$ is a minimizer of $f(X_2)$.
 $\therefore X_2 = \begin{bmatrix} \frac{3}{4} + \alpha \\ -2\alpha \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$.

 $\therefore \boldsymbol{g}(\boldsymbol{X}_2) = [\boldsymbol{0}, \boldsymbol{0}]^T.$

 $\therefore X_2$ is the minimizer of f.

Theorem (4):

If

- 1: $X_0 \in \mathbb{R}^n$ is arbitrary.
- 2: X* is the minimizer of f defined by f(X) = ¹/₂ X^TAX + b^TX + c, where A is an n × n symmetric positive definite matrix, b is an n × 1 vector and c is a real number.
 3: p_k, k = 0, 1, 2, ..., n 1 are A conjugate.
 4: X_k, k = 1, 2, ... are generated from general conjugate direction algorithm.
 Then X_m = X* for some m ≤ n.

<u>Note (3):</u>

Theorem (4) says that the minimizer X^* of f defined by $f(X) = \frac{1}{2}X^TAX + b^TX + c$, is attained exactly in at most n iterations by using general conjugate direction algorithm.

