Optimization Fourth Class 2020 - 2021 By Dr. Jawad Mahmoud Jassim **Dept. of Math. Education College for Pure Sciences** University of Basrah Iraq

Chapter Three

The Steepest Descent and Newton Methods

Lecture 4

Causes of Failure Newton's Method

Case 1:

The inverse of Hessian matrix exists and it is positive definite but the search direction s_k is so large that $f(X_{k+1}) > f(X_k)$.

Case 2:

The search direction s_k is orthogonal to the gradient vector g_k .

<u>Case 3:</u>

The inverse of Hessian matrix exists and it is not positive definite. <u>Case 4:</u>

The inverse of Hessian matrix does not exist.

We now consider some strategies for reducing the probability of failure du to above cases.

<u>Case 1:</u>

Take $X_{k+1} = X_k + \alpha_k s_k$, where the value of $\alpha_k \epsilon$ (0, 1) must be found such that $f(X_k + \alpha_k s_k) < f(X_k)$. A simple strategy for computing a value of α_k is given in the following algorithm. <u>Algorithm (4):</u>

Set α = 1.
 Compute f(X_k + αs_k).
 If f(X_k + αs_k) < f(X_k) go to step 5.
 Set α = ^α/₂ and go to step 2.
 Set α_k = α and f(X_{k+1}) = f(X_k).
 Stop.

Replace s_k with $-g_k$. Thus if g_k and s_k are orthogonal, we take a steepest descent direction.

Case 3:

Replace s_k with $-s_k$ and take a steepest descent direction.

<u>Case 4:</u>

Replace s_k with $-g_k$ and take a steepest descent direction.

Now, we give two examples show that a failure of Newton's method.

Example (1):

Let
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 is defined by

$$f(X) = x_1^4 + x_1x_2 + (x_2 + 1)^2 \text{ with } X_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

First, we find the gradient vector g(X) as:

$$g(X) = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} \end{bmatrix}^T = \begin{bmatrix} 4x_1^3 + x_2 & x_1 + 2(x_2 + 1) \end{bmatrix}^T.$$

We find the Hessian matrix $G(X)$ as:

$$G = G(X) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} \end{bmatrix} = \begin{bmatrix} 12x_1^2 & 1 \\ 1 & 2 \end{bmatrix} .$$

$$\therefore g_0 = g(X_0) = \begin{bmatrix} 0, 2 \end{bmatrix}^T.$$

$$G(X_0) = \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix} \rightarrow G^{-1}(X_0) = -\begin{bmatrix} 2 & -1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ 1 & 0 \end{bmatrix}$$

Now, notice that

$$g_0^T s_0 = \begin{bmatrix} 0 & 2 \end{bmatrix} \begin{bmatrix} -2 \\ 0 \end{bmatrix} = 0$$
.

Hence the Newton's method is failure (see case 2).

Example (2):
Let
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 is defined by
 $f(X) = x_1^4 - 3x_1x_2 + (x_2 + 2)^2$ with $X_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.
First, we find the gradient vector $g(X)$ as:
 $g(X) = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} \end{bmatrix}^T = \begin{bmatrix} 4x_1^3 - 3x_2 & -3x_1 + 2(x_2 + 2) \end{bmatrix}^T$.

We find the Hessian matrix G(X) as:

$$G = G(X) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} \end{bmatrix} = \begin{bmatrix} 12x_1^2 & -3 \\ -3 & 2 \end{bmatrix}.$$

$$\therefore g_0 = g(X_0) = \begin{bmatrix} 0, 4 \end{bmatrix}^T.$$

$$G(X_0) = \begin{bmatrix} 0 & -3 \\ -3 & 2 \end{bmatrix} \to G^{-1}(X_0) = -\frac{1}{9} \begin{bmatrix} 2 & 3 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 9 & 9 \\ -\frac{3}{9} & 0 \end{bmatrix}$$

We find the direction s_0 as:

$$s_{0} = -G^{-1}(X_{0})g_{0} = -\begin{bmatrix} -\frac{2}{9} & -\frac{3}{9} \\ -\frac{3}{9} & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 4 \end{bmatrix} = \begin{bmatrix} \frac{2}{9} & \frac{3}{9} \\ \frac{3}{9} & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 4 \end{bmatrix} = \begin{bmatrix} \frac{12}{9} \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{4}{3} \\ \frac{3}{0} \end{bmatrix}.$$

$$\therefore X_{1} = X_{0} + s_{0} = \begin{bmatrix} \frac{4}{3} \\ \frac{3}{0} \end{bmatrix}.$$

$$\therefore f(X_{1}) = (\frac{4}{3})^{4} + 4 = \frac{256}{81} + 4 = \frac{590}{81} \approx 7.2840.$$

$$f(X_{0}) = 4.$$

$$\therefore f(X_{1}) > f(X_{0}).$$

Hence the Newton's method is failure (see case 1).