Optimization Fourth Class 2020 - 2021 By Dr. Jawad Mahmoud Jassim Dept. of Math. **Education College for Pure Sciences** University of Basrah

Chapter Three

The Steepest Descent and Newton Methods

Lecture 3

Theorem (4): (Convergence Theorem of Newton's Method)

- 1: Let f is twice continuously differentiable in \mathbb{R}^n .
- 2: Let X_k be close enough to the solution X^* of the minimization problem with $g(X^*) = 0$.
- 3: If the Hessian $G(X^*)$ is positive definite matrix.
- 4: If G(X) satisfies Lipschitz condition

$$|G_{ij}(X) - G_{ij}(Y)| \le \beta ||X - Y||$$
, for some β , for all i, j where $G_{ij}(X)$ is the (i, j) – element of $G(X)$.

Then

- 1: For all k Newton's iteration $X_{k+1} = X_k G_k^{-1} g_k$ is well defined.
- 2: The generated sequence $\{X_k\}$ converges to X^* with a quadratic rate.

Algorithm (3): (Newton's Method with Line Search)

Step 1: Given $X_0 \in \mathbb{R}^n$, $\varepsilon > 0$, k = 0.

Step 2: Compute g_k . If $||g_k|| \le \varepsilon$ stop.

Step 3: Solve $G_k s_k = -g_k$ for s_k .

Step 4: Find α_k such that $f(X_k + \alpha_k s_k) = \min_{\alpha \ge 0} f(X_k + \alpha s_k)$.

Step 5: Set $X_{k+1} = X_k + \alpha_k s_k$, k = k + 1, and go to step 2.

Theorem (5):

- 1: Let $f: \mathbb{R}^n \to \mathbb{R}$ be twice continuously differentiable on an open $convex\ set\ D \subset \mathbb{R}^n$.
- 2: Assume that for any $X_0 \in D$ there exists a constant m > 0 such that f(x) satisfies

 $u^T \nabla^2 f(X) u \ge m ||u||^2$, for all $u \in \mathbb{R}^n$, $X \in L(X_0)$, where

 $L(X_0) = \{X: f(X) \le f(X_0) \text{ is the corresponding level set.}$

Then the sequence $\{X_k\}$ generated by Algorithm (3) satisfies:

- 1: when $\{X_k\}$ is a finite sequence, $g_k = 0$ for some k.
- 2: when $\{X_k\}$ is an infinite sequence, $\{X_k\}$ converges to the unique minimizer X^* of f.

Example:

Use the Newton's Method with Line Search to find the minimizer of the objective function $f(X) = x_1 - x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$. Take $X_0 = [0, 0]^T$ and $\varepsilon = 0.0001$.

Solution:

First, we find the gradient vector g(X) as:

$$g(X) = \left[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}\right]^T = \left[1 + 4x_1 + 2x_2, -1 + 2x_1 + 2x_2\right]^T$$
.

Now, find the Hessian matrix G(X) as:

$$G = G(X) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} \end{bmatrix} = \begin{bmatrix} 4 & 2 \\ 2 & 2 \end{bmatrix}.$$

Now, compute $g_0 = g(X_0) = [1, -1]^T$.

Compute
$$G^{-1} = \frac{1}{4} \begin{bmatrix} 2 & -2 \\ -2 & 4 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & 1 \end{bmatrix}$$
.

Compute
$$s_0 = -G^{-1}g_0 = -\begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = 0$$

$$\begin{bmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} -1 \\ \frac{3}{2} \end{bmatrix}.$$

Compute
$$X_1 = X_0 + \alpha s_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \alpha \begin{bmatrix} -1 \\ \frac{3}{2} \end{bmatrix} = \begin{bmatrix} -\alpha \\ \frac{3}{2} \alpha \end{bmatrix}$$
.

Evaluate
$$f(X_1) = -\alpha - \frac{3}{2}\alpha + 2\alpha^2 - 3\alpha^2 + \frac{9}{4}\alpha^2 = -\frac{5}{2}\alpha + \frac{5}{4}\alpha^2$$
.

Set
$$\frac{df}{d\alpha} = \mathbf{0} \rightarrow -\frac{5}{2} + \frac{5}{2}\alpha = \mathbf{0} \rightarrow \alpha = \mathbf{1}$$
.

$$\therefore \frac{d^2f}{d\alpha^2} = \frac{5}{2} > 0 \rightarrow \alpha \text{ is a minimizer of } f(X_1).$$

$$\therefore X_1 = \begin{bmatrix} -\alpha \\ \frac{3}{2}\alpha \end{bmatrix} = \begin{bmatrix} -1 \\ \frac{3}{2} \end{bmatrix}.$$

Now, we compute
$$g_1 = g(X_1) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
.

Since
$$||g_1|| = 0 < \varepsilon$$
.

$$\therefore X_1 = \begin{bmatrix} -1 \\ \frac{3}{2} \end{bmatrix} \text{ is the minimizer of } f(X).$$

H.W.

Use the Newton's Method with Line Search to find the minimizer of the objective function $f(X) = x_1^2 + 2x_2^2$.

Take
$$X_0 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 and $\varepsilon = 0.0001$.