

Optimization Fourth Class 2020 - 2021 By

Dr. Jawad Mahmoud Jassim
Dept. of Math.
Education College for Pure Sciences
University of Basrah
Iroa

Chapter Two

Lecture 9

Flow chart for the cubic interpolation method with two points

Algorithm (5): (Cubic Interpolation Method with Two Points)

Step 0:

Given initial point a, initial step h and accuracy $\varepsilon > 0$.

Step 1: Set
$$\mu_1 = a$$
. Evaluate $\Phi_1 = \Phi(\mu_1)$ and $\Phi'_1 = \Phi'(\mu_1)$. Step 2: If $|\Phi'_1| < \varepsilon$, stop. Otherwise go to step 3.

Step 3:

If $\Phi'_1 > 0$, set h = -|h| and go to step 5. Otherwise go to step 4.

Step 4:

Set h = |h| and go to step 5.

Step 5:

Set $\mu_2 = \mu_1 + h$ and evaluate $\Phi_2 = \Phi(\mu_2)$ and $\Phi'_2 = \Phi'(\mu_2)$.

Step 6:

If $\Phi'_1\Phi'_2 \ge 0$, set h=2h, $\mu_1=\mu_2$, $\Phi_1=\Phi_2$, $\Phi'_1=\Phi'_2$ and go to step 5. Otherwise go to step 7.

Step 7:

If h > 0, set $a = \mu_1$, $b = \mu_2$ and go to step 9. Otherwise go to step 8.

Step 8:

Set
$$a=\mu_2$$
 , $\Phi=\Phi_1$, $b=\mu_1$, $\Phi_1=\Phi_2$, $\Phi_2=\Phi$.

Step 9: Compute

$$s = 3 \left[\frac{\phi_2 - \phi_1}{b - a} \right], z = s - {\Phi'}_1 - {\Phi'}_2,$$

$$w = \sqrt{z^2 - {\Phi'}_1 {\Phi'}_2}, z = 1 - \frac{{\Phi'}_2 + w + z}{{\Phi'}_2 - {\Phi'}_1 + 2w},$$

$$\mu_1 = \mu_1 + (b - a)z, \Phi_1 = \Phi(\mu_1), \Phi'_1 = \Phi'(\mu_1).$$

Step 10:

If
$$|\Phi'_1| < \varepsilon$$
, stop. Otherwise set $h = \frac{h}{10}$ and go to step 3.

Example:

Use cubic interpolation method to find the minimizer of the function $f(x) = \frac{x}{\ln x}$, x > 1.

Given initial point a = 2, length step h = 0.1 and the accuracy 0.03.

Solution:

First, we find the derivative of f(x).

$$f'(x) = \frac{\ln x - 1}{(\ln x)^2}.$$

- 1: Set $\mu_1 = \alpha = 2$.
- 2: Compute $\Phi_1 = f(\mu_1)$ and $\Phi'_1 = f'(\mu_1)$ as follows:

$$\Phi_1 = f(2) = 2.88539$$
.
 $\Phi'_1 = f'(2) = -0.63867$.
Since $|\Phi'_1| = 0.63867 > \epsilon = 0.03$ and $\Phi'_1 < 0$.
Set $h = |h| = 0.1$.

3: Compute μ_2 , Φ_2 and Φ'_2 as follows:

$$\mu_2 = \mu_1 + h = 2 + 0.1 = 2.1$$
.

$$\Phi_2 = f(2.1) = 2.83043$$
.

$$\Phi'_2 = f'(2.1) = -0.53712.$$

Since
$$\Phi'_1\Phi'_2 > 0$$
, set

$$h = 2h = 0.2$$
.

$$\mu_1 = \mu_2 = 2.1$$
, $\Phi_1 = \Phi_2 = 2.83043$,

 $\Phi'_1 = \Phi'_2 = -0.53712.$

4: Compute μ_2 , Φ_2 and Φ'_2 as follows:

$$\mu_2 = \mu_1 + h = 2.1 + 0.2 = 2.3$$
.

$$\Phi_2 = f(2.3) = 2.76141$$
.

$$\Phi'_2 = f'(2.3) = -0.24086.$$

Since $\Phi'_1\Phi'_2 > 0$, set

$$h = 2h = 0.4$$
.

$$\mu_1 = \mu_2 = 2.3, \Phi_1 = \Phi_2 = 2.76141,$$

 $\Phi'_1 = \Phi'_2 = -0.24086.$

5: Compute μ_2 , Φ_2 and Φ'_2 as follows:

$$\mu_2 = \mu_1 + h = 2.3 + 0.4 = 2.7$$
.

$$\Phi_2 = f(2.7) = 2.71834$$
.

$$\Phi'_2 = f'(2.7) = -0.00684.$$

Since
$$\Phi'_1\Phi'_2 > 0$$
, set

$$h = 2h = 0.8$$
.

$$\mu_1 = \mu_2 = 2.7, \Phi_1 = \Phi_2 = 2.71834,$$

 $\Phi'_1 = \Phi'_2 = -0.00684.$

6:Compute μ_2 , Φ_2 and Φ'_2 as follows:

$$\mu_2 = \mu_1 + h = 2.7 + 0.8 = 3.5.$$

$$\Phi_2 = f(3.5) = 2.79382$$
.

$$\Phi'_2 = f'(3.5) = 0.16106.$$

Since
$$\Phi'_1\Phi'_2 < 0$$
, and $h > 0$,

Set
$$a = \mu_1 = 2.7$$
 and $b = \mu_2 = 3.5$.

7: Compute *s* , *z* and *w* as follows:

$$s = 3 \left[\frac{\Phi_2 - \Phi_1}{b - a} \right] = 0.2832$$
.

$$z = s - \Phi'_1 - \Phi'_2 = 0.12898$$
.

$$w = \sqrt{z^2 - \Phi'_1 \Phi'_2} = 0.13318 \cdot ((w > 0)).$$

$$z = 1 - \frac{\Phi_{2} + w + z}{\Phi_{2} - \Phi_{1} + 2w} = 0.02681.$$

8: Compute μ_1 , Φ_1 and Φ'_1 as follows:

$$\mu_1 = \mu_1 + (b - a)z = 3.52681$$
.

$$\Phi_1 = f(3.52681) = 2.79818$$
.

$$\Phi'_1 = f'(3.52681) = 0.1639$$
.

Since
$$|\Phi'_1| = 0.1639 > \epsilon = 0.03$$
.

Set
$$h = \frac{h}{10} = \frac{0.8}{10} = 0.08$$
.

Since
$$\Phi'_1 > 0$$
, set $h = -|h| = -0.08$.

9:Compute μ_2 , Φ_2 and Φ'_2 as follows:

$$\mu_2 = \mu_1 + h = 3.52681 - 0.08 = 3.44681$$
.

$$\Phi_2 = f(3.44681) = 2.78542$$
.

$$\Phi'_2 = f'(3.44681) = 0.15535.$$

Since $\Phi'_1\Phi'_2 > 0$, set h = 2h = -0.16. $\mu_1 = \mu_2 = 3.44681$, $\Phi_1 = \Phi_2 = 2.78542$ $\Phi'_1 = \Phi'_2 = 0.15535$.

10: Compute μ_2 , Φ_2 and Φ'_2 as follows:

 $\mu_2 = \mu_1 + h = 3.44681 - 0.16 = 3.28681.$

 $\Phi_2 = f(3.28681) = 2.77553$.

 $\Phi'_2 = f'(3.28681) = 0.13413$.

Since $\Phi'_1\Phi'_2 > 0$, set h = 2h = -0.32

 $\mu_1 = \mu_2 = 3.28681$, $\Phi_1 = \Phi_2 = 2.77553$.

 $\Phi'_1 = \Phi'_2 = 0.13413.$

11: Compute μ_2 , Φ_2 and Φ'_2 as follows:

$$\mu_2 = \mu_1 + h = 3.28681 - 0.32 = 2.96681$$
.

$$\Phi_2 = f(2.96681) = 2.72813$$
.

$$\Phi'_2 = f'(2.96681) = 0.07392$$
.

Since
$$\Phi'_1\Phi'_2 > 0$$
, set $h = 2h = -0.64$,

$$\mu_1 = \mu_2 = 2.96681$$
, $\Phi_1 = \Phi_2 = 2.72813$.

$$\Phi'_1 = \Phi'_2 = 0.07392.$$

12: Compute μ_2 , Φ_2 and Φ'_2 as follows:

$$\mu_2 = \mu_1 + h = 2.96681 - 0.64 = 2.32681$$
.

$$\Phi_2 = f(2.32681) = 2.75526$$
.

$$\Phi'_2 = f'(2.32681) = -0.21804.$$

13: Since $\Phi'_1\Phi'_2 < 0$ and h < 0, set

$$a = \mu_2 = 2.32681$$

$$b = \mu_1 = 2.96681$$

$$\Phi = \Phi_1 = 2.72813$$

$$\Phi_1 = \Phi_2 = 2.75526$$

$$\Phi_2 = \Phi = 2.72813.$$

14: Compute s, z and w as follows:

$$s = 3 \left[\frac{\Phi_2 - \Phi_1}{h - a} \right] = -0.12717$$
.

$$z = s - \Phi'_1 - \Phi'_2 = 0.27129$$
.

$$w = \sqrt{z^2 - \Phi'_1 \Phi'_2} = 0.27425 \cdot ((w > 0)).$$

$$z = 1 - \frac{\Phi'_2 + w + z}{\Phi'_2 - \Phi'_1 + 2w} = -0.2766$$
.

15: Compute μ_1 , Φ_1 and Φ'_1 as follows:

$$\mu_1 = \mu_1 + (b - a)z = 2.78978.$$

$$\Phi_1 = f(2.78978) = 2.71918$$
.

$$\Phi'_1 = f'(2.78978) = 0.02467$$
.

Since
$$|\Phi'_1| = 0.02467 < \epsilon = 0.03$$
.

$$\mu_1 = 2.78978.$$

<u>H.W.</u>

Use cubic interpolation method to find the minimizer of the function $f(x) = x^5 - 5x^3 - 20x + 5$.

Take a = 0, h = 0.4 and the accuracy 0.2.

