

Optimization Fourth Class 2020 - 2021 By

Dr. Jawad Mahmoud Jassim
Dept. of Math.

Education College for Pure Sciences

University of Basrah

Iraq

Chapter Two

Line Search

Lecture 7

Algorithm (4): (Quadratic Interpolation with Three Points)

Step 1:

Given a tolerance $\varepsilon > 0$, initial point α_1 and step length h.

Take $\alpha_2 = \alpha_1 + h$. Evaluate $\Phi(\alpha_1) = \Phi_1$ and $\Phi(\alpha_2) = \Phi_2$.

Step 2:

If $\Phi_1 < \Phi_2$ take the third point α_3 as : $\alpha_3 = \alpha_1 - h$. Otherwise take

the third point α_3 as: $\alpha_3 = \alpha_1 + 2h$. Evaluate $\Phi(\alpha_3) = \Phi_3$.

Step 3:

Use Equation (56) to find $\bar{\alpha}$ and evaluate $\Phi(\bar{\alpha})$.

Step 4:

If the difference between the two lowest function values is less than or equal the given tolerance stop. Otherwise go to next step.

Step 5:

Discard the point with the highest function value and go to step 3.

Theorem (8):

1: Let $\Phi(\alpha)$ have continuous forth order derivatives.

2: Let α^* be such that $\Phi'(\alpha^*) = 0$ and $\Phi''(\alpha^*) \neq 0$.

Then the sequence $\{\alpha_k\}$ generated by Equation (56) converges to α^* with order 1.32 of converge rate.

Example:

Use quadratic interpolation with three points method to find the position of the *minimizer of* $f(x) = 2x^2 - e^x$. Given the *initial* point 1, length step 0.5 and tolerance 0.0001.

Solution:

Let $\alpha_1 = 1 \rightarrow \alpha_2 = \alpha_1 + h = 1 + 0.5 = 1.5$.

: $f(\alpha_1) = f(1) = -0.71828$ and $f(\alpha_2) = f(1.5) = 0.01831$.

Since $f(\alpha_1) < f(\alpha_2)$, we take the third point

$$\alpha_3 = \alpha_1 - h = 1 - 0.5 = 0.5.$$

 $\therefore f(\alpha_3) = f(0.5) = -1.14872.$

Now, we have $\alpha_1=1$, $\alpha_2=1.5$ and $\alpha_3=0.5$.

And $\Phi_1 = f(\alpha_1) = -0.71828$, $\Phi_2 = f(\alpha_2) = 0.01831$, $\Phi_2 = f(\alpha_2) = -1.14872$

$$\Phi_3 = f(\alpha_3) = -1.14872.$$

Now, we find the value of $\overline{\alpha}$ as follows:

$$\vec{\alpha} = \frac{\Phi_1(\alpha_2^2 - \alpha_3^2) + \Phi_2(\alpha_3^2 - \alpha_1^2) + \Phi_3(\alpha_1^2 - \alpha_2^2)}{2[\Phi_1(\alpha_2 - \alpha_3) + \Phi_2(\alpha_3 - \alpha_1) + \Phi_3(\alpha_1 - \alpha_2)]} = 0.37459.$$

$$\therefore f(\overline{\alpha}) = -1.17375.$$

Now, we put the function values in descent order:

$$\Phi_2 = f(\alpha_2) = f(1.5) = 0.01831$$

$$\Phi_1 = f(\alpha_1) = f(1) = -0.71828$$

$$\Phi_3 = f(\alpha_3) = f(0.5) = -1.14872$$

$$f(\overline{\alpha}) = f(0.37459) = -1.17375$$

Now, we find the difference between Φ_3 and $f(\overline{\alpha})$.

$$\therefore \Phi_3 - f(\overline{\alpha}) = -1.14872 + 1.17375 = 0.02503 > 0.0001$$

Then, we discard the highest function value $\Phi_2=f(\alpha_2)=0.01831$ and set $\alpha_1=1$, $\alpha_2=0.5$ and $\alpha_3=0.37459$ and

$$oldsymbol{\Phi}_1 = -0.71828$$
 , $oldsymbol{\Phi}_2$ and $oldsymbol{\Phi}_3 = -1.17375$.

Now, we find the value of $\overline{\alpha}$ as follows:

$$\vec{\alpha} = \frac{\Phi_1(\alpha_2^2 - \alpha_3^2) + \Phi_2(\alpha_3^2 - \alpha_1^2) + \Phi_3(\alpha_1^2 - \alpha_2^2)}{2[\Phi_1(\alpha_2 - \alpha_3) + \Phi_2(\alpha_3 - \alpha_1) + \Phi_3(\alpha_1 - \alpha_2)]} = 0.3615 \ and$$

$$f(\overline{\alpha}) = f(0.3615) = -1.17411.$$

Now, we put the function values in descent order:

$$\Phi_1 = f(\alpha_1) = f(1) = -0.71828$$
 $\Phi_2 = f(\alpha_2) = f(0.5) = -1.14872$
 $\Phi_3 = f(\alpha_3) = f(0.37459) = -1.17375$
 $f(\overline{\alpha}) = f(0.3615) = -1.17411$

Now, we find the difference between Φ_3 and $f(\overline{\alpha})$.

$$\therefore \Phi_3 - f(\overline{\alpha}) = -1.17375 + 1.17411 = 0.00036 > 0.0001.$$

: We discard the highest value $\Phi_1 = f(\alpha_1) = f(1)$.

Now, we set $\alpha_1 = 0.5$, $\alpha_2 = 0.37459$ and $\alpha_3 = 0.3615$.

And
$$\Phi_1 = f(\alpha_1) = f(0.5) = -1.14872$$
,
$$\Phi_2 = f(\alpha_2) = f(0.37459) = -1.17375$$
$$\Phi_3 = f(0.3615) = -1.17411$$
.

Now, we find the value of $\overline{\alpha}$ as follows:

$$\vec{\alpha} = \frac{\Phi_1(\alpha_2^2 - \alpha_3^2) + \Phi_2(\alpha_3^2 - \alpha_1^2) + \Phi_3(\alpha_1^2 - \alpha_2^2)}{2[\Phi_1(\alpha_2 - \alpha_3) + \Phi_2(\alpha_3 - \alpha_1) + \Phi_3(\alpha_1 - \alpha_2)]} = 0.35709.$$

$$\vec{\alpha} = \frac{f(0.35709) = -1.17413.$$

Now, we put the function values in descent order:

$$\Phi_1 = f(\alpha_1) = f(0.5) = -1.14872$$
 $\Phi_2 = f(\alpha_2) = f(0.37459) = -1.17375$
 $\Phi_3 = f(0.3615) = -1.17411$
 $f(\overline{\alpha}) = f(0.35709) = -1.17413$

Now, we find the difference between Φ_3 and $f(\overline{\alpha})$.

$$\therefore \Phi_3 - f(\overline{\alpha}) = -1.17411 + 1.17413 = 0.00002 < 0.0001.$$

∴The required minimizer is 0.35709.