
1

Lecture 1

Introduction to Computational

Intelligent (CI)

Computational Intelligent (CI)

Computational intelligence (CI) comprises practical

adaptation and self-organization concepts, algorithms and

implementations that enable or facilitate appropriate actions

(intelligent behavior) in complex and changing environments.

In other words, CI aims to study adaptive techniques that

facilitate intelligent behavior of the system in changing or

complex environments. These techniques include many

features that exhibit an ability to learn, generalization,

discovering, or adapt to new situations.

2

Computational Intelligent (CI)

 CI is defined as:

“The computational models and tools of intelligence

capable of inputting raw numerical sensory data directly,

processing them by exploiting the representational

parallelism and pipelining the problem, generating reliable

and timely responses”.

The paradigms of CI are designed to model the behavior of

biological intelligences. CI encompasses several of intelligent

models and algorithms, such as Fuzzy Systems (FSs),

Genetic Algorithm (GAs), Neural Networks (NNs) and

Swarm Intelligent.

Also, It is possible to merge among them to generate new

systems called Hybrid Systems.

Computational Intelligent (CI)

3

Hybrid Systems: (NNs, GAs, FSs, and Swarm Intelligent)

Computational Intelligent (CI)

Lecture 2

Fuzzy Logic (FL)

4

Fuzzy Logic (FL)

 Introduction

Intelligent systems are usually described by analogies

with biological systems by, for example, looking at how

human beings perform control tasks, recognize patterns,

or make decisions.

There exists a mismatch between humans and machines:

human’s reason in uncertain, imprecise, fuzzy ways while

machines and the computers that run them are based on

binary reasoning.

Fuzzy System (FS) is a way to make machines more

intelligent enabling them to reason in a fuzzy manner like

humans.

Fuzzy Logic (FL) proposed by Lotfy Zadeh in 1965,

emerged as a tool to deal with uncertain, imprecise, or

qualitative decision-making problems.

FL theory was initially only an extension to the standard

mathematical theory of set.

Fuzzy Logic (FL)

 Introduction

5

Fuzzy Logic (FL)

 Introduction

The idea was to introduce a degree of membership to a

set instead of the usual notion of member or not member.

Zadeh’s invention of fuzzy logic theory did not, in the

start, initials a huge theoretical research from

mathematicians, but was found very useful by engineers

who were designing controllers.

Fuzzy Logic (FL)

 Introduction

One of the first who created such a control system in 1974

was the engineer Mamdani who was constructing a

controller for a system engine.

Afterwards especially Japanese engineers constructed a

lot of different fuzzy logic controller and fuzzy logic products

with a tremendous success.

6

Fuzzy Logic (FL)

 Introduction

A fuzzy control system is a knowledge-based system,

implementing expertise of a human operator or process

engineer that can be easily expressed through a set of

linguistic fuzzy rules (IF-THEN rules).

FL evolved as a key technology for developing the

knowledge-based systems in the control engineering to

incorporate practical knowledge for designing controllers.

Fuzzy Logic (FL)

 Introduction

Gradually, FL progressed as a powerful technique for other

fields as well and its applications have rapidly expanded in

adaptive control systems and system identification.

FL has the advantages of easy implementation,

robustness, and ability to approximate to any nonlinear

mapping.

7

Fuzzy Logic (FL)

 Fuzzy Set Theory

• Classical Set Theory

 Sets are defined by a simple statement describing

whether an element having a certain property belongs to

a particular set.

 When a set A is contained in an universal space X, then

we can state explicitly whether each element x of space X

“is or is not” an element of A.

Fuzzy Logic (FL)

 Fuzzy Set Theory

• Classical Set Theory

 Set A is well described by a function called characteristic

function A. This function, defined on the universal space

X, assumes:

value 1 for those elements x belong to set A,

value 0 for those elements x do not belong to set A.

The notations used to express these mathematically are:

A: x [0,1]











A ofmember anot is 0

A ofmember a is 1

)(

x

x

xA …(1)

8

Fuzzy Logic (FL)

 Fuzzy Set Theory

• Classical Set Theory

 The set A can be represented for all elements 𝑥 ∈ 𝑋 by its

characteristic function 𝜇𝐴 𝑥 defined as:

 Thus, in classical set theory 𝜇𝐴 𝑥 has only two values 0

(‘false’) and 1 (‘true’). Such sets are called Crisp Sets.







 



otherwise 0

 if 1

)(

Xx

xA
…(2)

Fuzzy Logic (FL)

 Fuzzy Set Theory

• Fuzzy Set Theory

 As said before, in classical set theory, the membership of

elements in a set is evaluated in binary terms according to

a bivalent condition — an element either belongs or does

not belong to the set, as given by Eq.2.

 By contrast, fuzzy set theory permits the gradual

evaluating of the membership of elements in a set; this is

described with the aid of a membership valued in the real

unit interval [0, 1].

9

Fuzzy Logic (FL)

 Fuzzy Set Theory

• Fuzzy Set Theory

 Fuzzy sets allow an object to be a partial member of a

set. In Fig. 1, if X suggests a collection of objects denoted

by x, usually X is referred to as the “universe of

discourse”, and then a fuzzy set A in X is defined by a set

of ordered pairs:

where the function µA(x) is called membership function

of the object x in A.

}/),{(Xx(xµxA A  …(3)

Fuzzy Logic (FL)

 Fuzzy Set Theory

• Fuzzy Set Theory
membership

function

Fig.1 Membership function

from the pair (x, µA(x))

10

Fuzzy Logic (FL)

 Fuzzy Set Theory

• Fuzzy Set Theory

 FL analyzes information using fuzzy sets, each of which is

represented by a linguistic term such as "small'',

"medium'' or "large''. For example:

Fuzzy Logic (FL)

Membership Functions (MFs)

A Membership Function (MF) is the curve that defines how

each point in the universe of discourse is mapped to a

membership value in the range of [0…1]. The membership

function (µ) for a given input (xi) can be written as:

The membership function represents a “degree of belonging”
for each object to a fuzzy set, and provides a mapping of

objects to a continuous membership value in the interval

[0…1].

1)(0  ix …(4)

11

Fuzzy Logic (FL)

Membership Functions (MFs)

When a membership value is close to the value 1 (µA(x)⟶1),

it means that input x belongs to the set A with a high degree,

while small membership values (µA(x)⟶0) indicate that set A

does not suit input x very well.

There are different forms of membership functions that can be

used in FL, such as Triangular, Trapezoidal, Gaussian, Bell

etc. The choice of membership function type is based on the

designer experience and the problem under consideration.

Fuzzy Logic (FL)

Membership Functions (MFs)

1. Triangular MFs

A triangular MF is specified by three

parameters {a, b, c} as follows:































xb

bxc
cb

xb

cxa
ac

ax

ax

bcax

 0

 0

),,;( …(5)

where a and b correspond to the boundary of the triangular

function curve, and c is the center of the function curve.

12

Fuzzy Logic (FL)

Membership Functions (MFs)

2. Trapezoidal MFs

A trapezoidal MF is specified by

four parameters {a, b, c, d} as

follows:



































xd

dxc
cd

xd

cx

bxa
ab

ax

ax

dbcax

 0

b 1

 0

),,,;( …(6)

where a and d correspond to the boundary of the trapezoidal

function curve, and b, c are the centers of the function curve.

Fuzzy Logic (FL)

Membership Functions (MFs)

3. Gaussian MFs

A Gaussian MF is specified by two

parameters {a, b} as follows:

…(7)

where a is the center and b is spreading of the function curve.

1-

0-

b

a
2

2
1

),;(







 


 b

ax

ebax

13

Fuzzy Logic (FL)

Membership Functions (MFs)

4. Bell MFs

A Bell MF is specified by

three parameters {a, b, c}

as follows:

…(8)

where c determines the center of the MF; a is the half width;

and b (together with a) controls the slopes at the crossover

points.

b

a

cx
cbax

2

1

1
),,;(






Fuzzy Logic (FL)

Membership Functions (MFs)

4. Bell MFs

14

Fuzzy System (FS)

 Fuzzy Structure

The four typical components required to design a fuzzy system are:

Rule base

Inference engine

Crisp

output

Fuzzy

output

Crisp

input

Fuzzy

input

Fuzzification Inference System Defuzzification

Fuzzy System (FS)

 Fuzzy Structure

1. Fuzzification

The fuzzification module converts the crisp numerical

values into the degrees of membership (i.e., fuzzy values)

related to the corresponding fuzzy sets.

The fuzzy values are compatible with the fuzzy set

representation in the rule base.

The degree of membership returned by any membership

function represents a fuzzy value that is always in the range

[0…1].

15

Fuzzy System (FS)

Most variables in a fuzzy system have multiple membership

functions attached to them; subsequently fuzzification will result in

the mapping of a single crisp input value into several degrees of

membership. The fuzzification process is illustrated in the following

figure.

Chapter 3

Genetic Algorithms

(GAs)

16

Genetic Algorithms (GAs)

 Introduction

Genetic algorithm is the first population-based

optimization method.

They behave as a computational analog of adaptive

systems by representing a general-purpose search

algorithm that uses principles from natural population

genetic to evolve solutions of problems.

Each genetic structure of the population, which is called a

chromosome, represent an individual solution to the

mentioned problem.

Genetic Algorithms (GAs)

 Introduction

The chromosome fitting capabilities are evaluated by an

appropriate fitness function, determining their matching

power during the competition process.

At each generation step new members of the population

are created by applying genetic operator, such as

Crossover and Mutation.

Genetic algorithms perform parallel random search on a

set of solutions (population) to produce the better of them.

17

Genetic Algorithms (GAs)

 Foundations of GAs

The basic steps of the genetic

algorithm are the following:

Genetic Algorithms (GAs)

 Foundations of GAs

1. Initialization

The first step of GAs is to produce the initial population

of solution randomly.

Each chromosome consists of a number of genes. The

chromosome is often referred to as the genotype of an

individual. The following notation is used to describe the

chromosome of individual number i.

where L is the length of this individual.

𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑟𝑒𝑖 = 𝑔𝑒𝑛𝑒1 𝑔𝑒𝑛𝑒2 … 𝑔𝑒𝑛𝑒𝐿

18

Genetic Algorithms (GAs)

 Foundations of GAs

1. Initialization

A number of chromosomes is called the population size.

Choosing this size for a GA is a fundamental decision faced

by all GA users. The population size affects both the

ultimate performance and the efficiency of GAs.

Genetic Algorithms (GAs)

 Foundations of GAs

2. Encoding

In order to be able to use a GA to find solutions to

problems, it is necessary to construct an encoding such that

these possible solutions can be expressed by the

chromosome.

The choice of an encoding is very important in order to

achieve good performance. Generally, there are many

different kinds of encoding, such as:

19

Genetic Algorithms (GAs)

 Foundations of GAs

2. Encoding

 Binary encoding

In this type of encoding every chromosome is a string of

bits, 0 or 1, as shown in the following figure.

 Integer encoding

Every chromosome is a string of integer numbers, as

shown in the following figure.

 Real encoding

Here, very chromosome a string of real numbers, as

shown in the following figure.

Genetic Algorithms (GAs)

 Foundations of GAs

2. Encoding

(a) Binary encoding

Chromosome 1

Chromosome 2

1 1 0 0 1 0

1 1 0 0 1 0

(b) Integer encoding

Chromosome 1

Chromosome 2

1 5 3 2 6 4

8 3 6 7 2 9

(c) Real encoding

Chromosome 1

Chromosome 2

2.9 1.2 1.0 2.3 0.5 4.1

8.0 1.3 6.1 7.9 0.2 1.9

Examples of chromosome encoding

20

Genetic Algorithms (GAs)

 Foundations of GAs

3. Evaluation

An evaluation of individuals is a measure of credit or

goodness to be optimized that is entirely domain

dependent.

The fitness function is used to evaluate the

performance of each individual, such that every string in the

population tested concerning its fitness for finding a solution

for the coded problem, the formula of this function:

Genetic Algorithms (GAs)

 Foundations of GAs

3. Evaluation

The formula of this function:

where: f is a fitness function; C is a chromosome.

This fitness value has to correlate in some manner with

the suitability of the chromosome by computing a fitness

function, and it is used by the selection mechanism in

determining which chromosome will survive and recombine

or kill and penalize.

R+f : C

21

Genetic Algorithms (GAs)

 Foundations of GAs

4. Selection

Selection is the process of choosing the parents from

population for the GA operations.

The purpose of selection of parents is to create the next

generation that based on the fitness of individuals.

The probability of selection of any individual is proportional

to its fitness. Thus, fitter individuals are more likely to be

selected for reproduction.

Genetic Algorithms (GAs)

 Foundations of GAs

4. Selection

There are many strategies to select the parents, such as:

 Roulette Wheel Selection (RWS)

The simplest selection scheme is Roulette wheel

selection, which is use to select the parents that have a

higher fitness with a higher probability.

22

Genetic Algorithms (GAs)

 Foundations of GAs

 Roulette Wheel Selection (RWS)

RWS method sums up the fitness of all individuals and

calculates each individual’s percentage of the total fitness.

The percentages of the total fitness are then used as the

probabilities to select some individuals from the set

population for represent the parents.

Genetic Algorithms (GAs)

 Foundations of GAs

The following Table gives an example of RWS. From the

Table, the parents are the first and third individuals, with a

high probability

Example of Roulette Wheel Selection

23

Example2 of RWS

Genetic Algorithms (GAs)

 Foundations of GAs

 Tournament selection

Tournament selection simply picks a many different

individuals at random and selects the individual with the

large fitness. This process is repeated until we have

selected the needed number of individuals.

For example, the binary tournament selection can be

described more mathematically like the following:

24

Genetic Algorithms (GAs)

 Foundations of GAs

 Tournament selection

𝑆𝑒𝑐𝑙𝑒𝑡𝑛 =
𝑖𝑛𝑑𝑖 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑖𝑛𝑑𝑖 > 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑖𝑛𝑑𝑗
𝑖𝑛𝑑𝑗 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where n = { 1, .. , N }, random numbers i, j ∈ {1,.., n} and i, j

and N are number of individuals selection.

Example of Tournament

25

Genetic Algorithms (GAs)

 Foundations of GAs

5. Crossover

Crossover is the main genetic operator. It operates on

two individuals at a time and generates two offspring (new

points in the search space to be tested).

The purpose of crossing strings in the GAs is to test new

parts of target regions then testing the same string over and

over again is successive generation.

Genetic Algorithms (GAs)

 Foundations of GAs

5. Crossover

The crossover rate controls the frequency with which the

crossover operator is applied. The higher the crossover

rate, the more quickly new structures are introduced into the

population, If the crossover rate is too high, high-

performance structures are discarded fast than selection

can produce improvement and if the crossover rate is too

low, the search may stagnate due to the lower exploration.

26

Genetic Algorithms (GAs)

 Foundations of GAs

5. Crossover

There are several types of crossover operators, such as: -

i. One-point crossover operator (1x)

In this operator, every pairs of individuals (parents) one

position in individual genetic code is chosen. All genes after

that position are exchanged among individuals. The

example of 1X crossover can be seen in the following

figure.

Genetic Algorithms (GAs)

 Foundations of GAs

i. One-point crossover operator (1x)

where k is the crossover site; k∈{1, .. , L-1}, and L is the

chromosome length.

This operator is very fast, but it has problem of decreasing

diversity especially when individuals are similar in the

population.

a1 a2 a5a3 a4

b5b1 b2 b3 b4

a1 a2 b5a3 b4

a5b1 b2 b3 a4

Parent chrom. Offspring chrom.

k= 3

One-point crossover operator (1x)

1x

27

Genetic Algorithms (GAs)

 Foundations of GAs

5. Crossover

ii. Two-point crossover operator (2x)

In two points crossover chooses two crossover sites at

random, instead of only one site in one point crossover.

After that, individuals exchange genes between these sites

as can be seen in the following figure.

Genetic Algorithms (GAs)

 Foundations of GAs

ii. Two-point crossover operator (2x)

where k1,k2 are the crossover sites; k1,k2∈ {1, .. , L-1},

and k1 ≠ k2, when L is the chromosome length.

a1 a2 a5a3 a4

b5b1 b2 b3 b4

a1 b2 a5b3 b4

b5b1 a2 a3 a4

Parent chrom. Offspring chrom.

k1= 1 k2= 4

Two-points crossover operator (2x)

2x

28

Genetic Algorithms (GAs)

 Foundations of GAs

ii. Two-point crossover operator (2x)

Speed and capability characterize this operator. It used

with big chromosomes, where it can hereditary two parts

from one of parents and one part from the other to each

individual and that can help to produce different individuals.

This operator gives good results when the diversity is

high in the population but it capability decreased .

Genetic Algorithms (GAs)

 Foundations of GAs

5. Crossover

iii. Uniform crossover operator (Ux)

The Ux operator quite different than 1x and 2x, since the

Ux does not use crossover sites, but randomly shuffles the

genes of the parents, by probability of exchanging genes, in

order to create two offspring, as can be seen in the

following figure.

29

Genetic Algorithms (GAs)

 Foundations of GAs

iii. Uniform crossover operator (Ux)

This operator has a large ability to product different

individuals from both parents (to increase the diversity of

population); but it is slow when treats with big

chromosomes.

Parent chrom. Offspring chrom.

Uniform crossover operator (Ux)

Ux

a1 a2 a5a3 a4

b5b1 b2 b3 b4

a6

b6

a1 b2 b5a3 b4

a5b1 a2 b3 a4

a6

b6

Crossover: 1x (k=5)

30

Crossover: 2x (k1=5,K2=10)

Crossover: Ux (k=1,5,6,8,10,1316,17,18,19,21)

31

Genetic Algorithms (GAs)

 Foundations of GAs

6. Mutation

Mutation is a random change of one or more genes. It

prevents falling all solutions in population into a local

optimum of solved problem. It has the effect of increasing

the genetic diversity of the population by creating new

individuals over a long period of time and prevents

stagnation in the convergence of the optimization technique.

Genetic Algorithms (GAs)

6. Mutation

Mutation operator increases the variability of the

population when each bit position of each chromosome in

the new population undergoes a random change with a

probability equal to the mutation rate. A low level of mutation

rate serves to prevent many given bit position from

remaining forever converged to a single value in the entire

population and a high level of mutation rate yields an

essentially random search.

32

Genetic Algorithms (GAs)

6. Mutation

There are several types of mutation operators, such as: -

i. One-point mutation operator (1m)

In this operator a single gene in the chromosome at a

selected mutation point and changed it value to other value

in the range of this gene. When the gene has a binary

encode the value is flipping from “1” to “0” or vice versa, as

can be seen in the following figure:-

Genetic Algorithms (GAs)

6. Mutation

There are several types of mutation operators, such as: -

i. One-point mutation operator (1m)

1 0 0 1 1 1 0 1 1 0 0 0 1 1 0 11m

Parent chrom. Offspring chrom.

Example: One-point mutation operator (1m)

33

Genetic Algorithms (GAs)

6. Mutation

ii. two-point mutation operator (2m)

This operator selected two genes in the chromosome at

randomly and swapping the values of these genes between

them, as can be seen in the following figure:-

Parent chrom. Offspring chrom.

Example: Two-points mutation operator (2m)

1 1 0 1 0 1 0 1 1 1 1 1 1 0 0 0 1 12m

One-point mutation

operator (1m)

k=5

k=3

34

two-point mutation operator (2m)

Parent chrom. Offspring chrom.

Example: Two-points mutation operator (2m)

1 1 0 1 0 1 0 1 1 1 1 1 1 0 0 0 1 12m

mutation operator (um)

(um) k=3,4,5

35

Genetic Algorithms (GAs)

7. Replacement

The replacement operator removes few relatively poor

individuals, which have a low fitness, from the population,

such that, there is space for the new individuals which have

a high fitness.

There are many ways for the replacement, such as:

Genetic Algorithms (GAs)

7. Replacement

i. Holland replacement way

This way used to replacement the worst individual in the

population by the new individual and evaluation the

population new again.

The disadvantage of this way, it does not compare the

cost of the remove individual and the new individual.

36

Genetic Algorithms (GAs)

ii. Whitley replacement way

This way selected two (or three) individuals from the

population randomly and determine the worst among them,

compare it with the new individual. If it’s cost lower than the

cost of the new individual then replacement it by the new

individual else does not use the replacement operator.

The problem of this way is that the selection of

individuals from the population randomly, which does not

give a good chance for selected the worst individual.

Genetic Algorithms (GAs)

8. Termination (stopping criterion)

The GA iteratively performs operators on each

generation of individuals to produce new generation. This

loop continues until some halt criterion is satisfied.

The termination can be one or more of the following

criterion:-

37

Genetic Algorithms (GAs)

8. Termination (stopping criterion)

 A predetermined number of generations to be run, than to take

the best solution.

 Stopping when the fitness of the number of the population is

within the user specified range.

 When all individuals in the generation are identical, which

means the evaluation function for all individuals are the same.

 When a relative convenience of a good solution (among

several ones) to the problem domain is achieved.

Procedure GA;

Begin

Generate initial population;

Evaluate each individual’s fitness;

Repeat

Selection individuals; /* Parents */

Apply crossover operator;

Apply mutation operator;

Evaluate each individual’s fitness; /*Offspring*/

Apply replacement policy;

Until (terminating condition);

End;

Procedure of Genetic Algorithm

38

Apply the GA for three generations to find the maximum decimal

number for six bit binary code. Consider the following initial

population:

no chromosome

1 101010

2 110101

3 101101

4 110011

5 111000
Using the following parameters:

1. Selection : RWS

2. Crossover: 1x (k=3)

3. Mutation: 1m (k=4)

4. Replacement: Holland way

H.W. In one of companies, the manager wants to select the best

employee. The selection depends on some of criteria, i.e.:
1. The certificate: it is evaluated by 30% from the total evaluation. It’s divided to

(Bachelor, Master, and PhD) and assigning to it two genes (01, 10, and 11),

respectively.

2. The years of service: it is evaluated by 25% from the total evaluation. It’s

divided to (Less than 5 years, 5-to-10 years, 10-to-15 years, and more than 15

years) and assigning to it two genes (00, 01, 10, and 11), respectively.

3. The experience: it is evaluated by 25% from the total evaluation. It’s divided

to (acceptable, good, v. good, and excellent) and assigning to it two genes (00,

01, 10, and 11), respectively.

4. The acknowledgement: it is evaluated by 20% from the total evaluation. It’s

divided to (one, 2-4, 5-7, more than 7) and assigning to it two genes (00, 01, 10,

and 11), respectively.

Please use the GA for two loops only to choose the best employee in the company.

When using the GA, it should take in your account the following:

39

 The selection is Roulette Wheel

 The crossover is 2x (k1=3, and k2=6).

 The mutation is not use here

 The replacement is Holland Way

FYI, the initial population is:

no chromosome

1 10 01 10 00

2 11 10 11 10

3 01 11 11 01

4 01 10 11 10

5 10 10 11 10

1. The certificate: it is evaluated by 30% from the total evaluation. It’s divided to

(Bachelor, Master, and PhD) and assigning to it two genes (01, 10, and 11),

respectively.

2. The years of service: it is evaluated by 25% from the total evaluation. It’s

divided to (Less than 5 years, 5-to-10 years, 10-to-15 years, and more than 15

years) and assigning to it two genes (00, 01, 10, and 11), respectively.

3. The experience: it is evaluated by 25% from the total evaluation. It’s divided

to (acceptable, good, v. good, and excellent) and assigning to it two genes (00,

01, 10, and 11), respectively.

4. The acknowledgement: it is evaluated by 20% from the total evaluation. It’s

divided to (one, 2-4, 5-7, more than 7) and assigning to it two genes (00, 01, 10,

and 11), respectively.

40

Lecture 4

Neural Networks
(NNs)

Neural Networks (NNs)

 Introduction
 A neural network is an information-processing system

that has performance characteristics in common with

biological neural networks.

 Neural networks have been developed as generalizations

of mathematical models of neural biology. They can be

considered as a parallel distributed for storing

experimental knowledge and making it available for use.

 They represent mathematical models of brain-like

systems where knowledge is received through a learning

process.

41

Neural Networks (NNs)

 Structure of Neuron Cell

 A neural network is composed of a large number of high-

interconnected processing elements (neurons) working in

parallel to solve a specific problem.

 As illustrated in the following figure a neuron i consists of

a set of n connecting links that are characterized by

weights Wij.

Neural Networks (NNs)

 Structure of Neuron Cell

 Each input signal xj applied to the link j is multiplied by

its corresponding weight wij and transmitted to neuron i.

These links product are accumulated by the adder as

expressed by the formula:





n

j
ij

w
j

xi

1

)*(

42

Neural Networks (NNs)

 Structure of Neuron Cell

 Each an activation function g () provides the output yi of

the unit as:
)(iii gy  

 denotes the threshold which is an external parameter of

neuron i and is used to apply an affine transformation of the

net input to the output

i

 The activation

function defines

the output of neuron.

Neural Networks (NNs)

 Structure of Neuron Cell

 There are many several types of activation functions, such

as:
FormulaActivation Function

0 x < 0

g(x)=
1 x > 0

Sign Function

1

g(x)=

1 + e-Bx
Sigmoid Function

1 a < x < b

g(x)=

0 otherwise
Pulse Function

(x-c)2

g(x)=Gaussian Function 22
e

Some of Activation Functions

43

Neural Networks (NNs)

 The Learning Methods For Neural Networks
There are two different types of learning methods have

been constructed to give the neural networks the ability to

adjust themselves intelligently.

1. Supervised Learning

In this type of learning, data are presented together with

teacher information in order to associate the data with the

teacher signal.

Supervised learning algorithms adjust the weights using

input-output data to match the input-output characteristics of

a network to desired characteristics. One of the most popular

of these algorithms is the back-propagation learning

algorithm.

Neural Networks (NNs)

 The Learning Methods For Neural Networks
There are two different types of learning methods have

been constructed to give the neural networks the ability to

adjust themselves intelligently.

2. Unsupervised Learning

The neural network is presented for some data without

getting any teacher information. This type of learning is often

used for data clustering and data analysis.

Neural networks that use unsupervised learning use the

redundancy in the data in order to build up clusters or feature

maps based on a familiarity distance. K-Means clustering

algorithm represents one of unsupervised learning

algorithms.

44

Neural Networks (NNs)

 The Back-propagation (Bp) Network

Back-propagation (Bp) is a multiple layer network. it has

one input layer and one output layer as well as one or more

hidden layers.

In order to train a neural network to perform some task, it

must adjust the weights of each unit in such a way that the

error between the desired output and the actual output is

reduced.

Neural Networks (NNs)

 The Back-propagation (Bp) Network

This process of Bp requires that the neural network

compute the error derivative of the weights.

In other words, Bp algorithm must calculate how the error

changes as each weight is increased or decreased. It looks

for the minimum of the error function in weight space using

the method of gradient descent learning.

The Bp network undergoes supervised training with a finite

number of pattern pairs. Each one of these pairs consists of

an input pattern and a desired or target output pattern.

The following figure explains the general structure of the

Bp network.

45

where X is the input vector; Y is the output vector; and H is the hidden

layers.

The structure of Back-propagation network

Neural Networks (NNs)

 The Back-propagation (Bp) Network

The learning process of Bp algorithm involves two steps:

1. Feed forward

Entering each one of the pattern pairs (input, output) and

computing the actual output.

2. Feed backward

Adjustment all the weights depending on the difference

between the desired output and the actual output.

This process repeated as many times as needed until the

error between the desired and the actual outputs reaches to

the minimum value.

46

Neural Networks (NNs)

 The gradient descent learning:

This is based on the minimization of errors E defined in

terms of weights and the activation function of the network.

 The activation function of the network is required to be

differentiable because the updates of weights is dependent

on the gradient of the error E.

 If ∆𝒘𝒊𝒋 is the weight update of the link connecting the 𝑖𝑡ℎ

and 𝑗𝑡ℎ neurons of the two neighboring layers. So, the ∆𝒘𝒊𝒋
is defined as : ∆𝑤𝑖𝑗 = − ߟ (𝜕𝐸 / 𝜕𝑤𝑖𝑗)

where ߟ is the learning rate parameter and (𝜕𝐸 / 𝜕𝑤𝑖𝑗) is

error gradient with reference to the weight 𝑤𝑖𝑗.

Note: the Bp learning is the example of Gradient descent

learning.

Neural Networks (NNs)

 The Back-propagation (Bp) Network

The Bp algorithm is based on the gradient descent technique

for solving an optimization problem, which involves the

minimization of the network cumulative error E, it defines as:

𝐸 =

𝑘=1

𝑛

𝐸(𝑘)

where n is the number of training patterns presented to the

network for training purposes. E(k) represents the vectorial

difference between the target output and the actual output

vectors of the network, it defines as:

𝐸 𝑘 =
1

2

𝑖=1

𝑞

[𝑡𝑖 𝑘 − 𝑜𝑖 𝑘]
2

where 𝑡𝑖 𝑘 is the target output vector, and 𝑜𝑖 𝑘 is the actual

output vector.

47

Neural Networks (NNs)

 The Back-propagation (Bp) Network

So, the minimization of the network error becomes:

𝐸 =
1

2

𝑘=1

𝑛

𝑖=1

𝑞

[𝑡𝑖 𝑘 − 𝑜𝑖 𝑘]
2

where the index i represents the 𝑖𝑡ℎ neuron of the output layer

composed of the a total number of 𝑞 neurons.

48

49

50

