# **Optimization Fourth Class** 2020 - 2021 By Dr. Jawad Mahmoud Jassim Dept. of Math. **Education College for Pure Sciences** University of Basrah Iraq

# **Chapter Two**

Line Search

Lecture 2

# 3: Convergence Theory for Exact Line Search

The general form of an unconstrained optimization algorithm is as follows.

Algorithm (2): (General Form of Unconstrained Optimization Algorithm)

# **First: Initial step**

Given  $X_0 \in \mathbb{R}^n$  ,  $0 \le \varepsilon \le 1$ .

Second:  $k^{th} - Step$ 

- 1: Compute the descent direction  $d_k$ .
- 2: Compute the step size  $\alpha_k$  such that

- 3: Set  $X_{k+1} = X_k + \alpha_k d_k \dots (7)$
- 4: If  $||g(X_{k+1})|| \le \varepsilon$  stop, where  $g(X_{k+1})$  is the gradient vector at  $X_{k+1}$ . Otherwise repeated the above steps.

#### **Note (8):**

We denote  $\Phi(\alpha) = f(X_k + \alpha d_k) \dots (8)$ 

**Obviously, we have from Algorithm (2) that** 

$$\Phi(\mathbf{0}) = f(X_k), \Phi(\alpha) \leq \Phi(\mathbf{0}).$$

#### **Note (9):**

The equation (6) in Algorithm (2) is to find the global minimizer of  $\Phi(\alpha)$  which is rather difficult. Instead, we take  $\alpha_k$  such that

where g is the gradient vector of  $\Phi(\alpha)$  which is given in (8).

Since by (6) and (9), we find the exact minimizer of  $\Phi(\alpha)$  respectively. We say that (6) and (9) are exact line searches.

#### **Note (10):**

Let  $\theta_k$  be the angle between  $d_k$  and  $-g_k$ , then

#### Theorem (2):

Let  $\alpha_k > 0$  be the solution of the equation

 $f(X_k + \alpha_k d_k) = \min_{\alpha \geq 0} f(X_k + \alpha d_k)$ , and  $||G(X_k + \alpha d_k)|| \leq M$ , where M is some positive number and G is the Hessian matrix. Then

#### **Note (11):**

Theorem (2) means that  $f(X_k + \alpha_k d_k) < f(X_k)$ .

**Definition (7): (Neighborhood)** 

Given a point  $X \in \mathbb{R}^n$  and a  $\delta > 0$ . The  $\delta - neighborhood$  of X is defined as  $N_{\delta}(X) = \{ Y \in \mathbb{R}^n : ||Y - X|| < \delta \}$ .

### **Definition (8): (Accumulation Point)**

The point  $X \in D \subset \mathbb{R}^n$  is said to be an accumulation point if for each  $\delta > 0$ ,  $D \cap N_{\delta}(X) \neq \emptyset$ , where  $\emptyset$  is an empty set.

#### **Definition (9): (Index Set)**

Let  $W_a$  be the set of all words containing the letter a,  $W_b$  be the set of all words containing the letter b and similarly for  $W_c$  to  $W_z$ . The subscripts  $a, b, c, \cdots, z$  are knows as indices. Then the set  $I = \{a, b, c, \cdots, z\}$  is called the index set.

#### Theorem (3):

- 1: Let f(X) be continuously differentiable function on an open set  $D \subset \mathbb{R}^n$ .
- 2: Assume that the sequence generated by Algorithm (2) satisfies  $f(X_{k+1}) \le f(X_k)$  and  $g(X)^T d_k \le 0$ , where g is the gradient vector.
- 3: Let  $\widehat{X} \in D$  be an accumulation point of  $\{X_k\}$  and  $K_1$  be an index set with

$$K_1 = \left\{ k : \lim_{k \to \infty} X_k = X \right\}.$$

4: Assume that there exists M > 0 such that  $||d_k|| < M$  for all  $k \in K_1$ .

#### Then:

- 1: If  $\widehat{d}_k$  is any accumulation point of  $\{d_k\}$ , we have  $g(\widehat{X})^T\widehat{d}=0$ .
- 2: If f(X) is twice continuously differentiable function on D, we have  $\widehat{d}^T G(\widehat{X}) \widehat{d} \geq 0$ .

## **Definition (10): (Continuous Function)**

Let  $f: D \subset \mathbb{R}^n \to \mathbb{R}$ . Let  $X_0 \in D$ . We say that f is continuous function at  $X_0$  if for every  $\varepsilon > 0$ , there exists  $\delta = \delta(X_0, \varepsilon)$  such that if  $X \in D$  with  $||X - X_0|| < \delta$  implies  $||f(X) - f(X_0)|| < \varepsilon$ .

#### **Definition (11): (Uniformly Continuous)**

Let  $f: D \subset \mathbb{R}^n \to \mathbb{R}$ . We say that f is uniformly continuous if f or all  $\varepsilon > 0$ , there exists  $\delta = \delta(\varepsilon)$  such that if  $X, Y \in D$  with  $||X - Y|| < \delta$  implies  $||f(X) - f(Y)|| < \varepsilon$ .

In other words, f is uniformly continuous if it is continuous at each point  $X_0 \in D$  and the  $\delta$  corresponding to each  $\varepsilon$  in the definition of continuity at  $X_0$  can be the same for all  $X_0 \in D$ .

#### For example,

f(x) = x is uniformly continuous function on real numbers.  $f(x) = x^2, x \in [-M, M], M > 0$  is uniformly continuous, while

 $f(x) = x^2$  is not uniformly continuous on the set of real numbers

## **Note (12):**

Each uniformly continuous function is continuous.

## **Definition (12): (Lipschitz Continuity)**

Let  $f: D \subset \mathbb{R}^n \to \mathbb{R}$ . We say that f is Lipschitz continuous function if there exists M > 0 such that  $||f(X) - f(Y)|| \le M||X - Y||$  for all  $X, Y \in D$ .

#### **Note (13):**

Every Lipschitz continuous function is uniformly continuous function.

# **Definition (13): (Level Set)**

A set where the function takes a given constant value.

# Theorem (4):

- 1: Let g(X) be uniformly continuous on the level set  $L = \{X \in \mathbb{R}^n : f(X) \le f(X_0).$
- 2: Let the angle  $\theta_k$  between  $-g(X_k)$  and the direction  $d_k$  generated by Algorithm (2) is uniformly bounded a way from  $90^{\circ}$ , i. e. satisfies  $\theta_k \leq \frac{\pi}{2} \mu$  for some  $\mu > 0$ .

Then  $g(X_k) = 0$  for some k; or  $f(X_k) \to -\infty$ ; or  $g(X_k) \to 0$ . where g is the gradient vector.

# **Lemma (1):**

- 1: Let f(X) be twice continuously differentiable in the neighborhood of the minimizer  $X^*$ .
- 2: Assume that there exists  $\varepsilon > 0$  and M > m > 0, such that  $m||Y||^2 \le Y^T G(X)Y \le M||Y||^2$ , for all  $Y \in \mathbb{R}^n$  holds when  $||X X^*|| < \varepsilon$ .

#### Then

1: 
$$\frac{1}{2}m||X-X^*||^2 \le f(X)-f(X^*) \le \frac{1}{2}M||X-X^*||^2$$
.

2:  $||g(X)|| \ge m||X - X^*||$ .

#### Where

g(X) and G(X) are the gradient and Hessian matrix of f at X respectively.

## Theorem (5):

- 1: Let the sequence  $\{X_k\}$  generated by Algorithm (2) converges to the minimizer  $X^*$  of f(X).
- 2: Let f(X) be twice continuously differentiable in a neighborhood of  $X^*$ .
- 3: If there exists  $\varepsilon > 0$  and M > m > 0 such that  $m||Y||^2 \le Y^T G(X) Y \le M||Y||^2$ , for all  $Y \in \mathbb{R}^n$  holds when  $||X X^*|| < \varepsilon$ .

Then the sequence  $\{X_k\}$ , at least, converges linearly to  $X^*$ . Where G(X) is the Hessian matrix of f at X.