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Chapter Two
L_ine Search

|_ecture 2



3. Convergence Theory for Exact Line Search

The general form of an unconstrained optimization algorithm is as
follows.
Algorithm (2): (General Form of Unconstrained Optimization
Algorithm)

First: Initial step

Given Xg e R",0< e < 1.

Second: k" — Step

1: Compute the descent direction d,,.

2. Compute the step size a;, such that

f(Xk + akdk) — mln f(Xk + adk) (6)
3: Set Xpi1 =X + akdk . e (7)

4:1f ||g( X+ < € stop, Where g(Xk+1 is the gradlent vector
at X, 1. Otherwise repeated the above steps.




Note (8):
We denote @(a) = f(X; + ady) ... U )
Obviously, we have from Algorlthm (2) that

?(0) = f(Xy), P(a) < @(0).

Note (9):

The equation (6) in Algorithm (2) is to find the global minimizer of &@(a) which is
rather difficult. Instead, we take a; such that

ap=min{a>0: grd, =0} ..o oee i ittt s v e a2 (9)

where g is the gradient vector of @(a) which is given in (8).

Since by (6) and (9), we find the exact minimizer of @(a) respectively. We say that (6)
and (9) are exact line searches.

Note (10):
Let 0, be the angle between d;, and — g, ,then
T
COSO) = —— Tk e e e et e e e e (10)

ldill llggl



Theorem (2):
Let a;, > 0 be the solution of the equation

f(Xk + akdk) = ml(r)lf(Xk + adk), and ”G(Xk + adk)” < M,whereMis
az
some positive number and G is the Hessian matrix. Then
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fX1) — fXg + agdy) = (11)

Note (11):

Theorem (2) means that f(X; + a;d;) < f(X;).

Definition (7): (Neighborhood)

GivenapointXe R"andad > 0.The 6 — neighborhood of X is defined as
Ns(X) ={YeR™ ||Y — X| <&}

Definition (8): (Accumulation Point)
The point X e D < R™ is said to be an accumulation point if for each § > 0,
D N Ng(X) # O,where @ is an empty set.




Definition (9): (Index Set)

Let W, be the set of all words containing the letter a, W be the set of all words
containing the letter b and similarly for W . to W,. The subscripts

a b,c, -,z are knows as indices. ThenthesetI ={a,b,c, -, z} is called the index

set.
Theorem (3):

1: Let f(X) be continuously differentiable function on an open set D c R™.
2: Assume that the sequence generated by Algorithm (2) satisfies

f(Xi+) < f(Xp) and g(X)'d,, < 0,where g is the gradient vector.
3: Let X € D be an accumulation point of {X;} and K, be an index set with

K, = {k: lim X, =X}.
4: Assume that there exists M > 0 such that ||di|| < M for all k € K.

Then:
1: If d,, is any accumulation point of {d,}, we have g(X)Td = 0.
2: If f(X) is twice continuously dif ferentiable function on D,

we have d'G(X)d = 0.




Definition (10): (Continuous Function)
Let f:D c R" — R. Let Xy € D. We say that f is continuous function at X if for every
g > 0, there exists 6 = §(X, €) such that if X e D with || X — X,|| < 8 implies

1F(X) = fFXo)l < €.

Definition (11): (Uniformly Continuous)
Let f:D c R™ — R.We say that f is uniformly continuous if for all € > 0, there
exists & = 8(&) such that if X,Y € D with || X — Y| < & implies

IFX) = fN)l <&

In other words, f Is uniformly continuous If it is continuous at each
point X, € D and the § corresponding to each & in the definition of
continuity at X, can be the same for all Xy € D.



For example,
f(x) = x isuniformly continuous function on real numbers.

f(x) =x% x€e[—M,M],M > 0 is uniformly continuous ,while
f(x) = x% is not uniformly continuous on the set of real numbers

Note (12):
Each uniformly continuous function is continuous.

Definition (12): (Lipschitz Continuity)
Let f: D c R™ — R.We say that f is Lipschitz continuous function if there exists

M > O such that |[f(X) — fF(V)Il < M||X - Y| for all X,Y € D.

Note (13):
Every Lipschitz continuous function is uniformly continuous function.




Definition (13): (Level Set)
A set where the function takes a given constant value.

Theorem (4):
1: Let g(X) be uniformly continuous on the level set
L={XeR": f(X) < f(Xp)
2:Let the angle 0, between - g(X;) and
the direction d; generated
by Algorithm (2)is uniformly bounded a way from 90

,l.e.satisfies 0} < g — U for some u > 0.
Then g(X;) =0 for some k; or f(X;,)) » —oo;0r g(X;) — 0.
where g is the gradient vector.



Lemma (1):

1: Let f(X)be twice continuously dif ferentiable in the
neighborhood of the minimizer X".

2: Assume that there exists e > 0and M > m > 0, such that
m||Y||? < YTG(X)Y < M||Y||?, for allY € R™ holds when
IX—-X"|| < e

Then

1: mllX - X" |2 < f(X) — f(X) < ; MIX — X" |12

2: lgX)ll =mlX — X" |.

Where
g(X) and G(X) are the gradient and Hessian matrix of f at X

respectively.




Theorem (5):
1: Let the sequence {X}} generated by Algorithm (2) converges to the
minimizer X* of f(X).
2: Let f(X) be twice continuously differentiable in a neighborhood of
X"
3: Ifthereexistse > 0and M > m > 0 such that
m||Y||? < YTG(X)Y < M||Y||?, for allY € R™ holds when
IX—-X"|| <e.
Then the sequence {X,}, at least , converges linearly to X*.
Where G(X) is the Hessian matrix of f at X.




