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Chapter one General Introduction and Properties of Fluids

e Dimensions & units, dimensional analysis.

e Process variables: physical state, overall mass balance, overall energy balance,
overall momentum balance.

e Concept of fluid behavior, Newtonian and non- Newtonian fluids, laminar and
turbulent flow in circular tube.

e Flow measurement.

e Pitot tube, venturi menter, orifice meter, rota meter.

References: -
1. "Fluid mechanics" by V.L. Streeter, 9th Edition.
2. "Fluid Mechanics" Frank. M. White, 5th edition.
3. "Fundamentals of Fluid Mechanics" 5th edition B. R. Munson et al - John Wiley
and Sons.
4. "Fluid Mechanics and Hydraulic Machines" 5th edition Er.R.K. RAJPUT - .
CHAND & COMPANY LTD. RAM NAGAR, NEW DELHI-110 055.
"5 ) drala 8 Sl lo Al g Ladll JalS o "2 sl il
Lectures of other instructors in the collage & department.
7. Any other references in this field.

oo

1. These lectures were prepared and used by me to conduct lectures for 2 year B.
Tech. students.

2. Theories, Figures, Problems, Concepts used in the lectures to fulfill the course
requirements are taken from the general fluids references

3. | take responsibility for any mistakes in solving the problems. Readers are
requested to rectify when using the same.

4. | thank the following authors for making their books & lectures available for

reference
A. Ali
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Chapter one General Introduction and Properties of Fluids

Chapter 1

Fluids Mechanics

What is fluid mechanics?
Fluid mechanics may be defined as that branch of Engineering-science
which deals with the behavior of fluid under the conditions of rest and
motion,
The fluid mechanics may be divided into three parts: Statics, kinematics
and dynamics
Statics. The study of incompressible fluids under static conditions is
called hydrostatics and that dealing with the compressible static gases is
termed as aerostatics.
Kinematics. It deals with the velocities, accelerations and the patterns of
flow only. Forces or energy causing velocity and acceleration are not dealt
under this heading.
Dynamics. It deals with the relations between velocities, accelerations of
fluid with the forces or energy causing them.
Properties of Fluids:
The matter can be classified on the basis of the spacing between the
molecules of the matter as follows:

e Solids, the molecules are very closely spaced whereas

e Liquids (Liquid state, Gaseous state) the spacing between the

different molecules is relatively large and in gases the spacing
between the molecules is still large.

1 Fluid
A fluid may be defined as follows:
“A fluid is a substance which is capable of flowing.”

or
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Chapter one General Introduction and Properties of Fluids
“A fluid is a substance which deforms continuously when subjected to

external shearing force.”

Ideal fluids. An ideal fluid is one which has no viscosity and surface
tension and is incompressible. In true sense no such fluid exists in nature.
However fluids which have low viscosities such as water and air can be
treated as ideal fluids under certain conditions. The assumption of ideal
fluids helps in simplifying the mathematical analysis.

Real fluids. A real practical fluid is one which has viscosity, surface
tension and compressibility in addition to the density. The real fluids are
actually available in nature.

Continuum. A continuous and homogeneous medium is called continuum.
From the continuum view point, the overall properties and behavior of

fluids can be studied without regard for its atomic and molecular

structure.
Dimensions:
Mass Length Time Force
M L T F

Types of Systems:

I M-L-T

i: F-L-T
Units:

System/Quantity Mass Length Time Force
Standard International (S.1) kg m sec N
British System (English) slug ft sec Ib
French system (c.g.s) gm cm sec dyne
Kilogram weight system kg m sec kgw
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Chapter one

General Introduction and Properties of Fluids

Length Mass

1ft = |12 inchesor 127 1slug = 14.59 kg
1linch =254 cm lton = 1000 kg
1ft = m 1 kg = 1000 g
mile = | 1609 m

Volume Gravitational acceleration
1md = |1000 liters = 10° cm?® g=9.81m/sec?=| 32.2 ft/sec?
1 gallon | 3.785 liters

Force

1N = 1 kg.m/sec?

1N = 10° dyne

1N = (1/4.44) Ib

1N = (1/9.81) kgw

1kgw = 2.20462 Ib

2 Liquids and Their Properties

The properties of water are of much importance because the subject of

hydraulics is mainly concerned with it. Some important properties of water

which will be considered are:

(i) Density,
(i)  Specific gravity,
(ili) Viscosity,
(iv) Vapor pressure,
(v) Cohesion,
(vi) Adhesion,
(vii) Surface tension,
(viii) Capillarity, and
(ix) Compressibility
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Chapter one General Introduction and Properties of Fluids

2.1 DENSITY

e Mass Density

mass

: s w =
Its units are kg/m*, l.e., p =cerr= =

| 8

e Weight Density
also known as specific weight, weight per unit volume at the
standard temperature and pressure. It is usually denoted by w.,
e, w=g
e Specific volume
. \%
e, v=—
m

2.2 SPECIFIC GRAVITY
For liquids, the standard fluid is pure water at 4°C,

Specific weight ofliquid ~ Wiiquid

l.e., Specific gravity =

Specific weight of pure water a Wwater

Relative density or specific gravity (S of S.g): the ratio of mass density of
a substance to a standard mass density. Generally, the standard mass
density is taken of water at 4 °C. pwtare at 4°C = 1000 kg/m? .

Specific Volume (v): is the reciprocal of the density; that is, the volume

occupied by unity mass of fluid

v =% , m3/kg

Specific weight (y or w): is the weight per unit volume.

weight —mg

Yy =w= Py

" Volume V
Units: N/m3
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Chapter one General Introduction and Properties of Fluids

2.3 Viscosity

Property of a fluid which determines its resistance to shearing stresses. It
Is a measure of the internal fluid friction which causes resistance to flow.
It is primarily due to cohesion and molecular momentum exchange
between fluid layers, and as flow occurs, these effects appear as shearing
stresses between the moving layers of fluid.

An ideal fluid has no viscosity.

The viscosity together with relative velocity causes a shear stress acting
between the fluid layers. This shear stress is proportional to the rate of

change of velocity with respect to y. It is denoted by t (called Tau)

Upper layer
————— Lawer layer

du !

dy |

T = ‘Ll@ + e

¥ W

A

/
g ¢— Solid boundary

Now, u is called the viscosity (or dynamic viscosity) of fluid, and the

—

relation above is the Newton’s law of viscosity.

A fluid is a substance that deforms continuously when subjected to a
shear stress.

Shear force, the force component tangent to a surface, and this force
divided by the area of the surface is the average shear stress over the

area.

Note:

The fluid in immediate contact with a solid boundary has the same velocity

as the boundary i.e. there is no slip at the boundary.
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Chapter one General Introduction and Properties of Fluids

F
b C 3 Moving plate U
= ——
! =
velocity profile
h =/
y (-
L .

a f d Fixed plate
fluid element

The fluid in the area a-b-c-d flows to the new position a-b™-c”-d, each fluid
particle varying uniformly from zero at the fixed plate to U at the moving
plate.

AU
“h

Where A is the surface area of the moving plate. The proportionality

constant depends on fluid type, it is generally termed as p.

F
Let T = 1 : [s the shear stress

T = ME : is the shear stress

% . 1s the ratio of angular velocity of line ab or it is the rate of

deformation of fluid

U d . . e
- = d—;‘ for linear velocity distribution only
- du u

T=HRy = Ha

Units of viscosity:

u=t/(U/h) : (N/m?)/(m/sec/m) = % .sec = Pa. sec (in SI)
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Chapter one General Introduction and Properties of Fluids
agm dyne sec. .
or u = = = poise

cm.sec cm?

1 poise = 0.1 Pa. sec.

Kinematic viscosity (v): is the dynamic viscosity p divided by the density p

U
V==
P
Units:
N.sec/m* m?
kg/m3  sec

1cm?/sec = St (Stokes)
1 St =10 m?%/sec
1 ¢St =10° m?/sec

Newton’s Law of Viscosity

This law states that the shear stress(z)on a fluid element layer is directly
proportional to the rate of shear strain. The constant of proportionality is
called the co-efficient of viscosity.

du

Mathematically, — T=U &

Elastic solid

Types of Fluids
The fluids may be of the

following types: Refer to Fig.

1.Newtonian  fluids:  These
fluids follow Newton’s viscosity
equation. For such fluids p does
not change with rate of oo o du
deformation. Examples. Water, e o s
kerosene, air etc.

) 2
— Yield s11‘ess—b| Shear stress T, N'm —»

' . . “u’\d
/ Diatent Ideal fluid (u = 0)
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Chapter one General Introduction and Properties of Fluids
2. Non-Newtonian fluids: Fluids which do not follow the linear relationship

between shear stress and rate of deformation. Such fluids are relatively
uncommon. Examples. Solutions or suspensions (slurries), mud flows,
polymer solutions, blood etc.
3 .Plastic fluids. In the case of a plastic substance which is non-Newtonian
fluid an initial yield stress is to be exceeded to cause a continuous
deformation. These substances are represented by straight line intersecting
the vertical axis at the “yield stress”.
e An ideal plastic (or Binigham plastic) has a definite yield stress and
a constant linear relation between shear stress and the rate of angular
deformation. Examples: Sewage sludge, drilling muds etc.
¢ A thyxotropic substance, which is non-Newtonian fluid, has a non-
linear relationship between the shear stress and the rate of angular
deformation, beyond an initial yield stress. The printer’s ink is an
example of thyxotropic substance.
4. ldeal fluid. An ideal fluid is one which is incompressible and has zero
viscosity Thus an ideal fluid is represented by the horizontal axis (t = 0)
A true elastic solid may be represented by the vertical axis of the diagram.
Summary of relations between shear stress (t) and rate of angular

deformation for various types of fluids:

(i) Ideal fluids: © =0, (if) Newtonian fluids:t=p %
} n
(ii1) Ideal plastics: t = const. + . ff_f (iv) Thyxotropic fluids: t = const.+ p(i—if] . and
o (auY
(v) Non-Newtonian fluids: © = el
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Chapter one General Introduction and Properties of Fluids
Effect of Temperature on Viscosity

Viscosity is effected by temperature. The viscosity of liquids decreases but

that of gases increases with increase in temperature. Why?

For liguids: uy = AT
,EZI‘_T]'II:
For gases: ul = ——
= ' l+alT
where, iy = Dynamic viscosity at absolute temperature T,
A, p = Constants (for a given liquid), and
a, b = Constants (for a given gas).

Effect of Pressure on Viscosity

The viscosity under ordinary conditions is not appreciably affected by the
changes in pressure. However, the viscosity of some oils has been found to
increase with increase in pressure.

Read Examples (1.6-1.20)
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Chapter one General Introduction and Properties of Fluids
Example 1.1: Determine the shear stress exerted on the bottom fixed

surface shown in figure.

r

, oil ( 1= 0.036 N-s/m°)

y d=5.0 mm

ki

Example 1.2: Determine the dynamic viscosity of fluid between the 75

mm-diameter shaft and sleeve shown in figure. The clearance between the

shaft and sleeve is 0.07 mm 200 mm
F=100 N U=0.2m/s
\
0.07 mm
' ~ i A = ekl
ope ¥ = f A
N .
o2 m
A= N4 b * =
199 - pp2 s
o = ——03 .
T I OIS ek

Example 1.3: A disk of radius R

rotates at angular velocity o inside an

Qil
oil bath of viscosity p as shown in h l@‘
figure. Derive an expression for the A
viscous torque on the disk. Neglect " R r

shear stress on the outer disk end.

Page 12 of 63



General Introduction and Properties of Fluids

Chapter one
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Chapter one General Introduction and Properties of Fluids

2.4 SURFACE TENSION AND CAPILLARITY

2.4.1 Surface Tension

Cohesion means intermolecular attraction between molecules of the same
liquid. It enables a liquid to resist small amount of tensile stresses.
Cohesion is a tendency of the liquid to remain as one assemblage of
particles. “Surface tension” is due to cohesion between particles at the free
surface.

Adhesion. Means attraction between the molecules of a liquid and the
molecules of a solid boundary surface in contact with the liquid. This
property enables a liquid to stick to another body.

Capillary action is due to both cohesion and adhesion.

Surface tension (o) is caused by the force of cohesion at the free surface.
A liquid molecule in the interior of the liquid mass is surrounded by other
molecules all around and is in equilibrium.

Surface tension of liquid is due to the force of attraction between similar
molecules, called cohesion, and those between different molecules, called
adhesion.

e The interior molecules are in balance.

e Near a free surface, the cohesion force between liquid molecules is
much greater than that between an air molecule and a liquid
molecule, hence, there is a resultant force on a liquid molecule
acting toward the interior of the liquid. This force called surface
tension.

e Itis the force that holds a water droplet or mercury globule together.

e Itis the force that form a film at the interface between a liquid and

gas or two immiscible liquids
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Chapter one General Introduction and Properties of Fluids
e This force is proportional to the product of the surface tension

coefficient o and the length of the free surface.

Surface tension force = o * length of the free surface
Air

Free surface
AN NN

Liquid

KK X

Pressure Inside a Water Droplet, Soap Bubble and a Liquid Jet

For a spherical droplet: radius R, internal TRZP
pressure P, the force balance on a

. . i 21 Ro
hemispherical free body gives:

TR*°P=2ntRo Y

_20
R

For a Soap(or hollow)bubble: Soap

— vy T—=5
bubbles have two surfaces on which / \ / -
surface tension ¢ acts. free body || a ::

- f—
gives: <
.‘_

s
ZdzP = 2(m d o)
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Chapter one General Introduction and Properties of Fluids

Fore a cylindrical liquid jet of radius R, P (2RL) T
A

the force balance gives:

2RLP =0 2L

Hence, the action of surface tension is to

increase the pressure within a droplet of
liquid or Soap bubble or within a small liquid jet.
See Example 1.22-1.26

2.4.2 Capillarity: Capillarity is a phenomenon by which a liquid

(depending upon its specific gravity) rises into a thin glass tube above or
below its general level. This phenomenon is due to the combined effect of
cohesion and adhesion of liquid particles.

It is useful to re-mention here the attraction force types.

/ Attraction force \

Adhesion: between the fluid and the boundary Cohesion: between the fluid particles

Adhesion > Cohesion Cohesion > Adhesion
Meniscus concave Meniscus convex

Y e
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Chapter one General Introduction and Properties of Fluids

Capillarity in a tube:
Balancing forces in y direction:

1- Surface tension force = mdo cos@
(0)

2- Force due to weight = mg = pVg = p- d*hg "\

—e—ei |- -

s
ndo cosO = pZdzhg

_ 40 cos 6

pgd ——
For example: the surface tension coefficient of water
Equals to 0.074 N/m at 20 °C.

For water and glass :0=0. (6=Angle of contact of the water surface)
Hence the capillary rise of water in the glass tube

ih= T

pgd
Bulk Modulus of compression (E)

_ Change inpressure _ dP

volumetric strain |d_V
V

Units: N/m?

Perfect Gas

The perfect gas is defined as a substance that satisfies the perfect gas law.
Pv=RT, or P=pRT

T: must be absolute (in Kelvin)

R is the gas constant (J/kg.K)

P: absolute pressure (N/m?)

Vapor pressure (Pv)

The pressure value at which the liquid molecules escaping from the liquid

surface. The vapor pressure of a given fluid increases with temperature.
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Chapter one General Introduction and Properties of Fluids
For example, table below, displays some values of water vapor pressures at

different temperatures,

Temperature Pv (Pa)
(°C)
0 588.3
5 882.54
10 1176.36

See Example 1.27-1.40
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Chapter Two Pressure Measurement

Chapter Two

FLUID STATICS
PRESSURE MEASUREMENT

/ Fluids \

Gases Liquids

Gases: occupy the whole volume of container. The viscosity increases with
increasing temperature, due to the increase of momentum change between
layers.

Liguids: form a free surface. The viscosity decreases with increasing
temperature. Because in liquids, the molecules are so much closer than in
gases, so with temperature increase, the cohesive forces hold the molecules

may decrease.

2.1. Pressure of A Liquid

When a fluid is contained in a vessel, it exerts force at all points on the sides
and bottom and top of the container. The force per unit area is called
pressure.

It is the normal force pushing against a plane area divided by the area. It

results from the continuous movement of molecules.

ar
dA

Units:
e N/m? (Pascal), Ib/ft? (psf), Ib/in? (psi), or bar

e 1 bar = 10° Pascal

e Sometimes, the pressure is expressed as a pressure head, m-fluid
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Chapter Two Pressure Measurement

e In industrial, they may used Ckgz — ol _ DOBIN _ 981 kPa

m cm? cm

2.2. Pressure Head of a Liquid
Consider a vessel containing liquid,

Now, Total pressure on the base of the cylinder = Weight of liquid in the

Cyllnder Cylinder
F.A=y.A.h T
h
~ F=vy.h l

v

s~ h= E — Liquid |4—'-1'h
|4

wherey =w = (pg)
2.3. Pascal’s Law (Pressure Acting on A Point)

It can be proven that the pressures acting on a point at rest, has the same
value in all directions. Let us assume a particle of a fluid at rest, with free
body diagram shown in figure.

z PidA

A |
5 dz ds
Padydz ‘

| 0

dxdydz/2 lT
pgdxay Psdrdy

A4
o]

d4 =ds- dy=dy - dz/sinb
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Chapter Two Pressure Measurement

> F=0

F, = Pdydz — PidAsinf = 0

dz

Hhdydz = Pidy sin ¢

sin
=1

dax cos 0

1
F, = Pydydx = ;pgd:}:dydz + Pdy—
2 cos

1
);_; == )1 T apgdz
dz — O, 1]")3 = )l
)l = 1]"_}? - I)Li

Note: Pressure doesn’t vary horizontally, provided that the fluid is
connected. To illustrate this statement, we may refer to the figure below.

Atmospheric pressure:

Water
a b c d
Depth 1 L ) . °
/ Mercury
1
A b C D
Depth 2 (] (] | o |

Points a, b, ¢, and d are at equal depths in water and therefore have
identical pressures. Points A, B, and C are also at equal depths in water and
have identical pressures higher than a, b, ¢, and d. Point D has a different
pressure from A, B, and C because it is not connected to them by a water
path.
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Chapter Two Pressure Measurement
2.4. Absolute and Gauge Pressures

Atmospheric pressure:

The atmospheric air exerts a normal pressure upon all surfaces with which
it is in contact, and it is known as atmospheric pressure. The atmospheric
pressure is also known as ‘Barometric pressure’.

Gauge pressure:

It is the pressure, measured with the help of pressure measuring instrument,
in which the atmospheric pressure is taken as datum.

Gauges record pressure above or below the local atmospheric pressure,
since they measure the difference in pressure of the liquid to which they are
connected and that of surrounding air.

Absolute pressure:

It is necessary to establish an absolute pressure scale which is independent
of the changes in atmospheric pressure. A pressure of absolute zero can
exist only in complete vacuum.

A schematic diagram showing the gauge pressure, vacuum pressure and the

absolute pressure is gi i i
Positive gauge Atmospheric
pressure :l' pressurc

Negative gauge
pressure or vacuum

y
A

Pressure ——»

A
Absolute

«— | 7 PIEsstIc — Relationship between pressures.

Y
Zero absolute pressure —p

Mathematically:
e, Paps = atm+Pg & Poac = Patm — Paps
See Example 2.1-2.10
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Chapter Two Pressure Measurement
2.5. Measurement of Pressure

The pressure of a fluid may be measured by the following devices:

1- Manometers:
devices used for measuring the pressure at a point in a fluid by balancing
the column of fluid by the same or another column of liquid. These are
classified as follows:
(a) Simple manometers:
(i) Piezometer,
(i)U-tube manometer, and
(ii1)Single column manometer.
(b)Differential manometers.

2- Mechanical gauges:
in which the pressure is measured by balancing the fluid column by spring
(elastic element) or dead weight. Generally, these gauges are used for
measuring high pressure and where high precision is not required. Some
commonly used mechanical gauges are:

(i)Bourdon tube pressure gauge,

(if)Diaphragm pressure gauge,

(iii)Bellow pressure gauge, and

(iv)Dead-weight pressure gauge.
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Chapter Two Pressure Measurement
Manometers: devices that employ liquid columns for determining

differences in pressure:

Open

1- Piezometer Manometer: The simplest type -
of manometer consists of a vertical tube, T
open at the top, and attached to the container "
in which the pressure is required, it is used
for small positive pressures.

2- U-Tube Manometer: This type of
manometer consists of a tube formed .-
into the shape of a U filled with the

same fluid to be measured. It is used
for small positive and negative

pressures.
—/
) ) Open
3- U-Tube Manometer with Multi-
Liquids: It is U tube with using
another liquid(s) of greater gravity. It 71\ B
Is used for greater positive and
negative pressure. A ) hy
h,
|t _._
72
(gage >
fluid)
—
- J
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Chapter Two Pressure Measurement
General Procedure in Working with Manometers Problems.

1- Start at one end and write the pressure there.

2- Add to the started pressure the change in pressure in the same unit
from one meniscus (liquid surface) to the next (plus for lower
meniscus and minus for higher)

3- Continue until the other end of the gage, and equate the expression to
the pressure at that point.

Py +y1hy —y2hy —y3hs = P

Or, Py — Pg = —y,hy + y2h; +v3hs3

Note: If any tube section is filled with gas, then the elevation in this section
can be ignored because the specific weight (y) of gases is much less than
liquids. For example, in the figure shown, if fluid 1 is a gas, then the

manometer relation will be: .
Py — Pg = Yz2h3 +v3h3 ;

l'r13

h

-

h]_

.
|
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Chapter Two Pressure Measurement
Inclined Tube Manometer: this type of manometer is designed to increase

the accuracy of pressure measurements.

PA+)/1h1—)/2lSin9—)/3h3 =PB

Mercury Barometer: it consists of a glass tube P, .
. ; | Mercury Vapor
closed at one end and filled with mercury, and T [ Pressure

inverted so that the open end is submerged in
mercury. It is used to measure the atmospheric

pressure, Pa

Py =Yugh+ Py hi v

% Mercury

Pv: is the pressure of mercury vapor
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Chapter Two

Pressure Measurement

Example 2.3: For the closed tank shown in figure, the pressure at point A is 95 kPa

absolute, what is the absolute pressure at point B?

A A B T
Air 2 m
4m Air v *T
. : —X— Z 4m
Solution: First compute py, = py/RT = =
(95000)/[287(293)] = 1.13 ke/m’, hence 7, = D s Water
(1.13)981)=11.1 N/m’. Then proceed around l
hydrostatically from point A to point B:
95000 Pa+(11.1 N/m*)(4.0 m)+9790(2.0)- 9?9[1{4,[}]—[%] (9.81)(2.0)=py
Solve for py =75450Pa  Accurate answer.
If we neglect the air effects, we get a much simpler relation with comparable accuracy:
95000+ 9790(2.0)-9790(4.0) = py, = 75420 Pa  Approximate answer.
e ™
Example 2.4: The mercury )
manometer shown indicates a
differential reading of 0.30 m.
. ng of Water 0-50m Oil
Determine the differential pressure
between pipe A and pipe B. What is 4
the pressure value in pipe B when the + 0 1;5 JFB
pressure in pipe A is 30-mm Hg i
vacuum? (Sqi=0.83, Sp=13.6) I
' Mercury 0.30m
J N
-~/
-

\‘/\ \r ) 232 Kfa
§a= 3¢ ow

o T.v:}‘.'_ c 7(':(64":]':!(0? T
ﬂ\ > (..1\ Cs ‘4-00256‘:

:- ﬁy— fa €33 23 49 = Y1834 48 @ i

E |
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Chapter Two Pressure Measurement
Example 2.5: For the inverted manometer shown in figure, if Pg-Pa= 90 kPa, what must

the height H be?

(- 0
oil,
SG =0.827 |
18 cm

Solution: Gamma = 9790 N/m’ for water g
and 133100 N/m’ for mercury and Water
(0.827)(9790) = 8096 N/m" for Meriam red H Mercury
oil. Work your way around from point A to @ — 4
point B:

pa —(9790 N/m’)(H meters)—8096(0.18) 35 cm

+133100(0.18 + H+0.35) = pg = p, +97000.

Solve for H=0226m=22.6cm Ans. 4 @

Bourdon Gauge
Bourdon gauge is a typical device used for measuring (high as well as low pressures)
gauge pressure. It consists of a hollow, curved, flat metallic tube closed at one end; the

other end in connected to the pressure to be measured. A scaled plate and pointer are
needed for indication.

Bourdon tube

Rack

Pinion

Pointer

Fressure
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Chapter Three Forces on Immersed Surfaces

Chapter 3

Forces on Immersed Surfaces

In the design of submerged devices and objects, surfaces, dams, surfaces on ships, and
holding tanks, it is necessary to calculate the magnitude and location of
forces that act on both plane and curved surfaces. This subject will be
divided into two titles; plane and curved surfaces.

1- Plane Surfaces (Horizontal; Vertical and Inclined Surface)

V Free surface

dA = dx ﬁf_‘l.‘

Plan view of arbitrary plane surface

Cp: Center of pressure force
CG: center of geometry
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Chapter Three Forces on Immersed Surfaces
The total force of the liquid on the plane surface is found by integrating the

pressure over area.

F=deA
A

Using gauge pressure, the local pressure is

P = yh =y ysinf

~F=[ yysind dA

o
.-.F=ysin9jydA
A

h is measured vertically down from the free surface and y is measured from
point O on the free surface.

We know that the distance to a centroid is defined as:
1
y=- f y dA

A
A

~F=ysindyA= yhA=P.A
Where Pc is the pressure at the centroid.

How to find the location of the resultant force F?

Generally, we termed to the location of the resultant force by y,. Firstly, we
should defined the well-known rule that says: the sum of the moments of all
the infinitesimal forces acting on the area A must equal the moment of the
resultant force.

przjy PdA = fy ysin@ydA=ysin9fy2dA
A A A

But, I, = [, ¥*dA isthe second moment of area about x-axis
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Chapter Three Forces on Immersed Surfaces

WF =ysind I,

. _ vy sind I
P ~ yy Asiné
I, = L, + Ay? (Parallel axis theorem),

Where Iy is the second moment of area about the centroid axis.

L +AY?
— Ixc
=y +

This equation clearly shows that the resultant force F doesn’t pass through
the centroid but it always below it.

Y A =ba
a
2
c _ 1,3
®—x - Ixs ].Zba
a
2 _ 1 3
y Y I)L ﬁab
]
2 2 I,.=0
A_JT_RZ

I, =0.1098R*
I,=0.3927R*
4R ;

| | o lye=0
| R i R | ’

Page 31 of 63



Chapter Three Forces on Immersed Surfaces

— — 4
4R I, =1, = 0.05488R

3r

1,.=-0.01647R"*

Note for horizontal and vertical surfaces:

+» Horizontal surface

h
P,

P.=vy.h
F=P.A
yp=h-=yc

where : P, = pressure at the gate centroid = y.h, for same fluid
A = Area of the gate

+ Vertical surface
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Yp =Yty = yC+hC.A
where : I,. = moment of inertia for the gate about the centroid

Example .1. Fig. 3.7 shows a circular plate of diameter 1.2 m placed vertically in water in
such a way that the centre of the place is 2.5 m below the free surface of water. Determine: (i) Total
pressure on the plate. (ii) Position of centre of pressure.

Solution. Diameter of the plate,d=1.2 m Free water surface
Atea, Fiticisisiiiiiid
m™ ;2 T 2 2
A=Ed’ =7 x1.2°=1.13m | -
¥=25m f pt
(/) Total pressure, P:
Using the relation: ) L 4

P=wix=981x113x25 ¥ __

27.7 kN (Ans.) |¢1 2 m>‘

(ii) Position of centre of pressure, h:

Using the relation: Fig.3.7
N
h= S +7%
Ax
where, I, = 2d*=1 x12=0.1018 m*
64 64
7= QM08 5 s5-2536m
1.13x2.5
ie. h = 2.536 m (Ans.)
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Example .2. A rectangular plate 3 metres long and 1 metre wide is immersed vertically in

water in such a way that its 3 metres side is parallel to the water surface and is 1 metre below it.
Find: (i) Total pressure on the plate, and (i) Position of centre of pressure.

Solution. Width of the plane surface, b=3 m

Depth of the plane surface, d = 1 m

Area of the plane surface, Free water surface

P A T TR e e e
A=>bxd=3x1=3m" T - 'T“~-'—'» S
—_— S E
.\—l+§—1.5m b ¢
(7)) Total pressure P: ‘ = A
Using the relation: vy _ |- —___'.g =
P=wAx =981 x3x 1.5 -y
= 44.14 kN (Ans.) —b=3m >
(if) Centre of pressure, h:
g Fig. 3.8
Using the relation: h= f_ +X
Ax
3 3
But, I, = ba” _3XLT _ 4 osm?
12 12
— 025 _
h = 115 +1.5=1.556m
ie. h = 1.556 m (Ans.)

Example 3. A circular opening, 2.5 m diameter, in a vertical side of tank is
closed by a disc of 2.5 m diameter which can rotate about a horizontal diameter.
Determine:
@) The force on the disc;
i) The torque required to maintain the disc in equilibrium in vertical
position when the head of water above horizontal diameter is 3.5 m.

Free surface

Circular
disc
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Chapter Three Forces on Immersed Surfaces
.. Area of the opening,

4= %dl =% x25°=491m"
Depth of C.G., X =35m

(7) Force on the disc, P:
Using the relation:
P=wix=981x491=x35
168.6 kN (Ans.)

(i) Torque required, T:

In order to determine the torque (7) required to maintain the disc in equilibrium, let us first
calculate the point of application of force acting on the disc, i.e. centre of pressure of the force P.
The depth of centre of pressure () is given by the relation:

h o= I—’i+f=—(“’fﬁ4xfﬂ)+f [*.'IG n d“]
Ax (n/4xd*)X

4
_ (11:!'54)(2.5) +35=361m

(n/4x25)x3.5

=—X

i.e., the force P is acting at a distance of 3.61 m from the free surface. Moment of this force
about horizontal diameter X — X

= P(h—X)=168.6 (3.61 —3.5)
= 18.55 kNm. (anticlockwise)

Hence a torque (7) of 18.55 kNm must be applied on the disc in the clockwise direction to
maintain the disc in equilibrium position. (Ans.)

EXAMPLE:
The gate in Fig. below is 5 ft wide, is hinged at point B, and rests against a smooth

wall at point A. Compute (a) the force on the gate due to seawater pressure, (b) the

horizontal force P exerted by the wall at point A, and (c) the reactions at the hinge B.

p Wall
Solution g .
Part (1) By geometry the gate is 10 fi long from A to B, and its centroid is halfway between. or at eleva- Seawater:
tion 3 ft above point B. The depth fie; is thus 15 — 3 = 12 fi. The gate area is 5(10) = 50 fi*. Ne- 64 bt
glect p, as acting on both sides of the gate. From Eq. (2.38) the hydrostatic force on the gate is
F = peeA = YheeA = (64 1bf/f7)(12 fN50 i) = 38,400 Ibf Ans. (a) - N
Part (b)  First we must find the center of pressure of F. A free-body diagram of the gate is shown in Fig. b
E2.5b. The gate is a rectangle, hence Gate “
L _ b _ GM0R _ . o
IA).—O and IH—F—T--“.II‘I B P J_
-
The distance I from the CG to the CP is given by Eq. (2.44) since p, is neglected. H_f"’ i |
inge 1

I, sin 0 _ (417 i*)(i5)

hecA (1260 i)~ 7R

I=—=yep=+
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Part (c)

The distance from point 8 w force F is thus 10 — 1 = 5 = 4583 fi. Summing momenis coun-
terclockwise about B gives

PLsin 0= F(5 =)= Pib ft) — (38200 Ib)i4.583 fty =0
or F=29300 Ibf Anx. (b)
With F and P known, the reactions B, and 8, are found by summing forces on the gate
S F.=0=B8,+ Fsin #— P=B,+ 38400(0.6) — 29,300
or B, = 6300 1bf
2 F,=0=B, — Fcos 6 = B, — 38 400(0.8)
or . = 30,700 b Ans. o)

This example should have reviewed your knowledge of statics.

See Examples (3.1-3.31) Ref. 4.

Example: A 60 x 80 cm

window on a submersible
lake. If it is on a 45° angle
with horizontal, what force
applied normal to the window
at the bottom edge in needed
to just open the window, if is F
hinged at the top edge when

the top edge is 10 m below

the surface?

F=24.445 KN ans.

Fopen ~
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Example: find the force necessary to
hold the gate in the position shown

in figure.

F=50.95 KN ans.
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Example: find the force
necessary to hold the

gate in the position am

shown in figure. X Water

Example 3: A tank of oil has a right-
triangular panel near the bottom, as in
,Figure. Omitting Pa, find: a) hydrostatic force
2) CP on the panel

Pq

5m Oil: p = 800 kg/m?

v

I m

4dm

2m
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Part (a)

Part (b)

Solution

The triangle has properties given in Fig. 2.13¢. The centroid is one-third up (4 m) and one-third
over (2 m) from the lower left corner, as shown, The area is

H6m)(12 m) = 36 m’
The moments of inertia are

bt (6 m)(12 m)*

= = =2 4
AX 36 36 -88 m

/

' _ b(b = 25)L* _ (6 m)[6 m — 2(6 m)|(12 m)* _ 4
and I, = 7 E 7 = =72 m

The depth to the centroid is hieg = 5 + 4 = 9 m; thus the hydrostatic force from Eq. (2.44) is
F = pghegA = (800 kg/m*)(9.807 m/s*)(9 m)(36 m?)
= 2.54 % 10" (kg - m)/s* = 2.54 X 10° N = 2.54 MN Ans. (a)
The CP position is given by Egs. (2.44):
I, sin@ (288 m*)(sin 30°)

_ Iysinb _ _(—72 m*)(sin 30°) N ‘
Xcp = oA = OmBemy - +0.111 m Ans. (b)

The resultant force F = 2.54 MN acts through this point, which is down and to the right of the
centroid, as shown in Fig. E2.6.
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2- Curved Surfaces

We know that the pressure force is normal on each element of the surface. For curved
surfaces, we calculate the components (horizontal and vertical) rather than the
resultant, this for simplicity.

2-1 The horizontal component

Fh=deh= deAcost fyydAcosH
A A A

Fh=Vf)’dAh
A

“Fp=vyAp

Where Ay is the vertical projection of the curved area and ¥y is the centroid of the
projected area.

W4
Y
dF dFv
I /A) dA v dAn
Fn c @ ~
—_—

2-2 The vertical component

szdeV= deAsinGz JyydAsinQ

FV=ijdAV

The last integral represents the fluid volume over the curved surface until the free
surface (at which the pressure is atmospheric), hence we can say that the vertical
component is the fluid weight over the curved surface.

FV=VV
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Chapter Three Forces on Immersed Surfaces
e The fluid volume V is found by extending the curved surface to the free surface

level (P = Pam = 0).

e When the liquid is below the curved surface, an imaginary or equivalent free
surface can be constructed. The weight of the imaginary volume of liquid
vertically above the curved surface is then the vertical component of pressure
force on the curved surface.

e Theimaginary liquid must be of the same specific weight as the liquid in contact
with curved surface.

o Z

_ " .
' ‘ Liquid :

r’ ?’

l Liquid below the curved surface Jj above the curved surface

Note: the location of the vertical component action must pass through the centroid of
the effective volume.

See Examples (3.32-3.42) Ref. 4.
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:xample: Gate AB is a quarter-circle 10 ft
wide and hinged at B. Find the force F just

sufficient to keep the gate from opening.
The gate is uniform and weighs 3000 Ibf.

Solution: The horizontal force is computed
as if AB were vertical:
Fy = vhegA,o = (62.4)(4 ft)(8x 10 ft*)
=19968 lbf acting 5.33 ft below A

The vertical force equals the weight of the
missing piece of water above the gate, as
shown below.

F, = (62.4)(8)(8 x 10)=(62.4)(m/4)(8)* (10)
= 39936—-31366 =8570 1bf

39936 1bf

31366 Ibf

4 ft 4 fi
46 ft | 3.4 fi| = 4r/3x

The line of action x for this 8570-1bf force is found by summing moments from above:
2 Mg (of F,)=8570x = 39936(4.0)-31366(4.605), or x=1.787 fi

Finally, there is the 3000-Ibf gate weight W, whose centroid is 2R/x = 5.093 ft from
force F, or 8.0 = 5.093 = 2.907 ft from point B. Then we may sum moments about hinge B
to find the force F, using the freebody of the gate as sketched at the top-right of
this page:

2 Mg(clockwise) = 0=F(8.0)+(3000){2.907)—(8570)(1.787)— (19968)(2.667),

59840

or F =T74801bf Ans.
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Example: The quarter circle gate BC in P
Fig. P2.86 is hinged at C. Find the P = a
horizontal force P required to hold the gate
stationary. The width b into the paper
is 3 m.

Solution: The horizontal component of Fig. P2.86
water force is

Fy = 7heA = (9790 N/m?)(1 m)[(2 m)(3 m)] = 58,740 N

This force acts 2/3 of the way down or 1.333 m down from the surface (0.667 m
up from C). The vertical force is the weight of the guarter-circle of water above

gate BC:
Fy = #(Vol)yue = (9790 N/m™ )[(/4)(2 m)* (3 m)] = 92,270 N

F, acts down at (4R/37) = 0.849 m to the left of C. Sum moments clockwise about
point C:
2M =0=(2 m)P—(58740 N)(0.667 m)—(92270 N)0.849 m)=2P—-117480
Solve for P=58700 N=587kN Ans.

Example .A  hemisphere projection of "
diameter0.6 m exists on one of the vertical sides

of a tank. If the tank contains water to an PRt
elevation of 1.5 m above the centre of the Water | p
hemisphere, calculate the vertical and horizontal
forces acting on the projection.

Vs

Solution

[

l
L.
i

M
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Chapter Three Forces on Immersed Surfaces
Vertical force, F), = F v, Fy,
= Weight volume of water MNST —
weight of volume of water LNST

= Weight of water contained by the
hemisphere LNM

1(4
= 1'.J><—(—:IIR3)
2.3

—981x Lx2 x 1 % (0.3)°
273

= 0.555 kN (Ans.)
Horizontal force,Py= wAXx
= 9.81x% 1t % (0.3)° x 1.5 = 4.16 KN (Ans.)

Example. shows a curved surface LM, which is in the form of a quadrant of a circle of
radius 3 m, immersed in the water. If the width of the gate is unity, calculate the
horizontal and vertical components of the total force acting on the curved surface.

/
SOIUt'On Free water surface ;
- T'ﬁ: ----------- A 5
Radius of the gate=3 m T To| ?L "
Width of the gate=1 m P H T
LO=OM =3 m ' l

Horizontal component of total force, 3m
Fn: Horizontal force exerted by water on gate is given by, P l
Frh=Total pressure force on the projected area of curved surface I

LM on vertical plane = Total pressure force on OM M
(projected area of curved surface on vertical plane)

= 0M = 1) =wdx

Curved surface

=25m

|

But. A=O0OMx1=3%1=3m and¥=1+

Fpp =981 =(3=1)=25=T3.57T kN (Ans.)
The point of application of Py is given by:

=ty
Ax N ;
where, I. = M.OJ of OM about its c.g. = bf_J = ! :; =225m’
- 125
h = {Sx_l}—_j'_":? + 2.5=2.8 m from water surface (Ans.)

Vertical force (F ) exerted by water is given by:
Fp = Weight of water supported by LM up to free surface
= weight of portion ULMOS
= weight of ULOS + weight of water in LOM
= w (volume of LLOS + volume of LOM)

951 LIxLD+Tmilﬂxl:|=9.Sl|:lx3+ ’“;3" x1i|

981 ( 3+ 7.068) kN =98.77 KN (Amns.)
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Example: Find the force F required to hold the gate in the position shown in figure.

The gate is 5 m wide. Vi .

08t |

F=437210.7N ans Wate

Hing 5m

Example: Find the force F needed to just open the gate shown. The gate is 4 m wide.

F=549228.7422 N ans
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Chapter 4

Buoyancy and Stability

Buoyancy: resultant force exerted on a body by static fluid which is submerged or
floating. It always acts vertically upward.

e The buoyancy force acts through the centroid of the displaced liquid volume.

e It can be proven that the Buoyancy force equals the weight of the displaced
(') liquid.

o Forequilibrium, Fg=W, Fg =1 Vdisplaced liquid

Example: A 0.2 m cube is floating as shown, find the density of the cube material.

Solution:

Volume of the cube = 0.2 x 0.2 x 0.2 = 0.008 m3 v 0.05
Weight of cube , W = v Visplaced liquid Water

Weight of cube displaced in water(= v Vdisplaced liquid) 0.15
= 9810 x 0.2x 0.2x 0.15 = 58.86 N

Weight of cube ,w = yV
58.86=" (0.008)
ooy =px9.81 =7357.5; .. p=750m3/ Kg

Example: A spherical object of 1.45m diameter is completely immersed in a water
reservoir and chained to the bottom. If the chain has a tension of 5.20 kN, find the
weight of the object when it is taken out of the reservoir into the air.

Solution.  Given: d= 1.45 m;T=5.20 kN. b,

Buoyant force, Fg=W (weight of the object) +T(tension in the chain)

.'.W= FB— T Spherical
_ 4 1.45 ? 5 object

= 10.46 kN (Ans.)




Chapter Four Buoyancy and Stability
Hydrometer: an instrument used to measure the specific gravity of liquids. It

consists of bulb and constant area stem. When placed in pure water the specific
gravity is marked to read 1.0. The force balance is

W = Ywater Vdisplaced

Where W is the weight of the hydrometer and V is the submerged volume below

the S=1.0 line. In an unknown liquid of specific gravity, yx, a force balance would
be:

W =y, (V — A Ah)

Where A is the cross-sectional area of the stem. Equating the two equations above
gives

Where SX =yx/ Ywater

l
EEENENNER

Water

Heavy
substance

(a) (b)
Hydrometer: (a) in water, (b) in unknown liquid
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Stability

Stability becomes an important consideration when floating bodies such as a boat
or ferry is designed. It is an obvious requirement that a floating body such as a boat
does not topple when slightly disturbed. We say that a body is in stable
equilibrium if it is able to return to its position when slightly disturbed. Failure to
do so denotes unstable equilibrium

Stability of submerged bodies

W Fp
" W B
I . ;
i '
Y, | |
’ = el
C oG
2 A 26
” _1 ,L
! v
Fp Fp W
W /./';
i;‘ 2
[\0“1“()” ; ‘,?7 o N RU(XI“UH [ i
€ .¢GC R éC
& C |
2 9G
;‘1
F B W
(a) (b) (¢)
Unstable Neutral Stable

Stability of floating bodies: in this case, the stability is more complicated to deal with.
When the body is slightly rotated about O,

1- The center of gravity remains unchanged.
2- The center of buoyancy is changed to C’
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The center of the buoyancy (C, the centroid of the displaced volume of fluid) of a

floating body depends on the shape of the body and on the position in which it is
floating.

Extending a line from C’ vertically. It will intercept with a line extended from the
point O (axis of rotation) at a

point M. This point M is ey

called the Metacenter.

Now: .. o

If M is above G, the body is Ge

stable, otherwise, it is Ce C
unstable and according to the

following relation:

- I, _ _——
GM = + CG
Vdisplac
Where GM : distance between G bI3
and M (metacentric height). L lo =25
, , F L b: length into the paper
+ ve sign : when G is lower than C

—ve sign : when G is higher than C

CG distance between C and G

lo: second moment area of the waterline area about an axis passing through the Origin
0.

Visplac: Volume of displaced liquid or (submerged body)

Example: A 0.25 long cylinder with 0.25 m diameter composed of material with
density of p = 815 kg/m*. Will it float on water on its base?

Solution:
<— 025m —>

GM positive? If yes that lead to the body is stable.

I O
GM =negative  the body is unstable. 1 G ~
Coe h
V
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Example: .A wooden block of specific gravity 0.75
Wooden block

floats in water. If the size of the block is ) | & (sp. gr.=0.75)

1mx0.5mx0.4m, find its metacentric height. | S
E 3
Solution. = (B‘ p
Size of the block = 1Imx 0.5mx 0.4m= 0.2 m® 12 ol
l€— 0.5 m —p]

Specific gravity of wood = 0.75

Y wood =0.75 % 9.81 = 7.36 kN/m3 Note in this example: B = C

Weight of wooden block =y woed X VOlume

=7.36 x1x0.5x0.4=1.472 kN

Let depth of immersion =h metres.

Weight of water displaced =y wawer X VOolume of the wood submerged in water
=981 x1x05xh=49h kN

Now, for equilibrium:
Weight of wooden block = Weight of water displaced ie, 1472=49h

h = -~ = 0_3
or, 49 m
.. Distance of centre of buoyancy from bottom i.e.,
h 03
OB = —=—7=0.15
2" 72 -
_ 04 _
and, oG = - - 02m
BG = OG-0OB=02-0.15=005m
Also, BM = 1
14
Where, / = Moment of inertia of a rectangular section
1x0.5° 4
= =0.014
12 o

and, V' = Volume of water displaced (or volume of wood in water)
= 1x05%xh=1%x05%03=0.15m’

_ 1 _0.0104 _
BM = 7 =015 0.069 m
We know that the metacentric height,
GM = BM—-BG (" G 1s above B)

= 0.069 — 0.05=0.019 m (Ans.)
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Chapter Five

Accelerated Fluid

Chapter-5 Accelerated Fluid (Forced Vortex Flow)

When a fluid mass is moving with constant acceleration, we assume no relative motion

between the fluid layers, i.e. no shear stress.

1- Linear motion with constant acceleration.

Assume a fluid in a vessel (of unit width), the vessel is moving with constant acceleration.

dx

dy

n

opP .

Equation of Newton 2" law in x-directio

ma, = Y F

apP
dmay, = Pd,, — (P + —dx) dy

0x
apP
dma, = —adxdy
10P
. ax - _;a (1)

Fluid
at rest

—=pG  where G = [a; + (g + a,)]"?

These results are independent of the size or
shape of the container as long as the fluid is

contmuousty bUIIIIMW




Chapter Five Accelerated Fluid

Equation of Newton 2™ law in y-direction

ma, =Y F,

dma, = Pd, — (P + Z—idy) dx — gdm

dapP
dma, = —@dxdy —gdm

dm = p(dx *dy * 1)

“ay=—g—-— )

Note: if ay=0, the pressure along y direction will vary hydrostatically i.e. P = yh.
ap P

But, dP = adx + ady

Hence, from equations (1) and (2),

dP = —pa,d, — (pg + pa,)dy (3)

The line of constant pressure, can be found from the above equation,

Presure at any point a P, = p.G.As where As = h.cos(0)
by settingdP =0

= paydy = —p(g + ay)dy

d a
P A S tan @ (negative slope).
dx g+ay

The line of constant pressure is free surface itself.

Ay

y
for free surface — = —
X gtay
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Example 01: A drag racer rests her coffee mug 3em

on a horizontal tray while she accelerates at 7 I JL\§| ]
m/s2. The mug is 10 cm deep and 6 cm in L \g&
diameter and contains coffee 7 cm deep at rest.
(a) Assuming rigid-body acceleration of the
coffee, determine whether it will spill out of the — a,=7m/s’
mug. (b) Calculate the gage pressure in the
corner at point A if the density of coffee is 1010
kg/m3. 3 cm —=

—_

fCm

i )/

Solution

a)) The free surface tilts at the angle 8 given by above Eq. regardless of the

shape of the mug. With a, = 0 and standard gravity,

_ 1 Ay _ _; 1.0 _ o
= tan P tan 981 35.5

If the mug is symmetric about its central axis, the volume of coffee is
conserved if the tilted surface intersects the original rest surface exactly at

the centerline, as shown in Fig.

Thus the deflection at the left side of the mug is
z = (3 cm)(tan 8) = 2.14 cm Ans. (a)
This is less than the 3-cm clearance available, so the coffee will not spill

unless it was sloshed during the start-up of acceleration.
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b)) When at rest, the gage pressure at point A is given
Pa = pe(Zsurt — 24) = (1010 kg/m’)(9.81 m/s*)(0.07 m) = 694 N/m” = 694 Pa

During acceleration, applies, with G= [(7.0)? (9.81)?]%? = 12.05 m/s?.
The distance As down the normal from the tilted surface to point A is

As= (7.0+ 2.14) (cos 0) = 7.44 cm
Thus the pressure at point A becomes
pa= p G As=1010(12.05)(0.0744)= 906 Pa

_ _ Ans. (b)
which is an increase of 31 percent over the pressure when at

rest.
Example: 02

An open rectangular tank mounted on a truck is 5 m long, 2 m wide and
2.5 m high is filled with water to a depth of 2 m. Determine the following:

1.1 Maximum horizontal acceleration that can be imposed on the
tank without spilling any water.

1.2 The accelerating force on the liquid mass.
1.3 If the acceleration is increased to 6 m/s?, how much water is

spilled out? 5m
Solution 0_5,{
1.1: at max(a) without spill V1 AN
= V2 - 2x5x2 2m Iy
25+y
= ( > )x5x2 -y = 1.
tanf = % and Max a when tan = 2'5;1'5 = 9;;1 - a=196m/s?

1.2:F =mxa =p.V.a =1000*2 5% 2% 1.962 = 39240N =~ 39.24KN

6 .
1.3:a=6 %tane—m—T—wc—él.OSm

=~ V3 =0.5x4.08x2.5x2 = 10.21 m3, - Vspill = V1 —V3 = (2x5x2) — 10.21 =
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Chapter Five
Example: 03

Accelerated Fluid
A vessel containing oil is accelerated on a plane incline 15? with the
horizontal at 1.2 m/s°. Determine the following:

Solution:

.1 The inclination of the oil surface when the motion is upwards.
.2 The inclination of the oil surface when the motion is downwards.

1: ax = a,.cosa = 1.2 cos(15) = 1.16 m/s?

a2z | L —
az = al.sina =1.2 Sil’l(lS) = 0.31 m/SZ "./
0= tan‘l( —ax ) _ ( —1.16 ) _ _65330
- g+az/ \981+031)
2: ax = —ay.cosa = —1.2 cos(15) = —1.16 m/s?

az = —a,.sina = —1.2sin(15) = —0.31 m/s?
—ax
0 = tan‘l(

)_( +1.16
g+az)

— o
9.81 — 0.31> = 696

Example H.W.1

The tank shown in Fig. 1a is accelerated to the right. Calculate the acceleration ax needed to cause
C
[

the free surface shown in Fig. 1b to touch point A. Calculate also the pressure at point B.

C
1 ®
0.2m Air
ax Air
im Water — Water
2m
[ L J

B Fia. 1la
Example HW.2

2m
A

vl 4

Fig. 1b A
A closed box with horizontal base of 6x6 m and height of 2 m is half filled with water. It is given ax
=g/2 and ay=-g/4. Find the pressure at point b as shown.

l—b ax

ay

e
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Chapter Five Accelerated Fluid

Example: H.W

Example : Pressure in A Decelerating Tank of Liquid

The tank on a trailer truck is filled completely with | " _
gasoline, which has a specific weight of 42 Ibf/ft3 ma

o T 4 =

6.60 kN/m?3). The truck is decelerating at a rate of 1 ! .
) : ol -

10 ft/s% (3.05 m/s?).
(a) If the tank on the trailer is 20 ft (6.1 m) long and if the pressure at the top
rear end of the tank is atmospheric, what is the pressure at the top front?

(b) If the tank is 6 ft (1.83 m) high, what is the maximum pressure in the tank?

Now if the tank is assumed to be opened

find the following:

If the tank on the trailer is 20 ft (6.1 m) long and 6
ft (1.83 m) high, what is the pressure at the top
front and bottom rear? and what is the maximum
pressure in the tank? The width of truck is 2 m.
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Chapter Five

Accelerated Fluid

2- Rotation with constant acceleration

Assumptions:

e No pressure variation with 6 direction
e The horizontal rotation will not alter the pressure distribution in the vertical direction (i.e.

the pressure equals to P = yh).

Applying Newton’s 2" low in r-direction:

_dmar =ZE"

do

dr

dpP
P + —dr
dr

P
—prdfdrdz a, = Prdfdz — (P +=— dr) dzr do

oP
E =par

W —=prw? (1)

—maZZZP'ZZO’ azzo

opP
Prd@dr—(P+—

dz
.op_
e (2)

dz)rdrd@—prdrd@dzg=0

~
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Chapter Five Accelerated Fluid
But, dP = Lar + L dz
or 0z

dP = pr w?dr — pg dz (3) I i
I ]'
. 1 i / =5
—Pressure atany Point P(r,2): P =-pr1? w® —pgz M- Volume = 5 &% , 0K
WAEL == e o e g e )=
level 8
on the free surface, dP =0. 2 | ]_
¢ 1 ‘
w? (i——1>=9(22—21) |
22 >0
If we put point 1 at the z-axis so that r; =0 !
) R | R
T .
w? — = g(z; — z;) Equation of Parabola. LU
=
Example 04 For a cylinder rotating about its central axis

racer, placed on a turntable, and rotated about its central axis
until a rigid-body mode occurs. Find (a) the angular velocity
which will cause the coffee to just reach the lip of the cup

and (b) the gage pressure at point A for this condition. 0 r

Tem

Solution I

Jcm

The coffee cup in Example above is removed from the drag ) I
1
I

a) The cup contains 7 cm of coffee. The remaining distance i

of 3 cm up to the lip must equal the distance h/2 in Fig. G )
Thus fe— 3 cmn —=f=—3 cm —=
2n2 2 03 2
b 03m= LR _ 2003 m)
2 4g 4(9.81 m/s7)

Solving, we obtain
0% = 1308 or () = 36.2 rad/s = 345 r/min
b) To compute the pressure, it is convenient to put the origin of coordinates r and z at

the bottom of the free-surface depression, as shown in Fig. The gage pressure here is
Po =0, and point Ais at (r, z) = (3 cm, -4 cm). Equation (3) can then be evaluated

— —1 2 2 —
) o Po—zprw P9z

pa=0 +% (1010 kg/m?)(0.03 m)2(1308 rad?/s) 2- (1010 kg/m?)(9.81 m/s?)(-0.04 m)
= 396 N/m? + 594 N/m? = 990 Pa

This is about 43 percent greater than the still-water pressure pa =694 Pa
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Chapter Five Accelerated Fluid

Example 05

A 16-cm-diameter open cylinder 27 cm high is full of water. Compute the rigid-body
rotation rate about its central axis, in r/min, (a) for which one-third of the water will
spill out and (b) for which the bottom will be barely exposed.
Solution:

(a) One-third will spill out if the resulting paraboloid surface
IS 18 cm deep:

Q’R*  Q°(0.08 m)’
2g 2(9.81)

Q=235rad/s=224r/min Ans. (a)

h=0.18m= . solve for Q° =552,

16 cm

b) The bottom is barely exposed if the paraboloid surface is 27 cm deep:

h=027m=2008m)" e for Q=288 rad/s=275r/min Ans. (b)

2(9.81)

Example 06
A 0.225mdiameter cylinder is1.5mlong and contains water up to a height of 1.05m.

Estimate the speed at which the cylinder may be rotated about its vertical axis so that
i Axis of rotation
the axial depth becomes zero. e

Also, find the difference in total pressure force due to rotation:
(i) At the bottom of cylinder, and

/C'ylindcr

(ii) On the sides of the cylinder

«— 1.05m —>

4« |5m 4p|

Solution.
T2
w R~
= . W 1.
79 we ge
®” x 0.1125° 15%x2x98]
1.5 = = > _ L5x2x9381
o’ = =2325.33
o = 48.22 rad/s
o = 2nN
60
2nN
4822 = =55
60
P
N = w = 460.46 r.p.m (Ans.)
T
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Chapter Five Accelerated Fluid
(i) Difference in total pressure force at the bottom of the cylinder:

Total pressure force at the bottom before rotation,

before rot. = wAh =wV
where, w = 9810 N/m>,
A4 = Area of bottom = nR? =1t x 0-1125% = 0.03976 m’
h = 1.05 m.

Fitorere = 9810 % 0.03976 x 1.05 =409.55 N

After rotation, the depth of water at the bottom is not constant and hence the pressure force
due to the height of water will not be constant. [ 5 5 J

Consider an elementary ring of radius » and width dr as shown in Fig. Let = m2 r
g
be the height of water from the bottom of the tank up to free suface of water at a radius

Hydrostatic force on the ring at the bottom,

dF = w x area of ring x =

2.2
@wr

2g

= 9810 x 2mr dr x

2

=)
v
= 9810x2nrx;0—xr3dr l

g

= 3141.6 w’r'dr
Total pressure force at the bottom,

I R R

0.1125
2.3
Frww = |dF= [ 314160%%r
0
4 0.1125
= 3141.60° |- i ]
0

[ @ =48.22 rad/s, example 6.68]

01125%

= 3141.6x4822% x i

= 29252 N
". Difference in pressure force at the bottom

= F, before rot. F after rot.

= 409.55-292.52=117.03 N (Ans.)
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Chapter Five Accelerated Fluid
(ii) Difference in total pressure force on the sides of the cylinder:
Total pressure force on the sides of the cylinder before rotation,

F before rot. wAh
where, ® = 9810 N/m’ ,
A = Surface area of the sides of the cylinder up to height of water
= nD x height of water
= 1 x0.225 x 1.05=0-7422 m’, and

h = c.g. of the wetted area of the sides

- %x 1.05 = 0.525m.

Fyppory = 9810% 07422 x 0.525 =3822.5N

After rotation, the water is up to the top of the cylinder and force on the sides,

JFa\i‘term'r_ =wxd4dxh
where, w = 9810 N/m’
A = Wetted area of sides
= nD x height of water = x 0.225 x 1.5=1.06 mz, and
h= %x height of water = % x1.5=0.75 m.
F oo ror = 9810 x 1.06 x 0.75=7798.95 N
.. Difference in pressure force on the sides
= Fafter rot, F before rot.

= 7798.95 —3822.5 =3976-45 N (Ans.)

Example hw

A water-filled cylinder is rotating about its center line. Calculate the rotational speed that is
necessary for the water to just touch the origin and the pressures at A and B.

. C o
B | | R

2cm

10ecm i

10 cm : 10 em 10em %, 7 10cm

. After rotation
Before rotation
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