Optimization Fourth Class 2020 - 2021 By Dr. Jawad Mahmoud Jassim Dept. of Math. **Education College for Pure Sciences** University of Basrah Iraq

Chapter One

Basic Concepts

Lecture 8 Solved Problems

Problem (1):

Let the function $f: \mathbb{R}^2 \to \mathbb{R}$ is defined by $f(X) = x_1 e^{x_2} + x_1 x_2$. Does f has any critical points? Solution:

1: We find the gradient vector as

$$g(X) = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} \end{bmatrix}^T = [e^{x_2} + x_2 & x_1 e^{x_2} + x_1]^T.$$

2: Put g(X) = 0

Since $e^{x_2} + x_2 \neq 0$ for all x_2 in R ((because $e^{x_2} > 0$))

Then we conclude that the function

$$f(X) = x_1e^{x_2} + x_1x_2$$
 has no critical points.

Problem (2):

Show that the matrix $A = \begin{bmatrix} a & b \\ b & c \end{bmatrix}$, where a > 0 is positive definite if $ac > b^2$.

Solution:

Let $Y \neq 0$ in \mathbb{R}^2 .

We want to prove $Y^TAY > 0$.

$$Y^{T}AY = \begin{bmatrix} y_{1} & y_{2} \end{bmatrix} \begin{bmatrix} a & b \\ b & c \end{bmatrix} \begin{bmatrix} y_{1} \\ y_{2} \end{bmatrix}$$

$$= \begin{bmatrix} ay_{1} + by_{2} & by_{1} + ay_{2} \end{bmatrix} \begin{bmatrix} y_{1} \\ y_{2} \end{bmatrix} = ay_{1}^{2} + by_{1}y_{2} + by_{1}y_{2} + cy_{2}^{2}$$

$$= ay_{1}^{2} + 2by_{1}y_{2} + cy_{2}^{2} = a[y_{1}^{2} + \frac{2b}{a}y_{1}y_{2} + \frac{c}{a}y_{2}^{2}]$$

$$= a[y_{1}^{2} + \frac{2b}{a}y_{1}y_{2} + \frac{b^{2}}{a^{2}}y_{2}^{2} - \frac{b^{2}}{a^{2}}y_{2}^{2} + \frac{c}{a}y_{2}^{2}]$$

$$= a[y_1^2 + \frac{2b}{a}y_1y_2 + \frac{b^2}{a^2}y_2^2 - \frac{b^2}{a^2}y_2^2 + \frac{c}{a}y_2^2]$$

$$= a[(y_1 + \frac{b}{a}y_2)^2 + \frac{acy_2^2 - b^2y_2^2}{a^2}]$$

$$= a[(y_1 + \frac{b}{a}y_2)^2 + \frac{(ac - b^2)y_2^2}{a^2}]$$

Then

$$Y^{T}AY = a[(y_{1} + \frac{b}{a}y_{2})^{2} + \frac{(ac-b^{2})y_{2}^{2}}{a^{2}}]$$

Since $ac > b^2 \rightarrow ac - b^2 > 0$.

Hence
$$a[(y_1 + \frac{b}{a}y_2)^2 + \frac{(ac-b^2)y_2^2}{a^2}] > 0$$

Then, we have $Y^TAY > 0$.

Thus the matrix A is positive definite.

Problem (3):

Let the function $f: \mathbb{R}^2 \to \mathbb{R}$ is defined by $f(X) = x_1^2 e^{x_2^2} + x_2^2$. Show that the point $X^* = [0, 0]^T$ is the strong global minimizer of f over \mathbb{R}^2 .

Solution:

By Theorem (7):

 X^* is critical point + $G(X^*)$ is positive definite matrix X^* is a local minimizer point

By Theorem (5)

The function f is strictly convex $G(X^*)$ is positive definite matrix

By Theorem (12)

If The function f is strictly convex

The point X^* is unique global minimizer

1: We find the gradient vector as

$$g(X) = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} \end{bmatrix}^T = \begin{bmatrix} 2x_1e^{x_2^2} & 2x_1^2x_2e^{x_2^2} + 2x_2 \end{bmatrix}^T$$

2: We find the critical points as follows:

Put
$$g(X) = 0$$

$$\therefore 2x_1e^{x_2^2}=0 \to x_1=0.$$

And

$$2x_1^2x_2e^{x_2^2}+2x_2=0 \to x_2=0.$$

:. The critical point is $[0,0]^T$.

3: We find the Hessian matrix as follows:

$$\frac{\partial^2 f}{\partial x_1^2} = 2e^{x_2^2}, \quad \frac{\partial^2 f}{\partial x_1 \partial x_2} = 4x_1 x_2 e^{x_2^2} = \frac{\partial^2 f}{\partial x_2 \partial x_1},$$

$$\frac{\partial^2 f}{\partial x_2^2} = 4x_1^2 x_2^2 e^{x_2^2} + 2x_1^2 e^{x_2^2} + 2.$$

$$\therefore G(X^*) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

4: We prove $G(X^*)$ is positive definite matrix as follows:

Let $Y \neq 0$ in \mathbb{R}^2 . We want to prove $Y^T G(X^*) Y > 0$.

$$Y^{T}G(X^{*})Y = \begin{bmatrix} y_{1} & y_{2} \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} y_{1} \\ y_{2} \end{bmatrix} = \begin{bmatrix} 2y_{1} & 2y_{2} \end{bmatrix} \begin{bmatrix} y_{1} \\ y_{2} \end{bmatrix}$$

= $2y_{1}^{2} + 2y_{2}^{2} > 0$, for $Y \neq 0$.

∴By Theorem (7), we conclude that X^* is a local minimizer point.

Now, by Theorem (5), we conclude that the function *f* is strictly convex function.

Finally, by Theorem (12), we conclude that the point X^* is the unique global minimizer for the function f.

Problem (4):

Let $f: R^2 \to R$ is defined by $f(X) = 3x_1^2 + 4x_1x_2 - 4x_2^2$. Show that the point $X^* = [0, 0]^T$ is a saddle point for f. Solution:

1: We find the gradient of the function as follows:

$$g(X) = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} \end{bmatrix}^T = \begin{bmatrix} 6x_1 + 4x_2 & 4x_1 - 8x_2 \end{bmatrix}^T$$

2: We find the critical points as follows:

Put
$$g(X) = 0$$
.

Now, from (1) and (2), we get $x_1 = 0$ and $x_2 = 0$.

∴The critical point is $X^* = [0, 0]^T$.

3: We find the Hessian matrix as follows:

$$\frac{\partial^2 f}{\partial x_1^2} = 6 , \quad \frac{\partial^2 f}{\partial x_1 \partial x_2} = 4 = \frac{\partial^2 f}{\partial x_2 \partial x_1}, \frac{\partial^2 f}{\partial x_2^2} = -8 .$$

$$\therefore G(X^*) = \begin{bmatrix} 6 & 4 \\ 4 & -8 \end{bmatrix}.$$

4: Determine whether the Hessian matrix is positive definite or not.

Let $Y \neq 0$ in \mathbb{R}^2 .

$$\therefore Y^{T}G(X^{*})Y = \begin{bmatrix} y_{1} & y_{2} \end{bmatrix} \begin{bmatrix} 6 & 4 \\ 4 & -8 \end{bmatrix} \begin{bmatrix} y_{1} \\ y_{2} \end{bmatrix}$$

$$= \begin{bmatrix} 6y_{1} + 4y_{2} & 4y_{1} - 8y_{2} \end{bmatrix} \begin{bmatrix} y_{1} \\ y_{2} \end{bmatrix}$$

$$= 6y_{1}^{2} + 4y_{1}y_{2} + 4y_{1}y_{2} - 8y_{2}^{2}$$

$$\therefore Y^{T}G(X^{*})Y = 6y_{1}^{2} + 8y_{1}y_{2} - 8y_{2}^{2} = 6\left[y_{1}^{2} + \frac{8}{6}y_{1}y_{2} - \frac{8}{6}y_{2}^{2}\right]$$

$$= 6\left[y_{1}^{2} + \frac{4}{3}y_{1}y_{2} - \frac{4}{9}y_{2}^{2}\right]$$

$$= 6\left[y_{1}^{2} + \frac{4}{3}y_{1}y_{2} + \frac{4}{9}y_{2}^{2} - \frac{4}{9}y_{2}^{2} - \frac{4}{3}y_{2}^{2}\right]$$

$$= 6\left[(y_{1} + \frac{2}{3}y_{2})^{2} - \frac{16}{9}y_{2}^{2}\right]$$

...The last expression is not positive everywhere, for example if we take

$$Y = [1,0]^T$$
, then $Y^TG(X^*)Y = 6 > 0$, while if we take $Y = [-\frac{2}{3},1]^T$, then $Y^TG(X^*)Y = -\frac{32}{3} < 0$.

 $X^* = [0, 0]^T$ is not local minimizer for the function f. Now, we must prove $X^* = [0, 0]^T$ is not local maximizer. Let h(X) = -f(X).

... The Hessian matrix of the function h(X) at X^* is given as

$$H(X^*) = \begin{bmatrix} -6 & -4 \\ -4 & 8 \end{bmatrix}.$$

Now, determine whether $H(X^*)$ is positive definite or not.

Let $V \neq 0$.

$$\therefore V^{T}H(X^{*})V = \begin{bmatrix} v_{1} & v_{2} \end{bmatrix} \begin{bmatrix} -6 & -4 \\ -4 & 8 \end{bmatrix} \begin{bmatrix} v_{1} \\ v_{2} \end{bmatrix}
= \begin{bmatrix} -6v_{1} - 4v_{2} & , -4v_{1} + 8v_{2} \end{bmatrix} \begin{bmatrix} v_{1} \\ v_{2} \end{bmatrix}
= -6v_{1}^{2} - 4v_{1}v_{2} - 4v_{1}v_{2} + 8v_{2}^{2} = -6v_{1}^{2} - 8v_{1}v_{2} + 8v_{2}^{2}
= -6 \begin{bmatrix} v_{1}^{2} + \frac{8}{6}v_{1}v_{2} - \frac{8}{6}v_{2}^{2} \end{bmatrix} = -6 [(v_{1} + \frac{2}{3}v_{2})^{2} - \frac{16}{9}v_{2}^{2}].$$

∴The expression term is not positive everywhere for example if we take

 $V = [1,0]^T$, then $V^T H(X^*) V = -6 < 0$, while if we take $V = [-\frac{2}{3},1]^T$, then $V^T G(X^*) V = \frac{32}{3} > 0$.

 $\therefore X^* = [0, 0]^T$ is not local minimizer for the function h = -f.

 $X^* = [0, 0]^T$ is not local maximizer for the function f

 $X^* = [0, 0]^T$ is not local maximizer and not local maximizer for the function f.

Thus, we conclude that the point $X^* = [0, 0]^T$ is a saddle point for the function f.