Optimization Fourth Class 2020 - 2021 By Dr. Jawad Mahmoud Jassim **Dept. of Math. Education College for Pure Sciences** University of Basrah lrag

Chapter One

Basic Concepts

Lecture 7

Theorem (8):

If

- 1: $f: \mathbb{R}^n \to \mathbb{R}$ has continuous
- second partial derivatives in an open convex set $D \subset \mathbb{R}^n$.

2: X^* is a local minimizer of f over D.

Then the Hessian matrix $G(X^*)$ is a positive semi – definite. Theorem (9):

If

1: $f: \mathbb{R}^n \to \mathbb{R}$ has continuous

second partial derivatives in an open convex set $D \subset \mathbb{R}^n$.

2: X^* is a strict local minimizer of *f* over *D*.

Then the Hessian matrix $G(X^*)$ is a positive semi – definite at least.

Theorem (10):

If

- 1: $f: \mathbb{R}^n \to \mathbb{R}$ has continuous second partial derivatives in an open convex set $D \subset \mathbb{R}^n$.
- **2:** X^* is a local maximizer of *f* over *D*.

Then the Hessian matrix $G(X^*)$ is negative semi – definite.

Theorem (11):

If

- 1: $f: \mathbb{R}^n \to \mathbb{R}$ has continuous second partial derivatives in an open convex set $D \subset \mathbb{R}^n$.
- **2:** X^* is a strict local maximizer of *f* over *D*.

Then the Hessian matrix $G(X^*)$ is negative semi – definite at least. Note (16):

The critical points for the convex differentiable function are local minimizers or global minimizers.

Theorem (12):

Let $f: D \subset \mathbb{R}^n \to \mathbb{R}$, where *D* be a nonempty convex set and X^* is a local minimizer of *f* over *D*.

Then:

1: If *f* is convex the point X^* is also global minimizer.

2: If *f* is strictly convex the point X^* is unique global minimizer.

Theorem (13):

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable convex function. Then the point X^* is a global minimizer of f if and only if $g(X^*) = 0$, where $g(X^*)$ is the gradient vector of f at X^* .

13: Structure of Optimization Problem

Usually, the optimization method is an iterative one for finding the minimizer of an optimization problem. The basic idea is that, given an initial point $X_0 \in \mathbb{R}^n$, one generates an iterate sequence $\{X_k\}$ by means of some iterative rule, such that when $\{X_k\}$ is a finite sequence, the last point is the optimal solution of the problem. When $\{X_k\}$ is infinite, it has a limit point which is the optimal solution of the problem. A typical behavior of an algorithm which is regarded as acceptable is that iterates X_k moves steadily towards the neighborhood of a local minimizer X^{*} and then rapidly converge to the point X^* when a given convergence rule is satisfied, iterates will be terminated.

In general, the most natural stopping criteria is $||g(X_k)|| \le \varepsilon$, where ε is a prescribed tolerance. If $||g(X_k)|| \le \varepsilon$ is satisfied it implies that the gradient vector $g(X_k)$ tends to zero and the iterate sequence $\{X_k\}$ converges to a critical point. Let X_k be k^{th} iterate, d_k k^{th} direction and α_k k^{th} step length factor. Then $X_{k+1} = X_k + \alpha_k d_k$.

Most optimization methods are so – called descent methods in sense that f satisfies at each iteration $f(X_{k+1}) = f(X_k + \alpha_k d_k) < f(X_k)$ in which d_k is a descent direction.

Definition (17): (Descent Direction)

Let $f: \mathbb{R}^n \to \mathbb{R}$ have first partial derivatives for all $X \in \mathbb{R}^n$. If there exists a vector $d \in \mathbb{R}^n$ such that $g(X)^T d < 0$, where g(X) is the gradient vector of f at X, then d is called a descent direction.

The basic scheme of optimization methods is as follows: <u>Algorithm (1): (Basic Scheme Algorithm)</u>

Step 0: (Initial Step)

Given initial point $X_0 \in \mathbb{R}^n$ and the tolerance $\varepsilon > 0$.

Step 1: (Termination Criterion)

If $||g(X_k)|| \leq \varepsilon$, stop.

Step 2: (Finding the Direction)

According to some iterative scheme, find d_k

which is a descent direction.

Step 3: (Line Search)

Determine the step size α_k such that the objective function value

decreases, i.e. $f(X_k + \alpha_k d_k) < f(X_k)$.

Step 4: (Loop)

Set $X_{k+1} = X_k + \alpha_k d_k$, k = k + 1 and go to step 1.

14: Convergence Rate

Let the iterate sequence $\{X_k\}$ generated by an algorithm converge to X^* in some norm, i.e. $\lim_{k \to \infty} ||X_k - X^*|| = 0$.

If there are real number $\alpha \ge 1$ and a positive constant β which is independent of the *iterative number k*, such that

$$\lim_{k\to\infty}\frac{\|X_{k+1}-X^*\|}{\|X_k-X^*\|^{\alpha}}=\beta.$$

We say that $\{X_k\}$ has α – order of Q – convergence rate, where Q

- convergence rate means Quotient convergence rate. In particular,
- 1: When $\alpha = 1$ and $\beta \in (0, 1)$, the sequence $\{X_k\}$ is said to

converge Q - linearly.

2: When $\alpha = 1$ and $\beta = 0$ or $1 < \alpha < 2$ and $\beta > 0$, the sequence

 ${X_k}$ is said to converge Q - super linearly.

3: When $\alpha = 2$, we say that the sequence $\{X_k\}$ has

Q – quadratic converge rate.

Note (17):

Usually, if the convergence rate of an algorithm is Q – super linearly or Q – quadratic , we say that it has <mark>rapid convergence</mark> rate.

Theorem (14):

If the sequence $\{X_k\}$ converges Q – super linearly to X^* , then $\lim_{k \to \infty} \frac{\|X_{k+1} - X^k\|}{\|X_k - X^*\|^{\alpha}} = 1.$

Note (18):

In general, the converse of Theorem (14) is not true.