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Chapter One

Basic Concepts

Lecture 7



Theorem (8):

If

𝟏: 𝒇: 𝑹𝒏 → 𝑹 𝒉𝒂𝒔 𝒄𝒐𝒏𝒕𝒊𝒏𝒖𝒐𝒖𝒔

𝒔𝒆𝒄𝒐𝒏𝒅 𝒑𝒂𝒓𝒕𝒊𝒂𝒍 𝒅𝒆𝒓𝒊𝒗𝒂𝒕𝒊𝒗𝒆𝒔 𝒊𝒏 𝒂𝒏 𝒐𝒑𝒆𝒏 𝒄𝒐𝒏𝒗𝒆𝒙 𝒔𝒆𝒕 𝑫 ⊂ 𝑹𝒏.

2: 𝑿∗ is a local minimizer of 𝒇 𝒐𝒗𝒆𝒓 𝑫.

Then the Hessian matrix 𝑮 𝑿∗ is a positive semi – definite.

Theorem (9):

If

𝟏: 𝒇: 𝑹𝒏 → 𝑹 𝒉𝒂𝒔 𝒄𝒐𝒏𝒕𝒊𝒏𝒖𝒐𝒖𝒔

𝒔𝒆𝒄𝒐𝒏𝒅 𝒑𝒂𝒓𝒕𝒊𝒂𝒍 𝒅𝒆𝒓𝒊𝒗𝒂𝒕𝒊𝒗𝒆𝒔 𝒊𝒏 𝒂𝒏 𝒐𝒑𝒆𝒏 𝒄𝒐𝒏𝒗𝒆𝒙 𝒔𝒆𝒕 𝑫 ⊂ 𝑹𝒏.

2: 𝑿∗ is a strict local minimizer of 𝒇 𝒐𝒗𝒆𝒓 𝑫.

Then the Hessian matrix 𝑮 𝑿∗ is a positive semi – definite at least.



Theorem (10):

If

𝟏: 𝒇: 𝑹𝒏 → 𝑹 𝒉𝒂𝒔 𝒄𝒐𝒏𝒕𝒊𝒏𝒖𝒐𝒖𝒔 𝒔𝒆𝒄𝒐𝒏𝒅 𝒑𝒂𝒓𝒕𝒊𝒂𝒍 𝒅𝒆𝒓𝒊𝒗𝒂𝒕𝒊𝒗𝒆𝒔 𝒊𝒏 𝒂𝒏 𝒐𝒑𝒆𝒏

𝒄𝒐𝒏𝒗𝒆𝒙 𝒔𝒆𝒕 𝑫 ⊂ 𝑹𝒏.

2: 𝑿∗ is a local maximizer of 𝒇 𝒐𝒗𝒆𝒓 𝑫.

Then the Hessian matrix 𝑮 𝑿∗ is negative semi – definite.

Theorem (11):

If

𝟏: 𝒇: 𝑹𝒏 → 𝑹 𝒉𝒂𝒔 𝒄𝒐𝒏𝒕𝒊𝒏𝒖𝒐𝒖𝒔 𝒔𝒆𝒄𝒐𝒏𝒅 𝒑𝒂𝒓𝒕𝒊𝒂𝒍 𝒅𝒆𝒓𝒊𝒗𝒂𝒕𝒊𝒗𝒆𝒔 𝒊𝒏 𝒂𝒏 𝒐𝒑𝒆𝒏

𝒄𝒐𝒏𝒗𝒆𝒙 𝒔𝒆𝒕 𝑫 ⊂ 𝑹𝒏.

2: 𝑿∗ is a strict local maximizer of 𝒇 𝒐𝒗𝒆𝒓 𝑫.

Then the Hessian matrix 𝑮 𝑿∗ is negative semi – definite at least.

Note (16):

The critical points for the convex differentiable function are local minimizers or 

global minimizers.



Theorem (12):

Let 𝒇:𝑫 ⊂ 𝑹𝒏 → 𝑹 , where 𝑫 be a nonempty convex set and 𝑿∗ is a local 

minimizer of 𝒇 𝒐𝒗𝒆𝒓 𝑫.

Then:

1: If 𝒇 is convex the point 𝑿∗ is also global minimizer.

2: If 𝒇 is strictly convex the point 𝑿∗ is unique global minimizer.

Theorem (13):

Let 𝒇: 𝑹𝒏 → 𝑹 be a differentiable convex function. Then the point 𝑿∗ is a 

global minimizer of 𝒇 𝒊𝒇 𝒂𝒏𝒅 𝒐𝒏𝒍𝒚 𝒊𝒇 𝒈 𝑿∗ = 𝟎, where 𝒈 𝑿∗ is the 

gradient vector of 𝒇 𝒂𝒕 𝑿∗.



13: Structure of Optimization Problem

Usually, the optimization method is an iterative one for finding the 

minimizer of an optimization problem. The basic idea is that, given 

𝒂𝒏 𝒊𝒏𝒊𝒕𝒊𝒂𝒍 𝒑𝒐𝒊𝒏𝒕 𝑿𝟎 𝝐 𝑹
𝒏, one generates an iterate sequence {𝑿𝒌} by means 

of some iterative rule, such that when 𝑿𝒌 is a finite sequence, the last 

point is the optimal solution of the problem. When 𝑿𝒌 is infinite, it has a 

limit point which is the optimal solution of the problem. A typical behavior 

of an algorithm which is regarded as acceptable is that iterates 𝑿𝒌 moves 

steadily towards the neighborhood of a local minimizer 𝑿∗ and then rapidly 

converge to the point 𝑿∗ when a given convergence rule is satisfied, iterates 

will be terminated.

In general, the most natural stopping criteria 𝒊𝒔 𝒈(𝑿𝒌) ≤ 𝜺 , where 𝜺 is 

a prescribed tolerance. If 𝒈(𝑿𝒌) ≤ 𝜺 is satisfied it implies that the 

gradient vector 𝒈 𝑿𝒌 tends to zero and the iterate sequence 𝑿𝒌 converges 

to a critical point. 



Let 𝑿𝒌 𝒃𝒆 𝒌𝒕𝒉 iterate, 𝒅𝒌 𝒌𝒕𝒉 direction and 𝜶𝒌 𝒌𝒕𝒉 step length factor. 

Then 𝑿𝒌+𝟏 = 𝑿𝒌 +𝜶𝒌𝒅𝒌.

Most optimization methods are so – called descent methods in sense that 𝒇

satisfies at each iteration 𝒇 𝑿𝒌+𝟏 = 𝒇 𝑿𝒌 + 𝜶𝒌𝒅𝒌 < 𝒇(𝑿𝒌) in which 𝒅𝒌 is a 

descent direction.

Definition (17): (Descent Direction)

Let 𝒇: 𝑹𝒏 → 𝑹 have first partial derivatives 𝒇𝒐𝒓 𝒂𝒍𝒍 𝑿 𝝐 𝑹𝒏. If there 

exists a vector 𝒅 𝝐 𝑹𝒏 such that 𝒈(𝑿)𝑻𝒅 < 𝟎, where 𝒈(𝑿) is the 

gradient vector of 𝒇 𝒂𝒕 𝑿, then 𝒅 is called a descent direction.



The basic scheme of optimization methods is as follows:

Algorithm (1): (Basic Scheme Algorithm)

Step 0: (Initial Step)

Given initial point 𝑿𝟎 𝝐 𝑹
𝒏 and the tolerance 𝜺 > 𝟎.

Step 1: (Termination Criterion)

If 𝒈(𝑿𝒌) ≤ 𝜺 , stop.

Step 2: (Finding the Direction)

According to some iterative scheme, find 𝒅𝒌
𝒘𝒉𝒊𝒄𝒉 𝒊𝒔 𝒂 𝒅𝒆𝒔𝒄𝒆𝒏𝒕 𝒅𝒊𝒓𝒆𝒄𝒕𝒊𝒐𝒏.

Step 3: (Line Search)

Determine the step size 𝜶𝒌 such that the objective function value 

decreases, i.e. 𝒇 𝑿𝒌 + 𝜶𝒌𝒅𝒌 < 𝒇 𝑿𝒌 .

Step 4: (Loop)

Set 𝑿𝒌+𝟏 = 𝑿𝒌 + 𝜶𝒌𝒅𝒌 , 𝒌 = 𝒌 + 𝟏 and go to step 1.



14: Convergence Rate

Let the iterate sequence 𝑿𝒌 generated by an algorithm converge to 𝑿∗

in some norm, i.e. 𝐥𝐢𝐦
𝒌 →∞

𝑿𝒌 − 𝑿∗ = 𝟎.

If there are real number 𝜶 ≥ 𝟏 and a positive constant 𝜷 which is 

independent of the 𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒗𝒆 𝒏𝒖𝒎𝒃𝒆𝒓 𝒌, such that

𝐥𝐢𝐦
𝒌→∞

𝑿𝒌+𝟏−𝑿
∗

𝑿𝒌−𝑿
∗ 𝜶 = 𝜷.

We say that 𝑿𝒌 has 𝜶 − 𝒐𝒓𝒅𝒆𝒓 of 𝑸 − 𝒄𝒐𝒏𝒗𝒆𝒓𝒈𝒆𝒏𝒄𝒆 𝒓𝒂𝒕𝒆, where 𝑸

− 𝒄𝒐𝒏𝒗𝒆𝒓𝒈𝒆𝒏𝒄𝒆 𝒓𝒂𝒕𝒆 means Quotient – convergence rate. In particular,

1: When 𝜶 = 𝟏 𝒂𝒏𝒅 𝜷 𝝐 𝟎, 𝟏 , the sequence 𝑿𝒌 is said to 

𝒄𝒐𝒏𝒗𝒆𝒓𝒈𝒆 𝑸 – 𝒍𝒊𝒏𝒆𝒂𝒓𝒍𝒚.

2: When 𝜶 = 𝟏 𝒂𝒏𝒅 𝜷 = 𝟎 or 𝟏 < 𝜶 < 𝟐 𝒂𝒏𝒅 𝜷 > 𝟎, the sequence    

𝑿𝒌 𝒊𝒔 𝒔𝒂𝒊𝒅 𝒕𝒐 𝒄𝒐𝒏𝒗𝒆𝒓𝒈𝒆 𝑸 – 𝒔𝒖𝒑𝒆𝒓 𝒍𝒊𝒏𝒆𝒂𝒓𝒍𝒚.

𝟑: 𝑾𝒉𝒆𝒏 𝜶 = 𝟐, we say that the sequence 𝑿𝒌 has 

𝑸 – 𝒒𝒖𝒂𝒅𝒓𝒂𝒕𝒊𝒄 𝒄𝒐𝒏𝒗𝒆𝒓𝒈𝒆 𝒓𝒂𝒕𝒆.



Note (17):

𝑼𝒔𝒖𝒂𝒍𝒍𝒚, 𝒊𝒇 𝒕𝒉𝒆 𝒄𝒐𝒏𝒗𝒆𝒓𝒈𝒆𝒏𝒄𝒆 𝒓𝒂𝒕𝒆 𝒐𝒇 𝒂𝒏 𝒂𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝒊𝒔 𝑸 – 𝒔𝒖𝒑𝒆𝒓

𝒍𝒊𝒏𝒆𝒂𝒓𝒍𝒚 𝒐𝒓 𝑸 – 𝒒𝒖𝒂𝒅𝒓𝒂𝒕𝒊𝒄 ,𝒘𝒆 𝒔𝒂𝒚 𝒕𝒉𝒂𝒕 𝒊𝒕 𝒉𝒂𝒔 𝒓𝒂𝒑𝒊𝒅 𝒄𝒐𝒏𝒗𝒆𝒓𝒈𝒆𝒏𝒄𝒆

𝒓𝒂𝒕𝒆.

Theorem (14):

If the sequence 𝑿𝒌 𝒄𝒐𝒏𝒗𝒆𝒓𝒈𝒆𝒔 𝑸 – 𝒔𝒖𝒑𝒆𝒓 𝒍𝒊𝒏𝒆𝒂𝒓𝒍𝒚 𝒕𝒐 𝑿∗ , then

𝐥𝐢𝐦
𝒌 →∞

𝑿𝒌+𝟏−𝑿
𝒌

𝑿𝒌−𝑿
∗ 𝜶 = 𝟏.

Note (18):

In general, the converse of Theorem (14) is not true.


