Optimization Fourth Class 2020 - 2021 By Dr. Jawad Mahmoud Jassim Dept. of Math. **Education College for Pure Sciences** University of Basrah Iraq

Chapter One

Basic Concepts

Lecture 6

Theorem (6):

If

1: $f: \mathbb{R}^n \to \mathbb{R}$ has continuous first partial derivatives in a convex set $D \subset \mathbb{R}^n$.

2: X^* is a local minimizer or maximizer of f over D.

Then $g(X^*) = 0$, where g is the gradient of f.

Note (14):

The converse of Theorem (6) is not in general true.

Note (15):

If X^* is a local minimizer of f over D, then X^* is also critical point of f, but the converse is not true. For example the function $f: R \to R$ defined by $f(x) = x^3$, $x \in R$ has $x^* = 0$ is a critical point but it is not a local minimizer of f.

Definition (16):

Let $f: \mathbb{R}^n \to \mathbb{R}$ has continuous first partial derivatives in a convex set $D \subset \mathbb{R}^n$. The point $X^* \in D$ is called a saddle point if and only if X^* is a critical point of f but it is not a local minimizer or maximizer of f.

Theorem (7):

If

- 1: $f: \mathbb{R}^n \to \mathbb{R}$ has continuous first and second partial derivatives in an open convex set D containing X^* .
- 2: X^* is a critical point of f in D.
- 3: $G(X^*)$ is positive definite matrix, where G is the Hessian matrix of f. Then X^* is a strict local minimizer of f over D.

Example (12):

Let $f: R^2 \to R$ be defined by $f(X) = x_1^2 + x_1x_2 + x_2^2$, $X \in R^2$.

- 1: Find the gradient vector of f.
- 2: Find the critical points of f.
- 3: Find the Hessian matrix at critical points.
- 4: Determine whether the critical points are local minimizers or not.

Solution:

1: The gradient vector of f is defined by

$$g(X) = \left[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}\right]^T.$$

$$\frac{\partial f}{\partial x_1} = 2x_1 + x_2, \frac{\partial f}{\partial x_2} = x_1 + 2x_2.$$

$$\therefore g(X) = \left[2x_1 + x_2, x_1 + 2x_2\right]^T.$$

2: Set g(X) = 0.

And

Multiply (1) by 2, we get

From (2) and (3) we get $x_1 = 0$.

From (1) we get $x_2 = 0$.

:. The critical point is $[0, 0]^T$.

3: The Hessian matrix of f is defined by

$$G(X) = \left[\frac{\partial^2 f}{\partial x_i \partial x_i}\right] i, j = 1, 2.$$

$$\frac{\partial^2 f}{\partial x_1^2} = 2 , \frac{\partial^2 f}{\partial x_1 \partial x_2} = 1 , \frac{\partial^2 f}{\partial x_2 \partial x_1} = 1 , \frac{\partial^2 f}{\partial x_2^2} = 2.$$

$$\therefore G(X) = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}.$$

4: By using Theorem (7), we must prove that G(X) is positive definite matrix. Let $X \in \mathbb{R}^2$.

 $\therefore G(X)$ is positive definite matrix.

∴By Theorem (7), the critical point $[0,0]^T$ is a strict local minimizer of f.

Example (13):

Let $f: R^2 \to R$ be defined by $f(X) = x_1^3 - 2x_1^2x_2 + x_2^2$, $X \in R^2$.

- 1: Find the gradient vector of f.
- 2: Find the critical points of f.
- 3: Find the Hessian matrix at critical points.
- 4: Determine whether the critical points are local minimizers or not. \tilde{a}

Solution:

1: The gradient vector of f is defined by

$$g(X) = \left[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}\right]^T.$$

$$\frac{\partial f}{\partial x_1} = 3x_1^2 - 4x_1x_2, \frac{\partial f}{\partial x_2} = -2x_1^2 + 2x_2.$$

$$\therefore g(X) = \left[3x_1^2 - 4x_1x_2, -2x_1^2 + 2x_2\right]^T.$$

2: Set g(X) = 0.

And

From (3) and (1) we get

$$3x_1^2 - 4x_1^3 = 0 \rightarrow x_1^2 [3 - 4x_1] = 0 \rightarrow x_1 = 0 \text{ or } x_1 = \frac{3}{4}.$$

$$x_2 = 0 \text{ or } x_2 = \frac{9}{16}.$$

 $\therefore The \ critical \ points \ are \ X^* = [0,0]^T \ and \ X^* = [\frac{3}{4},\frac{9}{16}]^T.$

3: The Hessian matrix of f is defined by

$$G(X) = \left[\frac{\partial^2 f}{\partial x_i \partial x_i}\right] i, j = 1, 2.$$

$$\frac{\partial^2 f}{\partial x_1^2} = 6x_1 - 4x_2, \frac{\partial^2 f}{\partial x_1 \partial x_2} = -4x_1, \frac{\partial^2 f}{\partial x_2 \partial x_1} = -4x_1, \frac{\partial^2 f}{\partial x_2^2} = 2.$$

$$\therefore G(X) = \begin{bmatrix} 6x_1 - 4x_2 & -4x_1 \\ -4x_1 & 2 \end{bmatrix}.$$

When
$$X^* = [0, 0]^T$$
, then $G(X^*) = \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix}$.

When
$$X^* = \begin{bmatrix} \frac{3}{4} & \frac{9}{16} \end{bmatrix}^T$$
, then $G(X^*) = \begin{bmatrix} \frac{9}{4} & -3 \\ -3 & 2 \end{bmatrix}$.

4: We know that from Theorem (7) if the Hessian matrix is positive definite at the critical point, then the critical point is a strict local minimizer.

Let
$$X^* = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$$
, then $G(X^*) = \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix}$.
Let $V \in \mathbb{R}^2$.

$$\therefore G(X^*) = \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix} \text{ is positive definite matrix.}$$

:.By Theorem (7), $X^* = [0, 0]^T$ is a strict local minimizer of f.

Let
$$X^* = \begin{bmatrix} \frac{3}{4} & \frac{9}{16} \end{bmatrix}^T$$
 and $G(X^*) = \begin{bmatrix} \frac{9}{4} & -3 \\ -3 & 2 \end{bmatrix}$.

Let
$$V = [1, 0]^T \to V^T G(X^*) V = \frac{9}{4} > 0$$
. Let $V = [\frac{4}{3}, 1]^T \to V^T G(X^*) V = -2 < 0$.

Hence $G(X^*)$ is indefinite matrix and so nothing can be conclude about the nature of critical point $X^* = \left[\frac{3}{4}, \frac{9}{16}\right]^T$.