Optimization Fourth Class 2020 - 2021 By Dr. Jawad Mahmoud Jassim Dept. of Math. **Education College for Pure Sciences** University of Basrah Iraq

Chapter One

Basic Concepts

Lecture 5

12: Optimality Conditions for Unconstrained Optimization Definition (12): (Local Minimizer)

Let $f: R^n \to R$ be a given function and D be a given set in R^n . The point $X^* \in D$ is called a local minimizer of f over D if and only if there exists $\varepsilon > 0$ such that $B(X^*, \varepsilon) \subset D$ and $f(X) \geq f(X^*)$ for all $X \in B(X^*, \varepsilon)$, where $B(X^*, \varepsilon)$ is the open ball with center X^* and radius ε defined by

 $B(X^*, \varepsilon) = \{X \in \mathbb{R}^n : ||X - X^*|| < \epsilon\} \text{ and } ||X - X^*|| \text{ means}$ the distance between X and X^* in the normed linear space $(\mathbb{R}^n, ||.||)$.

A point $X^* \in D$ is called a strict local minimizer of f over D if and only if there exists $\varepsilon > 0$ such that $B(X^*, \varepsilon) \subset D$ and $f(X) > f(X^*)$ for all $X \in B(X^*, \varepsilon)$, $X \neq X^*$.

Example (6):

Let $f: R \to R$ be defined by $f(x) = \sin x$, $x \in R$ in the normed linear space (R, |.|) and $D = [0, 4\pi] \subset R$. Show that $X^* = \frac{3\pi}{2}$ is a strict local minimizer of f over D.

Solution:

Let $\varepsilon > 0$ such that

$$B(X^*,\varepsilon)=\{X\in R:\ |X-X^*|<\varepsilon\}=(X^*-\varepsilon,X^*+\varepsilon)\subset D.$$

Take
$$0 < \varepsilon < \frac{3\pi}{2}$$
. Then $f(X) > f\left(\frac{3\pi}{2}\right)$ for all X in $(X^* - \varepsilon, X^* + \varepsilon)$, $X \neq \frac{3\pi}{2}$.

Hence $X^* = \frac{3\pi}{2}$ is a strict local minimizer of f over D.

Example (7):

Let
$$f: R \to R$$
 be defined by $f(x) = \begin{cases} 1 & , x \le \frac{1}{2} \\ 0, \frac{1}{2} < x < \frac{3}{2} \\ 1, \frac{3}{2} \le x \le \frac{5}{2} \end{cases}$. Let $D = (\frac{1}{2}, \frac{3}{2}) \subset R$.

Show that any point X^* in $(\frac{1}{2}, \frac{3}{2})$ is a local minimizer of f over $(\frac{1}{2}, \frac{3}{2})$.

Solution:

Let $\varepsilon > 0$ *such that*

$$B(X^*,\varepsilon) = \{X \in R: |X - X^*| < \varepsilon\} = (X^* - \varepsilon, X^* + \varepsilon) \subset \left(\frac{1}{2}, \frac{3}{2}\right).$$

Then $f(X) = f(X^*)$ for all values of X in $= (X^* - \varepsilon, X^* + \varepsilon)$.

Hence X^* is a local minimizer of f over $\left(\frac{1}{2}, \frac{3}{2}\right)$.

Definition (13): (Global Minimizer)

Let $f: R^n \to R$ be a given function and D be a given set in R^n . The point $X^* \in D$ is called a global minimizer of f over D if and only if $f(X) \geq f(X^*)$ for all $X \in D$. The point $X^* \in D$ is called a strict global minimizer of f over D if and only if $f(X) \geq f(X^*)$ for all $X \in D$, $X \neq X^*$.

Note (13):

The norm $||X||_E$ is called Euclidean norm and defined as:

$$||X||_E = (\sum_{i=1}^n x_i^2)^{\frac{1}{2}}, X = [x_1, x_2, x_3, \cdots, x_n]^T.$$

Example (8):

Let $f: R^2 \to R$ defined by $f(X) = x_1^2 + x_2^2$, $X \in R^2$. Let $D = B(0, 1) = \{X \in R^2: ||X||_E < 1\}$. Show that $X^* = 0$ is a strict global minimizer of f over D.

Solution:

Notice that, geometrically, the set D consists of all points X in the interior of the circular disk with *center* 0 *and radius* 1. Clearly f(X) > f(0) *for all* $X \in D$, $X \neq 0$. So, $X^* = 0$ is a strict global minimizer of f over D.

Example (9):

Let $f: \mathbb{R}^2 \to \mathbb{R}$ defined by $f(X) = (x_2 - x_1^2)^2 + (1 - x_1)^2$. Show that $X^* = [1, 1]^T$ is a strict global minimizer of f over \mathbb{R}^2 .

Solution:

Let
$$\delta = [\delta_1, \delta_2]^T \subset R^2$$
.

$$f(X^* + \delta) = f(1 + \delta_1, 1 + \delta_2) = [1 + \delta_2 - (1 + \delta_1)^2]^2 + [1 - (1 + \delta_1)]^2$$

$$= [1 + \delta_2 - (1 + 2\delta_1 + \delta_1^2)]^2 + [1 - 1 - \delta_1]^2$$

$$= [1 + \delta_2 - 1 - 2\delta_1 - \delta_1^2]^2 + \delta_1^2 = [\delta_2 - 2\delta_1 - \delta_1^2]^2 + \delta_1^2.$$

Since $f(X^*) = f(1, 1) = 0$.

$$f(X^* + \delta) = 0 + [\delta_2 - 2\delta_1 - \delta_1^2]^2 + \delta_1^2 = f(X^*) + [\delta_2 - 2\delta_1 - \delta_1^2]^2 + \delta_1^2.$$
Since $[\delta_2 - 2\delta_1 - \delta_1^2]^2 > 0$ and $\delta_1^2 > 0$, for all $\delta \neq 0$.

$$:: f(X^* + \delta) > f(X^*), for all \delta \neq 0.$$

Hence X^* is a strong global minimizer of f over R^2 .

Example (10):

Let $f: R \rightarrow R$ be defined by

$$f(x) = \begin{cases} (x-1)^2, x \text{ not in the interval } [0,2] \\ 1, x \text{ in the interval } [0,2] \end{cases}.$$

Show that any point in [0, 2] is a global minimizer of f over R^2 . Solution:

Let x^* be any point in the interval [0, 2], then $f(x^*) = 1$ and $f(x^*) > 1$ for all x^* not in the interval [0, 2]. Hence x^* is a global minimizer of f over R^2 .

Definition (14): (Maximizer)

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a given function and D be a given set in \mathbb{R}^n . The point $X^* \in D$ is called a maximizer of f over D if and only if X^* is a minimizer of -f over D.

Definition (15): (Critical Point)

Let $f: \mathbb{R}^n \to \mathbb{R}$ have first partial derivatives in $D \subset \mathbb{R}^n$. The point $X^* \in D$ is called a critical point f in D if and only if $g(X^*) = 0$, where g is the gradient vector of f.

Example (11):

Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(X) = x_1^3 - 2x_1^2x_2 + x_2^2$, $X \in \mathbb{R}^2$. Find the critical points of f.

Solution:

First, we find the gradient of f which is $g(X) = \left[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}\right]^T$.

$$\frac{\partial f}{\partial x_1} = 3x_1^2 - 4x_1x_2, \frac{\partial f}{\partial x_2} = -2x_1^2 + 2x_2.$$

$$\therefore g(X) = [3x_1^2 - 4x_1x_2, -2x_1^2 + 2x_2]^T.$$

Second, put g(X) = 0.

From (2) we get
$$x_2 = x_1^2 \dots (3)$$

From (3) and (1) we get
$$3x_1^2 - 4x_1^3 = 0 \rightarrow x_1^2(3 - 4x_1) = 0 \rightarrow$$

$$x_1 = 0$$
 or $x_1 = \frac{3}{4}$. From (3) we get $x_2 = 0$ or $x_2 = \frac{9}{16}$.

:. The critical points are
$$[0,0]^T$$
 and $[\frac{3}{4},\frac{9}{16}]^T$.