Optimization Fourth Class 2020 - 2021 By Dr. Jawad Mahmoud Jassim Dept. of Math. **Education College for Pure Sciences** University of Basrah

Chapter One

Basic Concepts

Lecture 4

Definition (11): (Convex Function)

Let $D \subset \mathbb{R}^n$ be a nonempty convex set. Let $f: D \subset \mathbb{R}^n \to \mathbb{R}$. If, for any

 $X, Y \in D$ and all $\alpha \in (0, 1)$, we have

$$f(\alpha X + (1 - \alpha)Y) \leq \alpha f(X) + (1 - \alpha)f(Y).$$

Then f is said to be convex function on D.

If the above inequality is true as a strict inequality for $all X \neq Y$, i.e.

$$f(\alpha X + (1-\alpha)Y) < \alpha f(X) + (1-\alpha)f(Y).$$

Then f is called strictly convex function on D.

If -f is a convex (strictly convex) function on D, then f is said to be a concave (strictly concave) function on D.

Nonconvex and Nonconcave Function

Note (13):

The geometrical interpolation of a convex function says that the function values are below the corresponding chord, that is, the values of a convex function at points on the line segment $\alpha x_1 + (1 - \alpha)x_2$ are less than or equal to the height of the chord joining the points (X, f(X)) and (Y, f(Y)).

Example (4):

Show that the function $f: R \to R$ defined by $f(x) = (1-x)^2$, $x \in R$ is strictly convex on any interval $[a, b] \subset R$.

Solution:

Let $x, y \in R$ and $\alpha \in (0, 1)$.

We want to prove that
$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$
.

$$\therefore f(\alpha x + (1 - \alpha)y) = [1 - \{\alpha x + (1 - \alpha)y\}]^2$$

$$= 1 - 2\{\alpha x + (1 - \alpha)y\} + \{\alpha x + (1 - \alpha)y\}^2$$

$$= 1 - 2\alpha x - 2(1 - \alpha)y + \alpha^2 x^2 + 2\alpha(1 - \alpha)xy + (1 - \alpha)^2 y^2$$

$$= 1 - 2\alpha x - 2(1 - \alpha)y + \alpha^2 x^2 + 2\alpha(1 - \alpha)xy + (1 - \alpha)^2 y^2$$

$$+ \alpha - \alpha + \alpha x^2 - \alpha x^2 + (1 - \alpha)y^2 - (1 - \alpha)y^2$$

$$= [\alpha - 2\alpha x + \alpha x^2] + [1 - \alpha - 2(1 - \alpha)y + (1 - \alpha)^2 y^2] + [\alpha^2 x^2 - \alpha x^2]$$

$$+ [2\alpha(1 - \alpha)xy] + [(1 - \alpha)^2 y^2 - (1 - \alpha)y^2]$$

$$= \alpha[1 - 2x + x^2] + (1 - \alpha)[1 - 2y + y^2] + [\alpha^2 - \alpha]x^2 + (1 - \alpha)[x^2 + y^2]$$

 $2\alpha(1-\alpha)xy + [(1-\alpha)^2 - (1-\alpha)]y^2$

$$= \alpha(1-x)^{2} + (1-\alpha)(1-y)^{2} + \alpha(\alpha-1)x^{2} + 2\alpha(1-\alpha)xy + [(1-\alpha)(1-\alpha-1)y^{2}]$$

$$= \alpha(1-x)^{2} + (1-\alpha)(1-y)^{2} - \alpha(1-\alpha)x^{2} + 2\alpha(1-\alpha)xy - \alpha(1-\alpha)y^{2}$$

$$= \alpha(1-x)^{2} + (1-\alpha)(1-y)^{2} - \alpha(1-\alpha)[x^{2} - 2xy + y^{2}]$$

$$= \alpha(1-x)^{2} + (1-\alpha)(1-y)^{2} - \alpha(1-\alpha)(x-y)^{2}$$

$$= \alpha(1-x)^{2} + (1-\alpha)(1-y)^{2} - \alpha(1-\alpha)(x-y)^{2}$$

$$= \alpha f(x) + (1-\alpha)f(y) - \alpha(1-\alpha)(x-y)^{2}$$

$$\therefore f(\alpha x + (1-\alpha)y) = \alpha f(x) + (1-\alpha)f(y) - \alpha(1-\alpha)(x-y)^{2}$$

$$\therefore f(\alpha x + (1-\alpha)y) < \alpha f(x) + (1-\alpha)f(y).$$

$$\therefore f \text{ is strictly convex function.}$$

Example (5):

Let $f: \mathbb{R}^n \to \mathbb{R}$ defined by $f(X) = \frac{1}{2}X^TAX + b^TX + c$, $X \in \mathbb{R}^n$, where A is an n

 \times *n* matrix, *b* is an $n \times 1$ vector and *c* is a real number.

Show that f is convex if A is positive semi – definite and strictly convex if A is positive definite.

Solution: (H.W.)

Theorem (2):

- 1: Let f be a convex function on a convex set $D \subset \mathbb{R}^n$ and real number $\alpha \geq 0$. Then αf is also a convex function on D.
- 2: Let f_1 , f_2 be convex functions on a convex set $D \subset \mathbb{R}^n$. Then $f_1 + f_2$ is also a convex function on D.
- 3: Let f_1 , f_2 , f_3 , ..., f_m be convex functions on a convex set $D \subset R^n$ and real numbers α_1 , α_2 , α_3 , ..., $\alpha_m \geq 0$.

Then $\sum_{i=1}^{m} \alpha_i f_i$ is also a convex function on D.

Proof: (H.W.)

Theorem (3):

Let $S \subset D$ be an open convex set. Let $f: D \subseteq R^n \to R$ be a convex function. Then f is continuous function on S.

Theorem (4):

Let $f: \mathbb{R}^n \to \mathbb{R}$ have continuous first partial derivatives in a convex set $D \subset \mathbb{R}^n$. Then:

- 1: f is convex on D if and only if for all $X, Y \in D$, $f(Y) \ge f(X) + g(X)^T (Y X)$, where g is the gradient vector of f at X.
- 2: f is strictly convex on D if and only if f or all $X, Y \in D, X \neq Y$, $f(Y) > f(X) + g(X)^T (Y X)$, where g is the gradient vector of f at X.

Theorem (5):

Let $f: \mathbb{R}^n \to \mathbb{R}$ have continuous second partial derivatives in a convex set $D \subset \mathbb{R}^n$. Then:

- 1: f is convex on D if and only if it its Hessian matrix is positive semi definite at each point in D.
- 2: f is strictly convex on D if and only if it its Hessian matrix is positive definite at each point in D.