Optimization Fourth Class 2020 - 2021 By Dr. Jawad Mahmoud Jassim **Dept. of Math. Education College for Pure Sciences** University of Basrah Iraa

Chapter One

Basic Concepts

Lecture 3

10: Function and Differential

Definition (8): (Gradient Vector)

Let $f: \mathbb{R}^n \to \mathbb{R}$ have first partial derivatives in \mathbb{R}^n . The gradient vector of f at X in \mathbb{R}^n is defined as

$$\nabla f(X) = \begin{bmatrix} \frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial x_3}, \cdots, \frac{\partial f}{\partial x_n} \end{bmatrix}^T$$

We use notation g(X) for the gradient vector of f at X.

Definition (9): (Hessian Matrix)

Let $f: \mathbb{R}^n \to \mathbb{R}$ have second partial derivatives in \mathbb{R}^n . The Hessian matrix G(X) of f at X is defined as $G(X) = \left[\frac{\partial^2 f}{\partial x_i \partial x_j}\right], i, j = 1, 2, 3, \cdots, n$.

<u>Note (9):</u>

If *f* has continuous second partial derivatives in R^n then $\frac{\partial^2 f}{\partial x_i \partial x_i} = \frac{\partial^2 f}{\partial x_i \partial x_i}$,

 $i, j = 1, 2, 3, \dots, n$. So that G(X) is symmetric and only $\frac{n(n+1)}{2}$ second derivatives need be calculated in order to evaluate G(X).

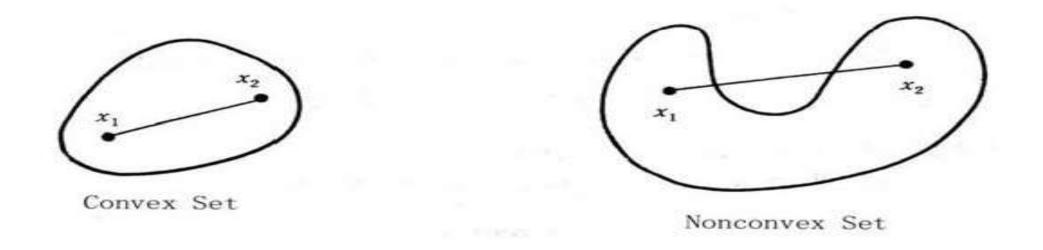
Example (1):

Find the gradient vector and Hessian matrix for the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by $f(X) = 3x_1^2 + 4x_1x_2 - 4x_2^2$. Solution:

The gradient vector is defined as: $\nabla f(X) = \begin{bmatrix} \frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2} \end{bmatrix}^T = \begin{bmatrix} 6x_1 + 4x_2, 4x_1 - 8x_2 \end{bmatrix}^T$. The Hessian matrix is defined as: $G(X) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_i \partial x_j} \end{bmatrix}$, i, j = 1, 2. $\frac{\partial^2 f}{\partial x_1^2} = 6$, $\frac{\partial^2 f}{\partial x_1 \partial x_2} = 4$, $\frac{\partial^2 f}{\partial x_2 \partial x_1} = 4$, $\frac{\partial^2 f}{\partial x_2^2} = -8$. $G(X) = \begin{bmatrix} 6 & 4 \\ 4 & -8 \end{bmatrix}$. **<u>11: Convex Sets and Convex Functions</u> Definition (10): (Convex Set)**

Let the set $D \subset \mathbb{R}^n$. If for any X, Y in D, we have $\alpha X + (1 - \alpha)Y$ in D for $\alpha \in [0, 1]$, then D is said to be a convex set. Note (10):

Definition (10) indicates, in geometry, that for any two points *X*, *Y* in *D*, the line segment joining *X* and *Y* is entirely contained in *D*.



Note (11):

 $X = \alpha x_1 + (1 - \alpha) x_2$, where $\alpha \in [0, 1]$ is called convex combination of x_1 and x_2 . Note (12):

 $X = \sum_{i=1}^{m} \alpha_i x_i \text{ is called a convex combination of } x_1, x_2, x_3, \dots, x_m, \text{ where}$ $\sum_{i=1}^{m} \alpha_i = 1, \ \alpha_i \ge 0 \text{ , } i = 1, 2, 3, \dots, m.$

<u>Lemma (1):</u>

The set $D \subset \mathbb{R}^n$ is convex if and only if for any $x_1, x_2, x_3, \dots, x_n$ in D, $\sum_{i=1}^m \alpha_i x_i$ in D, where $\sum_{i=1}^m \alpha_i = 1$, $\alpha_i \ge 0$, $i = 1, 2, 3, \dots, m$. <u>Proof</u>: (H.W.)

Theorem (1):

Let D_1 and D_2 be two convex sets in \mathbb{R}^n . Then:

1: $D_1 \cap D_2$ is convex set. 2: $D_1 \mp D_2 = \{ x_1 \mp x_2 : x_1 \in D_1 , x_2 \in D_2 \}$ is convex set. <u>Proof:</u> (H.W.)

Example (2):

Show that the set $H = \{ X \in \mathbb{R}^n : p^T X = c \}$ is convex, where $p \in \mathbb{R}^n$ is a nonzero vector and *c* is a scalar.

Solution:

Let $X_1, X_2 \in H$ and $\alpha \in [0, 1]$. $\therefore p^T X_1 = c$ and $p^T X_2 = c$. We want to prove that $\alpha X_1 + (1 - \alpha) X_2 \in H$. $\therefore p^T [\alpha X_1 + (1 - \alpha) X_2] = \alpha p^T X_1 + (1 - \alpha) p^T X_2 = \alpha c + (1 - \alpha) c = c$. $\therefore \alpha X_1 + (1 - \alpha) X_2 \in H$. $\therefore H$ is convex set.

Example (3):

Show that the set $S = \{X \in \mathbb{R}^n : X = X_0 + \lambda d, \lambda \ge 0\}$ is a convex set, where $d \in \mathbb{R}^n$ is a nonzero vector and X_0 is a fixed point. Solution:

Let $X_1, X_2 \in S$ and $\alpha \in [0, 1]$. $X_1 = X_0 + \lambda_1 d$ and $X_2 = X_0 + \lambda_2 d$, where $\lambda_1, \lambda_2 \ge 0$. We want to prove that $\alpha X_1 + (1 - \alpha)X_2 \in S$. $\therefore \alpha X_1 + (1 - \alpha) X_2 = \alpha [X_0 + \lambda_1 d] + (1 - \alpha) [X_0 + \lambda_2 d]$ $= \alpha X_0 + \alpha \lambda_1 d + X_0 + \lambda_2 d - \alpha X_0 - \alpha \lambda_2 d$ $= X_0 + (\alpha \lambda_1 + (1 - \alpha) \lambda_2)d$ Since $\alpha \lambda_1 + (1 - \alpha) \lambda_2 \ge 0$ $\therefore \alpha \lambda_1 + (1 - \alpha) \lambda_2 \epsilon S$ \therefore S is a convex set.