Optimization Fourth Class 2020 - 2021 By Dr. Jawad Mahmoud Jassim Dept. of Math. **Education College for Pure Sciences** University of Basrah Iraq

Chapter One

Basic Concepts

Lecture 2

7: Some Mathematical Foundations

We shall review a number of results from linear algebra and mathematical analysis which are useful in optimization theory and methods.

Definition (2): (Linear Space)

Let X & Y in \mathbb{R}^n and $\alpha \in \mathbb{R}$, we define

And

Then \mathbb{R}^n together with the operations defined by (7)& (8) constitute a linear space.

We shall subsequently refer to the linear space as \mathbb{R}^n .

Note (2):

A real $m \times n$ matrix $A = (a_{ij})$ defines a linear mapping from R^n to R^m and will be written as $A \in R^{m \times n}$ or $A \in L(R^n, R^m)$ to denote either the matrix or the linear operator.

Definition (3): (Vector Norm)

A function $||.||: \mathbb{R}^n \to \mathbb{R}$ is called <u>a vector norm</u> on \mathbb{R}^n if and only if satisfies the following properties:

- 1: $||X|| \geq 0$ for all $X \in \mathbb{R}^n$.
- 2: ||X|| = 0 if and only if X = 0.
- 3: $\|\alpha X\| = |\alpha| \|X\|$ for all $X \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$.
- 4: $||X + Y|| \le ||X|| + ||Y||$ for all $X, Y \in \mathbb{R}^n$.

Definition (4): (Normed Linear Space)

The linear space \mathbb{R}^n together with a vector norm $\|.\|$ on \mathbb{R}^n is called a <u>normed linear space</u>, we denote it by $(\mathbb{R}^n, \|.\|)$.

Examples of vector norms as follows:

1:
$$L_{\infty} - Norm$$
: $||X||_{\infty} = \max_{1 \leq i \leq n} |x_i|$.

2:
$$L_1 - Norm$$
: $||X||_1 = \sum_{i=1}^n |x_i|$

2:
$$L_1 - Norm$$
: $||X||_1 = \sum_{i=1}^{n} |x_i|$.
3: $L_2 - Norm$: $||X||_2 = (\sum_{i=1}^{n} |x_i|^2)^{\frac{1}{2}}$.

4:
$$L_p - Norm$$
: $||X||_p = (\sum_{i=1}^n |x_i|^p)^{\frac{1}{p}}$.

Definition (5): (Matrix Norm)

Let $A, B \in \mathbb{R}^{m \times n}$. A function $\|.\|: \mathbb{R}^{m \times n} \to \mathbb{R}$ is said to be <u>a matrix norm</u> if it satisfies the following properties:

- 1: $||A|| \geq 0$ for all $A \in \mathbb{R}^{m \times n}$.
- 2: ||A|| = 0 if and only if A = 0.
- 3: $\|\alpha A\| = |\alpha| \|A\|$ for all $A \in \mathbb{R}^{m \times n}$ and $\alpha \in \mathbb{R}$.
- 4: $||A + B|| \le ||A|| + ||B||$ for all $A, B \in \mathbb{R}^{m \times n}$.

Examples of a matrix norm:

- 1: Maximum Column Norm: $||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}|$.
- 2: Maximum Row Norm: $||A||_{\infty} = \max_{1 \leq i \leq n} \sum_{j=1}^{n} |a_{ij}|$.

3: Frobenius Norm:

$$||A||_F = \left(\sum_{i=1}^n \sum_{j=1}^n \left|a_{ij}\right|^2\right)^{\frac{1}{2}} = \left[tr(A^TA)\right]^{\frac{1}{2}}$$
, where $tr(.)$ denotes the trace of a square matrix with $tr(A) = \sum_{i=1}^n a_{ii}$.

Note (4):

The trace satisfies the following properties:

- 1: $tr(\alpha A + \beta B) = \alpha tr(A) + \beta tr(B)$.
- $2: tr(A^T) = tr(A).$
- 3: tr(AB) = tr(BA).
- 4: $tr(A) = \sum_{i=1}^{n} \lambda_i$ if the eigen values of A are denoted by $\lambda_1, \lambda_2, \lambda_3, \dots, \lambda_n$.

Note (5):

The norm of the identity matrix equals 1.

Definition (6): (Convergent)

A vector sequence $\{X_k\}$ is said to be <u>convergent</u> to X^* if $\lim_{k\to\infty} ||X_k - X^*|| = 0$.

A matrix sequence $\{A_k\}$ is said to be convergent to A if $\lim_{k\to\infty} ||A_k-A|| = 0$.

Note (6):

Choice of norms is irrelevant since all norms in finite dimensional space are equivalent.

8: Eigen Values Problem

Eigen values problem of a matrix A is that $AX = \lambda X$, $A \in \mathbb{R}^{n \times n}$, $X \neq 0$, $X \in \mathbb{R}^n$, where λ is called an eigen value of A, X an eigen vector of A corresponding to λ , and (λ, X) an eigen pair of A.

Note (7):

If $A \in \mathbb{R}^{n \times n}$ is symmetric with eigen values $\lambda_1, \lambda_2, \lambda_3, \cdots, \lambda_n$, then $||A||_2 = \max_{1 \le i \le n} |\lambda_i|$.

9: Positive Definite Matrices

Definition (7):

If $A \in \mathbb{R}^{n \times n}$ be symmetric. A is said to be positive definite if $X^T AX > 0$ for all $X \in \mathbb{R}^n$, $X \neq 0$.

A is said to be positive semi – definite if $X^TAX \ge 0$ for all $X \in \mathbb{R}^n$.

A is said to be negative definite or negative semi — definite if —A is positive definite or positive semi — definite.

A is said to be indefinite if it is neither positive semi – definite nor negative semi – definite.

For example, the matrix $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$ positive definite because for all X in \mathbb{R}^2

$$X^{T}AX = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 + 2x_2 & 2x_1 + 4x_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
$$= x_1^2 + 4x_1x_2 + 4x_2^2 = (x_1 + 2x_2)^2 > 0 \text{ for all } X \neq 0.$$

While the matrix $-A = \begin{bmatrix} -1 & -2 \\ -2 & -4 \end{bmatrix}$ is negative definite.

Notes (8):

Let $A \in \mathbb{R}^{n \times n}$ be symmetric.

- 1: A is positive definite if and only if all its eigen values are positive.
- 2: A is positive semi definite if and only if all its *eigen* values are nonnegative.
- 3: A is negative definite or negative semi definite if and only if all its *eigen* values are negative or non-positive.
- 4: A is indefinite if and only if it has both positive and negative *eigen* values.