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Chapter one 

Preface 

Open channel flow occurs when a liquid flowing due to gravity is only partial 

enclosed by its solid boundary. The flow in an open channel or in a closed conduit 

having a free surface is referred to as free-surface flow or open-channel flow. Here 

the only force affected is the gravitational force. Some open channel flow occurs 

naturally as in the case of creeks and rivers, which have generally irregular cross 

sections A varies with depth. Open channel flow may also occurs in artificial (i.e 

human construction) channels such as flumes and canals. If there is no free surface 

and the conduit is flowing full, then the flow is called pipe flow, or pressurized 

flow. 



 
b- Open channel 
 

 
Pipe or pressurized flow 
 



 
Combined free surface and pressurized flow 

 

If we want to compare pipe flow and open channel flow 

 
 

 
 
In pipe flow 

1- The flow is due to pressure difference 

2- There is no free surface 
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Open channel 



1- The flow is due to the slope of the bed 

2- The hydraulic line is the water surface  

3- The pressure is atmospheric 

The same eq. applied on open channel 

𝒚𝟏 + 𝒁𝟏 +
𝒗𝟏

𝟐

𝟐𝒈
=  𝒚𝟐 + 𝒁𝟐 +

𝒗𝟐
𝟐

𝟐𝒈
+ 𝒉𝑳 

 
 

𝒑

𝜸
= 𝒑𝒓𝒆𝒔𝒔𝒖𝒓𝒆 𝒇𝒐𝒓𝒄𝒆 (𝒎) 

Z= gravity force , V2/2g= inertia force (velocity head), hL= losses or viscous force 

 

Classification of flow in open channels 
Based on different criteria, free-surface flows may be classified into various types 

1- Steady and Unsteady Flows 

If the flow velocity at a given point does not change with respect to time, then 

the flow is called steady flow. However, if the velocity at a given location 

changes with respect to time, then the flow is called unsteady flow. 

Note that this classification is based on the time variation of velocity v at a 

specified location. Thus, the local acceleration, ∂v/∂t, is zero in steady flows. In 

two- or three-dimensional steady flows, the time variation of all components of 

velocity is zero. 

 

2- Uniform and Non-uniform flows 

If the flow velocity at a given instant of time does not vary within a given 

length of channel, then the flow is called uniform flow. However, if the flow 

velocity at a time varies with respect to distance, then the flow is called non-

uniform flow, or varied flow. This classification is based on the variation of 

flow velocity with respect to space at a specified instant of time. Thus, the 

convective acceleration in uniform flow is zero. In mathematical terms, the 

partial derivatives of the velocity components with respect to x, y, and z 

direction are all zero. However, many times this strict restriction is somewhat 

relaxed by allowing a non-uniform velocity distribution at a channel section. In 

other words, a flow is considered uniform as long as the velocity in the 

direction of flow at different locations along a channel remains the same. 

Depending upon the rate of variation with respect to distance, flows may be 

classified as gradually varied flow or rapidly varied flow. As the name implies, 

the flow is called gradually varied flow, if the flow depth varies at a slow rate 

with respect to distance, whereas the flow is called rapidly varied flow if the 



flow depth varies significantly in a short distance. Note that the steady and 

unsteady flows are characterized by the variation with respect to time at a given 

location, whereas uniform or varied flows are characterized by the variation at a 

given instant of time with respect to distance. Thus, in a steady, uniform flow, 

the total derivative dV/dt = 0. In one- dimensional flow, this means that ∂v/∂t = 

0, and ∂v/∂x = 0. In two- and three-dimensional flow, the partial derivatives of 

the velocity components in the other two coordinate directions with respect to 

time and space are also zero. 

The flow can be steady uniform  or steady non uniform but  unsteady uniform 

flow (impossible case) 

3- Laminar and Turbulent Flows 

The flow is called laminar flow if the liquid particles appear to move in definite 

smooth paths and the flow appears to be as a movement of thin layers on top of 

each other. In turbulent flow, the liquid particles move in irregular paths which are 

not fixed with respect to either time or space. The relative magnitude of viscous 

and inertial forces determines whether the flow is laminar or turbulent: The flow is 

laminar if the viscous forces dominate, and the flow is turbulent if the inertial 

forces dominate. The ratio of viscous and inertial forces is defined as the Reynolds 

number, 

𝑹𝒆 =
𝒗 𝒍

𝝑
 

in which Re = Reynolds number; V = mean flow velocity; L = a characteristic 

length; and ν = kinematic viscosity of the liquid. Unlike pipe flow in which the 

pipe diameter is usually used for the characteristic length, either hydraulic depth or 

hydraulic radius may be used as the characteristic length in free surface flows. 

Hydraulic depth is defined as the flow area divided by the top water-surface width 

and the hydraulic radius is defined as the flow area divided by the wetted 

perimeter. The transition from laminar to turbulent flow in free surface flows 

occurs for Re of about 500, in which Re is based on the hydraulic radius as the 

characteristic length. 

If Re< 500 or 600  laminar flow 

Re= 500-2000 transition flow 

Re>2000 turbulent 

Subcritical, Supercritical, and Critical Flows 

A flow is called critical if the flow velocity is equal to the velocity of a gravity 

wave having small amplitude. A gravity wave may be produced by a change in the 

flow depth. The flow is called subcritical flow, if the flow velocity is less than the 

critical velocity, and the flow is called supercritical flow if the flow velocity is   

greater than the critical velocity. The Froude number, Fr, is equal to the ratio of 

inertial and gravitational forces and, for a rectangular channel, it is defined as 



𝐹𝑟 =
𝑉

√𝑔𝑦
 

in which y = flow depth.  Depending upon the value of Fr, flow is classified as 

subcritical if Fr < 1; critical if Fr = 1; and supercritical if Fr > 1. 

 

Terminology, Nomenclature 

Channels may be natural or artificial. Various names have been used for the   

artificial channels: A long channel having mild slope usually excavated in the 

ground is called a canal. A channel supported above ground and built of wood, 

metal, or concrete is called a flume. A chute is a channel having very steep bottom 

slope and almost vertical sides. A tunnel is a channel excavated through a hill or a 

mountain. A short channel flowing partly full is referred to as a culvert. 

A channel having the same cross section and bottom slope throughout is referred to 

as a prismatic channel, whereas a channel having varying cross section and/or   

bottom slope is called a non-prismatic channel. A long channel may be comprised 

of several prismatic channels. A cross section taken normal to the direction of flow 

(e.g., Section BB in Fig. 1) is called a channel section. The depth of flow, y, at a 

section is the vertical distance of the lowest point of the channel section from the 

free surface. The depth of flow section, d, is the depth of flow normal to the   

direction of flow. The stage, Z, is the elevation or vertical distance of free surface 

above a specified datum ( Fig.1). The top width, B, is the width of channel section 

at the free surface. The flow area, A, is the cross-sectional area of flow normal to 

the direction of flow. The wetted perimeter, P is defined as the length of line of 

intersection of channel wetted surface with a cross-sectional plane normal to the 

flow direction. The hydraulic radius, R, and hydraulic depth, D, are defined as 

𝑹 =
𝑨

𝑷
   𝒂𝒏𝒅  𝑫 =

𝑨

𝑩
 

 

 
Fig 1 Typical cross section 

 



Chapter 2 

Velocity and Pressure Distribution 

The flow velocity in a channel section varies from one point to another. This is due 

to shear stress at the bottom and at the sides of the channel and due to the presence 

of free surface. Fig. 2 shows typical velocity distributions in different channel 

cross sections. 

The flow velocity may have components in all three Cartesian coordinate 

directions. However, the components of velocity in the vertical and transverse 

directions are usually small and may be neglected. Therefore, only the flow 

velocity in the direction of flow needs to be considered. This velocity component 

varies with depth from the free surface. A typical variation of velocity with depth 

is shown in Fig. 3. 

 
Fig.2 velocity distribution 

 



 
Fig. 3 Typical velocity variation with depth 

Vs= surface velocity, vs is not max because of the secondary currents, max velocity 

at (0.05-0.25) y.  In the field measurements v0.6 is average or vave is 

𝑣𝑎𝑣𝑒 =  
𝑣0.2 + 𝑣0.8

2
 

 

  
𝑣𝑎𝑣𝑒 =  𝑘 × 𝑣𝑠 

K= 0.8- 0.95     is determined from field calibration is different from river to 

another. 

 

 

Energy Coefficient (velocity coefficient) 

There is always the assumption of a constant velocity across the whole section of 

the flows but this is never true in practice because viscous drag makes the velocity 

lower near the solid boundaries. 

As discussed in the previous paragraphs, the flow velocity in a channel section 

usually varies from one point to another. Therefore, the mean velocity head in a 

channel section, (V 2/2g)m, is not the same as the velocity head, V 2m /(2g), 

computed by using the mean flow velocity, Vm, in which the subscript m refers to 

the mean values. This difference may be taken into consideration by introducing an 

energy coefficient, α, which is also referred to as the velocity head, or Coriolis 

coefficient. 



(
𝒗𝟐

𝟐𝒈
 )𝒎 ≠  

(𝒗𝒎)𝟐

𝟐𝒈
 

(v2/2g)m true mean velocity head 

 

BASIC CONCEPTS 

Referring to Fig. 4, the mass of liquid flowing through area ΔA per unit time = ρV 

ΔA, in which ρ = mass density of the liquid. Since, the kinetic energy of mass m 

traveling at velocity V is (1/2)mV 2, we can write  

Kinetic energy transfer through area ΔA per unit time 

=  
𝟏

𝟐
𝝆 𝑽 ∆ 𝑨𝑽𝟐      (1) 

=
𝟏

𝟐
𝝆  𝑽𝟑∆ 𝑨         (1) 

Kinetic energy transfer through area A per unit time 

=
𝟏

𝟐
𝝆 ∫ 𝑽𝟑𝑨        (2) 

 
Fig. 4 

 

It follows from Eq. 1 that the kinetic energy transfer through area ΔA per unit time 

may be written as (γV ΔA)V 2/(2g) = weight of liquid passing through area ΔA per 

unit time × velocity head, in which γ = specific weight of the liquid. Now, if Vm is 

the mean flow velocity for the channel section, then the weight of liquid passing 

through total area per unit time =γVm dA; and the velocity head for the channel 

section =αV 2m /(2g), in which α = velocity head coefficient. Therefore, we can 

write 

Kinetic energy transfer through area per unit time 

 

=  𝝆 𝜶𝑽𝒎  
𝑽𝒎

𝟐

𝟐
∫ 𝒅𝑨        (3) 

Hence, it follows from Eqs. 2  and 3 that 



𝜶 =   
∫ 𝑽𝟑 𝒅𝑨

𝑽𝒎
𝟑 ∫ 𝒅𝑨

              (4) 

α= correction coefficient for velocity distribution 

 

 

Figure 5 shows a typical cross section of a natural river comprising of the main 

river channel and the flood plain on each side of the main channel. 

The flow velocity in the floodplain is usually very low as compared to that in the 

main section. In addition, the variation of flow velocity in each subsection is small. 

Therefore, each subsection may be assumed to have the same flow velocity 

throughout. In such a case, the integration of various terms of  Eq. 4 may be 

replaced by summation as follows: 

 

 
Fig. 5 Typical cross section 

 

𝜶 =   
𝑽𝟏

𝟑𝑨𝟏+𝑽𝟐
𝟑𝑨𝟐+ 𝑽𝟑

𝟑𝑨𝟑

𝑽𝒎
𝟑 ( 𝑨𝟏+𝑨𝟐+𝑨𝟑)

             (5) 

 

 

𝑽𝒎 =   
𝑽𝟏𝑨𝟏+𝑽𝟐𝑨𝟐+ 𝑽𝟑𝑨𝟑

( 𝑨𝟏+𝑨𝟐+𝑨𝟑)
           (6) 

By substituting Eq. 6 into Eq. 5 and simplifying, we obtain 

 

𝜶 =   
(𝑽𝟏

𝟑𝑨𝟏+𝑽𝟐
𝟑𝑨𝟐+ 𝑽𝟑

𝟑𝑨𝟑) (𝑨𝟏+𝑨𝟐+𝑨𝟑)𝟐

(𝑽𝟏𝑨𝟏+𝑽𝟐𝑨𝟐+𝑽𝟑𝑨𝟑) 𝟑
           (7) 

Note that Eq. 7 is written for a section which may be divided into three subsections 

each having uniform velocity distribution. For a general case in which total area A 

may be subdivided into N such subareas each having uniform velocity, an equation 

similar to Eq. 7 may be written as 

 

𝜶 =   
∑ (𝑽𝒊

𝟑𝑵
𝒊=𝟏 𝑨𝒊) .(∑ 𝑨𝒊)

𝟐
 

(∑ 𝑽𝒊𝑨𝒊) 𝟑
                      (8) 



 

Momentum Coefficient 

Similar to the energy coefficient, a coefficient for the momentum transfer through 

a channel section may be introduced to account for non uniform velocity 

distribution. This coefficient, also called Boussinesq coefficient, is denoted by β. 

An expression for this may be obtained as follows: 

 

BASIC CONCEPTS 

The mass of liquid passing through area ΔA per unit time = ρV ΔA. Therefore, the 

momentum passing through area ΔA per unit time = (ρV ΔA)V = ρV 2ΔA. By 

integrating this expression over the total area, we get Momentum transfer through 

area A per unit time 

 

= 𝝆 ∫ 𝑽𝟐𝒅𝑨           (9) 

By introducing the momentum coefficient, β, we may write the momentum transfer 

through area A in terms of the mean flow velocity, Vm, for the channel section, i.e., 

Momentum transfer through area A per unit time   = 𝜷𝝆 𝑽𝒎
𝟐 ∫ 𝒅𝑨          (10) 

 

 

Hence, it follows from Eqs. 9 and 10 that 

 

𝜷 =
∫ 𝑽𝟐𝒅𝑨

𝑽𝒎
𝟐 ∫ 𝒅𝑨

          (11) 

 

Theoretical values for α and β can be derived from the power law and the 

logarithmic law for velocity distribution in wide channels.  For turbulent flow in a 

straight channel having a rectangular, trapezoidal, or circular cross section, α is 

usually less than 1.15 Therefore, it may not be included in the computations since 

its value is not precisely known and it is nearly equal to unity 

 

 

 

 

 

 

 

 

 

 

 



 

Table 1 values of  ∝ 𝑎𝑛𝑑 𝜷 

 

 
 

Pressure Distribution 

The pressure distribution in a channel section depends upon the flow conditions. 

Let us consider several possible cases, starting with the simplest one and then 

proceeding progressively to more complex situations. 

Static Conditions 

Let us consider a column of liquid having cross-sectional area ΔA, as shown in Fig. 

6. The horizontal and vertical components of the resultant force acting on the 

liquid column are zero, since the liquid is stationary. If p = pressure intensity at the 

bottom of the liquid column, then the force due to pressure at the bottom of the 

column acting vertically upwards = pΔA. The weight of the liquid column acting 

vertically downwards = ρgyΔA. Since the vertical component of the resultant force 

is zero, we can write this case U.F and GVF 



 
Fig . 6 Pressure in stationary fluid 

 

𝒑 ∆𝑨 =  𝝆𝒈 𝒚 ∆ 𝑨 

 

𝒑 =  𝝆𝒈 𝒚  
In other words, the pressure intensity is directly proportional to the depth below the 

free surface. Since ρ is constant for typical engineering applications, the 

relationship between the pressure intensity and depth plots as a straight line, and 

the liquid rises to the level of the free surface in a piezometer, as shown in Fig. 6. 

The linear relationship, based on the assumption that ρ is constant, is usually valid 

except at very large depths, where large pressures result in increased density. 
 

Horizontal, Parallel Flow 

Let us now consider the forces acting on a vertical column of liquid flowing in a 

horizontal, frictionless channel (Fig. 7). Let us assume that there is no acceleration 

in the direction of flow and the flow velocity is parallel to the channel bottom and 

is uniform over the channel section. Thus the streamlines are parallel to the   

channel bottom. Since there is no acceleration in the direction of flow, the 

component of the resultant force in this direction is zero. Referring to the free-body 

diagram shown in Fig. 7 and noting that the vertical component of the resultant 

force acting on the column of liquid is zero, we may write 



 
Fig. 7 Horizontal, parallel flow 

𝒑 𝒈 𝒚∆𝑨 =  𝝆 ∆ 𝑨 

 

𝒑 =  𝝆𝒈 𝒚 =  𝜸 𝒚 

in which γ = ρg = specific weight of the liquid. Note that this pressure distribution 

is the same as if the liquid were stationary; it is, therefore, referred to as the 

hydrostatic pressure distribution 
 

Parallel Flow in Sloping Channels 

Let us now consider the flow conditions in a sloping channel such that there is no 

acceleration in the flow direction, the flow velocity is uniform at a channel cross 

section and is parallel to the channel bottom; i.e., the streamlines are parallel to the 

channel bottom. Figure 8 shows the free-body diagram of a column of liquid 

normal to the channel bottom. The cross-sectional area of the column is ΔA. If θ = 

slope of the channel bottom, then the component of the weight of column acting 

along the column is ρgdΔAcos θ and the force acting at the bottom of the column is 

pΔA. There is no acceleration in a direction along the column length, since the flow 

velocity is parallel to the channel bottom. 

 

Fig. 8 Parallel flow in a sloping channel 

 

 Hence, we can write pΔA = ρgdΔAcos θ, or p = ρgd cos θ = γd cos θ. 



By substituting d = y cos θ into this equation (y = flow depth measured vertically, 

as shown in Fig. 8, we obtain 
 

𝒑 =  𝝆𝒈 𝒚 =  𝜸 𝒚𝒄𝒐𝒔 𝜽𝟐 

Note that in this case the pressure distribution is not hydrostatic in spite of the fact 

that we have parallel flow and there is no acceleration in the direction of flow. 

However,  if the slope of the channel bottom is small, then cos θ _ 1 and d _ y. 

Hence, 

𝒑 ≅  𝝆𝒈 𝒅 ≅  𝝆𝒈 𝒚 
In several derivations we assume that the slope of the channel bottom is small. 

With this assumption, the pressure distribution may be assumed to be hydrostatic if 

the streamlines are almost parallel and straight, and the flow depths measured  

vertically or normal to the channel bottom are approximately the same. 
 

Curvilinear Flow 

In the previous three cases, the streamlines were straight and parallel to the channel 

bottom. However, in several real-life situations, the streamlines have pronounced 

curvature. To determine the pressure distribution in such flows, let us consider the 

forces acting in the vertical direction on a column of liquid with cross-sectional 

area ΔA, as shown in Fig. 9. 

 
 

Fig, 9 curvilinear flows 



 
𝒑

𝜸
= (𝒓𝟐 − 𝒓)𝒄𝒐𝒔𝜽 + 

𝒂𝑵

𝒈
 (𝒓𝟐 − 𝒓) 

 

 
𝑴𝒂𝒔𝒔 𝒐𝒇 𝒕𝒉𝒆 𝒍𝒊𝒒𝒖𝒊𝒅 𝒄𝒐𝒍𝒖𝒎𝒏 =  𝝆𝒚𝒔∆𝑨 

 

If r = radius of curvature of the streamline and V is the flow velocity at the point 

under consideration, then 

𝑪𝒆𝒏𝒕𝒓𝒊𝒇𝒖𝒈𝒂𝒍 𝒂𝒄𝒄𝒆𝒍𝒓𝒂𝒕𝒊𝒐𝒏 =  
𝑽𝟐

𝒓
 

And 

𝑪𝒆𝒏𝒕𝒓𝒊𝒇𝒖𝒈𝒂𝒍 𝒇𝒐𝒓𝒄𝒆 = 𝝆𝒚𝒔∆𝑨 
𝑽𝟐

𝒓
 

 
 

Dividing the centrifugal force by the area of the column and converting the 

pressure to pressure head, we obtain the following expression for the pressure 

head, ya, acting at the bottom of the liquid column due to centrifugal acceleration 

𝒚𝒂 =  
𝟏

𝒈
𝒚𝒔

𝑽𝟐

𝒓
 

The pressure due to centrifugal force is in the same direction as the weight of 

column if the curvature is concave, as shown in Fig. 9 a, and it is in a direction 

opposite to the weight if the curvature is convex (Fig. 9b). Therefore, the total 

pressure head acting at the bottom of the column is an algebraic sum of the 

pressure due to centrifugal action and the weight of the liquid column, i.e., 

𝑻𝒐𝒕𝒂𝒍 𝒑𝒓𝒆𝒔𝒔𝒖𝒓𝒆 𝒉𝒆𝒂𝒅 =  𝒚𝒔(𝟏 ∓
𝟏

𝒈

𝑽𝟐

𝒓
)       ( a) 



 
 

A positive sign is used if the streamline is concave, and a negative sign is used if 

the streamline is convex. Note that the first term in Eq. a is the pressure head due 

to static conditions while the second term is the pressure head due to centrifugal 

action. Thus, the liquid in a piezometer inserted into the flow rises, as shown in 

Fig. 9a. In other words, pressure increases due to centrifugal action in concave 

flows and decreases in convex flows (Fig. 9b). 

 
 

 

 

 

 

 

 

 

Flow Resistance 

The resistance offered by the channel bottom and sides to free-surface flows and its 

effects on the velocity distribution in an excellent manner as follows : 

“The water of straight rivers is the swifter the farther away it is from the walls, 

because of resistance. Water has higher speed on the surface than at the bottom. 

This happens because water on the surface borders on air which is of little 

resistance, because lighter than water, and the water at the bottom is touching the 

earth which is of higher resistance, because heavier than water and not moving. 

From this follows that the part which is more distant from the bottom has less  

resistance than that below. Because of the variation in resistance along the wetted 

perimeter and because of the shape of the channel cross section, secondary currents 

are usually set up in free-surface flows even if the channel is straight. In addition, 

aN/g 



the shear resistance offered to flow at the channel boundaries is not uniform. 

However, to simplify the analysis, we will assume that the flow is one-dimensional 

– i.e., there are no secondary currents in the flow and the shear resistance to flow at 

the boundaries is uniform. 

Flow Resistance Equations 

In this section, we present several equations relating the channel resistance to 

various flow variables. For a general derivation, we first derive an equation for non 

uniform flow and then simplify it for uniform flow as a special case of non uniform 

flow. 

Chezy Equation 

To derive the Chezy equation, we make the following assumptions: The flow is 

steady; the slope of the channel bottom is small; and the channel is prismatic. 

Let us consider a control volume of length Δx, as shown in Fig. 10. At the 

upstream side of this control volume, let the distance be x, flow velocity be V , and 

the flow depth be y. Then, the values of these variables at the downstream side are 

x + Δx, V + (dV/dx)Δx, and y + (dy/dx)Δx).  

The following forces are acting on the control volume: pressure force on the 

upstream side, F1; pressure forces on the downstream side, F2 and F3; a 

component of the weight of water in the control volume in the downstream 

direction, Wx; and the shear force, Ff , acting on the channel bottom and the sides. 

Referring to Fig. 10, the expression for these forces may be written as follows 

 

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑓𝑜𝑟𝑐𝑒, 𝐹1 =  𝛾 𝐴 𝑧            (1) 

in which ¯z = depth of the centroid of flow area A below the water surface and 

γ = specific weight of water. The component of the weight of water in the 

downstream direction, 

𝑊𝑥 =  𝛾 𝐴 ∆𝑥 sin 𝜃        (2) 
 

in which θ = angle between the channel bottom and the horizontal axis. Since the 

channel-bottom slope is assumed to be small, sin θ _ tan θ _ −dz/dx. 

Note that the negative sign is due to the fact that z decreases as x increases. 

Hence, we may write Eq. b as 

𝐹2 =  𝛾 𝐴 𝑍               (3) 

𝐹3 =  𝛾 𝐴 
𝑑𝑦

𝑑𝑥
 ∆𝑥        (4) 

 

Note that in the expression for F3, we have neglected the higher-order term, which 

corresponds to the small triangle at the top. If the average shear stress acting on the 

channel bottom and sides is τo, then the shearing force 

 



 
Fig. 8  Definition sketch 

 

𝐹𝑓 = 𝜏𝑜𝑃∆𝑥              (5) 

in which P = wetted perimeter. Referring to Fig 8, the resultant force, Fr, acting on 

the control volume in the downstream direction is 

𝐹𝑟 = ∑ 𝐹 = 𝐹1 − (𝐹2 + 𝐹3) + 𝑊𝑥 − 𝐹𝑓          (6) 

Substituting Eqs1 through 5 into Eq. 6 and simplifying, we obtain 

 

𝐹𝑟 = − 𝛾𝐴∆𝑥 (
𝑑𝑦

𝑑𝑥
+

𝑑𝑧

𝑑𝑥
+

𝑃 𝜏𝑜

 𝛾 𝐴
)                     (7) 

 
∑ 𝐹 = 𝑚𝑎𝑥      

𝐹1 + 𝜌𝑔 𝐴 ∆𝑥 sin 𝜃 − 𝑝 ∆𝑥 𝜏𝑜 −  𝐹2 = 𝑚𝑎𝑥     

In uniform flow  ax=0 , F1=F2, v1=v2 ,  no change in  sin Ɵ= So 

𝜌𝑔 𝐴 ∆𝑥𝑆𝑜 = 𝑝 ∆𝑥𝜏𝑜  

𝜏𝑜 =  𝛾 
𝐴

𝑝
 𝑆𝑜 =  𝛾 𝑅 𝑆𝑜 

From dimensional analysis  𝜏𝑜 = 𝑎 𝜌𝑣2𝑎𝑛𝑑 𝑎 =  
𝑓

8
 

f= coeff. of friction 

 

𝑎 𝜌𝑣2 =  𝛾 𝑅 𝑆𝑜 
𝑓

8
 𝜌𝑣2 =  𝜌𝑔 𝑅 𝑆𝑜 

𝑣 =  √
8 𝑅 𝑆𝑜

𝑓
 

             
 

This equation may be written as 



𝑉 = 𝐶√𝑅 𝑆𝑓          (a)    

in which C = Chezy constant   

Note that Eq. a is valid for non uniform, steady flow.    

𝑉 = 𝐶√𝑅 𝑆𝑜             (b) 

For uniform flow we use Eqs b is valid. 

It is clear from Eq. a or b that C has dimensions of √ length/time, as compared to 

the Darcy Weisbach friction factor, f, which is dimensionless. 

However, like f, C depends upon the channel roughness and the Reynolds number, 

Re. In addition, it may depend upon the channel cross-sectional shape as well, 

although this dependence appears to be small and may be neglected. Because the 

channel roughness may vary over a wide range, its effect on C has not been as 

thoroughly investigated as that on f.     

Let us now compare the Chezy equation, Eq. a, for open channels with the Darcy-

Weisbach friction formula for pipes, 

ℎ𝑓 = 𝑓
𝐿

𝐷
 
𝑣2

2𝑔
 

in which hf = head loss in a pipe of diameter D and length L. The slope of the 

energy grade line, S = hf/L. Therefore, we may write this equation as 

 

𝑉 = √
2𝑔 𝐷 𝑆

𝑓
 

Noting that the hydraulic radius, R, for a pipe is equal to D/4, Eq. a 

Becomes 

𝑉 = 𝐶√
 𝐷 𝑆

4
 

It follows from the above two equations that   

𝐶 = √
 8𝑔

𝑓
  

Figure 11 shows the Moody diagram plotted with C as the ordinate instead of  f . 

This diagram is divided into three regions: hydraulically smooth, transition, and 

fully rough. A flow may be considered hydraulically smooth even though the 

channel surface is rough provided the projections of the surface roughness are 

covered by the laminar sublayer. As the Reynolds number increases, the thickness 

of this layer decreases and the effect of roughness projections on flow becomes 

important. Then, the flow is in the transition region. However, when the roughness 

projections are not covered by the viscous sub-layer and dominate the flow 

because losses are due to form drag, flow may be classified as fully rough. These 



flow types may be classified based on the value of a dimensionless number, Rs = 

kV ∗/ν. In this expression, ν is the kinematic viscosity of the liquid; k is a 

characteristic length parameter for the size of the channel-surface roughness; and, 

V ∗ is the 

shear velocity, which is defined as 

𝑉∗ = √
𝜏𝑜

𝜌
= √𝑔 𝑅 𝑆𝑓  

 

 

Fig. 11 Modified Moody diagram 

 

The flow is considered smooth if Rs < 4; transition if 4 < Rs < 100; and fully 

rough if Rs > 100. The expressions for C for smooth and rough flows derived from 

the experimental data on flow through pipes are: 

 

Smooth flows 

𝐶 = 28.6 𝑅𝑒
1/8

               𝑖𝑓 𝑅𝑒 < 105 

𝑓 =
0.316

𝑅𝑒1/6
           Blasis formula 



And       

𝐶 = 4√2𝑔  𝑙𝑜𝑔10(
𝑅𝑒√8𝑔

2.51 𝐶
)              𝑖𝑓 𝑅𝑒 > 105 

1

√𝑓
= 2 log √𝑓 − 0.8             Karman Prandtle equation 

 

Rough flows 

𝐶 = −2√8𝑔  𝑙𝑜𝑔10(
𝑘𝑠

12𝑅
+

2.5

𝑅𝑒√𝑓
) 

For  Re > 105 
1

√𝑓
= −2 log

𝑘𝑠

𝐷
+ 1.14         Karman Prandtle equation 

For transition zone  

   
1

√𝑓
= −2 log

𝑘𝑠

𝐷
= 1.14 −  2 log (1 + 9.35 

𝐷/𝑘𝑠

𝑅𝑒 √𝑓
)            

Colorbrook- White function 

 

The preceding equations are valid only for small channels with fairly smooth 

surfaces since these are based on pipe data. Empirical relationships and field 

observations should be employed for large channels with rough flow surfaces. 

Manning Equation 

Because  C depends upon several parameters in addition to the channel roughness. 

Based on the field observations, 

𝐶𝛼 𝑅1/6 

Manning equation 

𝑉 =
1

𝑛
 𝑅2/3𝑆𝑓

0.5          © 

in which n = Manning coefficient. This is the Manning equation, which has been 

very widely used. 

Again note that n is not a dimensionless constant and has the dimensions of 

(length)1/3/time. 

The value of n depends mainly upon the surface roughness, amount of vegetation, 

and channel irregularity, and, to a lesser degree, upon stage, scour and deposition, 

and channel alignment. 

Christensen investigated the range of validity of the Manning equation assuming 

that for the friction factors of closed conduits are valid for the free-surface flows. 

By substituting the approximation 
𝐶

√𝑓
=  2.916 (

𝑅

𝑘
)1/6 



For rough turbulent flows in circular conduits into Eq. below and noting that for 

closed conduits R = D/4, we obtain 

𝑉 = √
2𝑔 𝐷 𝑆

𝑓
 

𝑉 = 8.25 √𝑔

𝑘1/6
𝑆0.5 𝑅2/3       (d) 

 

Equation (d )has the following advantages over Eq. ©: Manning n is difficult to 

estimate since it does not have any physical meaning. On the other hand, k  is  

physically based and is directly related to the size of surface roughness, which can 

be measured. In addition, since k is raised to the one sixth power, an error in  

estimating its value has a considerably less effect on the computed value of V as 

compared to that introduced by a similar error in the estimation of n. 

Manning coefficient, n, increases for very shallow depths where the lining 

roughness height approaches the depth of flow. For lined channels, a constant n 

value is acceptable; however, to account for shallow flow depths, a higher n value 

should be considered.  

 

𝑛 =
(

𝑅
0.3048

)1/6

8.6 + 19.97 log(
𝑅

𝑑50
)
 

 

 

where R = hydraulic radius, in m. 

For vegetation-lined channels, a constant n may not be suitable due to significant 

variation in the amount of submergence of the vegetation with changes in flow and 

the resulting shear stress. Therefore,  the following equation for n for grass-lined 

channels as a function of hydraulic radius and tractive force, 

𝑛 =
(

𝑅
0.3048

)1/6

𝐶 + 19.97 log[(
𝑅

0.3048)]1.4 𝑆𝑜
0.4

 

where So is the channel bottom slope, and C is a dimensionless factor depending 

on the class of vegetation and R is in m. 

 

 

Computation of Normal Depth 

To analyze open channel flow, it is usually necessary to know the normal depth, yn. 

A number of procedures for computing the normal depth in a given channel for a 



specified discharge are discussed in this section. We will consider only the   

Manning equation in our discussions since it is very widely used. These 

discussions are valid for the Strickler equation as well if we replace n by 1/ks. 

The Manning equation for uniform flow in terms of discharge may be written  

𝑄 = 𝑉𝐴 =
1

𝑛
 𝐴 𝑅2/3𝑆𝑜

0.5 

 

𝐾 =
1

𝑛
 𝐴 𝑅2/3  Note that K is a function of the normal depth, properties of the  

channel section and Manning n. 

 

𝐴 𝑅2/3 =
𝑛 𝑄

𝑆𝑜
1/2

  

 

in which the left-hand side is referred to as the section factor. Thus, for the 

specified values of n, Q, and So, we solve this equation to determine the normal 

depth in a given channel. 

Design Curves 

These curves are presented in Fig. 3 for a trapezoidal and for a circular channel 

section. If we want to determine the normal depth for a specified discharge in a 

given channel section, then we know Q, n, and So. Therefore, we can compute the 

right-hand side of Eq. given above.  Let us divide this computed value by B8/3 

if the channel section is trapezoidal and by D8/3 if the channel cross section is 

circular. The resulting value is then equal to AR2/3/B8/3 for a trapezoidal section and 

equal to AR2/3/D8/3 for a circular cross section. Now, yn/Bo or yn/Do corresponding 

to the value of AR2/3/B8/3 =0  or  AR2/3/D8/3=0 may be directly read from Fig. 3 



Fig 3 Curves for the computation of normal depth 

Example  

Compute the normal depth in a trapezoidal channel having a bottom-width of 10 

m, side slopes of 2H to 1V and carrying a flow of 30 m3/s. The slope of the channel 

bottom is 0.001 and n = 0.013.        Ans  yn=1.1 

Equivalent Manning Constant 

In the previous discussion, we assumed that the flow surface at a channel cross 

section has the same roughness along the entire wetted perimeter. However, this is 

not always true. For example, if the channel bottom and sides are made from  

different materials, then the Manning n for the bottom and sides may have different 

values. To simplify the computations, it becomes necessary to determine a value of 

n, designated by ne, that may be used for the entire section. This value of ne is 

referred to as the equivalent n for the entire cross section. 

Let us consider a channel section that may be subdivided into N subareas having 

wetted perimeter Pi and Manning constant, ni, (i = 1, 2, · · · ,N). By assuming that 

the mean flow velocity in each of the subareas is equal to the mean flow velocity  

in the entire section, the following equation may be derived: 

𝑛𝑒 = (
∑ 𝑃𝑖𝑛𝑖

3/2

∑ 𝑃𝑖
)2/3 

 



in which subscript i refers to values for the ith subarea. Similarly, the following 

expression for the equivalent Manning constant ne may be derived by assuming 

that the total force resisting the flow is equal to the sum of forces resisting the flow 

in each subarea 

𝑛𝑒 = (
∑ 𝑃𝑖𝑛𝑖

2

∑ 𝑃𝑖
)1/2 

By utilizing the fact that the total discharge is equal to the sum of the discharge in 

each subarea 

 

𝑛𝑒 =
𝑃 𝑅5/3

(
∑ 𝑃𝑖𝑅𝑖

5/3

𝑛𝑖
)

 

Compound Channel Cross Section 

A compound cross section may be defined as a section in which various subareas  

have different flow properties, e.g., surface roughness, etc. A natural stream having 

overbank flow during a flood (Fig. 4) is a typical example of a compound section. 

The roughness of the overbanks is usually higher than that of the main channel; 

and, therefore, the flow velocity in the main channel is higher than that in the  

The analysis of flow in a compound section becomes complex if the flow in each 

subarea is considered separately. This requires the use of a two- or three 

dimensional model or to apply a one-dimensional model separately to each subarea 

by considering the flow in each sub-area as parallel flow and allowing for the 

exchange of mass and momentum between the adjacent subareas. In a straight 

channel, the water surface should be level over the entire cross section, since the 

pressure along any horizontal line must be constant although the flow velocity may 

vary from one subarea to the next. Due to different flow velocity, the level of the  

energy grade line is different in each subarea. Thus, there is no common level for 

the energy grade line for the entire section. To avoid this complexity, we derive in 

this section expressions for the energy coefficient, α, and for Sf in terms of the 

conveyance factor, K, of the subareas. With these expressions, the flow in a  

compound section may be computed without knowing the individual flows in each 

subarea. 

Let us subdivide the compound section into N subareas. We want to derive an 

expression for the energy coefficient, α, such that the velocity head for the entire 

section = αVm 2/ 2g , in which Vm = mean flow velocity in the compound section. 

 



 
 

Fig. 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

 

     

      

 

Chapter three 

GRADUALLY VARIED FLOW 

We discussed uniform flow in which the flow depth remains constant with 

distance. Such flows occur only in long and prismatic channels (i.e., the channel 

cross section and bottom slope do not change with distance). In real-life projects, 

however, channel cross sections and bottom slopes are not constant with distance 



in natural channels and these are varied in constructed channels to suit the existing 

topographical conditions for economic reasons. 

In addition, hydraulic structures are provided for flow control. These changes in 

the channel geometry produce non uniform flows while changing from one 

uniform-flow condition to another. Such flows are called gradually varied flows if 

the rate of variation of depth with respect to distance is small, and rapidly varied 

flows if the rate of variation is large.  In other words, the flow depth changes   

gradually over a long distance in gradually varied flows and in a short distance in 

rapidly varied flows. Since the analysis of gradually varied flows is usually done 

for long channels, the friction losses due to boundary shear have to be included. 

These losses, however, may be neglected in the analysis of rapidly varied flows 

because the distances involved are short. In addition, the pressure distribution in 

gradually varied flow may be assumed hydrostatic because the streamlines are 

more or less straight and parallel. However, this is not the case in rapidly varied 

flows where significant acceleration normal to flow direction may be produced by 

sharp curvatures in the streamlines. 

Governing Equation 

The gradually varied flow equations in a prismatic channel having no lateral inflow 

or outflow are derived in this section by making the following simplifying 

assumptions: 

1. The slope of the channel bottom is small.  

2. The channel is prismatic channel and there is no lateral inflow or outflow from 

the channel. 

3. The pressure distribution is hydrostatic at all channel sections. 

4- The head losses in gradually varied flow may be determined by using the 

equations for head losses in uniform flows. 

These assumptions are usually valid for gradually varied flows. A channel with 

changing cross section or bottom slope may be divided into piecewise prismatic 

channels. The slope of the channel bottom may be assumed small if it is less than 5 

percent. In such a case, sin θ ~ tan θ ~ θ, in which θ = angle of the channel bottom 

with horizontal, and the flow depths measured vertically or normal to the bottom 

are approximately the same. The curvature of the streamlines in gradually varied 

flows is usually small and thus the assumption of hydrostatic pressure distribution 

is valid. The water-surface profiles measured during hydraulic model   

investigations and during field observations compare satisfactorily with those 

computed by using the head-loss equations for steady uniform flow. 

 

By referring to Fig. 3-1, the total head at a channel section may be written as 



 

Fig 3-1 defintion scale 

 

𝑯 = 𝒛 + 𝒚 +
𝜶𝑽𝟐

𝟐𝒈
                                                      (3-1) 

 

in which H = elevation of the energy grade line above the datum; z = elevation of 

the channel bottom; y = flow depth; V = mean flow velocity, and α = velocity-head 

coefficient. Let us consider distance, x, as positive in the down- stream flow   

direction. By differentiating both sides of Eq. 3-1 with respect to x, and expressing 

V in terms of discharge, Q, we obtain 

 
𝒅𝑯

𝒅𝒙
=

𝒅𝒛

𝒅𝒙
+

𝒅𝒚

𝒅𝒙
+

𝜶𝑸𝟐

𝟐𝒈

𝒅

𝒅𝒙
( 

𝟏

𝑨𝟐
)                                              (3-2)                         

 

Now, by definition 
𝒅𝑯

𝒅𝒙
= −𝑺𝒇

  

                                                                                                                                            (3-3) 
𝒅𝒛

𝒅𝒙
= −𝑺𝒐

  

 



in which Sf = slope of the energy-grade line and So = slope of the channel bottom. 

There is a negative sign with Sf and So since both H and z decrease as x increases. 

Now, 

 
𝐝

𝐝𝐱
(

𝟏

𝐀𝟐
) =

𝐝

𝐝𝐀
( 

𝟏

𝐀𝟐
)

𝐝𝐀

𝐝𝐱
    

 

           =
𝒅

𝒅𝑨
( 

𝟏

𝑨𝟐
)

𝒅𝑨

𝒅𝒚

𝒅𝒚

𝒅𝒙
                                  ( 3-4) 

          =  −(
𝟐𝑩

𝑨𝟑
)

𝒅𝒚

𝒅𝒙
  

 

since  dA/dy = B,. Note that if the channel is not prismatic, then 

 
𝒅𝑨

𝒅𝒙
=

𝝏𝑨

𝝏𝒙
+

𝝏𝑨

𝝏𝒚

𝒅𝒚

𝒅𝒙
                                              (3-5) 

 

and Eqs. 3-4 and 3-5 are modified accordingly,   by substituting Eqs. 3-3 and 3-4 

into Eq. 3-2, and rearranging the resulting equation, we obtain 

 
𝒅𝒚

𝒅𝒙
=

𝑺𝒐−𝑺𝒇

𝟏−(𝜶 𝑩 𝑸𝟐)/(𝒈 𝑨𝟑)
                                       (3-6) 

 

This equation describes the rate of variation of y with x. By utilizing the expression 

for Froude number, Fr, , the second term in the denominator may be written as 

𝜶𝑩 𝑸𝟐

𝒈 𝑨𝟑
=

(
𝑸
𝑨

)𝟐

(𝒈𝑨)/(𝜶 𝑩 )
=  𝑭𝒓

𝟐 

 

Hence, Eq. 3-5 becomes 
𝒅𝒚

𝒅𝒙
=

𝑺𝒐−𝑺𝒇

𝟏−(𝑭𝒓
𝟐)

                                                     (3-7) 

 
 

We will use this equation in the following sections to draw qualitative conclusions 

about the water-surface profiles. 

 

Classification of Water-Surface Profiles 

We use the following notation to designate different water surface profiles: A letter 

refers to the type of the channel bottom slope and a numeral to the relative position   

of the profile with respect to the critical-depth line (CDL) and the normal-depth   

line (NDL). The critical depth and the normal depth are yc and yn, respectively. 



Channel-bottom slopes are classified into the following five categories: 

mild, steep, critical, horizontal (zero slope) and adverse (negative slope). The first 

letter of these names refers to the type, i.e., M for mild, S for steep, C for critical,  

H for horizontal and A for adverse slope. 

The bottom slope of a channel is called as mild slope if the uniform flow is 

subcritical (i.e., yn > yc); for the specified discharge and Manning n; it is critical 

slope if the uniform flow is critical (i.e., yn = yc); and it is steep slope if the uniform 

flow is supercritical (i.e., yn < yc). It is apparent that the normal depth is infinite if 

the bottom slope is horizontal and it is nonexistent if the bottom slope is negative. 

To summarize, the channel bottom slope is called 

 

• Mild if yn > yc; 

     • Steep if yn < yc; and 

     • Critical if yn = yc. 

Now, let us discuss how to designate the relative position of the surface profile. 

For the mild and steep slopes, the normal-depth and critical-depth lines divide the 

space above the channel bottom into three regions, as shown in Fig. 3-2. However, 

for the adverse, horizontal, and critical bottom slopes, there are only two regions 

since the normal depth does not exist, is infinite, or is the same as the critical 

depth, respectively. The region above both lines is designated as Zone 1; that 

between the upper and lower lines is designated as Zone 2, and the one between the 

lower line and the channel bottom is designated as Zone 3. Note that the upper line 

is the normal-depth line if the channel bottom slope is mild, and the upper line is  

the critical-depth line if the bottom slope is steep. 



 
Fig 3-2 Zones for classification of surface profiles 

 

Thus, we have 13 different types of surface profiles: three for the mild slope, three 

for the steep slope, two for the critical slope (zone 2 does not exist since yn = yc and 

we do not consider the critical-depth line as a surface profile); two for the   

horizontal slope (zone 1 does not exist since yn = ∞), and two for the adverse slope 

(there is no zone 1, since yn does not exist). 

Figure 3-3 shows different zones and profiles for all five types of bottom slopes. 



 
Fig. 3-3 Water surface profiles 

 

The energy-grade line, water surface, and channel bottom are parallel to each other 

in uniform flow; i.e., Sf = Sw = So, when y = yn. Therefore, it is clear from the 

Manning or Chezy equation that for specified discharge, Q, 

 Sf > So if y < yn.                             (3 − 8) 

and 

Sf < So if y > yn                              (3 − 9) 



By using these two inequalities, we determine the sign of the numerator of Eq. 3-7 

and whether the flow is subcritical (Fr < 1) or supercritical (Fr > 1), we determine 

the sign of the denominator of Eq. 3-7. 

Now, let us discuss how the surface profiles approach the normal and critical 

depths and the channel bottom. 

As  y → yn, Sf → So. Therefore, it follows from Eq. 3-7 that dy/dx → 0 provided 

 Fr = 1 (i.e., flow is not critical). In other words, the surface profile approaches the 

normal-depth line asymptotically. 

As y → yc, Fr → 1 and the denominator of Eq. 3-7 tends to zero. Therefore, dy/dx 

tends to ∞ provided Sf  = So. Thus, the water-surface profile approaches the 

critical-depth line vertically. Since a vertical water surface, is physically 

impossible, we may assume the water surface profile approaches the critical-depth 

line at a very steep slope. Therefore, the question arises as to why this conclusion 

about the vertical water surface derived theoretically is not realized in the real   

world. The reason for this discrepancy is that as soon as the water surface has a 

sharp curvature, the pressure distribution is not hydrostatic. Therefore, Eq. 3-7 is 

not valid, and any conclusions we draw from this equation become questionable. 

As we discussed in the previous chapters, a hydraulic jump is formed when the 

flow changes from supercritical to subcritical. 

In a hydraulic jump, the flow surface has a steep gradient since it passes through 

the critical depth line. 

As y→∞, V → 0, and consequently both Fr and Sf tend to zero. Hence, it follows 

from Eq. 3-7 that dy/dx → So for very large values of y. Since we are assuming   

that So is small, we may say that the water surface profile almost becomes 

horizontal as y becomes large. 

Now, let us discuss what happens when the water surface approaches the channel 

bottom, i.e., y → 0. From the Chezy equation, it follows that 


