Republic of Iraq
Ministry of Higher Education and Scientific Research
University of Basrah
Collage of Education for Pure Sciences
Department of Mathematics
Second Class

Advanced Calculus

Chapter Six
Partial Derivatives
First Lecture

By Dr. Jawad Mahmoud Jassim

2019-2020

1: Functions of Several Variables:

Definition (1):

Suppose D is a set of n-tuples of real numbers (x_1,x_2,\cdots,x_n) . A real valued function f on D is a rule that assigns a unique (single) real number $w=f(x_1,x_2,\cdots,x_n)$ to each element in D. The set D is the function's domain. The set of w-values taken on by f is the function's range. The symbol w is the dependent variable of f, and f is said to be a function of the n independent variables x_1,x_2,\cdots,x_n . We also call the x_j 's the function's input variables and call w the function's output variable.

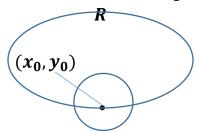
Example (1):

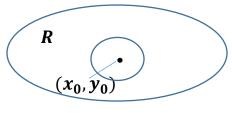
Find the domain and the range for the following functions:

No.	Function	Domain	Range
1	$z = \sqrt{y - x^2}$	$y \ge x^2$	[0 ,∞)
2	$z=\frac{1}{xy}$	$xy \neq 0$	$(-\infty, 0) \cup (0, \infty)$
3	$z = \sin xy$	Entire plane	[-1,1]
4	$w = \sqrt{x^2 + y^2 + z^2}$	Entire space	[0 ,∞)
5	$w = \frac{1}{x^2 + y^2 + z^2}$	$(x,y,z)\neq(0,0,0)$	(0,∞)
6	$w = xy \ln z$	Half- space $z > 0$	$(-\infty,\infty)$

Definition (2): (Interior Point)

A point (x_0, y_0) in a region R in the xy - plane is an interior point of R if it is a center of a disk of positive radius that lies entirely in R.





 (x_0, y_0) boundary point

 (x_0, y_0) interior point

Definition (3): (Boundary Point)

A point (x_0, y_0) is a boundary point of the region R if every disk centered at (x_0, y_0) contains points that lies outside of R as well as points that lies in R.

Definition (4): (Open Region)

A region is open if it consists entirely of interior points.

Definition (5): (Closed Region)

A region is closed if it contains all its boundary points.

For examples:

- 1: $\{(x,y): x^2 + y^2 < 1\} \rightarrow \text{ open unit disk (every point is an interior)}.$
- 2: $\{(x,y): x^2 + y^2 = 1\} \rightarrow boundary of unit disk (unit circle).$
- 3: $\{(x,y): x^2 + y^2 \le 1\} \rightarrow closed\ unit\ disk\ (contains\ all\ boundary\ points)$.

Note:

The empty set has no interior points and no boundary points. This implies that the empty set is open (because it does not contain points that are *not* interior points), and at the same time is closed (because there are no boundary points that it fails to contain).

Note:

The entire xy - plane is also both open and closed. Open because every point in the plane is an interior point. Closed because it has no boundary points.

Definition (6): (Bounded and Unbounded Regions)

A region in the plane is bounded if it lies inside a disk of finite radius.

A region is unbounded if it is not bounded.

For example:

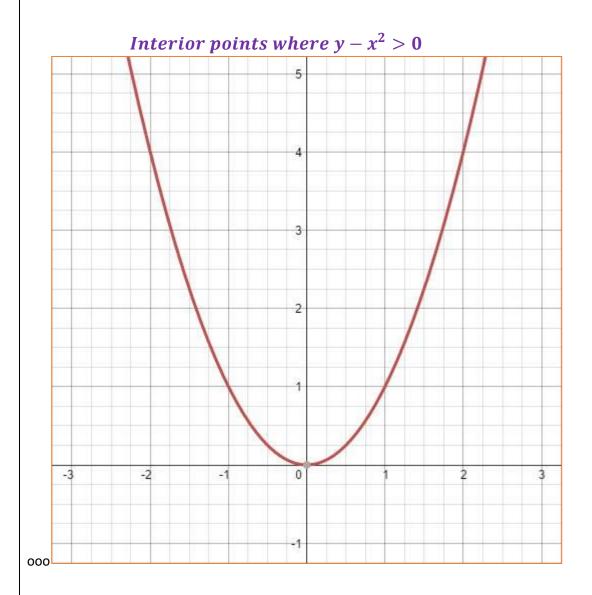
- 1: Bounded Regions: line segments, triangles, rectangles, circles and disks.
- 2: Unbounded Regions: lines, coordinate axes, the graphs of functions defined on infinite intervals, quadrants, half-planes and the plane itself.

Example (2):

Describe the domain of the function $f(x, y) = \sqrt{y - x^2}$.

Solution:

Since f is defined only where $y - x^2 \ge 0$, the domain is closed, unbounded region. The parabola $y = x^2$ is the boundary of the domain. The points above the parabola make up the *domain's* interior.



Definition (7): Level Curve)

The set of points in the plane where a function f(x, y) has a constant value f(x, y) = c is called a level curve of f.

Definition (8): (Graph)

The set of all points (x, y, f(x, y)) in space for (x, y) in the domain of f is called the *graph of f*. The graph of f is also called the surface z = f(x, y).

Example (3):

Graph
$$f(x, y) = 100 - x^2 - y^2$$
 and plot the level curves $f(x, y) = 0$, $f(x, y) = 51 \& f(x, y) = 75$ in the domain of f in the plane.

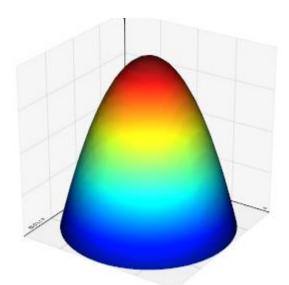
Solution:

The domain of f is the entire xy - plane, and the range of f is the set of real numbers less than or equal 100. The graph is the paraboloid $z = 100 - x^2 - y^2$.

The level curve f(x, y) = 0 is the set of points in the xy - plane at which $f(x, y) = 100 - x^2 - y^2 = 0$ or $x^2 + y^2 = 100$, which is the circle of radius 10 centered at the origin.

Similarly the level curves f(x, y) = 51 and f(x, y) = 75 are the circles $x^2 + y^2 = 49$ and $x^2 + y^2 = 25$.

The level curve f(x, y) = 100 consists of the origin alone.

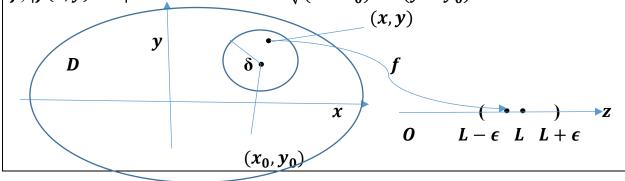


2: Limits and Continuity in Higher Dimensions

Definition (9): (Limits for a Function of Two Variables)

We say that a function f(x,y) approaches the limit L as (x,y) approaches (x_0,y_0) and write $\lim_{(x,y)\to(x_0,y_0)}f(x,y)=L$ if for every number $\epsilon>0$, there

exists a corresponding number $\delta > 0$ such that for all (x, y) in the domain of $f, |f(x, y) - L| < \epsilon$ whenever $0 < \sqrt{(x - x_0)^2 + (y - y_0)^2} < \delta$.



Notes:

1: The definition of the limit says that the distance between f(x, y) and L becomes arbitrarily small whenever the distance between (x, y) and (x_0, y_0) is made sufficiently small (but not zero).

2: The definition applies to interior points (x_0, y_0) as well as boundary points of the domain of f, although a boundary point need not lie within the domain.

3: The points (x, y) that approach (x_0, y_0) are always taken to be in the domain of f.

Theorem (1): (Properties of Limits of Functions of Two Variables)

The following rules hold if L, M & k are real numbers and

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = L & \lim_{(x,y)\to(x_0,y_0)} g(x,y) = M.$$
1:
$$\lim_{(x,y)\to(x_0,y_0)} [f(x,y) \mp g(x,y) = L \mp M.$$

1:
$$\lim_{(x,y)\to(x_0,y_0)} [f(x,y) \mp g(x,y) = L \mp M]$$

2:
$$\lim_{(x,y)\to(x_0,y_0)} kf(x,y) = kL$$
.

3:
$$\lim_{(x,y)\to(x_0,y_0)} [f(x,y)g(x,y)] = LM$$
.

4:
$$\lim_{(x,y)\to(x_0,y_0)} \frac{f(x,y)}{g(x,y)} = \frac{L}{M}$$
, $M \neq 0$.

5:
$$\lim_{(x,y)\to(x_0,y_0)} [f(x,y)]^n = L^n$$
, n is positive integer.

6: $\lim_{(x,y)\to(x_0,y_0)} \sqrt[n]{f(x,y)} = \sqrt[n]{L}$, n is a positive integer & if n is even we assume L > 0.

Example (4):

Find the following limits:

1:
$$\lim_{(x,y)\to(0,1)} \frac{x-xy+3}{x^2y+5xy-y^3} = \frac{3}{-1} = -3$$
.

2:
$$\lim_{(x,y)\to(3,-4)} \sqrt{x^2+y^2} = \sqrt{9+16} = \sqrt{25} = 5$$
.

Example (5):

Find
$$\lim_{(x,y)\to(0,0)} \frac{x^2-xy}{\sqrt{x}-\sqrt{y}}$$
.

Solution:

Since the denominator $\sqrt{x} - \sqrt{y}$ approaches 0 as $(x, y) \rightarrow (0, 0)$. We can not use the Quotient Rule from Theorem (1). If we multiply numerator and denominator $by \sqrt{x} + \sqrt{y}$, however, we produce an equivalent fraction whose limit we can find.

$$\lim_{(x,y)\to(0,0)} \frac{x^2 - xy}{\sqrt{x} - \sqrt{y}} = \lim_{(x,y)\to(0,0)} \left(\frac{x^2 - xy}{\sqrt{x} - \sqrt{y}}\right) \left(\frac{\sqrt{x} + \sqrt{y}}{\sqrt{x} + \sqrt{y}}\right) = \lim_{(x,y)\to(0,0)} \frac{(x^2 - xy)(\sqrt{x} + \sqrt{y})}{x - y} \\
= \lim_{(x,y)\to(0,0)} \frac{x(x - y)(\sqrt{x} + \sqrt{y})}{x - y} = \lim_{(x,y)\to(0,0)} x(\sqrt{x} + \sqrt{y}) = 0.$$

Note:

We can cancel the factor (x - y) because the path y = x is not in the domain of the function.

Example (6):

Find $\lim_{(x,y)\to(0,0)} \frac{4xy^2}{x^2+y^2}$ if it exists.

Solution:

We first observe that along the line x = 0.

:.
$$f(x,y) = 0 \rightarrow \lim_{(x,y)\to(0,0)} f(x,y) = 0.$$

Now, we observe that along the line y = 0.

:.
$$f(x, y) = 0 \rightarrow \lim_{(x,y)\to(0,0)} f(x,y) = 0.$$

$$\lim_{(x,y)\to(0,0)}\frac{4xy^2}{x^2+y^2}=0 .$$

Example (7):

$$\overline{lf\ f(x,y)} = \frac{y}{x} \cdot Does \lim_{(x,y) \to (0,0)} f(x,y) \ exist?$$

Solution:

We first observe that along the line y = 0.

$$f(x,y) = 0 \to \lim_{(x,y)\to(0,0)} f(x,y) = 0.$$

Second, we observe that along the line y = x.

$$f(x,y) = f(x,x) = \frac{x}{x} = 1 \to \lim_{(x,y)\to(0,0)} f(x,y) = 1.$$

Since the limits of f are different along different paths.

$$\therefore \lim_{(x,y)\to(0,0)} f(x,y) \ does \ not \ exist.$$

Definition (10): (Continuity)

A function f(x, y) is continuous at the point (x_0, y_0) if:

1: f is defined at (x_0, y_0) .

2:
$$\lim_{(x,y)\to(x_0,y_0)} f(x,y)$$
 exists.

3:
$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0).$$

A function is continuous if it is continuous at every point of its domain.

Example (8):

Show that the function
$$f(x, y) = \begin{cases} \frac{2xy}{x^2 + y^2}, (x, y) \neq (0, 0) \\ 0, (x, y) = (0, 0) \end{cases}$$
 is continuous at every

point except the origin.

Solution:

The function f is continuous at every point (x, y) except (0, 0) because its values at points other than (0, 0) are given by a rational function of x and y and there for at those points the limiting value is simply obtained by substituting the values of x and y in to that rational expression.

At (0,0), the value of f is defined but f has no limit as $(x,y) \to (0,0)$. The reason is that different paths of approach to the origin can lead to different results.

For every value of m the function f has a constant value on the line y = mx, $x \neq 0$ because

$$f(x,y) = f(x,mx) = \frac{2mx^2}{x^2 (1+m^2)} = \frac{2m}{1+m^2}.$$

$$\therefore \lim_{(x,y)\to(0,0)} f(x,y) = \frac{2m}{1+m^2}.$$

This limit changes with each value of the slope m.

:. There is no single number we may call the limit of f as $(x, y) \rightarrow (0, 0)$. The limit fails to exist and the function is not continuous at the origin.

Note:

If a function f(x, y) has different limits along two different paths in the domain of f as (x, y) approaches (x_0, y_0) , then $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$ does not exist.

Example (9):

Show that the function $f(x, y) = \frac{2x^2 y}{x^4 + y^2}$ has no limit as $(x, y) \to (0, 0)$.

Solution:

The limit cannot be found by direct substitution, which gives the indeterminate form $\frac{0}{0}$. We examine the values of f along parabolic curves that end at (0, 0). Along the curve $y = kx^2, x \neq 0$, the function has the constant value.

$$f(x,y) = f(x,kx^2) = \frac{(2x^2)(kx^2)}{x^4 + k^2 x^4} = \frac{2kx^4}{x^4 + k^2 x^4} = \frac{2k}{1 + k^2}.$$

$$f(x,y) = \frac{2k}{x^4 + k^2 x^4} = \frac{2kx^4}{x^4 + k^2 x^4} = \frac{2k}{1 + k^2}.$$

This limit varies with the path of approach.

 $\therefore f$ has no limit as $(x, y) \rightarrow (0, 0)$.

Note:

Having the same limit along all straight lines approaching (x_0, y_0) does not imply that a limit exists at (x_0, y_0) .

For example, the $\lim_{(x,y)\to(0,0)}\frac{2x^2y}{x^4+y^2}=0$ along every straight line path y=mx.

But we show that in Example (9) $\lim_{(x,y)\to(0,0)} \frac{2x^2y}{x^4+y^2}$ does not exist.

Note:

If f is continuous at (x_0, y_0) and g is a simple-valued function continuous at $f(x_0, y_0)$, then the composition function h = gof defined by h(x, y) = g(f(x, y)) is continuous at (x_0, y_0) .

Theorem (2): (Sandwich Theorem)

If $g(x, y) \le f(x, y) \le h(x, y)$ for all $(x, y) \ne (x_0, y_0)$ in a disk centered at (x_0, y_0) and if g & h have the same finite limit L as $(x, y) \to (x_0, y_0)$, then $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = L.$

Example (10):

If
$$1 - \frac{x^2y^2}{3} < \frac{\tan^{-1}xy}{xy} < 1$$
. Find $\lim_{(x,y)\to(0,0)} \frac{\tan^{-1}xy}{xy}$.

Solution:

By Sandwich Theorem

Since
$$\lim_{(x,y)\to(0,0)} \left(1 - \frac{x^2y^2}{3}\right) = 1$$
 and $\lim_{(x,y)\to(0,0)} 1 = 1$.

:.
$$\lim_{(x,y)\to(0,0)} \frac{\tan^{-1} xy}{xy} - 1$$
.