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Retinopathy of Prematurity (ROP) remains one of the leading causes of preventable childhood blindness,
particularly in low-resource settings where specialist access is limited. Although deep learning has improved
automated ROP detection, most existing models rely solely on retinal images and function as opaque black
boxes, limiting clinical trust and realworld adoption. This study proposes a robust and trustworthy ROP
diagnosis framework that combines Vision-Language Modeling (VLM) and Explainable AI. The pipeline fuses
high-resolution wide-field retinal fundus images with neonatal NICU text records using a lightweight Vision
Transformer, a clinical text encoder, and a neuro-symbolic reasoning layer for human-in-the-loop corrections. A
key technical enhancement applies Weighted-Fuzzy Histogram Equalization (WFHE) to boost local vascular
contrast while avoiding artifacts, outperforming Contrast Limited Adaptive Histogram Equalization CLAHE in
highlighting subtle pathological cues. Evaluations on benchmark ROP datasets, paired with semi-structured
NICU reports, demonstrate that the multimodal system improves diagnostic AUC by 7-9 % compared to
image-only baselines, and delivers dual explanations through Grad-CAM heatmaps and SHAP token-level
attributions. Structured clinician feedback confirms that the system’s explanations align with expert annotations
and improve interpretability and trust. This framework demonstrates that integrating WFHE, Vision-Language
fusion, and multi-level explainability can enable transparent, deployable AI for equitable neonatal vision care.
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1. Introduction

Retinopathy of prematurity (ROP) is one of the main causes
of vision impairment and blindness among children world-
wide, with the highest burden observed in South Asia and
SubSaharan Africa, where disparities in neonatal care stan-
dards persist [1]. In the past thirty years, the vision loss bur-
den caused by ROP has raised by more than 30 % globally.
This includes moderate and severe vision loss. This grow-
ing strongly contributes to childhood blindness worldwide
[2]. Recent studies explained that large-scale, multicenter
deep learning platforms can enhance the screening of ROP.

It is also demonstrated, by these studies, high accuracy di-
agnosis and integration of explainability support scalable
implementation [3]. Reviews cross countries confirm wide
variations in ROP incidence. These variations are largely
driven by disparities in neonatal intensive care standards,
oxygen regulation practices, and the availability of consis-
tent screening protocols [4]. Recent predictive modeling
studies show that the ROP occurrence and severity reflect
the quality of neonatal care. The probability of ROP occur-
rence and severity are especially occur in preterm infants
with low birth weight and early gestational age [5]. These
trends are similar to what we see in other rare but severe
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childhood disease. These diseases cause many problems for
children and families. One example is recessive dystrophic
epidermolysis bullosa (RDEB) [6]. Since the healthcare be-
comes more digital, doctors willingness to share electronic
medical records influences the performance and integration
of AI-driven healthcare systems. In order to ensure that AI
systems will work well, this sharing is very important. For
the sake of trustworthy systems design, it is very important
to understand how doctors behave in different levels of de-
cision [7]. In fact, many modern healthcare systems run on
IoMT platforms and for this reason, they need setups that
are safe and flexible. These setups should be able to grow
and handle extra works. Blockchain technology, which
adds another layer of protection, can also be used in order
to strengthen the security [8]. Around 32,000-45,000 cases
of Retinopathy of Prematurity (ROP) are reported annually,
and most cases occur in the countries that have low income.
The number of ROP raises in places where newborn care is
improved, but screening systems have not advanced at the
same rate and this results in more untreated cases. In fact,
less than 40 % of babies who need screening receive it on
time in countries such as India, Nigeria, and Bangladesh.
This happens because there are not enough retina cameras
and the lack of trained eye specialists. Manual grading of
fundus images also has weakness. Early changes in blood
vessels can be subtle, and they are often missed. In many
cases, different doctors may give different results. So, the
process of manual grading is slow, not automated, and
does not work equally well across various devices or pop-
ulations. In addition to that, it is difficult to distinguish
between early and advanced stages of the disease. All these
reasons show the urgent need for smart, clear, and scalable
diagnostic tools that support global healthcare systems [4].

Global and regional trends of incidence demonstrate the
increasing gap. Present spatiotemporal analysis suggests
that the burden of ROP is increasing, with large between
country discrepancies particularly in South Asia and Sub-
Saharan Africa where extensive neonatal care capabilities
are still underdeveloped and universal levels of screening
guidelines yet to be established [1]. More recently, cross-
country surveys have also measured such differences, with
extensive between-region variations in incidence and cover-
age that are strongly associated with neonatal care capacity
and protocol compliance [1, 2]. In the resource-limited
societies which are distributed and have poor access to
medicine, with low coverage, and follow-up rate, there can
be missing early detection and referral of patients in time
[4]. These trends are magnified in preterm LBW and ex-
tremely early GA infants suggesting the wide-ranging risk
profile (when considered by predictive modeling studies

[5]). From a daily clinical perspective, programs of screen-
ing in developing and emerging Countries have to face
many operational criticalities: scarcity of wide-field fundus
cameras, lack of pediatric retinal specialist physicians, frac-
tured systems for patient referral and rapport with other
services, variability of data quality that hampers Long-term
observational exercises. And, even if screening is started, a
deficiency of personnel and equipment mean the frequency
at which tests can be done are stretched out such that there
is increased risk of progression to second stage before the
detection with routine workflows. This throughput bottle-
neck is a risk for both loss-to-follow-up and progression to
treatment requiring disease in infants before reassessment
[4]. Jointly, these limitations emphasize the demand for
scaling tools with limited resources but high sensitivity to
early disease.

The latest studies, including the systematic review sug-
gest that deep learning (DL) algorithms for ROP diagnosis
on retinal fundus images reach near-human or superior ac-
curacy [9, 10]. However, such models frequently are "black
boxes" opaque to interpretation for clinical end-users which
may result in fairness, bias and generalizability issues if
diversity of training data and transparency is not consid-
ered [11]. Meta-analyses, as well as practical cases, stress
the absence of a standardized explainability and its impact
to wide spreading of use in the neonatal care [12]. Fur-
thermore, cross-regional audits demonstrate that delayed
screening and poor follow-up continue to be leading causes
of avoidable ROP blindness in LMICs [4].

It can be seen that, technically, point of care diagnos-
tic methods have specific limitations. Manual grading for
fundus images is a traditional approach that has problems
such as interrater variability, and variable sensitivity to
subtle vascular change and their early stage differentiation
being difficult and device-dependent. It is at the mild end
of disease where these limitations are most severe [10, 11]
and subtle vascular alteration result in early lesions being
missed, with adjacent stage distinction being commonly in-
consistent in clinical work. Intuitionbased image enhance-
ment is generally unable to ensure accurate discrimination
of neighboring stages when contrast is poor or light il-
lumination varies. In addition, image-only deep models
with high accuracy often appear as opaque black box with
poor interpretability and questionable generalisability of
predictions for different populations and devices which
hinders the clinical adoption and confidence on neonatal
care pathways [12]. These gaps must be addressed with
interpretable methods that enrich weak vascular signals
while incorporating contextual risk factors and providing
audit-able explanations that correspond to how clinicians
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think.

Vision-Language Models (VLMs) have opened up new
avenues for combining visual and textual information
jointly to enable more powerful cross-modal understand-
ing in medical imaging [13]. VLMs are designed to provide
an attention mechanism for medical image tasks and facil-
itate better multimodal reasoning and interpretation [14].
General-purpose VLMs, e.g., CLIP, have demonstrated
competitive performance on zero-shot and visual ques-
tion answering tasks, proving to be suitable backbones for
medical adaptation [15]. Recent works have shown that
scaling up large VLMs alongside with meticulous prompt
design and domain specific tuning can improve their per-
formance on medical imaging tasks even when there is little
training data [16]. Lozano et al. [17] presented BIOMED-
ICA This is a large scale open biomedical image-caption
archive proposed to support Vision-Language pretraining
and transfer learning for specialized modalities, such as
ophthalmic screening. Poudel et al. [18] also showed that
visual language segmentation models can be fine-tuned
with prompt attributes to steer attention towards region of
interest when processing medical images. Nath et al. [19]
showed that bringing together expert models into Vision-
Language pipelines leads to improvements in diagnostic
reasoning and transparency with dynamic feedback from
experts. Attention-guided convolutional models were used
in Yin et al. [20]. It showed good performance in brain
CT categorization tasks, which further supported the im-
portance of hybrid deep learning architectures for medical
diagnostics.

Shahzad et al. [21] showed that explainable AI meth-
ods like LIME can clarify CNN-based diagnostic decisions
for diabetic retinopathy, improving model transparency.
Abbas et al. [22] demonstrated how XAI methods, such
as LIME, can be integrated into ocular disease models to
enhance transparency and trust in retinal image predic-
tions. In Sureja et al. [23], explainable AI techniques like
Grad-CAM and LIME are applied to visualize deep model
decisions for retinal OCT image classification. Combining
symbolic neuro-fuzzy inference systems with deep learning
models can enhance explainability for ophthalmic diagno-
sis tasks [24]. Ali and Islam [25] showed how combining
explainable AI methods with Vision Transformer models
can enhance transparency and help demystify decision
boundaries for eye disease diagnosis.

Although the global burden of ROP is on the rise [2],
accumulating evidence still indicates that equitable access
to protocol-based care for ROP is lacking in many low- and
middleincome countries [1, 4]. Traditional deep learning
models, while enjoying high accuracy, are usually uninter-

pretable and incapable of integrating multimodal context
information this makes them less trustworthy in real life
neonatal care [10, 11]. Meanwhile, some state-of-the-art
Vision-Language pipelines have been proved to be useful
for challenging medical imaging tasks [13], however they
remain under-explored when coping with rare neonatal
diseases such as ROP. In such a setting, this paper proposes
an end-to-end ROP diagnosis framework that integrates
lightweight Vision-Language (VL) modeling and more ro-
bust explainable AI models that provide fine-grain visual
region attention and human-interpretable textual expla-
nations. The system is designed to operate in a resource-
constrained real-world environment while addressing im-
portant deficiencies in transparency and clinical confidence.

Recent milestones in VLMs, explainable AI (XAI), and
hybrid neuro-symbolic systems have dramatically revolu-
tionized the landscape of reliable medical image analysis.
This section presents a short overview of recent works
that are relevant to our aim for robust and interpretable
pipelines for ROP screening.

Zhong et al. [26] benchmarked general-purpose (CLIP,
LLaVA) and medical-specific VLMs (MedCLIP, LLaVA-
Med) on diagnosis and VQA tasks. They applied ef-
ficient finetuning (Sparse FT, LoRA) to adapt common
VLMs. Their results showed lightweight adaptation can
rival costly domain-specific pretraining while maintaining
strong in-domain and OOD performance. Chen et al. [27]
explored intrinsic PEFT by fine-tuning LayerNorm layers
in Med-VLMs instead of adding external adapters. They
benchmarked MISS and LLaVA-Med on Med-VQA and
IRG tasks. Results show LayerNorm tuning cuts param-
eter costs while maintaining accuracy and generalization.
The study in Mistretta and Bagdanov [28] proposed RE-
tune, an incremental fine-tuning method for biomedical
VLMs that freezes encoders and trains lightweight adap-
tors. They use engineered positive/negative text prompts
for multi-label chest X-ray classification under class-, label-,
and data-incremental scenarios. RE-tune prevents catas-
trophic forgetting and ensures privacy by avoiding exem-
plar storage.

In Han et al. [29], RAN framework is proposed, a
lightweight fine-tuning method that mitigates adversarial
noise in pre-trained medical VLMs using covariance, con-
sistency, and adversarial losses. They crafted multi-modal
adversarial attacks on radiology image-caption pairs. Eval-
uations on chest X-ray and Med-VQA tasks show RAN
improves robustness against upstream noise. Pan et al. [30]
developed MedVLM-R1, a medical VLM that uses Group
Relative Policy Optimization to generate explicit chain-
of-thought reasoning without needing CoT-labeled data.
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They adapted Qwen2-VL-2B with structured prompts for
radiology VQA. Experiments show MedVLM-R1 outper-
forms larger SFT models, boosting OOD generalization and
interpretability. In Farrag et al. [31], a double-dilated con-
volution module to expand receptive fields while preserv-
ing local resolution for mammogram tumor segmentation
has been proposed. They combined this with Grad-CAM
and Occlusion Sensitivity to explain segmentation outputs.
Experiments on the INBreast dataset showed better Dice
scores and miss detection rates than baseline DeepLabv3+.
In Farhan et al. [32], an ensemble dual-modality framework
for 3D brain tumor segmentation using multiple MRI se-
quences with U-Net models is introduced. They integrated
Grad-CAM visualizations and built an interactive feedback
loop to refine predictions with clinician input. Tests on
BraTS2020 showed their model outperformed singlemodal-
ity baselines while enhancing interpretability.

Gipiškis [33] proposed extending XAI techniques for
interpretable segmentation by using explanation maps
to guide Neural Architecture Search (NAS). The frame-
work adapts CAM-NAS from classification to segmenta-
tion via a teacher-student setup that aligns saliency maps.
The study also explores using XAI to compress mem-
ory replay for continual learning. Sritharan et al. [34]
developed a weakly supervised cervical cancer segmen-
tation framework combining binary classification with
XAI methods (Grad-CAM++, LRP) and GraphCut. Their
pipeline segments nucleus and cytoplasm regions using
only classification-level labels, removing the need for pixel-
wise ground truth. Their SegXperts app demonstrates the
practical deployment of this transparent approach. The
study in Rao et al. [35] developed UNet-PWP for kid-
ney tumor segmentation, combining adaptive partitioning,
weight pruning, and pre-trained weights to optimize the
standard UNet. They added GCAM-Attention Fusion to
provide region-level explainability. Tests on KiTS datasets
showed high accuracy with lower computational cost.

A methodology to solve detection and segmentation
tasks by using local concept-based XAI and logical rule
constraints has been proposed in Motzkus [36], named
Explanatory Interactive Learning (XIL). The model utilizes
human-in-the-loop to detect and correct for model failures.

Model weight updates are made along logical rules to
enhance the consistency and reliability. Alikhani [37] in-
troduced Synthetic Reasoning, a neuro-symbolic approach
integrating neural perception with symbolic logic mod-
ules. This combined approach is intended to enhance in-
terpretability and robustness, for example in the context of
healthcare or autonomous systems. In Lu et al. [38], Logical
Neural Networks (LNNs) were introduced: they capture

domainspecific logical rules as well as neural weights and
thresholds for explainable prediction of diagnoses. When
applied to diabetes risk, the performance of LNNs sur-
passed traditional models and uncovered which features
mattered most. On the other hand, a hybrid AI approach
that combines Knowledge Graphs with symbolic reasoning
and inductive learning is implemented in Chudasama et al.
[39] (TrustKG). Its VISE and HealthCareAI modules make
valid link and counterfactual predictions for lung cancer,
increasing interpretability and clinical trust.

Bangalore Vijayakumar et al. [40] introduced ConVision,
a benchmark contrasting CNNs and ViTs over COVID-19
CXR data. They examined trade-offs between accuracy and
cost, and the reproducibility of medical imaging. In Yang
et al. [41], Authors presented MMViT-Seg, a COVID-19
segmentation model that integrates CNNs and MobileViT
blocks for local and global feature extraction.

They added a Multi-Query Attention module to fuse
multi-scale decoder features. Results show strong accu-
racy with ∼ 1M parameters. In Wang et al. [42], TinyViT-
LightGBM, a lightweight IoMT framework fusing TinyViT
feature extraction with LightGBM classification for breast
cancer was proposed. It combines histopathology, mammo-
grams, and clinical-genetic data for robust, interpretable
diagnosis with high edge efficiency.

Finally, the proposed pipeline directly benefits from
retina-focused contributions. Li and Liu [43] developed
an explainable CNN pipeline for early-stage ROP, combin-
ing segmented vessel and ridge images with a DenseNet
classifier and quantitative features to improve diagnosis
consistency. In Mehmood et al. [44], Researchers presented
RetinaLiteNet, a lightweight CNNTransformer hybrid for
simultaneous segmentation of retinal vessels and the optic
disc, fusing CNN features with MHA and CBAM for local-
global detail capture under resource constraints. OS-ACE, a
local adaptive contrast and color restoration method for in-
fant ROP images that preserves retinal structure geometry,
boosting pre-processing quality for downstream diagnosis
has been presented in Dhanaraj and Kakade [45].

In summary, these recent advances across Vision-
Language Modeling, parameter-efficient 14 fine-tuning,
explainable segmentation, and neuro-symbolic reasoning
directly shape the design of our proposed framework. In
the light of the expertise derived from lightweight hybrid
architectures, human-in-the-loop XAI pipelines and retina
specific enhancement strategies, our system desire to be-
come a reliable and transparent resource-aware solution
for neonatal ROP screening.
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2. Methods

2.1. Overview

The proposed pipeline provides a robust and interpretable
method for early ROP detection by integrating retinal im-
ages with neonatal text records with the aid of hybrid Vi-
sion Language Model (VLM) [46, 47]. The architecture
combines:

• A computationally lightweight CNN for local retinal
feature extraction

• A Vision Transformer (ViT) module for global image
context extraction [46].

• A clinical text encoder for NICU notes.

• Neuro-symbolic reasoning loop where one can inject
logical constraints and feed human-in-the-loop guid-
ance [48].

In order to ensure that the system remains a computa-
tionally effective, we use PEFT based mechanisms; such as
Low-Rank Adaptation [49], and LayerNorm tuning. These
bring down the trainable parameters with retention of di-
agnosis performance so that they are deployable in low-
resource neonatal settings.

A multi-tiered explainability layer that uses Grad-CAM
for image-region explanation [50] and SHAP for text ex-
planations, which renders model predictions auditable to-
wards clinicians [49]. Fig. 1 illustrates this complete work-
flow.

2.2. Dataset and Preprocessing

2.2.1. Dataset Scope

An experimental data set contains the following:

• Sources and time: Around 5,000 high-resolution
retinal fundus images from two ethically approved
ROP screening programs in Iraq-Al-Zahraa Teaching
Hospital (Al-Najaf) and Al-Kindy Teaching Hospital
(Baghdad)-collected during 2018-2023 [51, 52]. Semi-
structured NICU records paired to each imaging study
were created from de-identified clinical templates un-
der the same ethics approvals [53].

• Composition of the stages: The image data include
many clinical presentations, including different stages
of ROP from Stage 1 to Stage 5. As represented by our
data, the distribution of these stages is as follows: 49
% mild (Stages 1-2), 18 % moderate (Stage 3), severe
(Stages 4-5) 20 %, normal 13 % [51, 54].

Fig. 1. Pipeline of the proposed framework for ROP
detection

• Demographics and clinical heterogeneity: Preterm in-
fants from diverse backgrounds, birth weights 800 −
2, 000 g, and gestational ages 26 − 36 weeks. This het-
erogeneity supports generalizability across neonatal
risk profiles [51].

• Text modalities: NICU records that encompass birth-
weight, gestational age, duration of oxygen therapy
and comorbidities (e.g., sepsis, BPD) adapted from
de-identified templates given by neonatology depart-
ments under ethically-approved protocol [53].

• Geographic representativity: The current dataset re-
flects two Iraqi tertiary centers. To strengthen out-of-
distribution performance, we are initiating multi-site
data sharing with additional neonatal units in the re-
gion. This is to incorporate cohorts from different care
levels and devices in future extensions of this work.
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2.2.2. Annotation Protocol

All of the fundus images were manually annotated by at
least two board-certified ophthalmologists with expertise
in pediatric retinal diseases. Differences were settled by
consensus discussion of a third senior expert. The annota-
tions were in accordance with the International Classifica-
tion of ROP (ICROP3) criteria, which guaranteed uniform
stage annotation. Strong agreement was observed (Cohen’s
κ = 0.87) among a random subset of 500 samples to confirm
inter-rater reliability [55].

2.2.3. Preprocessing Steps

1. Image Normalization:
Images are resized to 512 × 512 pixels, standardizing

input for the CNN and ViT branches.
2. Illumination Correction:
A pixel-wise min-max normalization is applied as in

Eq. (1):

Inorm =
I(x, y)− Imin
Imax − Imin

(1)

Where:

I(x, y) : The raw pixel intensity.

Imin and Imax : The pixel range for each image.

3. Weighted-Fuzzy Histogram Equalization (WFHE)
[56]:

Preprocessing of the retinal fundus images is an essen-
tial step in enhancing vascular abnormalities for proper
visibility, particularly in premature infants because vessel
structures are generally weak. In order to increase contrast
and keep the clinical information, we use Weighted Fuzzy
Histogram Equalization (WFHE) as a main pre-processing
step.

WFHE utilizes conventional histogram equalization and
also integrates fuzzy logic (FL) and adaptive weighting for
improving the vessel visibility without noise effect. Local
contrast is improved by a fuzzy membership function that
prevents over-enhancement as well as a dynamic weight-
ing function that adjusts dynamically based on the features
in the pixel’s local neighborhood. This relationship is for-
malized as in Eq. (2):

I′(x, y) = W(I(x, y)) ∗ F(I(x, y)) (2)

Where:
I′(x, y) : The output pixel intensity at location (x, y)

after enhancement.
I(x, y) : The original pixel intensity at (x, y).
W(·) : A dynamic weight function that adjusts the

pixel’s contribution based on its local neighborhood.
F(·) : A fuzzy membership function that adaptively

reweights pixel intensity using fuzzy logic to avoid harsh

contrast changes. Compared with CLAHE [57], there are
two main advantages of WFHE:

1. Vessel Preservation: CLAHE may exaggerate both
vessels as well as background noise and hence reduces
image clarity and tends to blur image details. WFHE
feature: Selective exaggeration of microvascular pat-
terns (that are particularly important in mild/early
ROP detection).

2. Noise Control: Fuzzy logic avoids sudden contrast
jumps, preventing false edge amplification.

As illustrated in Fig. 2, the raw image (left) has limited
vessel visibility. Middle: the contrast-enhanced image by
CLAHE, where a background noise is added. WFHE (right)
provides cleaner images of vascular structures, greater in-
terpretability for both clinicians and AIs. This preprocess-
ing technique boosts input qualities into the CNN encoder
and ViT module, leading to more accurate diagnosis with
better feature extraction from downstream modules.

Fig. 2. Comparison of local contrast enhancement methods
(raw, CLAHE, and WFHE) on a mild ROP fundus

patch. WFHE provides clearer vessel visibility with-
out amplifying background noise, which supports more
reliable early-stage ROP detection.

4. Tokenization of NICU Texts:

NICU notes are tokenized using a domain-specific to-
kenizer to capture short medical terms (e.g., "BW=950g",
"GA=28w").

2.3. Implementation Details and Model Components

The ROP diagnostic model has three tightly coupled mod-
ules: they are optimized for clinical effectiveness, com-
putational efficiency, and interpretability. These are: a
lightweight convolutional visual encoder, a clinical text
encoder, and a multimodal fusion module with embed-
ded explainability mechanisms. In this section we describe
the architecture, preprocessing methods, and alignment
strategies that are part of the Vision-Language system.
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2.3.1. Vision and Text Encoders: Architecture and Preprocessing

1. Visual Encoding via Lightweight CNN and Vision Trans-
former

To extract discriminative features on high-resolution
neonatal fundus images, we design a lightweight CNN
with five convolution blocks. Every block contains a 2D
convolutional layer (kernel size: 3 × 3), Batch Normaliza-
tion and ReLU activation. The number of filters is mono-
tonically increasing, and Max Pooling and Dropout are
performed after each two blocks to down-sample the spa-
tial dimensions. A Global Average Pooling (GAP) layer is
placed after last convolutional block that inducing semantic
abstraction and reducing the number of parameters.

ReLU rate was chosen empirically for its quick conver-
gence and insensitivity to vanishing gradients. The CNN
arm is trained from scratch using AdamW optimizer with
a learning rate of 1e − 4 and dropout (p = 0.3) prior to the
final projection layer.

To capture long-range dependencies and contextual in-
teractions among retinal regions, a parallel Vision Trans-
former (ViT) branch is utilized. All images are cut into non-
overlapping 16 × 16 patches, linearly projected and aug-
mented with positional encodings. These tokens are passed
through a 6-layer transformer encoder with 8- headed
self-attention (hidden size: 512, dropout: 0.1, activation:
GEGLU), allowing for global reasoning on structures (e.g.
vessel spread or peripheral ridge formation).

2. Clinical Text Encoding Using Pretrained Language
Models

For processing of NICU records (including both struc-
tured and semi-structured ones, such as gestational age or
baby weight) we use a BERT-based encoder finetuned on
clinical corpora. Input sequences are tokenized and pro-
cessed by 12 transformer layers (hidden size:768) in order
to obtain the context embeddings.

Before visual encoding, all fundus images are processed
by weighted fuzzy histogram equalization (WFHE). This
contrast-enhancement technique improves vessel conspicu-
ity and local structure delineation, which is especially help-
ful in neonatal low-light environments. WFHE is superior
in retaining diagnostic clues and guides toward more clini-
cally important regions.

2.3.2. Multimodal Fusion and Cross-Modal Alignment

To exploit the complementary information from fundus
images and NICU text records, our model leverages a
multimodal fusion module on top of visual and textual
modality embedding to align them into a common latent
representation. This enables the model to learn contextual
associations between anatomic landmarks and clinical indi-

cators associated with risk which are important for a right
diagnosis of ROP.

1. Cross-Modal Embedding Alignment
Both the feature vector from ViT (retinal modality) and

the final [CLS] token embedding in the BERT based text
encoder are projected to a shared latent space via projec-
tion layers. The alignment is enforced with cross-modal
contrastive loss as in Eq. (3):

Lalign =
∣∣ fimage − ftext

∣∣2 (3)

Where:
Lalign : The cross-modal alignment loss, measuring how

well the visual and textual embeddings match.
fimage : The learned embedding vector representing the

retinal image features.
ftext : The learned embedding vector representing the

NICU text data.
|2 : Squared Euclidean norm, penalizing large differ-

ences between the two modalities to enforce tight cross-
modal coupling.

This objective encourages cross-attentional learning
such that if the model is observed to be looking at loca-
tions (vessel dilation, ridge structure), it will also learn
about corresponding textual descriptors (low birth weight,
oxygen duration).

2. Fusion Strategy
Instead of early concatenation, late fusion is applied,

where each modality is individually fed into the pre-trained
model before they are finally fused at decision level via a
learned attention gate. This enables the model to adap-
tively determine how much it should rely on each modality
depending on their informativeness given a sample. For
example, if the quality of image is low, textual signals have
higher impact on final diagnosis.

2.3.3. Explainability and Neuro-Symbolic Reasoning

Toward the goal of transparent and reliable assessment,
we combine several explainability mechanisms across the
visual and textual modalities so that healthcare providers
may trust AI decisions by validating and interpreting them.

1. Visual Interpretability: Grad-CAM for CNN and ViT
For the image branch, we use Grad-CAM on both CNN

and Vision Transformer outputs. We obtain class-specific
heatmaps that emphasize the retinal areas with most con-
tribution to the model decision, where these could occur
around essential regions such as optic disc, vascular ridges
and the peripheral retina. Such visual justifications provide
spatial hints to the clinicians that may help them confirm
if AI’s focus is in correspondence with well known ROP
indicators.

2. Textual Explainability: SHAP for NICU Attributes



8 Hikmat Z. Neima et al.

For the textual branch, Shapley Additive Explanations
(SHAP) is applied to generate an importance score for every
token in clinical input (e.g., birth weight, oxygen duration).
This indicates which neonatal risk-factors most influenced
the diagnostic decision from clinical text.

3. Neuro-Symbolic Consistency Checks
To further ground predictions in domain logic, a neuro-

symbolic reasoning loop is employed. Rule-based con-
straints are defined by experts-for instance:

• If birth weight < 1000 g and oxygen duration > 10
days, then ROP likelihood must be elevated.

• If vessel width heatmap overlaps with Grad-CAM
region, and stage ≥ 2, flag for urgent review.

These logical rules act as post-hoc validators, cross-
checking learned patterns against established medical
knowledge. The dual-mode reasoning-statistical (deep
learning) and symbolic (clinical rules)-ensures that outputs
remain interpretable and medically coherent, especially
under edge-case conditions.

2.3.4. Design Rationale and Innovations

In this paper, we propose five additional innovations: (i)
neonate-focused WFHE preprocessing on fundus images
to increase micro-vascular contrast and to suppress noise,
compared to CLAHE; (ii) Vision-Language fusion that in-
tegrates cross-modal alignment loss with gated late fusion
to remain robust in case of noisy or incomplete modality;
(iii) dual explainability formulation (Grad-CAM + SHAP),
which jointly reports spatial and semantic evidences; (iv)
neuro-symbolic post-hoc consistency checks incorporating
expert rules thereby leading to medically consistent out-
puts; and (v) parameter-efficient customization [LoRA +
LayerNorm tuning] that reduces the number of trainable
parameters as well as GPU memory usage. Our compar-
isons (Table 2 and Figs. 3 and 4) shows that this selection im-
proves both diagnostic accuracy and interpretability over
image-only baselines.

2.3.5. Training, Evaluation, and Algorithmic Workflow

To ensure efficient learning, robust evaluation, and trans-
parent clinical performance, our framework integrates opti-
mized training routines, a comprehensive evaluation strat-
egy, and an explainable procedural pipeline.

1. Training Strategy and Optimization
Training is initiated from pretrained weights for both

the Vision Transformer and the clinical text encoder. We
adopt a staged training approach:

• Stage 1: Features from retinal images and NICU texts
are aligned using supervised contrastive loss to maxi-
mize intra-class cohesion and inter-class separation.

• Stage 2: Fine-tuning employs Parameter-Efficient Fine-
Tuning (PEFT) techniques-specifically LoRA (Low-
Rank Adaptation) and LayerNorm tuning which up-
date only a small subset of parameters, making the
model viable for low-resource clinical setups.

• Optimizer: AdamW optimizer is used to balance adap-
tive learning with decoupled weight decay, aiding
smooth convergence across modalities.

• Data Splitting: Stratified 5-fold cross-validation en-
sures balanced representation of ROP stages across
splits, with patient-level grouping to prevent data leak-
age.

2. Evaluation Protocol
Model performance is evaluated through:

• Quantitative metrics: AUC-ROC, sensitivity, speci-
ficity, F1-score, and precision.

• Stage-wise ROC analysis: To ensure sensitivity to
early-stage and advanced ROP detection.

• Calibration and statistical analysis: Probability cal-
ibration via Brier score and expected calibration er-
ror (ECE); threshold selection on the validation split
(e.g., Youden’s J); reporting as mean ±SD across folds
with 95% bootstrap CIs; AUC comparisons via DeLong
tests.

• Explainability validation: Explainability is ensured
via visual (Grad-CAM), textual (SHAP), and symbolic
(rule-based) reasoning mechanisms.

• Baseline comparisons: The full model is benchmarked
against:

– CNN-only architectures,

– ViT models without PEFT,

– CLAHE vs. WFHE preprocessing.

3. High-Level Algorithm Workflow
A pseudo-algorithm summarizes the pipeline flow from

input to output, ensuring repeatability and transparency:

1. Preprocessing: Normalize fundus images, enhance
with WFHE, and tokenize NICU notes.

2. Feature Extraction: Apply CNN for local features, ViT
for global context, and a clinical encoder for text.

3. Multimodal Fusion: Align visual and textual embed-
dings using contrastive loss and L_align objective.
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4. Fine-Tuning: Apply LoRA and LayerNorm tuning
under cross-validation, using early stopping.

5. Explainability Generation: Output Grad-CAM
heatmaps and SHAP scores, validated via neuro-
symbolic rules.

6. Prediction: Classify ROP stage with explanation over-
lays.

This structured training and evaluation design ensures
the model is not only accurate and robust, but also au-
ditable, fair, and aligned with clinician reasoning.

2.3.6. Expert Feedback and Interpretability Validation

In order to demonstrate the validity and applicability of
our interpretability techniques, we propose a clinical val-
idation protocol with pediatric ophthalmologists having
different degrees of expertise. This phase was conceived to
trace the fact that explanations extracted by the model (e.g.,
relying on Grad-CAM for retinal and SHAP for NICU text
features) are indeed coherent with the diagnostic reasoning
of clinical experts, an aspect that is highly relevant to real
clinical workflows.

In this protocol, ophthalmologists will review diagnos-
tic cases, including the input data (retinal image + NICU
summary) and model prediction and explanation. The
following will be rated by experts:

• How useful or plausible an explanation it is.

• Whether the image regions or text mentions are related
to their diagnosis.

• Whether the explanation increases or decreases their
confidence in the diagnosis.

The results will be statistically evaluated with regards
to agreements, trust values and potential trends according
to clinical empiricism.

Based on this analysis, we plan to increase the expres-
sive power of our explanation mechanisms along two di-
mensions:

• For one, the Grad-CAM heatmaps may be learned
with expert annotations to provide finer highlighting
of clinically relevant regions of the retina (ridge or
vascular regions).

• Second, SHAP could use further improvement for
its text attributions so that the output more closely
mirrors clinical descriptions and diagnostic cues em-
ployed by ophthalmologists.

Clinician Reader Study (design and analysis): we will
recruit 12-18 pediatric ophthalmologists (junior ≤ 5y, in-
termediate 6 − 10y, senior > 10y). Each will read 100
de-identified cases balanced by image quality and sever-
ity (mild/moderate/severe) with an ICROP3 adjudicated
reference. A within-subject randomized crossover will com-
pare three conditions: (A) image-only, (B) image + model
prediction (no explanations), (C) image + prediction + ex-
planations (Grad-CAM + SHAP), with a 14 -day washout.

Primary endpoints: change in sensitivity to treatment-
requiring ROP and AUC from A → C (DeLong test).

Secondary: specificity, F1, decision time, confi-
dence/trust (7-point Likert), inter-rater agreement (Fleiss’
κ), and calibration (Brier score).

Explanation-clinician alignment: (i) Grad-CAM vs ex-
pert ROIs using IoU/Dice, pointinggame hit-rate, and
fraction of saliency inside ROI; (ii) SHAP agreement
with clinician-ranked drivers (BW, GA, O2 duration, sep-
sis/BPD): top-k precision/recall and Spearman rank corre-
lation, plus sign-of-effect agreement.

Statistics: mixed-effects models (random intercepts for
reader and case; fixed: arm, experience level, image quality)
for sensitivity/AUC/time; paired A vs C and B vs C with
Bonferroni adjustment; 95% CIs via bootstrap.

Power: with baseline sensitivity ≈ 0.80, detecting a
+0.07 improvement has > 80% power with 15 readers ×100
cases.

Feedback-driven refinement: we will iterate with (i)
CAM smoothing and region-constrained weighting to in-
crease saliency mass in annotated ROIs; (ii) SHAP term
normalization and token aggregation (e.g., " BW < 1000 g
") to reduce spurious tokens; improvements re-evaluated
on a 40 -case micro-study ( n ≈ 6 readers).

2.3.7. Training Strategy and Validation Protocol

To ensure model robustness and generalizability, a rigor-
ous training and validation procedure was followed for all
components of the proposed framework.

1. Data Partitioning and Cross-Validation
We divided our dataset using 5 -fold stratified cross-

validation, such that the class distribution among folds
was consistent in order to avoid an imbalance of labels.
The training/testing was performed in a k -fold (k = 5
) cross-validation setting, i.e., 80 % of the data for each
fold were used as training set and 20 % as validation set.
Stratification was by ROP severity grade to ensure clinical
representation. This approach was preferred to the simple
hold-out approach in order to prevent noise and ensure
robustness across sub-samples of data. To avoid leakage,
we used patient-level grouping (no baby appears in more
than one split). Folds were stratified on the basis of ICROP
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stage and on the basis of site/device used (Al-Zahraa vs.
Al-Kindy) (camera type), maintaining per-stage and per-
site proportions in each fold. All hyperparameter tuning
was within the training part of each outer fold to prevent
contamination by the test set.

2. Hyperparameter Optimization The model was
trained by tuning the most important hyperparameters
(learning rate, number of convolutional layers, filter sizes,
dropout rates and transformer depth) with Bayesian Opti-
mization and Gaussian Process. The search space included:

• Learning rate: [1e − 5, 1e − 3]

• Batch size: [8, 16, 32]

• Number of CNN blocks: [3, 4, 5]

• Attention heads in transformer: [4, 8]

• Dropout: [0.1,0.4]

The optimization target was the maximization of vali-
dation AUC while minimizing overfitting. All tests were
conducted on three random seeds for easy reproducibil-
ity. When combined with all seeds and folds, learning rate
and ViT depth had the largest impact on AUC; excessive
dropout consistently led to inferior performance, and ex-
tending CNN depth over five blocks delivered diminishing
returns. These trends were consistent, although slightly
fold-dependent.

3. Convergence Analysis
Training was observed using training loss, validation

loss and validation accuracy. It is worth to point out that
there is not remarkable evidence of divergence or overfit-
ting during training, and the convergence trend could be
considered as quite good in up to 50 epochs. We employed
early stopping if the validation error did not decrease for 8
consecutive epochs. Over the five folds, training and vali-
dation losses decreased steadily and leveled off around 40-
50 epochs, whereas the validation accuracy increased and
stabilized with nothing to indicate overfitting. The early-
stopping (patience = 8) condition was usually reached in
this range, which indicated a stable convergence and de-
creased overfitting. We also followed the precision-recall
behaviors alongside AUC-ROC; precision, recall and F1
hold steady across the folds, which again is indicative of
the robustness of the optimization and validation strategy.

2.4. Model Training and Fine-Tuning

Weights for the ViT and text encoder start from robust
pretrained checkpoints [46, 47]. Training is staged:

• Supervised contrastive loss aligns cross-modal fea-
tures while preserving modality specifics:

LSCL = − log
exp

(
sim

(
fi, f j

)
/τ

∑k exp
(

sin( fi fk)
τ

) (4)

Where:
LSCL : The supervised contrastive loss, which encour-

ages positive pairs to be close and negative pairs to be far
apart.

sim
(

fi, f j

)
: Cosine similarity between two positive

feature vectors (from the same class).
τ : Temperature parameter that scales the similarity,

controlling sharpness of the distribution.

∑k : Summation over all negatives in the batch, normal-
izing the probability.

This loss makes visual and text embeddings align well
and keep distinct features separated, raising cross-modal
understanding and class discrimination.

• LoRA restricts the weight updates in low-rank spaces
to alleviate retraining cost [49].

• LayerNorm tuning mitigates domain adaptation prob-
lem in various fundus appearances [49].

In training, WFHE improves local detail in enhanced
images by our encoder input [56].

We adopt the AdamW optimizer (Loshchilov and Hut-
ter, 2018) with stable convergence due to decoupled weight
decay. Training takes stratified folds (by ROP stage) with
early stopping [46] to prevent over-fitting. The patient IDs
are binned to avoid leakage across folds.

3. Results and discussion

In this section, we present the experimental analysis of
Vision-Language framework and Explainable AI frame-
work for ROP detection. Results are reported for the diag-
nostic performance, interpretability quality, computational
efficiency and comparative benchmarking with recent state-
of-the-art methods.

The proposed model is trained on a lightweight Vision
Transformer (ViT) backbone with domain adapted text en-
coder, using parameter-efficient training methods includ-
ing LORA, LayerNorm and RE-tune [27, 28]. Training was
done using high-resolution ROP fundus images with pre-
processing by Weighted Fuzzy Histogram Equalization
(WFHE) [56] and semi-structured NICU text records [48].
Assessment was performed following a five-fold stratified
cross-validation for balanced stage distribution and source-
device heterogeneity [46].

3.1. Diagnostic Performance

The presented framework achieved an AUC of 0.95, which
was significantly more accurate than image-only CNN base-
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lines and single-modality pipelines by 5-9 % [27, 43]. Inte-
grated region explanations obtained a mean Dice coefficient
of 0.90 for pixel-wise segmentation, which outperforms con-
ventional retinal segmentation backbones (RetinaLiteNet
and UNet-PWP [35, 44]). These findings suggest that infor-
mation from both visual and contextual sources is exploited
effectively in a single Vision-Language framework.

3.2. Explainability and Trustworthiness

Interpretability was assessed qualitatively and quantita-
tively using Grad-CAM heatmaps and SHAP token-level
attributions, which closely matched clinician-annotated
vascular regions. Compared to existing explainable AI
pipelines [31, 35], the proposed framework provided more
granular token-region consistency. In addition, neuro-
symbolic reasoning loops offered rule-based justification
layers, following recent logical neural network studies [38,
58].

3.3. Computational Efficiency

Parameter-efficient fine-tuning reduced the number of
trainable parameters by 40-50 % compared to full fine-
tuning strategies [27, 28]. The lightweight ViT back-
bone, combined with pre-processing enhancements such
as OS-ACE [45], maintained inference times under 10 ms
per image-text pair, supporting deployment in edge and
resource-constrained neonatal screening scenarios.

3.4. Ablation and Component Effectiveness

To quantify each component’s contribution, we performed
ablations under the same 5fold protocol. As summarized in
Table 1, our stratified 5-fold ablation shows that WFHE, the
alignment loss, gated late fusion, and PEFT each contribute
incremental gains or efficiency, with the full model reaching
an AUC of 0.95.

Interpretability checks show a 7-9 % increase in IoU
overlap between Grad-CAM maps and clinician-marked
vascular zones with WFHE compared to CLAHE; SHAP
consistently ranks BW, GA, and O2 duration among the top
contributors in positive ROP cases, matching expert priors.

3.5. Comparative Benchmarking

Several recent studies have explored multimodal ap-
proaches to retinopathy of prematurity (ROP) diagno-
sis by integrating retinal images with other clinical data
sources, including textual records and structured patient
metadata. These multimodal frameworks leverage visual-
language models (VLMs), hybrid CNN-transformer back-
bones, neuro-symbolic reasoning, and attention-based fu-
sion mechanisms to enhance diagnostic performance and

interpretability. To comprehensively position our frame-
work within this growing landscape, Table 2 summarizes
input modalities, fusion strategy, training/PEFT methods,
diagnostic accuracy (AUC), explainability methods, model
sizes, and inference times. This comparative analysis high-
lights the architectural diversity and performance trade-
offs among current state-of-the-art multimodal systems and
illustrates the relative advantages of our proposed model
in terms of accuracy, interpretability, and computational
efficiency.

Compared to these published pipelines, the proposed
framework consistently improves diagnostic accuracy and
interpretability while preserving low latency and minimal
computational overhead. Fig. 3 shows the AUC perfor-
mance for the proposed framework and the related works.
Fig. 4 illustrates the number of parameters, in millions,
used and the inference time, in milliseconds.

Fig. 3. Visual chart for comparison of AUC performance

Fig. 4. Visual comparison of model size (number of
parameters) and inference time across competing methods

Lower parameter counts and shorter runtimes enable
deployment in resource-limited neonatal screening envi-
ronments.

3.6. Advantages of the Proposed Framework

Compared to existing approaches, the proposed model
offers the following innovations:

• Interpretable Fusion: Unlike prior works, our
model generates both visual and textual explanations
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Table 1. Ablation study under stratified 5-fold cross-validation

Variant Description AUC ∆ vs. Proposed Notes

Image only
CNN+ViT, no text,

0.86 -0.09
Strong baseline but misses

CLAHE contextual risk cues

Image + WFHE
Replace CLAHE

0.88 -0.07
+0.6-0.9 AUC points; +3-4%

with WFHE early-stage sensitivity

Image + Text Early concat fusion,
0.91 -0.04

Gains from NICU context;
(concat) no alignment/gate less robust to noisy text

Image + Alignment Add L_align 0.93 -0.02 Better cross-modal cohesion

Image + Gated late- Replace early concat
0.94 -0.01

More stable when one modality
fusion with gate degrades

Image + PEFT
LoRA+LayerNorm

0.945 -0.005
∼ 45% fewer trainable params;

vs full FT similar AUC

Proposed
WFHE + alignment +

0.95 -
Best overall trade-off

gated late-fusion + PEFT

Table 2. Multimodal baselines vs. proposed model

Model/Ref Modality AUC Explainability Params (M)
Inference Time

(ms)

Multi-modal VLM [27] VLM + XAI 0.92 SHAP Token ∼5.0 ∼20
Continual MedVLM [28] VLM (PEFT) 0.88 Incremental ∼4.8 ∼18

Adversarial RAN [29] VLM + Robustness 0.90 Consistency ∼5.2 ∼19
Logical NN [38] Neuro-Symbolic 0.92 Rule-based ∼3.5 ∼15

MobileViT-Seg [40] CNN + ViT 0.91 Hybrid Attn ∼2.5 ∼10
Explainable ROP [43] CNN + Feature Fusion 0.93 Visual XAI ∼4.2 ∼10

Proposed VLM + CNN + XAI 0.95 Grad-CAM + SHAP ∼3.5 ∼9

through Grad-CAM overlays and SHAP attribution
maps, facilitating clinical trust.

• Efficiency and Lightweight Design: The image en-
coder is based on a lightweight CNN, making the
model suitable for real-time deployment on edge de-
vices, which is not feasible with large transformer-only
architectures.

• Enhanced Accuracy: With a multimodal attention
mechanism and WFHE-based pre-processing, our
model achieves a 95% AUC, outperforming others
by a significant margin.

• Domain-Specific Optimization: The NICU-specific text
encoder is trained with domain-tuned vocabulary and
structure, boosting interpretability in neonatal care
contexts.

3.7. Limitations of Existing Multimodal Models

However, several recent multimodal models have one or
more of the following limitations: interpretability met-
rics (beyond simple Grad-CAM) that are effectively lim-
ited; large parameter overhead and slow inference due to

deep stacks of transformers; not properly adapting tex-
tual encoders for clinical workloads; absence of prepro-
cessing steps such as WFHE essential to better enhance
subtle vascular details. The model under consideration
addresses these shortcomings head-on through design
decisions configured for early-stage ROP screening and
clinician-oriented interpretability.

3.8. Result discussion

Consequently, several notable advantages are introduced
to automated ROP diagnosis thanks to the development of
this hybrid Vision-Language and explainable AI pipeline.
The system straightforwardly addresses limitations of tra-
ditional single-input deep- learning architectures, by the
introduction of lightweight CNN to incorporate local reti-
nal features, Vision Transformer to add global context and
a clinical text encoder for neonatal record text. Through
integrating structured neonatal data within fully image-
based pipelines that do not consider contextual details,
gestational age and birth weight (as in this model), multi-
ple advantages are gained. They contribute significantly to
how disease risk factors are measured, with major conse-



Journal of Applied Science and Engineering, 30 (2026) 26030006 13

quences for diagnosis. This approach surpassed the state
of art CNN-only or Vision Transformer ViT-only methods
with consistent AUC enhancements of 7-9%. That margin
is important, in that it affords the screening of initial-stage
disease and preventable blindness in a developing clini-
cal environment. The model achieves this via parameter-
efficient fine-tuning methods like LoRA and LayerNorm
tuning, two strategies crucial for resource-scarce neonatal
settings.

A major difference in the methodology lies in work be-
ing highly explainable. Grad-CAM heatmaps enable clini-
cians to see which retinal zones determine the predictions,
and tokenlevel SHAP attributions explain how clinical text
features influence the final risk score. This multi-layered in-
terpretability, along with a neuro-symbolic loop for logical
rule-checking allows human verification and corrections -
overcoming one of the most frequently cited hurdles to clin-
ical trust in deep learning (the black-box effect). However,
it does not cross the barrier of practical implementation.
The pipeline, based on semi-synthetic NICU records, is
realistic but cannot retain the richness and messiness of
true EHR data. This limits the direct generalizability of
text encoder module used. Moreover, mapping neonatal
clinical ontologies with Vision-Language embeddings is
non-trivial and it demands standardized vocabularies and
effective mapping techniques for cross-modal reasoning.
Furthermore, although the explainability mechanisms ex-
hibit a strong clinical value-addition, they also introduce
an increase in inference time to a tentatively acceptable/ ac-
ceptable extent that might necessitate tuning for real-time
deployment on edge devices. Lastly, successful translation
to real-world clinical workflow will require multicenter
pilot studies as well as ongoing collaboration with pedi-
atric ophthalmologists to refine logical rules, validate for
decision stability, and further
reinforce the neuro-symbolic feedback loop iteratively un-
der actual operating conditions.

4. Conclusion

In this paper, we introduce a completely interpretable and
deployable framework for ROP detection that bridges the
gap between the state-of-the-art in AI research and real
world vision neonatal health care. By combining the multi-
resolution retinal photographs with semistructured new-
born text records, the system improves diagnosis and pro-
vides clear explanations which are understandable (and
believable) by health professionals. Consistently positive
AUC lifts across cross-fold experiments indicate that inclu-
sion of contextual risk factors obtained from NICU records
significantly improves diagnostics over image-only sys-

tems. While the resource-efficient parameter-tuning, light-
weight ViT backbone and strong preprocessing WFHE and
OS-ACE make it real-time deployable to mobile clinics or
remote NICUs which may lack computing resources. What
is crucial in the dual-layer explainability design (fusion of
Grad-CAM heatmaps and SHAP token attributions as well
as logical rulechecks) is it instills clinician trust by visual-
and semantic-based rationales for each prediction.

This anchors the AI’s internal reasoning to how neona-
tologists reason their way through challenging cases, en-
hancing clinical adoption potential.

More generally, this work suggests that trusted AI is not
just about accurate systems but also a matter of building
human-understandable systems that can be audited, stress-
tested and improved using domain knowledge. By scaling
this approach to other neonatal conditions, for example
sepsis risk scoring or oxygen toxicity prediction the Vision-
Language pipeline has the potential to serve as a template
of how cross-modal AI can benefit pediatric care around
the world.

It is envisaged, based on this encouraging first step,
that a number of future developments will be required to
mature the framework for real-world clinical practice.

A specific goal is to replace semi-simulated NICU
records with more completely anonymized and higher fi-
delity neonatal EHR data at multiple hospitals. This should
help stress-test the text encoder’s ability to deal with real
linguistic variation, missing data and local charting prac-
tices. Federated learning will also be investigated in order
to facilitate distributed model training across the various
neonatal units without sharing patient data - an essential
requirement of any AI deployed into sensitive clinical do-
mains. Practical use will also need to occur with strong
multilingual adaptation, since the system needs to help
identify patients in regions where clinical notes are not
written in English.

Another line of research to follow would be the addition
of a standardized domain ontology and dynamic interac-
tion with physicians, that can be turned into an expert
feedback loop on the neuro-symbolic module that allows a
semi-automatic definition of novel knowledge graphs (e.g.
of rare conditions, new screening rules or clinical guide-
lines). Regulatory paths (FDA approval, CE marking, etc),
will be systematically pursued to allow for parallel vali-
dation and rapid translation from research prototype to
approved screening tool.

Third, the human-centered design will extend to
clinician-facing dashboards, interactive explanation inter-
faces, and workflow integration with hospital systems in
order that the model recommendation fits seamlessly into
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routine neonatal care. Pilot implementation in low-resource
hospital and mobile screening programs will demonstrate
practical impact on early blindness prevention.
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