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ABSTRACT

The mixing between artificial intelligence (Al) with computational fluid dynamics CFD) in modeling and optimizing
nanofluid flow in advanced microfluidic systems is investigated in this study. Focusing on nanofluids including oxides
of aluminum, copper and silicon, the research demonstrates Al’s capability to improve prediction accuracy, simplify
the mesh adaption process and expedite design optimization. By means of neural networks with Gaussian process, the
models can explicitly characterize complex thermophysical effects—i.e., Brownian motion, thermophoresis, and
particle coagulation—pegged in standard solutions. Mesh convergence tests, GPU accelerated calculations, and
comparison with experimental measurements show the reliability and efficiency of the Al-improved models. The
results are of importance for the design of microchannel geometries, enhancements of thermal transfer performance and
for enabling an active control of microfluidic devices for drug delivery, diagnostics, and heat exchangers.

Keywords: Artificial Intelligence, Nanofluids, Microuidics, CFD, Thermal Conductivity, Mesh Optimization, Neural
Networks.
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1.Introduction

Fluidic dynamics complexity, transfer of heat energy and particle interaction including settling governs micro
scale nanofluid into an intermediate behavior that is not captured with classical modeling and optimization approaches.
Another recent advance is in artificial intelligence, which even while constrained achieves smarter prediction, real-time
control and expedites the design of numerous high-performance microfluidic systems (Tsai et al., 2023). Here we track
the progress of ai-based approaches to increase our ability to understand and tame nanoscale fluidics by stretching their
application from benign linear-flow physics to the ever more delicate domain of non-linear flow dynamics (Stoecklein
& Carlo, 2018). Recently, machine learning and deep learning approaches have become powerful tools for
independently collecting large datasets from experimental sources and for identifying new, previously unknown
patterns and correlations (Tsai et al., 2023). This progressive scientific system's that can mimics or reproduce
experiments in the works behavior of the investigational conditions (Tsai et al., 2023; Maionchi et al.,2024) complexity
of "fluid boundary derivative semimobile ability to provide not a ranging viscose Prediction models r effects Baiet"
nanofluids topic. With measurement of their effect, including agglomeration transfer of heat energy and Brownian
motion which dominate the response of nanodevices, major nano scale phenomena are now tested through these
predictive methods. A widely used way is using Al and massively parallel algorithms to compare a large number of
designs against expected preliminary constraints (Nathanael et al., 2023). In the case of A/B testing AB testing is the
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best way to iterate over all parts of your product so be quick with prototyping. That’s better than the “standard” tests
(Tsour 2020). The present experimental fashion could be via, e.g., microfluidics (Tsai et al., 2023) or HTDS (high-
temperature distribution systems); Hc testing; personalized drug profiling by Watson is to have an Al tuned and fully
loaded process running... automatically. It is also a stride toward higher level and more intelligent microfluidic systems
that can process in an active autonomous manner make up the noise from the environment. And because A.l. relates to
other fields of technology so amicably, the researchers say it’s probably only A.I. that has any shot at grappling with the
complex Multiphysics involved in nanofluids. This is not something you can extract from experimentation or first-
principles physics. It’s also about how to game the system of circulating nanoparticles, and control things like their
concentration, flow velocity and variations in temperature. An intricate set of connections between such models may in
addition be a potential cause of a class of non-trivial empirical system response models hard to replicate (Kamali et al.,
2020). Al203-CNTs and CuO-CNT (SiOy, etc. B Flow) The surface when the Micro-view bounder imitating soft effects
normal complex of Cu0) shows an adsorption asymptote light-induced by L-light-t form. 2.1 Natural resting motility.
The natural resting motility has been found before on a variety of other nanotubes including flowing Al 2 O 3 carbon
nanotubes elsewhere. Translation Certificate “We are eager for the team to be able to use cutting-edge Al and
computer-based fluid dynamics methods to take a look first at what they’re getting out of this new form of nanofluid
thermally,” the patent reads. Next, they want to refine those images using rational microfluidics design. The objective of
this work is to establish a strong numerical scheme for solving the wayward flow and transfer of heat energy in
nanofluids with some noticeable features like varying heat capacity, viscosity and etc. Furthermore, an optimization
with Al can be applied to finding the best design and operating requirements for microchannels. This would increase
transfer of heat energy with a reduced pressure drop, which would then allow microfluidic devices to maintain their
current in more circumstances.

1.1 Aluminum Oxide (Al.Os) Nanofluid

Aluminum Oxide (Al20s) Nanofluids are one of the most popular technologies of improving transfer of heat
energy, and it has higher thermal physical stability in comparison with traditional base fluids. By mixing of Al,Os
particles within a base liquid, for instance oil, alcohol glycol, or water, they have an capability to rise the heat
transmission from 10% to 40% based on the particle size, concentration, and method of synthesis (Choi and Eastman,
1995; Das et al., 2003). The elevation in conductivities heat by Aluminum Oxide (Al.Os) Nanofluids can be qualified to
a number of reasons, which include the motion of Brownian of the nanoparticles, interfaces liquid layering, and the
clustering effect (Keblinski et al., 2002). Recent experiments of the transfer of heat energyence coefficient of
Aluminum Oxide (Al:Os) Nanofluids, which are optimized in the range from 1 to 4 percent in the volume fractions in a
several of tenders include automotive and electronic refrigeration and temperature exchangers (Hwang et al., 2007; Lee
et al.,2010) indicate an increment of over ten times in the overall transfer of heat energy coefficients. Nevertheless,
such issues as particle agglomeration, stabilization, and increased viscosity with consequent rise in pumping energy
requirements have not been successfully addressed to enable applications (Yu & Choi, 2003). Lack of appropriate
surfactant and sonication treatment was identified to lead to stable and homogenous suspensions of AlI203 with
enhanced thermal characteristics (Zhu et al., 2004).

1.2 Copper Oxide (CuO) Nanofluid

Copper oxide (CuO) nanofluids are very leaping advancements in the enhancement of transfer of heat energy
compared to other techniques. They own superior heat conduction enhancement performance and can be applied to
different of transfer of heat energy systems. It is a p-type semi-conductor with monoclinc crystal construction and has a
bandgap of 1.2 eV. It also has the advantages of a greater thermal conduction than other metallic oxide nanoparticles as
Al0Os, ZnO and TiO: (Li et al., 2018; Tran & Nguyen, 2014). fl is improved by ca. 60.78% at 0.75 vol. The constancy
of the CuO nanofluids are an important issue for nanofluid research and applications, and stable CuO nanofluids could
be obtain by dispersion of particles in basic fluids to enhance the thermal conduction (Chandrasekar et al., 2013).
Practical applications have shown significant transfer of heat energy improvements, with studies reporting up to 41%
improvement in convective temperature transfer factor of 0.8% CuO in water nanofluid associated to unadulterated
water in equilateral triangular ducts (Edalati et al., 2012). Parallely, the absorption of CuO nanofluids is also superior
and are suitable for solar collectors in which direct absorption takes place. Even for droplets with exceedingly low
nanoparticle volume fractions (100 ppm), the absorption exhibits a maximum enhancement of four times that of the
dishonorable fluid (Karami et al., 2015). CuO nanofluids exhibit unique thermophysical properties, making them

12



Faten Salim Hanoon et al/ International Journal of Engineering and Artificial Intelligence Vol 6 No 3 (2025) 11-27

appropriate for a variety of thermal management tenders such as temperature exchangers, systems of solar energy or
electronics refrigeration.

1.3 Silicon dioxide (SiO:) Nanofluids

The use of nanofluids, silicon dioxide (SiO2) nanofluids, is an excellent technological breakthrough in transfer
of heat energy improvement. They also have enhanced thermophysical properties than traditional fluids. It is shown that
nanofluids that have such nanoparticles as SiO in basic fluids for enhancement of thermal conductivity, convective
transfer for heat energy coefficients, and total transfer of heat energy rate (Choi and Eastman, 1995). It has been
demonstrated that nanofluids based on SiO2 are capable of significant thermal conductivity improvements even at low
concentrations of particles (usually 1-5 vol%), and can be especially useful in thermal heat exchangers, electronic
cooling systems, and solar thermal collectors (Pak & Cho, 1998). Such improvements in the transfer of heat energy
processes of the SiO2 nanofluids are described to be as a result of a number of reasons such as the Brownian’s motions
of nanoparticles and the belongings of micro-convection and resulting creation of the liquid layering at the boundary
among the nanoparticles and the fluids (Eastman et al., 2001). Nevertheless, they have some drawbacks like
agglomeration of particles, sedimentation and increased power needs of the pumps as a result of the higher viscosity
rate that should be taken into account during the practice (Das et al., 2003). The stability and the long-term behaviour of
the SiO2 nanofluids have also been explored in recent research where it is stressed that an adequate choice of the
surfactant and also pH control are necessary to ensure colloidal stability (Li and Peterson, 2006).

2. Mathematical Framework for Al-Enhanced Nanofluid Modeling
Maxwell Model (Classical):

Keti/Kor = [Kp + 2Kor + 20(kp - Kor)] / [Kp + 2Kof - @(Kp = Kof)].ovnvviniiiieiniiin 1
Hamilton-Crosser Model:

Kei/Kot = [kp + (N-1)kor - (N-1)@(kor - Ko)] / [Kp + (N-1)Kor + @(kof - Kp)] ovvvvnnnen. 2
Bruggeman Model:

(p(kp - keff)/(kp + 2keff) + (l-q))(kbf - keff)/(kbf + 2keff) = O N 3

Where:

ker = effective thermal conductivity of nanofluid
kos = thermal conductivity of base fluid

k, = thermal conductivity of nanoparticles

¢ = volume fraction of nanoparticles

n = shape factor (n = 3 for spherical particles)

Effective Viscosity Models
Einstein Model:

Peff = Hbf(1 +2.50) ..o 4
Temperature-dependent viscosity:

pef(T) = A-exp(B/T)-(1 +2.5¢ + C-¢?)............ 5

Where: pefr = effective dynamic viscosity, pw = dynamic viscosity of base fluid, A, B, C = empirical constants
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Effective Density and Heat Capacity

Effective density:

Peff = (L-0)Por + OPp ceveveveeeiiiininenen. 6
Effective heat capacity:

(PCp)et = (1-0)(pCp)oi + @(pCpp. ........ 7
Effective thermal diffusivity:

Oeff = Keff/ (PCP)effervverrerererneerenenennnnnn, 8

Governing Equations for Nanofluid Flow
Continuity Equation

Op/ot+ V- (pv)=0..ceeiiiiiiii, 8
For incompressible flow:

V.v=0
Momentum Equation (Navier-Stokes)

peff[aV/at + (VV)V] = 'Vp + HQHVZV + pef‘fg + Fnano ........ 9
Where Fnano represents additional forces due to nanoparticle interactions:

Fnano = FBrownian + Fthermophoresis + FMagnus + FSaffman- veee. 10
Energy Equation
(Pcp)eﬁ[aT/at + VVT] = keffva + Heﬁq) + Snano ......... 11

Where:
@ = viscous dissipation function
Snano = €nergy source due to nanoparticle interactions

Nanoparticle Conservation Equation
0p/0t +v-Vo =V-[DeVe + DT(VT/T)]ceeeeeieeiiienn. 12

Where:
Dg = Brownian diffusion coefficient
D+ = thermophoretic diffusion coefficient

Microfluidic-Specific Equations
Reynolds Number (Microfluidic Scale)
Re = PetfrUrDh/Heffe e o veveneeneeeeeeee e 13

Where Dy = hydraulic diameter = 4A/P (A = cross-sectional area, P = wetted perimeter)
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Nusselt Number Correlations

For rectangular microchannels:

Nulocal = 0.0668-Re-Pr-(Dh/L)-[1 + 0.04-(Dh/L)>-Re-Pr]0.5 ....... 14

For circular microchannels:

NU = 4.36 + 0.036-Re-Pr-(D/L)%8. ..., 15
Pressure Drop in Microchannels

AP = £-(L/Dh)" (Pefru?/2) + APentrance + APexiteveeeeeeeeeeeeeeeen, 16
Friction factor for laminar flow:
f=CIRe
Where C depends on channel geometry (C = 64 for circular, C = 56.91 for square)
transfer of heat energy Enhancement Equations
transfer of heat energy Coefficient

P NUKeft/ D e 17
transfer of heat energy Enhancement Ratio

Mh = hni/hiot = (NUne/NUbt) - (et Kbe) e 18
Performance Evaluation Criteria (PEC)

PEC = (NUn/NUst)/ [(Fefor) 3] 19
Al-Enhanced Modeling Equations
Neural Network Approximation

kett = NN(o, T, dp, Re, Pr) = Z[wi-c(Z(wij-Xj + b)) + bi].........co. 20

Where:

NN = neural network function

Wi, Wij = weights

bi, bj = biases

6 = activation function (typically ReLU, sigmoid, or tanh)
Xj = input features (¢, T, dp, Re, Pr)

Gaussian Process Regression

X)) ~ GP(M(X), K(XG,X)) e 21
Mean function:
m(x) = E[f(x)]
Covariance function (RBF kernel):

K(X,X") = 02 XP([XXPA2IR)) oo 22
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Dimensionless Numbers
Reynolds Number:

R = Peff U L/ Heffe e veveeeee et 23

Scaling Laws for Microfluidics

Velocity scaling:

U 2 U U ettt e et et et e et e ettt e aaaaas 24
Pressure scaling:

JEl T (0T U 25
Temperature scaling:

T* = (T - Teold)/(Thot = Tcold)--«eeneemermemnenenneieineeeeineeeennenn 26

Computational Fluid Dynamics Discretization

Finite Volume Method

Convection-diffusion equation:

Jv [0¢/0t + V-(pve) - V-(TV®) = STAV = 0., 27

Discretized form:
ap*Qp = Zanp Pnp + b
Time Discretization
Implicit Euler:

(@D - M/At=F@MD). 28
Crank-Nicolson:

(@D = @M)/At= 0.5 [HO™D) + F(@) e ovvvvreeeeeeeeereeeeeenn 29

3. Characteristics of Achieved Meshes for Al-Enhanced Nanofluid Modeling

The modelling of artificial intelligence enhanced nanofluid requires the development of structure meshes that
are high-fidelity meshes, fuelled by the requirements of modeling the complex multiphysics behavior contained in
microfluidic systems, such as Brownian movement, thermophoresis, and nanoparticle interactions (Tsai et al., 2023).
The meshes of the individual nanofluid configurations (Al 2 O 3 /Water, CuO/Water, SiO 2/Water) have exemplary
quality parameters with skew ranging between 0.12 and 0.22 and orthogonal quality being greater than 0.87 to
guarantee that the governing Navier Stokes and energy equations can be accurately solved numerically (Maionchi et al.,
2024). The grid-independence investigations show that medium-density meshes with about 2.24 million elements will
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bring an ideal balance between the computational accuracy and efficiency as demonstrated by a Grid Convergence
Index (GCI) of values less than 2.1 percent and a statistical mean of Nusselt numbers that is less than 0.1 percent of the
fine-mesh responses. Adaptive mesh refinement strategies that can be optimised through Al, especially the gradient and
error indicator based methods, show considerable efficiency savings of 3542% compared to traditional uniform meshing
methods, and can then be optimised to microfluidic device geometries in real time (Nathanael et al., 2023). Combining
parallel computing systems with acceleration of GPUs provide speeds-up factors up to 28.5 times higher than CPU-only
designs and therefore complex nanofluid dynamics are computationally affordable in industrial applications without
compromising validation success within 4.2 per cent of experimental values (Stoecklein and Carlo, 2018) (see Tables 1

Faten Salim Hanoon et al/ International Journal of Engineering and Artificial Intelligence Vol 6 No 3 (2025) 11-27

and 2)(See Figure 3).

Table 1. Mesh Characteristics for Different Nanofluid Systems

17

Base Fluid
Parameter ALOs/Water CuO/Water SiO2/Water
(Water)
Rectangular Circular Triangular Square
G try T
cometry Type Microchannel Microchannel Microchannel Microchannel
D=100 pm, L=3000 pm Side=150 pm,
Channel Dimensions 200x50x5000 pm L=4000 um 100x100%x2000 pwm
Total Elements 2,850,000 1,920,000 2,240,000 1,600,000
Total Nodes 2,945,150 1,985,280 2,318,400 1,653,120
Element Type Hexahedral Tetrahedral Prism Hexahedral
Mesh Quality
0.15 0.22 0.18 0.12
(Skewness)
Orthogonal Quality 0.92 0.87 0.89 0.94
Table 2. Near-Wall Mesh Resolution
Nanofluid Type First Layer Height y* Growth Boundary
Wall Function
(um) Value Rate Layers
ALOs (1-4 0.05 0.8 1.2 15 Enhanced Wall
vol%) Treatment
CuO (0.1-0.8 0.03 0.6 1.15 18 Low-Re Near-Wall
vol%)
SiO: (1-5 vol%) 0.04 0.7 1.18 16 Enhanced Wall
Treatment
Base Fluid 0.06 1.0 1.25 12 Standard Wall
Function
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Figure 3. (A) 2D Structured Quadrilateral Mesh (8x4 elements). (B) Fine 2D CFD Mesh (20x10 elements). (C) 3D

Structured Hexahedral Mesh ( 6x4x3 elements).
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4. Results and Discussion
4.1 Mesh Convergence and Quality Analysis

The mesh convergence analysis shown in Figure 1 indicates that there is good convergence properties of all
three nanofluid systems being studied. The system of Al, O2/ water nanofluids reached convergence after about 2.85
million elements as compared to CuO/ water and SiO,/ water which was about 1.92 million and 2.24 million elements
respectively. The Grid Convergence Index (GCI) of each system was below 2.1 -percent, which means that the meshes
of medium density were not only precise enough to be effective in practice but also computationally efficient (Maionchi
et al., 2024).

The mesh quality test is given in Figure 2, which shows that all nanofluid arrangements have better mesh
properties. The skewness values were between 0.12 and 0.22, which is within the satisfactory limits of good quality CFD
simulation. All the values were over 0.87 and the maximum value was 0.94 in the base fluid (water). Thus, such quality
indicators ensure numerical correct solutions to the intricate equations of stresses and energy of Navier—Stokes equations
that predetermine the behavior of nanofluids in microfluidic devices (Tsai et al., 2023).

4.2 Mesh Characteristics and Near-Wall Resolution

The mesh structures shown in Figure 3 show how elementary two-dimensional quadrilateral meshes
(Figure 3A) can be enhanced by refined computational fluid dynamics meshes (Figure3B) and complex space
hexahedral architecture (Figure 3C). This chain of events emphasizes the growing complications that are needed to
solve the implied subtle physical phenomena involved in the nanofluid flow, most of which are found in the near wall
areas where strong gradients are formed. Microchannel mesh, as described in figure 4 possesses a high aspect ratio
(AR=20), which makes it especially difficult to maintain the quality of the mesh. The 50 x 5 grid shape is effective in
maintaining decent quality parsimonies and the ability of the element size to isolate the much needed dynamical
attributes of the restraining microchannel architecture. The setup is critical towards the accurate forecasting of heat-
transfer augmentation and pressure-drop aspects in microfluidic environments. Figure 5 gives an overall view of mesh
characteristics of different nanofluid regimes, and thus throws more light on the dissimilar demands of each nanofluid.
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The system with the highest element count (2.85 million) was the Al 2 O 3/water system, which utilises a non-circular
microchannel geometry, which is indicative of complex thermal boundary-layer formation in non-circular channels. On
the other hand, the CuO/water system in circular microchannels needed a lower number of elements (1.92million),
which can be explained by the more uniform development of the flow (Stoecklein& Carlo, 2018).

4.3 Near-Wall Mesh Resolution and Wall Treatment

Figure 6 presents the near-wall mesh resolution parameters, which are critical for accurate prediction of transfer
of heat energy coefficients and wall shear stress. The first layer height varied from 0.03 um for CuO nanofluids to 0.06
um for the base fluid, which provides y* values below 1.0 for all the simulations. This near-wall treatment low y* is
crucial to adopt in order to be able to use improved wall treatment models such as the capturing wall treatment models
appropriate to the study of the complex nanoparticle-wall interactions that largely affect the transfer of heat energy
process (Nathanael et al., 2023). The rates of growth were maintained at a level between 1.15 and 1.25 to ensure smooth
transitions between the viscous sublayer and the upstream flow region. 12-18 layers were resolved in the boundary
layer region which proved to be sufficient to resolve the sharp gradients typical of nanofluid in the vicinity of the solid
walls.

4.5 Thermal Properties and Volume Fraction Effects

The correlation of the nanofluid thermal characteristics and volume fraction are shown in Fig. 7 for the three sorts
of nanofluid. 07 vol%. kan observed 0.4993N.% %, and the highest value of the increase rate of the CuO/water
nanofluid was approximately 60.78%. This is consistent with the experimental observation by Li et al. (2018).
Performance improved slightly with the addition of Al.Os/water nanofluid, in 10-40% based on particle concentration.
However,15-17% increase was also reported by the SiO»/water nanofluid at low particle « concentration6 (Cho and
Eastman 1995). The nonlinear nature of the dependence on may be due to the Brownian motion of the nanoparticles in
addition to a meander hopping contribution. These phenomena are more noticeable at higher concentrations when the
positive effects are declining due to potential stability problems outside their optimal concentration range (Das et al.,
2003).

4.6 Al-Enhanced Mesh Adaptation

The mesh adaption reinforcement by Al parameters are presented in Figure 8, and would tell you where and
how well machine learning can help make computational meshes better. The gradient- and error-based adaptation
criteria were 35-42% better than the traditional uniform meshing approaches. With the hot spots of gradient
concentration dependent on the operational condition and nanoparticles distribution, this adaptive feature is especially
useful for nanofluid simulation (Tsai et al., 2023). Mesh adaptaton using a neural network based approach was applied
to get important regions which should be re-evaluated (nozzles, thermal boundary layer build up and steep gradients of
nanoparticle concentrations). This simple trick cuts down computation time by orders of magnitude, yet still retains
sufficient precision of the answer up to a technical error estimate.

4.7 GPU Acceleration Performance

The graphic in Fig. 9 that hardware acceleration can significantly improve performance of nanofluid
simulations. Complex 3D nanofluid simulations are now possibly in an industrial setting which are up to 28.5 times
faster than their serial CPU counterpart. The regular architecture of the computer facilitated the solution alongside time
steps of sets of equations for coupled mo- mentum, energy and particle-fluid nanoparticle motion. The speedup scale is
reasonable up to 16 GPU cores and no further improvement has been observed due to the communication cost and
memory round trip from two nodes. The results obtained by the proposed approach may be useful for choosing efficient
hardware in industrial nanofluid simulations (Kamali et al. 2020).

4.8 Model Validation and Experimental Comparison

The comparison of model predictions for both systems (in all nanofluids cases) is illustrated in Fig. 10. CFD
Al meta-models showed excellent behaviour of the predictions with respect to the experiments and deviations were
mostly lower than 4.2% for prediction of HTC, and 3.8% for pressure drop estimation. The high degree of agreement
shows the extreme accuracy of the Al-assist approach in retrieving on one hand, a higher order level complexity which
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is previously unresolved twice as complex nanofluid transfer of heat energy behavior in microchannel flow. Results are
presented for a large range of operating conditions: four Re numbers from 100 to 2000, particle volume fractions
between ] At =5% and temperatures ranging from T =20 °C to T =80°C, showing the validity of these models in an
engineering design (Maionchi et al.,2024).

4.9 transfer of heat energy Enhancement Mechanisms

The results showed that the transfer of heat energy enhancement mechanisms in nanofluidic microsystems are
manifold. The thermal diffusivity can be enhanced by the Brownian motion of NPs for the micro-convection effect, and
other heat conduction process exists via liquid layering at particle-fluid interfaces. Thermophoresis becomes dominant
under conditions in which very large temperature gradients exist, such as when interface-induced nanoparticle travel
leads to local fluid disruptions within vicinity of interface and enhances local maximum transfer of heat energy rates
(Eastman et al., 2001). CuO nanofluids were found to be better players, which was due to their excellent thermal
conductivity as well as unique semiconductor properties. It has a narrow band gap at 1.2 e V to enable improved
mechanisms of thermal transport. Furthermore, the high thermal conductivity improvements would be explained by the
fact that monoclinic crystal structure of CuO helps to transport phonons more effectively compared with other metal
oxide nanoparticles (Tran and Nguyen, 2014).

4.10 Optimization and Design Implications

The optimum design of microchannel(s) and operating conditions that would produce optimal transfer of heat
energy performance with minimum unnecessary promotion of pressure penalty penalties would be obtained through Al-
based optimization methods. The PEC values were always larger than 1.0 and this represented a net thermal
performance increase despite attenuating pressure drop due to higher viscosity, as pressure drops, in all optimality
cases. It was found out that in optimization, rectangular microchannels aspect ratios of between 2:1 and 4:1 give the
best thermal-hydraulic results to Al 20 3 nanofluids whereas circular geometry gives the best results to CuO nanofluids.
The consequences of these findings can be applied to the application of the construction of microfluidic heat exchanger
systems to industry (Nathanael et al., 2023).

4.11 Computational Efficiency and Practical Implementation

The method utilizes both Al algorithms and traditional CFD methods to the maximum, thus speeding up the
calculations and maintaining the accuracy. The adaptive mesh refinement saves up to 35 40 percent of the CPU time
that is required but this does not affect the accuracy of the solutions within the technical requirements. Such an
advantage of efficiency becomes important in the field of practical industrial application when it is necessary to shorten
the design cycle and high-frequency improvement. The proposed model framework based on Al is highly scaled, which
makes it suitable in real-life multi-scale nanofluid systems. When these machine-learning models are paired with the
current generation computer architectures, the instruments in the sophisticated nanofluid studies achieve great power
(Stoecklein and Carlo, 2018).

5. Conclusion

The present work clearly demonstrates, for the first time, a paradigm shift to integrating Al and CFD in
modeling and optimizing nanofluid transport in advanced microfluidic devices. Our Al-based approach conserved
significant computation efforts (35-42%) without deteriorating the validation accuracy more than 4.2% based on
experimental data of Al.Os, CuO, and SiO: nanofluids containing AMR. The findings showed that CuO nanofluids
result in an increase in thermal conductivity of at most 60.78% and GPU acceleration provides a speedup factor of
28.5x when compared with traditional methods. The constructed neural network and Gaussian Process regression
models were found to be efficient enough to predict clearly the complex thermophysical processes, including Brownian
motion, thermophoresis, aggregation of nanoparticles, and others, that are often neglected by traditional modelling
methods. This work gives a solid platform to the real time optimization of microchannel geometry and operating factors
which in turn significantly increases design flexibility in microfluidic applications to drug delivery, diagnostics and
thermal management systems. The Al-based approach outlined in this paper provides the next-generation microfluidic
equipment advancement with a scaleable and computationally effective answer, thus closing the transition between
basic nanofluid physics and actual engineering designs.
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