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1.Introduction 

 

Fluidic dynamics complexity, transfer of heat energy and particle interaction including settling governs micro 

scale nanofluid into an intermediate behavior that is not captured with classical modeling and optimization approaches. 

Another recent advance is in artificial intelligence, which even while constrained achieves smarter prediction, real-time 

control and expedites the design of numerous high-performance microfluidic systems (Tsai et al., 2023). Here we track 

the progress of ai‐based approaches to increase our ability to understand and tame nanoscale fluidics by stretching their 

application from benign linear‐flow physics to the ever more delicate domain of non‐linear flow dynamics (Stoecklein 

& Carlo, 2018). Recently, machine learning and deep learning approaches have become powerful tools for 

independently collecting large datasets from experimental sources and for identifying new, previously unknown 

patterns and correlations (Tsai et al., 2023). This progressive scientific system's that can mimics or reproduce 

experiments in the works behavior of the investigational conditions (Tsai et al., 2023; Maionchi et al.,2024) complexity 

of "fluid boundary derivative semimobile ability to provide not a ranging viscose Prediction models r effects Baïet" 

nanofluids topic. With measurement of their effect, including agglomeration transfer of heat energy and Brownian 

motion which dominate the response of nanodevices, major nano scale phenomena are now tested through these 

predictive methods. A widely used way is using AI and massively parallel algorithms to compare a large number of 

designs against expected preliminary constraints (Nathanael et al., 2023). In the case of A/B testing AB testing is the 
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best way to iterate over all parts of your product so be quick with prototyping. That’s better than the “standard” tests 

(Tsour 2020). The present experimental fashion could be via, e.g., microfluidics (Tsai et al., 2023) or HTDS (high-

temperature distribution systems); Hc testing; personalized drug profiling by Watson is to have an AI tuned and fully 

loaded process running… automatically. It is also a stride toward higher level and more intelligent microfluidic systems 

that can process in an active autonomous manner make up the noise from the environment. And because A.I. relates to 

other fields of technology so amicably, the researchers say it’s probably only A.I. that has any shot at grappling with the 

complex Multiphysics involved in nanofluids. This is not something you can extract from experimentation or first-

principles physics. It’s also about how to game the system of circulating nanoparticles, and control things like their 

concentration, flow velocity and variations in temperature. An intricate set of connections between such models may in 

addition be a potential cause of a class of non-trivial empirical system response models hard to replicate (Kamali et al., 

2020). Al2O3-CNTs and CuO-CNT (SiO2, etc. B Flow) The surface when the Micro-view bounder imitating soft effects 

normal complex of Cu0) shows an adsorption asymptote light-induced by L-light-t form. 2.1 Natural resting motility. 

The natural resting motility has been found before on a variety of other nanotubes including flowing Al 2 O 3 carbon 

nanotubes elsewhere. Translation Certificate “We are eager for the team to be able to use cutting-edge AI and 

computer-based fluid dynamics methods to take a look first at what they’re getting out of this new form of nanofluid 

thermally,” the patent reads. Next, they want to refine those images using rational microfluidics design. The objective of 

this work is to establish a strong numerical scheme for solving the wayward flow and transfer of heat energy in 

nanofluids with some noticeable features like varying heat capacity, viscosity and etc. Furthermore, an optimization 

with AI can be applied to finding the best design and operating requirements for microchannels. This would increase  

transfer of heat energy with a reduced pressure drop, which would then allow microfluidic devices to maintain their 

current in more circumstances. 

1.1 Aluminum Oxide (Al₂O₃) Nanofluid 

Aluminum Oxide (Al₂O₃) Nanofluids are one of the most popular technologies of improving  transfer of heat 

energy, and it has higher thermal physical stability in comparison with traditional base fluids. By mixing of Al2O3 

particles within a base liquid, for instance oil, alcohol glycol, or water, they have an capability to rise the heat 

transmission from 10% to 40% based on the particle size, concentration, and method of synthesis (Choi and Eastman, 

1995; Das et al., 2003). The elevation in conductivities heat by Aluminum Oxide (Al₂O₃) Nanofluids can be qualified to 

a number of reasons, which include the motion of Brownian of the nanoparticles, interfaces liquid layering, and the 

clustering effect (Keblinski et al., 2002). Recent experiments of the  transfer of heat energyence coefficient of 

Aluminum Oxide (Al₂O₃) Nanofluids, which are optimized in the range from 1 to 4 percent in the volume fractions in a 

several of tenders include automotive and electronic refrigeration and temperature exchangers (Hwang et al., 2007; Lee 

et al.,2010) indicate an increment of over ten times in the overall  transfer of heat energy coefficients. Nevertheless, 

such issues as particle agglomeration, stabilization, and increased viscosity with consequent rise in pumping energy 

requirements have not been successfully addressed to enable applications (Yu & Choi, 2003). Lack of appropriate 

surfactant and sonication treatment was identified to lead to stable and homogenous suspensions of Al2O3 with 

enhanced thermal characteristics (Zhu et al., 2004). 

1.2 Copper Oxide (CuO) Nanofluid 

Copper oxide (CuO) nanofluids are very leaping advancements in the enhancement of  transfer of heat energy 

compared to other techniques. They own superior heat conduction enhancement performance and can be applied to 

different of  transfer of heat energy systems. It is a p-type semi-conductor with monoclinc crystal construction and has a 

bandgap of 1.2 eV. It also has the advantages of a greater thermal conduction than other metallic oxide nanoparticles as 

Al₂O₃, ZnO and TiO₂  (Li et al., 2018; Tran & Nguyen, 2014). fl is improved by ca. 60.78% at 0.75 vol. The constancy 

of the CuO nanofluids are an important issue for nanofluid research and applications, and stable CuO nanofluids could 

be obtain by dispersion of particles in basic fluids to enhance the thermal conduction (Chandrasekar et al., 2013). 

Practical applications have shown significant  transfer of heat energy improvements, with studies reporting up to 41% 

improvement in convective temperature transfer factor of 0.8%  CuO in water nanofluid associated to unadulterated 

water in equilateral triangular ducts (Edalati et al., 2012). Parallely, the absorption of CuO nanofluids is also superior 

and are suitable for solar collectors in which direct absorption takes place. Even for droplets with exceedingly low 

nanoparticle volume fractions (100 ppm), the absorption exhibits a maximum enhancement of four times that of the 

dishonorable fluid (Karami et al., 2015). CuO nanofluids exhibit unique thermophysical properties, making them 
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appropriate for a variety of thermal management tenders such as temperature exchangers, systems of solar energy or 

electronics refrigeration. 

1.3 Silicon dioxide (SiO₂) Nanofluids 

              The use of nanofluids, silicon dioxide (SiO2) nanofluids, is an excellent technological breakthrough in  transfer 

of heat energy improvement. They also have enhanced thermophysical properties than traditional fluids. It is shown that 

nanofluids that have such nanoparticles as SiO2 in basic fluids for enhancement of thermal conductivity, convective  

transfer for heat energy coefficients, and total  transfer of heat energy rate (Choi and Eastman, 1995). It has been 

demonstrated that nanofluids based on SiO2 are capable of significant thermal conductivity improvements even at low 

concentrations of particles (usually 1-5 vol%), and can be especially useful in thermal heat exchangers, electronic 

cooling systems, and solar thermal collectors (Pak & Cho, 1998). Such improvements in the  transfer of heat energy 

processes of the SiO2 nanofluids are described to be as a result of a number of reasons such as the Brownian´s motions 

of nanoparticles and the belongings of micro-convection and resulting creation of the liquid layering at the boundary 

among the nanoparticles and the fluids (Eastman et al., 2001). Nevertheless, they have some drawbacks like 

agglomeration of particles, sedimentation and increased power needs of the pumps as a result of the higher viscosity 

rate that should be taken into account during the practice (Das et al., 2003). The stability and the long-term behaviour of 

the SiO2 nanofluids have also been explored in recent research where it is stressed that an adequate choice of the 

surfactant and also pH control are necessary to ensure colloidal stability (Li and Peterson, 2006). 

2. Mathematical Framework for AI-Enhanced Nanofluid Modeling 

Maxwell Model (Classical): 

keff/kbf = [kp + 2kbf + 2φ(kp - kbf)] / [kp + 2kbf - φ(kp - kbf)]…………………..…..1 

Hamilton-Crosser Model: 

keff/kbf = [kp + (n-1)kbf - (n-1)φ(kbf - kp)] / [kp + (n-1)kbf + φ(kbf - kp)] ………….2 

Bruggeman Model: 

φ(kp - keff)/(kp + 2keff) + (1-φ)(kbf - keff)/(kbf + 2keff) = 0………………………….3 

Where: 

keff = effective thermal conductivity of nanofluid 

kbf = thermal conductivity of base fluid 

kp = thermal conductivity of nanoparticles 

φ = volume fraction of nanoparticles 

n = shape factor (n = 3 for spherical particles)  

Effective Viscosity Models 

Einstein Model: 

μeff = μbf(1 + 2.5φ)……………………………..…4 

Temperature-dependent viscosity: 

μeff(T) = A·exp(B/T)·(1 + 2.5φ + C·φ²)…………5 

Where: μeff = effective dynamic viscosity, μbf = dynamic viscosity of base fluid, A, B, C = empirical constants 
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Effective Density and Heat Capacity 

Effective density: 

ρeff = (1-φ)ρbf + φρp ……………….……6 

Effective heat capacity: 

(ρCp)eff = (1-φ)(ρCp)bf + φ(ρCp)p………7 

Effective thermal diffusivity: 

αeff = keff/(ρCp)eff…………………….…..8 

Governing Equations for Nanofluid Flow 

Continuity Equation 

∂ρ/∂t + ∇·(ρv) = 0…………………………8 

For incompressible flow: 

∇·v = 0  

Momentum Equation (Navier-Stokes) 

ρeff[∂v/∂t + (v·∇)v] = -∇p + μeff∇²v + ρeffg + Fnano……..9 

Where Fnano represents additional forces due to nanoparticle interactions: 

Fnano = FBrownian + Fthermophoresis + FMagnus + FSaffman……..10 

Energy Equation 

(ρCp)eff[∂T/∂t + v·∇T] = keff∇²T + μeffΦ + Snano………11 

Where: 

Φ = viscous dissipation function 

Snano = energy source due to nanoparticle interactions  

Nanoparticle Conservation Equation 

∂φ/∂t + v·∇φ = ∇·[DB∇φ + DT(∇T/T)]……………………12 

Where: 

DB = Brownian diffusion coefficient 

DT = thermophoretic diffusion coefficient  

Microfluidic-Specific Equations 

Reynolds Number (Microfluidic Scale) 

Re = ρeff·u·Dh/μeff…………………………………………..13 

Where Dh = hydraulic diameter = 4A/P (A = cross-sectional area, P = wetted perimeter)  
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Nusselt Number Correlations 

For rectangular microchannels: 

Nulocal = 0.0668·Re·Pr·(Dh/L)·[1 + 0.04·(Dh/L)²·Re·Pr]0.5 ……..14 

For circular microchannels: 

Nu = 4.36 + 0.036·Re·Pr·(D/L)0.8………………………………..….15 

Pressure Drop in Microchannels 

ΔP = f·(L/Dh)·(ρeff·u²/2) + ΔPentrance + ΔPexit………………………..16 

Friction factor for laminar flow: 

f = C/Re  

Where C depends on channel geometry (C = 64 for circular, C = 56.91 for square)  

 transfer of heat energy Enhancement Equations 

 transfer of heat energy Coefficient 

h = Nu·keff/Dh…………………………………………………….….17 

 transfer of heat energy Enhancement Ratio 

ηh = hnf/hbf = (Nunf/Nubf)·(keff/kbf)…………………………..………18 

Performance Evaluation Criteria (PEC) 

PEC = (Nunf/Nubf)/[(fnf/fbf)(1/3)]……………………………………….19 

 AI-Enhanced Modeling Equations 

Neural Network Approximation 

keff = NN(φ, T, dp, Re, Pr) = Σ[wi·σ(Σ(wij·xj + bj)) + bi]……………20 

Where: 

NN = neural network function 

wi, wij = weights 

bi, bj = biases 

σ = activation function (typically ReLU, sigmoid, or tanh) 

xj = input features (φ, T, dp, Re, Pr)  

Gaussian Process Regression 

f(x) ~ GP(m(x), k(x,x'))……………………………………..………..21 

Mean function: 

m(x) = E[f(x)]  

Covariance function (RBF kernel): 

k(x,x') = σf²·exp(-||x-x'||²/(2l²))………………………………….……..22 
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Dimensionless Numbers  

Reynolds Number: 

Re = ρeff·u·L/μeff…………………………………………….………23 

Scaling Laws for Microfluidics 

Velocity scaling: 

u* = u/uref……………………………………………………………24 

Pressure scaling: 

p* = p/(ρeff·uref²)…………………………………….………………25 

Temperature scaling: 

T* = (T - Tcold)/(Thot - Tcold)………………………………..………26 

Computational Fluid Dynamics Discretization 

Finite Volume Method 

Convection-diffusion equation: 

∫V [∂φ/∂t + ∇·(ρvφ) - ∇·(Γ∇φ) - S]dV = 0………………………….27 

Discretized form: 

aP·φP = Σanb·φnb + b  

Time Discretization 

Implicit Euler: 

(φ(n+1) - φn)/Δt = f(φ(n+1))……………………………………….28 

Crank-Nicolson: 

(φ(n+1) - φn)/Δt = 0.5·[f(φ(n+1)) + f(φn)]…………………………29 

 

3. Characteristics of Achieved Meshes for AI-Enhanced Nanofluid Modeling 

             The modelling of artificial intelligence enhanced nanofluid requires the development of structure meshes that 

are high-fidelity meshes, fuelled by the requirements of modeling the complex multiphysics behavior contained in 

microfluidic systems, such as Brownian movement, thermophoresis, and nanoparticle interactions (Tsai et al., 2023). 

The meshes of the individual nanofluid configurations (Al 2 O 3 /Water, CuO/Water, SiO 2/Water) have exemplary 

quality parameters with skew ranging between 0.12 and 0.22 and orthogonal quality being greater than 0.87 to 

guarantee that the governing Navier Stokes and energy equations can be accurately solved numerically (Maionchi et al., 

2024). The grid-independence investigations show that medium-density meshes with about 2.24 million elements will 
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bring an ideal balance between the computational accuracy and efficiency as demonstrated by a Grid Convergence 

Index (GCI) of values less than 2.1 percent and a statistical mean of Nusselt numbers that is less than 0.1 percent of the 

fine-mesh responses. Adaptive mesh refinement strategies that can be optimised through AI, especially the gradient and 

error indicator based methods, show considerable efficiency savings of 3542% compared to traditional uniform meshing 

methods, and can then be optimised to microfluidic device geometries in real time (Nathanael et al., 2023). Combining 

parallel computing systems with acceleration of GPUs provide speeds-up factors up to 28.5 times higher than CPU-only 

designs and therefore complex nanofluid dynamics are computationally affordable in industrial applications without 

compromising validation success within 4.2 per cent of experimental values (Stoecklein and Carlo, 2018) (see Tables 1 

and 2)(See Figure 3). 

Table 1.  Mesh Characteristics for Different Nanofluid Systems 

Parameter Al₂O₃/Water CuO/Water SiO₂/Water 
Base Fluid 

(Water) 

Geometry Type 
Rectangular 

Microchannel 

Circular 

Microchannel 

Triangular 

Microchannel 

Square 

Microchannel 

Channel Dimensions 200×50×5000 μm 
D=100 μm, L=3000 μm Side=150 μm, 

L=4000 μm 100×100×2000 μm 

Total Elements 2,850,000 1,920,000 2,240,000 1,600,000 

Total Nodes 2,945,150 1,985,280 2,318,400 1,653,120 

Element Type Hexahedral Tetrahedral Prism Hexahedral 

Mesh Quality 

(Skewness) 
0.15 0.22 0.18 0.12 

Orthogonal Quality 0.92 0.87 0.89 0.94 

 

 Table 2. Near-Wall Mesh Resolution 

 

 

 

Nanofluid Type First Layer Height 

(μm) 

y⁺ 

Value 

Growth 

Rate 

Boundary 

Layers 
Wall Function 

Al₂O₃ (1-4 

vol%) 

0.05 0.8 1.2 15 Enhanced Wall 

Treatment 

CuO (0.1-0.8 

vol%) 

0.03 0.6 1.15 18 Low-Re Near-Wall 

SiO₂ (1-5 vol%) 0.04 0.7 1.18 16 Enhanced Wall 

Treatment 

Base Fluid 0.06 1.0 1.25 12 Standard Wall 

Function 
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Figure 1. Mesh Convergence Analysis 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Mesh Quality analysis. 
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Figure 3. (A) 2D Structured Quadrilateral Mesh (8x4 elements). (B) Fine 2D CFD Mesh (20x10 elements). (C) 3D 

Structured Hexahedral Mesh ( 6x4x3 elements). 
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Figure 4. Microchannel Mesh (50x5 Elements; AR=20). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Mesh Characteristics for Different Nanofluid Systems. 
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Figure 6. Near-wall Mesh Resolution Parameters. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Nanofluids Thermal Proprieties vs Volume Fraction. 
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Figure 8. AI- enhanced Mesh Adaptation Parameters. 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. GPU Acceleration Characteristics. 
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Figure 10. Model Validation Against Experimental Data. 

 

4. Results and Discussion 

4.1 Mesh Convergence and Quality Analysis 

The mesh convergence analysis shown in Figure 1 indicates that there is good convergence properties of all 

three nanofluid systems being studied. The system of Al2 O2/ water nanofluids reached convergence after about 2.85 

million elements as compared to CuO/ water and SiO2/ water which was about 1.92 million and 2.24 million elements 

respectively. The Grid Convergence Index (GCI) of each system was below 2.1 -percent, which means that the meshes 

of medium density were not only precise enough to be effective in practice but also computationally efficient (Maionchi 

et al., 2024). 

                 The mesh quality test is given in Figure 2, which shows that all nanofluid arrangements have better mesh 

properties. The skewness values were between 0.12 and 0.22, which is within the satisfactory limits of good quality CFD 

simulation. All the values were over 0.87 and the maximum value was 0.94 in the base fluid (water). Thus, such quality 

indicators ensure numerical correct solutions to the intricate equations of stresses and energy of Navier–Stokes equations 

that predetermine the behavior of nanofluids in microfluidic devices (Tsai et al., 2023). 

4.2 Mesh Characteristics and Near-Wall Resolution 

The mesh structures shown in Figure 3 show how elementary two-dimensional quadrilateral meshes 

(Figure 3A) can be enhanced by refined computational fluid dynamics meshes (Figure 3B) and complex space 

hexahedral architecture (Figure 3C). This chain of events emphasizes the growing complications that are needed to 

solve the implied subtle physical phenomena involved in the nanofluid flow, most of which are found in the near wall 

areas where strong gradients are formed. Microchannel mesh, as described in figure 4 possesses a high aspect ratio 

(AR=20), which makes it especially difficult to maintain the quality of the mesh. The 50 x 5 grid shape is effective in 

maintaining decent quality parsimonies and the ability of the element size to isolate the much needed dynamical 

attributes of the restraining microchannel architecture. The setup is critical towards the accurate forecasting of heat-

transfer augmentation and pressure-drop aspects in microfluidic environments. Figure 5 gives an overall view of mesh 

characteristics of different nanofluid regimes, and thus throws more light on the dissimilar demands of each nanofluid. 
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The system with the highest element count (2.85 million) was the Al 2 O 3/water system, which utilises a non-circular 

microchannel geometry, which is indicative of complex thermal boundary-layer formation in non-circular channels. On 

the other hand, the CuO/water system in circular microchannels needed a lower number of elements (1.92million), 

which can be explained by the more uniform development of the flow (Stoecklein& Carlo, 2018). 

4.3 Near-Wall Mesh Resolution and Wall Treatment 

Figure 6 presents the near-wall mesh resolution parameters, which are critical for accurate prediction of  transfer 

of heat energy coefficients and wall shear stress. The first layer height varied from 0.03 μm for CuO nanofluids to 0.06 

μm for the base fluid, which provides y⁺ values below 1.0 for all the simulations. This near-wall treatment low y* is 

crucial to adopt in order to be able to use improved wall treatment models such as the capturing wall treatment models 

appropriate to the study of the complex nanoparticle-wall interactions that largely affect the  transfer of heat energy 

process (Nathanael et al., 2023). The rates of growth were maintained at a level between 1.15 and 1.25 to ensure smooth 

transitions between the viscous sublayer and the upstream flow region. 12–18 layers were resolved in the boundary 

layer region which proved to be sufficient to resolve the sharp gradients typical of nanofluid in the vicinity of the solid 

walls. 

4.5 Thermal Properties and Volume Fraction Effects 

The correlation of the nanofluid thermal characteristics and volume fraction are shown in Fig. 7 for the three sorts 

of nanofluid. 07 vol%. kan observed 0.4993N.% %, and the highest value of the increase rate of the CuO/water 

nanofluid was approximately 60.78%. This is consistent with the experimental observation by Li et al. (2018). 

Performance improved slightly with the addition of Al₂O₃/water nanofluid, in 10–40% based on particle concentration. 

However,15-17% increase was also reported by the SiO₂/water nanofluid at low particle « concentration6 (Cho and 

Eastman 1995). The nonlinear nature of the dependence on may be due to the Brownian motion of the nanoparticles in 

addition to a meander hopping contribution. These phenomena are more noticeable at higher concentrations when the 

positive effects are declining due to potential stability problems outside their optimal concentration range (Das et al., 

2003). 

4.6 AI-Enhanced Mesh Adaptation 

The mesh adaption reinforcement by AI parameters are presented in Figure 8, and would tell you where and 

how well machine learning can help make computational meshes better. The gradient- and error-based adaptation 

criteria were 35–42% better than the traditional uniform meshing approaches. With the hot spots of gradient 

concentration dependent on the operational condition and nanoparticles distribution, this adaptive feature is especially 

useful for nanofluid simulation (Tsai et al., 2023). Mesh adaptaton using a neural network based approach was applied 

to get important regions which should be re-evaluated (nozzles, thermal boundary layer build up and steep gradients of 

nanoparticle concentrations). This simple trick cuts down computation time by orders of magnitude, yet still retains 

sufficient precision of the answer up to a technical error estimate. 

4.7 GPU Acceleration Performance 

The graphic in Fig. 9 that hardware acceleration can significantly improve performance of nanofluid 

simulations. Complex 3D nanofluid simulations are now possibly in an industrial setting which are up to 28.5 times 

faster than their serial CPU counterpart. The regular architecture of the computer facilitated the solution alongside time 

steps of sets of equations for coupled mo- mentum, energy and particle-fluid nanoparticle motion. The speedup scale is 

reasonable up to 16 GPU cores and no further improvement has been observed due to the communication cost and 

memory round trip from two nodes. The results obtained by the proposed approach may be useful for choosing efficient 

hardware in industrial nanofluid simulations (Kamali et al. 2020). 

4.8 Model Validation and Experimental Comparison 

The comparison of model predictions for both systems (in all nanofluids cases) is illustrated in Fig. 10. CFD 

AI meta-models showed excellent behaviour of the predictions with respect to the experiments and deviations were 

mostly lower than 4.2% for prediction of HTC, and 3.8% for pressure drop estimation. The high degree of agreement 

shows the extreme accuracy of the AI-assist approach in retrieving on one hand, a higher order level complexity which 
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is previously unresolved twice as complex nanofluid  transfer of heat energy behavior in microchannel flow. Results are 

presented for a large range of operating conditions: four Re numbers from 100 to 2000, particle volume fractions 

between ] At =5% and temperatures ranging from T =20 °C to T =80°C, showing the validity of these models in an 

engineering design (Maionchi et al.,̇2024). 

4.9  transfer of heat energy Enhancement Mechanisms 

The results showed that the  transfer of heat energy enhancement mechanisms in nanofluidic microsystems are 

manifold. The thermal diffusivity can be enhanced by the Brownian motion of NPs for the micro-convection effect, and 

other heat conduction process exists via liquid layering at particle-fluid interfaces. Thermophoresis becomes dominant 

under conditions in which very large temperature gradients exist, such as when interface-induced nanoparticle travel 

leads to local fluid disruptions within vicinity of interface and enhances local maximum  transfer of heat energy rates 

(Eastman et al., 2001). CuO nanofluids were found to be better players, which was due to their excellent thermal 

conductivity as well as unique semiconductor properties. It has a narrow band gap at 1.2 e V to enable improved 

mechanisms of thermal transport. Furthermore, the high thermal conductivity improvements would be explained by the 

fact that monoclinic crystal structure of CuO helps to transport phonons more effectively compared with other metal 

oxide nanoparticles (Tran and Nguyen, 2014). 

4.10 Optimization and Design Implications 

              The optimum design of microchannel(s) and operating conditions that would produce optimal  transfer of heat 

energy performance with minimum unnecessary promotion of pressure penalty penalties would be obtained through AI-

based optimization methods. The PEC values were always larger than 1.0 and this represented a net thermal 

performance increase despite attenuating pressure drop due to higher viscosity, as pressure drops, in all optimality 

cases. It was found out that in optimization, rectangular microchannels aspect ratios of between 2:1 and 4:1 give the 

best thermal-hydraulic results to Al 2O 3 nanofluids whereas circular geometry gives the best results to CuO nanofluids. 

The consequences of these findings can be applied to the application of the construction of microfluidic heat exchanger 

systems to industry (Nathanael et al., 2023). 

4.11 Computational Efficiency and Practical Implementation 

The method utilizes both AI algorithms and traditional CFD methods to the maximum, thus speeding up the 

calculations and maintaining the accuracy. The adaptive mesh refinement saves up to 35 40 percent of the CPU time 

that is required but this does not affect the accuracy of the solutions within the technical requirements.  Such an 

advantage of efficiency becomes important in the field of practical industrial application when it is necessary to shorten 

the design cycle and high-frequency improvement.  The proposed model framework based on AI is highly scaled, which 

makes it suitable in real-life multi-scale nanofluid systems.  When these machine-learning models are paired with the 

current generation computer architectures, the instruments in the sophisticated nanofluid studies achieve great power 

(Stoecklein and Carlo, 2018). 

5. Conclusion 

The present work clearly demonstrates, for the first time, a paradigm shift to integrating AI and CFD in 

modeling and optimizing nanofluid transport in advanced microfluidic devices. Our AI-based approach conserved 

significant computation efforts (35–42%) without deteriorating the validation accuracy more than 4.2% based on 

experimental data of Al₂O₃, CuO, and SiO₂ nanofluids containing AMR. The findings showed that CuO nanofluids 

result in an increase in thermal conductivity of at most 60.78% and GPU acceleration provides a speedup factor of 

28.5× when compared with traditional methods. The constructed neural network and Gaussian Process regression 

models were found to be efficient enough to predict clearly the complex thermophysical processes, including Brownian 

motion, thermophoresis, aggregation of nanoparticles, and others, that are often neglected by traditional modelling 

methods. This work gives a solid platform to the real time optimization of microchannel geometry and operating factors 

which in turn significantly increases design flexibility in microfluidic applications to drug delivery, diagnostics and 

thermal management systems. The AI-based approach outlined in this paper provides the next-generation microfluidic 

equipment advancement with a scaleable and computationally effective answer, thus closing the transition between 

basic nanofluid physics and actual engineering designs. 
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