Original Article

Comparison Between Urinary

Tract Infection Bacteriuria in Diabetic and Non-Diabetic Patients Identified by VITEK 2

and Non-Diabetic Identified by Some Biological Factors

and 16S rRNA Sequencing Against Some Biological Factors

Zainab S. Bager and Munaff J. Abd Al-Abbas

ABSTRACT

Objective: To investigate the prevalence and characterization of bacterial species associated with urinary tract infections in both diabetic and non-diabetic patients.

Study Design: Comparative study

Place and Duration of Study: This study was conducted at the College of Science, University of Basrah, Iraq from 1st November 2022 to 31st January 2023.

Methods: One hundred and one midstream urine samples from UTI outpatients (61 diabetic, 39 non-diabetic) were collected. Samples cultured on MacConkey, Blood and Nutrient Agar (Accumix, India) at 37°C for 24h. Macroscopic urinalysis with 10 chemical tests (glucose, protein, pH, bilirubin, blood, ketone, leukocyte, nitrite, specific gravity and urobilinogen) done on all samples. Pure colonies obtained by subculturing, maintained on Nutrient Agar slants and Broth. Gram stain used for preliminary isolate classification.

Results: Forty-eight (60.7%) were from diabetic patients compared to 31 (39.2%) from non-diabetics (P≤0.05). Gram-positive bacteria were the most prevalent in diabetics (58.3%) versus Gram-negative (54.8%) in non-diabetics.16S rRNA sequences in both groups showed Escherichia coli being the most common followed by K. pneumoniae, E. fergusonii, S. hominis, E. Hormaechei, R. Ornithinolytica and S. aureus. While in diabetes were only B. safensis, S. saprophyticus, K. rhizophila, M. vitulinus, S. epidermidis, L. bacterium, C. amalonaticus, M.luteus, P. Gergoviae and P. fragi. Whereas in non-diabetes C. aurimucosum, B. velezensis, E. cloacae, C. Erwinia and E. bugandensis. Importantly, Enterobacter bugandensis was isolated from the urinary tract infection as the first time. VITEK showed only 26.1% of species identifications. Multiple alignment of 16S rRNA showed allelic differences between diabetic and non-diabetic bacteria. Sugar lysis tests showed Gram positive isolates from diabetics had 93 reactions vs. 43 in non-diabetics (P≤0.05), with no difference in Gram negative species.

Conclusion: The diabetic case influences on the types of bacterial species presents, genetic nucleotide mutations and bacterial enzymes activity either for gram positive or gram negative bacteria

Key Words: Urinary tract infection, Diabetes, VITEK 2, 16S rRNA

Citation of article: Baqer ZS, Al-Abbas MJA. Comparison Between Urinary Tract Infection Bacteriuria in Diabetic and Non-Diabetic Patients Identified by VITEK 2 and 16S rRNA Sequencing Against Some Biological Factors. Med Forum 2025;36(8):13-18. doi:10.60110/medforum.360803.

INTRODUCTION

Diabetes mellitus (DM) is a chronic metabolic disease causing persistent hyperglycemia due to insulin defects. It involves genetic, environmental and epigenetic factors.

Department of Biology, College of Science, University of Basrah, Iraq.

Correspondence: Zainab S. Baqer, Department of Biology, College of Science, University of Basrah, Iraq.

Contact No: +9647755886756 Email: zainabsadeq97@gmail.com

Received: December, 2024 Reviewed: January-February, 2025

Accepted: March, 2025

DM increases susceptibility to urinary tract infections (UTIs) because of immune dysfunction, hyperglycemia, and bladder neuropathy.1 Urinary tract infection such as Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis and Enterococcus faecalis grow well in glucose-rich urine enhancing biofilm formation and colonization. resistance.² Urinary tract infection diagnosis shifted to molecular methods like VITEK 2 which uses metabolic activity cards for fast bacterial identification and susceptibility testing.³ Bacterial metabolic profiles involving sugar fermentation are important in diabetes.⁴ High glucose in diabetic urine boosts bacterial enzyme activity increasing virulence.⁵ 16S rRNA gene sequencing is a key identification method when phenotypic methods fail.⁶ This study investigates genetic and enzymatic differences of bacteria from diabetic and non-diabetic UTI patients, focusing on urine sugar effects.

METHODS

One hundred and one midstream urine samples from UTI outpatients (61 diabetic, 39 non-diabetic) were collected from 1st November 2022 to 31st January 2023. Samples cultured on MacConkey, Blood and Nutrient Agar (Accumix, India) at 37°C for 24h. Macroscopic urinalysis with 10 chemical tests (glucose, protein, pH, bilirubin, blood, ketone, leukocyte, nitrite, specific gravity and urobilinogen) done on all samples. Pure colonies obtained by subculturing, maintained on Nutrient Agar slants and Broth. Gram stain used for preliminary isolate classification.

DNA extraction: Bacterial isolates were grown in 5 mL Nutrient Broth (Accumix, India) at 37 °C for 24 h. Genomic DNA was extracted using PrestoTM Mini gDNA Bacteria Kit (Geneaid, Taiwan), eluted in 100 μL buffer, and stored at –20 °C. DNA integrity was checked via 1.5% agarose gel electrophoresis with ethidium bromide under UV light.

Amplification of 16S rDNA: The 16S rDNA of 42 isolates was PCR-amplified using universal primers⁷: forward (27F) 5'-AGAGTTTGATCCTGGCTCAG-3', reverse (1492R) 5'-GGTTACCTTGTTACGACTT-3'. PCR (50 µl) contained 25 µl GoTaq Master Mix, 2 µl DNA, 2 µl forward primer, 2 µl reverse primer, and 19 ul nuclease-free water. Program: 95 °C 5 min; 35 cycles of 95 °C 30s, 55 °C 30s, 72 °C 1min; final extension 72 °C 5 min. Amplification confirmed by 1.5% agarose gel electrophoresis in 1× TBE buffer; 1 μl loaded: product 100 bp ladder Electrophoresis at 70 V for 1h; bands visualized under UV and photographed. Products stored at -20 °C until sequencing.

Bacterial isolates (22) were identified using Basic Local Alignment Search Tool (BLAST) and National Center for Biotechnology Information (NCBI) as in [8]. After proofreading, nucleotide sequences were submitted to BLAST which compared them with GenBank type strains to identify bacterial species.

he phylogenetic tree was constructed using MAFFT (Multiple Alignment Program for Nucleotide Sequences) at http://mafft.cbrc.jp/alignment/server/after concatenating nucleotide sequences. Sequences were merged using Clustal Omega.8

VITEK 2 System: 42 isolates as Gram-positive and Gram-negative were identified by VITEK 2 (BioMérieux, France) and some bacterial susceptibility profile were done such asthe biochemical profiles associated with bacterial capacity to ferment the substrates with a focus on glucose, mannitol and lactose, as well as identification of the enzymes.

RESULTS

There were 61 (60.3%) diabetic patients and 40 (39.6%) non-diabetic patients. Out of 79 bacterial isolates, 48 (60.7%) obtained from diabetes was higher than 31 (39.2%) from non-diabetes ($P \le 0.05$). The isolates were also divided into Gram negative 20 (41.6%) and Gram positive 28(58.3%) versus 17 (54.8%) and 14 (45.1%) respectively (Table 1). The 16S rRNA gene of 42 bacterial isolates was shown as a single band for each isolate on agarose gel electrophoresis at a position 1500 bp in comparison with a standard molecular DNA ladder (Fig. 1).

Twenty two different bacterial species were identified from 42 alignments. However, the bacterial species were 8 of Escherichia coli, 4 for both Klebsiella pneumoniae and Escherichia fergusonii, 3 of Staphylococcus hominis, 2 for both Bacillus safensis, Corvnebacterium aurimucosum. Enterobacter hormaechei, Staphylococcus aureus and Raoultella ornithinolytica, and the other remaining species were only one for Pseudomonas fragi, Enterobacter cloacae, Pluralibacter gergoviae, Enterobacter bugandensis, Citrobacter amalonaticus, Kocuria rhizophila, Mammaliicoccus vitulinus, Candidatus Erwinia, Staphylococcus saprophyticus, Staphylococcus epidermidis, Bacillusvelezensis, Micrococcus luteus and lachnospiraceae bacterium. Each isolate sequence was aligned with its type strain in NCBI.

The distribution of bacterial species isolated from diabetic patients was analyzed to determine the prevalence of each bacterial type. Escherichia coli was the most prevalent accounting for 3 (6.2%) of the total isolates. This was followed by Klebsiella pneumoniae, Escherichia fergusonii and Bacillus safensis with a frequency of 2 (4.1%), while only 1(2%) for Staphylococcus hominis, Enterobacter hormaechei, Raoultella ornithinolytica, Kocuria rhizophila, Mammaliicoccus vitulinus, Staphylococcus saprophyticus. Lachnospiraceae bacterium, Staphylococcus epidermidis, Citrobacter amalonaticus, Pluralibacter Micrococcus luteus, gergoviae Pseudomonas fragi and Staphylococcus aureus (Table 2). The bacterial species isolated from nondiabetic individuals were examined to determine their relative occurrence. The results showed Escherichia coli was the most frequently detected accounting 5 (16.1%) of the total isolates. This was followed by 2 (6.4%) for Klebsiella pneumoniae, Staphylococcus hominis, Escherichia fergusonii and Corvnebacterium aurimucosum, with 1(3.2%) for other species like Enterobacter hormaechei, Raoultella ornithinolytica, Bacillus velezensis, Enterobacter cloacae, Staphylococcus aureus, Candidatus Erwinia and Enterobacter bugandensis (Fig. 2).

Table 3 compares the identification results from the VITEK system and 16S rRNA gene sequencing. The

differences between the two techniques indicate a possibility of misidentification when using VITEK is approximately 73.9% to be identical with 16S rRNA in only 26.1% with no significant difference at ($P \le 0.05$). Twelve Gram-positive species were identified, including multiple isolates of Staphylococcus hominis, Bacillus safensis, S. aureus and Corynebacterium aurimucosum while others like Kocuriarhizophila, M. vitulinus, Candidatus Erwinia, S. saprophyticus, S. epidermidis, B. velezensis, M. Luteus Lachnospiraceae bacterium appeared once. Gram-positive isolates showed 93 positive vs. 193 negative biochemical reactions in diabetics and 43 vs. 113 in non-diabetics ($P \le 0.05$) (Table 4).

Nine Gram-negative species were identified: multiple isolates of E. fergusonii, K. pneumoniae, E. hormaechei and R. ornithinolytica, single isolates of C. amalonaticus, E. bugandensis, P. gergoviae, E. cloacae and P. fragi. Biochemical profiles (17 isolates) showed 98 positive vs. 91 negative reactions in diabetics and 94 vs. 74 in non-diabetics, with no significant difference (Table 5).

Table No.1: Gram-positive and Gram-negative isolates in diabetics and non-diabetics cases

Urinary	Bacte-	Diab	etes	Non-di	abetes
Tract Infection Samples	rial	Gr +ve	Gr-ve	Gr+ve	Gr-ve
101	79	28	20	14	17
		(58.3%)	(41.6%)	(45.1%)	(54.8%)
Total		48 (60.7%)*		31 (39	0.3%)

^{*}P≤0.05

Table No.2: The distribution of bacterial isolates between diabetics and non-diabetic cases

	1		Non-	
Bacteria species	No. (%)	No. (%) Diabetics		
Escherichia coli	8 (10%)	3 (6.2%)	5(16.1%)	
Klebsiella pneumoniae	4 (5%)	2 (4.1%)	2 (6.4%)	
Staphylococcus hominis	3 (3.7%)	1 (2%)	2 (6.4%)	
Escherichia fergusonii	4 (4%)	2 (4.1%)	2 (6.4%)	
Enterobacter hormaechei	2 (2.5%)	1 (2%)	1 (3.2%)	
Raoultella ornithinolytica	2 (2.5%)	1 (2%)	1 (3.2%)	
Staphylococcus aureus	2 (2.5%)	1 (2%)	1 (3.2%)	
Bacillus safensis	2 (2.5%)	2 (4.1%)	-	
Kocuria rhizophila	1 (1.2%)	1 (2%)	-	
Mammaliicoccus vitulinus	1 (1.2%)	1 (2%)	-	
Staphylococcus saprophyticus	1 (1.2%)	1 (2%)	-	
Lachnospiraceae bacterium	1 (1.2%)	1 (2%)	-	
Staphylococcus	1 (1.2%)	1 (2%)	-	

epidermidis				
*Gr+ve cocci	25 (31.6%)	19 (39.5%)	6 (19.3%)	
Citrobacter amalonaticus	1 (1.2%)	1 (2%)	-	
Micrococcus luteus	1 (1.2%)	1 (2%)	-	
Pluralibacter gergoviae			-	
Pseudomonas fragi	1 (1.2%)	1 (2%)	-	
Corynebacterium aurimucosum	2 (2.5%)	-	2 (4.6%)	
Bacillus velezensis 1 (1.25		-	1 (3.2%)	
Enterobactercloacae	1 (1.2%)	-	1 (3.2%)	
*Gr-ve rode	11 (13.9%)	7 (14.5%)	4 (12.9%)	
Candidatus Erwinia	1 (1.2%)	-	1 (3.2%)	
Enterobacter bugandensis	1 (1.2%)	-	1 (3.2%)	
*Gr+ve rode	1 (1.26%)	-	1 (3.2%)	
Total	79	48 (60.7%)*	31 (39.2%)	

^{*}P≤0.05

Table No. 3: Evaluation of bacterial identification by 16Sr RNA gene sequencing versus VITEK system

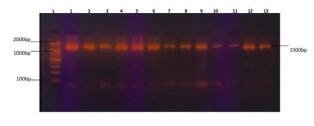
16sr RNA	VITEK	Identical
Corynebacterium	Mammaliicoccus	-
aurimucosum	vitulinus	
Escherichiacoli	Escherichia coli	+
Staphylococcus aureus	Mammaliicoccus	-
	vitulinus	
Staphylococcus hominis	Mammaliicoccus	-
	vitulinus	
Kocuriarhizophila	Mammaliicoccus	-
	vitulinus	
Escherichia fergusonii	Escherichia coli	-
Escherichia coli	Pseudomonas	-
	fluorescens	
Bacillus velezensis	Klebsiella	-
	pneumoniae	
Enterobacter cloacae	Escherichia coli	-
Bacillus safensis	Unidentified	-
	Organism	
Staphylococcus aureus	Staphylococcus	-
	haemolyticus	
Staphylococcus	Staphylococcus	+
vitulinus	vitulinus	
Staphylococcus hominis	Staphylococcus	+
	hominis	
Escherichia fergusonii	Escherichia coli	-
Escherichia coli	Escherichia coli	+
Klebsiella pneumoniae	Klebsiella	+
	pneumoniae	
Candidatus Erwinia	Staphylococcus	-
	haemolyticus	
Klebsiella pneumoniae	Enterobacter	-
	aerogenes	
Escherichia coli	Pasteurella	-
	testudinis	
Enterobacter	Pantoea spp.	-
hormaechei		

Enterobacter	Enterobacter	-
bugandensis	cloacae complex	
Enterobacter	Enterobacter	-
hormaechei	cloacae	
Escherichia coli	Escherichia coli	+
Raoultella	Raoultella	-
ornithinolytica	planticola	
Raoultella	Raoultella	-
ornithinolytica	planticola	
Escherichia coli	Enterobacter	-
	aerogenes	
Escherichia coli	Escherichia coli	+
Klebsiella pneumoniae	Klebsiella	+
•	pneumoniae	
Corynebacterium	Mammaliicoccus	-
aurimucosum	vitulinus	
Escherichia coli	Escherichia coli	+
Staphylococcus	Staphylococcus	+
saprophyticus	saprophyticus	
Lachnospiraceae	Leuconostoc	-
bacterium	mesenteroides	
Staphylococcus	Staphylococcus	-
epidermidis	haemolyticus	
Citrobacter	Unidentified	-
amalonaticus	Organism	
Micrococcus luteus	Kocuria kristinae	-
Bacillus safensis	Escherichia coli	_
Staphylococcus hominis	Mammaliicoccus	-
2	vitulinus	
Pluralibacter gergoviae	Unidentified	_
gg	Organism	
Pseudomonas fragi	Pseudomonas	_
1 soudomonus magn	fluorescens	
Escherichia fergusonii	Klebsiella	_
	pneumoniae	
Klebsiella pneumoniae	Klebsiella	+
production	pneumoniae	
Escherichia fergusonii	Rhizobium	_
250101101114 101gub01111	radiobacter	
		31
Total	42 (100%)*	(26.1%)
*P<0.05	<u> </u>	(20.170)

^{*}P≤0.05

Table No.4: Biochemical tests for different Gr+ve bacterial species in diabetic and non-diabetic cases

Type of bacteria (No. 17)	Bio- chemical	Diabe (No.		Non- diabetics (No. 6)	
	test	+	-	+	-
Staphylococcus	AMY	1	10	0	6
aureus (No. 2)	PIPLC	1	10	0	6
Staphylococcus	dXYL	4	7	3	3
hominis (No. 3)	ADH1	10	1	5	1
Bacillus safensis	BGAL	2	9	0	6
(No. 2)	AGLU	5	6	3	3
Bacillus velezensis	APPA	1	10	0	6
(No. 1)	CDEX	0	11	0	6
Corynebacterium	AMAN	1	10	0	6
aurimucosum	BGURr	0	11	0	6
(No. 2)					
Kocuria rhizophila	AGAL	0	11	0	6
(No. 1)	AlaA	2	9	1	5


Mammaliicoccus	dSOR	2	9	0	6
vitulinus (No.1)	URE	1	10	1	5
Staphylococcus	POLYB	0	11	0	6
saprophyticus	dGAL	1	10	0	6
(No,1)					
Staphylococcus	dRIB	7	4	3	3
epidermidis(no:1)	dMAL	3	8	2	4
Micrococcus luteus (No. 1)	NC6.5	9	2	4	2
	dMAN	7	4	4	2
	dMNE	6	5	4	2
Lachnospiraceae	MBdG	5	6	4	2
bacterium (No. 1)	dRAF	3	8	0	6
Condidates	SAL	3	8	0	6
Candidatus Erwinia (No. 1)**	SAC	10	1	5	1
Li wiiiia (NO. 1)	dTRE	9	2	4	2
Total	26	93*	193	43*	113

^{*}P≤0.05

Table No.5: Biochemical tests for different Gram-negative bacterial species in diabetic and non-diabetic cases

bacterial species in diabetic and non-diabetic cases					
Type of bacteria (No. 17)	Biochemical test	Diabetics (No. 11)		Non- diabetics (No. 6)	
(=)		+	-	+	_
Escherichia	ADO	5	4	5	3
fergusonii (No. 4)	IARL	1	8	0	8
Klebsiella	dCEL	7	2	5	3
pneumoniae(No. 4)	BGAL	6	3	8	0
Citrobacter	H2S	0	9	0	8
amalonaticus (No. 1)	AGLU	0	9	0	8
Enterobacter	BGLU	7	2	3	5
hormaechei (No.2)	dMAL	6	3	8	0
normaechei (No.2)	dMAN	7	2	8	0
Enterobacter	dMNE	8	1	8	0
bugandensis (No.1)	BXYL	5	4	4	4
D. 1, 11	LIP	1	8	0	8
Raoultella	PLE	5	4	5	3
ornithinolytica (No.2)	URE	2	7	1	7
(110.2)	dSOR	6	3	8	0
Pluralibacter	SAC	7	2	5	3
gergoviae (No. 1)	dTAG	3	6	1	7
gergoviae (INO. I)	dTRE	7	2	8	0
Enterobacter cloacae (No. 1)	MNT	3	6	4	4
Pseudomonas fragi	ILATK	6	3	6	2
(No. 1)	AGAL	6	3	7	1
Total	21	98	91	94	74
kD <0.05					

^{*}P≤0.05

^{**}Candidatus Erwinia was recorded as Gr+ve

Figure No. 1: A model of agarose gel electrophoresis (1.57%) patterns showing PCR amplified products of 16Sr RNA Lane L: 100 bp DNA ladder, lanes 1-13: 16 Sr RNA bands of bacterial isolates

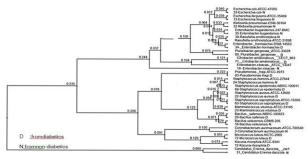


Figure No. 2: Rooted neighbour joining phylogenetic tree constructed sequences derived from an alignment of 16S rRNA sequences 21 different bacterial species from UTI patients (with different concatenation for each species) including diabetic and non-diseased cases isolates with their reference strain

DISCUSSION

In the present study, 79 (78%) bacterial isolates were obtained. This rate may be influenced by factors such as low bacterial concentration, poor storage or prior antibiotic use that inhibited growth. In addition, not all UTIs are caused by bacteria; viral or fungal infections may also occur. From the isolates, 43 predominant strains were selected for further testing. Gram-positive bacteria were more common in diabetic patients (58.3%) than in non-diabetics (45.1%), while Gramnegative were higher in non-diabetics (54.8%). This agrees with previous studies. 9,10 The overall isolation rate was significantly higher in diabetic patients (60.7%) compared to non-diabetics (39.2%) $(P \le 0.05)$, which supports the findings of Utku¹¹ suggesting that high glucose levels in diabetics may promote bacterial growth. However, one study contradicted this, reporting higher UTI prevalence in non-diabetics.¹²

This study showed that 43 isolates were selected for molecular identification using the conserved 16S rRNA gene, considered the gold standard for bacterial taxonomy. 21 species were confirmed, while 1 isolate with 74.11% similarity to Lachnospiraceae was excluded. A phylogenetic tree confirmed species identification by comparing sequences with GenBank references. Comparison of 7 species, 16S rRNA sequences revealed nucleotide differences between diabetic and non-diabetic isolates, notably E. fergusonii (13 differences), R. ornithinolytica (26 differences) and E. hormaechei (9 differences), while S. hominis and S. aureus showed minimal variation.

In the present study, out of 79 isolates, 42 were selected based on dominant colony morphology and sequenced using the conserved 16S rRNA gene, identifying 22 bacterial species. This gene is the gold standard for bacterial taxonomy and phylogeny.¹³ Escherichia coli was the most prevalent accounting for 3 (6.2%) of the

total isolates. This was followed by Klebsiella pneumoniae, Escherichia fergusonii and Bacillus safensis with a frequency of 2 (4.1%), while only 1 (2%) for Staphylococcus hominis, Enterobacter hormaechei, Raoultella ornithinolytica, Kocuria rhizophila, Mammaliicoccus vitulinus, Staphylococcus saprophyticus, Lachnospiraceae bacterium. Staphylococcus epidermidis, Citrobacter amalonaticus, Micrococcus luteus, Pluralibacter gergoviae, Pseudomonas fragi and Staphylococcus aureus (Table 2) . On the other hand, Escherichia coli was the most frequently 5(16.1%) of the total isolates in the nondiabetes followed by 2 (6.4%) for Klebsiella pneumoniae, Staphylococcus hominis, Escherichia fergusonii and Coryne bacterium aurimucosum, with 1 (3.2%) for other species like Enterobacter hormaechei, Raoultella ornithinolytica, Bacillus velezensis. Enterobacter cloacae. Staphylococcus Candidatus Erwinia and Enterobacter bugandensis. Bacterial percentage was 60.7% in diabetics and 39.2% in non-diabetics, with a significant difference ($P \le 0.05$), supporting that high sugar in diabetic UTIs may enhance bacterial growth and diversity.³

The identification agreement between VITEK and 16S rRNA sequencing was limited to 26.1%, as shown in Table 3, while 16S rRNA achieved 100% accuracy with significant differences (P≤0.05). This percentage may not be entirely precise due to some sequences being too short or poorly readable. Despite this, 16S rRNA is considered one of the best techniques for bacterial identification due to its high sensitivity specificity.^{13,14} Unlike biochemical methods like VITEK, which depend on metabolic reactions that may overlap among related species or be affected by environmental factors, 16S rRNA targets conserved genetic regions, allowing more accurate classification at the species level. This is especially helpful in UTI cases, where mixed infections and antibiotic resistance often interfere with biochemical identification. In this study, 16S sequencing not only confirmed dominant culturable bacteria but also detected Enterobacter bugandensis, which would have been missed by automated biochemical methods.

12 Gram-positive species were identified, including multiple isolates of Staphylococcus hominis, Bacillus safensis, S. aureus and Corynebacterium aurimucosum, while others appeared once. Gram-positive isolates exhibited significantly more non-fermenting biochemical reactions in both diabetics (93 positive vs. 193 negative) and non-diabetics (43 positive vs. 113 negative) with P\le 0.05.15 The prevalence of nonfermenters among Gram-positive bacteria may be attributed to antibiotic use, which suppresses fermentation and metabolic activity in these less adaptable organisms, consistent with their structural vulnerability and metabolic limitations.

A total of 9 Gram-negative species were identified including multiple isolates of Escherichia fergusonii, Klebsiella pneumoniae, Enterobacter hormaechei and

Raoultella ornithinolytica and single isolates of Citrobacter amalonaticus, Enterobacter bugandensis, Pantoea gergoviae, Enterobacter cloacae Pseudomonas fragi. Biochemical profiling of 17 isolates revealed 98 positive versus 91 negative reactions in diabetic patients and 94 versus 74 in nondiabetic patients, with no statistically significant difference. Fermenting strains were predominantly observed among Gram-negative isolates, indicating a preserved ability for sugar metabolism under stress conditions.E. coli fermentation is regulated by host immunity, microbial competition and antibiotics. 16 Unlike Gram-negatives, Gram-positives lack an outer membrane exposing teichoic acids and allowing βlactams to inhibit peptidoglycan synthesis causing cell lysis.17

CONCLUSION

The diabetic case influences on the which types of bacterial species presents, genetic nucleotide mutations and bacterial enzymes activity either for gram positive or gram negative bacteria.

Author's Contribution:

Concept & Design or	Zainab S. Baqer, Munaff
acquisition of analysis or	J. Abd Al-Abbas
interpretation of data:	
Drafting or Revising	Zainab S. Baqer, Munaff
Critically:	J. Abd Al-Abbas
Final Approval of version:	All the above authors
Agreement to accountable	All the above authors
for all aspects of work:	

Conflict of Interest: The study has no conflict of interest to declare by any author.

Source of Funding: None

Ethical Approval: No.3/6/195 Dated 05.10.2022

REFERENCES

- 1. Janifer J, Geethalakshmi S, Satyavani K, Viswanathan V. Prevalence of lower urinary tract infection in South Indian type 2 diabetic subjects. Indian J Nephrol 2009;19(4): 169-72.
- 2. Chiţă T, Timar B, Muntean D, Bădiţoiu L, Horhat FG, Hogea E, et al. Urinary tract infections in Romanian patients withdiabetes: Prevalence, etiology, and risk factors. Therapeu Clin Risk Management 2016; 13: 1-7.
- 3. Funke G, Funke-Kissling P. Evaluation of the new VITEK 2 card for identification of clinically relevant gram-negative rods. J Clin Microbiol 2004;42(9):4067-71.
- 4. Paudel S, John PP, Poorbaghi SL, Randis TM, Kulkarni R. Systematic view of literature

- examining bacterial urinary tract infections in diabetes. J Diabetes Res 2022;2022:1-20.
- Tomic D, Shaw JE, Magliano DJ. The burden and risks of emerging complications of diabetes mellitus. Nature Rev Endocrinol 2022;18(9): 525-39.
- 6. Mousa HM, Abd Al-Abbas MJ. Random amplified polymorphic DNA for identical Streptococcus salivarius strains isolated from tongue of peoples before and after Listerine in vivo. J Population Therapeu Clin Pharmacol 2023;30(9):2.
- Jasim NA, Abd Al-Abbas MJ. Association of Oxalobacterformigenes with the stools of urinary tract stone patients in Basrah province. IJSRST 2016;2(3):113-7.
- 8. Kerbauy G, Perugini M, Yamauchi LM, Yamada-Ogatta SF. Vancomycin-dependent Enterococcus faecium van A: characterization of the first case isolated in a university hospital in References 141 Brazil. Brazilian J Med Biol Res 2011;44:253-7.
- Worku S, Derbie A, Sinishaw MA, Adem Y, Biadglegne F. Prevalence of bacteriuria and antimicrobial susceptibility patterns among diabetic and nondiabetic patients attending at Debre Tabor Hospital, Northwest Ethiopia. Int J Microbiol 2017; 2017: 5809494.
- 10. Al-Tulaibawi NAJ. Prevalence and sensitivity of bacterial urinary tract infection among adult diabetic patients in Misan Province, Iraq. J Pure Appl Microbiol 2019;13(2):847-53.
- 11. Utku AÇ. Comparison of the frequency of bacteriuria in diabetic and non-diabetic patients without symptoms of urinary tract infection. J Health Sci 2022;12(2):144-49.
- 12. Yenehun GW, Alamneh YB, Worku AG, et al. Prevalence of bacterial urinary tract infection and antimicrobial susceptibility patterns among diabetes mellitus patients attending Zewditu Memorial Hospital, Addis Ababa, Ethiopia. Infec Drug Resistance 2021;14:1441-54.
- 13. Chmagh AA, Abd Al-Abbas MJ. Comparison between the coagulase (coa and vwb) genes in Staphylococcus aureus and other staphylococci. Gene Reports 2019;16:100410.
- 14. Chatzou M, Magis C, Chang JM, Kemena C, Bussotti G, Erb I, et al. Multiple sequence alignment modeling: Methods and applications. Briefings Bioinformatics 2015;17(6): 1009-23.
- 15. Toller-Kawahisa JE, O'Nell LAJ. How neutrophil metabolism affects bacterial killing. Open Biol 2022;12:220248.
- 16. Alteri CJ, Smith SN, Mobley HLT. Fitness of Escherichia coli during urinary tract infection requires gluconeogenesis and the TCA cycle. PLoS Pathogens 2009;5(5):e1000448.
- 17. Foster PL. Stress-induced mutagenesis in bacteria. Crit Rev Biochem Molecular Biol 2007;42(5): 373-97.