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Abstract—Simultaneous Localization and Mapping, or 

SLAM, is an essential approach for autonomous robotic 

systems. Simultaneous mapping and sensor pose estimation are 

made possible by SLAM in an unknown environment. Visual 

simultaneous localization and mapping, often known as V-

SLAM, is an important field in robotics, particularly for 

cooperative and interactive mobile robot environments. Faster 

development of Visual SLAM can be attributed to low-cost 

sensors, easy integration of additional sensors, and improved 

ambient information. Numerous strategies and techniques for 

implementing visual-based SLAM systems are presented in the 

literature. It might be challenging for a novice in this field to 

sort through the range of publications, recognize and evaluate 

the key algorithms, and ultimately select the best one for their 

intended use. Therefore, we present the three main visual-

based SLAM approaches (visual alone, visual inertial, and 

RGB-D SLAM), emphasizing their salient features and 

limitations. We also use flowcharts and diagrams to examine 

the main algorithms of each approach. It tracks the 

development of SLAM techniques historically and offers 

contrastive evaluations of concepts and salient ideas. The 

research examines important Visual SLAM benchmark 

datasets and offers process-level visualization for every 

method. This research aims to cover the essential elements and 

characteristics of SLAM methodologies, providing a 

foundational resource for understanding and selecting 

appropriate techniques.  

Keywords—Benchmark; Mobile Robots; RGB-D SLAM; 

Visual-SLAM; Visual-Inertial SLAM. 

I. INTRODUCTION (HEADING 1) 

In 1986, Smith established the notion of simultaneous 

localization and mapping (SLAM), which is a basic need for 

many robotic applications [1,2]. SLAM technology allows 

mobile robots to generate an environment map and estimate 

their own location in real time, without requiring any prior 

environmental information, based on inputs from one or 

more sensors. In robotics, mapping is essential since it 

makes landmarks visible and simplifies the use of SLAM. 

Because of its capacity to carry out navigation and 

perception concurrently in an unfamiliar area, SLAM has 

grown in popularity over the last several decades and drawn 

the interest of numerous scholars [3]. Based on the specific 

data collecting tools they employ, there are two major 

categories of SLAM systems in use today.    

        The foundation of the first kind is provided by light 

detection and ranging, or LiDAR, sensors [4]. Most 

autonomous vehicles employ expensive LiDAR based 

SLAM. The second type, known as visual SLAM [5], offers 

cheap flow costs and a small volume as benefits. It utilizes 

an image sensor. It may offer motion estimate if texture data 

were more plentiful. the portrayal of the environment in 

visual form. Additionally, when returning to previously 

recorded places, it might help in estimating the robot's state, 

moving it, and minimizing estimate errors [8].When the 

global positioning system (GPS) is unavailable, like in 

interior scenarios, visual SLAM plays a crucial role because 

of its rapid ambient awareness and autonomous localization 

capabilities [6, 7]. 

The map development process also involves two additional 

tasks: localization and route planning. According to 

Stachniss [9], path planning, localization, and mapping are 

essential functions that allow a robot to comprehend its 

environment, ascertain its location, and create paths to 

certain destinations. SLAM is one technique that combines 

the mapping and localization phases. SLAM algorithms 

employ data from several sensors. Visual SLAM, or just 

using visual sensors, may require the use of a monocular 

RGB camera [18], a stereo camera [19], or an 

omnidirectional camera (which takes simultaneous photos in 

all 360-degree directions) [20]. As a result of their restricted 

visual input, they are more technically demanding [10], or 

RGB-D cameras (RGB-D SLAM) capture RGB images in 

addition to depth pixel data [21]. Visual-inertial (VI) 

SLAM, an inertial measurement unit (IMU) that is small, 

low-cost, and achieves high accuracy, is essential for many 

applications that demand lightweight design. It is a crucial 

component for several applications, including driverless 

racing vehicles, that require lightweight construction [11]. 

In order to provide an overview and a basic understanding 

of the problem of simultaneous localization and mapping 

(SLAM), Bailey and Durrant-Whyte [12] investigate the 

recursive Bayesian formulation of the SLAM problem. This 

approach produces probability distributions, vehicle posture 

estimates, and absolute or relative landmark placements. A 

concise synopsis of the graph-based SLAM problem is 

given by Grisetti et al. (2008). To provide SLAM solution 

methodologies in mobile robots and its wide application, 

Taheri et al. [13] provide a useful survey and an effective 

overview. Basheer et al. [14], Macario Barros et al. [15] 

separated VSLAM techniques into three classes: visual only 

(monocular), visual inertial (stereo), and RGB-D SLAM. 

This division was made in consideration of the studies and 

surveys of visual aids. Additionally, they put out a number 

of criteria for decomposing and examining VSLAM 

algorithms. The first review of VI-SLAM approaches from 

both an optimization based and filtering-based standpoint is 

Chen et al. [16]. The RGB-D SLAM system's core concept 

and structure were first presented by Zhang et al. [17]. 

Basheer et al. [14] additionally, focuses on the integration of 

the robotic environment with a robot operating system 

(ROS) as Middleware. Additionally, Macario Barros et al. 
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[15] offer a summary of each approach's primary algorithms 

using flowcharts and diagrams. Taketomi et al. [23] and 

Covolan et al. [22] focus on visual only and RGB-D-based 

techniques and outline the key algorithms, providing an 

overview of the key ideas utilized in the visual based SLAM 

systems. al. Servières [24] give a summary of the current V-

SLAM and VI-SLAM designs before going on to classify a 

fresh batch of twelve primary state-of-the-art techniques. 

Robots that are mobile and adaptive enough to function 

successfully in new surroundings are essential in today's 

society. Thus, simultaneous localization and mapping, or 

SLAM, is an important technique for these robots. Durrant-

Whyte (2012) and Mohamed et al. (2008) state that the 

primary goal of SLAM is to allow for autonomous 

exploration and navigation of foreign environments by 

simultaneously creating a map and determining the user's 

location. It can also make decisions in real-time, so robots 

don't need to refer to previously made maps. The capacity of 

the robot to perceive and successfully interact with its 

environment is enhanced by its usefulness in the extraction, 

organization, and interpretation of data. Describe the RGB-

D SLAM system's fundamental idea and architecture. 

Previous research has demonstrated the effectiveness of V-

SLAM techniques; nevertheless, they are often provided 

with limited data and unique figures, making it challenging 

to understand, assess, and select one from the group. 

Therefore, our effort focuses on simplifying the descriptions 

of V-SLAM techniques to make them easier for readers to 

grasp. The main contributions of the study are summarized 

as follows: 

• Examining V-SLAM techniques to identify the 

most effective robotics tools.  

• In order to enhance comprehension of the 

operational procedures associated with V-SLAM, a 

graphical and illustrative structural workflow was 

developed for every approach.  

• Determining key factors for the V-SLAM 

approaches' evaluation and selection criteria. 

• Making a table of comparisons with the salient 

features and parameters of each V-SLAM 

technique. 

• The discussion and display of relevant datasets 

used in the robotics application domain. 

  The paper is organized as follows: An introduction 

of the V-SLAM paradigm that explores its core ideas is 

provided in Section 2. The key ideas of the three chosen 

techniques are presented in Section 3. Section 4 delves into 

the development of V-SLAM and examines the datasets that 

are most frequently utilized. The guidelines for assessing 

and choosing visual SLAM techniques are covered in 

Section 5. The article's conclusion, which summarizes the 

most important ideas, is found in Section 6. 

II. VISUAL BASED SLAM TECHNIQUIES  

Three primary processes are involved in visual-based 

SLAM systems, which employ cameras to create 3D maps 

from 2D images: initialization, tracking, and mapping (Fig. 

1) [10]. Initialization produces an initial map and establishes 

a global coordinate system. By comparing 2D–3D 

correspondences, tracking keeps the camera in relation to 

the map and frequently resolves the Perspective-n-Point 

(PnP) issue [25, 26]. When additional regions are viewed, 

mapping enlarges the map. The majority of V-SLAM 

algorithms rely on intrinsic camera parameters that have 

been pre-calibrated, whereas extrinsic parameters (rotation 

and translation) determine camera positions. 

 

 
Fig. 1 General elements of a vision-based SLAM. A dense reconstruction 

(Reprinted from [30]), a semi-dense map, and a sparse map in the MH_01 

sequence [28]). Taken from [15]. 
 

A 2D image, a 2D image with depth data, or both can be 

the input for a visual-SLAM system, as shown in Figure 1, 

depending on the technique employed (visual only, visual 

inertial, or RGB-D based, respectively). Among the 

situations that this system may be used to efficiently build 

and implement are semantic segmentation [32], pixel-wise 

motion segmentation [31], and filtering techniques [33, 34]. 

These methods seek to provide a professional approach for 

an image of the V-SLAM operations. It makes sense to 

separate the operational framework into four parts, which 

are listed and covered below. 

 

A. Setting up the System and Collecting Data 

In this step of V-SLAM, which involves capturing and 

processing images. It involves setting up cameras such as 

RGB-D cameras, depth cameras, or infrared sensors for data 

gathering and system setup [35]. Camera calibration, which 

is often the first step in system startup, determines intrinsic 

and extrinsic properties for accurate mapping and 

localisation. Effective initialization techniques are essential 

for precise SLAM tracking and mapping because they 

minimize error propagation and frequently make use of pre-

existing data or manual starting locations [36]. A properly 

calibrated and initialized system is crucial for efficient 

VSLAM performance, as demonstrated by the fact that the 

choice of suitable data acquisition techniques and 

initialization strategies directly affects the system's capacity 

to handle a variety of dynamic and varied environments 

[37].  

B. Localization of the System 

The second stage of V-SLAM, an important phase in the 

process overall, has as its main objective determining the 

position of the system [38]. Pose estimation [42], or 

localization, is the process by which the system precisely 

determines where it is in the environment. This step entails 

estimating the camera's position and orientation in space 

with respect to the previously constructed map using data 

from the visual sensor, which is often a camera. Using 

methods like ORB (Oriented FAST and Rotated BRIEF) or 
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SIFT (Scale-Invariant Feature Transform), the system 

recognizes and compares important aspects from the current 

frame with those seen in previous frames. This phase, which 

is critical to maintaining the system's accuracy while 

navigating the environment, frequently incorporates loop 

closure detection to rectify drift by identifying and 

realigning with previously visited places [39,40,41]. This 

process relies on several key components: feature tracking, 

feature matching, relocalization, and pose estimation. Each 

of these components plays a crucial role in ensuring that the 

V-SLAM system can accurately localize itself within the 

environment, thereby maintaining a consistent and accurate 

map. To estimate camera motion in visual SLAM, detected 

characteristics are tracked throughout frames and compared 

to those in a map or earlier frames. Nearest neighbor search 

and descriptors aid in finding matches, whereas RANSAC 

eliminates untrustworthy ones. By comparing the current 

frame attributes with the map, relocalization recovers the 

camera's attitude once tracking is lost because to rapid 

movement or occlusion. Pose estimation, which aligns 2D 

picture points to their 3D counterparts using the 

Perspective-n-Point (PnP) technique, uses monitored and 

matched data to identify the exact camera location and 

orientation. V-SLAM systems achieve real-time localization 

and mapping through feature tracking, pose optimization, 

and relocalization, essential for applications in robotics, 

augmented reality, and autonomous vehicles. 

C. System Map Creation 

SLAM systems employ several mapping techniques, 

including occupancy grids and point clouds, depending on 

the kind of information, sensor, and application 

requirements [43, 44]. Localization and mapping work 

together to keep a trustworthy, current map. Robotics uses 

grid maps to simulate actual environments. Each cell in the 

map represents a specific place and stores information about 

barriers, geography, and occupancy. For robots, feature-

based SLAM uses maps that depict environmental elements, 

such as landmarks, to help in localization and navigation 

[45, 46]. Specialized sensors produce a 3D point cloud, 

which visualizes the spatial arrangement to improve 

comprehension of the surroundings [47]. Keyframe setup 

during localization results in field modeling, where 

important spots and feature lines are found for the 

production of maps [48]. The map is updated in real-time as 

the robot's location is continually tracked [49]. A key 

component of feature-based SLAM, bundle adjustments 

(BAs) improve accuracy by fine-tuning the placement and 

structure of observed points [50–52].  

D. Process Tuning & Loop Closure 

Loop closures and system tuning are used to optimize 

the map in the latter stage of the V-SLAM process. 

Enhancing the system's precision, dependability, and long-

term consistency requires process tuning and loop closures. 

Process tuning strikes a balance between accuracy, 

computing efficiency, and resilience by modifying and 

optimizing a variety of parameters and algorithms, such as 

pose estimation techniques and feature detection 

sensitivities. This entails optimizing algorithms and 

balancing resource limitations with performance, 

particularly in real-time systems like robots or augmented 

reality. The system's constant performance is ensured by 

extensive testing in various scenarios. 

By re-aligning the system with previously mapped locations 

through pose graph optimization, loop closure in V-SLAM 

fixes map drift and preserves map accuracy, particularly in 

dynamic situations. 

       Fig 2 show an explanation of the procedures carried out 

within V-SLAM. The V-SLAM framework is made up of 

successive phases arranged to construct the system and 

process its data. 
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Fig. 2 Adapted from [53]. An overview of the four core components 

necessary for visual SLAM. 

III. VISUAL SLAM MODEL   

By utilizing cutting-edge sensors, deep learning, and 

machine learning, V-SLAM seeks to advance robotics by 

estimating camera motion and 3D structure in unfamiliar 

situations [54, 55]. The topology of V-SLAM is divided into 

three categories, as shown in Fig. 3: visual-inertial SLAM, 

RGB-D SLAM, and just visual SLAM [57]. Different 

methods are assessed according to six important criteria: 

algorithm type, map density, global optimization, loop 

closure, availability, and embedded implementations [15]. 

As demonstrated by applications like autonomous driving, 

the selection of the SLAM approach is contingent upon 

particular project requirements, including scalability and 

accuracy [33, 56]. The SLAM algorithms that we have 

chosen to showcase the best qualities of the three techniques 

are listed below, arranged by publication year. 

A. Visual-Only SLAM 

Map points are initialized with uncertainty before being 

refined by feature-based algorithms in visual-only SLAM 

systems, which depend on 2D image processing to establish 

a global coordinate system and rebuild maps. Although 

monocular cameras are preferred due to their compact size, 

low cost, and power economy, initialization, scaling, and 

drift are issues that they must deal with [27]. Although they 

are bigger and need more processing, stereo cameras can 

address some of these problems by giving stereo depth in a 

single image. Through the addition of depth information, 

increased 3D mapping precision, decreased drift, and 

support for strong feature matching in demanding situations, 

RGB-D cameras improve SLAM. Fig. 1 displays the chosen 

visual only SLAM algorithms, which are described in the 

next subsections. 
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Fig. 3 Three examples of visual SLAM types include RGB-D SLAM, only-

visual SLAM, and visual-inertial SLAM. 

• ORB-SLAM - 2014 

Oriented FAST and Rotated BRIEF SLAM, or ORB-

SLAM, is a feature-based SLAM system that may be used 

in both small and large interior and outdoor settings [127]. 

Its real-time capabilities and high-quality map 

reconstruction make it a popular choice for applications 

such as autonomous navigation, augmented reality, and 

human-robot interaction [128]. The main features of ORB-

SLAM, which can handle both static and dynamic motion 

clutter, are loop closure, mapping, and tracking [129]. 

In comparison to existing V-SLAM methods, ORB-

SLAM achieves real-time global localization and camera re-

localization across different views by enhancing map 

dynamics, size, and traceability [130,131]. While ORB-

SLAM1 is categorized as only-visual, ORB-SLAM2 offers 

both only-visual and RGB-D SLAM [132,131], while ORB-

SLAM3 adds visual-inertial SLAM, demonstrating its 

adaptability and applicability across a range of applications 

[133,134]. 

Four processes comprise the ORB-SLAM methodology: 

loop closure, local mapping, tracking and sensor input, and 

output preparation [135, 136]. Version-specific variations in 

the tracking step—ORB-SLAM1 uses one input, ORB-

SLAM2 uses three, and ORB-SLAM3 uses four—have an 

impact on how well later procedures work. New map points 

and keyframes are introduced in local mapping, and ORB-

SLAM3 enhances feature matching. In versions 2 and 3, the 

loop closing stage involves bundle adjustment welding and 

map merging. The output, which includes the required 

SLAM data and 2D/3D maps, is prepared in the last step 

[136]. 

● ORB-SLAM2 – 2016 

 ORB-SLAM2, a state-of-the-art feature-based algorithm, 

builds upon ORB-SLAM [59] and operates with three 

concurrent threads: tracking, local mapping, and loop 

closure. The tracking thread reduces reprojection error and 

locates the sensor, while the local mapping thread manages 

map-related tasks [60]. 

The loop closure thread in ORB-SLAM2 finds new loops 

and fixes drift, then adjusts the bundle for motion and 

structural consistency. For RGB-D, monocular, and stereo 

techniques, the algorithm employs loop closure and global 

optimization. But if comparable frames are not recognized, 

tracking problems may occur, and real-time operation on 

embedded systems is challenging since pictures must be 

processed at the same frame rate as they are obtained 

[61,62]. Figure 4 shows a diagram of the threads in the 

algorithm. A representation of the algorithm's threads can be 

found in Fig. 4. Despite the existence of several embedded 

implementations in the literature, this remains the case. The 

ORB-SLAM method was executed on a CPU by Yu et al. 

[63], while Abouzahir et al. [62] built the algorithm on 

several CPU- and GPU-based platforms and assessed each 

thread's performance on the platforms. 

● CNN VSLAM - 2017 

 CNN SLAM [64] integrates convolutional neural 

networks with real-time SLAM by combining maps and 

depth from monocular SLAM with CNN-predicted semantic 

segmentation. It uses a key-frame based SLAM approach, 

where visually distinct frames are refined via pose graph 

optimization. The method estimates camera positions 

through frame-to-key-frame transformations, with depth 

prediction handling scale estimation. It also incorporates 

loop closure and global optimization. Real-time execution 

requires a CPU+GPU architecture, and the system's pipeline 

is illustrated in Figure 5. 

 

Fig. 4 Diagram representing the ORB-SLAM 2.0 algorithm. Adapted from 

[59] 

 

Fig. 5 Diagram representing the CNN-SLAM algorithm. Adapted from 

[64]. 

● Direct Sparse Odometry - 2018 
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A direct probabilistic model and camera motion are 

combined in Direct Sparse Odometry (DSO), a visual 

odometry approach that optimizes all model parameters, 

including geometry expressed as inverse depth. Through the 

use of an inverse depth map and keyframe window, it 

performs continuous optimization with local bundle 

modification while evenly sampling pixels in real-time. By 

adding posture and loop closure detection, Xiang et al. [67] 

expanded DSO. Fig. 6 depicts the main phases of DSO.  

 

Fig. 6 Diagram representing the DSO algorithm. Adapted from [15] 

 Pose-graph optimization (DSO) and loop closure 

detection (LCDSO) are extended to monocular visual 

SLAM by LDSO, which prioritizes corner features in 

tracking to preserve robustness in featureless regions. The 

bag-of-words (BoW) approach is used to identify loop 

closure possibilities, which are then confirmed by geometric 

checks and relative pose constraints derived from the 

combined reduction of 2D and 3D mistakes. The DSO 

sliding window optimization's co-visibility graph is fused 

with these limitations. 

● Open-VSLAM - 2019 

 Using ORB as a feature extractor and a graph-based 

algorithm akin to ORB-SLAM and ProSLAM, 

OpenVSLAM is a modular, monocular, stereo, and RGBD 

visual SLAM system [70]. As seen in Fig. 7, the 

OpenVSLAM program may be loosely categorized into 

three modules: tracking, mapping, and global optimization. 

The tracking module determines when to add a new 

keyframe, which is then sent to the mapping and 

optimization modules for additional processing, by 

predicting the camera attitude using posture optimization 

and keypoint matching. 

By triangulating 3D points from keyframes (KFs) and 

carrying out local bundle adjustment (BA), the mapping 

module in OpenVSLAM enlarges the map. Pose-graph 

optimization, global BA, and loop closure are handled by 

the global optimization module, which uses the g2o 

optimization framework to solve trajectory and scale drift, 

especially for monocular camera models [71].  

OpenVSLAM provides versatility by supporting map 

import/export, working with a variety of camera 

manufacturers and models, and having a cross-platform 

online browser. Its precision is inferior to that of ORB-

SLAM3 and VINS-Fusion, and its absence of integrated 

loop closure and IMU support causes drift in rapid 

movements. It has poor real-time performance on low-

power devices, is less suitable for large-scale mapping, and 

performs badly in dynamic or low-texture situations. It also 

has little community support.  

Input

frame

Keypoint 
detection

Matching with 
local map

KF† decision
Pose 

optimization

pose-graph 
optimization

KF† creation

global BA‡ local BA‡

loop detection

triangulation of 
3D points

tracking 
module

global
optimization 

module

optimize a global map

via pose-graph optimization
and global BA

† KeyFrame
‡ Bundle Adjustment

global map local map

estimate
a camera pose
of every frame

mapping 
module 

create 3D points
and optimize a map
near the current KF

a whole map created so far a partial map around the current KF  

Fig. 7 Main modules of Open-VSLAM: tracking, mapping, and global 

optimization modules. Adapted from [71]. 

● ORB-SLAM3 - 2020 

 A method that combines the ORB-SLAM and VIORB 

[15] algorithms is the already-discussed ORB-SLAM3. The 

algorithm is separated into three primary threads, just like 

its predecessors: loop closure and map merging, rather than 

loop closing and tracking. Third, there is local mapping. 

Besides, ORB-SLAM3 [27] maintains an Atlas multi-map 

representation that includes non-active maps for location 

recognition and relocalization, as well as an active map 

utilized by the tracking thread. Map merging is introduced 

to the final thread, which adheres to the same logic as 

VIORB in the first two.  

Depending on where the overlapping region is, the loop 

closing and map merging thread uses all of the Atlas maps 

to find common areas, execute loop correction, merge maps, 

and switch the active map. An additional significant feature 

of ORB-SLAM3 is the suggested initialization method, 

which uses the Maximum-a-Posteriori algorithm separately 

for the inertial and visual estimates before optimizing them 

combined. This approach applies loop closures and global 

optimizations techniques and may be utilized with 

monocular, stereo, and RGB-D cameras. On the other hand, 

considerable mistakes in ORB-SLAM3 online performance 

were shown by the authors in [72]. Although the system 

performed well in [73], it was unable to analyze all of the 

sequences and produced erroneous estimates for outdoor 

sequences.  

● LSD-SLAM - 2014  

LSD-SLAM is a large-scale, real-time direct monocular 

SLAM method that is intended for accurate mapping in 

dynamic settings. Applications like as robots and self-

driving automobiles in complex and dynamic environments 

are perfect for it since it supports a variety of camera 

combinations and retains accuracy even at lower picture 

resolutions [29]. The five stages of the workflow used by 

LSD-SLAM and DVO-SLAM are identical and include data 

input, picture alignment, loop closure, map optimization, 

and global optimization. Real-time large-scale mapping is 

made possible by LSD-SLAM, which combines direct and 

semi-dense reconstruction approaches. To handle tracking 

activities efficiently, CPU + FPGA architectures were used 

in its implementation [137, 68]. But as LSD-SLAM depends 

on pose-graph optimization, PTAM and ORB-SLAM 

demonstrated greater accuracy in map estimation [132, 129]. 

The primary visual-only SLAM algorithms were covered in 

this section. The key traits and evaluated standards for the 
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suggested visual-only SLAM algorithms are enumerated in 

Table 1. 

TABLE 1. MAIN ASPECTS RELATED TO THE VISUAL-ONLY SLAM 

APPROACHES. 

Method Type 
Map 

Density 

Global 
Optimization 

Loop 

Closure 
 
Availability 

LSD Direct 
Semi-

dense 
Yes Yes [91] 

ORB-SLAM 
Feature-

based 
Sparse Yes Yes [92] 

ORB-SLAM2 
Feature-

based 
Sparse Yes Yes [93] 

CNN-SLAM Direct 
Semi 
dense 

Yes Yes [94] 

DSO Direct Sparse No No [95] 

LDSO Direct Sparse No Yes [96] 

OpenVSLAM Hybrid Sparse Yes Yes [97] 

ORB-SLAM3 
Feature-

based 
Sparse Yes Yes [98] 

 

B. Visual-Inertial SLAM 

By combining inertial measurement units (IMUs) and 

visual sensors (such as stereo cameras), VI-SLAM improves 

system performance by producing a more precise and 

comprehensive description of the surroundings. This hybrid 

technique, which incorporates IMU data into the 

environment model, improves accuracy and decreases 

mistakes in real-world applications such as mobile robots 

and drones. The next subsections provide explanations of 

the chosen visual-inertial algorithms, whereas Fig. 3 

displays a timeline of those methods. 

● Robust visual inertial odometry - ROVIO – 2015 

By combining optical and inertial data using 

sophisticated sensor fusion, ROVIO-SLAM [101] enhances 

navigation accuracy and improves interaction with the 

surroundings, making it perfect for long-term, low-cost 

robotic systems operating in difficult environments. To 

enable reliable mapping and positioning, the procedure 

consists of three steps [100]: gathering IMU and camera 

data, processing for feature identification and IMU 

integration, and producing estimated pose and 3D 

landmarks. 

Despite being effective because of its tightly-coupled 

visual-inertial fusion, ROVIO lacks loop closure, which 

makes it less consistent over the long term than ORB-

SLAM3 or VINS-Fusion. Lidar-based SLAMs perform 

better in low-light or texture-poor situations, where it is 

susceptible to visual deterioration. Furthermore, it performs 

worse in large-scale mapping, which makes it better suited 

for scenarios that are more closely regulated or small-scale. 

● Visual Inertial ORB-SLAM – VIORB – 2017 

Based on ORB-SLAM, VIORB [104] is a monocular 

VI-SLAM system that integrates ORB-based front-end and 

back-end operations such as graph optimization, loop 

closure, and relocation. By calculating gyro bias, then fine-

tuning scale and gravity, accelerometer bias, and lastly 

velocity, it accurately initializes scale, velocity, gravity 

direction, and IMU biases using a special IMU initialization 

technique. It joins recent keyframes via a co-visibility graph 

and optimizes them using local bundle modification. 

Additionally, SLAM solutions that integrate IMU with 

RGB-D and stereo sensors have been investigated [105].  

In the same context, monocular SLAM continuously 

localizes and recovers the metric scale with great precision, 

outperforming the state-of-the-art in stereo visual-inertial 

odometry. For virtual and augmented reality systems, where 

the expected user viewpoint must not change when the user 

is in the same workspace, Ra´ el Mur-Artal and Juan D. 

Tard´os [105] make this zero-drift localization more 

interesting. Using stereo or RGB-D cameras should help 

improve accuracy and robustness, and since scale is known, 

it would also make IMU configuration easier. Relying on 

the initialization of the monocular SLAM is VIORB IMU 

initialization's primary flaw. 

 

Fig. 8 Reproduced from [105], keyframe in the local map of Visual-

Inertial ORB-SLAM. 

● VINS-MONO - 2018 

 With just one camera and one IMU, the monocular 

visual-inertial system VINS-Mono [69] generates a metric 

six degrees-of-freedom (DOF) state estimate that may be 

used for motion tracking and navigation. Because of its 

small size and effective design, it may be used with drones, 

ground robots, and mobile devices. It computes roll, pitch, 

and metric scale and uses IMU data to be resistant to visual 

tracking loss. In order to minimize drift and improve 

accuracy, this system combines feature observations with 

pre-integrated IMU data in a VIO module, together with 

concurrent global pose optimization. 

 VINS-Mono's main shortcomings are its reliance on 

monocular vision without depth sensors, which can result in 

scale estimation errors, particularly when tracking features 

over long trajectories or in low-texture environments; the 

system still experiences residual drift in translation and 

orientation over time, even with the integration of an IMU; 

and loop closure techniques, which are crucial for long-term 

consistency, are not as reliable as approaches like ORB-

SLAM3, which provide more developed solutions for 

relocalization and effectively reusing maps. 

● Direct Sparse Visual-Inertial Odometry - VI-DSO - 

2018 

 In order to estimate camera locations and sparse scene 

geometry concurrently, a novel technique for visual-inertial 

odometry known as VI-DSO [103] minimizes both 

photometric and IMU measurement errors in a combined 

energy functional. Unlike key-point based methods, the 

visual part of the system optimizes a sparse collection of 

points in a manner similar to bundle correction, while 

directly reducing a photometric mistake. This enables the 

system to monitor all pixels, not just corners, with a large 

enough intensity gradient. IMU data is collected across a 
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number of frames via measurement pre-integration, and it is 

utilized as an additional constraint in the optimization 

between keyframes.  

 Fig. 10 provides an overview of the VI-DSO method and 

outlines the main differences between it and the DSO 

methodology. The VI-DSO is an extension of the DSO 

algorithm that generates better accuracy and robustness than 

the original DSO and other algorithms, such ROVIO [70], 

by accounting for inertial information. However, because 

bundle modification is dependent on the starting process, it 

is slow [22]. The method does not conduct global 

optimization or loop closure detection, and no embedded 

implementations have been reported in the literature. 
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Fig. 9 Block diagram illustrating the full pipeline of a monocular VINS. 

Taken from [69] 

 

 

Fig. 10 VI-DSO algorithm representation diagram. Adapted from [15] 

● Delayed Marginalization Visual-Inertial Odometry - 

DM-VIO – 2020 

DM-VIO is a monocular visual-inertial odometry system 

that maximizes real-time processing by using delayed 

marginalization and posture graph bundle modification. 

DMVIO includes IMU data into marginalization states and 

allows rapid updates with dependable new linearization 

points by maintaining a secondary factor graph, which 

improves accuracy and reduces computing burden [102]. 

Sparse visual tracking and IMU data are combined with the 

effective motion estimation method DM-VIO to provide 

precise real-time applications such as AR and autonomous 

navigation. DM-VIO avoids feature matching by 

minimizing photometric error in high-gradient zones, while 

maintaining precision and lowering computing burden. 

Keyframes are optimized via a sliding window, which 

improves camera orientation, velocity, and posture. 

Nevertheless, delayed marginalization in DM-VIO enhances 

state estimation, but because of slower updates and 

difficulties with IMU initialization, it increases complexity 

and restricts scalability in highly dynamic applications 

[102]. 

● RD-VIO: Robust Visual-Inertial Odometry – 2021 

RD-VIO, a visual-inertial odometry system developed 

by Jinyu Li et al. [98], uses the IMU-PARSAC algorithm to 

handle both pure rotational motions and dynamic 

surroundings. By breaking up rotating frames into 

subframes, this two-stage method eliminates problems with 

pure rotation and enhances keypoint matching with visual 

and IMU information. With improvements made to a 

baseline PVIO system to better manage landmark 

triangulation and modify postures in dynamic settings, Fig. 

11 shows the pipeline for RD-VIO. Experiments on the 

EuRoc and ADVIO datasets show that RD-VIO performs 

better than baselines and works well on mobile devices, 

including an AR demo of the iPhone X. Pure inertial 

odometry or wireless tracking might be useful for 

maintaining performance, but, as it may lose tracking under 

extended difficult circumstances. 
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Fig. 11 The pipeline of RD-VIO. Adapted from [98] 

 

● Open Keyframe-based Visual-Inertial SLAM with 

Loop Closure OKVIS2 – 2022 

In robotics, augmented reality, and virtual reality 

(AR/VR), robust and accurate state estimation is still a 

hurdle, despite the increasing commodity nature of Visual-

Inertial Simultaneous Localization and Mapping (VI-

SLAM). a comprehensive VI-SLAM solution that addresses 

problems with long and repeated loop closures in particular. 

OKVIS2 is a real-time, multi-camera VI-SLAM system 

with loop closure and location identification capabilities. a 

multi-camera VI-SLAM system that uses visual reprojection 

errors, IMU preintegrated error terms, and the 

marginalization of common observations to generate a 

factor graph.  

A real-time estimator minimizes these in a bounded-size 

window of recent pose-graph and keyframe frames. Once 

the loop is closed, it is easy to turn the old pose-graph edges 

back into landmarks and reprojection errors. Longer loops 

can also be optimized asynchronously while keeping all 

states around the loop as components of the optimized 

variables by reusing the same factor-graph [99]. The VI 

SLAM system is composed of a frontend and a realtime 

estimator that process images and IMU messages 

concurrently whenever a new (multi-)frame is received. To 

handle loop closures, an asynchronous entire factor graph 

loop optimization is performed. As shown in Figure 12, the 

frontend manages a number of tasks, including place 

recognition, segmentation CNN running, keypoint 

matching, state initialization, stereo triangulation (from 
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consecutive frames and from stereo images of the same 

multi-frame), and, if the latter was successful, re-

localization and loop closure initialization. The real-time 

estimator is then responsible for fixating prior states and 

constructing pose graph edges by marginalizing old data, 

and it will optimize the relevant factor graph. Following 

loop closure, it begins optimizing the complete factor graph 

and proceeds to turn the edges of the pose graph back into 

observations. After this asynchronous operation is complete, 

it synchronizes with the realtime factor graph. 

Despite being useful for real-time visual-inertial SLAM, 

OKVIS2 has issues with accuracy maintenance in dynamic 

situations and computational overhead brought on by 

synchronous processing needs. Furthermore, delays may be 

introduced by its reliance on asynchronous loop 

optimization, which might compromise localization 

consistency in practical situations. 
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Fig. 12 Overview of OKVIS2 Adapted from [99] 

In this part, every one of the seven main visual-inertial 

SLAM algorithms were independently examined. Table 2 

provides an overview of the key characteristics and 

evaluation standards for the shown visual-inertial SLAM 

algorithms. 

 
TABLE 2: KEY ELEMENTS OF THE VISUAL-INERTIAL SLAM 

TEQNIQUES. EVERY STRATGY SHOWS ACLOSLY INTEGRATED 

SENSORY FUSION. 

Method Type Map Density
Global 

Optimization
Loop Closure  Availability

ROVIO Filtering-based Sparse No No [106]

VIORB Optimization-based Sparse Yes Yes _

VINS-MONO Optimization-based Sparse Yes Yes [107]

VI-DSO Optimization-based Sparse No No [108]

DM-VIO Direct Sparse No No [109]

RD-VIO Hybrid Sparse No Yes [110]

OKVIS2 Keyframe-based Sparse Yes Yes _

ORB-SLAM3 Feature-based Sparse Yes Yes [98] R 

 

C. GB-D SLAM 

    The innovative RGB-D technique integrates depth 

sensors and RGB-D cameras to estimate and build 

environmental models. This approach has found 

applications in several domains, including robotic 

perception and navigation. It performs well and provides 

useful information on the spatial surroundings, particularly 

in inside settings with good lighting. The system can 

concurrently record color and depth data since RGB-D 

cameras and depth sensors are coupled. Due to its ability to 

resolve dense reconstruction on low-textured surface 

regions, this capability is particularly useful for interior 

applications. The goal of RGB-D SLAM is to produce a 

precise three-dimensional reconstruction of the system's 

surrounding environment, with a focus on gathering 

geometric data to create a comprehensive three-dimensional 

model. A summary of the methods applied in this section is 

provided below: 

 

● RGBDSLAMv2 – 2014 

ORB-SLAM2, a complete SLAM solution for 

monocular, stereo, and RGB-D cameras, has capabilities 

including map reuse, loop closure, and relocalization. The 

system runs in a variety of settings in real-time on standard 

CPUs, from small hand-held interior sequences to drones 

flying in industrial areas and cars driving around a city. 

RGBDSLAMv2, one of the most used RGB-D based 

algorithms, is built on feature extraction [115]. It estimates 

posture using the ICP approach and estimates the 

transformation between the matched features using the 

RANSAC algorithm. To remove the accumulated error, the 

system then performs a global optimization and loop 

closure. This method also proposes to use an environment 

measurement model (EMM) to validate the transformations 

obtained between the frames. The method's real-time 

performance is hampered since it depends on SIFT features. 

RGBDSLAMv2 requires slow sensor movement to work 

well and has a high processing cost. In Fig. 13, the 

algorithm is displayed. 
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Fig. 13 A schematic illustration of the RGBDSLAMv2 algorithm. Taken 
from [15]. 

● Elastic Fusion – 2015 

Using an incremental online method and an RGB-D 

camera, the Elastic Fusion system can capture rich, globally 

consistent surfel-based maps of room scale settings without 

the need for pose graph optimization or other postprocessing 

procedures. This is accomplished by using dense frame-to-

model camera tracking, windowed surfel-based fusion, and 

frequent model refinement using non-rigid surface 

distortions. Using RGB-D sensors, ElasticFusion is a real-

time dense visual SLAM technique that is intended for drift-

free 3D reconstruction. By integrating photometric 

alignment with RGB data and frame-to-model tracking with 

the ICP method, it approximates the camera posture. To 

accomplish surface fusion, a truncated signed distance 

function (TSDF) is used to integrate color and depth data 

into a global model. One important aspect is the use of a 

non-rigid deformation graph, which modifies previously 

mapped regions to enable drift correction and real-time loop 

closure. The method employs optimization to constantly 

improve the global model, guaranteeing a reliable and 
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precise 3D reconstruction. Elastic Fusion suffers in settings 

with poor texture or fast movement, since tracking becomes 

erratic. Since memory usage rises sharply in large-scale 

settings, the method's reliance on a surfel-based approach 

further restricts its scalability. Furthermore, in crowded or 

changing landscapes, ElasticFusion's absence of an 

integrated method for addressing dynamic objects may 

cause drift or inaccuracy during tracking. 

● ORB-SLAM2 - 2017 

ORB-SLAM2 is a complete SLAM solution for 

monocular, stereo, and RGB-D cameras that includes loop 

closure, relocalization, and map reuse. In a variety of 

scenarios, such as cars driving through a city, small hand-

held interior sequences, and drones flying in industrial 

environments, the system runs in real-time on standard 

CPUs. The suggestion by Strasdat et al. [116] states that 

ORB-SLAM2 uses depth information to generate a stereo 

coordinate for the recovered components of the picture. In 

this regard, whether the input is RGB-D or stereo is 

irrelevant to the system. Unlike all the previous methods, 

the back-end uses bundle adjustment to generate a globally 

consistent sparse reconstruction. Because of this, the ORB-

SLAM2 method is easy to use and works with standard 

CPUs. Long-term and globally consistent localization is the 

goal, not the most complex dense reconstruction. 

Alternatively, one might fuse depth maps to produce correct 

reconstruction on-the-fly in a small region, or one could 

post-process the depth maps from each keyframe after a full 

BA to create a perfect 3D model of the whole scene utilizing 

the incredibly precise keyframe poses. 

Fig. 14 shows the overall architecture of the system. The 

system runs three main parallel threads: Localizing the 

camera entails the following three steps: Three methods are 

used in tracking: 1) motion-only BA is used to find feature 

matches on the local map; 2) local mapping is used to 

manage and optimize the local map; and 3) loop closing is 

used to find large loops and correct accumulated drift by 

executing a pose-graph optimization. This thread initiates a 

fourth thread to finish full BA after the pose-graph 

optimization. 

 

  
 
Fig. 14: Three primary parallel threads make up ORBSLAM2: loop closure

, local mapping, and tracking. Adapted from [117]. 

 

● RTAB-Map – 2018 

The RTAB-Map A visual SLAM technique that can be 

applied to RGB-D and stereo cameras is called real-time 

appearance-based mapping, or SLAM for short. It's a 

versatile technique that can handle 2D and 3D mapping 

tasks based on the sensor and available data. It allows the 

identification of both stationary and moving 3D objects in 

the robot's environment through the combination of RGB-D 

and stereo data for 3D mapping. When LiDAR rays are not 

able to control the field around the robot, it can be applied in 

large outdoor environments. Robotic localization and 

mapping errors can be caused by varying light and 

environmental interactions. Thus, RTAB's adaptability and 

resistance to changing light and scenery enable precision 

operation under challenging conditions. It can easily adjust 

to function with many cameras or laser rangefinders, and it 

can manage complex, large-scale scenarios. Moreover, the 

use of T265 (Intel RealSense Camera) and ultra-wideband 

(UWB) addresses robot wheel slippage with drifting error 

control, enhancing system efficiency through precise 

tracking and the generation of 3D point clouds. The RTAB-

MAP SLAM approach involves several procedures in order 

for it to function. First, tasks including frame creation, 

sensor integration, and data extraction from RGB-D and 

stereo cameras are handled by the hardware and front-end 

stage. At this point, the frames required for the following 

phase are prepared. The loop closure provides the necessary 

odometry when the tracking operation and frame processing 

are finished simultaneously.  

Fig. 15 depicts RTAB-Map, the main ROS node. Any 

kind of odometry may be used for SLAM as it is an external 

input to RTAB-Map; the choice will rely on what works 

best for the robot and the application. A graph consisting of 

nodes and links makes up the structure of the map. Once the 

sensors are synchronized, the Short-Term Memory (STM) 

module creates a node and memorizes the raw sensor data, 

the odometry posture, and additional information that will 

be needed for later modules (like visual words for Loop 

Closure and Proximity Detection and local occupancy grid 

for Global Map Assembling). The 

"Rtabmap/DetectionRate," which is given in milliseconds, is 

the determined rate at which nodes are constructed based on 

how much the data generated by them should overlap each 

other. 

RTAB-Map high computational demand is a major 

disadvantage that can cause performance issues on devices 

with limited capabilities, particularly when working with 

big maps and loop closure detection. Additionally, drift or 

tracking failures may result from odometry's accuracy 

declining in settings with little feature variety. Because of 

its reliance on RGB-D sensors, its application is therefore 

limited to specific settings, such indoors, where depth data 

is more trustworthy. 

 

● Bundle Adjusted Direct RGB-D SLAM BAD-SLAM 

– 2019 

Simultaneous Localization and Mapping (SLAM) 

systems rely on the joint optimization of the camera 

trajectory and the expected 3D map. Bundle adjustment 

(BA) is the industry standard for this. rapid direct BA 

formulation, which they employ in a real-time, dense RGB-

D SLAM system. As is common with SLAM algorithms, 

the technique consists of both front-end and back-end 

components (Figure 16). The frontend tracks the RGB-D 

camera's motions in real time. It provides first estimates for 

camera angles and scene dimensions as a result. At a lower 

frequency, the back-end then fine-tunes the geometry and 
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the camera trajectory to produce a consistent 3D map. A 

novel back-end Bundle Adjustment (BA) method for direct 

RGB-D SLAM is the primary technological contribution. 

Sensitivity to sensor calibration and synchronization is a 

major limitation of BAD-SLAM. Performance can be 

severely harmed by problems like rolling shutter effects or 

mismatched depth and RGB data because the system mainly 

depends on accurate direct measurements from RGB-D 

cameras. Due to its reliance on extremely precise sensors, 

BAD-SLAM is less reliable in settings where these 

requirements are not satisfied or sensor configurations are 

not ideal. 

 
Fig. 15 RTAB-Map, the main ROS node. 

 

 
Fig. 16 BAD-SLAM overview. KF stands for keyframe. 

 

● SCE-SLAM - 2023 

Spatial coordinate errors SLAM (SCE-SLAM) is a new 

real-time semantic RGB-D SLAM technique. The purpose 

of its creation was to overcome the shortcomings of 

traditional SLAM systems in dynamic operational 

environments. Combining semantic and geometric data, 

together with using YOLOv7 for quick object recognition, 

improved the technique to outperform existing V-SLAM 

systems, including ORB-SLAM3, and to be more accurate 

and robust in dynamic circumstances. These improvements 

make it possible for the SLAM algorithms to be very 

effective in dynamic applications, which leads to greater 

adaptability and comprehension of the system environment. 

Robotic systems can therefore operate in more complex 

contexts with reduced slippage or mistakes. Robots 

equipped with SCE-SLAM may also operate more 

adaptably and with fewer errors, even under challenging 

lighting situations.  

SCE-SLAM has the potential to severely impair the 

produced maps' accuracy and dependability. Misalignments 

and distortions in the spatial representation of the 

environment result from these mistakes, which are caused 

by inaccurate sensor readings and posture estimation. 

Reduced navigation performance as a result of SCE-SLAM 

can make it difficult for autonomous systems to function 

well in complex and dynamic surroundings. 

Three main processes make up the SCE-SLAM method, 

according to Son et al. (2023). A semantic module is used in 

the initial stage. As the camera input data is handled, noise 

is removed using Yolov2 in this module. During the second 

step, the geometry module analyzes depth pictures and 

recovers spatial coordinates to prepare the system for 

integration with ORB SLAM3. The final stage is dedicated 

to ORB SLAM3 implementation. This link makes the ORB-

SLAM3 procedures easier to execute. The procedure 

working in combination with the loop closure technique 

produces a system output that is more precise and accurate. 

Section C provided a distinct description of the most 

typical RGB-D-based methods. Table 3 lists the key 

characteristics and parameters for critical assessment of the 

given algorithms. 

 
TABLE 3. KEY FEATURES OF RGB-D BASED SLAM TECHNIQUES. 

 

Method Type Map Density 
Loop 
Closure 

 Availability 

RGBDSLAMv2 
Feature-

based 
Dense No [123] 

Elastic Fusion  Direct Dense Yes [124] 

ORB-SLAM2  
Feature-

based 
Dense Yes [92] 

RTAB-Map  Hybrid Dense/Sparse Yes [125] 

BAD-SLAM Direct Dense Yes [126] 

SCE-SLAM  Hybrid Sparse Yes ? 

ORB-SLAM3 
Feature-

based 
Sparse Yes [98] 

 

IV. DATASETS AND BENCHMARKING 

 

 

A fair comparison of all the SLAM algorithms in the 

literature is necessary to identify which one performs better 

in particular scenarios. The literature suggests a number of 

benchmarking datasets with various features to investigate 

the resilience and capabilities of SLAM. The benchmark 

dataset that was used to assess the SLAM algorithms that 

were described in the original publications is made 

publically available here. 

● The KITTI dataset, which was created by the 

Toyota Technological Institute and the Karlsruhe 

Institute of Technology, includes eight LiDAR data 

sequences and twenty-two stereo camera sequences 

that were all taken from actual driving situations. It 

offers timestamps for synchronization, a range of 

view of around 60° horizontally for the stereo 

camera system, and ground truth data for vehicle 

trajectories and sensor calibration files [75].  

● The Technical University of Munich's TUM RGB-

D dataset offers 39 indoor RGB-D camera video 

sequences that document a range of scenarios with 

precise timestamp information and ground truth 

camera postures. A calibration file that describes the 

camera system's intrinsic and extrinsic 

characteristics is included in the dataset. The camera 

system's field of view is around 60° horizontally and 

50° vertically [28]. Furthermore, relative pose error 

and absolute trajectory error are the two metrics that 

the authors suggest be used to assess the trajectory's 

local correctness and global consistency, 

respectively. 
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● Eleven sequences of high-resolution pictures and 

IMU data, together with ground truth trajectories, 

calibration files, and timestamps, were gathered 

using micro aerial vehicles and are included in the 

Euroc MAV collection. The camera's diagonal field 

of view is around 90° [77].  

● The TUM VI collection includes 25 sequences of 

synchronized RGB and IMU data that span a 60° 

horizontal field of view and include comprehensive 

ground truth poses and calibration files. To 

guarantee exact temporal alignment, timestamps are 

supplied for every frame [78]. 

● The TUM MONO VO dataset provides 50 

monocular video sequences with calibration 

information and ground truth postures. Each frame 

has a timestamp and a horizontal field of view of 

around 60° [79]. A strong framework for creating 

and evaluating motion and visual estimating 

algorithms in a variety of circumstances is offered 

by these datasets taken together. 

● Specifically created for RGB-D SLAM, the Bonn 

RGB-D dynamic dataset comprises dynamic object 

sequences. Following the same style as TUM RGB-

D datasets, it displays RGB-D data together with a 

3D point cloud that depicts the changing 

environment. It goes beyond the confines of 

regulated spaces and encompasses both indoor and 

outdoor situations. When creating and assessing 

algorithms for tasks like object identification, scene 

comprehension, and robot navigation, it is useful. 

The fact that this dataset is adaptable enough to 

handle the complexity of applications utilized in 

light-challenging fields is noteworthy. Furthermore, 

it serves as a valuable tool for assessing V-SLAM 

methods in noisy and dynamic environments where 

the robot may encounter difficulties interacting with 

its surroundings and detecting objects. 

● There are twelve artificial interior sequences 

available in the ICL-NUIM dataset, each having 

RGB-D pictures and simulation-generated ground 

truth trajectories. With a horizontal field of view of 

around 70°, it gives timestamps and calibration 

information for every frame [76]. The dataset, 

which focuses on RGB-D techniques, offers 

information for assessing the 3D reconstruction 

using eight artificially created interior settings. The 

ground truth is a 3D surface model and the 

calculated trajectory using a SLAM algorithm, 

while the sequences are generated by a handheld 

RGB-D camera [80]. 

● An autonomous driving dataset called Cityscapes 

[87] focuses on instance annotation and pixel-level 

picture segmentation. Additionally, other datasets—

such as NYU RGB-D [37], MS COCO [38], and 

others—are employed in a variety of settings. With 

an emphasis on semantic comprehension of urban 

surroundings, the Cityscapes collection offers high-

resolution urban street scenes gathered from 50 

locations. With pixel-level labels for semantic 

segmentation tasks, it provides 20,000 coarsely 

labeled photos and 5,000 highly annotated images. 

30 classes—human, car, flat surface, and other 

urban elements—are included in the collection. The 

photos were taken at a resolution of 2048x1024 

pixels in a range of weather and lighting 

circumstances. The pictures have a broad field of 

vision, which is common for driving situations at 

street level. 

● Another benchmarking dataset for assessing SLAM 

systems in difficult situations is Tartan Air [111]. 

A variety of weather patterns, moving objects, and 

changing light are all included in the incredibly 

lifelike simulated situations used to collect the data. 

By collecting data in simulations, we are able to 

give multi-modal sensor data and precise ground 

truth labels, such as segmentation, optical flow, 

camera positions, stereo RGB image, and LiDAR 

point cloud.  

● Nguyen et al. [112] published the NTU VIRAL 

dataset, which was collected using an unmanned 

aerial vehicle (UAV) equipped with a 3DLiDAR, 

cameras, IMUs, and several Ultra-widebands 

(UWBs). The information is meant to be used for 

assessing the performance of aerial operations and 

autonomous driving. Both indoor and outdoor cases 

are included. 

Table 4 summarizes the main benchmark datasets 

characteristics presented in this work. 

 
TABLE 4 MAIN ASPECTS RELATED TO THE PRESENTED 

BENCHMARK DATASETS. 

Dataset Year Environment.* Platform Sensor System Groundtruth Availability

TUM RGB-D 2012 Indoor Robot/Handheld RGB-D camera Motion capture [81]

KITTI 2013 Outdoor Car
Stereo-cameras       

3D laser scanner
INS/GPS [82]

ICL-NUIM 2014 Indoor Handheld RGB-D camera
3D surface model 

SLAM estimation
[83]

Bonn RGB-D 

dynamic
2016 Indoor/Outdoor Handheld RGB-D camera

Motion capture 

(partially)
[90]

Cityscapes 2016 Outdoor Car Stereo GPS [87]

EuRoC 2016 Indoor MAV Stereo-cameras  IMU
Total Station Motion 

capture
 [84]

TUM Mono VO 2016 Indoor-Outdoor Handheld Non-stereo cameras _ [85]

TUM VI 2018 Indoor-Outdoor Handheld Stereo-camera IMU
Motion capture  

(partially)
[86]

TartanAir 2020 Indoor-Outdoor

photo-realistic 

simulation 

environments

RGB cameras, depth 

sensors, IMU, LIDAR
GPS [114]

NTU VIRAL 2021 Indoor-Outdoor UAV

3D lidars, IMUs, time-

synchronized 

cameras, UWBs

GPS [113]

 
*Environment: indoor or outdoor. 
 

V. GUIDELINES FOR EVALUATING AND 

SELECTING VISUAL SLAM METHODS 

There are a few things to take into account while 

selecting a visual SLAM technique. Importantly, the type of 

sensor used is important: monocular SLAM is less 

expensive but has scale ambiguity, whereas stereo and 

RGB-D SLAM provide more accurate depth estimates at a 

greater computational cost [39]. Applications that need 

minimal latency must have real-time performance, and GPU 

acceleration helps techniques like Elastic Fusion [118]. The 

SLAM system must also be able to adjust to its 

surroundings; indoor-focused algorithms such as Kinect 

Fusion perform well in controlled settings but may not be as 

successful outside [119]. Long-term accuracy is ensured by 

the system's capacity to manage drift and implement loop 
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closure methods, as demonstrated by ElasticFusion and 

ORB-SLAM. Particularly for projects requiring in-depth 3D 

mapping [36], posture estimation accuracy and map 

precision should be taken into account. Certain methods are 

more appropriate for particular situations [120], but SLAM 

systems should be resilient to external obstacles like 

occlusions or moving objects. In conclusion, scalability, 

global optimization, and the accessibility of open-source 

implementations must be taken into account for long-term 

development and use [121,122]. 

 

VI. CONCLUSIONS 

The difficulties and advancements in the field of visual-

based SLAM (VSLAM) approaches are highlighted in this 

study's methodical investigation. Historically, multiple-view 

geometry and low-level feature matching have been the 

mainstays of VSLAM systems. There includes discussion of 

difficulties like recreating low-texture areas and the 

computational expenses of deep learning techniques, as well 

as the requirement for extra sensors (such IMUs or stereo 

cameras) or system previous knowledge. The following six 

criteria are suggested for choosing SLAM algorithms: 

availability, global optimization methods, map density, 

algorithm type, and embedded implementations. The 

research places a strong emphasis on assessing algorithms 

according to requirements unique to each application, 

including scalability, sensor compatibility, and 

environmental restrictions. The report also proposes future 

research directions and discusses benchmarking datasets for 

SLAM algorithm evaluation. An ideal SLAM system that 

balances real-time performance, precision, and robustness 

may be selected for a variety of applications by taking these 

criteria into account. 

ACKNOWLEDGMENT  

The authors are grateful for the financial support towards 

this research by the Computer Engineering Department, 

College of Engineering, Basrah University. Postgraduate 

Research Grant (PGRG) /2023/HIR/RAJA/ENG/39 (1751-

7-3). 

REFERENCES 

[1] Smith, R.; Cheeseman, P. On the Representation and Estimation 
of Spatial Uncertainty. Int. J.Robot. Res. 1987, 5, 56–68. 

[2] Bailey, T.; Durrant-Whyte, H. Simultaneous localization and 

mapping (SLAM): Part II. IEEE Robot. Autom. Mag. 2006, 13, 
108–117.  

[3] Dissanayake, M.W.M.G.; Newman, P.; Clark, S.; Durrant-

Whyte, H.F.; Csorba, M.A. Solution to the simultaneous 

localization and map building (SLAM) problem. IEEE Trans. 
Robot. Autom. 2001, 17, 229–241. 

[4] Hess, W.; Kohler, D.; Rapp, H.; Andor, D. Real-time loop 
closure in 2D LIDAR SLAM. In Proceedings of the IEEE 

International Conference on Robotics and Automation, 
Stockholm, Sweden, 16–21 May 2016; pp. 1271–1278. 

[5] Fuentes-Pacheco, J.; Ruiz-Ascencio, J.; Rendón-Mancha, J.M. 

Visual simultaneous localization and mapping: Asurvey. Artif. 
Intell. Rev. (2015). 43, 55–81. 

[6] Ido, J.; Shimizu, Y.; Matsumoto, Y.; Ogasawara, T. Indoor 

Navigation for a Humanoid Robot Using a View Sequence. Int. 
J. Robot. Res. (2009). 28, 315–325. 

[7] Celik, K.; Chung, S.J.; Clausman, M.; Somani, A.K. Monocular 

vision SLAM for indoor aerial vehicles. In Proceedings of the 

2009 IEEE/RSJ International Conference on Intelligent Robots 

and Systems (ICRA), St. Louis, MO, USA, 11–15 October 
2009; pp. 1566–1573. 

[8] Civera J., Lee S.H. (2019) RGB-D Odometry and SLAM. In: 

Rosin P., Lai YK., Shao L., Liu Y. (eds) RGB-D Image 
Analysis and Processing. Advances in Computer Vision and 
Pattern Recognition. Springer, Cham 

[9] G. Grisetti, R. Kümmerle, C. Stachniss and W. Burgard, "A 
Tutorial on Graph-Based SLAM," in IEEE Intelligent 

Transportation Systems Magazine, vol. 2, no. 4, pp. 31-43, 
winter 2010, doi: 10.1109/MITS.2010.939925.  

[10] Taketomi, T., Uchiyama, H. & Ikeda, S. Visual SLAM 

algorithms: a survey from 2010 to 2016. IPSJ T Comput Vis 
Appl 9, 16 (2017). https://doi.org/10.1186/s41074-017-0027-2 

[11] Kabzan, J.; Valls, M.; Reijgwart, V.; Hendrikx, H.; Ehmke, C.; 

Prajapat, M.; Bühler, A.; Gosala, N.; Gupta, M.; Sivanesan, R.; 
et al. AMZDriverless: The Full Autonomous Racing System. J. 
Field Robot. (2020), 37, 1267–1294. 

[12] T. Bailey and H. Durrant-Whyte, "Simultaneous localization 

and mapping (SLAM): part II," in IEEE Robotics & Automation 

Magazine, vol. 13, no. 3, pp. 108-117, Sept. 2006, doi: 
10.1109/MRA.2006.1678144. 

[13] Taheri, H., & Xia, Z. C. (2021). SLAM; definition and 
evolution. Engineering Applications of Artificial Intelligence, 
97, 104032. https://doi.org/10.1016/j.engappai.2020.104032 

[14] Al-Tawil B, Hempel T, Abdelrahman A and Al-Hamadi A 
(2024), A review of visual SLAM for robotics: evolution, 

properties, and future applications. Front. Robot. AI 
11:1347985. doi: 10.3389/frobt.2024.1347985 

[15] Macario Barros, A.; Michel, M.; Moline, Y.; Corre, G.; Carrel, 

F. A Comprehensive Survey of Visual SLAM Algorithms. 
Robotics 2022, 11, 24. 
https://doi.org/10.3390/robotics11010024  

[16] Chen C, Zhu H, Li M, You S. A Review of Visual-Inertial 
Simultaneous Localization and Mapping from Filtering-Based 

and Optimization-Based Perspectives. Robotics. 2018; 7(3):45. 
https://doi.org/10.3390/robotics7030045 

[17] Zhang, S., Zheng, L., & Tao, W. (2021). Survey and Evaluation 

of RGB-D SLAM. IEEE Access, 9, 21367–21387. 
https://doi.org/10.1109/access.2021.3053188 

[18] Munguia-Silva R, Mart′ınez-Carranza J. Autonomous flight 

using rgb-d slam with a monocular onboard camera only. In: 
2018 international conference on electronics, communications 
and computers (CONIELECOMP). IEEE; 2018. p. 200–6.  

[19] Li Y, Lang S. A stereo-based visual-inertial odometry for slam. 

In: 2019 Chinese automation congress (CAC). IEEE; 2019. p. 
594–8.  

[20] Wang S, Yue J, Dong Y, Shen R, Zhang X. Real-time 

omnidirectional visual slam with semi-dense mapping. In: 2018 
IEEE intelligent vehicles symposium (IV). IEEE; 2018. p. 695–
700.  

[21] Jo H, Jo S, Cho HM, Kim E. Efficient 3d mapping with rgb-d 
camera based on distance dependent update. In: 2016 16th 

international conference on control, automation and systems 
(ICCAS). IEEE; 2016. 720 873–875. 

[22] Covolan, J.P.; Sementille, A.; Sanches, S. A mapping of visual 

SLAM algorithms and their applications in augmented reality. 
In Proceedings of the 2020 22nd Symposium on Virtual and 

Augmented Reality (SVR), Porto de Galinhas, Brazil, 7–10 
November 2020. 

[23] Taketomi, T.; Uchiyama, H.; Ikeda, S. Visual SLAM 

algorithms: A survey from 2010 to 2016. IPSJ Trans. Comput. 
Vis. Appl. 2017, 9, 1–11.  

[24] Servieres, M., Renaudin, V., Dupuis, A., & Antigny, N. (2021). 

Visual and Visual-Inertial SLAM: State of the Art, 
Classification, and Experimental Benchmarking. Journal of 
Sensors, 2021, 1–26. https://doi.org/10.1155/2021/2054828 

[25] Klette R, Koschan A, Schluns K (1998) Computer vision: three-
dimensional data from images. 1st edn  

[26] Nister D (2004) A minimal solution to the generalised 3-point 
pose problem. In: Proceedings of IEEE Conference on 
Computer Vision and Pattern Recognition Vol. 1. pp 560–5671 

https://doi.org/10.1186/s41074-017-0027-2
https://doi.org/10.1016/j.engappai.2020.104032
https://doi.org/10.3390/robotics11010024
https://doi.org/10.3390/robotics7030045
https://doi.org/10.1109/access.2021.3053188
https://doi.org/10.1155/2021/2054828


Journal of Computer Science and Engineering Research (JCSER) 39 

 

Rajaa W.Ali, Heba Hakim, Mohammed A. Al-Ibadi, A Full Overview of Visual SLAM Algorithms 

[27] Campos, C.; Elvira, R.; Rodríguez, J.J.G.; M. Montiel, J.M.; D. 

Tardós, J. ORB-SLAM3: An Accurate Open-Source Library for 

Visual, Visual–Inertial, and Multimap SLAM. IEEE Trans. 

Robot. 2021, 37, 1874–1890.  

[28] Burri, M.; Nikolic, J.; Gohl, P.; Schneider, T.; Rehder, J.; 
Omari, S.; Achtelik, M.; Siegwart, R. The EuRoC micro aerial 
vehicledatasets. Int. J. Robot. Res. 2016, 35, 1157–1163. 

[29] Engel, J.; Schöps, T.; Cremers, D. LSD-SLAM: Large-Scale 
Direct Monocular SLAM. In Computer Vision–ECCV 2014; 

Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Springer 

International Publishing: Cham, Switzerland, 2014; pp. 834–
849. 

[30] Bianco, S.; Ciocca, G.; Marelli, D. Evaluating the Performance 
of Structure from Motion Pipelines. J. Imaging 2018, 4, 98. 

[31] Hempel, T., and Al-Hamadi, A. (2020). Pixel-wise motion 

segmentation for slam in dynamic environments. IEEE Access 
8, 164521–164528. doi:10.1109/access.2020.3022506 

[32] Liu, Y., and Miura, J. (2021). Rds-slam: real-time dynamic slam 
using semantic segmentation methods. Ieee Access 9, 23772–
23785. doi:10.1109/access.2021.3050617 

[33] Wang, Z., Pang, B., Song, Y., Yuan, X., Xu, Q., and Li, Y. 

(2023). Robust visual-inertial odometry based on a kalman filter 

and factor graph. IEEE Trans. Intelligent Transp. Syst. 24, 
7048–7060. doi:10.1109/tits.2023.3258526 

[34] Grisetti, G., Stachniss, C., and Burgard, W. (2007). Improved 

techniques for grid mapping with rao-black wellized particle 
filters. IEEE Trans. Robotics 23, 34–46. 
doi:10.1109/tro.2006.889486 

[35] Beghdadi, A., and Mallem, M. (2022). A comprehensive 

overview of dynamic visual slam and deep learning: concepts, 

methods and challenges. Mach. Vis. Appl. 33, 54. 
doi:10.1007/s00138-022-01306-w 

[36] Mur-Artal, R., & Tardós, J. D. (2017). ORB-SLAM2: An Open-

Source SLAM System for Monocular, Stereo, and RGB-D 
Cameras. IEEE Transactions on Robotics, 33(5), 1255-1262 

[37] Dellaert, F., & Kaess, M. (2006). Fast, Incremental, Consistent 
Stereo SLAM. Proceedings of Robotics: Science and Systems 

[38] Scaradozzi, D., Zingaretti, S., and Ferrari, A. (2018). 

Simultaneous localization and mapping (slam) robotics 
techniques: a possible application in surgery. Shanghai Chest 2, 

5. doi:10.21037/shc.2018.01.01 

[39] Mur-Artal, R., Montiel, J.M.M., & Tardós, J.D. (2015). ORB-

SLAM: A Versatile and Accurate Monocular SLAM System. 

IEEE Transactions on Robotics, 31(5), 1147-1163. DOI: 
10.1109/TRO.2015.2463671. 

[40] Engel, J., Schöps, T., & Cremers, D. (2014). LSD-SLAM: 

Large-Scale Direct Monocular SLAM. European Conference on 
Computer Vision (ECCV), 834-849. DOI: 10.1007/978-3-319-
10605-2_54. 

[41] Strasdat, H., Montiel, J.M.M., & Davison, A.J. (2012). Visual 

SLAM: Why Filter? Image and Vision Computing, 30(2), 65-
77. DOI: 10.1016/j.imavis.2012.02.002. 

[42] Picard, Q., Chevobbe, S., Darouich, M., and Didier, J.-Y. 

(2023). A survey on real time 3d scene reconstruction with slam 
methods in embedded systems. arXiv preprint 
arXiv:2309.05349. 

[43] Taheri, H., and Xia, Z. C. (2021). Slam; definition and 
evolution. Eng. Appl. Artif. Intell. 97, 104032. 
doi:10.1016/j.engappai.2020.104032. 

[44] Fernández-Moral, E., Jiménez, J. G., and Arévalo, V. (2013). 

Creating metric topological maps for large-scale monocular 
slam. ICINCO (2), 39–47. 

[45] Grisetti, G., Stachniss, C., and Burgard, W. (2007). Improved 

techniques for grid mapping with rao-blackwellized particle 

filters. IEEE Trans. Robotics 23, 34–46. 
doi:10.1109/tro.2006.889486. 

[46] Li, Q., Wang, X., Wu, T., and Yang, H. (2022a). Point-line 
feature fusion based field real-time rgb-d slam. Comput. Graph. 
107, 10–19. doi:10.1016/j.cag.2022.06.013. 

[47] Chu, P. M., Sung, Y., and Cho, K. (2018). Generative 
adversarial network-based method for transforming single rgb 

image into 3d point cloud. IEEE Access 7, 1021–1029. 
doi:10.1109/access.2018.2886213 

[48] Schneider, T., Dymczyk, M., Fehr, M., Egger, K., Lynen, S., 

Gilitschenski, I., et al. (2018). maplab: an open framework for 

research in visual-inertial mapping and localization. IEEE 
Robotics Automation Lett. 3, 1418–1425. 
doi:10.1109/lra.2018.2800113 

[49] Chen, H., Yang, Z., Zhao, X., Weng, G., Wan, H., Luo, J., et al. 
(2020). Advanced mapping robot and high-resolution dataset. 

Robotics Aut. Syst. 131, 103559. 
doi:10.1016/j.robot.2020.103559. 

[50] Acosta-Amaya, G. A., Cadavid-Jimenez, J. M., and Jimenez-

Builes, J. A. (2023). Three-dimensional location and mapping 
analysis in mobile robotics based on visual slam methods. J. 
Robotics 2023, 1–15. doi:10.1155/2023/6630038 

[51] Bustos, A. P., Chin, T.-J., Eriksson, A., and Reid, I. (2019). 
“Visual slam: why bundle adjust?,” in 2019 international 

conference on robotics and automation (ICRA) (IEEE), 2385–
2391. 

[52] Eudes, A., Lhuillier, M., Naudet-Collette, S., and Dhome, M. 

(2010). “Fast odometry integration in local bundle adjustment-
based visual slam,” in 2010 20th International Conference on 

Pattern Recognition (IEEE), 290–293. 

[53] Al-Tawil B, Hempel T, Abdelrahman A and Al-Hamadi A 

(2024), A review of visual SLAM for robotics: evolution, 

properties, and future applications. Front. Robot. AI 
11:1347985. doi: 10.3389/frobt.2024.1347985 

[54] Khoyani, A., and Amini, M. (2023). A survey on visual slam 

algorithms compatible for 3d space reconstruction and 
navigation, 01–06. 

[55] Acosta-Amaya, G. A., Cadavid-Jimenez, J. M., and Jimenez-
Builes, J. A. (2023). Three-dimensional location and mapping 

analysis in mobile robotics based on visual slam methods. J. 
Robotics 2023, 1–15. doi:10.1155/2023/6630038 

[56] Duan, C., Junginger, S., Huang, J., Jin, K., and Thurow, K. 

(2019). Deep learning for visual slam in transportation robotics: 

a review. Transp. Saf. Environ. 1, 177–184. 
doi:10.1093/tse/tdz019 

[57] Theodorou, C., Velisavljevic, V., Dyo, V., and Nonyelu, F. 
(2022). Visual slam algorithms and their application for ar, 

mapping, localization and wayfinding. Array 15, 100222. 

doi:10.1016/j.array.2022.100222 

[58] Tourani, A., Bavle, H., Sanchez-Lopez, J. L., and Voos, H. 

(2022). Visual slam: what are the current trends and what to 
expect? Sensors 22, 9297. doi:10.3390/s22239297  

[59] Mur-Artal, R.; Montiel, J.; Tardos, J. ORB-SLAM: A versatile 

and accurate monocular SLAM system. IEEE Trans. Robot. 
2015, 31, 1147–1163. 

[60] Mur-Artal, R.; Tardós, J.D. ORB-SLAM2: An Open-Source 
SLAM System for Monocular, Stereo, and RGB-D Cameras. 
IEEE Trans. Robot. 2017, 33, 1255–1262. 

[61] Zhan, Z.; Jian, W.; Li, Y.; Yue, Y. A SLAM Map Restoration 
Algorithm Based on Submaps and an Undirected Connected 
Graph. IEEE Access 2021, 9, 12657–12674. 

[62] Abouzahir, M.; Elouardi, A.; Latif, R.; Bouaziz, S.; Tajer, A. 

Embedding SLAM algorithms: Has it come of age? Robot. 
Auton. Syst. 2018, 100, 14–26.  

[63] Yu,J.; Gao, F.; Cao, J.; Yu, C.; Zhang, Z.; Huang, Z.; Wang, Y.; 

Yang, H. CNN-based Monocular Decentralized SLAM on 

embedded FPGA. In Proceedings of the 2020 IEEE 
International Parallel and Distributed Processing Symposium 

Workshops (IPDPSW), NewOrleans, LA, USA, 18–22 May 
2020; pp. 66–73. 

[64] Tateno, K.; Tombari, F.; Laina, I.; Navab, N. CNN-SLAM: 

Real-Time Dense Monocular SLAM with Learned Depth 
Prediction. In Proceedings of the 2017 IEEE Conference on 

Computer Vision and Pattern Recognition (CVPR), Honolulu, 
HI, USA, 21–26 July 2017; pp. 6565–6574. 

[65] J. Engel, V. Koltun and D. Cremers, "Direct Sparse Odometry," 

in IEEE Transactions on Pattern Analysis and Machine 

Intelligence, vol. 40, no. 3, pp. 611-625, 1 March 2018, doi: 
10.1109/TPAMI.2017.2658577. 



Journal of Computer Science and Engineering Research (JCSER) 40 

 

Rajaa W.Ali, Heba Hakim, Mohammed A. Al-Ibadi, A Full Overview of Visual SLAM Algorithms 

[66] Jin, Q.; Liu, Y.; Man, Y.; Li, F. Visual SLAM with RGB-D 

Cameras. In Proceedings of the 2019 Chinese Control 

Conference (CCC), Guangzhou, China, 27–30 July 2019; pp. 

4072–4077. 

[67] Gao, X.; Wang, R.; Demmel, N.; Cremers, D. LDSO: Direct 
Sparse Odometry with Loop Closure. In Proceedings of the 

2018 IEEE/RSJ International Conference on Intelligent Robots 
and Systems (IROS), Madrid, Spain, 1–5 October 2018. 

[68] Boikos, K.; Bouganis, C.S. A high-performance system-on-chip 

architecture for direct tracking for SLAM. In Proceedings of the 

2017 27th International Conference on Field Programmable 
Logic and Applications (FPL), Gent, Belgium, 4–6 September 
2017; pp. 1–7. 

[69] T. Qin, P. Li and S. Shen, "VINS-Mono: A Robust and 

Versatile Monocular Visual-Inertial State Estimator," in IEEE 

Transactions on Robotics, vol. 34, no. 4, pp. 1004-1020, Aug. 
2018, doi: 10.1109/TRO.2018.2853729. 

[70] D. Schlegel, M. Colosi and G. Grisetti, "ProSLAM: Graph 

SLAM from a Programmer's Perspective," 2018 IEEE 
International Conference on Robotics and Automation (ICRA), 

Brisbane, QLD, Australia, 2018, pp. 3833-3840, doi: 
10.1109/ICRA.2018.8461180.  

[71] M. Sumikura, Y. Shibuya, and K. Sakurada, "OpenVSLAM: A 

Versatile Visual SLAM Framework," Proceedings of the 27th 
ACM International Conference on Multimedia, pp. 2292-2295, 
2019. doi:10.1145/3343031.3350539. 

[72] Seiskari, O.; Rantalankila, P.; Kannala, J.; Ylilammi, J.; Rahtu, 

E.; Solin, A. HybVIO: Pushing the Limits of Real-Time Visual-

Inertial Odometry. In Proceedings of the IEEE/CVF Winter 
Conference on Applications of Computer Vision (WACV), 
Waikoloa, HI, USA, 4–8 January 2022; pp. 701–710.  

[73] Merzlyakov, A.; Macenski, S. A Comparison of Modern 
General-Purpose Visual SLAM Approaches. In Proceedings of 

the 2021 IEEE/RSJ International Conference on Intelligent 

Robots and Systems (IROS), Prague, Czech Republic, 27 
September–1 October 2021; pp. 9190–9197. 

[74] Sturm, J., Engelhard, N., Endres, F., et al. (2012). A benchmark 
for RGB-D visual odometry, 3D reconstruction, and SLAM. 

*IEEE International Conference on Robotics and Automation 
(ICRA)*. 

[75] Geiger, A., Lenz, P., & Urtasun, R. (2012). Are we ready for 

autonomous driving? The KITTI Vision Benchmark Suite. 

*IEEE Conference on Computer Vision and Pattern Recognition 
(CVPR)*. 

[76] Huebner, M., & Bischof, H. (2013). ICL-NUIM: A dataset for 
evaluating visual odometry and SLAM algorithms in indoor 
environments. *Technical Report*. 

[77] Burri, M., Nikolov, S., & Gohl, P. (2016). The Euroc MAV 
dataset. *IEEE/RSJ International Conference on Intelligent 
Robots and Systems (IROS)*. 

[78] Schöps, T., & Cremers, D. (2017). TUM VI benchmark. 
*Technical Report, Technical University of Munich*. 

[79] Sturm, J., & Burgard, W. (2011). TUM Mono VO dataset. 
*Technical Report, Technical University of Munich*. 

[80] Whelan, T.; Kaess, M.; Johannsson, H.; Fallon, M.; Leonard, 
J.J.; McDonald, J. Real-time large-scale dense RGB-D SLAM 
with volumetric fusion. Int. J. Robot. Res. 2015, 34, 598–626. 

[81] RGB-D SLAM Dataset and Benchmark. Available online: 

https://vision.in.tum.de/data/datasets/rgbd-dataset (accessed on 
18 September 2024). 

[82] KITTI-360. Available online: 

http://www.cvlibs.net/datasets/kitti/ (accessed on 18 September 
2024). 

[83] ICL-NUIM. Available online: 

https://www.doc.ic.ac.uk/~ahanda/VaFRIC/iclnuim.html 
(accessed on 18 September 2024).  

[84] The EuRoC MAV Dataset. Available online: 

https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualiner
tialdatasets (accessed on 18 September 2024). 

[85] Monocular Visual Odometry Dataset. Available online: 
http://vision.in.tum.de/mono-dataset (accessed on 18 September 
2024).  

[86] Visual-Inertial Dataset. Available online: 

https://vision.in.tum.de/data/datasets/visual-inertial-dataset 
(accessed on 18 September 2024) 

[87] Cityscapes. Available online: https://www.cityscapes-
dataset.com/ (accessed on 18 September 2024). 

[88] NYU RGB-D. Available online: 

https://cs.nyu.edu/silberman/datasets/ (accessed on 18 
September 2024).  

[89] MS COCO. Available online: 

https://paperswithcode.com/dataset/coco (accessed on 18 
September 2024). 

[90] The Bonn RGB-D Dynamic Dataset is available at: 

https://www.ipb.uni-bonn.de/data/rgbd-dynamic-dataset  
(accessed on 18 September 2024). 

[91] ORB-SLAM. Available online: 
https://github.com/raulmur/ORB_SLAM (accessed on 23 
September 2024) 

[92] ORB-SLAM2. Available online: 
https://github.com/raulmur/ORB_SLAM2 (accessed on 23 
September 2024) 

[93] CNNSLAM. Available online: 

https://github.com/iitmcvg/CNN_SLAM (accessed on 23 
September 2024) 

[94] DSO: Direct Sparse Odometry. Available online: 

https://github.com/JakobEngel/dso (accessed on 23 September 
2024) 

[95] LDSO: Direct Sparse Odometry with Loop Closure. Available 

online: https://github.com/tum-vision/LDSO (accessed on 23 
September 2024) 

[96] OpenVSLAM. Available online:  
https://github.com/xdspacelab/openvslam (accessed on 23 
September 2024) 

[97] ORB-SLAM3. Available online: https://github.com/UZ-
SLAMLab/ORB_SLAM3 (accessed on 23 September 2024) 

[98] Schneider, T., Schubert, T., Schmidt, H., & Zell, A. (2021). RD-
VIO: Robust visual-inertial odometry for mobile augmented 

reality in dynamic environments. 2021 IEEE International 

Symposium on Mixed and Augmented Reality (ISMAR), 218–
226. https://doi.org/10.1109/ISMAR52148.2021.00038 

[99] Leutenegger, S., Furgale, P., Cadena, C., Dellaert, F., & 

Siegwart, R. (2022). OKVIS2: Realtime scalable visual-inertial 
SLAM with loop closure. arXiv preprint arXiv:2206.04135. 
https://arxiv.org/abs/2206.04135 

[100] Picard, Q., Chevobbe, S., Darouich, M., and Didier, J.-Y. 

(2023). A survey on real time 3d scene reconstruction with slam 

methods in embedded systems. arXiv preprint 
arXiv:2309.05349. 

[101] M. Bloesch, S. Omari, M. Hutter and R. Siegwart, "Robust 
visual inertial odometry using a direct EKF-based 

approach," 2015 IEEE/RSJ International Conference on 

Intelligent Robots and Systems (IROS), Hamburg, Germany, 
2015, pp. 298-304, doi: 10.1109/IROS.2015.7353389. 

[102] Geneva, P., Yang, Y., Eckenhoff, K., & Huang, G. (2020). DM-

VIO: Delayed Marginalization Visual-Inertial Odometry. 2020 
IEEE International Conference on Robotics and Automation 

(ICRA), 5796-5802. 
https://doi.org/10.1109/ICRA40945.2020.9197424 

[103] Von Stumberg, L.; Usenko, V.; Cremers, D. Direct Sparse 

Visual-Inertial Odometry Using Dynamic Marginalization. In 

Proceedings of the 2018 IEEE International Conference on 

Robotics and Automation (ICRA), Brisbane, Australia, 21–25 
May 2018; pp. 2510–2517.  

[104] Mur-Artal, R.; Tardós, J.D. Visual-Inertial Monocular SLAM 
with Map Reuse. IEEE Robot. Autom. Lett. 2017, 2, 796–803. 

[105] Zhao, J., & Shen, S. (2019). A review of visual-inertial 

simultaneous localization and mapping from filtering-based and 

optimization-based perspectives. Robotics and Automation 
Letters, 4(2), 361–368. 
https://doi.org/10.1109/LRA.2019.2891678 

[106] ROVIO. Available online: https://github.com/ethz-asl/rovio 
(accessed on 2 October 2024). 

https://vision.in.tum.de/data/datasets/rgbd-dataset
http://www.cvlibs.net/datasets/kitti/
https://www.doc.ic.ac.uk/~ahanda/VaFRIC/iclnuim.html
https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets
https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets
http://vision.in.tum.de/mono-dataset
https://vision.in.tum.de/data/datasets/visual-inertial-dataset
https://www.cityscapes-dataset.com/
https://www.cityscapes-dataset.com/
https://cs.nyu.edu/silberman/datasets/
https://paperswithcode.com/dataset/coco
https://www.ipb.uni-bonn.de/data/rgbd-dynamic-dataset
https://github.com/raulmur/ORB_SLAM2
https://github.com/raulmur/ORB_SLAM2
https://github.com/iitmcvg/CNN_SLAM
https://github.com/JakobEngel/dso
https://github.com/tum-vision/LDSO
https://github.com/xdspacelab/openvslam
https://github.com/UZ-SLAMLab/ORB_SLAM3
https://github.com/UZ-SLAMLab/ORB_SLAM3
https://doi.org/10.1109/ISMAR52148.2021.00038
https://arxiv.org/abs/2206.04135
https://doi.org/10.1109/ICRA40945.2020.9197424
https://doi.org/10.1109/LRA.2019.2891678
https://github.com/ethz-asl/rovio


Journal of Computer Science and Engineering Research (JCSER) 41 

 

Rajaa W.Ali, Heba Hakim, Mohammed A. Al-Ibadi, A Full Overview of Visual SLAM Algorithms 

[107] VINS-Mono. Available online: https://github.com/HKUST-
Aerial-Robotics/VINS-Mono (accessed on 2 October 2024). 

[108] VI-DSO. Available online: https://github.com/RonaldSun/VI-

Stereo-DSO (accessed on 2 October 2024). 

[109] DM-VIO. Available online: https://github.com/lukasvst/dm-vio 
(accessed on 2 October 2024). 

[110] RD-VIO. Available online: https://github.com/Jianxff/rd_vio 
(accessed on 2 October 2024). 

[111] Wang,W.;Zhu, D.; Wang, X.; Hu, Y.; Qiu, Y.; Wang, C.; Hu, 

Y.; Kapoor, A.; Scherer, S. Tartanair: A dataset to push the 
limits of visual slam. In Proceedings of the 2020 IEEE/RSJ 

International Conference on Intelligent Robots and Systems 

(IROS), Las Vegas, NV, USA, 24 October 2020–24 January 
2021; pp. 4909–4916. 

[112] Nguyen,T.M.; Yuan, S.; Cao, M.; Lyu, Y.; Nguyen, T.H.; Xie, 
L. NTU VIRAL: A Visual-Inertial-Ranging-Lidar dataset, from 

an aerial vehicle viewpoint. Int. J. Robot. Res. 2021, 41, 270–
280. 

[113] The NTU VIRAL Dataset is available at: https://ntu-
aris.github.io/ntu_viral_dataset (accessed on 4 October 2024). 

[114] The TartanAir Dataset is available at: 

https://theairlab.org/tartanair-dataset (accessed on 4 October 
2024). 

[115] Endres, F.; Hess, J.; Sturm, J.; Cremers, D.; Burgard, W. 3-D 

Mapping With an RGB-D Camera. IEEE Trans. Robot. 2014, 
30, 177–187. 

[116] H. Strasdat, A. J. Davison, J. M. M. Montiel, and K. Konolige, 

“Double window optimisation for constant time visual SLAM,” 
in IEEE Int. Conf. Comput. Vision (ICCV), 2011, pp. 2352–
2359 

[117] Mur-Artal, R., & Tardos, J. D. (2017). ORB-SLAM2: An Open-

Source SLAM System for Monocular, Stereo, and RGB-D 

Cameras. IEEE Transactions on Robotics, 33(5), 1255–1262. 
https://doi.org/10.1109/tro.2017.2705103 

[118] Whelan, T., Salas-Moreno, R., Glocker, B., Davison, A. J., & 

Leutenegger, S. (2015). ElasticFusion: Real-time dense SLAM 
and light source estimation. The International Journal of 

Robotics Research, 35(14), 1697-1716. 
https://doi.org/10.1177/0278364915591230 

[119] Izadi, S., Moore, M., Kim, D., et al. (2011). KinectFusion: Real-

time 3D reconstruction and interaction using a moving depth 
camera. In Proceedings of the 24th Annual ACM Symposium 

on User Interface Software and Technology (pp. 559-568). 
https://doi.org/10.1145/2047196.2047270 

[120] Sturm, J., Engelhard, N., Endres, F., Burgard, W., & Cremers, 

D. (2012). A benchmark for the evaluation of RGB-D SLAM 

systems. In IEEE/RSJ International Conference on Intelligent 
Robots and Systems (IROS) (pp. 573-580). 
https://doi.org/10.1109/IROS.2012.6385773 

[121] Newcombe, R. A., Davison, A. J., & Reid, I. D. (2011). 

KinectFusion: Real-time dense surface mapping and tracking. In 

2011 10th IEEE International Symposium on Mixed and 
Augmented Reality (pp. 127-136). 
https://doi.org/10.1109/ISMAR.2011.6092378 

[122] Chen, J., Richard, T., & Jayaraman, P. (2020). A comparative 

study of dense SLAM systems for RGB-D sensors. Journal of 

Field Robotics, 37(4), 584-602. 

https://doi.org/10.1002/rob.21925 

[123] rgbdslam. Available online: http://ros.org/wiki/rgbdslam 
(accessed on 4 October 2024). 

[124] ElasticFusion. Available online: 

https://github.com/mp3guy/ElasticFusion (accessed on 4 
October 2024). 

[125] RTAPMap. Available online: https://introlab.github.io/rtabmap 
(accessed on 4 October 2024). 

[126] BAD-SLAM. Available online: 

https://github.com/ETH3D/badslam (accessed on 4 October 
2024). 

[127] Tourani, A., Bavle, H., Sanchez-Lopez, J. L., and Voos, H. 
(2022). Visual slam: what are the current trends and what to 
expect? Sensors 22, 9297. doi:10.3390/s22239297 

[128] Mur-Artal, R., Montiel, J. M. M., and Tardos, J. D. (2015). Orb-
slam: a versatile and accurate monocular slam system. IEEE 
Trans. robotics 31, 1147–1163. doi:10.1109/tro.2015.2463671 

[129] Campos, C., Elvira, R., Rodríguez, J. J. G., Montiel, J. M., and 

Tardós, J. D. (2021). Orb-slam3: an accurate open-source 

library for visual, visual–inertial, and multimap slam. IEEE 
Trans. Robotics 37, 1874–1890. doi:10.1109/tro.2021.3075644 

[130] Ragot, N., Khemmar, R., Pokala, A., Rossi, R., and Ertaud, J.-
Y. (2019). “Benchmark of visual slam algorithms: orb-slam2 vs 

rtab-map,” in 2019 Eighth International Conference on 
Emerging Security Technologies (EST) (IEEE), 1–6. 

[131] Mur-A, J. D., and Tars, R. (2014). “Orb-slam: tracking and 

mapping recognizable,” in Proceedings of the Workshop on 
Multi View Geometry in Robotics (MVIGRO)-RSS. 

[132] Mur-Artal, R., Montiel, J. M. M., and Tardos, J. D. (2015). Orb-

slam: a versatile and accurate monocular slam system. IEEE 
Trans. robotics 31, 1147–1163. doi:10.1109/tro.2015.2463671 

[133] Zang, Q., Zhang, K., Wang, L., and Wu, L. (2023). An adaptive 

orb-slam3 system for outdoor dynamic environments. Sensors 
23, 1359. doi:10.3390/s23031359 

[134] Ca, C., Elvira, R., Rodríguez, J. J. G., Montiel, J. M., and 
Tardós, J. D. (2021). Orb slam3: an accurate open-source library 

for visual, visual–inertial, and multimap slam. IEEE Trans. 

Robotics 37, 1874–1890. doi:10.1109/tro.2021.3075644 

[135] Joo, S.-H., Manzoor, S., Rocha, Y. G., Bae, S.-H., Lee, K.-H., 

Kuc, T.-Y., et al. (2020). Autonomous navigation framework for 

intelligent robots based on a semantic environment modeling. 
Appl. Sci. 10, 3219. doi:10.3390/app10093219  

[136] Al-Tawil B, Hempel T, Abdelrahman A and Al-Hamadi A 
(2024), A review of visual SLAM for robotics: evolution, 

properties, and future applications. Front. Robot. AI 
11:1347985. doi: 10.3389/frobt.2024.1347985. 

[137] Boikos, K.; Bouganis, C.S. Semi-dense SLAM on an FPGA 

SoC. In Proceedings of the 2016 26th International Conference 
on Field Programmable Logic and Applications (FPL), 
Lausanne, Switzerland, 29 August–2 September 2016; pp. 1–4. 

 

https://github.com/HKUST-Aerial-Robotics/VINS-Mono
https://github.com/HKUST-Aerial-Robotics/VINS-Mono
https://github.com/RonaldSun/VI-Stereo-DSO
https://github.com/RonaldSun/VI-Stereo-DSO
https://github.com/lukasvst/dm-vio
https://github.com/Jianxff/rd_vio
https://ntu-aris.github.io/ntu_viral_dataset
https://ntu-aris.github.io/ntu_viral_dataset
https://theairlab.org/tartanair-dataset
https://doi.org/10.1109/tro.2017.2705103
https://doi.org/10.1177/0278364915591230
https://doi.org/10.1145/2047196.2047270
https://doi.org/10.1109/IROS.2012.6385773
https://doi.org/10.1109/ISMAR.2011.6092378
https://doi.org/10.1002/rob.21925
http://ros.org/wiki/rgbdslam
https://github.com/mp3guy/ElasticFusion
https://introlab.github.io/rtabmap
https://github.com/ETH3D/badslam

