Journal of Computer Science and Engineering Research (JCSER)

Volume 2, Issue 1, Date: 30 - June — 2025

ISSN: 2978-4328, DOI: 10.64820/AEPJCSER.21.27.41.62025

27

A Full Overview of Visual SLAM Algorithms

Rajaa W. Ali !, Heba Hakim. 2, Dr. Mohammed A. Al-Ibadi *
1,23 Computer Department, Basrah University, Basrah, Iraq
Email: ! pgs.rajaa.wejood@uobasrah.edu.iq, > hiba.abdulzahrah@uobasrah.edu.iq, > mohammed.joudah@uobasrah.edu.iq

Abstract—Simultaneous Localization and Mapping, or
SLAM, is an essential approach for autonomous robotic
systems. Simultaneous mapping and sensor pose estimation are
made possible by SLAM in an unknown environment. Visual
simultaneous localization and mapping, often known as V-
SLAM, is an important field in robotics, particularly for
cooperative and interactive mobile robot environments. Faster
development of Visual SLAM can be attributed to low-cost
sensors, easy integration of additional sensors, and improved
ambient information. Numerous strategies and techniques for
implementing visual-based SLAM systems are presented in the
literature. It might be challenging for a novice in this field to
sort through the range of publications, recognize and evaluate
the key algorithms, and ultimately select the best one for their
intended use. Therefore, we present the three main visual-
based SLAM approaches (visual alone, visual inertial, and
RGB-D SLAM), emphasizing their salient features and
limitations. We also use flowcharts and diagrams to examine
the main algorithms of each approach. It tracks the
development of SLAM techniques historically and offers
contrastive evaluations of concepts and salient ideas. The
research examines important Visual SLAM benchmark
datasets and offers process-level visualization for every
method. This research aims to cover the essential elements and
characteristics of SLAM methodologies, providing a
foundational resource for understanding and selecting
appropriate techniques.

Keywords—Benchmark; Mobile Robots; RGB-D SLAM;
Visual-SLAM; Visual-Inertial SLAM.

L INTRODUCTION (HEADING 1)

In 1986, Smith established the notion of simultaneous
localization and mapping (SLAM), which is a basic need for
many robotic applications [1,2]. SLAM technology allows
mobile robots to generate an environment map and estimate
their own location in real time, without requiring any prior
environmental information, based on inputs from one or
more sensors. In robotics, mapping is essential since it
makes landmarks visible and simplifies the use of SLAM.
Because of its capacity to carry out navigation and
perception concurrently in an unfamiliar area, SLAM has
grown in popularity over the last several decades and drawn
the interest of numerous scholars [3]. Based on the specific
data collecting tools they employ, there are two major
categories of SLAM systems in use today.

The foundation of the first kind is provided by light
detection and ranging, or LiDAR, sensors [4]. Most
autonomous vehicles employ expensive LiDAR based
SLAM. The second type, known as visual SLAM [5], offers
cheap flow costs and a small volume as benefits. It utilizes
an image sensor. It may offer motion estimate if texture data
were more plentiful. the portrayal of the environment in

visual form. Additionally, when returning to previously
recorded places, it might help in estimating the robot's state,
moving it, and minimizing estimate errors [8].When the
global positioning system (GPS) is unavailable, like in
interior scenarios, visual SLAM plays a crucial role because
of its rapid ambient awareness and autonomous localization
capabilities [6, 7].

The map development process also involves two additional
tasks: localization and route planning. According to
Stachniss [9], path planning, localization, and mapping are
essential functions that allow a robot to comprehend its
environment, ascertain its location, and create paths to
certain destinations. SLAM is one technique that combines
the mapping and localization phases. SLAM algorithms
employ data from several sensors. Visual SLAM, or just
using visual sensors, may require the use of a monocular
RGB camera [18], a stereo camera [19], or an
omnidirectional camera (which takes simultaneous photos in
all 360-degree directions) [20]. As a result of their restricted
visual input, they are more technically demanding [10], or
RGB-D cameras (RGB-D SLAM) capture RGB images in
addition to depth pixel data [21]. Visual-inertial (VI)
SLAM, an inertial measurement unit (IMU) that is small,
low-cost, and achieves high accuracy, is essential for many
applications that demand lightweight design. It is a crucial
component for several applications, including driverless
racing vehicles, that require lightweight construction [11].

In order to provide an overview and a basic understanding
of the problem of simultaneous localization and mapping
(SLAM), Bailey and Durrant-Whyte [12] investigate the
recursive Bayesian formulation of the SLAM problem. This
approach produces probability distributions, vehicle posture
estimates, and absolute or relative landmark placements. A
concise synopsis of the graph-based SLAM problem is
given by Grisetti et al. (2008). To provide SLAM solution
methodologies in mobile robots and its wide application,
Taheri et al. [13] provide a useful survey and an effective
overview. Basheer et al. [14], Macario Barros et al. [15]
separated VSLAM techniques into three classes: visual only
(monocular), visual inertial (stereo), and RGB-D SLAM.
This division was made in consideration of the studies and
surveys of visual aids. Additionally, they put out a number
of criteria for decomposing and examining VSLAM
algorithms. The first review of VI-SLAM approaches from
both an optimization based and filtering-based standpoint is
Chen et al. [16]. The RGB-D SLAM system's core concept
and structure were first presented by Zhang et al. [17].
Basheer et al. [14] additionally, focuses on the integration of
the robotic environment with a robot operating system
(ROS) as Middleware. Additionally, Macario Barros et al.
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[15] offer a summary of each approach's primary algorithms
using flowcharts and diagrams. Taketomi et al. [23] and
Covolan et al. [22] focus on visual only and RGB-D-based
techniques and outline the key algorithms, providing an
overview of the key ideas utilized in the visual based SLAM
systems. al. Servieres [24] give a summary of the current V-
SLAM and VI-SLAM designs before going on to classify a
fresh batch of twelve primary state-of-the-art techniques.
Robots that are mobile and adaptive enough to function
successfully in new surroundings are essential in today's
society. Thus, simultaneous localization and mapping, or
SLAM, is an important technique for these robots. Durrant-
Whyte (2012) and Mohamed et al. (2008) state that the
primary goal of SLAM is to allow for autonomous
exploration and navigation of foreign environments by
simultaneously creating a map and determining the user's
location. It can also make decisions in real-time, so robots
don't need to refer to previously made maps. The capacity of
the robot to perceive and successfully interact with its
environment is enhanced by its usefulness in the extraction,
organization, and interpretation of data. Describe the RGB-
D SLAM system's fundamental idea and architecture.
Previous research has demonstrated the effectiveness of V-
SLAM techniques; nevertheless, they are often provided
with limited data and unique figures, making it challenging
to understand, assess, and select one from the group.
Therefore, our effort focuses on simplifying the descriptions
of V-SLAM techniques to make them easier for readers to
grasp. The main contributions of the study are summarized
as follows:

e Examining V-SLAM techniques to identify the
most effective robotics tools.

e In order to enhance comprehension of the
operational procedures associated with V-SLAM, a
graphical and illustrative structural workflow was
developed for every approach.

e Determining key factors for the V-SLAM
approaches' evaluation and selection criteria.

e Making a table of comparisons with the salient
features and parameters of each V-SLAM
technique.

e The discussion and display of relevant datasets
used in the robotics application domain.

The paper is organized as follows: An introduction
of the V-SLAM paradigm that explores its core ideas is
provided in Section 2. The key ideas of the three chosen
techniques are presented in Section 3. Section 4 delves into
the development of V-SLAM and examines the datasets that
are most frequently utilized. The guidelines for assessing
and choosing visual SLAM techniques are covered in
Section 5. The article's conclusion, which summarizes the
most important ideas, is found in Section 6.

IL. VISUAL BASED SLAM TECHNIQUIES

Three primary processes are involved in visual-based
SLAM systems, which employ cameras to create 3D maps
from 2D images: initialization, tracking, and mapping (Fig.
1) [10]. Initialization produces an initial map and establishes
a global coordinate system. By comparing 2D-3D
correspondences, tracking keeps the camera in relation to
the map and frequently resolves the Perspective-n-Point

(PnP) issue [25, 26]. When additional regions are viewed,
mapping enlarges the map. The majority of V-SLAM
algorithms rely on intrinsic camera parameters that have
been pre-calibrated, whereas extrinsic parameters (rotation
and translation) determine camera positions.

Tracking + Mapping

Input Data

Initialization

Fig. 1 General elements of a vision-based SLAM. A dense reconstruction
(Reprinted from [30]), a semi-dense map, and a sparse map in the MH_01
sequence [28]). Taken from [15].

A 2D image, a 2D image with depth data, or both can be
the input for a visual-SLAM system, as shown in Figure 1,
depending on the technique employed (visual only, visual
inertial, or RGB-D based, respectively). Among the
situations that this system may be used to efficiently build
and implement are semantic segmentation [32], pixel-wise
motion segmentation [31], and filtering techniques [33, 34].
These methods seek to provide a professional approach for
an image of the V-SLAM operations. It makes sense to
separate the operational framework into four parts, which
are listed and covered below.

A. Setting up the System and Collecting Data

In this step of V-SLAM, which involves capturing and
processing images. It involves setting up cameras such as
RGB-D cameras, depth cameras, or infrared sensors for data
gathering and system setup [35]. Camera calibration, which
is often the first step in system startup, determines intrinsic
and extrinsic properties for accurate mapping and
localisation. Effective initialization techniques are essential
for precise SLAM tracking and mapping because they
minimize error propagation and frequently make use of pre-
existing data or manual starting locations [36]. A properly
calibrated and initialized system is crucial for efficient
VSLAM performance, as demonstrated by the fact that the
choice of suitable data acquisition techniques and
initialization strategies directly affects the system's capacity
to handle a variety of dynamic and varied environments
[37].

B. Localization of the System

The second stage of V-SLAM, an important phase in the
process overall, has as its main objective determining the
position of the system [38]. Pose estimation [42], or
localization, is the process by which the system precisely
determines where it is in the environment. This step entails
estimating the camera's position and orientation in space
with respect to the previously constructed map using data
from the visual sensor, which is often a camera. Using
methods like ORB (Oriented FAST and Rotated BRIEF) or
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SIFT (Scale-Invariant Feature Transform), the system
recognizes and compares important aspects from the current
frame with those seen in previous frames. This phase, which
is critical to maintaining the system's accuracy while
navigating the environment, frequently incorporates loop
closure detection to rectify drift by identifying and
realigning with previously visited places [39,40,41]. This
process relies on several key components: feature tracking,
feature matching, relocalization, and pose estimation. Each
of these components plays a crucial role in ensuring that the
V-SLAM system can accurately localize itself within the
environment, thereby maintaining a consistent and accurate
map. To estimate camera motion in visual SLAM, detected
characteristics are tracked throughout frames and compared
to those in a map or earlier frames. Nearest neighbor search
and descriptors aid in finding matches, whereas RANSAC
eliminates untrustworthy ones. By comparing the current
frame attributes with the map, relocalization recovers the
camera's attitude once tracking is lost because to rapid
movement or occlusion. Pose estimation, which aligns 2D
picture points to their 3D counterparts using the
Perspective-n-Point (PnP) technique, uses monitored and
matched data to identify the exact camera location and
orientation. V-SLAM systems achieve real-time localization
and mapping through feature tracking, pose optimization,
and relocalization, essential for applications in robotics,
augmented reality, and autonomous vehicles.

C. System Map Creation

SLAM systems employ several mapping techniques,
including occupancy grids and point clouds, depending on
the kind of information, sensor, and application
requirements [43, 44]. Localization and mapping work
together to keep a trustworthy, current map. Robotics uses
grid maps to simulate actual environments. Each cell in the
map represents a specific place and stores information about
barriers, geography, and occupancy. For robots, feature-
based SLAM uses maps that depict environmental elements,
such as landmarks, to help in localization and navigation
[45, 46]. Specialized sensors produce a 3D point cloud,
which visualizes the spatial arrangement to improve
comprehension of the surroundings [47]. Keyframe setup
during localization results in field modeling, where
important spots and feature lines are found for the
production of maps [48]. The map is updated in real-time as
the robot's location is continually tracked [49]. A key
component of feature-based SLAM, bundle adjustments
(BAs) improve accuracy by fine-tuning the placement and
structure of observed points [S0-52].

D. Process Tuning & Loop Closure

Loop closures and system tuning are used to optimize
the map in the latter stage of the V-SLAM process.
Enhancing the system's precision, dependability, and long-
term consistency requires process tuning and loop closures.
Process tuning strikes a balance between accuracy,
computing efficiency, and resilience by modifying and
optimizing a variety of parameters and algorithms, such as
pose estimation techniques and feature detection
sensitivities. This entails optimizing algorithms and
balancing resource limitations with  performance,
particularly in real-time systems like robots or augmented

reality. The system's constant performance is ensured by
extensive testing in various scenarios.

By re-aligning the system with previously mapped locations
through pose graph optimization, loop closure in V-SLAM
fixes map drift and preserves map accuracy, particularly in
dynamic situations.

Fig 2 show an explanation of the procedures carried out
within V-SLAM. The V-SLAM framework is made up of
successive phases arranged to construct the system and
process its data.

System Tuning

Data Acquision System localization System Mapping
Featue Tracking ~ § Points Defining & Cadites
Camera £ ¢
Intlzation Featue Metching £ H Bagof Words
bl Iy 9 2 Linesdefring T ¥ System Output
Fierg Reocaliatin & N
Dataset Y Tg Optimization
Pose Estimation Field Modeling H

Computing

Loop closing 4—1

Fig. 2 Adapted from [53]. An overview of the four core components
necessary for visual SLAM.

III. VISUAL SLAM MODEL

By utilizing cutting-edge sensors, deep learning, and
machine learning, V-SLAM seeks to advance robotics by
estimating camera motion and 3D structure in unfamiliar
situations [54, 55]. The topology of V-SLAM is divided into
three categories, as shown in Fig. 3: visual-inertial SLAM,
RGB-D SLAM, and just visual SLAM [57]. Different
methods are assessed according to six important criteria:
algorithm type, map density, global optimization, loop
closure, availability, and embedded implementations [15].
As demonstrated by applications like autonomous driving,
the selection of the SLAM approach is contingent upon
particular project requirements, including scalability and
accuracy [33, 56]. The SLAM algorithms that we have
chosen to showcase the best qualities of the three techniques
are listed below, arranged by publication year.

A. Visual-Only SLAM

Map points are initialized with uncertainty before being
refined by feature-based algorithms in visual-only SLAM
systems, which depend on 2D image processing to establish
a global coordinate system and rebuild maps. Although
monocular cameras are preferred due to their compact size,
low cost, and power economy, initialization, scaling, and
drift are issues that they must deal with [27]. Although they
are bigger and need more processing, stereo cameras can
address some of these problems by giving stereo depth in a
single image. Through the addition of depth information,
increased 3D mapping precision, decreased drift, and
support for strong feature matching in demanding situations,
RGB-D cameras improve SLAM. Fig. 1 displays the chosen
visual only SLAM algorithms, which are described in the
next subsections.
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[ Visual SLAM methods ]

LSD-SLAM - 2014

ORB-SLAM - 2014
ORB-SLAMZ - 2016
CNN-VSLAM -2017

A) Visual Only SLAM D50- 2018

LDSO - 2015
OpenSLAM - 2015
ORB-SLAME - 2020

— ROVIO -2015

— VIORE - 2017

= VINS-Mono - 2018
= VINS-Fusion - 2019
—» ORB-SLANS - 2020
[~ DM-VIO -2020
—» RD-VIO- 2020
—p OKVIS2 - 2022

RGBDSLAMZ - 2014
Elastic Fusion- 2015
ORB-SLAMZ - 2017

C) RGB-D SLAM RTAB-Map- 2018

BAD-SLAM - 2015
ORB-SLAM3 -2020
SCE-SLAM - 2023

Fig. 3 Three examples of visual SLAM types include RGB-D SLAM, only-
visual SLAM, and visual-inertial SLAM.

e ORB-SLAM-2014

Oriented FAST and Rotated BRIEF SLAM, or ORB-
SLAM, is a feature-based SLAM system that may be used
in both small and large interior and outdoor settings [127].
Its real-time capabilities and high-quality —map
reconstruction make it a popular choice for applications
such as autonomous navigation, augmented reality, and
human-robot interaction [128]. The main features of ORB-
SLAM, which can handle both static and dynamic motion
clutter, are loop closure, mapping, and tracking [129].

In comparison to existing V-SLAM methods, ORB-
SLAM achieves real-time global localization and camera re-
localization across different views by enhancing map
dynamics, size, and traceability [130,131]. While ORB-
SLAMI is categorized as only-visual, ORB-SLAM?2 offers
both only-visual and RGB-D SLAM [132,131], while ORB-
SLAM3 adds visual-inertial SLAM, demonstrating its
adaptability and applicability across a range of applications
[133,134].

Four processes comprise the ORB-SLAM methodology:
loop closure, local mapping, tracking and sensor input, and
output preparation [135, 136]. Version-specific variations in
the tracking step—ORB-SLAMI uses one input, ORB-
SLAM?2 uses three, and ORB-SLAM3 uses four—have an
impact on how well later procedures work. New map points
and keyframes are introduced in local mapping, and ORB-
SLAM3 enhances feature matching. In versions 2 and 3, the
loop closing stage involves bundle adjustment welding and
map merging. The output, which includes the required

SLAM data and 2D/3D maps, is prepared in the last step
[136].

e ORB-SLAM2 -2016

ORB-SLAM2, a state-of-the-art feature-based algorithm,
builds upon ORB-SLAM [59] and operates with three
concurrent threads: tracking, local mapping, and loop
closure. The tracking thread reduces reprojection error and
locates the sensor, while the local mapping thread manages
map-related tasks [60].

The loop closure thread in ORB-SLAM?2 finds new loops
and fixes drift, then adjusts the bundle for motion and
structural consistency. For RGB-D, monocular, and stereo
techniques, the algorithm employs loop closure and global
optimization. But if comparable frames are not recognized,
tracking problems may occur, and real-time operation on
embedded systems is challenging since pictures must be
processed at the same frame rate as they are obtained
[61,62]. Figure 4 shows a diagram of the threads in the
algorithm. A representation of the algorithm's threads can be
found in Fig. 4. Despite the existence of several embedded
implementations in the literature, this remains the case. The
ORB-SLAM method was executed on a CPU by Yu et al.
[63], while Abouzahir et al. [62] built the algorithm on
several CPU- and GPU-based platforms and assessed each
thread's performance on the platforms.

e (NN VSLAM - 2017

CNN SLAM [64] integrates convolutional neural
networks with real-time SLAM by combining maps and
depth from monocular SLAM with CNN-predicted semantic
segmentation. It uses a key-frame based SLAM approach,
where visually distinct frames are refined via pose graph
optimization. The method estimates camera positions
through frame-to-key-frame transformations, with depth
prediction handling scale estimation. It also incorporates
loop closure and global optimization. Real-time execution
requires a CPU+GPU architecture, and the system's pipeline
is illustrated in Figure 5.
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C & verteey Magwa and Points Insertion
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l Local Mappng

Loop Correction| :
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Loop —
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Detection Optimization
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Fig. 4 Diagram representing the ORB-SLAM 2.0 algorithm. Adapted from
[59]
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Fig. 5 Diagram representing the CNN-SLAM algorithm. Adapted from
[64].

o Direct Sparse Odometry - 2018
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A direct probabilistic model and camera motion are
combined in Direct Sparse Odometry (DSO), a visual
odometry approach that optimizes all model parameters,
including geometry expressed as inverse depth. Through the
use of an inverse depth map and keyframe window, it
performs continuous optimization with local bundle
modification while evenly sampling pixels in real-time. By
adding posture and loop closure detection, Xiang et al. [67]
expanded DSO. Fig. 6 depicts the main phases of DSO.

Track on current j
Keyframe Creation Add Keyframe in the
[ — Candidate points Selectionmmms| (it tion window
iy tant Tracking on next frames -
Activation of active keyframes

Joint Optimization
Optimization of the
photometric error

Marginalize old

Refine keyframes and points

active keyframes

‘ New Frame ‘

Fig. 6 Diagram representing the DSO algorithm. Adapted from [15]

Pose-graph optimization (DSO) and loop closure
detection (LCDSO) are extended to monocular visual
SLAM by LDSO, which prioritizes corner features in
tracking to preserve robustness in featureless regions. The
bag-of-words (BoW) approach is used to identify loop
closure possibilities, which are then confirmed by geometric
checks and relative pose constraints derived from the
combined reduction of 2D and 3D mistakes. The DSO
sliding window optimization's co-visibility graph is fused
with these limitations.

e Open-VSLAM - 2019

Using ORB as a feature extractor and a graph-based
algorithm akin to ORB-SLAM and ProSLAM,
OpenVSLAM is a modular, monocular, stereo, and RGBD
visual SLAM system [70]. As seen in Fig. 7, the
OpenVSLAM program may be loosely categorized into
three modules: tracking, mapping, and global optimization.
The tracking module determines when to add a new
keyframe, which is then sent to the mapping and
optimization modules for additional processing, by
predicting the camera attitude using posture optimization
and keypoint matching.

By triangulating 3D points from keyframes (KFs) and
carrying out local bundle adjustment (BA), the mapping
module in OpenVSLAM enlarges the map. Pose-graph
optimization, global BA, and loop closure are handled by
the global optimization module, which uses the g2o
optimization framework to solve trajectory and scale drift,
especially for monocular camera models [71].

OpenVSLAM provides versatility by supporting map
import/export, working with a variety of camera
manufacturers and models, and having a cross-platform
online browser. Its precision is inferior to that of ORB-
SLAM3 and VINS-Fusion, and its absence of integrated
loop closure and IMU support causes drift in rapid
movements. It has poor real-time performance on low-
power devices, is less suitable for large-scale mapping, and
performs badly in dynamic or low-texture situations. It also
has little community support.

Input Keypoint Matching with
frame detection local map ‘
. . Pose
tracking KFt decision A @
module optimization acamera pose
T
'tv v
global l loop detection l l KFt creation l
. £ 2 L2
moduie pose-graph triangulation of
optimize a global map optimization 3D points
Vi ph izati ¥ Y and o
and global BA [ global BAT ] [ local BA: ] near
>
* KeyFrame —
#Bundle Adjustment _———" =TT

global map ’f\

a whole map created so far

a partial map around the current KF

Fig. 7 Main modules of Open-VSLAM: tracking, mapping, and global
optimization modules. Adapted from [71].

e ORB-SLAMS3 - 2020

A method that combines the ORB-SLAM and VIORB
[15] algorithms is the already-discussed ORB-SLAM3. The
algorithm is separated into three primary threads, just like
its predecessors: loop closure and map merging, rather than
loop closing and tracking. Third, there is local mapping.
Besides, ORB-SLAM3 [27] maintains an Atlas multi-map
representation that includes non-active maps for location
recognition and relocalization, as well as an active map
utilized by the tracking thread. Map merging is introduced
to the final thread, which adheres to the same logic as
VIORB in the first two.

Depending on where the overlapping region is, the loop
closing and map merging thread uses all of the Atlas maps
to find common areas, execute loop correction, merge maps,
and switch the active map. An additional significant feature
of ORB-SLAM3 is the suggested initialization method,
which uses the Maximum-a-Posteriori algorithm separately
for the inertial and visual estimates before optimizing them
combined. This approach applies loop closures and global
optimizations techniques and may be utilized with
monocular, stereo, and RGB-D cameras. On the other hand,
considerable mistakes in ORB-SLAM3 online performance
were shown by the authors in [72]. Although the system
performed well in [73], it was unable to analyze all of the
sequences and produced erroneous estimates for outdoor
sequences.

e [SD-SLAM -2014

LSD-SLAM is a large-scale, real-time direct monocular
SLAM method that is intended for accurate mapping in
dynamic settings. Applications like as robots and self-
driving automobiles in complex and dynamic environments
are perfect for it since it supports a variety of camera
combinations and retains accuracy even at lower picture
resolutions [29]. The five stages of the workflow used by
LSD-SLAM and DVO-SLAM are identical and include data
input, picture alignment, loop closure, map optimization,
and global optimization. Real-time large-scale mapping is
made possible by LSD-SLAM, which combines direct and
semi-dense reconstruction approaches. To handle tracking
activities efficiently, CPU + FPGA architectures were used
in its implementation [137, 68]. But as LSD-SLAM depends
on pose-graph optimization, PTAM and ORB-SLAM
demonstrated greater accuracy in map estimation [132, 129].
The primary visual-only SLAM algorithms were covered in
this section. The key traits and evaluated standards for the
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suggested visual-only SLAM algorithms are enumerated in
Table 1.

TABLE 1. MAIN ASPECTS RELATED TO THE VISUAL-ONLY SLAM

APPROACHES.
Map Global Loop
Method TYPe | Density | Optimization | Closure | Availability
LSD Direct iem" Yes Yes [91]
ense
Feature-
ORB-SLAM based Sparse Yes Yes [92]
Feature-
ORB-SLAM2 based Sparse Yes Yes [93]
CNN-SLAM | Direct iem‘ Yes Yes [94]
ense
DSO Direct Sparse No No [95]
LDSO Direct Sparse No Yes [96]
OpenVSLAM | Hybrid Sparse Yes Yes [97]
Feature-
ORB-SLAM3 based Sparse Yes Yes [98]

B. Visual-Inertial SLAM

By combining inertial measurement units (IMUs) and
visual sensors (such as stereo cameras), VI-SLAM improves
system performance by producing a more precise and
comprehensive description of the surroundings. This hybrid
technique, which incorporates IMU data into the
environment model, improves accuracy and decreases
mistakes in real-world applications such as mobile robots
and drones. The next subsections provide explanations of
the chosen visual-inertial algorithms, whereas Fig. 3
displays a timeline of those methods.

®  Robust visual inertial odometry - ROVIO — 2015

By combining optical and inertial data using
sophisticated sensor fusion, ROVIO-SLAM [101] enhances
navigation accuracy and improves interaction with the
surroundings, making it perfect for long-term, low-cost
robotic systems operating in difficult environments. To
enable reliable mapping and positioning, the procedure
consists of three steps [100]: gathering IMU and camera
data, processing for feature identification and IMU
integration, and producing estimated pose and 3D
landmarks.

Despite being effective because of its tightly-coupled
visual-inertial fusion, ROVIO lacks loop closure, which
makes it less consistent over the long term than ORB-
SLAM3 or VINS-Fusion. Lidar-based SLAMs perform
better in low-light or texture-poor situations, where it is
susceptible to visual deterioration. Furthermore, it performs
worse in large-scale mapping, which makes it better suited
for scenarios that are more closely regulated or small-scale.

o  Visual Inertial ORB-SLAM — VIORB — 2017

Based on ORB-SLAM, VIORB [104] is a monocular
VI-SLAM system that integrates ORB-based front-end and
back-end operations such as graph optimization, loop
closure, and relocation. By calculating gyro bias, then fine-
tuning scale and gravity, accelerometer bias, and lastly
velocity, it accurately initializes scale, velocity, gravity
direction, and IMU biases using a special IMU initialization
technique. It joins recent keyframes via a co-visibility graph
and optimizes them using local bundle modification.

Additionally, SLAM solutions that integrate IMU with
RGB-D and stereo sensors have been investigated [105].

In the same context, monocular SLAM continuously
localizes and recovers the metric scale with great precision,
outperforming the state-of-the-art in stereo visual-inertial
odometry. For virtual and augmented reality systems, where
the expected user viewpoint must not change when the user
is in the same workspace, Ra” el Mur-Artal and Juan D.
Tard’os [105] make this zero-drift localization more
interesting. Using stereo or RGB-D cameras should help
improve accuracy and robustness, and since scale is known,
it would also make IMU configuration easier. Relying on
the initialization of the monocular SLAM is VIORB IMU
initialization's primary flaw.
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Fig. 8 Reproduced from [105], keyframe in the local map of Visual-
Inertial ORB-SLAM.

e VINS-MONO - 2018

With just one camera and one IMU, the monocular
visual-inertial system VINS-Mono [69] generates a metric
six degrees-of-freedom (DOF) state estimate that may be
used for motion tracking and navigation. Because of its
small size and effective design, it may be used with drones,
ground robots, and mobile devices. It computes roll, pitch,
and metric scale and uses IMU data to be resistant to visual
tracking loss. In order to minimize drift and improve
accuracy, this system combines feature observations with
pre-integrated IMU data in a VIO module, together with
concurrent global pose optimization.

VINS-Mono's main shortcomings are its reliance on
monocular vision without depth sensors, which can result in
scale estimation errors, particularly when tracking features
over long trajectories or in low-texture environments; the
system still experiences residual drift in translation and
orientation over time, even with the integration of an IMU;
and loop closure techniques, which are crucial for long-term
consistency, are not as reliable as approaches like ORB-
SLAM3, which provide more developed solutions for
relocalization and effectively reusing maps.

e  Direct Sparse Visual-Inertial Odometry - VI-DSO -
2018

In order to estimate camera locations and sparse scene
geometry concurrently, a novel technique for visual-inertial
odometry known as VI-DSO [103] minimizes both
photometric and IMU measurement errors in a combined
energy functional. Unlike key-point based methods, the
visual part of the system optimizes a sparse collection of
points in a manner similar to bundle correction, while
directly reducing a photometric mistake. This enables the
system to monitor all pixels, not just corners, with a large
enough intensity gradient. IMU data is collected across a
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number of frames via measurement pre-integration, and it is
utilized as an additional constraint in the optimization
between keyframes.

Fig. 10 provides an overview of the VI-DSO method and
outlines the main differences between it and the DSO
methodology. The VI-DSO is an extension of the DSO
algorithm that generates better accuracy and robustness than
the original DSO and other algorithms, such ROVIO [70],
by accounting for inertial information. However, because
bundle modification is dependent on the starting process, it
is slow [22]. The method does not conduct global
optimization or loop closure detection, and no embedded
implementations have been reported in the literature.
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Fig. 10 VI-DSO algorithm representation diagram. Adapted from [15]

®  Delayed Marginalization Visual-Inertial Odometry -
DM-VIO — 2020

DM-VIO is a monocular visual-inertial odometry system
that maximizes real-time processing by using delayed
marginalization and posture graph bundle modification.
DMVIO includes IMU data into marginalization states and
allows rapid updates with dependable new linearization
points by maintaining a secondary factor graph, which
improves accuracy and reduces computing burden [102].
Sparse visual tracking and IMU data are combined with the
effective motion estimation method DM-VIO to provide
precise real-time applications such as AR and autonomous
navigation. DM-VIO avoids feature matching by
minimizing photometric error in high-gradient zones, while
maintaining precision and lowering computing burden.
Keyframes are optimized via a sliding window, which
improves camera orientation, velocity, and posture.
Nevertheless, delayed marginalization in DM-VIO enhances
state estimation, but because of slower updates and
difficulties with IMU initialization, it increases complexity
and restricts scalability in highly dynamic applications
[102].

e RD-VIO: Robust Visual-Inertial Odometry — 2021

RD-VIO, a visual-inertial odometry system developed
by Jinyu Li et al. [98], uses the IMU-PARSAC algorithm to
handle both pure rotational motions and dynamic
surroundings. By breaking up rotating frames into
subframes, this two-stage method eliminates problems with
pure rotation and enhances keypoint matching with visual
and IMU information. With improvements made to a
baseline PVIO system to better manage landmark
triangulation and modify postures in dynamic settings, Fig.
11 shows the pipeline for RD-VIO. Experiments on the
EuRoc and ADVIO datasets show that RD-VIO performs
better than baselines and works well on mobile devices,
including an AR demo of the iPhone X. Pure inertial
odometry or wireless tracking might be useful for
maintaining performance, but, as it may lose tracking under
extended difficult circumstances.
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Fig. 11 The pipeline of RD-VIO. Adapted from [98]

o  Open Keyframe-based Visual-Inertial SLAM with
Loop Closure OKVIS2 — 2022

In robotics, augmented reality, and virtual reality
(AR/VR), robust and accurate state estimation is still a
hurdle, despite the increasing commodity nature of Visual-
Inertial Simultaneous Localization and Mapping (VI-
SLAM). a comprehensive VI-SLAM solution that addresses
problems with long and repeated loop closures in particular.
OKVIS2 is a real-time, multi-camera VI-SLAM system
with loop closure and location identification capabilities. a
multi-camera VI-SLAM system that uses visual reprojection
errors, IMU preintegrated error terms, and the
marginalization of common observations to generate a
factor graph.

A real-time estimator minimizes these in a bounded-size
window of recent pose-graph and keyframe frames. Once
the loop is closed, it is easy to turn the old pose-graph edges
back into landmarks and reprojection errors. Longer loops
can also be optimized asynchronously while keeping all
states around the loop as components of the optimized
variables by reusing the same factor-graph [99]. The VI
SLAM system is composed of a frontend and a realtime
estimator that process images and IMU messages
concurrently whenever a new (multi-)frame is received. To
handle loop closures, an asynchronous entire factor graph
loop optimization is performed. As shown in Figure 12, the
frontend manages a number of tasks, including place
recognition, segmentation CNN running, keypoint
matching, state initialization, stereo triangulation (from
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consecutive frames and from stereo images of the same
multi-frame), and, if the Ilatter was successful, re-
localization and loop closure initialization. The real-time
estimator is then responsible for fixating prior states and
constructing pose graph edges by marginalizing old data,
and it will optimize the relevant factor graph. Following
loop closure, it begins optimizing the complete factor graph
and proceeds to turn the edges of the pose graph back into
observations. After this asynchronous operation is complete,
it synchronizes with the realtime factor graph.

Despite being useful for real-time visual-inertial SLAM,
OKVIS2 has issues with accuracy maintenance in dynamic
situations and computational overhead brought on by
synchronous processing needs. Furthermore, delays may be
introduced by its reliance on asynchronous loop
optimization, which might compromise localization
consistency in practical situations.
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Fig. 12 Overview of OKVIS2 Adapted from [99]

In this part, every one of the seven main visual-inertial
SLAM algorithms were independently examined. Table 2
provides an overview of the key characteristics and
evaluation standards for the shown visual-inertial SLAM
algorithms.

TABLE 2: KEY ELEMENTS OF THE VISUAL-INERTIAL SLAM
TEQNIQUES. EVERY STRATGY SHOWS ACLOSLY INTEGRATED

SENSORY FUSION.
Method Type Map Densi Global Loop Closure  Availability
P P 1ty Optimization P

ROVIO Filtering-based Sparse No No [106]

VIORB Optimization-based ~ Sparse Yes Yes -
VINS-MONO Optimization-based ~ Sparse Yes Yes [107]

VI-DSO Optimization-based ~ Sparse No No [108]

DM-VIO Direct Sparse No No [109]

RD-VIO Hybrid Sparse No Yes [110]

OKVIS2 Keyframe-based Sparse Yes Yes -
ORB-SLAM3  Feature-based Sparse Yes Yes 98 R
C. GB-D SLAM

The innovative RGB-D technique integrates depth

sensors and RGB-D cameras to estimate and build
environmental models. This approach has found
applications in several domains, including robotic
perception and navigation. It performs well and provides
useful information on the spatial surroundings, particularly
in inside settings with good lighting. The system can
concurrently record color and depth data since RGB-D

cameras and depth sensors are coupled. Due to its ability to
resolve dense reconstruction on low-textured surface
regions, this capability is particularly useful for interior
applications. The goal of RGB-D SLAM is to produce a
precise three-dimensional reconstruction of the system's
surrounding environment, with a focus on gathering
geometric data to create a comprehensive three-dimensional
model. A summary of the methods applied in this section is
provided below:

e RGBDSLAMv2 -2014

ORB-SLAM2, a complete SLAM solution for
monocular, stereo, and RGB-D cameras, has capabilities
including map reuse, loop closure, and relocalization. The
system runs in a variety of settings in real-time on standard
CPUs, from small hand-held interior sequences to drones
flying in industrial areas and cars driving around a city.
RGBDSLAMvV2, one of the most used RGB-D based
algorithms, is built on feature extraction [115]. It estimates
posture using the ICP approach and estimates the
transformation between the matched features using the
RANSAC algorithm. To remove the accumulated error, the
system then performs a global optimization and loop
closure. This method also proposes to use an environment
measurement model (EMM) to validate the transformations
obtained between the frames. The method's real-time
performance is hampered since it depends on SIFT features.
RGBDSLAMYV2 requires slow sensor movement to work
well and has a high processing cost. In Fig. 13, the
algorithm is displayed.
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Fig. 13 A schematic illustration of the RGBDSLAMYV2 algorithm. Taken
from [15].

e Elastic Fusion — 2015

Using an incremental online method and an RGB-D
camera, the Elastic Fusion system can capture rich, globally
consistent surfel-based maps of room scale settings without
the need for pose graph optimization or other postprocessing
procedures. This is accomplished by using dense frame-to-
model camera tracking, windowed surfel-based fusion, and
frequent model refinement wusing non-rigid surface
distortions. Using RGB-D sensors, ElasticFusion is a real-
time dense visual SLAM technique that is intended for drift-
free 3D reconstruction. By integrating photometric
alignment with RGB data and frame-to-model tracking with
the ICP method, it approximates the camera posture. To
accomplish surface fusion, a truncated signed distance
function (TSDF) is used to integrate color and depth data
into a global model. One important aspect is the use of a
non-rigid deformation graph, which modifies previously
mapped regions to enable drift correction and real-time loop
closure. The method employs optimization to constantly
improve the global model, guaranteeing a reliable and
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precise 3D reconstruction. Elastic Fusion suffers in settings
with poor texture or fast movement, since tracking becomes
erratic. Since memory usage rises sharply in large-scale
settings, the method's reliance on a surfel-based approach
further restricts its scalability. Furthermore, in crowded or
changing landscapes, ElasticFusion's absence of an
integrated method for addressing dynamic objects may
cause drift or inaccuracy during tracking.

e ORB-SLAM2 - 2017

ORB-SLAM2 is a complete SLAM solution for
monocular, stereo, and RGB-D cameras that includes loop
closure, relocalization, and map reuse. In a variety of
scenarios, such as cars driving through a city, small hand-
held interior sequences, and drones flying in industrial
environments, the system runs in real-time on standard
CPUs. The suggestion by Strasdat et al. [116] states that
ORB-SLAM?2 uses depth information to generate a stereo
coordinate for the recovered components of the picture. In
this regard, whether the input is RGB-D or stereo is
irrelevant to the system. Unlike all the previous methods,
the back-end uses bundle adjustment to generate a globally
consistent sparse reconstruction. Because of this, the ORB-
SLAM?2 method is easy to use and works with standard
CPUs. Long-term and globally consistent localization is the
goal, not the most complex dense reconstruction.
Alternatively, one might fuse depth maps to produce correct
reconstruction on-the-fly in a small region, or one could
post-process the depth maps from each keyframe after a full
BA to create a perfect 3D model of the whole scene utilizing
the incredibly precise keyframe poses.

Fig. 14 shows the overall architecture of the system. The
system runs three main parallel threads: Localizing the
camera entails the following three steps: Three methods are
used in tracking: 1) motion-only BA is used to find feature
matches on the local map; 2) local mapping is used to
manage and optimize the local map; and 3) loop closing is
used to find large loops and correct accumulated drift by
executing a pose-graph optimization. This thread initiates a
fourth thread to finish full BA after the pose-graph
optimization.
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Fig. 14: Three primary parallel threads make up ORBSLAM2: loop closure
, local mapping, and tracking. Adapted from [117].

e RTAB-Map —2018

The RTAB-Map A visual SLAM technique that can be
applied to RGB-D and stereo cameras is called real-time
appearance-based mapping, or SLAM for short. It's a
versatile technique that can handle 2D and 3D mapping
tasks based on the sensor and available data. It allows the

identification of both stationary and moving 3D objects in
the robot's environment through the combination of RGB-D
and stereo data for 3D mapping. When LiDAR rays are not
able to control the field around the robot, it can be applied in
large outdoor environments. Robotic localization and
mapping errors can be caused by varying light and
environmental interactions. Thus, RTAB's adaptability and
resistance to changing light and scenery enable precision
operation under challenging conditions. It can easily adjust
to function with many cameras or laser rangefinders, and it
can manage complex, large-scale scenarios. Moreover, the
use of T265 (Intel RealSense Camera) and ultra-wideband
(UWB) addresses robot wheel slippage with drifting error
control, enhancing system efficiency through precise
tracking and the generation of 3D point clouds. The RTAB-
MAP SLAM approach involves several procedures in order
for it to function. First, tasks including frame creation,
sensor integration, and data extraction from RGB-D and
stereo cameras are handled by the hardware and front-end
stage. At this point, the frames required for the following
phase are prepared. The loop closure provides the necessary
odometry when the tracking operation and frame processing
are finished simultaneously.

Fig. 15 depicts RTAB-Map, the main ROS node. Any

kind of odometry may be used for SLAM as it is an external
input to RTAB-Map; the choice will rely on what works
best for the robot and the application. A graph consisting of
nodes and links makes up the structure of the map. Once the
sensors are synchronized, the Short-Term Memory (STM)
module creates a node and memorizes the raw sensor data,
the odometry posture, and additional information that will
be needed for later modules (like visual words for Loop
Closure and Proximity Detection and local occupancy grid
for Global Map Assembling). The
"Rtabmap/DetectionRate," which is given in milliseconds, is
the determined rate at which nodes are constructed based on
how much the data generated by them should overlap each
other.
RTAB-Map high computational demand is a major
disadvantage that can cause performance issues on devices
with limited capabilities, particularly when working with
big maps and loop closure detection. Additionally, drift or
tracking failures may result from odometry's accuracy
declining in settings with little feature variety. Because of
its reliance on RGB-D sensors, its application is therefore
limited to specific settings, such indoors, where depth data
is more trustworthy.

® Bundle Adjusted Direct RGB-D SLAM BAD-SLAM
-2019

Simultaneous Localization and Mapping (SLAM)
systems rely on the joint optimization of the camera
trajectory and the expected 3D map. Bundle adjustment
(BA) is the industry standard for this. rapid direct BA
formulation, which they employ in a real-time, dense RGB-
D SLAM system. As is common with SLAM algorithms,
the technique consists of both front-end and back-end
components (Figure 16). The frontend tracks the RGB-D
camera's motions in real time. It provides first estimates for
camera angles and scene dimensions as a result. At a lower
frequency, the back-end then fine-tunes the geometry and
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the camera trajectory to produce a consistent 3D map. A
novel back-end Bundle Adjustment (BA) method for direct
RGB-D SLAM is the primary technological contribution.
Sensitivity to sensor calibration and synchronization is a
major limitation of BAD-SLAM. Performance can be
severely harmed by problems like rolling shutter effects or
mismatched depth and RGB data because the system mainly
depends on accurate direct measurements from RGB-D
cameras. Due to its reliance on extremely precise sensors,
BAD-SLAM is less reliable in settings where these
requirements are not satisfied or sensor configurations are

not ideal.
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Fig. 15 RTAB-Map, the main ROS node.
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e SCE-SLAM - 2023

Spatial coordinate errors SLAM (SCE-SLAM) is a new
real-time semantic RGB-D SLAM technique. The purpose
of its creation was to overcome the shortcomings of
traditional SLAM systems in dynamic operational
environments. Combining semantic and geometric data,
together with using YOLOv7 for quick object recognition,
improved the technique to outperform existing V-SLAM
systems, including ORB-SLAM3, and to be more accurate
and robust in dynamic circumstances. These improvements
make it possible for the SLAM algorithms to be very
effective in dynamic applications, which leads to greater
adaptability and comprehension of the system environment.
Robotic systems can therefore operate in more complex
contexts with reduced slippage or mistakes. Robots
equipped with SCE-SLAM may also operate more
adaptably and with fewer errors, even under challenging
lighting situations.

SCE-SLAM has the potential to severely impair the
produced maps' accuracy and dependability. Misalignments
and distortions in the spatial representation of the
environment result from these mistakes, which are caused
by inaccurate sensor readings and posture estimation.
Reduced navigation performance as a result of SCE-SLAM
can make it difficult for autonomous systems to function
well in complex and dynamic surroundings.

Three main processes make up the SCE-SLAM method,
according to Son et al. (2023). A semantic module is used in
the initial stage. As the camera input data is handled, noise

is removed using Yolov2 in this module. During the second
step, the geometry module analyzes depth pictures and
recovers spatial coordinates to prepare the system for
integration with ORB SLAM3. The final stage is dedicated
to ORB SLAM3 implementation. This link makes the ORB-
SLAM3 procedures easier to execute. The procedure
working in combination with the loop closure technique
produces a system output that is more precise and accurate.

Section C provided a distinct description of the most
typical RGB-D-based methods. Table 3 lists the key
characteristics and parameters for critical assessment of the
given algorithms.

TABLE 3. KEY FEATURES OF RGB-D BASED SLAM TECHNIQUES.

. Loop s
Method Type Map Density Closure Availability
RGBDSLAMy2 | Feature- | e No [123]
based
Elastic Fusion Direct Dense Yes [124]
ORB-SLAM2 Feature- | 1 ce Yes [92]
based
RTAB-Map Hybrid Dense/Sparse | Yes [125]
BAD-SLAM Direct Dense Yes [126]
SCE-SLAM Hybrid Sparse Yes ?
Feature-
ORB-SLAM3 based Sparse Yes [98]

Iv. DATASETS AND BENCHMARKING

A fair comparison of all the SLAM algorithms in the
literature is necessary to identify which one performs better
in particular scenarios. The literature suggests a number of
benchmarking datasets with various features to investigate
the resilience and capabilities of SLAM. The benchmark
dataset that was used to assess the SLAM algorithms that
were described in the original publications is made
publically available here.

e The KITTI dataset, which was created by the
Toyota Technological Institute and the Karlsruhe
Institute of Technology, includes eight LIDAR data
sequences and twenty-two stereo camera sequences
that were all taken from actual driving situations. It
offers timestamps for synchronization, a range of
view of around 60° horizontally for the stereo
camera system, and ground truth data for vehicle
trajectories and sensor calibration files [75].

e The Technical University of Munich's TUM RGB-
D dataset offers 39 indoor RGB-D camera video
sequences that document a range of scenarios with
precise timestamp information and ground truth
camera postures. A calibration file that describes the
camera  system's intrinsic and  extrinsic
characteristics is included in the dataset. The camera
system's field of view is around 60° horizontally and
50° vertically [28]. Furthermore, relative pose error
and absolute trajectory error are the two metrics that
the authors suggest be used to assess the trajectory's
local correctness and global consistency,
respectively.
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e Fleven sequences of high-resolution pictures and
IMU data, together with ground truth trajectories,
calibration files, and timestamps, were gathered
using micro aerial vehicles and are included in the
Euroc MAYV collection. The camera's diagonal field
of view is around 90° [77].

e The TUM VI collection includes 25 sequences of
synchronized RGB and IMU data that span a 60°
horizontal field of view and include comprehensive
ground truth poses and calibration files. To
guarantee exact temporal alignment, timestamps are
supplied for every frame [78].

e The TUM MONO VO dataset provides 50
monocular video sequences with calibration
information and ground truth postures. Each frame
has a timestamp and a horizontal field of view of
around 60° [79]. A strong framework for creating
and evaluating motion and visual estimating
algorithms in a variety of circumstances is offered
by these datasets taken together.

e Specifically created for RGB-D SLAM, the Bonn
RGB-D dynamic dataset comprises dynamic object
sequences. Following the same style as TUM RGB-
D datasets, it displays RGB-D data together with a
3D point cloud that depicts the changing
environment. It goes beyond the confines of
regulated spaces and encompasses both indoor and
outdoor situations. When creating and assessing
algorithms for tasks like object identification, scene
comprehension, and robot navigation, it is useful.
The fact that this dataset is adaptable enough to
handle the complexity of applications utilized in
light-challenging fields is noteworthy. Furthermore,
it serves as a valuable tool for assessing V-SLAM
methods in noisy and dynamic environments where
the robot may encounter difficulties interacting with
its surroundings and detecting objects.

e There are twelve artificial interior sequences
available in the ICL-NUIM dataset, each having
RGB-D pictures and simulation-generated ground
truth trajectories. With a horizontal field of view of
around 70°, it gives timestamps and calibration
information for every frame [76]. The dataset,
which focuses on RGB-D techniques, offers
information for assessing the 3D reconstruction
using eight artificially created interior settings. The
ground truth is a 3D surface model and the
calculated trajectory using a SLAM algorithm,
while the sequences are generated by a handheld
RGB-D camera [80].

e An autonomous driving dataset called Cityscapes
[87] focuses on instance annotation and pixel-level
picture segmentation. Additionally, other datasets—
such as NYU RGB-D [37], MS COCO [38], and
others—are employed in a variety of settings. With
an emphasis on semantic comprehension of urban
surroundings, the Cityscapes collection offers high-
resolution urban street scenes gathered from 50
locations. With pixel-level labels for semantic
segmentation tasks, it provides 20,000 coarsely
labeled photos and 5,000 highly annotated images.

30 classes—human, car, flat surface, and other
urban elements—are included in the collection. The
photos were taken at a resolution of 2048x1024
pixels in a range of weather and lighting
circumstances. The pictures have a broad field of
vision, which is common for driving situations at
street level.

e  Another benchmarking dataset for assessing SLAM
systems in difficult situations is Tartan Air [111].
A variety of weather patterns, moving objects, and
changing light are all included in the incredibly
lifelike simulated situations used to collect the data.
By collecting data in simulations, we are able to
give multi-modal sensor data and precise ground
truth labels, such as segmentation, optical flow,
camera positions, stereo RGB image, and LiDAR
point cloud.

e Nguyen et al. [112] published the NTU VIRAL
dataset, which was collected using an unmanned
aerial vehicle (UAV) equipped with a 3DLiDAR,
cameras, IMUs, and several Ultra-widebands
(UWBs). The information is meant to be used for
assessing the performance of aerial operations and
autonomous driving. Both indoor and outdoor cases
are included.

Table 4 summarizes the main benchmark datasets

characteristics presented in this work.

TABLE 4 MAIN ASPECTS RELATED TO THE PRESENTED

BENCHMARK DATASETS.
Dataset Year Environment.* Platform Sensor System Groundtruth Availability
TUMRGB-D 2012 Indoor Robot/Handheld RGB-D camera Motion capture [81]
KITTI 2013 Outdoor Car Stereo-cameras INS/GPS [82]
3D laser scanner
ICL-NUIM 2014 Indoor Handheld RGB-D camera 3D surface model [83]
SLAM estimation

Bonn RG,&D 2016 Indoor/Outdoor Handheld RGB-D camera Motion f:apture [90]

dynamic (partially)
Cityscapes 2016 Outdoor Car Stereo GPS [87]
EuRoC 2016  Indoor MAV Stereo-cameras MU 1Ot Station Motion g )

capture
TUM Mono VO 2016 Indoor-Outdoor Handheld Non-stereo cameras _ [85]
TUM VI 2018 Indoor-Outdoor Handheld Stereo-camera IMU Motion 'capture [86]

(partially)

photo-realistic
. A . RGB cameras, depth
TartanAir 2020 Indoor-Outdoor slr.nulatlon sensors, IMU, LIDAR GPS [114]
environments
3D lidars, IMUs, time-

NTU VIRAL 2021 Indoor-Outdoor UAV synchronized GPS [113]

cameras, UWBs

*Environment: indoor or outdoor.

V. GUIDELINES FOR EVALUATING AND
SELECTING VISUAL SLAM METHODS

There are a few things to take into account while

selecting a visual SLAM technique. Importantly, the type of
sensor used is important: monocular SLAM is less
expensive but has scale ambiguity, whereas stereo and
RGB-D SLAM provide more accurate depth estimates at a
greater computational cost [39]. Applications that need
minimal latency must have real-time performance, and GPU
acceleration helps techniques like Elastic Fusion [118]. The
SLAM system must also be able to adjust to its
surroundings; indoor-focused algorithms such as Kinect
Fusion perform well in controlled settings but may not be as
successful outside [119]. Long-term accuracy is ensured by
the system's capacity to manage drift and implement loop
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closure methods, as demonstrated by ElasticFusion and
ORB-SLAM. Particularly for projects requiring in-depth 3D
mapping [36], posture estimation accuracy and map
precision should be taken into account. Certain methods are
more appropriate for particular situations [120], but SLAM
systems should be resilient to external obstacles like
occlusions or moving objects. In conclusion, scalability,
global optimization, and the accessibility of open-source
implementations must be taken into account for long-term
development and use [121,122].

VL CONCLUSIONS

The difficulties and advancements in the field of visual-
based SLAM (VSLAM) approaches are highlighted in this
study's methodical investigation. Historically, multiple-view
geometry and low-level feature matching have been the
mainstays of VSLAM systems. There includes discussion of
difficulties like recreating low-texture areas and the
computational expenses of deep learning techniques, as well
as the requirement for extra sensors (such IMUs or sterco
cameras) or system previous knowledge. The following six
criteria are suggested for choosing SLAM algorithms:
availability, global optimization methods, map density,
algorithm type, and embedded implementations. The
research places a strong emphasis on assessing algorithms
according to requirements unique to each application,
including  scalability, sensor  compatibility, and
environmental restrictions. The report also proposes future
research directions and discusses benchmarking datasets for
SLAM algorithm evaluation. An ideal SLAM system that
balances real-time performance, precision, and robustness
may be selected for a variety of applications by taking these
criteria into account.
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