Egyptian Journal of Phytopathology, Vol. 53, No.1, pp 130-155 (2025)

DOI: 10.21608/EJP.2025.430170

Review article

Impact of Climate Change on Soil Microbial Communities

Rhouma A 1,* and Matrood A.A.²

Received: 9 April 2025 / Accepted: 18 May 2025 / Published online: 29 May 2025

[©]Egyptian Phytopathological Society 2025

ABSTRACT

Environmental changes are causing shifts in the species distributions on a global scale and can alter the interactions between the microorganisms within ecosystems. The ecosystem comprised a complex web of species with diverse life history strategies and varying dispersal capabilities. Therefore, it is improbable that all species respond to climatic changes identically. Climate change disrupts the delicate balance of plant-soil ecosystems, which significantly affecting plant health and soil fertility. However, the effects on the intricate web of soil microbe-microbe interactions remain largely unknown. The crucial role of soil microorganisms in nutrient cycling, plant nutrition, facilitation of plant coexistence, and population regulation could have significant consequences for plant community composition and overall ecosystem function. This study focuses on climate-changes, which directly and indirectly have effects on soil microbes and their interactions with plants. We identify emerging questions and areas for future exploration, while evaluating the potential ramifications of changing these interactions on the composition and function of the ecosystem. Overall, this study has the potential to contribute to our understanding significantly of climate-changes effects on ecosystems and pave the way for the development of effective strategies to mitigate these effects and ensure the continued health and function of our ecosystem.

Keywords: Ecosystem, Microbial communities, Heat waves, Flooding, Drought.

Correspondence: Abdelhak Rhouma

E-mail: abdelhak.rhouma@gmail.com

Abdelhak Rhouma

https://orcid.org/0000-0001-6074-0076

¹Regional Centre of Agricultural Research of Sidi Bouzid, CRRA, Gafsa Road Km 6, B.P. 357, Sidi Bouzid, 9100, Tunisia

Abdulnabi A. A. Matrood

https://orcid.org/0000-0002-3474-2876

²Department of Plant Protection, College of Agriculture, University of Basrah, Iraq

INTRODUCTION

Earth maintains a delicate balance of incoming and outgoing radiation (He et al., 2023). However, human activity has disrupted this equilibrium by releasing greenhouse gases (Joly et al., 2023). This amplified greenhouse effect pushes global temperatures higher, a seemingly small rise of 1°C masking a cascade of consequences (Peng et al., 2023). Climate change is intensifying extreme weather events (heat waves, droughts, floods, storms, etc.), leading to devastating impacts on ecosystems (Anjileli et al., 2021).

Climate change, the ongoing shift in global temperatures and weather patterns, is not only affecting visible ecosystems like forests and coral reefs but also exerting a profound influence on the invisible world of microbes (Mukhtar et al., 2023 and Rio et al., 2024). These tiny organisms, encompassing bacteria, Archaea, fungi, and Protists, play critical roles in biogeochemical cycles, nutrient cycling, and al., human health (Bastos 2023). etUnderstanding how climate change disrupts microbial communities is crucial for predicting