Bitki Koruma Bülteni / Plant Protection Bulletin

http://dergipark.gov.tr/bitkorb

Original article

Determination of the efficacy of *Trichoderma koningii* and *Rhizophagus irregularis* against Fusarium wilt disease in tomato

Trichoderma koningii ve Rhizophagus irregularis'in domateste Fusarium solgunluk hastalığına karşı etkinliğinin belirlenmesi

Abdelhak RHOUMA^{a*}, Abdulnabi Abbdul Ameer MATROOD^b, Lobna HAJJI-HEDFI^a

https://orcid.org/0000-0001-6074-0076, https://orcid.org/0000-0002-3474-2876, https://orcid.org/0000-0002-3587-4790

^aResearch Laboratory of Agricultural Production Systems and Sustainable Development LR03AGR02, Regional Centre of Agricultural Research of Sidi Bouzid, CRRA, Gafsa Road Km 6, B.P. 357, Sidi Bouzid, 9100, Tunisia

ARTICLE INFO

Article history:

DOI: 10.16955/bitkorb.1561086 Received: 04-10-2024 Accepted: 24-03-2025

Keywords:

arbuscular mycorrhizal fungi, *Solanum lycopersicum*, *Fusarium oxysporum* f.sp. *lycopersici*, greenhouse assay

* Corresponding author: Abdelhak RHOUMA

abdelhak.rhouma@gmail.com

ABSTRACT

This study investigated the potential of Trichoderma koningii and Rhizophagus irregularis as environmentally friendly as an alternative to chemical control for Fusarium wilt disease in tomato under greenhouse conditions. The research focused on how these T. koningii and R. irregularis interacted and their impact on plant growth and disease resistance. T. koningii alone significantly reduced disease severity (DS = 0.83; DSI = 29.33%) compared to the control group infected with Fusarium oxysporum f. sp. lycopersici (FOL). However, the most effective protection came from combining both T. koningii and R. irregularis (DS = 0.33; DSI = 14.33%), achieving a level comparable to healthy controls. This combined treatment not only displayed superior disease resistance but also showed the highest chlorophyll content (Chl a = 5.62 mg g-1 Fresh Weight; Chl b = 3.11 mg g⁻¹ Fresh Weight; Chl T = 8.74 mg g⁻¹ Fresh Weight), indicating a stronger ability to counteract the chlorophyll degradation caused by FOL infection. Furthermore, tomato plants co-inoculated with T. koningii and R. irregularis exhibited the most robust antioxidant response, evident in significantly higher activities of antioxidant enzymes (superoxide dismutase = 46.17 units g-1 ml-1 min-1, peroxidase activity = 5.66 units g^{-1} ml⁻¹ min⁻¹, and catalase activity = 104.42 units g^{-1} ml⁻¹ min⁻¹) and total phenolic content (3.14 mg g⁻¹). These findings suggest that the combined application of *T. koningii* and *R. irregularis* has the potential to be a more effective and environmentally friendly strategy for managing Fusarium wilt disease and promoting overall plant health in tomato compared to using either T. koningii or R. irregularis alone.

INTRODUCTION

Tomato (*Solanum lycopersicum* L.), a Solanaceae cultivated in North Africa for over 4000 years (Robinson and Decker-Walters 1997), is a major global crop (reached nearly 45.8

million metric tonnes in 2024). In Tunisia, it is a major agricultural product, with annual production estimated at 980000 tonnes (FAO 2024). Cultivation thrives across

^bUniversity of Basrah, College of Agriculture, Department of Plant Protection, Iraq