Studying the Response of Greek Basil Ocimum basilicum var. minimum to Treatment with High Doses of Selenium

Wurood Hantoosh Neamah 🖾 🗓

Medicinal and Aromatic Plants Unit, Agriculture College, University of Basrah, Iraq

Fatimah Ali Hasan 🛄

Medicinal and Aromatic Plants Unit, Agriculture College, University of Basrah, Iraq

Aqila Jumaah Hachim 🖳

Horticulture and Landscape Department, Agriculture College, University of Basrah, Iraq

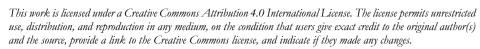
Suggested Citation

Neamah, W.H., Hasan, F.A., & Hachim, A.J. (2024). Studying the Response of Greek Basil Ocimum basilicum var. minimum to Treatment with High Doses of Selenium. European Journal of Theoretical and Applied Sciences, 2(4), 1-5.

DOI: 10.59324/eitas.2024.2(4).xx

Abstract:

Previous published literatures have been established the impact of selenium application in a trace amount on yield and active constituents of basil plants. In the current study, the effect of high doses of selenium application on growth of Greek basil Ocimum basilicum var. minimum growth and its essential oil compounds was investigated. Obtained result exhibited that the foliar application with (0, 40, 80, 120, 160) mg/L of selenium reduced the plants growth parameters and plant content of phytopigments and primary metabolites such as carbohydrates, protein, and proline. Refractive index of essential oil diminished post selenium application, while,


specific gravity increased at 160 mg/L. Selenium application also caused alteration in the secondary metabolites profile. A reduction was obtained in the volatile compounds of essential oil such as Linalool, Eugenol and Methyleugenol with selenium treatment. On the other hand, unsaturated fatty acids such as Linolenic acid and phytosterols such as Campesterol, Stigmasterol and beta-Sitosterol increased with applicated selenium concentration.

Keywords: Ocimum basilicum var. minimum, Selenium, Primer metabolites, Secondary metabolites

Introduction

The Lamiaceae family is one of the most recognized sources of aromatic herbs worldwide and an excessive source of extracts with antipathogens powerful and antioxidant properties (Kaya, Yigit, & Benli, 2008). Genus Ocimum, known as basil, provide 150 species that belong to Lamiaceae family. Ocimum basilicum L is a one of species that show large morphological differences relying to species including size and colour of leaf or flower, and height and shape of plant. The chemical

composition such as volatile organic and phenolic compounds also affected according to species (Mkaddem Mounira et al., 2022). The major aroma constituents of Ocimum basilicum L according to Lee and his colleagues are linalool, estragole, methyl cinnamate, eugenol, and 1,8cineole (Lee, Umano, Shibamoto, & Lee, 2005). However, the existence and formation of these components are effected by numerous agents such as environment (Tursun & Telci, 2020), growing and harvesting states (Bowes & Zheljazkov, 2004) as well as drying and

extraction methods (Calín-Sánchez, Lech, Szumny, Figiel, & Carbonell-Barrachina, 2012; Chenni, El Abed, Rakotomanomana, Fernandez, & Chemat, 2016).

Ocimum basilicum var. minimum or Greek basil is the most common cultivated basil in Greece, it could be distinguished by its small leaves and shape of a loose or compact ball or reverse cone (Koutsos, Chatzopoulou, & Katsiotis, 2009). Greek basil represent a remarkable source of bioactive compounds including Cineole, Estragole and especially linalool with a high potency of biological activity (Šovljanski et al., 2022). Existing stress conditions around the plant is one of effects that cause alteration with increase or decrease in phytocomponents according to stress type and plant species (Yeshi, Crayn, Ritmejerytė, & Wangchuk, 2022).

Selenium (Se) was reported as an essential trace element for human health in regarding to its important role as anti-inflammatory, antioxidant and in immunity activates (Rayman, 2012). The application of Se in trace amounts can promote the plant growth under stress and normal conditions (da Silva et al., 2020; Hussein, Darwesh, & Mekki, 2019). However, Selenium in high concentration caused toxicity for human, animal, and plant due to replacing sulfur with Se in amino acids which influence negatively proteins biosynthesis and functions (Salhani, & Stengel, 2003). Se toxicity diminishing plant growth, development, and impeding plant ecophysiology, causing chlorosis and necrosis, restricted growth, and declined protein biosynthesis (Molnár et al., 2018). Wang and his team found an increase in the photosynthesis rate in rice seedlings that received low doses of selenium, this increase turn into dwindling when selenium dose increased gradually (Wang, Wang, & Wong, 2012). The toxicity of selenium occurs in the two mechanisms, plant by malformed selenoproteins and inducing oxidative stress, both of two mechanisms cause harms to plant and influence passively its growth development (Gupta & Gupta, Malformed selenoproteins are formed initially due to misincorporation of SeCys/SeMet instead of Cys/Met in protein chain, SeCys is

larger, more reactive and easily deprotonated than cysteine which effect prejudicially in proteins structure and function (Hondal, Marino, & Gladyshev, 2013) Moreover, under excessive does of selenium, Se act as prooxidant, produce reactive oxygen species and cause consequently oxidative stress in plants, for instance, under Se stress there was increase in the lipid peroxidation that observed obviously in wheat seedlings (Łabanowska et al., 2012).

Basil is not among plants that can accumulate high concentrations of selenium, thus, it is more sensitive to high doses of selenium, which can lead to reduce quantitively and qualitatively the yield (Skrypnik, Novikova, & Tokupova, 2019). In the current study, a novel cultivation of *Ocimum basilicum var. minimum* Greek basil in Basrah under stress of high excessive application of selenium was executed. Furthermore, physiological and biochemical characteristics of plants as well as physical traits and chromograph profile of the essential oil investigated under Se stress.

Materials and Methods

O. basilicum var. minimum Cultivation and Treatment

Seeds of Greek basil were fetched up from Turkey and sown in trays with peatmoss substrate. Post seedlings reached to 5 cm, they transplanted in 35 cm diameter pots with 3:1 ratio of soil to peatmoss substrate. Selenium foliar were applied on plants in 5 concentration (0, 40, 80, 120, 160) mg\L and with 3 times during the growth season.

Growth Criteria

Plant height, fresh weight and biomass were recorded before flowering stage

Biochemical Criteria

Plants were dried at room temperature, ground to small particles and utilized to value the carbohydrates, proline, protein, and phytopigments content. Essential oil extracted also from dry material and its physical traits and chromograph profile was estimated.

Photosynthesis Pigments

The content of leaves from chlorophyll A, chlorophyll B, total chlorophyll, and carotenoids was estimated as described earlier by (Makeen, Babu, Lavanya, & Grard, 2007). 0.5 g of plant leaf was incubated with 10 ml of 80% acetone for 48 hours in 4 °C. Then, suspend filtrated and the absorbance measured at 663, 645, and 452 nm against the blank and pigments concentration calculated using follow equations:

Chlorophyll a (mg/100g FW)

=
$$(10.3 \times A663 - 0.92 \times A645)/1000 \times 10/0.5 \times 100$$
 (1)

Chlorophyll b (mg/100g FW)

=
$$(19.7 \times A645 - 3.87 \times A663)/$$

 $1000 \times 10/0.5 \times 100$ (2)

Total chlorophyll (mg/
$$100g$$
 FW)
Chl a + Chl b (3)

Carotenoids (mg/100g FW)

=
$$(4.2 \times A452) - ((0.026 \times Chl a) + (0.426 \times Chl b)) /1000 \times 10 / 0.5 \times 100$$
(4)

Carbohydrates Content

Plant content of carbohydrates was assessed according to (DuBois, Gilles, Hamilton, Rebers, & Smith, 1956). 0.5 g of dried samples were homogenized with 70 ml of distilled water in 70 ^oC for 1 hour. Post bringing the extract to the room temperature, the extract was filtrated, and 5 ml of filtrate diluted with 25 ml of distilled water in separated tubes. 1 ml of solution was placed in the new tube, 1 ml of 5% of phenol added to the tube and then 5 ml of pure sulfuric acid added rapidly to the tube with cautious absorption vortex. The was recorded spectrometry at 490 nm and carbohydrates concentration was determined from glucose standard curve and calculated in dry weight following the equation:

Carbohydrates content mg/= (mg glugose/ml x final sample volume ml) / sample weight g (5)

Proline Content

Proline content estimate was according to (Bates, Waldren, & Teare, 1973) with little modification. Acid-ninhydrin was prepared by dissolving 1.25 g ninhydrin in 30 ml glacial acetic acid and 20 ml 6 M phosphoric acid on heat plate with agitation and kept cool at 4 °C. 0.20 g of dried plant samples homogenized in 10 ml of 3% aqueous sulfosalicylic acid and the homogenate filtered through filter paper. 2 ml of filtrate was reacted with 2 ml of glacial acetic acid and 2 ml of acid-ninhdrin in test tubes at 100 °C. After 1 hour the reaction terminated with ice bath, toluene added to the tubes and vortexed for 15-20 sec. Separated upper layer was read spectrophotometrically at 520 nm using toluene as a blank and proline content determined from proline standard curve and calculated in dry weight following the equation:

$$μmoles prolin/g = [(μg proline/ml × ml toluene)/115.5 μg/μmole]/ [(g sample)/5] (6)$$

Protein Content

Kjeldahl method was followed to determine protein content in dried plant samples. 0.20 g of plant sample was digested with 5 ml of concentrated sulfuric acid at 350 °C for 30 minutes. Then, 3 ml of the mixture of 6 ml perchloric acid and 96 ml sulfuric acid was added to the sample solution and placed on digestion tablet at 350 °C until the solution be clear. The volume of sample solution was made up to 50 ml by distilled water. 10 ml of sample was mixed with 10 ml of 6 N of sodium hydroxide in Kjeldahl tube and placed in Kjeldahl analyzer. 150 ml of the distillate was collected in a conical flask containing 2 % Boric acid and 2 % of bromocresol green and methyl red indicator (0.099 g + 0.066 g in 100 ml Ethanol). The indictor was titrated with 2 % HCl until the solution has a slightly violet color, the portion of Nitrogen was calculated following the equation:

$$\% N = (V X N X MW X TV) 100/$$

1000 X SW X VS) (7)

% N= Portion of Nitrogen

V= Volume of titration acid

N= Normality of HCl

MW= Molecular weight of Nitrogen

TV= Total volume of digested solution

SW= Weight of plant sample

VS= Volume of digested solution

The portion of protein was estimated following the question:

% protein =
$$\%$$
 N X 6.25 (8)

Essential Oil Extraction

The essential oil of Greek basil was obtained by Soxhelt extractor. 10 g of dried sample was placed in a Soxhelt with 150 ml of petroleum ether as a solvent and at 50 °C, the extraction cycles were ended when the solvent color in the last cycle was semi clear. Then, extracted

essential oil was concerted by Rotary evaporator and its specific gravity and refractive index (Abbe-Refractometer, /6500, Germany) estimated as well as GC-MS (Agilent 7890B GC, 5977A MSD, US) runed for the components profile detection.

Experiment Design and Statistical Analysis

The experiment was designed as a randomized complete block design (R.C.B.D.) in three blocks with three replicates. The results were analyzed by Graph prism program version 6.01, and the averages of treatment were compared at the probability level.0.05 by one-way analysis of variance ANOVA.

Results

Growth Traits

Figure 1 illustrates the impact of five concentrations of selenium on vegetative growth traits of *O. basilicum var. minimum* including the plant high (Fig. 1a), fresh weight (Fig. 1b) and biomass (Fig. 1c). Fresh weight and biomass were remarkably reduced due to selenium foliar application compared to the control. On the other hand, Se2 (80 mg/L)-treated plants recorded increasing in the plant high feature compared to the control and other treated plants.

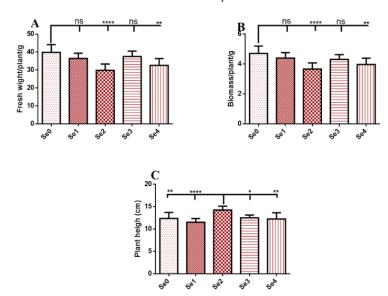


Figure 1. Effect of Treatment with Selenium on Vegetative Growth of *O. basilicum var. minimu*

(A) Representative the effect of treatment with selenium on fresh weight of Greek basil plants. Se0 control or untreated plants. Se1 plants that treated with 40 mg/L of selenium. Se2 plants that treated with 80 mg/L of selenium. Se3 plants that treated with 120 mg/L of selenium. Se4 plants that treated with 160 mg/L of selenium. (B) Representative the effect of treatment with selenium on biomass of Greek basil plants. (C) Representative the effect of treatment with selenium on height of Greek basil plants. A multiple ANOVA was performed

using ordinary one-way ANOVA multiple comparisons to compare between the averages of treatments. Significance was designated as follows: p < 0.05, p < 0.01, p < 0.001.

Photopigments Content

The foliar spray with selenium at 160 mg/L caused diminishing in Chlorophyll A, B and total Chlorophyll compared to treated or untreated Greek plants (Fig. 2a, b, c). While, Carotenoids content reduced significantly with selenium treatment at all levels (Fig. 2d)

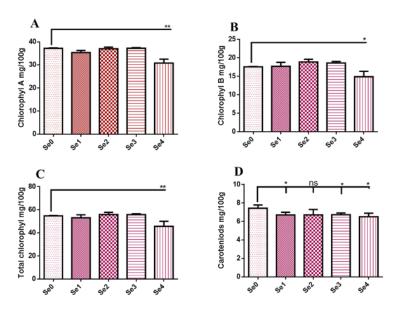


Figure 2. Effect of Treatment with Selenium on Phytopigments Content in Leaves of O. basilicum var. minimum

(A) Representative the effect of treatment with selenium on Chlorophyll A content in leaves of Greek basil plants. Se0 control or untreated plants. Sel plants that treated with 40 mg/L of selenium. Se2 plants that treated with 80 mg/L of selenium. Se3 plants that treated with 120 mg/L of selenium. Se4 plants that treated with 160 mg/L of selenium. (B) Representative the effect of treatment with selenium Chlorophyll B content in leaves of Greek basil plants. (C) Representative the effect of treatment with selenium on total Chlorophyll content in leaves of Greek basil plants. (D) Representative the effect of treatment with selenium on

Carotenoids content in leaves of Greek basil plants. A multiple ANOVA was performed using ordinary one-way ANOVA multiple comparisons to compare between the averages of treatments. Significance was designated as follows: p < 0.05, **P < 0.01.

Biochemical Traits

Figure 3 represent the impact of selenium application stress on biochemical criteria of Greek plants. Obtained result showed a decrease in the carbohydrates content with all Se concentration (Fig. 3a). Likewise, protein percentage reduced in the plants at selenium

treatment compared to control plants (Fig. 3b). There was no alteration in the proline content obtained under the selenium stress (Fig. 3c).

Physical Traits of Essential Oil

Figure 3 illustrate the physical features of extracted essential oil from O. basilicum var.

minimum. Both specific gravity and refractive index reduced markedly due to selenium stress excepting the treatment with 160 mg/L that increased the gravity of essential oil compared to the control (Fig 3d&e).

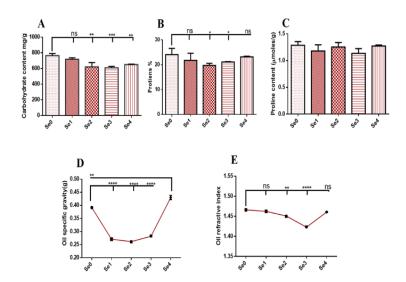


Figure 3. Effect of Treatment with Selenium on Biochemical and Physical Traits of Plant and Essential oil of *O. basilicum var. minimu*

(A) Representative the effect of treatment with selenium on carbohydrates content of Greek basil plants. Se0 control or untreated plants. Se1 plants that treated with 40 mg/L of selenium. Se2 plants that treated with 80 mg/L of selenium. Se3 plants that treated with 120 mg/L of selenium. Se4 plants that treated with 160 mg/L of selenium. (B) Representative the effect of treatment with selenium on protein percentage of Greek basil plants. Representative the effect of treatment with selenium on proline content of Greek basil plants. (D) Representative the effect of treatment with selenium on specific gravity of essential oil of Greek basil plants. Representative the effect of treatment with selenium on refractive index of essential oil of Greek basil plants A multiple ANOVA was performed using ordinary one-way ANOVA multiple comparisons to compare between the

averages of treatments. Significance was designated as follows: *p < 0.05, **P < 0.01***P < 0.001, ****p < 0.0001.

GC-MS Profile

Chromogram profile of Greek basil essential oil in figure 4 and table 1 represent the percentage area of volatile compounds that are mainly existent in the Greek basil oil. Linalool is formed the most findable compound among other volatile compounds of Greek basil essential oil including Eugenol, Methyleugenol, tau.-Cadinol Furthermore, and Phytol. other phytocomponents such as Linolenic acid, Vitamin E, Campesterol, Stigmasterol, gamma.-Sitosterol, and beta.-Sitosterol are obtained from the essential oil of Greek basil and influenced widely beside the volatile compounds due to selenium doses (Fig 4a,b,c,d,e) (Table 1).

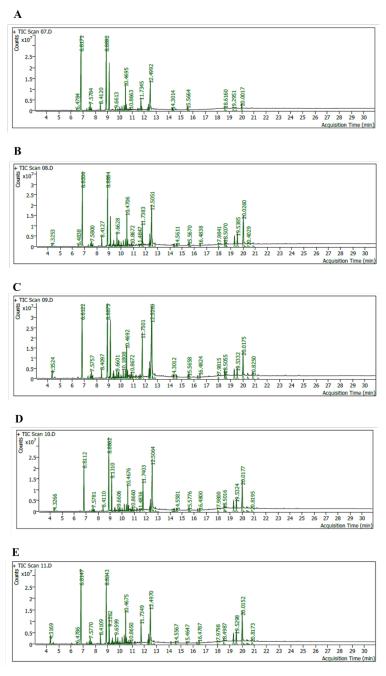


Figure 4. GC-MS chromatograph of essential oil of O. basilicum var. minimum

(A) Representative GC-MS profile of essential oil of Se0 control or untreated plants. (B) Representative GC-MS profile of essential oil of Se1 plants that treated with selenium at 40 mg/L. (C) Representative GC-MS profile of essential oil of Se2 plants that treated with selenium at 80

mg/L. (D) Representative GC-MS profile of essential oil of Se3 plants that treated with selenium at 120 mg/L. (E) Representative GC-MS profile essential oil of Se4 plants that treated with selenium at 160 mg/L.

Table 1. GC-MS Profile of Greek Basil O. basilicum var. minimum Essential Oil

			Peak Area %				
No	R.T	Compound Name	Se0	Se1	Se2	Se3	Se4
1	6.82	Linalool	23.8642	15.0202	11.0957	9.1867	15.3296
2	7.57	Terpinen-4-ol	1.6206	0.889	0.9242	0.7352	1.0316
3	8.41	Borneol acetate	1.7523	1.6211	1.1553	0.8337	1.6296
4	8.88	Eugenol	19.833	12.8163	11.0392	13.7595	11.9645
5	9.13	Methyleugenol	12.2124	5.7047	9.3317	7.9807	6.2669
6	9.82	.gammaMuurolene	0.4003	0.9792	0.898	0.7649	1.1411
7	10.18	Spathulenol	1.1211	1.1621	1.3222	1.5063	1.4995
8	10.47	.tauCadinol	5.9325	5.306	3.9964	4.5393	5.4704
9	12.35	Phytol	1.1933	1.1933	1.7718	1.6702	1.3074
10	12.49	Linolenic acid	12.7774	14.3143	22.693	19.8191	13.2034
11	18.50	Vitamin E	_	1.2223	1.0092	1.0321	0.7658
12	19.29	Campesterol	-	-	-	1.9287	2.0208
13	19.54	Stigmasterol	-	2.7219	1.3325	2.5239	2.8354
14	19.99	gammaSitosterol	1.5583	-	-	-	-
15	20.02	betaSitosterol	-	8.4625	4.8853	8.611	9.0896

Discussion

It is a known that the application of selenium in the high level cause maceration the plant growth, the data of vegetative parameters of O. basilicum var. minimum showed decrease in fresh weight and biomass traits compared to the control. Likewise, the high concentration of selenium caused reduce the number of leaves, biomass, and the starch/chloroplast area ratio in strawberry which was related to changes in the activity and/or biosynthesis of enzymes post the selenium application (Valkama, Kivimäenpää, Hartikainen, & Wulff, 2003). Treated plants with 80 mg/L of selenium showed increase in the plant height compered to 40,120 and 160 mg/L Se-treated plant and Se-untreated plants. These plants showed a considerable reduction in the fresh wight and biomass which could be elucidated the increase in the height of plants.

Chlorophyll A, B, and total chlorophyll decreased remarkably with 160 mg/L of Se treatment only. Nawaz and his colleagues reported that excessive Se concentrations reduced chlorophyll and carotenoids content in maize (*Zea mays* L.) and wheat (*Triticum aestivum* L.) under water deficit conditions (Fahim Nawaz et al., 2016; Nawaz, Ashraf, Ahmad, & Waraich, 2013). Also, Se foliar application at all concentration significantly reduced the carotenoids content in leaves, diminution of carotenoids content in *Pterocypsela laciniata* leaves

was reported with gradual increase of exogenous application of selenium (Xu et al., 2018).

Numerous of studies reported increasing in the carbohydrates content with low doses of selenium treatment. In the current study, carbohydrates content reduced progressively in O. basilicum var. minimum with increase of selenium concentrations. Carbohydrates reduction could be attributed to the negative effect of Se on vegetative growth of plants and photosynthesis pigments content which effect consequently on the efficiency of photosynthesis production. Likewise, protein proportion reduced in Se-treated plants due to the decrease in the carbohydrates output. Carbohydrates provide carbon skeleton and energy for the synthesis of amino acids that are precursors for proteins and many secondary metabolites, act as nitrogen transporter and reservoir in C and N metabolism (Cao et al., 2008). Although it is not a significant, the reduction in the proline was obtained with selenium application, Aggarwal and his team found that proline content reduced bean (Phaseolus vulgaris L.) concomitant with the reduced growth after were subjected to high level of selenium (Aggarwal et al., 2011).

Physical criteria of *O. basilicum var. minimum* essential oil exhibited decrease in the specific gravity and refractive index at 40, 80 and 120 mg/L of selenium. However, the treatment at

160 mg/L significantly increased the essential oil gravity compared to the control and other treatments which could be attributed to increase the phytosterols such as Campesterol, gamma-Sitosterol and beta.-Sitosterol in the essential oil of treated plants. Phytosterols are triterpenes compounds have a big molecular weight compared to monoterpene and sesquiterpene compounds that component the Greek basil essential oil (Hosseini & Pereira, 2023; Moreau, Whitaker, & Hicks, 2002). Refractive index usually can be used as indicator to the purity and quality of the oil, refractive index of O. basilicum var. minimum essential oil diminished with selenium treatment special at 120 mg/L concentration compared to the control. As is shown in Table 1 and GC-MS profile the terpenes including monoterpenes such as Linalool, sesquiterpene such as Spathulenol and diterpene such as Phytol declined due to Se exogenous application which consequently descent in the refractive index value and then quality of essential oil. According to Ospina and his colleagues who found that reflective index value of essential oil of Lippia origanoides was direct related with its content of thymol (Ospina, Tovar, Flores, & Orozco, 2016).

Post Se application, it was high alteration in chromogram profile of O. basilicum var. minimum essential oil. For example terpenoid compound such as Linalool, Eugenol, and tau.-Cadinol, decreased due to Se treatment. The reduction in the volatile compounds could be related to reduce the primary carbon metabolists including carbohydrates which provide the precursors for terpenoid compounds biosynthesis through mevalonate (MVA) and methylerythritol 4phosphate (MEP) pathways (Verma & Shukla, 2015). The unsaturated fatty acids (UFAs) such as Linolenic acid increased with Se treatment compared to Se0. Increasing of UFAs including Linolenic acid is one of elaborate strategies have been developed by plant to avoid or abide the adverse effects of stress. UFAs are acting as stocks of extracellular barrier constituents precursors of various bioactive molecules, regulators of stress signaling and ingredients, modulators of cellular membranes

glycerolipids, and reserve of carbon and energy in triacylglycerol (He & Ding, 2020). Vitamin E or Tocopherol was present post Se treatment due to its antioxidant activity which increase the plant tolerance against several abiotic stresses (e.g., salinity, metal toxicity, drought, ozone, UV radiation) (Hasanuzzaman, Nahar, & Fujita, 2014). GC-MS profile of O. basilicum var. minimum essential oil exhibited variation in the appearance and percentage area of sterols post Se treatment. Campesterol, Stigmasterol, and beta.-Sitosterol increased with Se treatment. While gamma.-Sitosterol vanished with all Se concentrations treatment. The alteration in plant sterols content due to stress has been reported in the previous studies (Neamah, Hasan, Jasim, & Hachim, Ozolina, Gurina, Nesterkina, Nurminsky, 2020; Rogowska & Szakiel, 2020). Increasing sterols under abiotic stress could improve the plants resistance through boosting the cohesion of cell membranes to change the membranes permeability and affecting proton efflux (Dufourc, 2008; Valitova, Sulkarnayeva, & Minibayeva, 2016).

Conclusion

Greek basil O. basilicum var. minimum that exposed selenium stress through high doses application exhibited diminishing in physical and biochemical traits. Also, selenium treatment caused reduction in physical features of essential oil and alteration its active constituents.

Conflict of Interests

No conflict of interest.

https://doi.org/10.1007/s12011-010-8699-9

References

Aggarwal, M., Sharma, S., Kaur, N., Pathania, D., Bhandhari, K., Kaushal, N., . . . Nayyar, H. (2011). Exogenous proline application reduces phytotoxic effects of selenium by minimising oxidative stress and improves growth in bean (Phaseolus vulgaris L.) seedlings. Biological trace element research. 140, 354-367. https://doi.org/10.1007/s12011-010-8699-9

Bates, L. S., Waldren, R. a., & Teare, I. (1973). Rapid determination of free proline for waterstress studies. *Plant and soil, 39*, 205-207. https://doi.org/10.1007/BF00018060

Bowes, K. M., & Zheljazkov, V. D. (2004). Factors affecting yields and essential oil quality of Ocimum sanctum L. and Ocimum basilicum L. cultivars. *Journal of the American Society for Horticultural Science*, 129(6), 789-794. https://doi.org/10.21273/JASHS.129.6.0789

Calín-Sánchez, Á., Lech, K., Szumny, A., Figiel, A., & Carbonell-Barrachina, Á. A. (2012). Volatile composition of sweet basil essential oil (Ocimum basilicum L.) as affected by drying method. *Food Research International*, 48(1), 217-225.

https://doi.org/10.1016/j.foodres.2012.03.015

Cao, T., Xie, P., Ni, L., Wu, A., Zhang, M., & Xu, J. (2008). Relationships among the contents of total phenolics, soluble carbohydrate, and free amino acids of 15 aquatic macrophytes. *Journal of Freshwater Ecology*, 23(2), 291-296. https://doi.org/10.1080/02705060.2008.96642

Chenni, M., El Abed, D., Rakotomanomana, N., Fernandez, X., & Chemat, F. (2016). Comparative study of essential oils extracted from Egyptian basil leaves (Ocimum basilicum L.) using hydro-distillation and solvent-free microwave extraction. *Molecules*, 21(1), 113. https://doi.org/10.3390/molecules21010113

da Silva, D. F., Cipriano, P. E., de Souza, R. R., Júnior, M. S., da Silva, R. F., Faquin, V., . . . Guilherme, L. R. G. (2020). Anatomical and physiological characteristics of Raphanus sativus L. submitted to different selenium sources and forms application. *Scientia Horticulturae*, 260, 108839.

https://doi.org/10.1016/j.scienta.2019.108839

DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. t., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. *Analytical chemistry*, 28(3), 350-356. https://doi.org/10.1021/AC60111A017

Dufourc, E. J. (2008). The role of phytosterols in plant adaptation to temperature. *Plant signaling*

& behavior, 3(2), 133-134. https://doi.org/10.4161%2Fpsb.3.2.5051

Fahim Nawaz, F. N., Muhammad Naeem, M. N., Ashraf, M., Tahir, M., Bilal Zulfiqar, B. Z., Muhammad Salahuddin, M. S., . . . Muhammad Aslam, M. A. (2016). Selenium supplementation affects physiological and biochemical processes to improve fodder yield and quality of maize (Zea mays L.) under water deficit conditions.

Gupta, M., & Gupta, S. (2016). An Overview of Selenium Uptake, Metabolism, and Toxicity in Plants. *Front Plant Sci*, 7, 2074. doi: https://doi.org/10.3389/fpls.2016.02074

Hasanuzzaman, M., Nahar, K., & Fujita, M. (2014). Role of tocopherol (vitamin E) in plants: abiotic stress tolerance and beyond *Emerging technologies and management of crop stress tolerance* (pp. 267-289): Elsevier.

He, M., & Ding, N.-Z. (2020). Plant unsaturated fatty acids: multiple roles in stress response. *Frontiers in plant science*, 11, 562785. https://doi.org/10.3389%2Ffpls.2020.562785

Hondal, R. J., Marino, S. M., & Gladyshev, V. N. (2013). Selenocysteine in thiol/disulfide-like exchange reactions. *Antioxidants & redox signaling,* 18(13), 1675-1689. https://doi.org/10.1089%2Fars.2012.5013

Hosseini, M., & Pereira, D. M. (2023). The Chemical Space of Terpenes: Insights from Data Science and AI. *Pharmaceuticals*, 16(2), 202. https://doi.org/10.3390/ph16020202

Hussein, H.-A. A., Darwesh, O. M., & Mekki, B. (2019). Environmentally friendly nano-selenium to improve antioxidant system and growth of groundnut cultivars under sandy soil conditions. *Biocatalysis and agricultural biotechnology, 18*, 101080. https://doi.org/10.1016/J.BCAB.2019.101080

Kaya, I., Yigit, N., & Benli, M. (2008). Antimicrobial activity of various extracts of Ocimum basilicum L. and observation of the inhibition effect on bacterial cells by use of scanning electron microscopy. *African Journal of Traditional, Complementary and Alternative Medicines*, 5(4), 363-369.

https://doi.org/10.4314%2Fajtcam.v5i4.31291

Koutsos, T., Chatzopoulou, P., & Katsiotis, S. (2009). Effects of individual selection on agronomical and morphological traits and essential oil of a "Greek basil" population. *Euphytica*, 170(3), 365-370. http://dx.doi.org/10.1007/s10681-009-0012-7

Łabanowska, M., Filek, M., Kościelniak, J., Kurdziel, M., Kuliś, E., & Hartikainen, H. (2012). The effects of short-term selenium stress on Polish and Finnish wheat seedlings—EPR, enzymatic and fluorescence studies. *Journal of Plant physiology*, 169(3), 275-284. https://doi.org/10.1016/j.jplph.2011.10.012

Lee, S.-J., Umano, K., Shibamoto, T., & Lee, K.-G. (2005). Identification of volatile components in basil (Ocimum basilicum L.) and thyme leaves (Thymus vulgaris L.) and their antioxidant properties. *Food chemistry*, *91*(1), 131-137. https://doi.org/10.1016/j.foodchem.2004.05.0

Makeen, K., Babu, G. S., Lavanya, G., & Grard, A. (2007). Studies of chlorophyll content by different methods in black gram (Vigna mungo L.). *International Journal of Agricultural Research*, 651-654. http://dx.doi.org/10.3923/ijar.2007.651.654

Mkaddem Mounira, G., Ahlem, Z., Abdallah Mariem, B., Romdhane, M., K. Okla, M., Al-Hashimi, A., . . . Asard, H. (2022). Essential oil composition and antioxidant and antifungal activities of two varieties of Ocimum basilicum L.(Lamiaceae) at two phenological stages. *Agronomy*, 12(4), 825. https://doi.org/10.3390/agronomy12040825

Molnár, Á., Kolbert, Z., Kéri, K., Feigl, G., Ördög, A., Szőllősi, R., & Erdei, L. (2018). Selenite-induced nitro-oxidative stress processes in Arabidopsis thaliana and Brassica juncea. *Ecotoxicology and environmental safety, 148*, 664-674. https://doi.org/10.1016/j.ecoenv.2017.11.035

Moreau, R. A., Whitaker, B. D., & Hicks, K. B. (2002). Phytosterols, phytostanols, and their conjugates in foods: structural diversity, quantitative analysis, and health-promoting uses. *Prog Lipid Res, 41*(6), 457-500. https://doi.org/10.1016/s0163-7827(02)00006-1

Nawaz, F., Ashraf, M. Y., Ahmad, R., & Waraich, E. A. (2013). Selenium (Se) seed priming induced growth and biochemical changes in wheat under water deficit conditions. *Biological trace element research*, *151*, 284-293. https://doi.org/10.1007/s12011-012-9556-9

Neamah, W. H., Hasan, F. A., Jasim, F. M., & Hachim, A. J. (2024). Studying the Response of L. to the Stress of Salinity and Foliar Spray with Aqueous Extract. *The Open Agriculture Journal*, 18(1).

http://dx.doi.org/10.2174/0118743315277673 231208101854

Ospina, J. D., Tovar, C. D. G., Flores, J. C. M., & Orozco, M. S. S. (2016). Relationship between refractive index and thymol concentration in essential oils of Lippia origanoides Kunth. *Chilean journal of agricultural & animal sciences, 32*(2), 127-133. http://dx.doi.org/10.4067/S0719-38902016000200006

Ozolina, N. V., Gurina, V. V., Nesterkina, I. S., & Nurminsky, V. N. (2020). Variations in the content of tonoplast lipids under abiotic stress. *Planta*, 251, 1-15. https://doi.org/10.1007/s00425-020-03399-x

Rayman, M. P. (2012). Selenium and human health. *The Lancet, 379*(9822), 1256-1268. https://doi.org/10.1016/s0140-6736(11)61452-9

Rogowska, A., & Szakiel, A. (2020). The role of sterols in plant response to abiotic stress. *Phytochemistry Reviews*, 19(6), 1525-1538. https://doi.org/10.1007/s11101-020-09708-2

Salhani, N., Boulyga, S., & Stengel, E. (2003). Phytoremediation of selenium by two helophyte species in subsurface flow constructed wetland. *Chemosphere*, 50(8), 967-973. https://doi.org/10.1016/s0045-6535(02)00607-0

Skrypnik, L., Novikova, A., & Tokupova, E. (2019). Improvement of Phenolic Compounds, Essential Oil Content and Antioxidant Properties of Sweet Basil (Ocimum basilicum L.) Depending on Type and Concentration of Selenium Application. *Plants (Basel), 8*(11). https://doi.org/10.3390/plants8110458

11

Šovljanski, O., Saveljić, A., Aćimović, M., Šeregeli, V., Pezo, L., Tomić, A., . . . Tešević, V. (2022). Biological Profiling of Essential Oils and Hydrolates of Ocimum basilicum var. Genovese and var. Minimum Originated from Serbia. Processes. 10(9),1893. https://doi.org/10.3390/pr10091893

Tursun, A. O., & Telci, I. (2020). The effects of carbon dioxide and temperature on essential oil composition of purple basil (Ocimum basilicum L.). Journal of Essential Oil Bearing Plants, 23(2), 255-265.

https://doi.org/10.1080/0972060X.2020.17414

Valitova, J. N., Sulkarnayeva, A. G., & Minibayeva, F. (2016). Plant sterols: diversity, biosynthesis, and physiological functions. **Biochemistry** (Moscow), 819-834. 81, https://doi.org/10.1134/s0006297916080046

Valkama, E., Kivimäenpää, M., Hartikainen, H., & Wulff, A. (2003). The combined effects of enhanced UV-B radiation and selenium on growth, chlorophyll fluorescence and ultrastructure in strawberry (Fragaria× ananassa) and barley (Hordeum vulgare) treated in the field. Agricultural and forest meteorology, 120(1-4), 267-278.

https://doi.org/10.1016/j.agrformet.2003.08.0 21

Verma, N., & Shukla, S. (2015). Impact of various factors responsible for fluctuation in plant secondary metabolites. Journal of Applied Research on Medicinal and Aromatic Plants, 2(4), 105-113.

https://doi.org/10.1016/j.jarmap.2015.09.002

Wang, Y.-D., Wang, X., & Wong, Y.-s. (2012). Proteomics analysis reveals multiple regulatory mechanisms in response to selenium in rice. *Iournal* of proteomics, 75(6), 1849-1866. https://doi.org/10.1016/j.jprot.2011.12.030

Xu, D., Wei, Y., Gao, Y., Lin, L., Wang, Z., & Zheng, Y. (2018). Effects of different selenium concentrations on photosynthetic pigment content of Pterocypsela laciniata. Paper presented at the 2018 7th International Conference on Energy and Environmental Protection (ICEEP 2018).

Yeshi, K., Crayn, D., Ritmejerytė, E., & P. (2022). Wangchuk, Plant secondary metabolites produced in response to abiotic stresses has potential application pharmaceutical product development. Molecules, 27(1), 313.

https://doi.org/10.3390/molecules27010313

12