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ABSTRACT
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Bimetallic nanoparticles (BNPs) have gained immense attention for their diverse biological appli-
cations. This study aimed to biosynthesize and characterize Ag-ZnONPs and Fe-ZnONPs and
compare their potential as therapeutic agents. The BNPs were synthesized using Mentha asi-
atica plant extract and characterized using various techniques such as UV-visible spectroscopy,
TEM, EDX spectroscopy, ATR-FTIR spectroscopy, PXRD, DLS, and zeta potential analyses. TEM,
EDX, and XRD revealed the structural and morphological properties of crystalline Ag-ZnONPs
and Fe-ZnONPs. FTIR analysis investigated the plant phytochemicals responsible for the sta-
bilization and capping of BNPs. Ag-ZnONPs showed higher biocompatibility than Fe-ZnONPs.
Fe-ZnONPs exhibited-significantly higher anticancer potential than Ag-ZnONPs as evident by
Reactive Oxygen Species/ Nitric Oxide Synthase production, along with cell viability analysis,
loss of mitochondrial-membrane potential, enhanced caspase-3 gene-expression, and intensi-
fied activity of Caspase-3/7. Collectively, our findings underscore the promising therapeutic-
potential of BNPs in cancer treatment and diabetes, setting them as strong candidates for future
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biomedical applications.

1. Introduction

Bimetallic nanoparticles (BNPs) have become valuable
in recent years due to their enhanced optical, elec-
tronic, magnetic, and catalytic properties [1,2]. The
synergistic effects between two metal components
lead to improved stability, increased surface area, and
enhanced reactivity, which makes BNPs superior to their
monometallic counterparts [3]. As they are formed by
combining two distinct metal types, the resulting struc-
tures range from alloy and intermetallic particles to
core-shell and multi-shell configurations. Many kinds
of BNPs synthesized with the integration of zinc oxide
nanoparticles (ZnONPs), such as Au-ZnO, Ag-ZnO, Cu-
ZnONPs, and Fe-ZnONPs, have been reported in the
literature [4-6]. However, the properties and perfor-
mance of BNPs are highly dependent on the choice of
metals, their ratio, and the method used for their syn-
thesis [7]. Given that, we used a plant-based synthesis
method utilizing Mentha asiatica |leaf extract. It is rich in

bioactive compounds such as phenols, flavonoids, and
terpenoids, and exhibits immense biological and thera-
peutic properties [8,9]. These compounds not only facili-
tate the reduction and stabilization of nanoparticles but
may also enhance their therapeutic efficacy.
Green-synthesized nanoparticles offer a multitude of
advantages over their chemically generated counter-
parts. To begin with, green synthesis encompasses the
fundamental benefits of sustainable, non-toxic, envi-
ronmentally friendly, cost-effective, and scalable prod-
ucts [10]. Moreover, the process itself is quite sim-
ple and can be monitored in real time [11]. Recent
reports further support these advantages, where plant-
based extracts have successfully facilitated the synthe-
sis of biologically active nanoparticles, such as using
Cotoneaster nummularia under diffused sunlight for
wound healing applications, or olive fruit extract for
generating antioxidant and antibacterial AgNPs [12,13].
Some of the most pertinent advantages lie in the field of
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medicine, as the nanoparticles, being capped by natural
biomolecules, not only ensure biocompatibility, but the
functionalization potential also enhances nanoparticle
activity and stability [14-16]. For these reasons, green
synthesized nanoparticles are routinely employed in
targeted drug delivery, gastroprotective activities, can-
cer treatment, magnetic resonance imaging (MRI), gene
therapy, and as biosensors and anti-microbial agents
[17,18].

The bimetallic nanostructures have improved effec-
tiveness and enhanced biocompatibility, paving the
way for biomedical applications. One of the potential
applications of BNPs is their antidiabetic action. The reg-
ulatory potential of selenium-based nanomaterials in
managing diabetes through modulation of selenopro-
teins has been reported recently [19]. Ag-ZnONPs have
been reported to exhibit inhibitory properties against
amylases and glucosidases [4]. The antidiabetic activ-
ity has been observed in its monometallic counterparts,
however, the synergistic action of Fe-ZnONPs has not
been reported in the literature so far [20,21]. Other
promising applications of BNPs include antiglycation
and antioxidant activities. BNPs such as Au-ZnONPs and
Fe-ZnONPs have been reported to increase the levels
of antioxidant enzymes such as superoxide dismutase
(SOD) and catalase (CAT) [22,23]. Moreover, these BNPs
have been extensively studied for their inhibitory action
against advanced glycation end products (AGEs), mak-
ing them a potential therapeutic candidate for age-
related disorders [24]. Furthermore, they offer signifi-
cant anticancer potential and have been reported to be
effective against various cancerous cell lines by direct
application and as nanocarriers [25,26]. In addition,
BNPs such as platinum-iron and Fe-ZnONPs have also
been studied for sonodynamic cancer therapies and
have produced favourable results [27,28]. The current
study utilized cell-free assays and HepG2 cell lines to
study the above-discussed applications of Ag-ZnONPs
and Fe-ZnONPs.

Developing novel BNPs with enhanced therapeu-
tic potential is crucial to advancing treatment strate-
gies in various biomedical fields. Despite the significant
progress, a gap still exists in the knowledge regard-
ing the comparative potential of Ag-ZnONPs and Fe-
ZnONPs, particularly in terms of their anti-diabetic,
antiglycation, antioxidant, and anticancer activities. The
rationale behind this study stems from the need to
investigate and compare the therapeutic efficiencies
of these two BNPs systems, as their distinct metal
combinations can lead to differences in performance.
Specifically, Fe-ZnONPs are hypothesized to exhibit
unique synergistic effects that have not been thor-
oughly explored, particularly in inhibiting key enzymes
related to diabetes, oxidative stress management, and
cancer treatment. The current study aims to uncover
the biomedical activities of Ag-ZnONPs and Fe-ZnONPs
and provide mechanistic insights as to how they exhibit

certain actions to advance their use in therapeutic appli-
cations.

2. Materials and methods
2.1. Preparation of M. asiatica leaf extract

Bundles of freshly grown M. asiatica (Accession number:
433489) leaves were harvested from the local farms dur-
ing the late summer in August. Ten grams of leaves were
washed with tap and distilled water to remove impuri-
ties. The leaves were then cut into smaller pieces, added
to 400 mL of distilled water in a beaker, and heated to
200°C until the volume was reduced to 100 mL. The mix-
ture was subsequently ground for 2 min and filtered
using Whatmann filter paper No. 1. The resulting plant
extract (PE) was stored at 4°C until further use for BNPs
synthesis and phytochemical investigations.

2.2. Analysis of phytochemical constituents

Phytochemical Analysis was performed in terms of total
phenolic content (TPC) and total flavonoid content
(TFQ). Folin-Ciocalteu'’s test, developed by Anjum et al.
was conducted to investigate TPC [29]. The UV-visible
spectrophotometer (Specord-200, Analytik Jena, Ger-
many) was used to measure the absorbance of the sam-
ples at 750 nm. TPC was reported in terms of mg of
Gallic Acid Equivalent (GAE)/g dry weight of PE, and
gallic acid was set as a standard. Likewise, TFC was
determined using the aluminium chloride colorimetric
method as defined by Naqvi et al., followed by mea-
suring absorbance at 415 nm [30]. Quercetin was used
as a standard, and results were reported as mg of
quercetin/g dry weight.

2.3. Freeradical scavenging activity (FRSA)

The antioxidant potential of PE was determined using
2, 2-diphenyl-1-picrylhydrazyl (DPPH). For this purpose,
the method of Inam et al. was employed for measure-
ment and calculations [31]. UV-vis spectrophotometer
was used to measure the absorbance of the reaction
mixture at 517 nm. The experiment was performed in
triplicates.

2.4. Biosynthesis of BNPs

PE-assisted synthesis of Ag-ZnONPs was executed fol-
lowing the modified method of Anjum et al [4]. 1 mL of
PE and 50 mL of 0.5 M zinc acetate solution were heated
at 60°C for 5 mins. Then, 10 mL of 0.1M silver nitrate was
added, and the pH was adjusted to 9 with 1 M NaOH. The
solution was stirred at 60°C for 2 h. The resulting precip-
itates were allowed to settle and micro-centrifuged at
13000 rpm for 15 min. The pellets obtained were placed
in an incubator at 30°C for 24 h to allow them to dry
completely. Lastly, the dried product was crushed to a



fine powder using a pestle and mortar. The synthesized
Ag-ZnONPs were collected in a microtube, labelled, and
stored for further usage.

Fe-ZnONPs were synthesized by following Reyes-
Pérez et al. with slight modifications [32]. 50 mL of 0.5
M zinc acetate solution and 20 mL of 0.02 M iron sul-
phate solution were prepared, and a reduction reaction
was carried out in two steps. Following the first step as
in Ag-ZnONPs synthesis, the resulting mixture of PE and
zinc acetate solution was added to 20 mL of iron sul-
phate solution. The mixture was stirred continuously for
1 h and then allowed to rest for 24 h. The mixture was
subjected to further treatments under conditions like
Ag-ZnONPs.

2.5. Characterization of BNPs

Structural and physicochemical characterization was
carried out by using various techniques such as UV-vis
Spectrophotometry, Transmission Electron Microscopy
(TEM), Energy Dispersive X-ray (EDX) Analysis, Attenu-
ated Total Reflection-Fourier Transform Infrared (ATR-
FTIR) Spectroscopy, Powdered X-Ray Diffraction (PXRD),
Dynamic Light Scattering (DLS), and Zeta Potential anal-
ysis.

UV-vis Spectrophotometer was used to record the
synthesis and stability of BNPs. Transmission Electron
Microscope (JEM-2100, JEOL Ltd., Japan) was used to
evaluate the shape of BNPs and to determine their esti-
mated size. The procedure outlined by Faisal et al. was
used to prepare samples and take TEM micrographs
[33]. EDX analysis was performed using an EDX detector
coupled with TEM to ascertain the elemental composi-
tion of BNPs. ATR-FTIR Spectroscopy (VERTEX 70v FT-IR
Spectrometer, United States) was used to determine
the functional groups of the phytochemicals responsi-
ble for coating and stabilizing BNPs. The peaks between
650 and 4000 cm™" were recorded. The crystalline struc-
ture of BNPs was determined using Powdered X-ray
Diffractometer (AXS DS Advance, Bruker, USA) follow-
ing the conditions of Inam et al,, and the crystalline size
of BNPs was determined using Debye-Scherrer’s for-
mula (D = kA/fcosf) [31]. The size distribution and zeta
potential of BNPs were calculated by applying DLS using
Zetasizer (Malvern, NanoZSP, UK) following the method
of Sohail et al [34].

2.6. Biocompatibility analysis of BNPs

Brine shrimp lethality analysis and hemo-compatibility
analysis using RBCs were performed to analyse the bio-
compatibility of BNPs. 100 pg/mL concentration of BNPs
was used to conduct the biocompatibility studies based
on the available literature for optimal experimental out-
comes. The experiments were performed in triplicates
following the protocol outlined by Inam et al [31]. Ethi-
cal standards of the International and National Research
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Committees and the 1964 Helsinki Declaration and its
later amendments were duly considered while con-
ducting the experiments, as human participants were
involved in obtaining blood samples.

2.7. Antidiabetic and antiglycation potential of
BNPs

The antidiabetic potential of Ag-ZnONPs and Fe-
ZnONPs was determined against a-amylase and a-
glucosidase enzymes, as performed by Shah et al [35].
The enzymatic activity was measured at 405 nm, with %
inhibition calculated. Similarly, the antiglycation activ-
ity of BNPs was measured in terms of vesperlysine-like
(V-AGEs) and pentosidine-like AGEs (P-AGEs) inhibition
following the protocol of Shah et al [35]. The quan-
tity of formed AGEs was measured using fluorescence
(Versa Fluor fluorometer); Bio-Rad, Marnes-la-Coquette,
France, set at wavelengths of 410 nm emission and 330
nm excitation, respectively. The inhibition of AGEs for-
mation was expressed in terms of % inhibition relative
to the control.

2.8. Antioxidant activities of BNPs

The antioxidant capacity of Ag-ZnONPs and Fe-ZnONPs
was measured using four assays. In the Oxygen Radical
Absorbance capacity (ORAC) assay, 10 L of the sample
was mixed with fluorescein and ABAP as performed by
Shah et al., and fluorescence was recorded over 2.5 h
at 37°C [35]. The 2,2-Azinobis-3-ethylbenzthiazoline-6-
sulphonicacid (ABTS) assay was conducted by following
the procedure of Inam et al,, in which ABTS solution
was mixed with samples, and absorbance was recorded
at 734 nm after 15 mins in the dark. The Ferric Reduc-
ing Antioxidant Power (FRAP) analysis was performed
following Abbasi et al.'s method, with the absorbance
of the final reaction mixture recorded at 630 nm [36].
In the Cupric Reducing Antioxidant Capacity (CUPRAC)
assay, samples were mixed with neocuproine, Cu (ll),
and acetate buffer was added, followed by incuba-
tion at 25°C, with absorbance recorded at 450 nm. It
was carried out following the method of Apak et al
[371. All assays were performed thrice, and results were
expressed as microMolar Trolox equivalent antioxidant
capacity (uM TEAC).

2.9. Anticancer activity of BNPs

Following Meer et al. MTT (3-(4,5-dimethylthiazolyl-
2)—2,5-diphenyltetrazolium bromide) assay was per-
formed upon HepG2 human hepatoblastoma cell lines
(ATCC HB-8065; USA) for assessing cell viability with
non-treated cells (NTC) as control [38]. Optimized
concentrations of Fe-ZnONPs and Ag-ZnONPs were
employed, and all experiments were carried out in
triplicate. In addition, membrane integrity analysis
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of HepG2 cells was performed in terms of Reac-
tive Oxygen Species/Nitric Oxide Synthase (ROS/NOS)
production and Mitochondrial Membrane Potential
(MMP). The method reported by Nazir et al. was
employed to assess the intracellular ROS/NOS level
by using dihydrorhodamine-123 (DHR-123) fluorescent
dye (Sigma, Saint Quentin Falavier, France) [39]. The
results were expressed in terms of relative fluorescence
units (RFU). Loss of MMP in HepG2 cells as a result
of BNPs' actions was determined using the method
devised by Khan et al [40]. Cell culture was supplied
with 25 nM 3,3’-dihexyloxacarbocyanine iodide follow-
ing the incubation of cells at 37 °C for 40 min. The MMP
was expressed as relative fluorescent units (RFU). The
experiment was performed in triplicates. Furthermore,
Caspase-3 gene expression and Caspase 3/7 Activity
were measured in BNPs-treated HepG2 cells. To mea-
sure the expression of Caspase-3, the protocol and
conditions pre-optimized by Anjum et al. were fol-
lowed [29]. The results were expressed in the units of
Log 2-fold Activity. Caspase 3/7 activity was estimated
using the Apo-ONE Homogeneous Caspase-3/7 Assay
kit (Promega, Charbonniéres-les-Bains, France) follow-
ing the instructions of the manufacturer. Three repe-
titions of the experiment were performed, and results
were expressed in terms of RFU/mg Protein.

2.10. Graphical and statistical analyses

All the data were graphically and statistically evaluated
by using Image J, OriginPro 8.5, Microsoft Excel 2019,
and GraphPad Prism 8.0.2 software. The results of the
experiments were expressed in terms of Mean =+ SD, fol-
lowed by Paired Sample T-tests, One-way ANOVA, and
Bonferroni multiple comparison tests (p < 0.05).

3. Results and discussion

3.1. Phytochemical analysis of M. asiatica leaf
extract

Secondary metabolites, particularly phenolics and
flavonoids, found in plant leaf extracts, are utilized as
natural reducing and stabilizing agents and are crucial
for the green synthesis of BNPs [41]. These compounds
contribute significantly to the reduction of metal ions
during nanoparticle synthesis and enhance the stabil-
ity and bioactivity of the BNPs [7]. In this study, TPC
and TFC of M. asiatica extract were determined to be
122.43 £ 0.03 mg GAE/g DW and 91.48 +0.76 mg QE/g
DW, respectively. High phenolic and flavonoid content
in M. asiatica aligns with the previous studies, where
phytochemical-rich plants were utilized for NPs fabri-
cation. Alharbi et al. revealed in their study that the
total flavonoid and phenolic content of Ocimum sanc-
tum was 82.02+8.17 mg GAE/g and 74.6+5.1 mg,
respectively [42]. Moreover, Kashkoul et al. evaluated

the aqueous extract of Laurus nobilis leaves that are
rich in flavonoids (21.576 + 0.0763 mg/L) and phenolic
compounds (23.964 + 0.0698 mg/L), which effectively
mediated the synthesis of stable NPs [43]. Compared
to these studies, the higher phenolic content in M. asi-
atica suggests its superior potential in BNPs synthesis,
likely enhancing the antioxidant and other bioactive
properties of the fabricated nanoparticles. FRSA analy-
sis of M. asiatica provided crucial insights regarding its
antioxidant potential, and the results were expressed
in terms of % of decolorization. The analysis showed
69.4 + 0.12% of decolorization, demonstrating the high
antioxidant potential of the plant extract. Our results are
in harmony with Benabdallah et al., which showed high
inhibitory activity of different Mentha species against
DPPH [44].

3.2. Biosynthesis of BNPs

Many investigations and experiments have been descri
bed in the literature on the green production of Ag-
ZnONPs from different plant extracts, as they have been
demonstrated to be remarkable bioreactors for produc-
ing NPs. Kyomuhimbo et al. biosynthesized bimetal-
lic Ag-ZnONPs using the extract of Bidens pilosa [45].
Green synthesis of Ag-ZnONPs was accomplished by
Hosny et al. using Persicaria salicifolia, and Thatoi et al.
with extracts of Heritiera fomes and Sonneratia apetala
[46,47]. In our study, bluish-grey Ag-ZnONPs pellets
were obtained, and the highest yield was obtained after
continuous stirring for 2 h. The dried pellets were then
converted into powdered form using a pestle and mor-
tar for further applications. The obtained yield of Ag-
ZnONPs was 2 g BNPs: 1 ml PE: 50 ml Zinc acetate:
10 ml silver nitrate. In the case of Fe-ZnONPs, the best
results were obtained after continuous stirring for 1 h.
The resulting, black-colored pellets were isolated, dried,
and converted into powdered form for future use. The
obtained yield of Fe-ZnONPs was 4 g BNPs: 1 ml PE:
50 ml Zinc acetate: 20 ml Iron Sulphate. Our results
are in harmony with those of Reyes-Pérez et al. where
black-colored BNPs were obtained with zinc acetate and
iron sulfate as salt precursors [32]. Jan et al. reported
reddish-yellow Fe-ZnONPs when zinc nitrate and iron
nitrate were used as salt precursors. This shows that
the choice of salt precursors affects the physicochemical
properties of the BNPs [48].

3.2.1. Probable mechanism for BNPs formation

The expected mechanism of the formation of Ag-
ZnONPs involves the initial chelation of Zn?* ions with
the plant phytochemicals to form Zn-complex [49].
Upon adding AgNOs, the same phytochemicals result
in the reduction of Ag™ ions to Ag®. In basic and slightly
heating conditions, zinc complex hydrolyzes and results
in the formation of ZnO. Ag® particles anchor or nucle-
ate over the growing ZnO matrix, stabilized by plant
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Figure 1. TEM and EDX analysis of BNPs. A. Micrograph of Fe-ZnONPs (500 nm scale); B. Micrograph of Fe-ZnONPs (200 nm scale); C.
Micrograph of Ag-ZnONPs (500 nm scale); D. Micrograph of Ag-ZnONPs (200 nm scale); E. TEM histogram for the size distribution of
Fe-ZnONPs; F. TEM histogram for the size distribution of Ag-ZnONPs; G. Elemental Composition of Fe-ZnONPs; H. Elemental Compo-
sition of Ag-ZnONPs. (Transmission Electron Microscopy; TEM, Energy Dispersive X-ray; XRD, Bimetallic Nanoparticles; BNPs, Iron-Zinc
Oxide Nanoparticles; Fe-ZnONPs, Silver-Zinc Oxide Nanoparticles; Ag-ZnONPs).

molecules. Functional groups (OH, -COOH, -NH;) from
plant metabolites coat BNPs, preventing agglomeration
and offering bioactive surfaces. The likely byproducts
are acetate and nitrate ions, and oxidized plant com-
pounds [50].

In the case of Fe-ZnONPs, the same Zn-phytoche
mical complex is likely formed. Upon the addition of
iron sulphate solution, iron ions (Fe2t) get partially oxi-
dized to Fe3* in the presence of air and are reduced
by plant metabolites to form Fe3O4 or Fe,03 particles.
These particles integrate into the simultaneously form-
ing ZnO matrix to give Fe-ZnONPs [51]. The functional
groups not only act as reducing agents but also pre-
vent the BNPs from agglomerating by coating them.
This reaction probably gives the byproducts acetate and
sulphate ions and oxidized phytochemicals.

3.3. Characterization of BNPs

3.3.1. TEM and EDX analysis

TEM was employed to study the morphological charac-
teristics of BNPs. According to our findings, Fe-ZnONPs
displayed a spherical shape with significant agglomer-
ation (Figure 1A, B). Fe-ZnONPs appeared smaller than
Ag-ZnONPs, which exhibited an irregular cubic shape
with less agglomeration (Figure 1C, D). In Fe-ZnONPs,
agglomeration might be due to the magnetic nature
of iron, promoting the clustering of particles. Ansar et
al. reported the irregular morphology of Aloe-mediated
Ag/ZnONPs heterostructures as well, which aligns with
our findings [52]. Similarly, the spherical morphology
of Fe-ZnONPs is reported in many research reports

[53,54]. The size difference between Ag-ZnONPs and
Fe-ZnONPs is consistent with the findings of the lit-
erature, where Fe-ZnONPs have often demonstrated
smaller diameters due to fast nucleation rates during
synthesis. Morphological differences between the two
types of BNPs could be attributed to the differences
in synthesis conditions, precursor salt ratios, and metal
ion reduction rates [55]. Using Image J software, the
sizes of BNPs were calculated, and the average sizes of
Fe-ZnONPs and Ag-ZnONPs were 18.1 and 39.95 nm,
respectively (Figure 1E, F). These sizes coincide with
the crystalline sizes calculated using the Debye-Scherrer
formula in XRD analysis.

Figure 1 shows the elemental composition of BNPs
confirmed by EDX analysis. The Fe-ZnONPs primarily
consisted of oxygen (O), zinc (Zn), and iron (Fe), with
weight percentages of 21.31%, 53.49%, and 25.20%,
respectively (Figure 1G). Similarly, the Ag-ZnONPs pri-
marily consisted of O, Zn, and silver (Ag) with respec-
tive weight percentages of 29.21%, 49.28%, and 21.51%
(Figure 1H). These results are in line with previous stud-
ies, which also report ZnO nanoparticles synthesized
with transition metals like Fe and Ag showing similar
elemental distributions [4,53,56]. The presence of O and
Zn confirms the ZnO matrix, while the metal content (Fe
or Ag) demonstrates successful doping.

3.3.2. UV-Vis Spectrophotometry

Surface Plasmon Resonance (SPR) is the characteristic
by which the NPs formation and their optical properties
are determined. It occurs due to the collective oscil-
lation of free electrons on the metallic NPs surface in
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response to light exposure [57]. This results in the char-
acteristic absorption peaks in the UV-spectrum. In the
present study, Ag-ZnONPs exhibited dual peaks at 370
and 446 nm, respectively, corresponding to ZnO and
Ag (Figure 2A). The former corresponds to the intrin-
sic band-gap absorption of ZnO. At the same time, the
latter is attributed to the SPR of Ag nanoparticles. In
contrast, only a single and distinct peak at 395 nm was
observed in the case of Fe-ZnONPs (Figure 2A). This can
be explained by the lack of a prominent SPR effect in
iron nanoparticles, which typically exhibit weaker or no
SPR response in the UV-Vis region due to their dielec-
tric properties. The observed peak may therefore reflect
a combined contribution from ZnO and Fe-related tran-
sitions. Furthermore, the single peak suggests a more
homogeneous and possibly core-shell type structure
with uniform distribution, unlike Ag-ZnONPs, where Ag
and ZnO exist as distinct domains, reflected in their
dual peaks [58]. Our findings coincide with the report
published by Devi et al., where Fe-ZnONPs showed a
characteristic peak at 370 nm [59]. Likewise, Ehsan et al.
observed a broad absorption band with two shoulders
in the case of Moringa oleifera-mediated Ag-ZnONPs at
330 nm and 366-79 nm [60]. Comparable findings were

reported in the green synthesis of gold nanoparticles
(AuNPs) using Cyperus scariosus extract, where a single
absorption peak at 535 nm indicated successful AuUNP
formation with uniform characteristics [61]. Thus, the
dual peaks of Ag-ZnONPs and the single broad peak of
Fe-ZnONPs highlight the significant differences in their
optical properties.

3.3.3. ATR-FTIR Spectroscopy

ATR-FTIR Spectroscopy was conducted to identify the
functional groups responsible for the stabilization and
capping of plant mediated-BNPs, as shown in Figure
2B. For Ag-ZnONPs, prominent peaks appeared at
682.80, 1639.46, 3344.56, and 3869.20cm™"'. Similarly,
Fe-ZnONPs showed peaks at 698.23, 1652.99, 2360.87,
3354.21, and 3888.49cm™', while the plant extract
exhibited a more complex spectrum with peaks at
667.37, 813.96, 1041.56, 1409.96, 1620.20, 2009.82,
2358.94, 3392.78, and 3653.17 cm™ . The peaks in the
1639-1652cm™" range for both Ag-ZnONPs and Fe-
ZnONPs are typically associated with C = O stretching,
suggesting the presence of carboxyl groups. The broad
peaks observed around 3344-3354cm™' in both Ag-
ZnONPs and Fe-ZnONPs correspond to O-H stretching



Table 1. ATR-FTIR Assignments for Ag-ZnONPs, Fe-ZnONPs,
and Plant Extract.

Wave number

(em™h Functional Groups
Plant Extract
667.37 C-H bending (alkyl)
813.96 C-H out-of-plane bending
1041.56 C-O stretching (alcohol)
1409.96 C-H bending (methyl/CH;)
1620.20 C = Cstretching (aromatic)
2009.82 C = Cstretching (alkyne)
2358.94 C = N stretching (nitrile)
339278 O-H stretching (hydroxyl)
3653.17 O-H stretching (hydroxyl)
Ag-ZnONPs
682.80 C-H bending (alkyl)
1639.46 C = O stretching (carboxyl)
3344.56 O-H stretching (hydroxyl)
3869.20 M-O stretching (metal-oxide bond)
Fe-ZnONPs
698.23 C-H bending (alkyl)
1652.99 C = O stretching (carboxyl)
2360.87 C = N stretching (nitrile)
3354.21 O-H stretching (hydroxyl)
3888.49 M-O stretching (metal-oxide bond)

vibrations, indicating hydroxyl groups. The broad peaks
observed around 3344-3354 cm™" in both Ag-ZnONPs
and Fe-ZnONPs correspond to O-H stretching vibra-
tions, indicating hydroxyl groups. These groups are
often associated with the stabilization of NPs as
reported in the literature [30, 62,63]. These observa-
tions are consistent with findings from the green syn-
thesis of hydroxyethylcellulose phthalate-modified sil-
ver nanoparticles, where FTIR spectra revealed similar
functional groups contributing to nanoparticle stabi-
lization [64]. A similar study conducted by Jabbar et al.
revealed that the bioactive compounds in the Equise-
tum diffusum extract, used to synthesize Ag-NPs, were
most likely coordinated to the metal through carbonyl
or hydroxyl groups [65]. Unique peaks near 3869 cm™!
for Ag-ZnONPs and 3888cm~' for Fe-ZnONPs con-
firm the presence of metal-oxide bonds. The plant
extract showed additional peaks (e.g. 1409.96 and
3392.78 cm ™), associated with phenolic and flavonoid
compounds, which aid in nanoparticle synthesis. Com-
paratively, several peaks from the plant extract were
absent or shifted in the spectra of Ag-ZnONPs and Fe-
ZnONPs, which suggested that these functional groups
interacted with the nanoparticles during synthesis,
resulting in surface modifications [66]. These results are
summarized in Table 1.

3.3.4. PXRD analysis

In the PXRD analysis of BNPs, characteristic peaks
were observed at various 26 angles corresponding to
specific reflection planes, and the crystalline nature
of the BNPs was consequently confirmed, which has
been illustrated in Figure 2C. For Fe-ZnONPs, peaks
were observed at 31.72° (100), 34.44° (002), 36.28°
(101), 47.52° (102), 56.6° (110), 62.84° (103), and 68.05°
(112). Similar peaks were displayed in the case of Ag-
ZnONPs at positions 31.75° (100), 34.65° (002), 36.25°
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(101),47.55° (102), 56.55° (110), 62.85° (103), and 67.95°
(112). This suggested a comparable crystal structure
for both nanoparticle types. The diffraction pattern
aligns closely with the wurtzite hexagonal phase typ-
ically associated with ZnO-based NPs (JCPDS Card No.
00-036-1451). The slight differences in peak positions
may be due to the incorporation of Ag and Fe, poten-
tially causing minor lattice distortions. The narrow and
sharp peaks, especially in Ag-ZnONPs, indicate a highly
crystalline nature. The crystalline size of BNPs was
found using PXRD data and Debye-Scherrer’s formula
(d = K1/Bcosh). It was found to be ~ 42.4 nm for Ag-
ZnONPs and " 18.88 nm for Fe-ZnONPs. These values
align well with the TEM images, which reveal that Fe-
ZnONPs are smaller and have a more spherical shape
compared to the larger, irregular cubic shape observed
in Ag-ZnONPs. The consistent size and shape observa-
tions across both XRD and TEM confirm the crystalline
nature and morphology of the nanoparticles and under-
score the reliability of the results. Our findings corrobo-
rate with the study by Hussain et al. and Raza et al., who
observed a similar crystalline structure for Ag-ZnONPs
[67,68]. For Fe-ZnONPs, the results reported by Gudla et
al. and Wenjuan et al. showed that the spherical shape
of Fe-ZnONPs is common [69,70]. These findings con-
firm the successful doping of the ZnO matrix with Ag
and Fe, which may influence the NPs’ physical and cat-
alytic properties.

3.3.5. DLS and zeta potential investigations

DLS analysis revealed that the particle size distribu-
tion of Fe-ZnONPs was within the 10-50 nm range
(Figure 2D), while Ag-ZnONPs showed a broader size
distribution of 20-70 nm (Figure 2E). The smaller size
range of Fe-ZnONPs corroborates well with the pre-
viously obtained TEM data, which also indicated Fe-
ZnONPs to be smaller in size compared to Ag-ZnONPs.
This size difference may be attributed to the inherent
material properties and synthesis conditions for each
nanoparticle type. Narendhran et al. reported the par-
ticle size of 22-44 nm for Fe-ZnONPs, which coincides
with our results [71]. Comparable results were reported
by Mohammadi-Aghdam et al., where a 60-90 nm size
was observed for Ag-ZnONPs [72].

The zeta potential values provide insight into the
stability of the nanoparticles. In this study, Fe-ZnONPs
exhibited a zeta potential of —45.2 mV (Figure 2F), while
Ag-ZnONPs had a slightly lower value of —31.2 mV
(Figure 2G). The high negative zeta potential values of
BNPs were attributed to the negative charge of the phy-
tochemicals of M. asiatica extract, likely due to the pres-
ence of negatively charged functional groups such as
hydroxyl (-OH) and carboxyl (-COO™) on the BNPs sur-
faces. This demonstrates the presence of plant phyto-
chemicals on the surface of BNPs. The findings indicate
that both BNPs were stable, as reported in the litera-
ture by Abdul Hassan et al [73]. However, Ag-ZnONPs
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had less stability as compared to Fe-ZnONPs, showing
a slight degree of agglomeration. These stability values
are consistent, as zeta potentials closer to zero indicate
a higher likelihood of agglomeration, while more neg-
ative values promote repulsion and thus stability [74].
Consequently, Fe-ZnONPs are less prone to agglomera-
tion in colloidal systems, making them more stable than
Ag-ZnONPs, which are relatively more likely to aggre-
gate under similar conditions.

3.4. Biocompatibility of BNPs

Biocompatibility of BNPs was determined using the
Brine Shrimp Lethality (BSL) Assay and the RBC Hemol-
ysis assay. In the BSL assay, our findings, as shown
in Figure 2H, presented that Ag-ZnONPs exhibited an
LC50 of 17.62 +0.81 mg/mlL, classifying them as mod-
erately toxic. As compared to them, Fe-ZnONPs had
a lower LC50 value (9.5 + 0.34 mg/mL). According to
the toxicity classification, substances that have LC-50
values between 10.0-30 mg/mL are moderately toxic,
and those between 1.0-1.0 mg/mL are considered toxic.
Based on these values, Ag-ZnONPs are comparatively
less toxic than Fe-ZnONPs. This suggests that even
though both BNPs have some degree of toxicity, Fe-
ZnONPs pose a higher toxicological risk as compared
to Ag-ZnONPs. This may be attributed to the high
oxidative potential of Fe. However, both BNPs demon-
strated safe profiles regarding hemolysis as observed
in Figure 2l. Ag-ZnONPs exhibited 4.68 +0.26% and
Fe-ZnONPs showed 4.90 +0.28% of hemolysis, both
remaining within the acceptable range of < 5%, as set
by the American Society for Testing and Materials, indi-
cating good biocompatibility for both types of BNPs
[75]. When comparing these results with the existing
literature, it was evident that Fe-ZnONPs may pose a
higher cytotoxicity risk, aligning with the study by Xu
et al. that reported Fe-based nanoparticles to exhibit
moderate toxicity at lower concentrations due to their
oxidative potential [76]. Ag-ZnONPs, on the other hand,
have been consistently shown to have lower cytotoxic

effects, which supports their safer biocompatibility pro-
files [77,78].

3.5. Antiglycation activity of BNPs

Antiglycation property of NPs refers to their ability to
inhibit AGEs formation, as they are linked to aging
and chronic disorders. BNPs such as Ag-ZnONPs and
Fe-ZnONPs are reported to show potent antiglycation
effects as they scavenge ROS species and avoid the
glycation of proteins in the cells [4]. Therefore, they
offer potential therapeutic benefits in managing condi-
tions associated with glycation damage. In our study,
the inhibition of V-AGEs and P-AGEs was observed
(Figure 3A). Ag-ZnONPs exhibited 38.0 4 1.5% inhibi-
tion against V-AGEs and 41.9 + 0.5% inhibition against
P-AGEs. However, in the case of Fe-ZnOPs, less inhi-
bition (20.7 +1.5% against V-AGEs and 23.5+2.5%
against P-AGEs) was observed as compared to Ag-
ZnONPs. The superior anti-glycation potential of Ag-
ZnONPs has been established in previous literature
reports [4,29,46]. Badhusha et al. reported that Fe-
ZnONPs have the anti-glycation ability as they were
found to interact with Bovine Serum Albumin (BSA)
protein and quench its fluorescence [79]. It has been
reported that the enzyme-BNPs interaction depends on
the size and shape of the BNPs [80]. The higher values for
Ag-ZnONPs in our study can be attributed to the smaller
size and spherical morphology as compared to irregular
cubic Fe-ZnONPs.

3.5.1. Antiglycation mechanism of BNPs

BNPs prevent the glycation of proteins through a com-
bination of surface interactions with proteins, free rad-
ical scavenging, disruption of sugar-protein binding,
and inhibition of crosslink formation. The schematic
representation is shown in Figure 4.

The high surface area-to-volume ratio of BNPs allows
them to interact extensively with proteins [81]. This
interaction can lead to the blocking of glycation sites,
such as free amino groups on proteins, which prevents
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sugars from binding with proteins. As a result, the for-
mation of Amadori Products, which are early glycation
intermediates, is halted [82]. BNPs can also form elec-
trostatic or covalent bonds with functional groups in
protein, which further inhibit the production of AGEs
[83]. Another mechanism is the disruption of sugar-
protein binding. BNPs compete with the sugars for pro-
tein binding sites and obstruct their reactions with pro-
tein amino groups. By effectively binding these sites,
NPs prevent the production of glycation intermediates
and subsequently, AGEs. Moreover, they can also block
the glycation-induced crosslinking of proteins by break-
ing the existing crosslinks or preventing their formation
in the first place. Some NPs alter the conformation of
proteins and prevent structural changes required for
cross-linking [84].

Yet another pathway for antiglycation activity is the
radical scavenging and metal ions chelation as oxida-
tive stress promotes glycation. BNPs that have inher-
ent antioxidant properties scavenge free radicals and
reduce oxidative damage, thereby preventing the pro-
motion of glycation reactions. Moreover, BNPs that have
metal-ion chelating properties reduce the availability
of ions that catalyze oxidation reactions and promote
glycation. The reduction of these ions results in the
lowering of oxidative stress and subsequent glycation
[85]. The ability of nanoparticles to act as both physi-
cal blockers and chemical antioxidants has made them

effective antiglycation agents in numerous biomedical
applications.

3.6. Antidiabetic activity of BNPs

To evaluate the potential of NPs to inhibit the activity
of enzyme competitively contributing in diabetes, a-
glucosidase and a-amylase inhibition assays were con-
ducted. Figure 3B shows the results that were reported
as a percentage of inhibition. For Ag-ZnONPs, the
analysis showed a promising value of 38.60 4 0.26%
and 59.70 + 1.32% respectively. Regarding Fe-ZnONPs,
30.60 4 2.07% inhibition and 41.13 4 1.58% inhibition
were observed against a-glucosidase and a-amylase,
respectively. Anjum et al. reported that Ag-ZnO BNPs
led to the highest inhibition of a-glucosidase (41.6 +
1.00%) and a-amylase (59.74+1.01%) as compared
to their monometallic counterparts [4]. Our literature
search did not find any reports regarding the anti-
diabetic analysis of Fe-ZnONPs in terms of inhibition
against key diabetic enzymes. This is the first study of
its kind that showed that Fe-ZnONPs have a high ability
to suppress a-amylase and a-glucosidase activity and
demonstrate strong anti-diabetic properties.

3.6.1. Mechanism of antidiabetic action of BNPs
Diabetes mellitus is marked by high blood glucose lev-
els due to insufficient insulin or poor cellular response
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to it. Under prolonged conditions, it can even lead to
neurological disorders, including conditions like carpal
tunnel syndrome and Bell’s palsy [86]. It is crucial to
control postprandial glucose levels, as enzymes like a-
amylase and a-glucosidase break down carbohydrates
into sugars [87]. BNPs have shown promise as alter-
native inhibitors of these enzymes, offering a novel
approach to glycemic control with fewer side effects
than traditional treatments [88]. Figure 5 shows the
probable mechanism of diabetic enzymes inhibition
in cells. BNPs may form electrostatic interactions with
functional groups (such as amino or carboxyl groups)
present in enzymes. This interaction can alter the
enzyme's charge distribution or interfere with the bind-
ing of the substrate, inhibiting the enzyme’s function
[89]. BNPs can bind to the active sites of enzymes, the
region where the substrate (such as starch or disaccha-
rides) would normally bind. By blocking the active site,
BNPs prevent the enzyme from interacting with its sub-
strate, reducing the breakdown of complex carbohy-
drates into simple sugars like glucose [90]. This slows the
release of glucose into the bloodstream, which helps
manage blood sugar levels. Furthermore, as in antigly-
cation, BNPs might effectively compete with the sub-
strate for enzyme binding, especially at glycation sites,
where sugars typically bind [7]. Our study reported that
both Ag-ZnONPs and Fe-ZnONPs possess high antidia-
betic potential in terms of enzyme inhibition.

3.7. Antioxidant analysis of BNPs

Oxidative stress is caused by an imbalance between
antioxidants and free radicals in the body. It is linked

to the progression of various diseases such as can-
cer, diabetes, and neurodegenerative disorders. In this
study, a series of cell-free assays, including ABTS, ORAC,
CUPRAC, and FRAP, were used to evaluate the antiox-
idant activity of the synthesized BNPs to compre-
hensively assess their radical scavenging and reduc-
ing capacities as demonstrated in Figure 6. In the
case of Ag-ZnONPs, the ABTS assay demonstrated a
favourable scavenging activity, with a radical inhibition
of 34.0 + 0.8 utM TEAC (Figure 6A). Similarly, the ORAC
assay, which measures peroxyl radical scavenging activ-
ity, revealed a high antioxidant capacity of 16.4+1.3
1M TEAC (Figure 6B). The CUPRAC assay, which evalu-
ates the cupric ion reducing power, recorded a value
of 205.9 + 16.2 pM TEAC, indicating the strong reduc-
ing potential of the Ag-ZnONPs (Figure 6C). Finally,
the FRAP assay showed a ferric reducing power of
161.9 + 9.3 tM TEAC, consistent with the CUPRAC assay,
confirming that our Ag-ZnONPs work effectively by
electron transfer (ET) mechanism (Figure 6D). In com-
parison, Fe-ZnONPs showed the highest anti-oxidative
potential of 106.6 4.2 nM TEAC when assessed via
CUPRAC assay, followed by FRAP (70.2 + 0.4 uM TEAQ),
ABTS (18.7+ 1.5 pM TEAC), and ORAC (8.5+0.3 uM
TEAC). Fe-ZnONPs also showed efficacy via the ET mech-
anism, but they were found to have less anti-oxidative
power when compared to Ag-ZnONPs. The most prob-
able explanation can be the metal combination in Ag-
ZnO, which results in better synergy between the silver
and zing, further amplifying their combined antioxidant
activity. In contrast, iron’s relatively lower redox poten-
tial than silver may reduce its ability to scavenge free
radicals as efficiently. This is supported by the study
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conducted by Shejawal et al., where the antioxidant abil-
ity of the metallic counterparts was studied, and AgNPs
were found to have higher ROS-scavenging potential
than FeNPs [91].

3.7.1. Probable antioxidant mechanism of BNPs in
cells

Nanomaterials possess inherent antioxidant properties
due to their surface characteristics, independent of their
functionalization. There are two essential mechanis-
tic pathways by which nanoparticles defend against
oxidative stress, i.e. chain-breaking antioxidant path-
way, also known as the radical trapping (RT) path-
way, and enzyme mimetic preventive oxidant pathway.
However, these mechanisms work by the fundamen-
tal principle, i.e. reduction-oxidation (redox) reactions
[92,93]. The pathways are summarized in Figure 6E.
In the chain-breaking/RT antioxidant pathway, direct
interaction between the NPs and the free radicals (reac-
tive oxygen species, ROS) and NPs neutralize them by
donating electrons to the free radicals similar to how
the traditional antioxidants act [94]. For instance, NPs
can quench alkyl peroxyl radicals (ROO®) and trans-
form them into neutral hydroperoxides (ROOH) [95].
The other mechanism is the enzyme-mimetic path-
way in which NPS mimic the activity of antioxidant
enzymes present in the cells such as CAT, Glutathione
peroxidase (GPX), and SOD [96]. CAT-mimetic NPs can
decompose hydrogen peroxide H,O; into water and
oxygen at neutral and basic pH levels. This activity is
influenced by the oxidation state of nanoparticles [97].
High surface ionic ratios enhance the CAT-like antiox-
idant activity of nanoparticles [98]. GPX-mimetic NPs
reduce H,0, to water using glutathione (GSH) by form-
ing polar peroxido- species rather than hydroxyl radi-
cals, which facilitates the reduction of H,O, with GSH
[99]. This behaviour has been studied in a few types

of nanomaterials as compared to the CAT-like mecha-
nism of antioxidation [100]. In the case of superoxide
radical decomposition, the self-decay of superoxide is
pH-dependent, with maximum efficiency at acidic pH
and reduced efficiency at physiological pH [101]. Given
the slow self-decay of superoxide at physiological pH,
the enzyme SOD evolved naturally to accelerate this
process [102]. SOD-mimetic NPs efficiently catalyze the
reduction of superoxide to hydrogen peroxide and oxy-
gen. Various nanomaterials have demonstrated high
SOD-like activity and have the potential for applications
where rapid superoxide quenching is needed [103].

3.8. Anticancer activity of BNPs

3.8.1. Cellviability analysis

HepG2 cell cultures were used to determine the anti-
cancer effect of BNPs. Our findings demonstrated that
Ag-ZnONPs reduced the cell viability to 48.5+2.3%
compared to NTCs, whereas Fe-ZnONPs showed 28.5 +
1.4% which is far lesser than Ag-ZnONPs (Figure
7A). This indicates the superior toxic effect of Fe-
ZnONPs. Carofiglio et al. reported similar findings where
Fe-ZnONPs were found extremely cytotoxic even at
low concentrations as compared to their monometal-
lic counterpart [104]. In contrast, 20% viability was
observed in another report when Burkitt's lymphoma
Daudi cell lines were treated with Fe-ZnONPs which
supports to our findings [53]. The greater cytotoxicity
of Fe-ZnONPs in our study may be attributed to their
smaller size and enhanced cellular uptake.

3.8.2. Disruption of mitochondrial membrane
potential

An important parameter to understand the anticancer
activity of any therapeutic agent is to determine the
mitochondrial potential of the cancerous cells. The loss
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of MMP depicts the disruption of the electron trans-
port chain (ETC) in mitochondria subsequently lead-
ing to ATP depletion and cell death [105]. In the
present study, Ag-ZnONPs caused a 2-fold decrease in
the MMP (1521.67 + 74.19 RFU) as compared to NTCs
(2965 =+ 74.54 RFU), which indicated that mitochondrial
function was significantly disrupted (Figure 7B). This is
supported by Anjum et al. where MMP of 1796.3 +61.09
RFU was reported [4]. However, Fe-ZnONPs showed the
highest reduction in MMP with 962 4 22.53 RFU. This is
in line with the results of our other parameters estab-
lishing that Fe-ZnONPs are superior anticancer agents
as opposed to Ag-ZnONPs. The stronger impact of Fe-
ZnONPs on MMP could be attributed to their capacity to
interact with the mitochondrial membrane more effec-
tively. Thisinteraction leads to the enhanced permeabil-
ity and disruption of ETC as discussed by Ragab et al
[106].

3.8.3. ROS/NOS production

Ag-ZnONPs treatment resulted in the 3553.67 4= 169.77
RFU of ROS/NOS levels which is four times greater than
that of NTCs. However, Fe-ZnONPs showed the great-
est production of ROS/NOS with 6094.00 + 197.58 RFU
(Figure 7C). The high production of oxidative species
is associated with an increased rate of cellular dam-
age and apoptosis ultimately resulting in the cell death
[107]. Opposingly, it was previously reported in the lit-
erature, that iron reduces the ability of Zn* 2 ions to
dissolve in the cytoplasm resulting in decreased oxida-
tive stress [108]. However, recent studies suggest that
iron can initiate cellular death in the process called fer-
roptosis, which is an iron-dependent accumulation of
lipid reactive oxygen species (ROS) and remnant Zn * 2

ions accelerate this process [109]. Therefore, it can be
proposed that our Fe-ZnONPs might result in higher
ROS/NOS production via ferroptosis.

3.8.4. Upregulated caspase-3 gene expression and
enhanced caspase-3/7 activity

The most widely reported mechanism of anticancer
action is apoptosis and caspase family proteins are the
key contributors to initiating and carrying out the pro-
grammed cell death. The current study findings corrob-
orate with the already published literature reports. Our
Ag-ZnONPs upregulated the caspase-3gene expression
with 394.11 £ 20.21 log 2-fold activity, while Fe-ZnONPs
induced a 2-fold increase with 655.55 + 11.13 log 2-fold
activity (Figure 7D).

Furthermore, caspase 3/7 activity was enhanced
the most by Fe-ZnONPs treatment 831.79 £ 19.21
RFU/mg protein, as compared to Ag-ZnONPs where
680.43 +34.89 RFU/mg protein activity was observed
(Figure 7E). Both types of BNPs showed high caspase
3/7 activity as compared to NTCs, however, Fe-ZnONPs
were found to be most inducing. Many studies have
shown the significant potential of BNPs to directly influ-
ence caspase activity and activate apoptosis in cancer
cells and our findings corroborate with them [56,110].
This enhanced activation of the apoptotic pathway by
Fe-ZnONPs could be due to enhanced oxidative stress
levels which directly influence caspase expression and
activate the apoptotic cascade as explained by Zheng
etal [111].

3.8.5. Potential anticancer mechanism of BNPs
Several pathways by which the nanomaterials induce
tumour death have been reported. These pathways can
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be divided into three categories i.e. intrinsic pathways,
extrinsic pathways, and perforin/granzyme pathways
(Figure 8).

In intrinsic pathways, NPs enter the cell and dissolve
due to a low pH environment resulting in dyshome-
ostasis, which further induces the production of ROS in
the cytoplasm [112]. The accumulation of ROS leads to
oxidative stress, which not only causes DNA damage
but can also damage various organelles and affect the
physiology of cellular components. Prolonged oxida-
tive damage can initiate the p53-Bax/Bcl-2 pathway of
apoptosis, causing the upregulation of p53 gene, which
can result in the G1- and S-phase cell arrest. p53 also
upregulates Bax/Bcl-2 gene, leading to the loss of mito-
chondrial function by disrupting mitochondrial mem-
brane potential (MMP) [113]. Consequently, the release
of pro-apoptotic factors such as cytochrome C from
the mitochondrial intermembrane space occurs, begin-
ning the caspase pathway of apoptosis [114]. Addition-
ally, the accumulation of metal ions in the cytoplasm
can cause endoplasmic reticulum (ER) stress, resulting
in protein misfolding in the ER lumen. It activates the
unfolded protein response (UPR) pathway and initiates
apoptosis [31].

NPs extrinsically induce apoptosis by activating
Tumor Necrosis Factor (TNF)-related apoptosis-inducing
ligand (TRAIL)-dependent pathway and Fas/FasL path-
way [115,116]. In Fas/Fasl pathway, external stimuli (i.e.
NPs) interact with the Fas receptor, which then binds

with Fas ligand (FasL) to form a complex and recruits
Fas-associated death domain (FADD) adapter protein,
resulting in the formation of the death-inducing sig-
nalling complex (DISC) [117]. In the TRAIL pathway,
death receptors, DR4/DR5 play a significant role in acti-
vating the apoptotic cascade. External stimuli, namely
NPs, result in the activation and binding of death recep-
tors with TRAIL. TRAIL-dependent and Fas/FasL machin-
ery work in coordination, as the binding of DR4 and DR5
with TRAIL leads to conformational changes in death
receptors (DRs). These changes promote interaction
with FADD. Once DISC binds with DR4/DRS5, it recruits
procaspases, which, upon proteolysis, are activated to
form caspase-8, further leading to the formation of
apoptosis execution machinery including, downstream
effector caspases [118]. Moreover, caspase-8 cleaves
the pro-apoptotic protein Bid and converts it into its
active truncated form (tBid). tBid then translocates to
the mitochondria and initiates the intrinsic apoptotic
process.

In the perforin/granzyme pathway of programmed
cell death, nanoparticles enhance the function and for-
mation of phagocytic cells, such as macrophages, which
secrete perforin. Perforin forms transmembrane pores
in tumour cells, and allows exophytic release of cyto-
plasmic granules, rich in proteases like granzyme A and
B, to enter. Granzyme A recruits the DNA digesting
enzymes complex known as SET complex and results in
DNA cleavage leading to cell death. Granzyme Binduces
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apoptosis by activating caspase-10 and downstream
effectors in the caspase pathway [119].

4. Conclusions

Overall, this study elucidates the therapeutic potential
of M. asiatica-mediated BNPs, specifically Ag-ZnONPs
and Fe-ZnONPs, in the context of antioxidant, anti-
cancer and anti-diabetic applications. Both types of
nanoparticles exhibited significant anticancer proper-
ties, with Fe-ZnONPs demonstrating a ROS/NOS pro-
duction level of 6094.00 &+ 197.58 RFU and Ag-ZnONPs
with a value of 3553.67 + 169.77 RFU, however, Fe-
ZnONPs displayed superior efficacy despite their lower
biocompatibility compared to Ag-ZnONPs. These find-
ings underscore the unique profile of Fe-ZnONPs
as promising candidates for targeted cancer thera-
pies. Moreover, Ag-ZnONPs proved to be better anti-
glycation agents with a P-AGEs inhibition percentage of
41.9+0.5% as compared to Fe-ZnONPs that only dis-
played a value of 23.5+2.5%. Furthermore, in terms
of anti-diabetic potential, Ag-ZnONPs were identified
as the superior BNPs again with an a -amylase inhibi-
tion potential of 59.70 £ 1.32% in comparison with the
41.134+1.58% of Fe-ZnONPs. Lastly, Ag-ZnONPs also
demonstrated the greater efficacy as an anti-oxidant
with 161.9 £ 9.3 uM TEAC in the FRAP assay relative to
70.2 £ 0.4 ntM TEAC of Fe-ZnONPs.

The significance of this study lies in the comparative
analysis of Ag-ZnONPs and Fe-ZnONPs and highlights
the former’s safer biocompatibility and enhanced ther-
apeutic effects. This distinction is particularly impor-
tant for the development of novel therapeutic strate-
gies and emphasizes the need for a balanced approach
that weighs therapeutic efficacy against potential bio-
compatibility issues. Furthermore, our results align with
and expand upon the existing literature by providing
new insights into the applications of Fe-ZnONPs, which
have not been extensively studied prior to this research.
This positions our findings as a valuable contribution to
the field and pave the way for further exploration into
the mechanisms of action and potential applications
of BNPs in biomedical contexts at a larger, commercial
level.

Notably, the M. asiatica Leaf Extract used in the syn-
thesis played a crucial role as both a reducing and sta-
bilizing agent, likely contributing phytochemicals that
enhanced the biological activity of the nanoparticles.
While a direct comparison of the leaf extract alone ver-
sus the BNPs was not within the scope of this study,
its known therapeutic potential warrants further inves-
tigation to isolate and evaluate its individual biological
effects. Future work could explore this comparison to
better understand the synergistic or additive roles of the
extract in nanoparticle-mediated therapies.

Moreover, this study acknowledges certain limita-
tions, including the need for more comprehensive

assessments of long-term biocompatibility and nan-
otoxicity. It is imperative to focus future research on in-
vivo studies to evaluate the biological impacts of BNPsin
more complex physiological environments, along with
the investigations into dose-response relationships to
establish therapeutic windows and identify potential
toxicity thresholds.
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