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Abstract

This paper investigates the nonlinear dynamics behavior and practical realization of a
V/Heart-shape chaotic system. Nonlinear analysis contemporary tools, including bi-
furcation diagram, Lyapunov exponents, phase portraits, power spectral density (PSD)
bicoherence, and spectral entropy (SE), are employed to investigate the system’s complex
dynamical behaviors. To discover the system’s versatility, two case studies are presented
by varying key system parameters, revealing various strange attractors. The system is
modeled and implemented using an industrial-grade programmable logic controller (PLC)
with structured text (ST) language, enabling robust hardware execution. The dynamics of
the chaotic system are simulated, and the results are rigorously compared with experimen-
tal data from laboratory hardware implementations, demonstrating excellent agreement.
The results indicate the potential usage of the proposed chaotic system for advanced in-
dustrial applications, secure communication, and dynamic system analysis. The findings
confirm the successful realization of the V-shape and Heart-shape Chaotic Systems on
PLC hardware, demonstrating consistent chaotic behavior across varying parameters. This
practical implementation bridges the gap between theoretical chaos research and real-world
industrial applications.

Keywords: V/Heart-shape chaotic model; dynamics analysis; PLC; experimental validation;
PSD; bicoherence; SE

1. Introduction
Chaotic nonlinear systems have been drawing increasing attention and have become

one of the most prominent scientific topics. Because of their numerous and vital applications
in a wide range of fields, they are now significantly important in modern engineering and
physics [1]. They seem disorganized and may be distinguished by their unpredictable
behavior. Their behavior initially appears random, but in fact, it follows a precise and
complex evolution. These systems are extremely sensitive to changes in the initial states,
where even little modifications to the initial conditions can have a significant effect on
the final evolution of the chaotic flow. This phenomenon is known commonly as the
butterfly effect. For engineers and scientists working with real-world industrial systems,
this sensitivity can be a critical challenge and at the same time a powerful tool, depending
on how its handled [2].
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The wide range of applications for chaotic nonlinear systems makes their research es-
sential. They cover a wide range of topics, including physics, data encryption, engineering,
medicine, and the way our hearts beat. In particular, chaotic systems are used in medicine
to investigate biological patterns like heart rhythms [3] and neural activity [4]. On the other
hand, chaotic models are used in engineering applications to improve the functionality of
technology and design sophisticated control methods [5]. Additionally, these systems have
demonstrated effectiveness in the advancement of modern encryption methods, providing
high degrees of data transmission security [6,7]. It is also worth noting that, while these
applications are compelling, real-world implementation often involves trade-offs between
complexity, cost, and stability. Modern tools and computational software offer tremendous
opportunities to study chaotic systems and explore their future applications.

The realization of chaotic systems initially relied on discrete components such as
comparators, diodes, capacitors, and operational amplifiers. These analog circuits elements
provide a way to generate chaotic dynamics by emulating nonlinear system behavior.
However, such implementations were inherently limited by their low-frequency response,
which restricted their application in high-speed systems [8]. Moreover, analog components
are susceptible to noise, aging, and environmental factors, which can lead to inconsistencies
in system performance over time. Due to the previously discussed issues, recently, many
chaotic systems have been implemented using digital element circuitry.

The usage of digital components has revolutionized the realization and implemen-
tation of nonlinear chaotic models, where digital platforms offer significant advantages,
including high-speed operation, precise control, and reconfigurability. Additionally, digital
implementations are less affected by environmental variations and provide greater stabil-
ity, unlike analog systems circuitry. Moreover, they enable the design and simulation of
complex chaotic systems with higher accuracy, rendering them suitable for applications
such as secure communications, random number generation, and encryption algorithms.
The flexibility and scalability of digital framework designs allow researchers to test various
chaotic models and adapt systems as needed, paving the way for advancements in fields
like cryptography and nonlinear dynamics studies [9].

The study in [10] explores a novel 3D chaotic mechanical jerk and details an FPGA-
based implementation of the system, where discrete equations derived through numerical
methods are synthesized. By optimizing hardware through pipeline operations, the FPGA
design achieves efficient resource utilization. The work in [11] enhances a chaotic sys-
tem build using a memristive and the inclusion of a transcendental nonlinearities using
fractional-order mathematical derivation. The FPGA implementation focuses on integrat-
ing a reconfigurable coordinate rotation digital computer (CORDIC) for trigonometric
and hyperbolic function calculation and realizes the fractional-order operators through
the Grünwald–Letnikov (GL) definition. The system was realized on the Artix-7 FPGA
kit, providing a high throughput of 0.396 Gbit/s. The researcher in [12] introduced a
six-dimensional chaotic memristor system with hidden attractors. Simulations on a DSP
platform validated its accuracy, highlighting its potential for secure communication and
image encryption applications. A four-dimensional chaotic system with rich dynamics,
including attractor coexistence, was implemented using DSP chip F28335. The continuous
system was discretized using the Runge–Kutta method and implemented efficiently. A
DAC8552 converted digital outputs analog signals for visualization, with experimental
results aligning with simulations. The system shows promise for secure communication
and image encryption [13].

While most existing research focuses on FPGAs and DSPs, PLCs (programmable logic
controllers) offer unique advantages, such as their robustness, ease of integration into in-
dustrial environments, and widespread use in automation. PLC devices can be considered
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the backbone of the modern industrial automation. They were originally developed to
replace traditional relay-based automatic control systems. But due to their modular design,
real-time processing capabilities, and ability to integrate with industrial networks and their
easy integration to a wide range of sensors and actuators, PLCs became very crucial for
industrial applications [14]. Moreover, the computational power and flexibility of PLC
devices can be employed to precisely realize, implement, and control chaotic systems in
a powerful way. Chemical processing facilities can use PLC-based chaotic control mecha-
nisms to manage sensitive reactions and achieve peak performance even when external
factors like temperature and pressure fluctuate. Another significant application of PLCs
lies in robotics, motion control, and ball mill [15]. For instance, chaotic trajectories can
be utilized to navigate complex environments, avoiding obstacles and optimizing paths
in real time [16]. Energy usage and load balancing are common challenges for industrial
operations. Therefore, another area where PLCs and chaotic systems work remarkably well
together is energy management. The PLC implementation of chaotic-based algorithms can
be used to optimize energy distribution by avoiding waste and dynamically adapting to
shifting demands. Significant cost savings result from this, and it also supports interna-
tional initiatives to lower carbon emissions and advance sustainable practices [17]. The
Industrial Internet of Things (IIoT) provides global connectivity between components in
different locations and technological advancement that leads to the implementation of
Industry 4.0 [18]. Chaotic systems provide robust signal transmission, while PLCs ensure
seamless integration with other IIoT platforms, enabling predictive maintenance and real-
time decision-making. PLCs can seamlessly integrate power line communication systems
with other industrial automation networks, such as SCADA or IoT-based frameworks. This
enables centralized control and monitoring of the communication system while maintaining
data security and integrity.

This paper introduces an experimental implementation of the V-shape/Heart-shape
chaotic system. It gets its name from the fact that this chaotic dynamical model displays two
different typologies of strange attractors based on the values of its parameters. Numerical
methods are used to investigate both dynamical behaviors in these two cases. This paper’s
second goal is to make use of an industrial-type PLC, the XEC-DN32H device from the LS
XGB family, to implement the differential equation of the presented chaotic model. The
programmable hardware allows the experimental characterization of the system dynamics
with a reconfigurable and rapid experimental setup. Studying chaotic systems using PLCs
would also provide valuable insights into their practical utility in real-world scenarios.
Unlike FPGAs and DSPs, PLCs are already integrated into many industrial operations,
which could simplify the adoption of chaos-based solutions. Furthermore, such research
could expand the functionality of PLCs beyond their traditional role in deterministic con-
trol systems, enabling industries to benefit from the unique properties of chaos, such as
sensitivity to initial conditions and pseudo-random behavior. The novelty of this work lies
in demonstrating that chaotic systems can be successfully implemented on PLC hardware,
highlighting the potential of PLCs not only as control devices but also as platforms for
advanced computational and security-related applications. This underexplored direction
opens promising opportunities for innovation, particularly in industrial networking envi-
ronments such as SCADA and IIoT systems, where PLCs are already essential components.
By highlighting this perspective, our study not only presents a novel implementation but
also opens a promising pathway for future research and applications. The remaining parts
of this paper are organized as follows. In Section 2, the dynamic properties of the proposed
V/Heart-shape chaotic system are analyzed, highlighting its nonlinear characteristics and
parameter-dependent behaviors. Section 3 describes the detailed methodology for realizing
the chaotic system using a high-performance programmable logic controller (PLC) device.
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The design employs the usage of user-defined function blocks programmed in ST language.
Section 4 discusses the experimental results obtained from both simulation and real-time
hardware testing, demonstrating the system’s ability to generate complex self-excited
attractors. Finally, Section 5 concludes the paper by summarizing the key findings and
outlining potential directions for future research.

2. Dynamic Properties of the V/Heart-Shape Chaotic System
The primary step in integrating chaotic systems with PLCs is developing a mathemati-

cal model that accurately represents the system’s dynamics. This section introduces the
V/Heart-shape chaotic system, which is a multi-scroll attractor. The multi-scroll attractor is
proven to have better properties, like having higher entropy for random number genera-
tion, compared to normal attractors. The dimensionless state equations of the presented
V/Heart-shape chaotic model are given as follows [19]:

Ẋ = Y − X,

Ẏ = sign(X)[1 − m1Z + G(Z)],

Ż = |X| − m2Z

(1)

G(z) =



0 Z < s0

d1 s0 ≤ Z < s1
...

...

dN−1 Z ≥ sN−1

(2)

where di is the additive coefficient, and si is the limiting coefficient. m1 and m2 are system
parameters. G(z) is the introduced piecewise nonlinear staircase function used to generate
the multi-scrolls, and the number of scrolls of the attractor is 2N. Parameters di and si in (2)
control the scrolls’ diameter and height characteristics, respectively.

To thoroughly explore the dynamics of the presented chaotic system, we will investi-
gate it under two distinct sets of parameters. Initially, we will analyze the system when
parameter m1 is set to 1. This specific configuration will allow us to observe the baseline
behavior and inherent chaotic properties of the system. Subsequently, we will modify
parameter m1 to 2 and repeat the analysis. This change is expected to alter the system’s
behavior, potentially leading to different dynamical features. By evaluating the results
from the two parameter sets, the aim is to understand how varying control parameter
m1 influences the chaotic nature of the system. Such comparative analysis will highlight
the sensitivity of the system to parameter changes and provide insights into its stability
and bifurcation behavior. Through this thorough analysis, a deeper understanding of
the underlying mechanisms driving the chaotic behavior and the impact of parameter
variations on the system’s dynamics can be gained.

Figure 1 shows the V-shape self-excited adjacent parabolic loop attractor. This strange
attractor generated from the presented chaotic system with N = 3 scrolls, when m1 = 1
and the initial values are selected as [X0, Y0, Z0] = [0.1, 0.5, 0.6]. A family of interconnected
Heart-shape self-excited attractors are produced by setting parameter m1 = 2, as shown in
Figure 2 with N = 2 and initial condition [X0, Y0, Z0] = [0.1, 0.5, 0.6].
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Figure 1. Phase portrait projection of V-shape attractor for system (1) when m1 = 1.

Figure 2. Phase portrait projection of heart-shape attractor for system (1) when m1 = 2.

To analyze the employed chaotic system dynamical behavior, various state-of-the-art
nonlinear analysis tools can be utilized, each serving a distinct purpose. Bicoherence
is a powerful tool that measures quadratic phase coupling between different frequency
components of a signal, helping to identify nonlinear interactions even in noisy data. This
is particularly useful in distinguishing chaotic behavior from quasi-periodic phenomena.
Power spectral density (PSD), on the other hand, analyzes the frequency content of a signal.
In chaotic systems, PSD typically reveals a broadband spectrum, indicating a wide range
of frequencies, which helps differentiate chaotic signals from noise and periodic signals.
The PSD and bicoherence of system (1) with system parameters m1 = 1 and m1 = 2 are
given in Figures 3 and 4, respectively. These figures indicate the broadband nature and the
nonlinearity strength of the suggested chaotic system.
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Figure 3. Bicoherence and PSD plot for system (1) at m1 = 1.

Figure 4. Bicoherence and PSD plot for system (1) at m1 = 2.

A Poincaré map is another essential and important tool that can be used to reduce the
phase space dimension of a dynamical system by considering a cross-section in its phase
space. This technique aids in visualizing the long-term behavior of a system and identifying
periodic orbits, fixed points, and chaotic regions in a straightforward manner [20]. Bifurca-
tion diagrams provide insights into how the qualitative behavior of a system changes as a
parameter varies. These diagrams are crucial for identifying transitions between periodic
and chaotic states, thereby understanding the stability and dynamics of the system. Lya-
punov exponents measure the rate of separation of infinitesimally close trajectories within
the system. Positive Lyapunov exponents are indicative of chaos, reflecting the system’s
sensitivity to initial conditions, which is a hallmark of chaotic behavior. Together, these tools
offer a comprehensive framework for analyzing, predicting, and potentially controlling
chaotic systems, thus providing a deep understanding of their intricate dynamics.

Poincaré maps for both the m1 = 1 and m1 = 2 cases, projected onto the Y = 0
plane, are depicted in Figure 5 and Figure 6, respectively. To analyze and verify the chaotic
behavior of the system, for both cases, the intersections of the system trajectories with the
Y = 0 plane provide a sequence of points that form the Poincaré map. In both contexts of
m1 = 1 and m1 = 2, the maps may reveal chaotic behavior where the points are organized
in regular patterns, such as distinct clusters or closed curves.
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Figure 5. Poincaré map in the (X − Z) cross-section at the Y = 0 plane of system (1) when m1 = 1.
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Figure 6. Poincaré map in the (X − Z) cross-section at the Y = 0 plane of system (1) when m1 = 2.

The bifurcation diagram of the system for control parameter m2, as depicted in
Figures 7 and 8, provides a clear visualization of the system’s dynamic behavior as pa-
rameter m2 is increased. With the initial conditions set at [0.5, 0.5, 0.5] for the initial
iteration, and reinitializing to the last values of the state variables, the plots show how the
system evolves under forward continuation. The plots reveal a complex dynamic, charac-
terized by transitions between different states. Notably, there are regions where the plot
exhibits a dense, seemingly random pattern, indicating the presence of chaotic behavior.
Thus, the bifurcation plot not only confirms the existence of chaos but also highlights the
intricate structure of the system’s phase space under varying parameter conditions.

The analysis of system (1)’s dynamics through the Lyapunov exponents and bifur-
cation diagram reveals a strong correlation between the two tools in identifying chaotic
regions. Lyapunov exponents quantify the rate of separation of infinitesimally close trajec-
tories in a dynamical system, providing a direct measure of the system’s sensitivity to initial
conditions. In particular, a positive Lyapunov exponent indicates exponential divergence
of nearby trajectories, which is a intrinsic feature of chaotic dynamics behavior.
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Figure 7. Bifurcation diagram of system (1) with respect to parameter m2 and fixed value of m1 = 1,
based on forward continuation method.

Figure 8. Bifurcation diagram of system (1) with respect to parameter m2 and fixed value of m1 = 2,
based on forward continuation method.

When comparing the plot of the Lyapunov exponents with the bifurcation diagram,
regions of chaotic behavior correspond to those where the largest Lyapunov exponent
becomes positive. In the bifurcation diagram, chaotic regions are typically characterized
by dense, irregular distributions of points, indicating a loss of periodicity. The Lyapunov
exponent plot complements this by quantitatively confirming these chaotic regions; positive
exponents are observed precisely in the parameter ranges where the bifurcation diagram
suggests chaotic dynamics.

This alignment is not coincidental but rather a reflection of the underlying nonlinear
dynamics of the system. While the bifurcation diagram provides a qualitative visualiza-
tion of the transitions in system behavior as the control parameter varies, the Lyapunov
exponent plot offers a quantitative measure of the stability or instability of those behaviors.
These two methods, when combined, can offer an in-depth understanding of the dynamics
of the system. This duality emphasizes how crucial it is to combine the two methods when
validating and interpreting complicated dynamical behaviors. Strong evidence of chaos
is provided by the occurrence of positive Lyapunov exponents in particular parameter
ranges, which supports the inferences made from the bifurcation diagram. This methodical
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approach demonstrates the strength of integrating qualitative and quantitative techniques
for the analysis of nonlinear dynamical systems.

Lyapunov exponents (LEs) for the V/Heart shape system are derived using A. Wolfs’
method [21] for 10,000 s to check the chaotic state of the system for different system
parameter values. Figure 9 shows the Lyapunov exponent (LE) spectrum for the system
parameter in the range m2 ∈ [0.45, 1.1], and it is clear that for m2 ∈ [0.45, 1), the largest
exponent remains positive, which is a conclusive indicator of chaotic dynamics within
this parameter range. Positive Lyapunov exponents imply that small perturbations in the
initial conditions grow exponentially over time, leading to sensitive dependence on initial
conditions—a hallmark of chaos.

0.5 0.6 0.7 0.8 0.9 1 1.1

−0.4

−0.3

−0.2

−0.1

0

1

2

3

Figure 9. Lyapunov diagram for system (1), with respect to parameter m2 and a fixed value of m1 = 2.

Spectral entropy (SE) is an important tool in studying chaotic systems because it
provides a quantitative measure of the system’s complexity. In chaotic states, the spectrum
spreads over a wide frequency range, producing higher SE. This makes SE a useful tool for
detecting transitions from order to chaos and evaluating the degree of unpredictability in
the system. Furthermore, SE serves as a valuable feature in applications such as random
sequence generation and the classification of nonlinear dynamical behaviors. It can be
briefly defined as follows [22]:

Y(k) =
N−1

∑
n=0

y(n)e−
j2πnk

N =
N−1

∑
n=0

y(n)Wnk
N , (3)

In Equation (3), y(n)(n = 0, 1, 2 . . . N − 1) is the chaotic sequence generated by the
second variable of the presented V/Heart-shape model after removing the DC component,
and Y(k)(k = 0, 1, 2 . . . N − 1) is the corresponding discrete Fourier transform of y(n)(n =

0, 1, 2 . . . N − 1). Using Paserval’s theorem, the power spectrum at any particular frequency
can be calculated using the first half of the discrete sequence Y(k)(k = 0, 1, 2 . . . N/2 − 1)
as it has a symmetrical property:

p(k) =
1
N
|Y(k)|2 (4)

and the total power spectrum can be described as

ptot(k) =
1
N

N
2 −1

∑
k=0

|Y(k)|2 (5)
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Then, the probability of the relative power spectrum pk can be written as p(k)/ptot (k)
through the combination of Equations (4) and (5). Spectral entropy, according to the
Shannon entropy principle, is equal to the sum of pk ln(1/pk)(k = 0, 1, 2 . . . N/2 − 1).
The final value of the spectral entropy approach to ln(N/2) is well known; therefore, the
normalized spectral entropy can be obtained as follows (6):

SE =
−∑

N
2 −1

k=0 pk ln pk

ln(N/2)
(6)

The aforementioned derivation shows that a larger SE value suggests a more complex
oscillation for a single chaotic system; conversely, a smaller SE value indicates a more
obvious oscillation for a single chaotic system. As a result, we think that various SE values
ought to correlate with various chaotic system states.

As presented in Figure 10, the SE complexity values of system (1) fluctuate around
high values for m2 ∈ [0.45, 1], which is low for m2 ∈ (1, 1.1]. Therefore, the result in
Figure 10 is consistent with the bifurcation diagram in Figure 8 and that of the Lyapunov
exponents in Figure 9.

0.5 0.6 0.7 0.8 0.9 1 1.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Figure 10. Spectral entropy complexity diagram of system (1) with m2 varying from 0.45 to 1.1, and a
fixed value of m1 = 2.

Important measures indicate the usefulness of the proposed chaotic system for use in
encryption algorithms such as histogram and autocorrelation analysis. Figure 11 shows
the histogram plot of the generated chaotic sequence from the presented V/Heart-shape
model (1), which is non-uniformly distributed and can lead to low contrast. And in security
applications, it may provide clues for cryptanalysis. To further enhance the security of the
generated sequence, the histogram equalization procedure is used. Histogram equalization
is a technique used to enhance the sequence contrast by redistributing the values to create
a more uniform, or “flatter,” histogram. The proposed histogram equalization procedure is
given as follows [23,24]:

ynew = (Round(yold ∗ N1))mod(N2) (7)

where N1 is a large number, chosen to be 105 in this paper, and N2 is selected to be 250.
The histogram and autocorrelation plots for the new generated sequence are given in
Figure 12 and Figure 13, respectively. The two figures show that the presented chaotic
system behaves similar to random time-series, which is useful for chaotic encryption
application in industrial fields.



Dynamics 2025, 5, 40 11 of 20

Figure 11. Histogram for the original sequence generated by system (1) when m1 = 2.

Figure 12. Histogram result for the chaotic sequence generated by system (1) when m1 = 2, after
applying the proposed histogram equalization algorithm.

−4 −3 −2 −1 0 1 2 3 4

10
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−0.2
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Figure 13. Autocorrelation result for the chaotic sequence generated by system (1) when m1 = 2, after
applying the proposed histogram equalization algorithm.



Dynamics 2025, 5, 40 12 of 20

3. PLC Implementation of the V/Heart-Shape Chaotic System
Programmable logic controllers are specialized computers made especially for in-

dustrial applications. Their architecture is designed to process and regulate complicated
industrial processes in real time by handling a large number of input and output (I/O)
signals. The core components of a PLC include the Central Processing Unit (CPU), which ex-
ecutes control programs; memory, which stores these programs and data; input and output
connection sections for interfacing with sensors, actuators, and other external devices; the
power unit, which supplies the necessary electrical power; and the communication interface
section, which allows the PLC to communicate with other devices and systems. Addition-
ally, the programming device is used to create, edit, and download control programs into
the PLC [25,26].

3.1. PLC Hardware Setup

In the development of the chaotic model, the LS XG5000 version 4.78 programming
environment was utilized, employing structured text (ST) language for coding the V/Heart-
shape chaotic model. This choice of software and language ensures precise control and
flexibility in modeling complex chaotic systems. To implement the continuous-time equa-
tions in (1), it should be converted into discrete-time versions suitable for programming
on PLCs using the Runge–Kutta 4 numerical method. The presented chaotic model was
achieved using an LS XGB XEC-DN32H compact PLC, which was provided by a digital-
to-analogue converter expansion module (XBF-DV04A). This module has a (0 → 10 V)
dynamics output range, and (0 → 4000) as the input range. A more technical specification
of the used PLC and analogue output expansion module is given in Table 1 and Table 2,
respectively. This setup allows the PLC to accurately convert analog signals into digital
form, which is essential for processing and controlling chaotic signals. The combination
of advanced software tools and robust hardware components demonstrates the capability
of PLCs to handle sophisticated control tasks in real-time industrial environments. This
integration of chaos theory into industrial automation highlights the innovative potential
of PLCs in managing complex systems and processes.

Table 1. LS XGB XEC-DN32H high-performance compact PLC specifications [27].

Specification Details

Power Supply AC 110–240 V-AC main supply
Input/Output 18 DC 24 V inputs; 18 transistor (source-type) outputs
Processing Speed 83 ns/step
Scan Cycle 0.5–1 ms
Program Capacity 15 K steps or approximately 200 KB
Max I/O Expansion Up to 10 expansion modules; up to 352 total I/O points
Communication Ports USB (Rev 1.1); RS-232C (1 channel, loader); RS-232C/RS-

485 (2 channels)
Built-in Functionalities Pulse catch; input filter; external interrupt; PID control;

high-speed counter; positioning; RTC
Programming Standards IEC-61131-3 languages supported (LD, SFC, ST)
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Table 2. XBF-DV04A digital-to-analogue converter expansion module specifications [28].

Specification Details

Module Type Analog Output (4-Ch, Voltage)
Output Range 0–10 V DC
Resolution 12-bit
Number of Channels 4
Max Resolution Voltage 2.5 mV
Unsigned Value 0 to 4000
Signed Value −2000 to 2000
Max Conversion Speed 1 ms/channel
Minimum Load Resistance ≥2 kΩ

3.2. State Variable Mapping and Discretization

Experimental measurements can be carried out through the I/O modules on the
PLC. The dynamic range of signals inside the PLC is measured through voltage signals
in differential mode. Thus, an equivalent system is designed by assuming that the state
variables of the dynamical system are voltage signals. To generate chaotic systems from the
PLC processor, the systems must be rescaled in a manner that makes them compatible with
the characteristics of the DAC module used. Then, a transformation from continuous-time
systems to discrete-time systems has been applied to the rescaling systems.

Suppose a dimensionless, continuous-time chaotic system described in the general
form [29] exists:

ẋ1(t) = f1(x1, x2, . . . . . . , xn)

ẋ2(t) = f2(x1, x2, . . . . . . , xn)

...

ẋn(t) = fn(x1, x2, . . . . . . , xn)

(8)

Here, L1j ≤ xj ≤ L2j, j = 1, 2, 3 . . . , n. If the range of xj is not compatible with the
used PLC digital-to-analogue output module, the XBF-DV04A in this work, then tthe
characteristics of the rescaling process will be set as follows:

xj =
xj

aj
− bj (9)

where
(
L1j + bj ≥ 0, bj ≥ 0

)
and aj = 4000

L2j+bj
. By applying these changes, system (8)

becomes

Ẋ1(t) = f1

(
x1

a1
− b1,

x2

a2
− b2, . . . . . . ,

xn

an
− bn

)
∗ a1

Ẋ2(t) = f1

(
x1

a1
− b1,

x2

a2
− b2, . . . . . . ,

xn

an
− bn

)
∗ a2

...

Ẋn(t) = f1

(
x1

a1
− b1,

x2

a2
− b2, . . . . . . ,

xn

an
− bn

)
∗ an

(10)

The discrete-time form of Equation (10) is provided using Runge–Kutta 4 with step
size h as follows:
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X1(k + 1) = X1(k) + [R11 + 2R12 + 2R13 + R14]/6

X2(k + 1) = X2(k) + [R21 + 2R22 + 2R23 + R24]/6

...

Xn(k + 1) = Xn(k) + [Rn1 + 2Rn2 + 2Rn3 + Rn4]/6

(11)

where
Ri1 = Gi[X1(k), X2(k), . . . , Xn(k)]aih

Ri2 = Gi[X1(k) + 0.5R11, . . . , Xn(k) + 0.5Rn1]aih

Ri3 = Gi[X1(k) + 0.5R12, . . . , Xn(k) + 0.5Rn2]aih

Ri4 = Gi[X1(k) + R13, . . . , Xn(k) + Rn3]aih

(12)

for i = 1, 2, 3, . . . . . . , n. The classical fourth-order Runge–Kutta method with a sufficiently
small step size was employed in this study to ensure reliability, stability, and preservation
of original chaotic dynamics. In future work, we plan to investigate the impact of different
numerical integration schemes on the accuracy and stability of chaotic behavior. Such a
comparison will help to better assess the numerical reliability of PLC-based realization.
Therefore, to design and implement a dynamical system in the PLC, the programming
flowchart should be followed, shown in Figure 14.

Start with System 
Modeling

Simulation

Is Scaling
Necessary?

System Variable
Scaling

PLC
Programming

Download to
PLC

Test
Experimental

Results
Results Agree 

with Simulation?

Modify PLC
Model

Finish the
Implementation

Yes No

Yes

No

Figure 14. General flowchart to handle the PLC implementation of the chaotic system.

4. Implementation Results
The proposed realization of a chaotic system using a PLC platform was experimentally

validated through a structured series of software simulations and hardware-based tests. In
this work, the three state variables of the chaotic system were implemented as user-defined
function blocks (UDFBs), enabling modular and reusable code within the XG5000 version
4.78 programming environment. As illustrated in Figure 15, these UDFBs encapsulate the
system’s nonlinear differential equations, allowing for the precise and scalable execution of
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the chaotic dynamics on the XEC-DN32H. This modular design not only enables real-time
execution of the chaotic system on industrial-grade hardware but also facilitates scalable
implementation for more complex dynamical models.

Figure 15. PLC project framework designed to model V/Heart-shape chaotic system (1).

To rigorously validate the correctness and dynamic behavior of the embedded chaotic
system, the PLC code was thoroughly tested within the XG5000 software version 4.78
simulation environment. The simulation outputs, presented in Figures 16 and 17, illustrate
the state variable trajectories and their corresponding two-dimensional phase portraits for
system parameters m1 = 1 and m1 = 2, respectively, at an integration step size equal to
h = 0.005, which provides a suitable balance between numerical accuracy and computa-
tional feasibility for the PLC platform. These phase portraits reveal the qualitative behavior
of the system’s attractors, confirming the successful reproduction of expected chaotic oscil-
lations. The traces demonstrate the system’s sensitivity to initial conditions and parameter
variations—hallmarks of chaotic behavior—thereby validating the computational accuracy
of the PLC implementation before hardware deployment.

Figure 16. State variable trend graphs and 2D phase portrait for system (1) when m1 = 1.
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Figure 17. State variable trend graphs and 2D phase portrait for system (1) when m1 = 2.

Subsequent experimental validation was conducted using the physical setup shown
in Figure 18, where the XEC-DN32H PLC, equipped with the XBF-DV04A analogue output
module, was interfaced with a digital oscilloscope. This setup enabled real-time monitoring
of the chaotic signals generated by the PLC. When the system parameter was set to m1 = 1
and mapping parameters were set as a1 = a2 = 750, a3 = 800, b1 = 3, b2 = 2.5, and
b3 = 1, the experimental results shown in Figure 19 exhibit a distinct V-shaped self-excited
attractor with adjacent parabolic loops, forming a two-scroll chaotic pattern. The attractor’s
geometric structure closely matches the simulated phase portrait, indicating a high degree
of fidelity between the software simulation and physical system behavior.

Furthermore, by modifying the system parameter to m1 = 2 and mapping parameters
to a1 = 1000, a2 = 800, a3 = 1400, b1 = 3, b2 = 2.5, and b3 = 1, the chaotic system
exhibits a transition in its attractor topology. As shown in Figure 20, the oscilloscope
captures a complex family of interconnected heart-shaped loops, corresponding to a three-
scroll self-excited attractor. This evolution in the attractor’s geometry with respect to the
system parameter illustrates the system’s nonlinear response and parameter sensitivity,
consistent with theoretical expectations derived from bifurcation and phase space analysis.
These experimental observations validate the dynamic richness and controllability of the
implemented chaotic system.

The strong agreement between the experimental and simulated results underscores the
accuracy and fidelity of the implemented model. The phase portraits and state trajectories
captured by the oscilloscope not only replicate the expected dynamical features but also
provide empirical evidence of the system’s nonlinear oscillatory regime. Moreover, these
observations corroborate the theoretical analysis of the chaotic system, which predicts the
emergence of multiple-scroll attractors under a varying bifurcation control parameter. The
experimentally observed topological patterns align with the mathematical formulations,
demonstrating that the proposed system exhibits structurally rich dynamics that are both
self-excited and parameter-dependent.

In conclusion, the congruence between simulation and hardware-based experimental
results confirms the validity and practicality of deploying chaotic systems using PLC plat-
forms. This research substantiates that real-time chaotic behavior, including multi-scroll
attractors and complex self-excited dynamics, can be faithfully reproduced within an indus-
trial control environment. These results not only reinforce the theoretical underpinnings of
the system’s nonlinear dynamics but also open avenues for leveraging chaos in real-world
applications such as secure communications, random number generation, and intelligent
control in IIoT systems.
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Figure 18. Hardware setup of (XEC-DN32H) PLC with the (XBF-DV04A) analogue output expansion
module to implement V/Heart-shape chaotic system (1).

Figure 19. Two-dimensional phase portrait for V/Heart-shape chaotic system (1) when m1 = 1.

Figure 20. Two-dimensional phase portrait for V/Heart-shape chaotic system (1) when m1 = 2.
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5. Conclusions
In conclusion, this study successfully explores the nonlinear dynamics and practical

implementation of a V/Heart-shape chaotic system. The system was designed and realized
using an industrial-grade programmable logic controller (PLC) with structured text (ST)
language, ensuring reliable hardware execution. Through the application of nonlinear
analysis tools, such as bifurcation diagrams, Lyapunov exponents, and phase portraits,
the intricate dynamical behaviors of the system were comprehensively analyzed. The
versatility of the proposed system was demonstrated through two case studies involving
parameter variations, which revealed distinct phenomena including self-excited, hidden,
and coexisting attractors. The results of simulations of the chaotic dynamics closely matched
experimental results obtained from laboratory hardware implementations, underscoring the
system’s accuracy and practicality. These findings emphasize the significant potential of the
proposed chaotic system for a wide range of applications, including secure communications,
advanced industrial systems, and dynamic system analyses. As a direction for future work,
we propose the realization of chaotic systems using programmable logic controllers (PLCs)
as a means to enhance edge computing capabilities within IIoT environments. The intrinsic
properties of chaotic systems—such as high sensitivity to initial conditions and pseudo-
random behavior—can be harnessed for advanced functionalities, including secure data
encryption, real-time anomaly detection, and robust sensor data validation. Implementing
these systems on PLCs, which serve as industrial edge devices, facilitates decentralized
processing and decision-making closer to the physical layer. This reduces reliance on cloud
computing resources, minimizes network latency, and increases system resilience—key
requirements for time-critical IIoT applications such as predictive maintenance, smart
manufacturing, and autonomous process control. Additionally, the integration of these
PLC-based chaotic modules with IIoT middleware—such as edge gateways, digital twins,
and industrial protocols like OPC UA and MQTT—will be explored to ensure seamless
data flow and interoperability across distributed cyber-physical systems.
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Abbreviations
The following abbreviations are used in this manuscript:

CORDIC Coordinate rotation digital computer
CPU Central processing uni
DAC Digital-to-analogue converter
DSP Digital signal processing
FPGA Field-programmable gate array
GL Grünwald–Letnikov
IIoT Industrial Internet of Things
MQTT Message Queuing Telemetry Transport
OPC UA Open Platform Communications Unified Architecture
PLC Programmable logic controller
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PSD Power spectral density
SCADA Supervisory control and data acquisition
SE Spectral entropy
ST Structured text language
UDFBs User-defined function blocks
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