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ABSTRACT
A novel chemical, 5,6-dihydro pyrimidin-2(1H)-thione (compound A), is synthe-
sized and characterized using several analytical techniques including FTIR, 1H 
NMR, 13CNMR, and mass spectroscopies. The compound’s structure has been 
determined. The nonlinear optical (NLO) properties of the compound are ana-
lyzed by subjecting it to visible continuous wave (cw), low power laser beams 
and observing the effects through the Z-scan and diffraction patterns. The initial 
approach yielded a nonlinear refractive index (NLRI) of 0.21 × 10−7 cm2/W, while 
the following method yielded an NLRI of 3.925 × 10−7 cm2/W. Each optical switch-
ing utilizes two laser beams: one beam controlled at a wavelength of 532 nm and 
another beam controlling at a wavelength of 473 nm.

1 Introduction

During the last four decades, enormous interest has 
been exerted to study nonlinear, naturally available 
materials [1–5], and other material properties have 
been modified by different techniques viz., irradia-
tion with γ-rays [6–10] and new synthesized materi-
als [11–20]. The occurrence of various nonlinear opti-
cal (NLO) phenomena is the results of the nonlinear 
refractive index (NLRI) being dependent on light inten-
sity. By capitalizing on these events, scientists have 
developed several applications such as optical delay, 
optical limiting, all-optical modulation, and optical 
switching [21–24]. Materials with high third-order 

nonlinear susceptibility, χ(3), and fast response have 
attracted significant attention due to their potential 
applications stated earlier. One of the ways used to 
estimate the NLRI is the single beam Z-scan methodol-
ogy, which was established by Sheikh-Bahae et al. [25, 
26]. This method is simple and effective that is paired 
with diffraction patterns (DPs) [27, 28]. The first tech-
nique leads to measure the NLRI and assign its sign, 
while the second one used to measure the NLRI and 
the change in the medium refractive index (RI) based 
on the number of DPs at the maximum power input.

Due to the potential applications of α,β-unsaturated 
ketone derivatives, they have been attracted consider-
able interests as to their synthesize [29]. Practically, 
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α,β-unsaturated ketone has many applications due to 
the presence of an unsaturated α, β- and a functional 
group [30]. Furthermore, it is used in the synthesis of 
many drug treatments such as cancer drugs as well as 
antibiotics, insecticides, dyes, agriculture, and in many 
other fields [31]. The German scientist H. Schiff was 
the first to discover Schiff base in 1864. Schiff bases 
containing the azomethine group were prepared for 
the first time by condensing compounds contain-
ing the carbonyl group [32]. Their biological activity 
was shown to be attributed to a reactive unsaturated 
group found in α,β-unsaturated ketone. Recently, α,β-
unsaturated ketone has demonstrated potent clean-
ing properties, as reported by multiple sources [33]. 
In addition to its antioxidant effects, it is considered 
to be the basis for the creation of many heterocyclic 
compounds [34]. It has been used to prepare a variety 
of biologically and commercially useful compounds, 
such as 4-thiazolidinene, formazan, benzoxazine, 
cyclo-loading, ring-closure, and substitution proce-
dures [35].

Heterocyclic oligomers and polymers are widely 
favored for their chemical, environmental, and elec-
trical durability, making them a preferred option for 
incorporation into solar cells [36]. Pyrimidine com-
pounds are categorized by occupying an outstanding 
class among other organic compounds. Pyrimidine 
compounds have a distinctive role to play in the field 
of synthesis of organic chemistry and natural prod-
ucts. They have been used to synthesize drugs for the 
treatment of diabetes, cancer, and other diseases. [37] 
Furthermore, pyrimidine compounds have also been 
used in the synthesis of agrochemicals and polymers. 
As they can be readily synthesized and display a 
unique reactivity, they are widely used in drug dis-
covery and development [38]. Pyrimidine compounds 
have been explored for their potential to control can-
cer, boost immune system performance, and act as free 
radical scavengers [39]. The most probable mechanism 
mediating the preventive benefits against cancer for-
mation is that they are able to minimize oxidative 
stress [40]. Oxidative stress is an imbalance between 
the generation of free radicals and reactive metabolites 
[41]. Antioxidants are also known as reactive oxygen 
species (ROS), and they have protective mechanisms 
that remove harmful oxidants. Important biomol-
ecules and cells are subject to be damaged as a result 
of this imbalance, which has the potential to seriously 
affect the entire organism [42].

Based on the aforementioned facts and the current 
work, we present our findings by a novel chemical, 
5,6-dihydro pyrimidin-2(1H)-thione (compound A), 
which was synthesized and characterized using sev-
eral analytical techniques including FTIR, 1H NMR, 
13CNMR, and mass spectroscopies. The compound’s 
structure has been determined. The NLO properties 
were analyzed by subjecting them to visible continu-
ous wave (cw), low power laser beams and observ-
ing the effects through the Z-scan and DPs. The initial 
approach yielded a NLRI of 0.21 × 10−7 cm2/W, while 
the following method yielded an NLRI of 3.925 × 10−7 
cm2/W. Each optical switching utilizes two laser 
beams: one beam controlled at a wavelength of 532 
nm and another beam controlling at a wavelength of 
473 nm.

2 �Experimental

2.1 �Materials and methods

In accordance with literature procedures, the synthe-
sized compound was prepared. One mole of aniline 
was used to react one mole of benzil to prepare imine 
compound. The resulted compound was used to react 
with acetone to prepare imine compound containing 
α,β-unsaturated ketone. In ethanol and glacial acetic 
acid as a catalyst, 5,6-dihydro pyrimidin-2(1H)-thione 
(compound A) was synthesized from α,β-unsaturated 
ketone and urea. A Shimadzu spectrometer was used 
to record FT-IR spectrum. A Bruker spectrometer was 
used to record NMR spectrum, 400 MHz, (1H and 
13 C) NMR. DMSO and Me4Si were used as internal 
references for NMR measurements of 1 H and 13 C. 
Shimadzu QP GC–MS was used to record mass spec-
trum. An electrothermal IA was used to quantify the 
compound A melting points.

2.2 �The general procedure to synthesize 
1,2‑diphenyl‑2‑(phenylimino) ethan‑1‑one

(0.028) moles of benzil dissolved in 30 ml of absolute 
ethanol was added into a 100-ml one-neck round-bot-
tomed flask and then a solution of aniline (0.028 mol) 
was added [43, 44]. After raising the temperature of the 
reaction mixture to 78 °C, it was allowed to undergo 
reflux for a duration of six hours in the absence of 
light. The development of the reactions was monitored 
using thin-layer chromatography (TLC). Once the 
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reaction mixture cooled, the precipitate was filtered 
and recrystallized using 100% ethanol. The physical 
properties of the product are as follows: light yellow; 
Yield: 87%; M.p.: 180–181 °C; FT-IR stretching vibra-
tion v (cm−1): 1678 (C=O), 1590 (C=N), 1488 (C=C), 3095 
(C–H aromatic); 1H NMR [400 MHz, DMSO, δ (ppm)]: 
6.43–7.24 (15 H, aromatic).

2.3 �The general procedure to synthesize 
4,5‑diphenyl‑5‑(phenylimino) 
pent‑3‑en‑2‑one

In a 100-ml one-necked round-bottomed flask, 
(0.028  mol) of benzil containing imine group was 
mixed with 30  ml of acetone [45, 46]. A solution 
was prepared by combining 5 g of sodium hydrox-
ide with 50 ml of clean water at room temperature. 
Subsequently, 40 ml of ethanol was introduced into 
the reaction mixture. The reaction mixture was vigor-
ously agitated until it reached a high viscosity within 
30 min. TLC was employed to monitor the progress of 
the reaction. The outcome was subjected to filtration 
and rinsed with cold water, followed by recrystalli-
zation using 10 ml of ethanol. The product possesses 
the following physical characteristics: The stretching 
vibrations of orange FT-IR are as follows: 1701 cm−1 for 
C=O, 1683 cm−1 for C= N, 1530 cm−1 for C=C, 3106 cm−1 
for C–H aromatic, and 2879 cm−1 for C–H aliphatic. 
The 1H NMR spectrum, recorded at 400  MHz in 
DMSO with a chemical shift (ε) in ppm, shows peaks 
at 6.84–7.68 (15 H, aromatic), 6.42 (1 H, C=CH), and 
1.40 (3H, CH3).

2.4 �The general synthesis of 4‑methyl‑6‑ 
phenyl‑6‑(phenyl(phenylimino)
methyl)‑5,6‑dihydropyrimidin‑2(1H)‑ 
thione (compound A)

At room temperature (RT), a stirred solution of α,β-
unsaturated ketone (1.0 mmol) dissolved in (10 ml) 
of ethanol was treated with a solution of thiourea 
(1.0 mmol) and glacial acetic acid (2.5 ml) [47–49]. The 
reaction mixture was refluxed for 24 h and heated to 
80 °C. TLC was used to monitor the reaction’s devel-
opment. The product was recrystallized using ethanol 
as the solvent. Figure 1 elucidates the reaction equa-
tions. The results from the IR, (1H and 13C) NMR, 
and mass spectra all corresponded to the anticipated 
structure shown in Figs. 2, 3, 4, and 5. The physical 
properties of the product are brown; yield: 70%; M.p.: 

155–157 °C; FT-IR stretching vibration v (cm−1): 1550 
(C =N), 1508 (C=C), 3063 (C–H aromatic), 2924 (C–H 
aliphatic), 3309 (N–H), 717.54 (C=S); 1H NMR [400 
MHz, DMSO, δ (ppm)]: 6. 13–7.933 (15 H, aromatic), 
7.934 (1 H, N–H), 2.53 (3H, CH3), 3.45 (2H, CH2). 13 
NMR [400 MHz, DMSO, δ (ppm)]: 39.67, 39.88, 40.09, 
124.13, 126.80, 127.02, 127.19, 127. 41, 127.81, 128.76, 
128.91, 129. 07, 130.00, 130.08, 182.92,183.47, 184.16, 
195.33; mass, m/z: 387 (M+).

2.5 �Experimental set‑up

This study employed two cw laser beams for the 
Z-scan, DPs, and all-optical switching tests. The 
diameter of both beams as they exited the device’s 
output couplers was 1.5 mm at e−2. The wavelengths 
of these beams were 473 nm and 532 nm. A lens with 
a focal length of 5 cm was employed to focus the 473 
nm beam into a spot measuring 19.235 µm, while the 
532 nm beam was focused to spot measuring 21.635 
µm. The 473 nm beam is directed via two 20 cm focal 
length lenses to 76.941 µm, while the 532 nm beam 
is directed through the same lens to 86.539 µm. The 
Rayleigh lengths of the two beams are 2.456 mm and 
2.363 mm for the 473 nm and 532 nm wavelengths, 
respectively. The procedures for building up an exper-
imental Z-scan may be found in another source [28], 
and the processes for putting up an experimental DPs 
can also be found in another source [29].

In order to determine the NLRI, n2, and the nonlin-
ear absorption coefficient (NLAC), β, it is necessary to 
conduct the Z-scan experiments where the transmit-
tance is measured as a function of the sample position 
(±z). This experiment should be performed with both 
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Fig. 1   The equations of synthesis of compound A
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Fig. 2   The FT-IR spectrum of compound A

Fig. 3   The 1H NMR spec-
trum of compound A
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Fig. 4   The 13 C NMR spec-
trum of compound A

Fig. 5   The mass spectrum of compound A
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closed and open apertures. The size of the DPs was 
determined by graphing the maximum number of DPs 
versus the power input.

3 �Results

3.1 �Chemistry

The reaction of imine compound containing α,β-
unsaturated ketone with thiourea gave the corre-
sponding dihydro pyrimidin-2(1H)-thione contain-
ing imine group derivative in good yield (Sect. 2). 
The resulted compound was brought in with a sharp 
melting point. The novel pyrimidine exhibited two 
distinct bands in the infrared spectra, both of which 
were associated with the imine moiety. There was a 
band observed at a wave number of 717.54 cm−1 that 
correspond to the stretching of the (C=S) bond. Addi-
tionally, another band was observed at a wave num-
ber of 3309 cm−1 that corresponds to the stretching of 
the (HN) bond. A peak corresponding to the stretch-
ing vibration of the (C=N) bond was observed in the 
spectrum at a wavenumber of 1550 cm−1. The (C–H) 
aromatic band has peaks at approximately 3063 cm−1, 
while the (C–H) aliphatic band showed peaks at 3309 
cm−1. The formation of these peaks can be attributed 
to the stretching vibrations of these bands.

The 1H NMR spectrum of the novel compound, 
which was dissolved in DMSO, exhibited several sig-
nals originating from protons in aromatic rings, as well 
as an NH proton, within the chemical shift range of 
6.13–7.93 ppm. Furthermore, a solitary signal emitted 
by protons in the (CH3) group was detected at a chemi-
cal shift of 2.53 ppm. The spectrum exhibited a singlet 
signal within the 3.45 ppm region, originating from 
the protons in the CH2 group of the pyrimidine ring. 
The 13C NMR signal validated the presumed struc-
ture of the synthesized molecule. The mass spectrum 
exhibited the molecular ion and other fragments that 
verified the structure of the synthesized medication.

3.2 �UV–Visible spectrum

The absorbance spectrum of the compound A was stu-
ided using UV–vis. spectrophotometer. Figure 6 repre-
sents the compound A absorbance spectrum. The com-
pound A displayed an absorption peak at wavelength 
230 nm belonging to electronic transitions π–π*. The 
value of the compound A linear absorption coefficient, 

α, at wavelengths 473 nm and 532 nm is equal to 0.42 
cm−1 and 0.33 cm−1, respectively, as it was determined 
using Fig. 6 and an equation given in [50].

3.3 �Nonlinear study

The Gaussian laser beams were produced by two 
solid-state laser devices operating at wavelengths of 
473 nm and 532 nm, with adjustable power ranging 
from 0 to 65 mW for the first device and 0 to 50 mW 
for the second device. The beams have radii of 1.5 mm 
as the beam emerges from the output coupler of the 
devices. The 473 nm wavelength was employed for the 
Z-scan and DPs.

The consequence of the CA Z-scan measurements 
is depicted in Fig. 7 for the compound A where the 
normalized transmittance is drawn against the sample 
position (±z) relative to beam focus. Figure 7 shows a 

Fig. 6   Absorbance spectrum of compound A

Fig. 7   CA Z-scan measurement result
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peak and then a valley, which proves that the sample 
has a negative NLRI, and in other words, the occur-
rence of self-defocusing. While OA Z-scan measure-
ments showed a straight horizontal line, which indi-
cates that the compound A does not have a NLAC. The 
Z-scan measurements were conducted with a power 
input of 5 mW, resulting in an intensity of 688.8 W/
cm2. The utilization of a cw laser beam leads to the 
generation of heat, which in turn causes the nonlinear-
ity seen by compound A.

In the DPs experiments, the results of effect of 
power input on the DPs and the beam wave front on 
the DPs are shown in Figs. 8 and 9, respectively. When 
the power input increased, the sample absorbed more 
energy due to the large absorption coefficient so that 
more heat resulted due to the radiation-less transi-
tions. The negative lens effect occurs due to the Gauss-
ian dispersion of the laser beam, which leads to the 
production of heat. As depicted in Fig. 8, the beam that 
was sent out initially traced a little circular spot on the 
far screen. Subsequently, it fragmented into distinct 
rings, with the quantity of rings progressively increas-
ing until an irregular pattern emerged. This is due to 
the greater increase in the thermal vertical convection 
current compared to the thermal horizontal conduc-
tion current. When choosing two types of beam wave 
fronts, two types of DPs appeared, an effect noticed 
as early as 1984 by Santamato et al. [51–53] as seen in 
Fig. 9. The behavior observed in Fig. 8 is analogous to 
that depicted in Fig. 10, which illustrates the temporal 
evolution of a selected data point. Figure 10 illustrates 

the temporal variation of the selected DP under the 
influence of a power input of 56 mW on compound A.

The controlling beam for all-optical switching uti-
lizes a laser beam with a wavelength of 473 nm. The 
medium exhibits a significantly high absorption coeffi-
cient, indicating its ability to readily absorb a substan-
tial amount of energy. This facilitates the process of 

Fig. 8   Power input effect of 
the DPs obtained in com-
pound A

12 mW 23 mW 32 mW

37 mW 46 mW 56 mW

Covergent

Divergent

Fig. 9   Laser beam wave front effect at 56 mW DPs in compound 
A
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creating a DP. The device is manipulated by an alter-
nate beam that has a wavelength of 532 nm. Due to its 
low absorption coefficient, the medium receives only 
a minimal quantity of energy, resulting in the absence 
of any detectable DPs. The x-passing approach allows 
for simultaneous passage of both beams through the 
medium. This results in the formation of two distinct 
types of DPs: one induced by the controlling beam 

and another induced by the controlled beam. This phe-
nomenon is attributed to cross-self-phase modulation 
(XSPM) [54–56]; as presented in Fig. 11, both beams 
are of cw behavior, while in Fig. 12 controlling beam 
is of pulsed behavior where the laser head was con-
nected to the TTL function of a frequency generator, 
while the controlled one was of cw behavior.

0 sec 100 msec 200 msec

300 msec 500 msec400 msec

600 msec 700 msec 800 msec

900 msec 1000 msec

Fig. 10   Temporal evolution of a chosen DP at 56 mW in compound A
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3.4 �Calculation of the NLRI due to

3.4.1 �Z‑scan

Since the origin of nonlinearity in the compound A is 
thermal, the NLRI, n

2
 , due to the Z-scan can be deter-

mined from the following equation [57, 58]

where λ represents the wavelength of the laser beam, d 
refers to the thickness of the sample, and ΔTp−v denotes 
the transmittance difference between the peak and val-
ley. Equation 1 was employed to calculate the NLRI of 
the compound A, so that it equals to 0.21 × 10–7 cm2/W 
at an intensity of 688.28 W/cm2.

(1)n
2
=

ΔT
p-v

�

4�dI
,

3.4.2 �DPs

Considering the fact that thermal change of the 
medium RI, Δn, NLRI is expressed as Δn = n

2
I and 

I =
2P

��2
. The expression for n

2
 can be derived by Eq. (2) 

[59]

�
0
 is the beam radius, n0 is the medium linear RI, 

so that for N = 8, P = 56 mW, I = 9640 W/cm2, d = 1 
mm, λ = 473 nm, n0 ~ 1, �

0
= 19.235 µm, so that 

n
2
 = 43.925 × 10–7 cm2/W.

(2)n
2
=

��2

0

2n
0
d

N

P

Fig. 11   cw or static AOS in 
the compound A
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(R3)

(R4)
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3.5 �Simulating the DPs numerically

The passage of a certain laser beam through a medium 
can lead to the rise of the medium temperature due 
to the absorption of part of the beam energy that 

followed with radiation-less transitions. As a result, 
the medium RI changes, that lead to the change of the 
beam phase. Following the procedure of Karimzadeh 
[60], the DPs resulted on the screen situated at a dis-
tance L in the far field can be obtained using the fol-
lowing equation

(3)
I

(
x
�
, y

�
, t

)
=

|
||||
E
0

i��2

�L
exp(ikL)exp

(

−
�d

2

) ∞

∫
−∞

dx∫
∞

−∞

dy

× exp

(

−
x
2 + y

2

�2

)

⋅ exp

[{

−k
x
2 + y

2

2R

+ Δ�
(
x, y, t

)
}]

⋅ exp

(

−ik
xx

� + yy
�

L

)|||||

2

1000 msec

200 msec

275 msec

350 msec

425 msec

500 msec

575 msec

650 msec

725 msec

800 msec

900 msec

 0 sec

150 msec

100 msec

50 msec

Fig. 12   Pulsed or dynamic AOS in compound A
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where E0 is the beam field, k is the beam propagation 
vector, α is the medium absorption coefficient, ω is 
the beam radius at e−2, R is beam wave front radius, 
and Δφ is the change of the beam phase as a result of 
passing through the sample. The solution of Eq. (3) 
numerically led to the results shown in Figs. 13, 14, 
15, 16, 17, 18, 19, 20, 21, and 22. Figures 13, 14, and 
15 show the simulation results of the results given in 
Figs. 8, 9, and 10 where good accord can be seen. For 
more results, Figs. 16, 17, and 18, the variation of the 
beam phase as it traverse the sample and the variation 
of the sample temperature, spatially respectively, the 
results are shown in Figs. 19, 20 and 21, together with 
their behavior under the variations of beam wave front 
and variations of the light intensity against x and y 
axes. Figure 22 displays direct comparison between 
experimental (blue) and numerical (red) results when 
it can be seen good accord among both.

4 �Conclusion

A molecule with a 5,6-dihydro pyrimidin-2(1H)-thione 
(compound A) structure and an imine group was syn-
thesized and characterized. The proposed structure of 

12 mW 23 mW 32 mW

37 mW 46 mW 56 mW

Fig. 13   Simulation of power input dependence of DPs in compound A

Convergent

Divergent

Fig. 14   Simulation of wave front dependence of DPs in com-
pound A
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0 sec 100 msec 200 msec

300 msec 400 msec 500 msec

600 msec

900 msec

800 msec700 msec

1000 msec

Fig. 15   Simulation of temporal evolution of DPs in compound A
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Fig. 16   Simulation of (C1) 
beam phase for the power 
input mW shown of (C2) 
intensity variation with 
power input against x axis 
and (C1) intensity variation 
with power input against y 
axis, all in compound A

12 mW

23 mW

32 mW

46 mW

56 mW

37 mW
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the synthesized molecule was confirmed by analyz-
ing its infrared spectrum, nuclear magnetic resonance 
spectrum (1H and 13C), and mass spectrometry’s data. 
Moreover, this new chemical exhibit stability in the 
presence of moisture and light. The Z-scan and DPs 
were produced due to the alteration of the beam wave 

front caused by the passage of a continuous 473 nm 
laser beam through the compound A. The nonlinear 
refraction index (NLRI) was calculated to be 0.21 × 10–7 
cm2/W and 3.925 × 10–7 cm2/W, respectively, using 
both techniques. The DPs were numerically calculated 
using the Fresnel-Kirchhoff integral.

C1 C2 C3

Convergent Convergent Convergent

DivergentDivergentDivergent

Fig. 17   Same as Fig. 16 with effect of beam wave front (C1) beam phase (C2) intensity against x axis and (C3) intensity against y axis 
in compound A
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0 sec

100 msec

200 msec

300 msec

400 msec

500 msec

Fig. 18   Simulation of (C1) temporal behavior beam phase, of (C2) and (C3) beam intensity against x axis and y axis, respectively, in 
compound A
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900 msec

1000 msec

Fig. 18   continued
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12 mW 23 mW 32 mW

37 mW 46 mW 56 mW

Fig. 19   Simulation of medium temperature against power input in compound A

Convergent

Divergent

Fig. 20   Simulation of medium temperature against wave front in 
compound A
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0 sec

300 msec 400 msec 500 msec

600 msec 700 msec 800 msec

900 msec 1000 msec

200 msec100 msec

Fig. 21   Simulation of medium temperature temporal variation in compound A
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