ARTICLE IN PRESS

VACUNAS. xxxx;**xx(xx)**:xxx

Vacunas

www.elsevier.es/vac

Review article

COVID-19 story: Entry and immune response

Ali Mohammed Ashraf^{a,b}, Marwan Y. Al-Maqtoofi^{a,*}, Ahmed A. Burghal^a

^a Department of Biology, College of Science, University of Basrah, Basrah 61004, Iraq

ARTICLE INFO

Article history: Received 29 August 2024 Accepted 11 October 2024 Available online xxx

Keywords: SARS-CoV-2 COVID-19 Interferons Viral antigen Innate Adaptive Dendritic cell TLR

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the pandemic of the coronavirus disease 2019 (COVID-19) that emerged in December 2019 in Wuhan city, China. Understanding the SARS-CoV-2 entry, invasion and infection mechanism is crucial for vaccine development. The immune system is divided into 2 parts: the innate immune system and the adaptive immune system, and they work in essential and powerful ways for SARS-CoV-2 managing and reducing COVID-19 infections. Spike proteins (S) of SARS-CoV-2 are a pivotal key during the viral invasion of the host cells. Cell surface receptors facilitate binding and then membrane fusion for virus endocytosis and causing infection. Host cells are covered with receptors for viral S proteins binding, such as the human angiotensin-converting enzyme 2 receptor. The innate immune responses initiate after viral antigen detection via a set of pathogen recognition receptors, including the Toll-like receptors (TLRs) family. TLRs are largely inducible in most body cell types. After SARS-CoV-2 antigen recognition, cellular sensors stimulate the production of interferons and inflammatory cytokines, which are crucial for controlling viral replication and dissemination. The cellular and humoral responses of the adaptive immune system antibody-producing B-cells, CD4+ T-cells to evoke the immune response, and CD8+ T-cells to kill infected cells. This review outlines the process of virus entry and detection by pattern recognition receptors and antiviral defence by both innate immunity and adaptive immunity for developing immunological memory that can help in vaccines and understanding the immune response to SARS-CoV-2.

© 2024 Elsevier España, S.L.U. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

Historia de la COVID-19: Entrada y respuesta inmunológica

RESUMEN

Palabras clave: SARS-CoV-2 COVID-19 Interferones antígenos virales El síndrome respiratorio agudo severo por coronavirus 2 (SARS-CoV-2) es el responsable de la pandemia de la enfermedad por coronavirus de 2019 (COVID-19) que surgió en diciembre de 2019 en la ciudad de Wuhan, China. Comprender el mecanismo de entrada, invasión e infección de SARS-CoV-2 es esencial para el desarrollo de la vacuna. El sistema inmunológico se divide en dos partes: el sistema inmunológico innato y el sistema

E-mail address: mawan.almaqtoofi@uobasrah.edu.iq (M.Y. Al-Maqtoofi).

https://doi.org/10.1016/j.vacun.2024.10.002

1576-9887/© 2024 Elsevier España, S.L.U. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

Please cite this article as: Ashraf AM, et al. COVID-19 story: Entry and immune response. Vacunas. 2024. https://doi.org/10.1016/j.vacun.2024.10.002

^bMinistry of Health, Basrah Health Directorate, Basrah, Iraq

^{*} Corresponding author.