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Abstract—The density functional theory is used to analyze the electronic band structures of various atoms and
molecules. The effect of quantum confinement on the electronic and exciton band structures is taken into
account, which optical properties are insensitive to light polarization. The effective mass approximation, the
valance band degeneracy, and the reduced effective mass in the parallel and perpendicular directions of the
electrons and holes are also taken into account. The dispersion relation, quantum confinement effects, joint
density of states, refractive index, and absorption coefficient are calculated and discussed, which gives good
agreement with the theoretical calculations and experimental measurements.
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INTRODUCTION
The potential energy of an electron in a crystal is

known to be periodic in space, but the most important
is the energy spectrum, which is divided into allowed
and forbidden energy bands. For allowed bands, the
energy spectrum is determined by the dependence of
energy on the quasi-momentum, E(p). A certain num-
ber of allowed bands with the lowest energy are com-
pletely filled with electrons in insulators and semicon-
ductors at zero temperature (according to the Pauli
principle), while bands with a higher energy are empty.
In the case of semiconductors, the energy band gap
varies from zero (the so-called gapless semiconductor,
such as HgTe) to 3 eV. The number of free carriers
(electrons in the conduction band or holes in the
valence band), which is an important property of
semiconductors, is always small compared to the
number of atoms. Carriers are formed either by doping
or by thermal excitation, in which the number of elec-
trons is equal to the number of holes. In the case when
the carrier concentration never exceeds 1020 cm–3, the
number of states per 1 cm–3 in this band is about 1022,
i.e., typical electrons occupy only a very small fraction
of the valence band. In the center of the Brillouin zone
(p = 0, as in the case of GaAs) and for a small momen-
tum p, the function E(p) should be parabolic.

The electronic bands of semiconductors (wurtzite
type) near the center of the Brillouin zone (in the
directions parallel and perpendicular to the c*-axis of
the reciprocal space) are defined as [1]:

(1)

(2)

(3)

(4)

because the valence bands are split into three subbands
in the center of the Brillouin zone due to the  crys-
tal field and  spin orbit interaction. The effective
mass may be anisotropic, i.e., have different values for

different directions in the crystal,  is the electron

effective mass, and , ,  are the hole effec-
tive masses (heavy-hole (HH), light-hole (LH), and
split-off (SO) bands). From the above equations we
obtain the general expression for the effective mass [1]:

(5)

EFFECTIVE MASS APPROXIMATION
Using the principles of quantum mechanics for a

particle in a potential box and the effective masses of
electron and holes in terms of kinetic energy, by means
of effective mass approximation we can calculate the
energy band gap depending on the size of the quantum
dot [2]. The effective mass approximation is a single-
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particle Hamiltonian with a dispersion relation of the
bulk band near the minimum and maximum points.
A.L. Efros calculated the electronic structure of quan-
tum dots using a very simple parabolic approximation
of the effective mass and a free particle with mass m0
inside a spherical potential well of radius R [3]:

(6)

The Schrödinger equation for the particle in a
spherical well with infinite potential depth can be writ-
ten as follows:

(7)

Through the solution of the Eq. (7) in the spherical
coordinates, the wave function takes the form:

(8)

where C is the normalization constant,  is the
spherical harmonic part,  is the spherical
Bessel function of the lth order,  and 
are the nth zeros of . Therefore, the energy of
a free particle in spherical well is defined as:

(9)

This is the kinetic energy of a free particle and it is pro-
portional to 1/R2, i.e., the quantized energy strongly
depends on the size.

A free particle can be replaced by an electron or a
hole and a spherical potential well can be replaced by
a spherical quantum dot of radius R, so the quantized
energy of the electron and hole can be estimated using the
Eq. (9). The Coulomb interaction between an electron and
a hole will not be ignored, except for the lowest electronic
state of the quantum dot (n = 1, l = m= 0). The band gap
of a quantum dot, , is written as [4]:

(10)

The effective mass approximation assumes that the
effective masses of carriers in quantum dot are the same in
a bulk semiconductor, ϵ is the dielectric constant.

The additional energy due to the confinement is
presented in the second term of the Eq. (10). The third
term is the energy of the Coulomb interaction of exci-
tons (often neglected). The last term, independent of
radius, comes from the effect of spatial correlation and
is advantageous only in the case of semiconductor
materials with low dielectric constant;  refers to the
effective Rydberg energy, which is determined by [5]:
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(11)

Equation (10) clearly shows that a decrease in the
quantum dot size leads to an increase in the particle
energy, which causes the absorption of light at shorter
wavelengths.

The effective mass approximation was not success-
ful for the smallest quantum dot size, because an
extremely simplified description of the crystal poten-
tial taken as a spherical well with an infinitely high
potential at the interface was used. Another problem is
that the effective masses were assumed to be constant,
but this is correct only when working with electronic
states near the band edge [6]. Therefore, the effective
mass approximation is applicable to relatively large
quantum dots, whose intrinsic properties exceed the
surface properties.

The data obtained in the effective mass approxima-
tion were compared with the experimental results [7–
9]. The comparison shows that in the range of
nanoparticle sizes of 2.5–4 nm, the band gap increases
at small sizes, and this agrees with the experimental
results; the growth rate increases with the size of the
nanoparticle, which leads to a huge difference between
numerical and experimental results. The reasons for
the disagreement are associated with the choice of
masses (electron and hole), which are suitable only for
bulk substances. In addition, the effective mass
includes all existing interactions on an excited elec-
tron; therefore, a decrease in the particle diameter
leads to a change in the effective mass. Hence, there is
agreement between theory and experiment, since the
changes for nanoparticles with a diameter of more
than 2.5 nm are insignificant, the differences will
appear for smaller particles.

The effective mass approximation cannot predict
how the effective mass changes, and it cannot be used for
low-dimension systems. There is another method suit-
able for calculating the variation of the effective mass,
and also for determining the variation of the energy gap,
this is the density functional approximation.

DENSITY FUNCTIONAL THEORY
Density functional theory (DFT) is a technique in

quantum mechanics that is used to analyze electronic
structures of various atoms and molecules. It allows
determining the properties of the system using the spa-
tial dependence of the electron density. Using DFT
gives a set of single-particle equations (similar to Har-
tree–Fock equations), however the simplified DFT is
a more accurate procedure for solids. It focuses on a
simple scalar charge density field instead of a complex
many-body wave function. The Schrödinger equation
is derived to precisely determine the ground state
charge density as a function of external potential. DFT
is useful in many quantum molecular applications that
involve quantum dots. For example, it can be used for
structural analysis of a model of quantum dots of var-
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Table 1. Calculation of ΔEg and Meff depending on quantum
dot diameter

Diameter, nm ΔEg, eV Meff

Bulk 0 0.21m0
1.47 0.81 0.46m0
1.14 1.15 0.57m0
0.73 1.52 0.97m0
0.47 3.08 1.3m0
ious materials [10–12]. It can also be applied to evalu-
ate the use of quantum dots in colloidal charge transfer
and nanoscale devices such as nanowires [13, 14].

It is possible to construct a relationship between
the energy and the density of states for each quantum
dot, as well as for the bulk according to the DFT.
Hence, the energy gap of a quantum dot differs from
that of bulk. From this calculation, for different diam-
eters of quantum dots, we can estimate the relation-
ship between the energy gap and the quantum dot
diameter, as shown in [9], where the density of states
calculated for the ZnS (wurtzite) nanoparticle and its
bulk. Our comparison focused on finding the differ-
ence in energy gap from Eq. (10) and then finding the
reduced effective masses for the electron–hole pair as
shown in Table 1. It can be seen the energy gap differ-
ence and the decrease in effective masses increase with
decreasing diameter. By plotting the reduced effective
mass versus diameter and taking the best fit of the
extracted data from the resulting curve, the following
equation can be obtained:

(12)

The use of Eq. (12) does not give a difference between
theoretical and experimental results for particles with
a diameter less than 2.5 nm, which is in good agree-
ment with [9].

OPTICAL ABSORPTION COEFFICIENT

The optical absorption spectrum plays an import-
ant role in many optoelectronic devices. The optical
response of a semiconductor is characterized by the
optical absorption coefficient, , which is propor-
tional to the number of optical transitions per unit vol-
ume and time. For quantum dots, that coefficient
takes the following form [15–17]:

(13)
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Table 2. The effective masses (for electron, holes) and energi

0.144 0.153 1.746 3.838 0.756 0.1

*
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HH*m ⊥
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where  is the momentum matrix element between
the valence and conduction bands, JDoS is the joint
density of states. The absorption coefficient 
increases with decreasing volume V of the quantum
dot. The coefficient  is also proportional to the
joint density of states described by the following
expression [18]:

(14)
the square of the absolute value of the momentum
matrix element is specified in [16, 19]:

(15)

nr represents the refractive index, which is related to
the energy band gap. Moreover, the dielectric constant

 depends on the refractive index of the materials,
which can be calculated as [20]:

(16)
There are many forms of the relationship between

the energy gap  and refractive index nr, which are
widely used to calculate the refractive index of differ-
ent group of semiconductors. Ravindra et al. proposed
an expression for the refractive indices for semicon-
ductors [21, 22]:

(17)

RESULTS AND DISCUSSION
In our calculations, we used the data in accordance

with the local density approximation in the parallel (||)
and perpendicular ( ) directions (Table 2). We used
Eqs. (1)–(4) to construct an electronic band structure
for a bulk semiconductor ZnS around the first Brill-
ouin zone. The conduction band is a twofold degener-
ate band at k = 0 due to spin, and it is well described by
the effective mass approximation, while the valence
band is six-fold degenerate, which is partly lifted by
the spin-orbit coupling (Fig. 1). The valence bands are
classified according to the total angular momentum J
(J represents the sum of the orbital angular momen-
tum and spin angular momentum).

Figure 2 shows the size dependence of the confine-
ment energies calculated uding the Eq. (9). It is seen
that a decrease in the quantum dot radius leads to a
level shift. Moreover, these shifts largely depend on
the effective masses of the carriers. The more the
mass, the less the displacement. We can obtain a
reduction in effective mass variation in the same way
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Fig. 1. Electronic band structure around the center of the Brillouin zone for bulk ZnS in directions (a) parallel and (b) perpen-
dicular to the c*-axis of the reciprocal space.
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Fig. 2. The lowest quantum confinement levels of the valence subbands of electrons (e) and holes (HH (A), LH (B), and SO (C))
as a function of the size of a spherical wurtzite quantum dot in directions (a) parallel and (b) perpendicular to the c*-axis of the
reciprocal space.
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Fig. 3. Effective mass variation as a function of the ZnS quantum dot diameter obtained using the density functional theory (sym-
bols) and Eq. (18) (solid line) for (a) parallel and (b) perpendicular directions.
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Fig. 4. Dependence of the band gap energy on the radius of a spherical quantum dot obtained using the (line 1) effective mass
approximation and (line 2) Eq. (18) for (a) parallel and (b) perpendicular directions.
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for parallel and perpendicular directions, as shown
below:

(18)

where A = 0.133 for parallel and 0.1471 for perpendic-
ular directions, respectively.

( )0 02.8 exp 5.59 ,M Am m R= + −
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Figure 3 shows our results for the effective mass

variation depending on the diameter of the ZnS quan-

tum dot, obtained using the effective mass approxima-

tion and Eq. (18) for parallel and perpendicular direc-

tions, as well using the density functional theory and

Eq. (18). The energy band gap  increases withgQDE
TRON AND NEUTRON TECHNIQUES  Vol. 14  No. 6  2020
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Fig. 5. Dependence of the angular frequency on the radius of a spherical quantum dot obtained using the (line 1) effective mass
approximation and (line 2) Eq. (18) for (a) parallel and (b) perpendicular directions.
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decreasing radius of the spherical quantum dot (Fig. 4);
there is a difference in the band gap energies. The gap
energy obtained using the effective mass approxima-
tion is greater than that calculated using the Eq. (18).
Figures 5, 6 show the behavior of the angular fre-
quency and the square of the absolute value of the

momentum matrix element  depending on the

radius of the quantum dot. It is clear that the use of
Eq. (18) gives a slightly decreasing curve, different

2

cM
v
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from the curve obtained in the effective mass approxi-
mation, especially for smaller quantum dot radius (less
than 3 nm).

Figure 7 shows the change in the joint density of
states with an energy gap. The behavior corresponds to
the Dirac delta function and is dominant in the energy
range of the band gap (in the effective mass approxi-
mation, the range is 0–80 eV for the parallel direction
and 0–70 eV for the perpendicular direction), while in
TRON AND NEUTRON TECHNIQUES  Vol. 14  No. 6  2020
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Fig. 7. Joint density of states as a function of the band gap for a single quantum state of a spherical ZnS quantum dot obtained
using the (a, b) effective mass approximation and (c, d) Eq. (18) for (a, c) parallel and (b, d) perpendicular directions.
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our calculations the JDoS shows the same behavior in

the range 0–6 eV for both directions. Figure 8 shows

the variation of the absorption coefficient with the

energy gap. For parallel and perpendicular directions,
JOURNAL OF SURFACE INVESTIGATION: X-RAY, SYNCHRO
we obtain the same values of the absorption coefficient

corresponding to different energies, which we

obtained using the effective mass approximation and

the Eq. (18). There is a difference between results for
TRON AND NEUTRON TECHNIQUES  Vol. 14  No. 6  2020
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Fig. 8. Absorption coefficient as a function of the band gap for a single quantum state of a spherical ZnS quantum dot obtained
using the (a, b) effective mass approximation and (c, d) Eq. (18) for (a, c) parallel and (b, d) perpendicular directions.
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the two directions that give the highest absorption
coefficient, because the band gap ranges are different
between these two techniques when calculating the
angular frequency and the moment matrix elements. A
larger absorption coefficient corresponds to a larger
energy gap, which in itself corresponds to a smaller
quantum dot size (strong confinement).

CONCLUSIONS

The effect of quantum confinement on the band
gap and absorption coefficient for a spherical quantum
JOURNAL OF SURFACE INVESTIGATION: X-RAY, SYNCHRO
dot of wurtzite ZnS is studied. The effective masses of

charge carriers, the spherical conduction band and the

threefold valence band (heavy-hole, light-hole and

split-off) were taken into account. Quantum confine-

ment causes the band gap to expand with decreasing

quantum dot size (proportional to R–2), while the

material is still in the semiconductor range. According

to the Bohr radius rB and the quantum dot radius R,

there are two regimes: the weak confinement regime

(rB < R) and the strong confinement (rB > R) regime.

The absorption edge of the large dot (rB < R) is similar
TRON AND NEUTRON TECHNIQUES  Vol. 14  No. 6  2020
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to that of the bulk crystal. An increase in the energy
gap leads to the splitting of electronic states and forms
a modified joint density of states. The absorption coef-
ficient increases with decreasing volume of quantum
dot (i.e., the radius R), and it is also proportional to
joint density of states. The joint density of states for a
spherical quantum dot is a function of the energy gap
and takes the shape of the Dirac delta function. The
larger the absorption coefficient, the smaller the size
of the quantum dot.

REFERENCES

1. C. Kittel and P. McEuen, Introduction to Solid State
Physics (John Wiley and Sons, New York, 2005.)

2. A. I. Ekimov, Al. A. Efros, and A. A. Onuschenko, Sol-
id State Commun. 56, 921(1985).

3. Al. L. Efros and A. L. Efros, Sov. Phys. Semicond. 16,
772 (1982).

4. Y. Kayanuma, Phys. Rev. B. 38, 9797 (1988).

5. L. E. Brus, J. Phys. Chem. 90, 2555 (1986).

6. A. Henglein, Chem. Rev. 89, 1861 (1989).

7. Y. Wang, S. Suna, W. Mahler, and R. Kasowski, J.
Chem. Phys. 87, 7315 (1987).

8. H. Li, W. Y. Shih, and W. H. Shih, Nanotechnology 18,
205604 (2007).

9. C. Vatankhah and A. Edadi, Res. J. Recent Sci. 2, 21
(2013).

10. M. D. Ben, R. W. A. Havenith, R. Broer, and M. Sten-
er, J. Phys. Chem. C. 115, 16782 (2011).

11. A. A. A. de Queiroz, M. Martins, D. A. W. Soares, and
E. J. Franca, J. Mol. Struct. 873, 121 (2008).

12. P. Coe, A. Sudbery, and I. D’Amico, Microelectron. J.
40, 499 (2009).

13. T. Inerbaev, A. Masunov, S. I. Khondaker, et al., J.
Chem. Phys. 131, 044106 (2009).

14. P. Sorokin, P. Avramov, L. A. Chernozatoskii, et al., J.
Phys. Chem. 112 (40), 9955 (2008).

15. S. S. Rink, D. S. Chemla, and D. A. B. Miller, J. Adv.
Phys. 38, 89 (1989).

16. S. Schmitt-Rink, D. A. B. Miller, and D. S. Chemla,
Phys. Rev. B 35, 8113 (1987).

17. S. L. Chuang, Physics of Optoelectronic Devices (John
Wiley and Sons, New York, 1995).

18. Sh. Khadka, Increased Bandwidth for Dielectric Spec-
troscopy of Proteins through Electrode Surface Prepara-
tion. Ph. D. Thesis (University of Illinois, Urbana-
Champaign, IL, 2013).

19. T. S. Moss, Proc. Phys. Soc., London, Sect. B 63, 167
(1950).

20. T. S. Moss, Phys. Status Solidi B 131, 415 (1985).

21. V. P. Gupta and N. M. Ravindra, Phys. Status Solidi B
100, 715 (1980).

22. S. Zh. Karazhanov, P. Ravindran, A. Kjekshus, et al.,
Phys. Rev. B. 75, 155104 (2007).
JOURNAL OF SURFACE INVESTIGATION: X-RAY, SYNCHROTRON AND NEUTRON TECHNIQUES  Vol. 14  No. 6  2020


	INTRODUCTION
	EFFECTIVE MASS APPROXIMATION
	DENSITY FUNCTIONAL THEORY
	OPTICAL ABSORPTION COEFFICIENT
	RESULTS AND DISCUSSION
	CONCLUSIONS
	REFERENCES

