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INTRODUCTION

One important direction in the physics of low�
dimensional structures is the study of their magnetic
properties [1]. Interest in the study of low�dimen�
sional magnetism is due to the discovery of the
extraordinary magnetic properties of high�tempera�
ture superconductors [2] and the possibility of varying
the properties of nanomaterials and producing solid
structures with controllable parameters based on them
[3–9]. 

An important problem of low�dimensional magne�
tism (as, indeed, of the entire physics of low�dimen�
sional structures) is the determination of relaxation
and thermodynamic properties [7]. This is related to
the fact that low�dimensional systems are noted for
their significant nonuniformity in terms of the distri�
bution of charge carriers. A nonuniform charge�den�
sity distribution is accompanied by that of spin density.
As a consequence of this, surface effects in low�
dimensional structures play a considerable role. So the
damping of spin waves in a quasi�one�dimensional
system with a step�like structure is studied in the
recent paper [8]. It is shown that the spin–spin inter�
action becomes significant in low�dimensional struc�
tures, which leads to wave damping. In addition, the
spin–phonon interaction [9] and the interaction of
spins with surface plasmons [10] become significant in
low�dimensional magnetic materials. It is shown, in
our recent paper [11], that taking the local surface
geometry into account in the framework of the classi�
cal theory of spin waves also leads to the damping of
spin waves.

The aim of this paper is to estimate certain basic
features of the spin spectrum obtained in [11].

SURFACE SPIN SPECTRUM

In the framework of the classical theory of spin
waves, the expression for the part of the exchange
energy corresponding to the influence of the surface
was obtained in [11]. This expression has the form

(1)

where the functions  and  are defined as

 

 

  

Here, I0 is the spontaneous magnetization of a non�
perturbed system, d is the average distance between
neighboring crystal ions, A is the constant of exchange

interaction between neighboring sites, α = 
is the normalization factor, μ =  =  is the
z projection of the spin magnetic moment of the
atomic magnetization carrier with the magnetome�
chanical ratio g and the spin quantum number s
(strictly speaking, by μ, the average magnetic moment
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per lattice site should be understood), and l and j are
the corresponding directions.

Applying the diagonalization procedure to the
canonical form for the “surface” part of the exchange
energy and using certain mathematical manipula�
tions, we calculated the spectrum of elementary exci�
tations of the system in the zeroth approximation with
respect to the interaction of spin waves, which makes
sense, strictly speaking, only in a rather low tempera�
ture range when the excitation density is small. Thus,
we obtained relations completely determining the
“surface” spectrum of the system in the considered
zeroth approximation with respect to the spin–spin
interaction [11]:

(2)

The function  is defined as [9]

 

As can be seen from (1), this function yields the dis�
persion law, which in the detailed form is represented
by the following equation (for the choice of the nor�

malization constant α = 

  (3)

with the “surface” functions

 

 

and the constant B =  (l, j = 1, 2, 3). We pass
directly to the estimation of certain basic parameters
of the system under study.

ESTIMATION 
OF CERTAIN RELAXATION PARAMETERS

We estimate certain basic parameters of the spin
spectrum (1). The total shift of the frequency spectrum
of the spin waves (equal to  =  + )
reflects only an imaginary shift, because  = 0
[11]. The imaginary component  makes it possi�
ble to find the expression for the surface relaxation
time τs:
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where r =  is the characteristic vector function. We
rewrite the second factor in the denominator (4) in the
form [9]:

(5)

where the coefficients  =  are under�
stood in the vector sense as a projection of the given
vector  on the lth direction (l, j = 1, 2, 3) and

 are the coefficients of expansion in Taylor power
series of the function of surface normals [11]. Taking
the last expression into account, we obtain the follow�
ing estimation for the relaxation time:

(6)

or, for ordinary ferromagnets, taking into account that
A ≈  Θ ∼ 103 K (Θ is the Curie ferromagnet tem�
perature), we have the following expression in the
numerical form:

 (7)

As can be seen directly from (7), the numerical
value of the relaxation time depends parametrically on
the geometric factor G, which is completely deter�
mined only by the local surface geometry by means of
the coefficients β and the function  as is easily
seen from (5). Thus, in the given theory, the factor G is
precisely the parameter that determines the numerical
values of the considered physical quantities and estab�
lishes their dependence on the surface system geome�
try. Result (7) is a consequence of the fact that, as can
be seen from (5), the factor G specifies the quasimo�
mentum  acquired by the “bulk” spin wave with
the initial quasimomentum k in the presence of the
surface restriction of the ferromagnetic system with
the linear dimensions 

To clarify the peculiarities of the character of the
kinetics of “surface” spin waves, it is necessary to
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quencies. As the geometric factor G decreases further
(G < 10–3), a shift of the resonance�absorption range
beyond the edge of the frequency spectrum toward the
range of lower spin frequencies must be observed. An
energy gap with additional upper and lower frequen�

cies  and  (  <  < ) can form under such con�

ditions,  =  –  ∼  it is caused by the
direct interaction of the surface with the spin waves of
the system. Here, under direct surface interaction, the
energy–momentum exchange between spin waves of
the system and the internal energy of the surface sub�
system should, apparently, be understood; in turn, it
occurs through the field interaction between magnons
and lattice vibrations on the surface. The problem of
the microscopic mechanism of such an interaction
falls outside the scope of this paper and is of indepen�
dent interest. However, we indicate that the initial
point of the model microscopic theory is the expres�
sion

 

which is given after the transformation of the second
terms of the sum in accordance with the Ostrograd�
skii–Gauss formula

  

i = x, y, z 

in the form of the space integral

 

where we can pass to field operators later.
Under the condition G < 10–3, the correlation

between spin waves in the spatial distribution can be
established because of the presence of the gap in the
spectrum. In this case, the direct surface interaction
leads to the indirect interaction of spin waves through
virtual magnon exchanges of “surface” phonons, i.e.,
the consistent redistribution of surface and spin�wave
energies. In the case of an energy gain for such
exchanges, effective attraction leading to the forma�
tion of spin complexes can be observed between spin
waves. The fact that the propagation rate of the spin
wave in the jth direction (which is uj = 2.7 × 104Gi m/s
in accordance with estimates) decreases significantly
to ~0.3 × 102 m/s or less in the resonance absorption
range is in favor of the spatial localization of two cor�
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relating spin waves (which, generally, requires consid�
eration within the framework of microscopic theory).
Undoubtedly, this leads to a significant increase in the
density of spin excitations compared with that without
the influence of the factor G at the same temperature;
however, unlike the latter, this increase is not accom�
panied by a corresponding enhancement in the direct
spin–spin interaction.

THERMODYNAMIC CHARACTERISTICS

We illustrate the foregoing using some expressions
for thermodynamic potentials showing the possible
influence of surface resonance on the equilibrium
properties of the system. For simplicity, we consider
only the δ�shaped surface resonance in the case of res�
onance broadening Δ =  → 0 in the frequency
spectrum. In the case of no external magnetic field and
negligibly small magnetic anisotropy where the aver�
age thermal energy is significantly larger than the sys�
tem energy in the “Lorenz” field   �  the
thermodynamic potential of the ferromagnetic gas is

(8)

where ξ =  and δ = 

Under the assumption of δ�shaped broadening, we
calculate the integral in (8) as follows. First, we rewrite
the integral, transforming the integrand in the form

The fraction in the integrand can be decomposed as
follows:
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If the γ�function is used, the last expression can be re�
written as

 

Thus, for the sought integral, we obtain the following
expression:

 (9)

Substituting (9) into (8) and calculating the corre�
sponding derivatives with respect to the temperature
and the magnetic field in accordance with the well�
known formulas

  

we find the required expressions for the heat capacity
and the magnetization of the ferromagnetic sample in
the case (that is most general here) where Δ = 

For the heat capacity, we find the expression

(10)

where (11)

( ) ( )
5 1
2

5 2

1 10

5exp .
2

n
n

n n

ee nx x dx
n

∞∞ ∞
− δ−

− δ

= =

− = Γ∑ ∑∫

( )3 2

5 2

10

5 .
exp( ) 1 2

n

n

x dx e
x n

∞ ∞
− δ

=

= Γ
+ δ −

∑∫

V

2

2
( , ) ,C T H T

T
∂ Ω

= −
∂

0
1( , )I T H I
V H
∂Ω

= − +
∂

.( , )T HΔ

B

B B

V

B B

3 2

5 2

1

2 2
1 2 1 2

5 2 2 5 2

1 1

15( , )
4

3 ,

n
k T

n

n n
k T k T

n n

eC T T
n

ne n eT T
k n k n

Δ
−∞

=

Δ Δ
− −∞ ∞

−

= =

Δ = α

Δ Δ
− α + α

∑

∑ ∑

B
5 2

3 2
.

8( )

Vk
α =

π ξ�

As can be seen from expression (10), the presence
of the gap in the energy spectrum leads to deviation of
the temperature dependence of the heat capacity from
the Bloch three�halves power law. In the case where
the gap Δ = 0, taking into account that  = 2Ad2 =

 and taking the value for the coefficient from
(11), we obtain

(12)

where  is the Riemann zeta function. Thus, for

Δ = 0, we return to the Bloch three�halves power law. 

For clarity of the obtained result, we represent (10)
graphically. Instead of the heat capacity  we

plot the reduced value  of the heat capacity along

the vertical axis. In this case, the temperature depen�
dence of the reduced heat capacity is given for three
different values of the gap Δ.

As can be seen from the figure, the increase in the
gap leads to the temperature dependence of the heat
capacity having weakened. The curve corresponding
to zero gap coincides exactly with that of the Bloch
three�halves power law.

Similarly, the expression for spontaneous magneti�
zation can also be obtained:

(13)

with the coefficients b1 and b2

(14)

where  is the Riemann zeta function.

CONCLUSIONS

As should be expected, the presence of the gap in
the spectrum leads to a decrease in the temperature
dependence of the heat capacity of the ferromagnon
gas and to an increase in its magnetization, which is a
consequence of the total decrease in the energy of spin
waves under surface resonance conditions. Other spe�
cific cases of the behavior of thermodynamic func�
tions for low thermal energies of the system (compared
to its “Lorenz” energy) or in the presence of weak and
strong magnetic fields and also more subtle cases of
dimensional effects of the system in quantizing mag�
netic fields in which the linear dimensions of the sys�
tem in the quantization direction turn out to be
slightly larger than the interatomic distance can be
represented in a similar way.
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