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Abstract: In this study, we construct new numerical methods for solving the initial value problem
(IVP) in ordinary differential equations based on a symmetrical quadrature integration formula using
hybrid functions. The proposed methods are designed to provide an efficient and accurate solution to
IVP and are more suitable for problems with non-smooth solutions. The key idea behind the proposed
methods is to combine the advantages of traditional numerical methods, such as Runge–Kutta and
Taylor’s series methods, with the strengths of modern hybrid functions. Furthermore, we discuss the
accuracy and stability analysis of these methods. The resulting methods can handle a wide range of
problems, including those with singularities, discontinuities, and other non-smooth features. Finally,
to demonstrate the validity of the proposed methods, we provide several numerical examples to
illustrate the efficiency and accuracy of these methods.
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1. Introduction

Differential equations are a fundamental tool in many fields of pure and applied
science and are used to model a wide range of real-world phenomena [1,2]. While analytic
methods exist for solving differential equations, many of the equations encountered in
practice are too complex for a closed-form solution. Even when a solution formula is
available, it may involve integrals that can only be approximated numerically. In such
cases, numerical methods provide an alternative tool for solving differential equations
under specified initial conditions. Initial value problems, which take the form of ordinary
differential equations [3], are commonly encountered in science and engineering, and can
be written in the form:

y′ = f (x, y(x)), y(x0) = y0 (1)

To solve the problem (1), various numerical methods with varying orders of con-
vergence have been described and developed (see references [4–10]). The Runge–Kutta
method is one of the most commonly used numerical methods for this purpose among the
existing methods and has seen a growing interest in its development in recent years. The
general m-stage Runge–Kutta method is given as follows:

yn+1 = yn + h∅(xn, yn; h) (2)

where
∅(xn, yn; h)= ∑m

i=1 wiki,
k1 = f (xn, yn),

ki = f
(

xn + cih, yn + ∑i−1
j=1 aijk j

)
, i = 2, 3, . . . , m,
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