ORIGINAL PAPER

Double Shehu Transform Reduced Differential Transform for Analyzing Electro-Osmotic MHD Flow Through a Curved Artery with Stenosis and Thrombosis

Ammar Al-Salih¹ · Abdul-Sattar Jaber Al-Saif¹

Received: 20 April 2025 / Accepted: 9 August 2025 © The Author(s), under exclusive licence to Springer Nature India Private Limited 2025

Abstract

This study presents an innovative approach for obtaining approximate analytical solutions that describe the behavior of electro-osmotic, magnetohydrodynamic nanofluid blood flow in a stenosed and curved artery influenced by thrombosis and catheterization. The proposed technique is based on the integration of the double Shehu transform and the reduced differential transform method (RDTM). This investigation also explores the effects of various physical parameters on the velocity and temperature of blood flow within the stenosed artery. The results indicate that increasing the magnetic field strength reduces both velocity and flow rate. Increasing the size of nanoparticles enhances the velocity, temperature, and flow rate. However, a higher nanoparticle shape factor leads to reductions in both velocity and temperature. Furthermore, an increase in the hematocrit parameter raises the concentration of red blood cells, which increases the fluid's viscosity, resulting in decreased velocity and reduced flow rate. Contour plots illustrate the variations in blood flow velocity under different magnetic field intensities and nanoparticle volume fractions. The results demonstrated that the proposed approach offers high accuracy and efficiency. In addition, the error table and convergence analysis demonstrate the new technique's efficiency and performance theoretically and computationally. This study contributes to a better understanding of how stenosis and thrombosis influence blood flow in arteries and offers helpful information regarding treatment planning and the development of more effective drug delivery strategies.

Keywords Double Shehu transform · Reduced differential transform · Stenosis artery · Blood flow · Convergence analysis

Published online: 05 September 2025

Ammar Al-Salih ammar.radhii@uobasrah.edu.iq Abdul-Sattar Jaber Al-Saif abdulsattar.ali@uobasrah.edu.iq

Department of Mathematics, College of Education for Pure Science, Basrah University, Basrah, Iraq